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ABSTRACT

Unmanned Air Vehicles have become increasingly important on the modern

battlefield. The restrictive requirement for runways and special equipment to take off

and land was partially solved by the vertical take off and landing Airborne Remotely

Operated Device, AROD. Work done at the Naval Postgraduate School has modified

the AROD to not only land and launch vertically, but to ftv horizontally for the

majority of the mission. To realize these capabilities, as well as that of autonomous

flight, an accurate computer model was required of both the AROD and the avionics

test bed aircraft. Bluebird. in order to design the control and navigation systems. High

fidelity, non-linear equations of motion were derived in matrix form that represented

any six degree of freedom aircraft model. and were then tailored for use on specific

aircraft. Computer modeling of the resulti:ig equations of motion, as well as the

sensors used on the aircraft, was done using SIMULINK and MATLAB software. The

resulting computer model provides a non-linear system of equat ions. which are easily

linearized at any desired flight condition. as required by the proposed control and

navigation system design. Acce'.ioli For
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I. INTRODUCTION

A. IMPORTANCE OF UNMANNED AIR VEHICLES

Unmanned Aerial Vehicles have become increasingly more important. both on

the battlefield and in! civilian service, since the hyan Q-2C Firebee target drone

introduced the "modern age" of UAVs in 1960 [Ref. Siu 91]. From that time on,

military planners have assured that UAVs have the capability to collect intelligence.

target en my positions, gather bomb damage assessment, as N•ell as perform many

other tasks. Th- real benefit in using unnianr.ed aircraft lies in the fact that m -ny

missions can be performed deep in enemy territory, all without endanger'ng the lives

of pilots, or risking the loss of a much more expensive aircraft. W\ith the recent use of

UAVs in Operation Desert Storm. improvements in the current technology are both

indicated and desirable.

The most capable .'A\; in service of tl'e U'nited States Navy and Marine Corps

today is the i ioneer Short Range UA\'. The system is hampered, though, by the

large amount of ruiiwav and special equipment needed to launch and land the aircraft.

These requirements limit the usefulness of the Pioneer by keeping the aircraft take-

off and landing area well away from the areas where the ground forces are operating.

This distance then leads to longer transit times to and from the assigned operating

area, and thus a shorter time oi station. However, what is really required in many

instances by the -,ound forces is an aircraft that kan respond quickly to a changing

tactical situation. The Airborne Remotely Operated Device, AROD, was an attempt

by Sandia National Laboratories [Ref. Wh 87], in response to a reqplirement by Lhe

Naval Ocean Systems Center, NOSC, to respond to these needs.



The United States Marine Corps had set a requirement for a short :a!-g,,, direct

support UAV as described in [Ref. MCG 87]:

" ... to allow the front line commander to see "over the next hill", to a

distance of two kilometers ... "

The AROD was designed to be a ducted fan, hovering device carrying a fiber optic

data link and on board cameras. AROD testing was canceled [Ref. Sa 89] as the

Department of Defense requirements grew, requiring a minimum range of 30 km for

all Short Range UA\Is. The AROD was incapable of this kind of range, however: the

design is still potentially useful.

The Unmanned Air Vehicle Flight Research Lab. UAV FRL, at the Naval Post-

graduate School has proposed a solution using the AROD that would satisfy the

DoD short range UAV requirements, while maintaining the important capability for

vertical take-offs and landings.

B. UAV RESEARCH USING THE AROD VEHICLE

Unmanned Aerial Vehicle research underway at NPS has taken the AROD air-

frame and fitted it with wings from the Aquila UAV [Ref. Kre 92. Sto 93] in order

to give the AROD forward flight capability. The proposed configuration will give the

Archytas (an AROD with wings) the ability to take-off and land vertically and then

transition to horizontal flight for the mission. This design will explore new technol-

ogy, driven by the goals established by the UAV Joint Project Office [Ref. DOD 92]

of:

9 Take off weight under 200 lb

9 Carry a 50 lb payload

* Fly at a maximurn speed of 150 kts



* Take-off and land in an area 30m bv 60m

The vertical flight is accomplished with a powerful ducted fan.which causes a great

deal of gyroscopic coupling and torque when producing enough thrust to lift the

aircraft. Therefore, in order to achieve stable take-offs and landings. a three-axis

autopilot is a necessary feature of the aircraft. Additional capabilities desired in

the final version of the Archytas are guidance and navigation systems which will

allow autonomous operation, as well as a Global Positioning System aided autoland

capability.

C. REQUIREMENT FOR MODELING

Simulation and modeling of the aircraft are essential to the successful design

of a control system capable of autonomous flight. The model must be a very high

fidelity, non-linear model, that can be easily linearized at any given flight condition.

The model should be able to interpolate between data points resulting from wind

tunnel testing in order to simulate the highly nion-linear transition from vertical to

horizontal flight. Moreover, the model must also be capable of including the outputs

of the sensors as inputs to the control and navigation system for sensors located at

any arbitrary location on the aircraft.

This thesis develops a six degree of freedom model for the AROD in the vertical

flight regime, as well as for an aircraft in a fixed wing configuration. This test aircraft,

named Bluebird, is used to test the guidance, navigation, and control, GNC, systems

in horizontal flight, since there currently is no aerodynamic data available for the

Archytas configuration. Use of the Bluebird will provide the capability to design and

test a GNC system on a stable aircraft before the first flight on the Archytas.

3



II. BACKGROUND

A. DESCRIPTION OF AROD

The AROD was designed by the Sandia Research Laboratory in Albuquerque.

New Mexico in a project managed by NOSC. The vehicle possessed no flying surfaces

and relied solely on powered lift for flight. Control of the aircraft was obtained through

thie use of four fixed anti-toraue vanes and four moveable control vanes positioned in

the propeller wash of the duct [Ref. We 88]. The main features of the AROD were

vertical take-off and landing. VTOL. flight, lightweight construction, compact size,

and minimal support equipment required. However, the AROD required most of the

engine output to maintain the powered lift, so very little excess thrust was left for

translational flight.

An important aspect of the AROD design was the improvement in static perfor-

mance provided by the efficiency of the ducted fan design. The addition of the shroud

around the three-bladed propeller resulted i.1 increased mass flow through the fan,

and thus more static thrust when compared to a conventional propeller configuration

[Ref. Kre 92]. The AROD is shown in Figure 2.1 and characteristics of the AROD

are tabulated in Table 2.1. The moveable control vanes are all used in combination

to exert the desired control forces on AROD. Roll control is achieved by deflecting the

four vanes in the same direction, while pitch and yaw control is obtained by deflecting

a pair of vanes in the required direction. The numbering of the vanes is shown in

Figure 2.2 and the combinations of vane deflections required for positive roll, pitch,

and yaw motion are given in Table 2.2.

4
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Figure 2.1: Airborne Remotely Operated Device, [Ref. Siu 91]

B. AROD MODELING

The AROD vehicle has been the subject of several theses at NPS. The designs

presented in the theses rely on the AROD model given by Sandia Labs in the original

design of their controller [Ref. Wh 87, Wh 91]. This model was based on the more

classical technique of linearizing an aircraft model, based on dimensional derivatives

in a state space form. The resulting model was acceptable for the AROD in a hovering

and near vertical translational flight mode, but was not easily adaptable to anything

other than the narrow range of conditions planned for AROD. The Sandia Labs

papers also pointed out several types of coupling in the AROD. The most prominent

5



TABLE 2.1: PHYSICAL CHARACTERISTICS OF AROD

Inlet Diameter. A 29.25 in
Propeller Radius, R 12 in

Exit Radius 23.375 in
Inlet Area Ratio 1.219
Exit Area Ratio 1.115
Exterior Contour Tapered Rear

Propeller Location, % chord 25 'X
Number of Blades 3

Engine Speed, Max. 8000 rpm
Engine Speed, Nora. 6500 rpm

Tip Speed, Max. 838 fpm
Tip Speed. Nom. 680 fpm

Power Loading, EH2/po 01 7.25 H P/f 2

Mass Moment of Inertia, 1, 1.2312 slug -

Mass Moment of Inertia. I, 3.9548 slug - f2

Mass Moment of Inertia, 1, 3.9825 slug -
Prop Mass Moment of Inertia, 1,. 0.00898 slug -
Prop Mass Moment of Inertia, Iy 0.0045 slug -. f2
Prop Mass Moment of Inertia, 1, 0.0045 slug - f2

TABLE 2.2: VANE DEFLECTION COMBINATIONS FOR POSITIVE
ANGLES

Vane Combination
Roll, (P V,1 + 1.• + 1,; 4 1

Pitch. 0 1"2 - V11

\aw, %P I - 13

of the coupling effects is the gyroscopic coupling between the pitch and yaw axes

resulting from the large amount of angular momentum contributed to the aircraft

by the propeller. Another dynamic coupling exists between the altitude-rate and the

vehicle attitude, since a loss of lift due to thrust will occur when the vehicle is tilted to

generate horizontal motion. Yet a third dynamic coupling exists between the altitude

6
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Figure 2.2: AROD Direction of Positive Vane Deflections

and roll control loops, since the reactive torques applied to the roll axis vary as the

engine speed is varied. Sandia Labs also provided data for modeling both the engine

and the servos as second order transfer functions which were used in this thesis.

Additional information was obtained by Weir [Ref. We 88] in wind tunnel test-

ing. This information included non-dimensional derivatives for vane effectiveness and

non-dimensional stability derivatives. The report also stated that the control-vane

effectiveness is constant out to at least 25 deg of deflection. Wind tunnel data were

also presented to show that control vane effectiveness in approximately the same for

translational flight as for hovering flight. This equivalence is due to the fact that the

vanes are located in the high speed flow aft of the propeller and are not significantly

affected by the freestream.

7



TABLE 2.3: PHYSICAL CHARACTERISTICS OF BLUEBIRD

Weight 55 lbs

Average Wing Chord, " 1.802 f
Wing Span, b 12.42 f

Planform Surface Area, S 22.380 f2

Engine Power 4.0 HP
Mas, Moment of Inertia, I 10.0 slug - f
Mass Moment of Inertia. Iy 16.12 slug - f
Mass Moment of Inertia, I1 7.97 slug - f'

C. DESCRIPTION OF BLUEBIRD

The Bluebird aircraft was acquired as a test bed for guidance and nav'igation

systems. Ultimately, these systems will be installed on the Archytas aircraft. The

Bluebird is a conventional aircraft that will be used to test systems for a similar

configuration to the Archytas in forward flight. The aircraft model was developed

in the same manner as for AROD, as will be described in Chapter III. Physical

characteristics for the Bluebird are given in Table 2.3.

8



III. AIRCRAFT EQUATIONS OF MOTION

A. NOTATION

In this section the notation used in modeling the equations of motion is intro-

duced. This notation is common in the field of robotics (see [Ref. Sil 91] and [Ref.

Cra 86]). and is shown below in Figure 3.1. The following conventions are used:

(B)}ý

SI.

-S /

(A) Ap,.. - ---

Fiur 3.1:: Reatv Poito of Coorinae ytem

AP

{B}-

x
z

Figure 3.1: Relative Position of Coordinate Systems

SAI represents the coordinate system with basis vectors. X4 YAd and ZA.

"9 APQ represents the position of point Q. expressed in AI.

"* A1 7Q represents the velocity of point Q, measured in f.41 and expressed in f{A).

"* B(A V) represents the velocity of point Q, measured in f{A), and expressed in

' R is a rotation matrix, also called a direction cosine matrix. A free vector

in one coordinate svstem., that is a vector that can b( mor~d paraihiI to i*tsrdf

9



without change e.g., BtQ can be expressed in another coordinate system by

using the rotation matrix:

A (BIr) = (

"* AQB is the angular velocity of the {BI coordinate system with respect to {A},

and expressed in {A}.

* B(A PB) is the angular velocity of {B}, with respect to {A}. and expressed in

{B}.

"* Additional information can be added to the subscripts i.e., APBo is the position

of the origin of { B}, expressed in { A}.

B. COORDINATE SYSTEMS

In order to derive equations of iiotion for a rigid airplane, the following coor-

dinate systems and assumptions will be used:

e {U} represents the inertial tangent plane coordinate system attached to Earth.

e {B} represents the body fixed coordinate system.

* All sensors are located at the c.g. (This assumption will be lifted

in a later section)

• The mass of the aircraft remains constant.

e Given a vector v, its derivative with respect to {B} is denoted as

and

its derivative with respect to {f } is denoted as ()

10



The {B} coordinate system is defined with XB as the thrust axis. A positive roll

rate, p. is clockwise when looking in the positive X direction. The positive direction

for YB, the pitch axis, is out the right wing . A positive pitch rate, q, is defined as

clockwise looking in the positive Y direction. The ZB axis is the yaw axis, and a

positive yaw rate, r, is defined as clockwise, looking in the positive Z direction.

To simplify the notation in places where it becomes cumbersome. The following

definitions are introduced:

* CQ represents the velocity of an arbitrary point, Q. measured and expressed in

fU}T

* c'c rcpiesents the velocity of the origin of {B}. measured and expressed in

{fU}, i.e. 1`VBo = cBo.

• B 'Q represents the velocity of point Q. measured in {f'} and expressed in {B},

i.e. B(UL'ý) = Bv.Q

0 6-'B represents the angular velocity of {B}. measured and expressed in {Ut}. i.e.

(ýQB = "B.

* B,'B represents the angular velocity of {B} measured in {f}, and expressed in

{B}, i.e. B(UQB) = BUB.

C. SPATIAL ORIENTATION

1. Euler Angles

The spatial orientation of a rigid body [Ref. Ju 92] can be defined by the

three Euler angles, 4). 0, and IV called roll. pitch and yaw and defined in Figure 3.2.

The Euler anglesin turn. can be used to define a rotation between two coordinate

11



X3==2X

X2y

(IE)

BY

Figure 3.2: Z-Y-X Euler Angle Rotation Sequence

systems. This rotation is obtained using Euler's theorem:

Any number of rotations about different axes through a point must. in

the end, remain equivalent to a single rotation.

For the case of conventional aircraft, a 3-2-1 rotation sequence is used [Ref. Sch 92],

where the aircraft is yawed, pitched, then rolled. In the cases investigated here, e is

small, and in steady state flight is equal to the angle of attack. a. 4 can be expected

to be anywhere from ± 60deg in normal flight and can be anywhere from ± 180deg in

acrobatic flight. T represents the heading of the aircraft and of course can range from

0 to 360 deg. The transformation from inertial coordinates{U}, to body coordinates

{ B}, is carried out as follows, and is shown in Figure 3.2.

1. The inertial coordinate system is represented by the vector t'V, with the com-

ponents x, y, and z. The first rotation is made about the z axis through an angle

12



T. Now the vector is expressed as 2' with the components ,r2.Y2, and z2. Since

the rotation was about the z axis. the Z2 component remains unchanged. The

resulting elemental matrix is:

cos 1 sin 11 0
M(J)= -sin %P cosJP 0 (3.1)

0 0 1

2. Now the rotation is made about the new y axis, Y2, through an angle e. This

results in a third coordinate system with the vector expressed as '1V, and having

components X3,Y3, and z3. This rotation does not change the y3 component.

The resulting elemental matrix is:

cosO 0 -sinO 1
M4(O) = 0 1 0 (3.2)

sine 0 cos O

3. Lastly. the rotation about the x3 axis through an angle 4D is made to give the

vector expressed in body coordinates, BV. Now the resulting matrix is1, 0 0 ]
M 0 cosA sin 4) . (3.3)

0 - sin (D Cos 4

When the matrices are multiplied together in the correct sequence. M( )M(O)M( 'F),

the result is the (R direction cosine matrix, expressed in terms of Euler angles as

shown

cos T cosO sin T cosO - sinO
cosT sinOssin4) -sinT cos4) sinOsin4, sinT +cos'I'cos4) cosOsin4) (3.4)
cosIP sinO cos4) + sinT sin4) sinO cos4) sinkV - cosqV sin4) cos® cos4) I

The next step is to develop the kinematic differential equations that de-

scribe the change in Euler angles with time. Following the method used in [Ref.

Sch 92], the matrix of differential equations, Q, can be written as a sum of individual

Euler angle rates:

]O 0 + M(4)M(O) ) + I(4)M(O)M(') EO . (3.5)

0 0 I_ -

13



When the matrix algebra in Equation 3.5 is done, the resulting kinematic differential

equations for p.q.and r are given as:

q 0 cos 4 cos ® sinl4 1 (3.6)
r 0 -sin 4) cos®cos4)

The matrix on the right hand side of Equation 3.6 is invertible for all ® 7 r/2, and

can be used to solve for the Euler angle rates. 4). 0 and tF:

F I 1 sin (D tan 0 cos ( tan® 1 0
I 0 cos 4) - sin 4) .3.7)
L0 sin 4) secE cos 4) secO r

By integrating Equation 3.7, the time history of the Euler angles can be obtained.

The Euler angle method has one drawback. In the kinematic differential

equations derived, a singularity occur. for some particular value of either 4). E. or %P.

In Equation 3.-, this singularity occurs at 0 = ±-,/2. which means the that the

coordinate transformation is useful for an aircraft in horizontal flight, but useless

for an aircraft which requires a vertical take-off or extended periods of vertical flight.

Thus, another type of transformation is necessary for aircraft that spend considerable

time flying at conditions near 0 = 7r/2.

The first alternative is simply to use another one of the 12 possible Euler

&ngh. transformations. It has been shown that the rotation matrix. R. is made up

of sequential rotations and can be characterized as the product o" three individual

matrices where

R = M,(0 3 ) AIJ(0 2) 1(01), (3.8)

where the rotation sequence (a, /3, 1) reptesents one of the combinations ef integers

(1,2, 3). (1,3.2), (1,2, 1). (1,3. 1)

(2. 1.3). (2, 3. 1). (2, 1.2), (2.3,2)

(3.2.1). (3. 1.2). (3. 2.3). (3, 1,3)

14



and the Mi(0) are the rotation matrices

M1(0) = 0 cos0 sin
0 -sinO cos 0[Cos 0 0 - s,,n 1

1112(0) = 0 1 0 (3.9)
sin9 0 cosO

co 0 -n9 0 0
M 3 (0) = - sin0 cos0 0 0

0 0 1

One can see that by substituting in (3,2,1), and '. O, and 4I for 01,02, and 03 re-

spectively, the matrix shown in Equation 3.4 is obtained. Euler angle transformation

matrices for each of these combinations have been calculated and are tabulated in

[Ref. Ka 83]. The best Euler angle rotation sequence for an aircraft with flight at

O = 7,'2 was selected as a 2-3-1, or Y-Z-X, sequence. This sequence will allow flight

at E = 7/2 with no corresponding singularity ii the kinematic differential equations.

Note that this matrix is invertible for T ý r,/2. The 2-3-1 rotation matrix. R, is

described in terms of Euler angles as

[cos E)cos %P sin T - sin 0cos'I 1
- cos 0 sin T cos 'I + sin D sin e cos lIVcos4( sin 0 sin 'I cos 4) + sin (P cos0

cos 0 sin T sin F + cos D sin 0 -cos'I'sinO -sin0sinkP in •+cos0cooP I
(3.10)

The kinematic differential equations can be found in [Ref. Ka 83] as

I - cos Dsin T sin4 sin 1 [p1
0 cos4) - sin4 j q (3.11)
0 sin 4D cos T cos 4D cos T r

These equations can now be integrated to find the time history of the Euler angles.

2. Quaternions

Another choice for the expression of a body's spatial orientation is the

use of quaternions. Quaternions eliminate the disadvantage of the singularity in the

second rotation that is associated with the Euler angles. Quaternions haxe been in
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use for quite some time. having been discovered by Euler in a search for complex

numbers [Ref. Mo 841. A quaternion is defined as [Ref. Mo 841:

q =3o + i31 + j32 + 03 3, (3.12)

where the parameters are repr. sented by various authors as S, a, b, c by [Ref. Ro 58],

X, ý. . and ( by [Ref. Whi 59], and q4, ql. q2, and q3 by [Ref. Sil 911.

The components 30, /1,/32, and 03 are real numbers and the terms ij, and k

are defined in the typical manner for complex numbers, where

i2 :=-1 ij=-ji=k,
j 2 =I jk = -kj? =

k2 = 1 ki=-ik=j

The norm of a quaternion, q'q, is required to be 1:

qq =q'q= '32+3+ 1 332 1,

since q =3o - 1i3 - j/3 2 - k3 3 .

It can be shown that R can be represented as follows:

B r11 r12 r13 1
BR r 21 r22 r23 , (3.13)

r 3 1 r 3 2 r 33

where

r 12 = 2(31,32 + 3033)
r3 = 2(3,33- 1032)

r2, = 2(,12/3 -/30033)
r22 = 1 . (3.14)
r 23 = 2(3233 + o/31)
tal = 2(031/33+ 032)

r32 = 2(0233 -/3031)
33 = 1302 3

All that is required now is to determine the kinematic differential equations using the

quaternions.
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By expressing subsequent rotations from one coordinate system to another.

where 3' orients F1 to F, and 3" orients F 2 to F1, an algebraic approach [Ref. Mo 84]

can be used to relate F 2 to F.

R(O) = R(/3")R(3')
R-1(3) = I= Ri,(`3")Rkj(13') " (3.15)

Now the i3's can be expressed in terms of /3"s and /3'3s with the following result

/ = R(O")/3', (3.16)

where 30 -/3, -3& -/331

R(13) 31 00o /33 -32 ,R(•) 132 -`33 rýo ýi 3.7

33 32 -/31 3O

By regarding the second rotation in Equation 3.16as infinitesimal, the following result

is obtained
1/3= R(,,*)3, (3.18)

where

- / , /31l and L =* [P (3.19),j2 '0 /2 q '

1333 r

and
a d0 

-- Aý 60 -•2 - I- •)3
R(L'*) = v;3 - I2 (3.20)

L[2 -13 0 L l

LA3 0W2 -WI 0

Equation 3.18 can be rewritten as
.1

I= -R(4*, (3.21)
2

and in this form can be integrated to give the time history of the orientation of the

body.
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U'sing quaternions has the following advantages over Euler angles in repre-

senting spatial orientation of a rigid body:

"* Four states required to express the spatial orientation.

"• Requires almost 30 % fewer calculations [Ref. Ro 58]. mainly because no non-

linear, trigonometric equations need to be calculated.

"* No singularities in Equation 3.21 at any body attitude.

D. DERIVATION OF EQUATIONS OF MOTION

The derivation of equations of motion for a genera] six degree of freedom airplan,'

model can be divided into two parts. The first part is simply the determination

of the equations of motion for any rigid body in space. It is dependent only on

the linear and angular momenta of the body. The second part is the calculation

of aerodynamic. gravitational, and thrust forces on the airplane. These forces are

particular to a certain aircraft and in general can be represented by the stability and

control derivatives described later in the thesis.
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1. Linear Equations

Equations for linear motion can be calculated using Newton's law. F = rn a.

Since most of the sensor information available for feedback to the control and nav-

igation systems is available in the {B} coordinate system, the terms for linear ac-

celerations, as well as forces and moments, will be expressed in the body coordinate

system. First the position of the aircraft c.g. is determined as 'Poo. Then Coriolis'

theorem is applied to obtain linear velocities for the aircraft. Coriolis' theorem is

then reapplied to derive the expression for linear accelerations. Then

UV 0 cPBo. (3.22)

Both sides of Equation 3.22 are prcmultiplied by B-R to get:

SRL`V~o = rk PBo

or

BVBO = BPo (3.23)

Now consider Coriolis' theorem

dA = -A + .' x A, (3.24)
dt

where A and -A use the notation for derivatives previously defined in Section A. The

term ,: x A represents the difference between the relative velocity as measured from

the rotating and non-rotating axes [Ref. Gre 88].

Equation 3.24 is applied to BVBO in Equation 3.23 to get:

Bt'O= vBW 1B X 'BOVB. (3.23)dt

Newton's law can now be written as

"TF rn 'ýa

= I Z B O, (3.26)
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where tF is the total external force applied to the aircraft c.g. Equation 3.26 is

premuhiplied by PR to obtain the result:

BF = m ,Rt iBo

= m B'BO-. (3.27)

when Bi,BO is substituted into Equation 3.27, the final result for BF is

BF = n? (•d Bo + B BVBo)

dt
-= M -dt, BO + M BWB X BtBO. (3.28)

2. Angular Equations

The equations for angular accelerations are derived using Euler's law for

preservation of angular momentum. These equations are also derived for the aircraft

c.g. by applying Coriolis' theorem to the equation for Euler's law:

(LBO =- L,'BO, (3.29)

where tLBO is the angular momentum of the aircraft and UNBO is the total ex-

ternal moment applied to the aircraft c.g. Euler's law can be rewritten in {B} by

premultiplying Equation 3.29 by gR to get

BLBo = BRC NBo. (330)

Using Coriolis' theorem in Equation 3.24, BtBO can be rewritten as
BL dB

BLBO = d" LBO + B WB x BLBo. (3.31)

The angular momentum, BLBO, is defined as the product of the inertia tensor, 1B,

and the body's angular velocity, BwB, or

B L !2 IB BWB + IR B ,;.
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where IR and BWR are the moment of inertia and the angular velocity of the propeller,

respectively. When this term is substituted into Equation 3.31, the result is

B LB= d(IBBWB + IRB WR) + BWB x (IBB UB + IR B WR). (3.32)
dt

where IB is the inertia tensor for the aircraft and IR is the inertia tensor for any

significant spinning object on the aircraft, such as a propeller, turbine , or other

rotating disk. The term, B WR, is the angular velocity of the rotor, expressed in {B}.

We can carry out the differentiation in Equation 3.32 to get
dB dB 'B jB

B LBO - IB d B + IR -• BR + BWZB X (IBB WB + IRBWR). (3.33)
dt dt

However, since d/dt(BWB) = BJ B and d/dt(B WR) is assumed to be very small, Equa-

tion 3.33 results in

BLBO = BB B -+ B,;B X (IBBLB + IR B')R) (3.34)

Now the result in Equation 3.34 can be substituted into Equation 3.29:

BANBO = IB B4ZB + B WB X (IBBWB + IR B ,R). (3.35)

The term IR B W can be disregarded if it is insignificant compared to IB and B WB

[Ref. Ros 79].

3. State Equations

In the preceeding sections, kinematic equations for the motion of a rigid

body were derived in matrix form. These equations can be assembled into a state

space representation of the kinematic equations of motion. First, Equations 3.28 and

3.35 can be written as

*F 1 rB +d (B WB XBtI 1
* Bý +BBIw (3.36)IBMB "WB X (VBWB + IRBR)
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Equation 3.36 can be rearranged to yield

d rIB B _ B,0X (IB -B + IRB a R) + B F) (3.37)

dt I Bt.;B I = B 14B (B B ,: +I B 11:) + B I)

The terms on the left hand side of Equation 3.37 can be normalized by multiplying

by 1/m and I-1, with the final result of

d ~B I lB B B B 1'O+ I" B'1 (3.38)dt 4 B -I 1 B, X (IB ,'B + IRBI + I I

E. EXTERNAL FORCES AND MOMENTS

Section D. gives the equations for kinematic motion, as shown in Equation 3.38,

for any rigid body. Now it is necessary to distinguish between the different platforms

to be modeled in order to give an accurate representation of the aircraft. This is

achieved by computing the actual B!F and BN acting on the aircraft. These forces

and moments are those due to gravitational, propulsive, and aerodynamic effects.

written as [ B F B [B! R A + BF PROP +B FA E R O (3.39)BN \" 3 PROP +• B \N.ER0

1. Aerodynamic Forces and Moments

The aerodynamic force and moment terms are determined by using a first

order Taylor series expansion around a given nominal operating point. This operating

point is the state chosen to represent the aircraft's flight condition. Each term in the

series is a partial derivative of BF or B\, with respect to the aerodynamic variables.

u/U, o. 3, p, q. r [Ref. Sch 92. Th 891:

FAERO = 6F¢,x' + 6 F±jr' + SF.,AA + F0 . (3.40)

Similarly, moment terms can be written as

.AERO = ýN 1'.\, + f .\',, + bNAA + N0 . (3.41)



where x' is given by

u pb qc rb(-. 01 al, 2U, 2-• 1-1,•7 (3.42_)

and i' is given as

•' = [3,&].(3.43)

Control inputs are represented by the vector A:

A = [6e 6", ,6] (3.44)

where 6,, 6 r, and b,, are the elevator, rudder, and aileron inputs, respectively.

Equations 3.40-3.44 can now be combined as follows:

[ WFA ] - c , OC., aC

WNA I = ax, + -5, + -aA + CFo , (3.45)

where 0 = 1/2pV 2 , S = diag{S,S,S,SbSc,Sb}, and C is the matrix of non-

dimensional stability derivatives differentiated with respect to the terms defined in

Equation 3.42, 3.43, or 3.44. 1 is defined as:

CLt, CLC9 CL. CL, CLq CL,.

Cy, Cy, Cyo Ci; CY) Cy,
CDu CD, CD,. CDp CDq CD,

Chm, C0 , Cmo Cm Crq, Cl,Cltr CIO CMQ CMP C19 CM,

LfCl Cf GO C, CP Cnq C .j

8C is very similar to 2c, except that only the 6 and /) terms are normally computed,

leaving a 6 x 2 matrix rather than a square matrix. The term o is defined as

CL 6e CL 6, CL 60

Coe CD,. Co,,0
C1 ý Ci,. C16.

Cm6e Cm6, Cm6.

C6e Cn6, Cn a
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CFO is defined to be the vector of steady state coefficients:

CDO
CY 0

CFO- CLO

CmO

representing conditions in trimmed, balanced flight. This definition is similar to the

definition used by Roskam [Ref. Ros 79]. In other references, the term CFO can

refer to the nominal value of the coefficient at a = 0. However. in the Taylor series

expansion it is more natural to use the first definition of CFO: therefore, it will be

used in the following aerivation and modeling. The stability and control derivatives

are usually computed in the so-called wind axis coordinate system. The wind axis

coordinate system, {fW"}, is defined as the coordinate system that results when the

rB axis is aligned into the relative wind. This axis will not be aligned with the body

coordinate system since the aircraft flies with an angle of attack, a. and can have a

sideslip angle., 3. The transformation from {f } to {B} is performed in the same

fashion as the Euler angle transformations mentioned earlier. The rotation matrix.

V.R. is a function of a and 3. and is expressed as

cosocos 3 -cosasin3 -sina
VVR [ sin 3  cos 3 0 (3.46)

sinocos'3 -sinosin3 coso

The rotation from {f4"} to {B} is made by premultiplying the force or moment vector

by B R. Additionally, since the lift and drag are defined as positive along the negative

ZB and XB axes, we define FAERO and NAERO as

FAERO - [ 1 and NAERO = m . (3.47)
24n
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In order to write Equation 3.45 in state space form, state variables must

be defined. The most commonly used notation to use for the state vector is to use

U

V

= . (3.48)

q
r

However, the terms x' and 2' in Equations 3.40 and 3.41 cannot be used directly as

stAtes. Define

Al'f : x --* a'

MX' , -- r' (3.49)

where

Al' = diag{ 1/VT, 1/1T, I/V , b/217, c/2VT, b/21,V7

and

= [0 c/(2V"T) 0 0 0 0
0 0 b/(21,r) 0 0 0

are matrices of appropriate dimensions. The complete expression for BFAERO and

BNAERO can now be written as

BaFAERO LR 0 {CF + - x + .-I'/' + C} (3.50)S NAERo =R qX C9 0, SaR •-

and can be substituted into Equation 3.38.

2. Other Forces and Moments

In addition to the forces and moments due the aerodynamics of the aircraft,

forces and moments due to the propulsive and gravitational forces must be considered.

Gravitational forces acting on the aircraft, BFGRAV, can be found by premultiplying
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"FGRn.4V by the appropriate rotation matrix, where

rng

Then

BFRAV = LR"FGRAV. (3.51)

Propulsive forces and moments, BFPROP and BNpPROp are computed directly in {B}

and can be expressed as:

BFpp = [T (3.52)

and

BNPop = Tm ] (3.53)

where T,'s represent the forces or moments due to thrust. Computation of propulsive

forces and moments depends on each particular engine installation, and must be

determined for the individual aircraft modeled.

Equations 3.51. 2., and 2. can now be substituted into Equation 3.38:

d [ B VBO 1 -[B ';BX 10 B t'BO1+
"d[ B WB 0 -BIB(B -WB X(BIB H'B + IRB -'R)) [8 B

rn Bl B A - . (3 .54 )

where [ BF 1 BFGRAV I1[B FPROP1
B' N 0 BAPRoPJ+

{ [+.R 0 1 OO,'X + A2C +f',- } }}. (3.55)

In order to write Equation 3.38 in state space form. the terms associated with X' must

be collected and moved to the left hand side, along with the other time derivative
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terms, Bi'BO and BWB. Let

it',T=[ 0  BR and All [ BIBw 0 wR an1 %1 0 BIB

then the complete non-linear equations of motion for any aircraft can expressed in

state space form as follows [Ref. Th 89]:

d B[ B 0 -BB BIl(B Bx (BIBB WB + IR BJAR)) +

.Al-IBB 1'O+ Al FR A B+
7,TqSOCF7' I E WB 0 j +

B BFPROP 1
BAPP 6 T + VT4,S(CFO + OdA) (3.56)

UPjo = "RBVBO, (3.57)

and

A = S(A)BW'9. (3.58)

where

I /6 A-- I wT TqS -W . (3.59)

P is the position vector of the aircraft, and A is the matrix of kinematic differential

equations based on Euler angles or quaternions.
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IV. COMPUTER MODELING OF THE
AIRCRAFT EQUATIONS OEP MOTION

A. IMPLEMENTATION OF EQUATIONS

1. Procedure

The AROD/Archvtas and the Bluebird aircraft models require different

non-linear equations of motion. This difference is due to the unique nature of each

aircraft. In the case of the AROD. the angular momentum of the propeller is a major

factor to be considered. while the aeiodvnaiics effects ni a hover are negligible.

The Bluebird on the other hand is a conventional aircraft, and exhibits the opposite

characteristics. Angular momentum from the propeller is small and. the aircraft

requires the stability and control derivatives associated with aerodynamic flight. All

the equations were implemented in a systematic manner following the same general

approach for either aircraft model. The commercial products MATI.AB and SIMULINK.

@ 1990 1992 the Mathworks, were chosen for the mode-ling 1 . miaiilv due to the ease

of expressing matrix equations. The model was constructed using the following steps.

"* Kinematic equations of motion were coded.

"* Gravitational forces. with the direction cosine matrix represented by Euler an-

gles were added to the model

"* Stability and control derivatives were included in the model, as well as engine

thrust, as appropriate for the aircraft being modeled.

'All code is listed in APPENDIX (.



"* Engine and actuators were added to the model.

"* Sensor for control systems were added to the model.

In the first stage of modeling, analytic linearization was also carried out to

verify the computer calculations. This was done by analytically linearizing the matrix

formed from the six non-linear equations governing the kinematic motion of the body.

Nominal values were substituted in, and the results compared to the trimmed and

linearized values obtained from the SIMULINK program2 . The i.i xt step required the

addition of gravitational terms, and analytic linearization was still manageable. The

linearized matrix now included nine equations and nine states with the Euler angle

direction cosine matrix, DCM, and ten equations with ten states for the quaternion

DCM. Nominal values for each case were again substituted into the lincarized ma-

trix and compared to the linoarized model derived from SIMULINK. The nclusion of

the stability and control derivatives and the thrust terms presented a problem that

was much too cumbersome to linearize analytical]v. Verification of the data at this

stage was accomplished by direct comparison of the dimensional derivatives result-

ing from numerical linearization of the plant. In the case of 'he AROD the results

were compared with data published by Sandia Labs [Ref. Wh 91]; for the Bluebird,

eigenvalues were computed and then compared to eigenvalues obtained by classical

analytic methods [Ref. Sch 92] and [Ref. Ros 791.

2. AROD Equations

The AROD differs from the Bluebird primarily in that the aerodynamic

forces and moments are negligible while the craft is hovering. The powered lift does

present some special problems, the predominant difficulty being the gyroscopic cou-

pling of the -pinning propeller. Another important considertion is the moment due

2 Data is tabulated in APPENDIX B.
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to the swirl effect of the air from the propeller striking the vanes mounted aft of the

propeller. These forces and moments are computed, then substituted in for BF and

BN in Equation 3.38.

a. Control Forces and Moments

All of the applied forces and moments in the AROD are due to the

four control vanes mounted aft of the propeller. The vanes can be moved in different

combinations, as discussed in later in this chapter, in order to maneuver the AROD.

The forces and moments, B F and BNV, acting on the AROD are computed from a

Taylor series expansion around a nominal hover point. Since aerodynamic terms are

negligible,
BF contro =iAR--cA, (4.1)

BN'control IA
where

* o 4 6,61'

4, = 1/2plI

* V, is the induced velocity through the propeller [Ref. Pro 90] and

I2 = T/(2Ap).

* A is the inlet area, where A = 3.14 f 2 .

e R is the propeller radius, where R = 1.0 f 2.

Notice no aerodynamic forces act on AROD due to the movement of the elevator, rud-

der, or aileron controls. Again, this is because the model of interest is only designed

to fly in a stable hov'er. The other forces and moments involved in these calculations

are due to gravitational and propulsive action, and are described next.
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b. Additional Forces and Moments

The gravitational force term, BFGRA,, is computed in the {B} coor-

dinate system with the rotation matrix. BR. For the AROD. "R is determined by

the 2-3-1 Euler angle rotation sequence defined in Equation 3.10 and is written as

BFR, !R = JFGRAV where 17FGRAI. = 0 , (4.2)

"I• g
where

-sine0 cos' 1
BFGRAV = m g sin E sin %P cos 4) + sin 4) cos E) (4.3)

-- sine sinW sin (D + cos0 cos4)

The forces and moments due to the propeller thrust were determined

experimentally [Ref. Sto 93] and are discussed in a later section. For the AROD, the

propulsive force, BFPROP, is acting completely along the xB axis

BF = [0X ] , (4.4)

0

where FT, is the total thrust. determined as a function of rpm.

The moment resulting from thrust is B NPROP and is given by the

vector equation
IT

A PROP [ 0 (4.5)
0

where IT is the rolling moment due to thrust. This rolling moment is due to the

swirl of the air as it leaves the propeller and strikes the control vanes. This term was

determined experimentally as a function of thrust, and is also discussed further in a

subsequent section.

When all the terms are collected. the total force and moment applied

to AROD can be expressed as

BF B]RP GA
[B IA [+ ]1 (4.6)
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The force and moment terms in Equation 4.6 can be substituted into

Equation 3.38 with the resulting state space equation given by

d.r BVBO 1 BWB X B VBO 1 +
aT B - B /.B (IB•BB + lR WR) j

Il/rn 0 ARLC± + B 1+ [ B FGRA1 (4.7
0 'BI 'xI NPROP I [ 0 J)J

Equation 4.7 can now be written in the state space form and programmed using

SIMULINK

d [ Bt.BO 1B LO[ B 0 B1 [1tBO 1+
d-t •B J o -B[ 0 B-BI (BWB X (BIB B WB + IR R) B [ WB

I/rn 0 1( qAR2-XA+ [ BFPROP 1+ BFGAV

"0JpoP 0 ]) }. (4.8)

3. Model Validation

a. Kinematic Equations

As discussed in the beginning of the chapter, the first step in the

AROD model validation was to linearize the non-linear equations

d-BVBo = I- /m(- B B VBO) (4.9)

"dB B = B (-BwB x (BIR B, , + BIBB.B), (4.10)
dt

with the result given by':

d ri 61 -WO x Bz' 0x 1 X V' 1 t
d't &j = 0 B x --(woOX)BIB + BIB,.'oX) I 6w 1J

+ 0[B]61R. (4.11)
I-WOo × IR

The nominal values for the AROD hover operating point,

"10
0

X 0 (4.12)
0
0
0

3See APPENDIX A for a description of the linearization process
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can be substituted into Equation 4.11 to get

0 0 0 0 0 0
0 0 0 0 0 10

d0 00 10 0 0 u(.3
dWt 6 0 0 0 0 e 0 6(43

0 0 0 0 0 -1.615

0 0 0 0 1.606 0

where the linearized matrix associated with 6 W,;R is zero, since -,0 x BIR = 0. These

values match the values obtained by linearizing the model using SIMULINK.

The inertial cross coupling from the propeller is evident from the lin-

earized results. The values of -1.6152 scc- 1 and 1.6062 sec- 1 are defined as pitching

moment due to yaw rate, ni,, and yawing moment due to pitch rate. nq. respectively.

The gyroscopic coupling is demonstrated by putting a step moment input of 1 second

duration along the y axis and observing the time history of the angular rates q and

r as shown in Figure 4.1. The AROD has a tendency to spin in the axis orthogonal

to the input torque as shown by the motion r about the z axis.

Pith Rat:
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06

04

E 02

0 6-- -

It

-02

-04 ' / ,

-01
/ me %won

0 24 6 8 10

Figure 4.1: Gyroscopic Motion of AROD
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b. Graritational Forcefs

The next step in modeling the AROD was to include gravitational

effects into the model. This required the expression for BFc;R.AI. given by Equa-

tion 4.3, to be coded into a MATLAB functioi. This function block was then added

to the SIMULINK model, as shown in Figure 4.2. The equation to be analyzed at this

"Zi

L-d.

Figure 4.2: Modeling of Gravitational Effects for AROD

stage was

[ "BO B B,'BO BF

d B ,,,B B I= ( -_ 9 ", B X ( B I R " -,R + 1 I sB B ýB )( 4 1 )dt A S(A )B"'B

where S(A) represents the kinematic differential equations, defined in Equation 3.11.

Notice that since gravity acts through the c.g., no BN'aGRA4 v term exists. Next. Equa-

tion 4.14 was linearized both analytically and with SIMULINK. The analytic result,

given in state space form, was

d 6t' [= -wox VO X f(A
- 6; = 0 -BIBI(BIRB.,;'R X _-(',woX )BIB + B/IBwoX) X 0
dt 6A 0 (G(A) h(. 6A
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S04 B IR] 64;&J-. (4.15)

0

In Equation 4.15, the functions f(A),G(A), and h(A,,,;) are partial derivatives of

Equations 4.3 and 3.11 with respect to A, or O/oA. The function f(A) is the linearized

expression for BFGRAV given by Equation 4.3, where

0 BFGRAV a - sin e cos IV 1
f (A) = A m -g-A sin 0sin T cos ( + sin (Dcos j (4.16)

-A m aA sil m sin qT sin 4D + cos E cos

or

[ 0 - cosO cosT sinO sinTi
g - sinO sinI sin4 + cos cosO cosO sin T cos• - sin1 sine sinO cosT cos .

L sin4 cosE - sine sinT cosP - cosc sinO - cosE sinT sinP - sine cosT sin4Di
(4.17)

where f(A) is evaluated at the nominal condition. A0 . The function

G(A) = O/&,.'(S(A)B ýB

is derived by linearizing the kinematic differe,-,t;,I equations in Fquation 3.11. The

function h(A.w) = 9/OA(S(A)B WB) is not presented since for ,vo = 0, as in steady

state cruise, h(A,Lw) = 0. The matrix G(A) is derived from the following equation

a 0 cos •sec q' - sin •sec'I'1K] (4.18)
C(A) -- ( WA)B) --- • 0 ''si n (Iancos [ r

a1 - cos P tan n ' sint'I'tan 1

= 0 costsec T -sin4sec•I . (4.19)

0 sin 4D cos JD
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These matrices were assembled as in Equation 4.15 and were evaluated for the nominal

flight condition. The values for xo for this flight condition were given by

10
0
0
0

Xo= 0 (4.20)
0
0

2
0

After substitution into Equation 4.15, the result for the linearized equations of motion

was

0 0 0 0 0 0 0 0 0
0 0 0 0 0 10 0 0 32.174
0 0 0 -10 0 0 0 -32.174 0

d [ 0 0 0 0 0 0 0 0 0
-- &ý 0 0 0 0 0 -1.615 0 0 0 (4.21)

6A 0 0 0 0 1.606 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

This result was essentially indentical to the results obtained by using the trim and

linearize functions in SIMULINK. The gravitational effects acting on the aircraft were

examined by running a simulation of the non-linear model and comparing the results

to those from Equation 4.11. The expectation is that a body falling in earth's gravity

will experience an acceleration of 32.174f/s 2 and as shown in Figure 4.3, this expec-

tation is realized in the model. In Figure 4.3, at the end of the 10 second simulation,

the vertical velocity, u in this case, is -, 320f/s, as was predicted.

c. Additional Forces and Moments

The last step in modeling the AROD was to include the forces and

moments due to propulsive and control action that act on the aircraft. The data used
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Figure 4.3: Velocity of AROD, Gravitational Effects Included

in modeling these control forces were collected experimentally [Ref. Sto 93] and then

curve fitted to a function. The measurements of rolling moment, thrust, rpm, and

vane position were taken for various configurations. The data collected were then

reduced and the required characteristics were computed. The accuracy of the AROD

model depended on very accurate modeling of thrust as a function of rpm, moment as

a function of thrust produced, and moment produced by deflecting the control vanes

in the different combinations.

Thrust and rolling moments were measured directly at different power

settings ranging from 3000 rpm to 7600 rpra, with a power setting of - 6400 rpm

giving a thrust of -, 901bf. This thrust is aprroximately the force required to maintain

a hover for the basic AROD configuration. Figure 4.4 shows the linear curve fit

through the thrust vs. rpm data. The curve was fit using data from 5000 rpm to

7600 rpm, as this was expected to approximate the normal operation range in flight.

The thrust and moment data are plotted in Figure 4.5 along with the line fit through

those data points. The best fit, by least squares, for the data in Figure 4.4 was given
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Figure 4.5: Thrust and Moment Data for AROD

by

FTý = 0. 0 29 76 ,p, - 104.7, (4.22)

where &P,,, represents the rpm at a given throttle setting. The best fit for the data
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in Figure 4.5 was given by

NT = -0.0542 FTý - 0.9138. (4.23)

These equations were then used in modeling the engine response to a rpm setting.

The engine itself was modeled using a second order transfer function

from the servo position to 6,PM, based on the Sandia Labs [Ref. Wh 87] model. The

transfer function for the engine was given as

6 rpm E W 6T (4.24)

where KE = 900, w, = 5rad/sec, ( = 1.0, and 6 T is the throttle servo position. Since

the actual throttle position is set via a radio link and tests have not been set up to

model the response, it was ignored in the model.

The engine servo could be modeled and a transfer function from com-

manded input to servo position was determined. This transfer function also was

determined by Sandia Labs in the original AROD work [Ref. Wh 87] to be

2

6T (4.25)
s2 + 2(',s + l UT

where n,, = 20rad/sec, C = 0.6, and UT represents the commanded inPut to the servo.

It should be noted that Equation 4.25 was also used for the control vane servos, since

all the servos in the AROD were identical.

In order to model the moments due to control surface deflection,

BNconfrol, computation of control vane effectiveness was necessary. Again, the data

gathered by [Ref. Sto 93] was used to compute vane effectiveness for the AROD

model. Figure 4.6 shows the moment data for 75% thrust. This power setting cor-

responds closely to the thrust required to maintain hovering flight. A line was fitted

through the data points, and the slope of this line was used to determine the rolling
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Figure 4.6: Moment Due to Vane Deflection

moment,l. for a given vane deflection. The equation for the curve was

-= 0.5523 V4VG - 5.7248 (4.26)

for 6580 rpm. where V'ýAG was the average vane deflection, 1/4 E,= V, in degrees.

This averaging was required since the individual vanes were at slightly different posi-

tions with respect to the commanded position. Computing the vane effectiveness for

roll was done by differentiating with respect to the vane deflection.

01 = 0.5323 ft - lb1  (4.27)
-

1 •A VG dcg

The rolling moment should be non-dimensionalized for use in the equations of motion

given by Equation 4.8. This was done by applying the following equation

-j' 16. (4.28)Cto=1/2p V2 Sb.(.)

To use the measurable quantities available. redefining the terms in Equation 4.28 was

necessary. The representative area, S. is defined as the inlet area to the duct. A. The
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characteristic length, b, is defined as the propeller radius. R. The velocity term was

defined as induced velocity, I1. With these terms the non-dimensional coefficient Cj'o

could be calculated as
l6o

C1~ = 1/2p.2AR (4.29)

and was computed to be Cl,. = 1.438/rad. The rolling moment was measured during

the testing and was easily non-dimensionalized in a form suited to computer modeling.

However, no measured data existed for the pitching and yawing moments. This

required the estimation of pitch and yaw vane effectiveness by a simple ratio technique.

First, it was assumed that the vane effectiveness. 16. for two vanes (2V), would be

exactly twice the 16. for one vane, and 1/2 the 16. for four vanes, (4V). This would

make
a/ )2V )41 (4.30)

aYVAG 2iVA VG

or numerically,
01 - = 0.2762 ft -dbf (4.31)

(jVAvG)21 deg

Now, the ratio of the dimensional derivatives to the moment arms was set up as

(aV'AVG = V VG (4.32)

where 1, was the distance from the c.g. along the x-axis. to the midspan of the control

vane, a distance of 9.0 in. The distance t. was the distance from the c.g. along the

y-axis, to the 1/4 chord of the control vane, a distance of 15.43 in. The calculation

was performed and the result for the pitching moment was

- 0. 4 73 5 ft - lb1  (4.33)

OVAVG deg

This was non-dimensionalized using Equation 4.28 with the result of C, 6, = 1.2332rad-1 .

Moreover because of the symmetrical design of AROD, Cm6 = C,"'. The results for
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vane effectiveness are important to a high fidelity model and are presented aloog

with other relevant data in Table 4.1. The non-dimensional derivatives in Table 4.1

TABLE 4.1: NON-DIMENSIONAL DERIVATIVE DATA FOR AROD

rad 1  dcg-' Positive Vane Deflection
Cr,, 1.438 0.0251 t1 + 13 + ,± + 14
"Orn, -1.233 -00215 1ý - 1'1

-1.233] -0.0215 t, - 1*

were substituted into the term (OCF/8.A) in Equation 4.7. Written as a matrix, the

non-dimensional derivatives are

'N = 0E C '6 0 6 (4.34)

Equations 4.22, 4.23, and 4.34 were added as a separate block in the model, resulting

in a block diagram shown in Figure 4.7.

Figure 4.7: Non-Linear Equations of Motion Model
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In the SIMULINK linearization results, no change was expected in the

A matrix since no aerodynamic terms were added to the model. Rolling motion is

shown in Figure 4.8 as an example of the unstable natu-e of the AROD without a

stability augmentation system.

Roll Rote -
Roll Angle

1 $-15SO

S-250S
0 1 2 3 4 S 6 7 8 9 10

Time. seonds

Figure 4.8: Rolling Motion For Complete Non-Linear Equations

4. Bluebird Equations of Motion

a. Khinzaatic Equations

Modeling the kinematic equations of motion for Bluebird was accom-

plished using the same procedure as was used in the AROD modeling. A slight dif-

ference arose in the derivation of the angular acceleration equation for Bluebird since

the term, IJWR, for the angular momentum due to propeller rotation is negligible.

Thus, the following equations were used in the first stage of modeling.

SV, = - B x B Zo (4.35)

dt
d B, = B IBI(-- l.'B x B IB B ). (4.36)
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These equations were coded into a MATLAB function and placed into a block diagram,

shown in Figure -1 9. Equations 4.35 and 4.36 were linearized analytically' with the

integrtor

-- mux K-'l n um a &-.

SEquaor

4W.•t¢dot
Lambda-dot

Figure 4.9: Block Diagram of Kinematic ?quations of Motion

resulting state space equation

dj [ 6 v 1 WO L 07 X V 6 (4 .3 7 )Sdt 0 -- BI BIf--(a;ox)B IB + B IB(,WoX)l 6W

This equation was evaluated at the nominal flight conditions, determined by the

typical cruise condition for the Bluebird aircraft. A state vector for the nominal

flight conditions is given by

72.9954 f /s
0

6.6757 f /sx0 - 0 (4.38)

0
0

4See APPENDIX A for the details
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These values of xr were substituted into Equation 4.37:

0 0 0 0 -6.675 0
0 0 0 6.675 0 -72.995

d 0 0 0 0 72.995 0 6, (4.39)
000 0 0 0
0 0 0 0 0 0

These results were in complete agreement with the data obtained by trimming and

linearizing the non-linear model with the SIMULINK program. The comparison be-

tween Equation 4.39 and Equation 4.13 shows the absence of any angular rate cross

coupling in Bluebird. The absence of the cross coupling terms results from the choice

to ignore the angular momentum contribution from the propeller.

b. Gravitational Forces

After the basic kinematic equations Equation 4.35 and 4.36 were put

into block diagram form, it was an easy matter to include additional blocks. The

next block was a function block including the BFGB4lV terms. The model with the

gravitational terms included is shown in Figure 4.10. The equations of motion to be

modeled at this stage were

dB rBO = -- B "B X B 1 BF R.4V (4.40)

dB ' B I =( B ,' B IB ~B ) (4.41)

d
d = S(A)B ;B (4.42)

where S(A) is the set of kinematic diffei.'ntial equations based on the 3-2-1 Euler

angle rotation in Equation 3.7. These equations were then linearized analytically.

with the result

d -6~ V ?i " x gf (Ak) 1 [t"
- 6"= 0 -BIB I -(,,'O×)BIB + B/B(,.BO X)) 0 (4.43)
dt [ 0 G(.\) h(A, J [ , J
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Figure 4.10: Gravitational Forces Model

where the terms f(A), G(A), and h(A,w) are based on the 3-2-1 Euler rotation se-

quence. The linearization is done in the same manner as was shown in Equations 4.16.

4.17, and 4.19 resulting in

0 -cosO 01
f(A)= cosOcos4 -sinOsin4b 0I, (4.44)

-cos 0 cosD -sin0cos 0

and
I si Ptan 0 cos -Ptan E)

G(A) 0 cos4 -sin . (4.45)
0 sin sec 0 cosDsec J

Note that

h(A, w) = 9- S(A)BWBIo = 0,
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since wo = 0. When Equation 4.43 is evaluated at the nominal condition xo given by

72.9954 f/s

0
6.6757 f/s

0
Z0= 0

0
0

0.0912 rad
0

the resulting equation is

0 0 0 0 -6.675 0 0 -32.043 0
0 0 0 6.675 0 -72.995 32.043 0 0
0 0 0 0 72.995 0 0 -2.930 0

d 6[ 1 0 0 0 0 0 0 0 0 0 6v]
dt 6W 0 0 0 0 0 0 0 0 0 [w

6A 0 0 0 0 0 0 0 0 0 6A
0 0 0 1 0 0.0915 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1.004 0 0 0

(4.46)

In this instance, as well, the results of the analytic linearization in Equation 4.46

agree very closely with the computed results.

A non-linear simulation of the system in Figure 4.10 should show an

increasing downward velocity due to the gravitational effects of BFGRAV. One would

also expect to see decreasing forward velocity due to the "drag-like" term that arises

with the introduction of the angle, 0. This plot is shown in Figure 4.11.

c. Aerodynamic Forces and Moments

Completion of the Bluebird equations of motion model required the

modeling of the aerodynamic forces and moments acting on the aircraft. A simple

engine model was also developed. No analytic linearization was performed at this

stage due to the increased complexity of the model. Verification of the computer

results was accomplished by comparing the modes and eigenvalues of the computed
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Figure 4.11: Gravitational Effects on Velocity

plant with those resulting from substituting the stability and control derivatives into

equations developed in [Ref. Sch 92].

The aerodynamic forces and moments as described in Equation 3.50

were coded as a MATLA'3 function, then included as a block in the model shown in

Figure 4.12.

Next, it was necessary to premultiply all the Itocks by X-', since

this added the effects of the 6 derivatives. Now the important task was to calculate

tl stability and control derivatives using the general reference for the estimation of

non-dimensional derivatives, DATCOM [Ref. USAF 60]. The stability and control

derivatives were computed based the aircraft geometry and the control surfaces. These

values are tabulated in Table 4.2 and in Table 4.3 where the non-dimensional force is

listed on the left side, and the particular derivative is determined using the top row.

For example, CD. = 0.188 using Table 4.2. The terms in CF, were also estimated to

be CL, = 0.385 and CDo = 0.03, with all other terms equal to zero since the aircraft

is in straight and level flight at this trim condition.
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Figure 4.12: Full Non-Linear Equations of Motion Model

TABLE 4.2: NON-DIMENSIONAL STABILITY DERIVATIVES

u 0 a p q r &
CD 0 0 0.188 0 0 0 0
CY 0 -0.31 0 0 0 0.0973 0
CL 0 0 4.22 0 3.94 0 1.32
C, 0 -0.0597 0 -0.363 0 0.100 0

Cm 0 0 -1.163 0 -11.77 0 -4.70
CT 01 0.0487 0 -0.0481 0 -0.0452 0

The BFPROP was based on estimating engine thrust for a 4 HP engine

and a propeller efficency, i~p, of 0.65. Thrust, To was estimated using the equation

T = 550pHPp (4.47)

U0  P0

where p, is the density at the operating altitude, po is the sea level density, and U0 is

the velocity of the aircraft in f/s. The result was an engine thrust of To = 19.5/bf, for

a density ratio of 1. This could be directly factored into the equations of motion as

To6T, where 6 T was arbitrarily scaled from zero to one. 6 T = 0 represents zero thrust
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TABLE 4.3: NON-DIMENSIONAL CONTROL DERIVATIVES

6, 6. 6a

CD 0.065 0 0
Cy 0 0.0697 0
CL 0.472 0 0
Ci 0 0.0028 0.265

Cm -1.410 0 0
C,, 0 -0.0329 -0.0347

and 6T 1 represents maximum thrust.

The preceeding values were substituted into the appropriate MATLAB

functions and the entire equations of motion model was trimmed, linearized, and

then compared with the analytic results based on classical techniques for determining

eigenvalues and eigenvectors. The eigenvalues are compared in Table 4.4. The results

from the computed eigenvalues is very close to the eigenvalues derived by analytic

methods.

TABLE 4.4: COMPARISON OF EIGENVALUES FOR BLUEBIRD

MODE COMP UTED ANALYTIC
LONGITUDINAL I

Phugoid -0.0191 ± 0.4963] -0.0473 ± 0.4940j
Short Period -3.9833 ± 3.5521j -4.0034 ± 3.54 62j
LATERAL

Dutch Roll -0.5285 ± 3.6346j -0.522 ± 3.6194j
Short Period -5.5629 -5.6654

Spiral +0.0420 +0.0420

B. VALIDATION OF AN INDEPENDENT CASE

Although verification of the model was accomplished at each stage, comparison

of the results from the numerical linearization with linearized results from an inde-
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pendent source was still necessary before the model could be considered completely

reliable. The test case selected was the Cessna 172 documented in [Ref. Ros 79] as

airplane A. The tabulated non-dimensional derivatives and given flight conditions

were used as inputs to the non-linear model. The model was then trimmed at the

specified flight condition of V- = 219 f/s and Oo = 0. Using the resulting state and

input vector, the model was linearized around thesed nominal conditions. With the

linearized plant, eigenvalues were determined and compared to those tabulated for

airplane A (see Table 4.5). Very little difference between the eigenvalues is seen in

the longitudinal modes. Slightly greater differences are noticed when comparing the

lateral modes, but these differences are still fairly small. Another very good method

TABLE 4.5: EIGENVALUE COMPARISON FOR CESSNA 172 TEST
CASE

Mode Numerical Independent
Longitudinal
Short Period -4.130 + 4.3895j -4.130 + 4.390j

Phugoid -0.0209 + 0.1794j -0.02092 + 0.1797J
Lateral-Directional

Dutch Roll -0.6947 ± 3.3080j -0.6858 ± 3.306j
Spiral -12.4309 -12.43

Roll Response -0.0109 -0.01095

for comparing the results of the numerical linearization with Roskam's tabulated data

is to form plant and control matrices for the test aircraft, using the linear algebraic

method taught in AE 3340 [Ref. Sch 92]. The resulting A and B matrices were then

compared by applying step elevator, rudder, and aileron inputs and plotting the re-

sults. The results for the step elevator input are given in Figure 4.13. These plots

show very little difference in the vertical velocity, w. Differing amplitudes are shown

for the horizontal velocity, but since the non-dimensional velocity, u/VT, from the
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dimensional derivatives was scaled to be equivalent to the state, u. computed in the

numerical linearization, these magnitude errors are not indicative of a poor model,

only a slight difference in the computed damping is shown. The results from the

analytic model were scaled up by the nominal airspeed, VT to compare with the nu-

merically linearized results. This would have the effect of magnifying any differences

between the analytic model and the numerical model. The natural frequency of both

the analytic and numerical results are quite similar.
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Figure 4.13: Comparison of Longitudinal Responses to Step Elevator Input

Lateral responses to step rudder and step aileron inputs are shown in Fig-

ures 4.14 and 4.15. Very little difference between the models is visible in these plots.

The errors are shown in Figures 4.16 - 4.18,

It can be concluded that the results from the numerical linearization are quite

close and furthermore that the equations used in the model are indeed correct. More-

over, the linearized results presented for both the AROD and Bluebird aircraft should

be considered accurate and are suitable for the Guidance, Control, and Navigation

system designs that will follow.
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Figure 4.15: Comparison of Lateral Responses to Step Aileron Input
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V. SENSOR AND ACTUATOR MODELING

The AROD engine and actuators were modeled as a second order transfer func-

tions, based on data collected by Sandia Labs [Ref. Wh 87]. Sensors were also mod-

eled as second order transfer function based on dat i supplied by Watson Industries

[Ref. WAT 93].

The complete non-linear model for ar ,aircraft should include models of the

sensors on board for measurement of acceleration, angular rates. pitch and roll an-

gles, and headings. The inertial device chosen for the AROD project was the Watson

Industries IMUI-600D inertial measuring unit. This device contains a triaxial ac-

celerometer. a triaxial rate sensor, two liquid pendulous devices (for bank and pitch

angle), and a magnetic heading indicator. The characteristics of these devices must

be ac, ,-itelv modeled, since it is the sensor output that drives the control system.

In the rest of this section, the accelerometers, rate gyros, and inclinometers will be

modeled, as well as the sources of error inherent in the design of the sensor devices.

A. ACCELEROMETER MODELING

The term accelerometer is not entirely accurate, since the device does not mea-

sure true acceleration, but rather the difference between acceleration and gravity

[Ref. Bro 64]. This effect is referred to as the Einstein Unca.rtainty Principle, and is

represented in equation form as

f=g-a (5.1)

where g and a are the specific forces of gravity and acceleration of the aircraft and

are me-asured positive downwards. The accelerometer model relevant to this equation

is shown in Figure 5.1. The tri-axial accelerometer of the IMNi'-600D can be modeled

56



k

am..8::::::
aI I ma

a l llNl1

a:on;a 01

Iallllll

Illalll

Figure 5.1: Typical Accelerometer Model

as three simple single-axis accelerometers, as has been established through conversa-

tions with the manufacturer [Ref. WAT 93]. A schematic representation basic device

pictured in Figure 5.1 is modeled by an ordinary differential equation [Ref. Sil 91]

+ +-. +- =- (5.2)
m m

where x denotes the displacement of the mass from its equilibrium position and

S= g - a is the projection along the case axis of the vector sum of gravity and

acceleration. The terms. /3, k, and m represent the damping. spring coefficient, and

mass, respectively, of the device. The accelerometer described in Equation J.2 can

be modeled as a second order low pass filter, but the actual accelerometer has a flat

response up to 1000Hz, so it was not modeled. A thir ! order Chebychev anti-aliasing

filter with a cut-off frequency of 20 Hz was added to the accelerometers. This filter

is the device that was modeled. The Chebychev filter gives the advantage of a flat

passband, and a very sharp drop off at the cut-off frequency. The equation used to
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describe a Chebychev filter [Ref. St 88] is

1
IHLP(j]W)I = 1 (5.3)1 +ON

where CN is the Nth order Chebychev polynomial, E is the parameter thats sets the

ripple ir the passband, and IHLP(•,)1V is the magnitude of the filter. It was not

necessary to compute the filter analytically, as SIMULINK provides a block function

which performs the required steps based on the passband ripple of 0.1db and the

desired cutoff frequency of 20 Hz. The block diagram for the accelerometer model

is shown in Figure 5.2. Included in this diagram are the blocks containing the error

modeling, as well as the blocks used to correct for the Einstein uncertainty. Figure 5.3

shows the linear synthesis model used to generate the accelerations to drive the sensor

models. The synthesis model was derived from the Bluebird model discussed in

Chapter IV.

Figure 5.2: Accelerometer Modeling
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Figure 5.3: Synthesis Model for Accelerometers

1. Error Model

No matter how well the sensor device is constructed, any accelerometer

is subject to certain errors in the linear acceleration measurements. These errors

can occur for several reasons; some as mechanical and others are due to the physical

placement of the accelerometer on the aircraft. The mechanical errors accounted for

in the IMU-600D tn-axial accelerometers are

* Acceleration Bias

S~- average readings for ±lg and -lg loads

* Acceleration Scale Factor error

-average difference between readings from +lg and -o g loads
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"* Cross Axis Sensitivity errors

-measurements due to the misalignment of an accelerometer with the appropri-

ate axis

-measurements of off-axis accelerations are measured

"* Acceleration Noise Floor

-threshold below which measurements of acceleration can not be made

Errors in the measured accelerations can also occur if the accelerometers

are not located at the c.g. of the aircraft, since arbitrarily located points on a body

will experience additional accelerations due the the angular momentum of the body.

A mathematical correction for the error will be presented later, and will describe the

angular and linear accelerations of an arbitrary point on a rigid body. However, the

correction will not be applied to the models here, since the correction is expected to

have a very small effect on the sensor measurements due to the small displacements

away from the aircraft c.g.

Error term3 are quantified in terms of full-scale measurements. The me-

chanical errors are tabulated in Table 5.1 along with other important characteristics.

Figure 5.4 shows the block diagram with error inputs applied to the accelerations

TABLE 5.1: ACCELEROMETER CHARACTERISTICS

Acceleration Range ±2g's
Acceleration Bandwidth 20 Hz

Acceleration Bias 0.2% of Full Scale
Acceleration Scale Factor 0.2% of Full Scale
Acceleration Noise Floor 0.0005 g's

Cross Axis Sensitivity 0.5%c of Full Scale
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Figure 5.4: Error Model for Accelerometers

measured by the accelerometers. The output from the error computations in Fig-

ure 5.4 is the measured acceleration from the accelerometer output to the control

system. The cross axis terms are determined through a matrix

x = f- 0 CZ .(5.4)

where (, is the cross axis error term and x is the error in the acceleration due to the

cross axis sensitivity.

2. Results and 'Validation

Accelerations were measured for step aileron, elevator, and rudder inputs.

and the results then compared to the actual accelerations computed for the equations

of motion for the aircraft. A linear synthesis model was used for the initial testing,
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while the results from the non-linear model were used for validation of the accelerom-

eter model. Figures 5.5, 5.6, and 5.7 show comparisons between measured and actual

accelerations generated from simulations of th,- non-linear model. The accelerations

computed for the longitudinal and lateral cases were in close agreement with the

accelerations computed by the non-linear model.

1.4
Actual Thrust Acceleration, Z-Axis -

Measured Acceleration. Z-Axis ....
1.2 •-Actual Thrust Acceleration, X-Axis...

Measured Acceleration, X-Axis -....

1

0.8

d" 0.6

0.4

0.2

0 N .. ...... . ... . . ... ..... ... . . ..1I ........ ... ............. ... ................ ... .. ..... ..... .. . .... . .. ..

•.04 .-0.2

0 1 2 3 4 5 6 7 8 9 10
Time, seconds

Figure 5.5: Measured and True Acceleration From a Step Elevator Input
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Figure 5.6: Measured and True Acceleration From a Step Aileron Input
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Figure 5.7: Measured and True Acceleration From a Step Rudder Input
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B. RATE GYRO MODELING

The rate gyros consist of a rotating disk, mounted in a gimbal mechanism.

Though both single and two degree of freedom gyros are common, the tri-axial angle

rate gyro supplied in the IMU-600D is modeled as three single-degree-of-freedom

rate gyros, each measuring the angular rate along a particular axis. The dynamlics of

a gyro can be modeled [Ref. Sil 91] using Euler's law

B A G LG

wher {B} and {G} are the body and gyro coordinate systems. respectively. This can

be expanded to

,. B :, x BLG + 3RdtL G,

(it

where G LG =IG and the time derivative. _2LG is zero when the wheel rotates

at a constant speed. Thus. except for the period when the wheel is coming up to

speed, the equation for gyroscopic motion in a rate gyro can be written as

B.s,"a = B,,c; x lBL ; (5.5)

where 'NG is the torque vector acting on the gyro element and ',,y; is the angular

rate of the gyro frame. Transfer functions can be developed for the torque input to

the input axis as shown in Figure 5.8 and the rate output of the output axis. This

derivation was not developed since data required for the gyro disk iner :a, I' and the

speed of rotation, BWG, among other terms, is not available from the manufacturer.

The rate gyros were modeled as second order transfer functions, with w,; = 50 Hz.

A third order Chebychev filter with a cut -off frequency of 20 liz was added to the

gyro model as an anti-aliasing filter. This Chebyshev filter was identical to the ones

described for the accelerometers. The block diagram of the rate gyro model is shown

in Figure 5.9. The linear svnthesis model is shown in Figure 5.10 and was used to
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Figure 5.8: Functional Diagram of a Rate Gyro [Ref. Bro 64]

test the gyro models. In Figure 5.9 the gyro elements are shown for each axis and

blocks for the error calculations are shown as well.

1. Error Modeling

Error terms are also present in the rate gyros and are due to either physical

location on the aircraft, or mechanical errors, as in the accelerometers. Errors due

to physical placement away from the c.g. can be corrected by using the equations

derived for the linear and angular acceleration of an arbitrary point, on the aircraft,

shown later in this chapter. Mechanical errors are defined in the same manner as was

done for accelerometers in Section A, and are listed in Table 5.2 along with other
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Figure 5.9: Rate Gyro Model

TABLE 5.2: GYRO CHARACTERISTICS

Rotational Rate Range =±114.6deg/sf-c

Rotational Rate Bandwidth 20 Hz

Rotational Rate Bias 2.')% of Full Scale
Rotational Rate Scale Factor 0.5% of Full Scale
Rotational Rate Noise Floor 0.05% of Full Scale

Cross Axis Sensitivity 0.5% of Full Scale

important characteristics. The cross axis error is modeled in the same way as for

the accelerometers by the use of the same matrix for computing errors in the angular

rates.

2. Results and Validation

Angular rates were measured for step aileron, elevator, and rudder inputs

and compared to the actual angular rates computed from the equations of motion.

First a linearized synthesis model was used in the testing stages; then the sensors
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Figure 5.10: Rate Gyro Synthesis Model

were integrated with the non-linear aircraft simulation. Comparisons of actual and

measured acceleration are given in Figures 5.11, 5.12, and 5.13. These figures show

the accuracy of the angular rate sensors in measuring the angular rates computed

with the non-linear equation of motion model.
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Input
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Figure 5.13: Measured and True Angular Rates From a Step Rudder Input
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C. PITCH, ROLL, AND HEADING SENSOR MODELING

The last group of sensors to be modeled are those whilch measure the pitch, roll,

and heading angles. The pitch and roll angle measurements are made with liquid

pendulous devices. These are devices that have an electrolyte contained in a vial.,

and by measuring the capacitance changes of the vial as the electrolyte moves in

response to aircraft angle changes, the pitch and roll angles -an be determined. The

heading sensor is a magnetic heading sensor.

The primary concern with angular measurements is that accurate readings are

obtained, even when the aircraft is experiencing linear and angular accelerations.

When these errors cannot be corrected, the control system must be able to compen-

sate for the errors. An inclinometer is typically modeled as a pendulum, shown in

Figure 5.14 attached to a block, which can be considered to represent an aircraft.

[he equations describing the motion of the pendulam are derived in detail later in

this section. The transfer function for the pendulum inclinometer can be represented

as a second order transfer function with ,,, = 0.8 Hz and • 0.5. [Ref. WAT 93]

O 5.032

o s2 + 50.3s + 5.032

1. Error Modeling

The inclinometers are subject to several sources of errors. from both linear

and angular accelerations, and from mechanical imperfections. Mechanical errors are

listed in Table 5.3, and modeled as shown in Figure 5.15. Errors due to angular

velocity can be compensated for with a complementary filter. Selecting the time con-

stants appropriately will allow direct measurements of the angle from the inclinometer

at low frequencies, and from integrated angular rates at higher frequencies where the

inclinometer is inaccurate.
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I

II

Figure 5.14: Simple Pendulum Inclinometer

TAýBLE 5.3: INCLINOMETER AND HEADINCO SENSOR CHARAC-
TERISTICS

Pitch and Roll Range ±50 kg~
Pitch an'ý Roll Bandwidth 1/2 Hz
Pitch and Roll Accuracy 0.2 deg

Heading Range ±180 deg
Heading Accuracy 3.0 d~g

Heading Repeatability 0.5 dcg
Hepding Linearity 0. 5%,

It was determined that the effects of linear acceleration were also important

to model. in order to model these effects it was necessary to derive a transfer function

from th, aircraft's lin~.ar acceleration to the angie causcd b,- that acceleration. The

starting point was to model the indlinometý,r as shown in Figure .5.14. The derivation
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Figna re 5.15: Inclinometer Error Modeling

results in two coupled equations, the first of which will be ignored, since tihe equations

of motion for the aircraft are known and the kiotleyg of the inclinometer should have

little effect on the aircraft motion. The second equation is for the motion of the

pendulum as influenced by ttie aircraft's acceleration and is what was used for the

linear acceleration errors.

First it was necessary to define the coordinates used to describe the incli-

norrieter system as q = (x.,8) (see Figure .5.14). Next, since Lagrangian methods were

used for the derivation, the kinetic energy, T, of the system was defined as

T = 1/2Mi"2 + 1/2m(X' + /tcos0)2 - 1/2rn(lsinO)2

= 1/2M1i 2 + 1/2mfPI/ + 1/2mrP, (5.6)

where P, and P. represent the position of the pendulum in Cartesian coordinates.
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The potential energy, V, of the pendulum can be written as

V = I'm = mgl(l - cos), (5.7)

where M, m. and I are the mass of the aircraft, mass of the pendulum, and distance

from the aircraft c.g. to the pendulous mass. The terms,Pi and 0, represent the

position vector to the pendulous mass and the angle made by the pendulum with the

vertical plane. The governing equation for Lagrangian dynamics is

d 0,C c9d02 = QC (5.8)
dt 04i i q,

where £ is the Lagrangian operator, £ = T - V. and Q, represents the non-

conservative forces acting on the body. After some rearranging.

£ = 1/2(M + m)i"2 + MrljOcosO + 1/2m 120 2 - mgl(1 - cosO) (5.9)

The result in Equation 5.9 can be substituted into Equation 5.8 resulting in

01 = (M + ?n) + m1McosO

a0£ = mIircos0 + 129
09

-= 0
Ox

0£ = -rl.mO sinO - ngI sinO
d00

d 0£ = (M + m). + rnlcos00- rn1sinO02

dt (9x

d +£
dt = mlcosOi - 7/sin00 + ml2.

When these partial derivatives are substituted into Equation 5.8, the resulting equa-

tions of motion for the pendulum are

(A + rn)ii + mlcosO- mlsin 2 = Q
ml cos05 + m1 20 + rgsiIg 0 = 2.
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where Q, and Q2 are terms representing damping in the system, The term Q, repre-

sents damping on the aircraft for Qj = -3,.ý and the term Q2 represents the viscous

damping of the pendulous mass, Q2 = - 3rO. The equations can be linearized, where

(AM + m)i + rnlt +/3,i7 = 0 (5.10)

rnUi + m1 20 +!3r0 + mglO = 0. (5.11)

Now it is apparent that Equation 5.10 is completely determined by the aircraft equa-

tions of motion that have already been modeled. A Laplace transform of Equa-

tion 5.11 can be performed to find the desired transfer function

0 = - , (5.12)
x s2 + _-s,1 + g/1

where the similarity to the standard second order transfer function is noted, making

the term g/l = ". The term -1/1 in the numerator can be solved for by substituting

g = 32.174 f/s 2 and L,:, = 5.027 rad/sfc, or 0.8Hz, with the result I = 1.27 f. This

result is then substituted into the block diagram for the inclinometer models shown

in Figure 5.15. Responses for step inputs are shown in Figures 5.16, 5.17, and 5.18.

In the lateral cases. there is very little difference between the measured and actual

angles. The longitudinal case is quite different. In Figure 5.16. there is a considerable

difference between the actual pitch angle. 0, and the pitch angle measured with the

inclinometer model. This difference the linear acceleration of the aircraft as a step

elevator input is applied, and must be compensated for before a reliable control system

can be developed.
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The error in inclinometer readings due to linear acceleration has been de-

termined experimentally by the manufacturer, and can be represented as a second

order transfer function from g's to O,

) = K 151.082

g s2 + 157.08s + 157.082(

where the gain, K, was determined from an input of 1.2 V at 10 mV/g, and the

resulting output of 0.4 V at 60 mV/deg. Thus the gain, K, was 17.99.

D. MODELING OF AN ARBITRARY SENSOR PLACEMENT

The actual sensor placement in either the Bluebird or the AROD aircraft is not

at the c.g., as was assumed in the previous sections. In order to model the actual linear

and angular accelerations at the sensors, regardless of the position on the aircraft,

new equations of motion must be derived. These equations can then be applied to

the sensor inputs to obtain a proper output from the sensor. First the equations

for linear acceleration will be derived using Newton's third law for conservation of

momentum, then the equations for angular acceleration will be derived using Euler's

law for conservation of angular momentum. These equations must be expressed in

terms of {B} since all the information measured by the sensors will be determined in

the bod) coordinate system.

1. Linear Accelerations

In the derivation for equations of motion of an arbitrary point on the air-

craft, the coordinate systems representing the inertial and body coordinate systems,

similar to those shown in Figure 3.1 are used. Supplementing the derivation of equa-

tions of motion for an aircraft, the motion of the sensor location on the aircraft, given

by PQ is necessary. In the inertial coordinate system, {LJ}, the position of Q can

be written as LtPQ = URBPQ + U PBo. The velocity is first determined by applying
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Coriolis' theorem from Equation 3.24 to obtain the first derivative. Here,
U v Z T U- L d U* t B

uVQ = UPQ = UPBo + •-BR PrQ), (5.14)

where
U d B d

-(URBPQ) = - '(RBPQ) + L'WB x (uRBPQ). (5.15)

U d B di

The terms UI and BI refer to derivatives taken with respect to the inertial and body

coordinate systems, respectively. The resulting expression for velocity is

-VQ = UVBo "4 w X (RB Q), (5.16)

where B d (URBPQ) = 0 since Q is a point fixed on the aircraft. Accelerations are
derived by applying Equation 3.24 twice to Equation 5.16

UT f/ B d L)~ v, B • ,Q= (•TVBO + x(B" RP)) + L × + B(uRpQ)). (5.17)

The Bd(.) term is differentiated, resulting in

•T(VO + B x (UR ( )) = B L (V o)B+ L x uRBpQ + W X VQ. (5.18)

St B B Q dt

Substituting the results from Equation 5.18 into Equation 5.17, the result is

B- (U'VBo) + 2 ,B X V,+ uB x RBPQ + • x (w x RBPQ). (5.19)

The desired result in {B} is obtained by simply premultiplying Equation 5.19 by L'R

B d
B (BvBo) + 2 wB X BVQ + B B BpQ + B WB X (BWB X BPQ), (5.20)

where the identity [Ref. Sp 89]

UR(WB X "VQ) = (RwIB) Lx (R" VQ)

was used. This result can ,ow be substituted into Equation 3.27 and the resulting

expression can be solved for 1 (B VBO).

78



2. Angular Accelerations

No further work is needed to derive the expressions for angular velocity

and acceleration at a arbitrary point, since for a rigid body. these quantities remain

the same anywhere on the body.

WBO WQ VQ E {B}

"0Bo = ••Q VQ E {B},

since w x w = 0.
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VI. CONCLUSIONS AND
RECOMMENDATIONS

A. CONCLUSIONS

Based on the data presented in this thesis, the following conclusions are made:

e High-fidelity models of both the AROD and Bluebird aircraft were implemented

using SIMULINK software. Use of the block diagram structure of the model

allows changes to be easily made and requires no programming ability, other

than the use of MATLAB.

* These models accurately represent the sensors, actuators, and engines associated

with the particular aircraft.

a Expected errors in the accelerometers and rate gyros are very small. Pitch

errors from the inclinometers, due to linear accelerations, will be much greater.

* The models that were developed only represent one flight condition. The AROD

was modeled only in a hover and the Bluebird was only modeled in a cruise

condition. Further work on the control, guidance, and navigation systems will

be concentrated in these flight regimes. The data files for a given flight condition

are easily replaced with tables, when more test data are available.

B. RECOMMENDATIONS

Based on the conclusions presented above, and the problems encountered during

this study, the following recommendations are made.

o The Department of Aeronautics and Astronautic- should update the UNIX labs

to include SIMULINK with MATLAB 4.0. This will allow increased instructional
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use in flight dynamics, controls, and avionics courses. Additionally, a practical

research tool would be available.

* The work in this thesis must be modified to include the aerodynamic charac-

teristics of the Archytas aircraft. Achieving this step will require wind tunnel

testing for the Archytas in all the expected phases of flight, especially the ex-

tremely non-linear transition phase from vertical to horizontal flight.

• * Integration of the quaternion based rotation matrix should be completed in

order to take advantage of the superior qualities of quaternions in computational

models.
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APPENDIX A: MATHEMATICAL
PROPERTIES

In this appendix, some of the mathematical properties used in the text are

described.

A. CROSS PRODUCT PROPERTIES

In this section, important properties of the cross product and cross product

matrices are described The cross product between two vectors.ax~ IA = [ a• ]and B [br
a. by

is defined by
A =[ ab E- abI

A x B = a-bx -axbz
auzby aybr

Properties of the cross product are:

0 -a. a.
A x B=(Ax)B, whereAx = a, 0 -a,

[-a. a, 0

and is called a cross product matrix

* AR(V x U) = (ARV) x (A RU) if AR is a rotation matrix with V and tT in the

same coordinate system. That this matrix distributes across the cross product

is obvious since rotation matrices preserve space geometry.

* BR(V U) L (BRV) • (•RU) for the same reasons as above.

o A x(BxC)=(A.C)B-(A.B)C
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a Ax(BxC)=Bx(AxC)+Cx(BxA)

* AxB=-BxA

* -Ax = ATx

B. DERIVATIVES OF VECTORS

For any free vector, BV,, (i.e. a velocity vector and any rotation matrix, BR, the

derivative of the velocity of Q computed in {B} and expressed in {A} and denoted

as A (B Vý) is given as [Ref. Sil 91]

d (A(B.r)) = d(A R V B

= AQ dt B + BR) VQ+

(A= B R R)A R Bt, + ARd( "

since as shown in [Ref. Cra 861,

d(A (Bj, Q+ dS
-a(AB 1 ))" = A x A(BV)+Rd(B1,)

di BU

so then

BR AR = B

The same process can be carried out for an angular velocity vector AQB.

d (A ) d (R B(AQB))
A(B A)A- d t B

S QBX +AR d (B(A QB))= Art R d Art R

- QRd(B(ArB))

And if the origins of the coordinate systems{ A} and { B } are coincident, the derivative

can be expressed as

WB d (WB)
dt
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For an applied vector BpQ (i.e. the position of point Q in the {B} coordinate system)

and a rotation matrix AR, the time derivative of the position vector of Q. expressed

in {A} , !(APQ) as a function of it's derivative computed in {B} is given by [Ref.

Sil 91]

d _A d (A+Bp +ApBo)
S(AP ) - -(R

- At x(ARBp)+AR Q-( PQ)B+R

Therefore the velocity of the point Q can be expressed in {A} as

" "A = ý BpQ A d• (Be• ) +• + At,,
A B, A+ B ( R _B~+ B1 ,

or exforessing the velocity of Q in the {B} coordinate system

B(AjQ) = B(A QB) X BpQ + BvQ + B(AvQ

In the case where the origins of {A} and {B} are coincident then the resulting ex-

pression is

B B BpQ B v + B
týQ =WBXPQ+VQ+VB.

C. EQUATIONS USED FOR LINEARIZATION

For any vector equation, H(c) = a x b where c = [a b] and a, b, and c are all

vectors, the Taylor series approximation can be written as

H(c) = H(co) + aH• 1 oC + H.O.T.

and
O9H OH OHac -= a Hob=o,,a + Ob lb=b, 6 b

Now OI1/Oa can be written as

OH O(a x b) i)(-b x a) _O(-b) Oa
S- - xa-bx = -bx

Oa aa Oa a 0a
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Using 'he same relations, OHi/Ob can be written

OH O(-b x a)
8b -a
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APPENDIX B: NUMERICAL RESULTS

A. AROD RESULTS

The following results are from the numerical linearization of the kinematic equa-

tions of motion for the AROD. Using the trim command. based on an initial Oo = 7r/2,

resulted in the state vector and input vector of:

0
0
0 0
0 0

X0 andtiu 0
0 0
0 0

1.57000
0j

The linmod command, [a.b,c.d]=linmod('baslnmiiod'.x~iu). prodluce(] the following 1iii-

earized system:
0 0 00 0 0
0 0 00 0 0
0000 0 0

a 001050 0 0
0 0 0 0 0 -1.5024

L0 0 0 0 1.5112 0

1000

1 0 0 0 0 0
0 1 0 0 0 0

b 0 0 1 0 0 0

0 0 0 1 0 00 0 0 0 1 0
0 0 0 0 0 10000010

and the c and d matrices were empty, since no outputs were defined.

The following results are for the numerical linearization with gravitational ef-

fects added to the 2-3-1 Euler angle kinematic equation model. The trim com-
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mand. using the same initial conditions as before, resulted in the following vectors:

[x,u]=trim('gravlIniod',xO,[],[_,ix,[].D)

-0.00
0.00 32.1740

-0.00 -0.00
0.00 -0.0256

X 0.00 and u -0.00
0.00 0.00
0.00 -0.00

1.5700
0.00

Linearizing the system, based on the state and input vector found by trimming at

the desired conditions resulted in: [a.b.c,dI=linmod( 'gravImod'.x,u)

0 0.00 0 0 0.00 0.00 0 -0.02.55 0.0002
-0.00 0 0.00 -0.00 0 0.00 0.0256 -0.00 32.1740

0.00 -0.00 0 -0.00 -0.00 0 -0.00 -32.1740 0
0 0 0 0 -0.00 -0.00 0 0 0

a 0 0 0 0.00 0 -1.5204 0 0 0
0 0 0 -0.00 1.5112 0 0 0 0
0 0 0 1.00 -0.00 0.00 0 0 -0.00
0 0 0 0 1.00 -0.00 -0.00 0 0.00
0 0 0 0 0.00 1.00 -0.00 0 0

and
1.00 0 0 0 0 0

0 1.00 0 0 0 0
0 0 1.00 0 0 0
0 0 0 1.00 0 0
0 0 0 0 1.00 0
0 0 0 0 0 1.00

Trimming the full EOM model at hover conditions resulted in the following:

-0.00
-0.00

0.00 0.00
-0.00 0.00

x= 0.00 and u =
7 6387.20.00

1.5708
0.00
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The subsequent linearization for the complete model yielded:

0 0 0 0 0 0 0 0.0002 0.0002
0.00 0 0 0.00 0 0.00 0.00 -0.00 32.1740

0 0 0 0.00 0 0 -0.00 -32.1740 0
0 0 0 0 0 0 0 0 0

a 0 0 0 -0.00 0 -1.5174 0 0 0
0 0 0 -0.00 1.5082 0 0 0 0
0 0 0 1.00 -0.00 0 -0.00 0 0
0 0 0 0 1.00 -0.00 0.00 0 0.00
0 0 0 0 0 1.00 0.00 0 0

and
0 0 0 0.0112
0 0 0 0
0 0 0 0

0 ,2 24.8194 0.0003
b = -6.6192 0 0 -0.00

0 -6.5791 0 -0.00

0 0 0 0
0 0 0 0
0 0 0 0

Computation of the eigenvalues gave:

0
0
0
0

eig(a) 0
-0.00

0 + 1.51281
0- 1.5128i

0

Now consider the quaternion based model Rpm is fixed at 6800 RPM.

To hold the desired vertical attitude, the quaternion states were held fixed:

7
8?X = 9

10

88



where the state vector of nominal conditions was:

0
0
0
0
0
0

0.7071
0

0.7071
0

Trim and linearization of the quaternion-based gravitational model resulted in the

following state and input vectors, as well as linearized a and b matrices:

-0.00
0.00

-0.00 32.1740
0.00 -0.00

-0.00 --0.00
0.00 ' 0.00

0.7071 0.00
-0.00 0.00

0.7071
0.00

a =, columns 1-6,

r 0 0.00 0.00 0 0.00 0.00
-0.00 0 0.00 -0.00 0 0.00
-0.00 -0.00 0 -0.00 -0.00 0

0 0 0 0 0.00 -0.00
0 0 0 0.00 0 -1.6051
0 0 0 0.00 1.6062 0
0 0 0 0.00 -0.3536 -0.00
0 0 0 0.3536 -0.00 0.3536
0 0 0 0.00 0.3536 0.00
0 0 0 -0.3536 -0.00 0.3536
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columns 7-10

-45.5009 0 -45.5009 0

0.00 -45.5009 0.00 45.5009A
45.5012 -0.000:3 -4.5.5012 0.0003

0 0 0 0
0 0 0 0

0 0 0 0
0 -0.00 0.00 -0.00

0.00 0 0.00 0.00
-0.00 -0.00 0 0.00

0.00 -0.00 -0.00 0

and
1.00 0 0 0 0 0

0 1.00 0 0 0 0
0 0 1.00 0 0 0
0 0 0 1.00 0 0

0 0 0 0 1.00 0
L 0 0 0 0 1.00

Eigenvalues are computed as:

-0.00 + 0.OOi
-0.00 - 0.OOi

0.00
0

eig(a) -0.00 + 1.6057i
-0.00- 1.6057i

-0.00
0.00

-0.00 + 0.001O
-0.00 - 0.OOj

B. BLUEBIRD NUMERICAL RESULTS

Results for the numerical trim and linearization of the Bluebird model are given

below. The results are from the trim of the kinematic equations of motion for the
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Bluebird model are based on the nominal conditions of:

72.99.54
0

6.6757
0

xO= C
0
0

0.0912
0

with the states, u, w, and O held constant, ix = [1 5 8]'. The trim command

[x,u]=trim('basic',xO.D,[],ix,n, 0) resulted in the following state and input vectors:

72.9954
0 0

6.6757 0
0 0

00
x =0 ,and u =

0 0
0 0

0.0912
0

The numerical linearization of the basic model, [A,B.,C,D]=linmod('basic',x.u), re-

sulted in the following A and B matrires:

0 0 0 0 -6.6757 0
0 0 0 6.6757 0 -72.9954
0 0 0 0 72.9954 0
000 0 0 0
000 0 0 0
000 0 0 0

and 100000
010000

0 0 0 1 0 0
000010
000001

The C and D matrices were empty since no outputs were defined.

91



Results for trim and linearization of the kinematic mode! with gravitational

effects added yielded the following state and input vectors:

72.9954
0.00 2.8772

6.6763 0.00
0.00 -31.4605

= 0.00 and u =-000

-0.00 0.3945
-0.00 -0.00

0.0912
0.00

The numerical linearization of the model resulted in the following A and B matrices:

A=

-0.0007 -0.00 0.0079 0 -6.676:3 0.00 -0.00 -32.04.51 0
0.00 0 0.00 6.6763 0 -72.9954 32.0403 0.00 0

-0.0001 0 0.0007 -0.00 72.9954 0 -0.0002 -2.8773 0
-0.00 0.0087 -0.00 0 -0.00 0.00 -0.00 -0.00 0
-0.00 0.00 0.0005 0.00 0 -0.00 0.00 0.0361 0
-0.00 0.0010 0.00 -0.00 -0.00 0 -0.00 -0.00 0

0 0 0 1.00 -0.00 0.0915 0.00 -0.00 0
0 0 0 0 1.00 0.00 0.00 0 0
0 0 0 0 -0.00 1.0042 0.00 -0.00 0

and
1 0 0 0 0 0
0 1 0 0 0 0

B 0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

L0 0 0 0 0 1J

Results for trimming the entire model were A =

-0.0622 0.00 0.3431 0 -1.6187 0.00 0.00 -32.0416 0
0.00 -0.3865 0.00 1.7450 0 -71.6817 32.0403 0.00 0

-0.7558 0.00 -4.7145 0.00 67.1233 0 -0.0002 -2.8771 0
0.00 -0.1455 0.00 -5.3700 0.00 1.5003 0.00 0.00 0

0.0155 0.00 -0.1907 0.00 -3.1266 0.00 0.00 0.0362 0
0.00 0.1418 0.00 -1.0589 0.00 -0.7970 0.00 0.00 0

0 0 0 1.00 0.00 0.0915 0.00 0.00 0
0 0 0 0 1.00 0.00 0.00 0 0
0 0 0 0 0.00 1.0042 0.00 0 0
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and
-4.3850 0 0 8.7745

0.00 5.6803 0 0
-37.8929 0 0 0

0.00 0.6216 45.9851 0
B = -21.4821 0 0.00 0

0.00 -7.1281 -6.1465 0
0 0 0 0
0 0 0 0
0 0 0 0

Complete model linearized with 00 = 0 instead of 00o = O The initial conditions

are now:
73.3000

0
0
0

x0 = 0
0
0
0
0

The state and input vectors obtained from trimming at this state are

73.3000
-0.00
1.6086 1-0.00 -0.008-0.00

x -0.00 and u [ 0.00.00 0.00
0.00 0.2336

0.00
-0.00
-0.00

with the linearized A and B matrices: A =

-0.0635 0.00 0.3277 0 -1.4922 0 -0.00 -32.1740 0
-0.00 -0.3911 -0.00 1.6086 0 -72.6109 32.1740 -0.00 0

-0.7572 -0.00 -4.7741 0 67.9934 0 -0.0002 -0.0002 0
0.00 -0.1471 -0.00 -5.4414 -0.00 1.5183 0.00 -0.00 0

0.0151 -0.00 -0.1933 0 -3.1672 0 0.00 -0.00 0
0.00 0.1440 0.00 -1.0578 0.00 -0.8114 0.00 -0.00 0

0 0 0 1.00 0 -0.00 0 -0.00 0
0 0 0 0 1.00 -0.00 -0.00 0 0
0 0 0 0 0.00 1.00 -0.00 -0.00 0
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-4.5835 0 0 8.7715
0.00 5.8282 0 0

-3-.8,ý61 0 0 0
-0.00 0.6252 47.1717 0

B= -22.0417 0 0 0
-0.00 -7.3151 -6.4345 0

0 0 0 0
0 0 0 0
0 0 0 0

The eigenvalues for the case where Oo = 0 are

0
-0.5285 + 3.6346z
-0.5285 - 3.63461

-5.6291
cig(A) -3.9833 + 3.55217

-3.9833 - 3.5521i

0.0420
-0.0191 + 0.49631
-0.0191 - 0.4963,i

C. CESSNA 172 RESULTS

The Cessnal 172 model was trimmed and linearized using the state vector

21i
0
0
0

x0O= 0
0
0
0
0

as specified in [Ref. Ros 791. The states u, u,, and 0 were held constant making the

term ix = [1 3 8]'.

Only the complete model was linearized, with the results of the trim routine
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given as:
219.00

0.00
-0.0394 0.0001

0.00 o0.000
2= -0.00 andu 0.0

-0.00 [1J.00
-0.00

00.00
-0.00j

The linearized model had the following results for the A and B matrices A =

-0.0442 0.00 0.0848 0 0.0382 0 0.00 -32.1740 0
0.00 -0.1620 -0.00 -0.0394 0 -217.2141 32.1740 -0.00 0

-0.2916 -0.00 -2.1805 0 212.5399 0 -0.0002 -0.0002 0
0.00 -0.1313 0.00 -12.409:3 0.00 2.5:312 -0.00 -0.00 0

0.0024 -0.00 -0.1085 0 -- 6.0778 0 0.00 -0.00 0
-0.00 0.0462 0.00 -0.3807 0.00 - 1.2600 0.00 -0.00 0

0 0 0 1.00 0 -0.00 0 -0.00 0
0 0 0 0 1.00 -0.00 0.00 0 0
0 0 0 0 0.00 1.00 -0.00 -0.00 0

and
-6.2509 0 0 3.2255

-0.00 19.4571 0 0
-44.3392 0 0 0

0.00 4.7446 .57.4954 0
B= -39.4919 0 0 0

-0.00 -- 10.2288 -8.2562 0
0 0 0 0
0 0 0 0
0 0 0 0

and the following eigenvalues

0
-12.4309

-0.6947 + 3.3080i
-0.6947 - :3.3080i

eig(A)= -4.1303 + 4.3895i
-4.1303 - 4.38951

-0.0109
-0.0209 + 0.1794'
-0.0209 - 0.179 ii
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APPENDIX C: PROGRAM LISTINGS

A. AROD MATLAB ROUTINES

1. Main Routine

function accel=main(vstate,m,rho,A,R)

% Function will compute the accelerations due to the

% gravitational forces, aerodynaimic forces and moments,

% and control forces and moments.

% The values for S,rho,m,b,and c are used as input

% arguments to the function call, and are loaded

% from the workspace. There should be a file,

% loaddata.m loaded prior to running the

% simulation.

% define states in terms of the input vector

u=vstate(1);

v=vstate(2);

w=vstate(3);

p=vstate(4);

q=vstate(5);

r=vstate(6);

phi=vstate(7);

theta=vstate(8);

psi=vstate(9);
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% Define the control inputs

de=vstate(1O);

dr=vstate(I1);

da=vstate(12);

drpm=vstate(13);

% this subroutine computes linear and angular accelerations

% given angular and linear velocities;

% the input is 6xl vector = Eu v w p q r]'

% the output is feedback part of d/dt Eu v w p q r]'

% the output also includes the Euler angle derivatives, based on

% a 2-3-i transformation, for Ldot, used in the function grav.m.

v = vstate(1:3);

omega = vstate(4:6);

vdot = -crpr(omega,v);

[Ib,Ir] = inertia;

% compute the angular momentum due to the body's inertia, Ib

Lb = Ib *omega;

% compute the angular momentum due the spinning prop's inertia, Ir

OmegaR=drpm*2*pi/60; % angular velocity of the prop, rad/sec

Lr=Ir*[OmegaR;O;O];

temp=Lr+Lb;

omdot = -Ib\crpr(omega,temp);
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vstatedot=[vdot;omdot];

% Use the Euler angle propagation equations for a 2-3-1 rotation sequence

Ldot=[p/cos(psi)-cos(phi)*sin(psi)/co.(psi)*q+sin(phi)*sin(psi)/cos(psi)*r;

cos(phi)/cos(psi)*q-sin(phi)/cos(psi)*r;

sin(phi)*q+cos(phi)*rl;

% Given the vector containing the state derivatives,

% The function will compute the forces and moments due to

Sthe control derivatives, Cfd, where this

% is dCf/dd.

% The values for rho,A,R,m are used as input

% arguments to the function call, and are loaded

% from the workspace. There should be a file,

% arod.mat loaded prior to running the

% simulation.

% hover case V=O, dimensionalize the control derivatives based on

% induced velocity through the rotor disk, Vi=sqrt(T/2/A/rho)

% Calculate the quantities needed for the force

% calculation.

% Call a function to return the stability derivatives wrt to moments

% Could put a call to a lookup table here

% Syntax--Z = TABLE2(TAB,XO,YO) or Y = TABLE1(TAB,XO)
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Cfd=getcfd;

% Define the derivatives

Clda=Cfd(4,3);

Cmde=Cfd(5,1);

Cndr=Cfd(6,2);

% Calculate the Force due to Cfd derivatives

% No Aerodynamic Forces in a Hover

D=O;

Y=O;

L=O;

% calculate the force due to thrust in body coordinates

% USING THRUST VS. RPM FROM BOB STONEY'S TEST RUNS

T=0.0297*drpm-104.7;

Vi=sqrt(T/2/A/rho)

qbar=.5*rho*Vi-2; % Vi is induced velocity, not forward speed

Fout=[D;Y;LJ;

Fout=(Fout+[T;0;O])/m;

% Calculate the Moment due to Cfd derivatives

% ltr relates the duct swirl to the moment, 1, produced by thrust

ltr=-0.0542*T-3.9138;

lzqbar*A*R*(Clda*da)+ltr;

mzqbar*A*R*(Ciimue*de);

n=qbcr*A*R* (Cndr*dr);
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Nout=Ib\[l;m;n];

FNcfx= [Fout ;Nout];

%, Given the vector containing the state derivatives,

%, and euler angles, the function will compute

%, the forces due to gravity acting on the aircraft.

y.

% Calculate gravitational force, based on a 2-3-1 Euler angle

% rotation for position of the aircraft. Rotation matrix is Ru2body

% Z for {U} is positive down and X for {B} is straight up.

FNgrav=32.174* [-sin(theta)*cos (psi);

sin(theta)*sin(psi)*cos(phi)+sin(phi)*cos(theta);

cos(phi) *cos(theta)-sin(theta) *sin(psi)*sin (phi);

o;0;0J;

% Sum up the normalized forces and moments to feed back into the integrator

vstatedot= [vstatedot+FNcfx+FNgrav ; Ldot];

accel=vstatedot;

2. Supporting Subroutines

functi,•n y = crpr(omega,x)
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% this subroutine computes the crossproduct of omega and x:

% y = omega X x

p = omega(i);

q = omega(2);

r = omega(3);

t = [0 -r q;

r 0 -p;

-q p 0];

y = t * x;

function Fgrav=grav(x)

% GRAV will compute the gravitational force

% acting on the body, in body coordinates

g=x(1);

phi=x(2);

theta=x(3);

psi=x(4);

Fgrav=g*[-sin(theta)*cos(psi);

sin(theta)*sin(psi)*cos(phi)+sin(phi)*cos(theta);

cos(phi)*cos(theta)-sin(theta)*sin(psi)*sin(phi)];

function [ib,ir] = inertia

% this subroutine creates inertia matrices called ib
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Sand ir for the body and rotor inertia, respectively.

% Arod hover case

ixx = 1.2312;

iyy = 3.9584;

izz = 3.9825;

ixz = 0;

irx=.00898;

iry=.0045;

irz=.0045;

ib = [ixx 0 -ixz;O iyy 0;-ixz 0 izz];

ir = [irx 0 0;0 iry 0; 0 0 irz];

3. Data and Initialization Subroutines

% load bluebird data

A=3.14; % Area of rotor disk, ft-2

Vt=712.09; % Rotor tip speed, rad/sec

m=2.6419; % Mass, slugs

R=1; % Radius of Rotor Blade, ft

rho=.002377; % Air density, slug/ft-3

Uo=O; % Nominal Velocity, ft/sec

% Initial Euler Angle Orientation, radians

Phi=O;

Theta-l.57; % Same as Steady State alpha

Psi=O;

Lo=[Phi;Theta;Psi];

102



Initial Conditions to determine the Aircraft

% Linear and Rotational Velocity States

% uvw are computed from Uo, alpha, and beta

% pqr are assumed as zero.

alpha=Theta;

beta=O;

Xo= [Uo; alpha; beta]

% Returns Initial Conditions for the main

% integrator in the rigid body EOM block

iO=init-var(LoXo);

function Cfd=getcfd

% Cfd=getcfd will return values for

% The stability derivatives for DYLlmand n

% due to the control inputs.

% format for data is;

% [CDde CDdr CDda

% CYde ...

% CLde ...

% Clde Cldr Clda

% Cmde ...

% Cnde ... Cnda

% Data is non-dimensionalized by using induced velocity

% Vi=sqrt(T/2/A/rho)
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% for arod hover case

Cfd=[ 0 0 0;

o o 0;

o o 0

0 0 1.438;

-1.233 0 0;

0 -1.233 0];

function iO=init-var(Lo,Xo)

% INITVAR(X) will initialize the integrators

% initial states, iO, given the initial

% conditions desired.

% Required initial conditions are the Euler

% angle orientation, total velocity, Uo, initial

% AOA, and sideslip angle, beta.

% Lo=[phi;theta;psi]'

% Xo=[Uo; alpha;beta] '

% All body rotation rates are assumed tc be zero

% Initialize the states u,v,w,p,q,r

Uo-Xo(1);

alpha=Xo(2);

beta-Xo(3);
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Ca~cos(alpha);

Sa~sin(alpha);

CB~cos (beta);

SB=sin(beta);

Rvb=[Ca*CB -Ca*SB -Sa;SB CB O;Sa*CB -Sa*SB Cal;

vO=Rwb*[Uo;O;0];

wO=[O;0;OJ;

iO=EvO;wO;Lo];

function Qo=initq(lambda)

% Function initQ will return values for

% the quaternion DCM based on a given

o% set of Euler angles.

% Set for a Euler 3-2-1 rotation

% Q(1)=BO

%h Q(2)=Bl

% tQ(3)=B2

% Q(4)=B3

phi~lambda(l);

theta~laznbda(2);

psiinlaznbda(3);

Qo(l)=.S*sqrt(l+cos(psi)*cos(theta)+sin(psi)*sin(theta)*sin(phi)..
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+cos(psi)*cos(phi)+cos(theta)*cos(phi));

Qo(2)=1/4/Qo(1)*(cos(theta)*sin(phi)-smn(psi)*sin(theta)*cos(phi)...

+cos(psi)*sin(phi));

Qo(3)=1/4/Qo(1)*(cos(psi)*sin(theta)*cos(phi)+sin(psi)*sin(phi)...

+sin(theta));

go(4)=1/4/Qo(1)*(sin(psi)*cos(theta)-cos(psi)*sin(theta)*sin(phi)...

+sin(psi)*cos(phi));

Qo=Qo';

B. BLUEBIRD MATLAB ROUTINES

1. Main Routine

function accel=main(vstate,rho,b,c,S,m,Xo)

% Function will compute the accelerations due to the

% gravitational forces, aerodynamic forces and moments,

% and control forces and moments.

% The values for S,rho,m,b,and c are used as input

% arguments to the function call, and are loaded

% from the workspace. There should be a file,

% loaddata.m loaded prior to running the

% simulation.

% define states in terms of the input vector

ufvstate(1);

v-vstate(2);

w-vstate(3);
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p-vstate (4),

q-vstate(5);

r=vstate(6);

phi=vstate(7);

theta=vstate(8);

psi=vstate(9);

"% Define the contro± inputs

de=vstate(1O);

dr=vstate(11);

da=vstate(12);

dt=vstate(13);

% calculate the aerodynamic terms

Vt=sqrt(u-2+v^2+w'2);

qbar=.5*rho*(Vt) 2;

Ib= inertia;

% wind to body transformation

Rwbfrw2b(vstate,Vt);

% -----------------------------------------------------------------------
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% CHI will compute the left hand side of the state

% equation. This is the term dependant on dCf/dxdot.

% Now calculate the S matrix that non-dimensionalizes

% the moments. Also includes the correction for Lift and Drag

% acting in the direction opposite to the positive coordinate

% direction.

% Get the stability derivatives for forces and moments

Cfxdot=getcfxd;

CLad=Cfxdot(3);

Cmad=Cfxdot(5);

% Twb is a intermediate step

Twb=[eye(3)/m zeros(3);zeros(3) inv(Ib)]*[Rwb zeros(3);zeros(3) Rwb];

% calculate the M2 matrix to allow use of the states, rather than

% the normalized states. Only accounts for the alpha dot variables

% since the beta dot terms are not ordinarily computed.

%M2=[O 0 1 0 0 0]*c/2/Vt-2;

%Sprime=diag([-S S -S S*b S*c S*b]);

% To save some math here, the product of Sprime, Cfxdot, and M2 is:

PROD=[O 0 0 0 0 0;0 0 0 0 0 0;0 0 -S*CLad*c/2/Vt-2 0 0 0;

0 0 0 0 0 0;0 0 S*c*Cmad*c/2/Vt-2 0 0 0;0 0 0 0 0 0];

% Calculate chi

chil-(eye(6)-Twb*qbar*PROD);
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Y. Given the vector containing the state derivatives,

%, and euler angles, the function will compute

%, the forces due to gravity acting on the aircraft.

%. Calculate gravitational force, based on a 3-2-1 Euler angle

% rotation for position of the aircraft. Rotation matrix is Ru2body

Fgrav=32. 174*[-sin(theta);

cos (theta)*sin(phi);

cos(theta)*cos(phi)];

% Premultiply by the Chi--I term from the left hand side

FNgrav=chil\[Fgrav;0;0;O];

% Cfx(u) Given the vector containing the state derivatives,

%, The function will compute the forces and moments due to

%. the stability derivatives, Cfx', where this

%, is dCf/dx.
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% Call a function to return the stability derivatives wrt to moments

% Could put a call to a lookup table here

% Syntax--Z =TABLE2(TAB,XO,YO) or Y =TABLE1(TAB,XO)

Cfx=getcfx;

CDu=Cfx(1,1); CDa=Cfx(1,3);

CYb=Cfx(2,2); CYp=Cfx(2,4); CYr=Cfx(2,6);

CLu=Cfx(3,1); CLa=Cfx(3,3); CLq=Cfx(3,5);

Clb=Cfx(4,2); Clp=Cfx(.4,4); Clr=Cfx(4,6);

Cmu=Cfx(5,1); Cma=Cfx(5,3); Cmq=Cfx(5,5);

Cnb=Cfx(6,2); Cnp=Cfx(6,4); Cnr=Cfx(6,6);

ss~getcfO;

CDO~ss(1);

CLO~ss(3);

CmO-ss(5);

Cfd~getcfd,

% Define the derivatives

CDde=Cfd(1,1);

CYdr-Cfd(2,2); CYda=Cfd(2,3);

CLde=Cfd(3, 1);

Cldr-Cfd(4,2); Clda=Cfd(4,3);

Cmde-Cfd(5, 1);

Cndr-Cfd(6,2); Cnda-Cfd(6,3);
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%Calculate the Force due to Cfx' derivatives

%And the control derivatives

Xin the wind coordinates

D=-S*qbar/m*(CDO+CDa*w/Vt+CDde*de);

Y=S*qbarlm* (CYb*v/Vt+CYr*r*b/2/Vt+CYdr*dr+CYda*da);

L=-S*qbar/m*(CLO+CLa*w/Vt4CLq*q*c/2/Vt+CLde*de);

% calculate the force due to thrust in body coordinates

% THRUST IS ESTIMATED, BASED ON 4.0 HP, PROP EFFICENCY=.65

T= 15;

Xt=T/m*dt;

Fout=Rwb*([D;Y;LJ);

Fout=Fout+[Xt;O;O];

% Calculate the Moment due to Cf x' derivatives

%. And the control derivatives

lsqbar*S*b* (Clb/Vt*v+Clp*b/2/Vt*p+Clr*b/2/Vt*r+Cldr*dr+Clda*da);

mzqbar*S*c* (CmO+Cma/Vt*w+Cmq/Vt*c/2*q+Cmde*de);

n~qbar*S*b*(Cnb/Vt*v+Cnp*b/2/Vt*p+Cnr*b/2/Vt*r+Cndr*dr+Cnda*da);

Nout=Ib\(Rvb*[l;m;nJ);



% Premultiply by the Chi--1 term from the left hand side

FNcfx=chil\ [Fout ;Nout];

% this subroutine computes linear and angular accelerations

% given angular and linear velocities;

% the input is 6x1 vector = [u v w p q r]'

% the output is feedback part of d/dt [u v w p q r]'

% the output also includes the Euler angle derivatives

% Ldot, used in the function grav.m.

v = vstate(1:3);

omega = vstate(4:6);

vdot = -crpr(omega,v);

temp = Ib*omega;

omdot = -Ib\crpr(omega,temp);

vstatedot=chil\[vdot ;omdot];

% Use the Euler angle propagation equations

Ldot=[p+sin(phi)*tan(theta)*q+cos(phi)*tan(theta)*r;

cos (phi)*q-sin(phi)*r;

sin(phi)/cos(theta)*q+cos(phi)/cos(theta)*r];
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vstatedot=[vstatedot+FNcfx+FNgrav;Ldot];

accel=vstatedot;

2. Supporting Subroutines

function y = crpr(omega,x)

% this subroutine computes the crossproduct of omega and x:

% y = omega X x

p = omega(:);

q = omega(2);

r = omega(3);

t [0 -r q;

r 0 -p;

-q p 0];

y =t * X

function Fgrav=grav(x)

% GRAV will compute the gravitational force

% acting on the body, in body coordinates

gx(1);

phi-x(2);

theta=x(3);
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Fgrav=g* [-sin(theta);

cos(theta)*sin (phi);

cos(theta)*cos(phi)];

function Ib = inertia

% this subroutine creates inertia matrix called Ib

% for the Bluebird test aircraft.

% All units are slug-ft-2

Ix=10.O;

Iy=16.12;

Iz=7.97;

Ib-[Ix 0 0;0 Iy 0;0 0 Iz];

function [Rwb]=Rw2b(x,Vt)

% RWIND2BODY Rotation matrix for wind to body coordinate transformations.

Ca=x(1)/Vt;

Sa=x(3)/Vt;

CB-x(1)/Vt;

SB=x(2)/Vt;

Rwb=[Ca*CB -Ca*SB -Sa;SB CB O;Sa*CB -Sa*SB Ca];
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3. Data and Initialization Subroutines

% load bluebird data

S=22.38; % Planform Area, ft-2

Uo=73.3; % Nominal Velocity, ft/sec

m=1.7095; % Mass, slugs

b=12.42; % Span, ft

c=1.802; % Average Chord, ft

rho=.002377; % Air density, slug/ft-3

% Initial Euler Angle Orientation, radians

Phi=O;

Theta=.0912; % Same as Steady State alpha

Psi=O;

Lo=[Phi;Theta;Psi];

% Initial Conditions to determine the Aircraft

% Linear and Rotational Velocity States

%u,v,w are computed from Uo, alpha, and beta

% p,q,r are assumed as zero.

alpha=Theta;

beta=O;

Xo= [Uo; alpha;beta];

% Returns Initial Conditions for the main

% integrator in the rigid body EOM block

iO=init-var(Lo,Xo)
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function iO=init-var(Lo,Xo)

% INITVAR(X) will initialize the integrators

% initial states, iO, given the initial

% conditions desired.

% Required initial conditions are the Euler

% angle orientation, total velocity, Uo, initial

% AOA, and sideslip angle, beta.

% Lo=[phi;theta;psi]'

% Xo=[Uo;alpha;beta]'

% All body rotation rates are assumed to be zero

% Initialize the Euler angle DCM

% Initialize the states u,v,w,p,q,r

Uo=Xo(1);

alpha=Xo(2);

beta=Xo(3);

Ca=cos(alpha);

Sa=sin(alpha);

CB=cos(beta);

SB-sin(beta);

Rwb=[Ca*CB -Ca*SB -Sa;SB CB O;Sa*CB -Sa*SB Ca];

vORwb*[Uo;0;0];
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wO=[0;0;0];

iO=[vO;wO;Lo];

function CfO=getcfO

% CfO-getcfO will return values for

% the nominal values for coefficients

%.format of input is [CDO CYO CLO C1O CmO CnO]';

CfO=[0.03 0 0.3 0 0 0]';

function Cfd=getcfd

% Cfd=getCfdF(n) will return values for

% The stability derivatives for D,Y,and L

% due to the control inputs.

% format for data is;

% [CDde CDdr CDda

% CYde ...

% CLde ...

. Clde Cldr Clda

% Cmde ...

% Cnde ... Cnda]

% For the test aircraft Bluebird

% Derivatives from DATCOM

117



Cfd=[ .065 0 0;

0 .0697 0;

.472 0 0

0 .0028 .265;

-1.41 0 0;

0 -. 0329 -. 0347];

function Cfx=getcfx

% Cfx=getcfx(n) will return values for

% The stability derivatives for D,Y,and L

% due to the state vector.

% format of data:

%[CDu CDb CDa CDp CDq CDr;

% CYu ...

% CLu ...

% Clu ...

% Cmu ...

% Cnu ... ]

7% For the test aircraft Bluebird

% Derivatives from DATCOM

Cfx=i[O 0 .188 0 0 0;

0 -0.31 0 0 0 .0973;

0 0 4.22 0 3.94 0;

118



0 -. 0597 0 -. 363 0 .1;

0 0 -1.163 0 -11.77 0;

0 .0487 0 -. 0481 0 -. 0452];

function Cfxdot=getcfxd

%, Cfxdot=getcfxd(n) will return values for

%, The stability derivatives fcr D,Y,and L

% due to the state vector. Beta dot terms are ignored

% since they are not normally determined.

% format is:

%[ CDadot

% CYad

% CLad

% Clad

%. Cmad

% Cnad]

Cfxdot=[0;0;1.32;0;-4.7;0];

119



REFERENCES
[Siu 91] Siuru, W.D., Planes Without Pilots: Advances in Unmanned Flight, TAB

Books, Blue Ridge Summit, PA, 1991.

[Wh 87] White, J.E., and Phelan, J.R., "Stability Augmentation for a Free Flying
Ducted Fan," Proceedings of the AIAA Guidance, Navigation, and Control Con-
ference, Monterey, CA, Aug. 1987, pp 896-904.

[MCG 87] Jennings Jr, J.F., "Why the Corps Needs Robots," Marine Corps Gazette,
Vol. 5, No. 1987, pp 36-39.

[Sa 89] Not Attributed, Sandia Science News Vol. 1, 1989

[Kre 92] Kress, G.A., "Preliminary Development of a VTOL Unmanned Air Vehicle
for the Close-Range Mission." Master's Thesis, Department of Aeronautics. Naval
Postgraduate School, Monterey, CA, 1992.

[Sto 93] Stoney, R.B., "Design, Fabrication, and Test of a Vertical Attitude Take-Off
and Landing Unmanned Air Vehicle," Engineer's Thesis, Department of Aero-
nautics, Naval Postgraduate School, Monterey, CA, June 1993.

[We 88] Weir, R.J., "Aerodynamic Design Considerations for Free-Flying Ducted
Propellor," Proceedings of the 1988 Atmospheric Flight Mechanics Conference,
AIAA, Washington, D.C., Aug. 1988, pp. 720-731.

[DOD 92] "DoD Unmanned Aerial Vehicle Master Plan," Department of Defense,
Washington, D.C., 1992.

[Wh 91] White, J.E., and Phelan, J.R., "Stability Augmentation and Control Decou-
pling for the Airborne Remotely Operated Device," Journal of Guidance, Control,
and Dynamics, Vol. 14, No.1, 1991, pp 176-183.

[Sil 91] Silvestre, C.J., "Modeling and Control of Underwater Vehicles," Master's
Thesis, Department of Electrical Engineering, Instituto Superior Tecnico, Lisbon,
Portugal, 1991.

[Cra 86] Craig, J.J., Introduction to Robotics Mechanics and Control, Addison-
Wesley, New York, 1986.

[Ju 92] Junkins, J.L., An Introduction to Dynamics and Control of Flexible Struc-
tures, AIAA, Washington D.C., 1992.

[Sch 92] Schmidt, L.V., Class Notes for AE3340, U.S. Naval Postgraduate School,
Monterey, CA. 1992.

[Ka 83] Kane, T.R., Likins, P.W., Levinson, D.A., Spacecraft Dynamics, McGraw-
Hill, New York, 1983.

120



[Mo 84] Morton, H.S., "A Formulation of Rigid-Body Rotational Dynamics Based on
Generalized Angular Momentum Variables Corresponding to the Euler Parame-
ters," Proceedings of the AIAA/AAS, Seattle, WA, August 1984.

[Ro 58] Robinson, A.C., "On the Use of Quaternions in Simulation of Rigid Body
Motion," WADC Technical Report 58-17, Wright Air Development Center, De-
cember, 1958.

[Whi 59] Whittaker, E.T., A Treatise on the Analytical Dynamics of Particles and
Rigid Bodies, Cambridge Univ. Press, 4th Edition, 1959.

[Gre 88] Greenwood, D.T., Principles of Dynamics, 2nd Ed., Prentice-Hall, Engle-
wood Cliffs, N.J., 1988.

[Ros 79] Roskam, J., Airplane Flight Dynamics and Automatic Flight Controls,
Roskam Aviation and Engineering corp, Ottawa, KS, 1979

[Th 89] Thompson, C.M., "Aircraft Equations of Motion and Forming Linear Mod-
els," Boeing Document D6-54972, Boeing Commercial Airplane Company, Seat-

tle, Washington, 1989.

[USAF 60] USAF STABILITY AND CONTROL HANDBOOK, Wright Air Devel-
opment Division, United States Air Force, Wright Patterson AFB McGregor and
Werner, Inc., Dayton, OH, 1960.

[Pro 90] Prouty, R.W., Helocopter Performance, Stability, and Control, Robert E.
Krieger, Malabar, Florida, 1990.

[WAT 93] Watson Industries, Techical Specifications for LI(U-600D Watson Indus-

tries, Eau-Claire, WI, 1993.

[Bro 64] Broxmeyer, C., Inertial Naviaation Systems. McGraw-Hill, New York. 1964.

[St 88] Strum, R.D., and Kirk, D.E., First Principles of Discrete Systems and Digigal
Signal Processing, Addison- Wesley, New York, 1988.

[Sp 89] Spong, Vydia, Sagas., Robot Dynamics and Control, Wiley. New York, 1989.

121



INITIAL DISTRIBUTION LIST

No. of Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Commandant of the Marine Corps
Code TE06
Headquarters, U.S. Marine Corps
Washington, D.C. 20380-0001

3. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002

4. Dr. Isaac I. Kaminer 5
Department of Aeronautics and
Astronautics, Code AA/Ka
Naval Postgraduate School
Monterey, California 93943-5000

5. Dr. Richard W. Howard
Department of Aeronautics and
Astronautics, Code AA/Ho
Naval Postgraduate School
Monterey, California 93943-5000

6. Chairman 2
Department of Aeronautics and
Astronautics
Naval Postgraduate School
Monterey, California 93943-5000

7. Capt. David R. Kuechenmeister 2
1995 Skidmore Circle
Lawrenceville, Georgia 30244

122


