
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A2 7 5 061

'ELECTE

THESIS

NPSNET: INTEGRATION OF DISTRIBUTED
INTERACTIVE SIMULATION (DIS) PROTOCOL FOR

COMMUNICATION ARCHITECTURE AND
INFORMATION INTERCHANGE

by

Steven Randall Zeswitz

September 1993

Thesis Advisor: Dr. David R. Pratt
Second Reader: Dr. Gilbert M. Lundy

Approved for public release; distribution is unlimited

•c'& 94-02877

94' 1 28 014

Form ApprovedREPORT DOCUMENTATION PAGE ouBIV& 0704-018

Pubic .rp.taq l Ibure fr a~~t Gi infworation a wtwated to iaerp ¶ ho1 t ew N mivPe wcinaodmg•ite u v review cto,-s msatng data souc

90hwmu and imutaaumm the doaa needed. and mawtoq and ,,is fie .olletdion d mfmt ow Send oimn regarding th" burden Nuritire or anyw Oter at tom
Gabdon i .d•f rmarnt. nctjv suggeeo for reductng the buden to Waehwfn Aeaaduarteua Swvice, Dvwetae Ior thrnaon OCperati and Repgt a 1215 Menon

Dom IHqhway. Sude 120M, Aringtton. VA a=20-4=0. end to fte Ofirce of Masprrenet OW0 Budget Poetwortr Paducton Propecd (0706-0166J Wasturgton. DC 20003

. AGENCY USE ONLY (Le• Blank) 2 REPORT DATE ,99 .!REPORT TYPE AND DATES COVERED
U September 1993 I Master's Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
NPSNET: Integration of Distributed Interactive Simulation (DIS)
Protocol for Communication Architecture and Information Interchange

S. AUTHOR(S)

Zeswitz, Steven Randall

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION

Computer Science Department REPORT NUMBER

Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

12a. DISTRIBUTION I AVAiLABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release;
distribution is unlimited

13. ABSTRACT (Maximum 200 words)

The Computer Science Department at the Naval Postgraduate School in Monterey, California has developed a
low-cost real-time interactive network based simulation system, known as NPSNET, that uses Silicon Graphics
workstations. NPSNET has used non-standard protocols which constrains its participation in distributed simulation.
DIS specifies standard protocols and is emerging as the international standard for distributed simulation.

This research focused on the development of a robust, high-performance implementation of the DIS Version
2.0.3 protocol to support graphic simulation systems (e.g. NPSNET). The challenge was to comply with the
standard and minimize network latency thereby maintaining the time and space coherence of distributed
simulations. The resulting DIS Network Library consists of an application program interface (API) to low level
network routines, a host of network utilities, and a network harness that takes advantage of multiprocessor
workstations.

The library was successfully tested on our local network and two configurations of a T-I based intemet, the
Defense Simulation Intemet (DSI), with the Air Force Institute of Technology and Advanced Research Projects
Agency. The testing confirmed that the semantics and syntax of the DIS protocol is properly implemented and the
latency incurred by the network does not adversely effect the simulation application.

14. SUBJECT TERMS 15. NUMBER OF PAGES
DIS, distributed, interactive, simulation, networking, distributed system, UDP/
IPR sockets, UNIX, IPC, client/server model, 11. FICt GUM

7. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION I1. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified IUnclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
i

Approved for public release; distribution is unlimited

NPSNET: INTEGRATION OF DISTRIBUTED INTERACTIVE
SIMULATION (DIS) PROTOCOL FOR COMMUNICATION ARCHITECTURE

AND INFORMATION INTERCHANGE

by
Steven R. Zeswitz

Captain, United States Marine Corps
B.S., National University, 1987

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1993

Author:_ ____

Steven Randall Zeswitz

Approved By: ,
Dr. David R. Pratt, Thesis Advisor

•Dr. Gilbert M. Lundy, Thesis Sec ader

Dr. Ted Lewis, Chairman,
Department of Computer Science

ii

ABSTRACT

The Computer Science Department at the Naval Postgraduate School in Monterey,

California has developed a low-cost real-time interactive network based simulation system,

known as NPSNET, that uses Silicon Graphics workstations. NPSNET has used non-

standard protocols which constrains its participation in distributed simulation. DIS

specifies standard protocols and is emerging as the international standard for distributed

simulation.

This research focused on the development of a robust, high-performance

implementation of the DIS Version 2.0.3 protocol to support graphic simulation systems

(e.g. NPSNET). The challenge was to comply with the standard and minimize network

latency thereby maintaining the time and space coherence of distributed simulations. The

resulting DIS Network Library consists of an application program interface (API) to low

level network routines, a host of network utilities, and a network harness that takes

advantage of multiprocessor workstations.

The library was successfully tested on our local network and two configurations of a

T-1 based internet, the Defense Simulation Internet (DSI), with the Air Force Institute of

Technology and Advanced Research Projects Agency. The testing confirmed that the

semantics and syntax of the DIS protocol is properly implemented and the latency incurred

by the network does not adversely effect the simulation application.

Accostion ?or

P710 T"if

AIiP : J- t 4:/

IV''' _____

TABLE OF CONTENTS

I. INTRODUCTION ... 1

A . OBJECTIVE .. I

B . SCO PE ... 1

C. BACKGROUND ... 2

D. SUMMARY OF CHAPTERS ... 4

II. STANDARDS FOR DISTRIBUTED INTERACTIVE SIMULATION 5

A. INTEROPERABILITY .. 5

B. CON CEPT .. 6

C. OBJECTIVES OF DIS .. 6

D. RATIONALE .. 8

E. DIS ARCHITECTURE .. 9

F. COMMUNICATION ARCHITECTURE 10

1. A ssum ptions ... II

2. Communication Service Requirements 13

3. The Internet Protocol Suite 13

a. Transmission Control Protocol (TCP) 13

b. User Datagram Protocol (UDP) 14

c. Internet Protocol (IP) ... 14

4. Perform ance ... 14

G. INFORMATION INTERCHANGE 15

1. Entity State .. 16

2. Entity Interaction ... 17

III. OVERVIEW OF NPSNET ... 19

A. NPSNET IV .. 19

B. NETWORKING IN NPSNET .. 20

IV. CONSTRUCT OF THE NETWORK ARCHITECTURE 22

iv

A. NETWORK ENVIRONMENT 22

B. SOFTWARE ARCHITECTURE 25

1. DIS Network Library .. 25

2. Network Harness ... 25

3. Basic User Interface ... 26

a. net open0 ... 26

b. neLopen-select0 .. 28

c. receiveprocess0 ... 29

d. net readO .. 30

e. neL write(... 31

f. neL closeO ... 31

4. Netw ork Utilities ... 31

5. Packing and Unpacking PDUs 32

6. Memory Management ... 34

C. SUM M ARY .. 35

V. USING THE DIS NETWORK LIBRARY 36

A. HEADER FILES .. 36

B. USING neLopen0 ... 36

C. USING net-open-select0 ... 37

D. USING netreadO and freePDU0 37

E. USING net_write(and mallocs.c FUNCTIONS 38

F. USING netclose0 .. 39

VI. EXPERIMENTAL RESULTS .. 40

A. PHASE I: NPS LOCAL SEGMENT EXPERIMENT 40

B. PHASE II: NPS AND AFIT USING DSI 41

C. PHASE III: ACM SIGGRAPH 93 42

D. LOAD ANALYSIS .. 42

1. Packet Rates ... 43

V

2. Packet Length ... 44

3. Simulation Bandwidth Utilization 44

VII.CONCLUSION AND TOPICS FOR FUTURE RESEARCH 47

A. CONCLUSION ... 47

B. TOPICS FOR FUTURE RESEARCH 47

APPENDIX A: DIS NETWORK LIBRARY USER'S GUIDE 48

APPENDIX B: SAMPLE PROGRAM DATALOG.C 51

APPENDIX C: DIS NETWORK LIBRARY MANUAL PAGES 59

LIST OF REFERENCES ... 67

INITIAL DISTRIBUTION LIST .. 70

vi

LIST OF FIGURES

Figure 1. The Standards for Distributed Interactive Simulation (DIS) 8

Figure 2. Architecture for Distributed Interactive Simulation 10

Figure 3. DIS Maximum Latency Specification .. 15

Figure 4. Evolution of NPSNET Networking ... 21

Figure 5. Graphics and Video Laboratory LAN Segment ... 23

Figure 6. Wide Area Network Configuration I1........................... 24

Figure 7. Wide Area Network Configuration 2 .. 24

Figure 8. Network Harness .. 27

Figure 9. Ethernet Bandwidth Approximation Based on Number of Entities 45

vii

I. INTRODUCTION

A. OBJECTIVE

The objective of this research project was to develop a robust, high-performance and

efficient implementation of the Distributed Interactive Simulation (DIS) Version 2.0.3

protocol suite. DIS 2.0.3 is the latest version of this emerging international standard for

distributed simulation [IST93a]. The success of this project was measured by the ability to

support real-time graphic simulations in a networked environment.

B. SCOPE

The project entailed redesign of the network harness, modification of the application

program interface (API) and NPSNET to comply with the DIS standard, and development

of a network monitoring tool kit for troubleshooting and performance measurement. The

network harness is a software architecture designed to take advantage of the multiprocessor

machines in our laboratory. The architecture uses BSD 4.3 socket-based interprocess

communication (IPC) to provide a clear, easily used, and well-documented network

interface. NPSNET, the simulation application, is tailored with efficient mechanisms to

map DIS data to NPSNET data structures. The DIS network library that we developed

through this research a portable network harness for DIS applications. DIS allows real-

time, three-dimensional computer simulation systems (e.g. NPSNET) to interact with other

independently developed simulations (e.g. Virtual Cockpit, World Reference Model1) via

communication networks.

Our research employed Silicon Graphics, Inc. (SGI) workstations as simulation hosts,

communicating through Ethernet in the Graphics and Video Laboratory, Naval

Postgraduate School (NPS), Monterey, CA and the DSI, a T- 1 based internetwork. Other

participating sites in this research were the Air Force Institute of Technology (AFIT),

1. The Virtual Cockpit was developed by the Air Force Institute of Technology. The World Refer-
ence Model was developed by ARPA.

Dayton, Ohio, the Simulation Center, Advanced Research Projects Agency (ARPA),

Arlington, Virginia, and the demonstration booth set up by NPS, AFIT, and ARPA during

the Association of Computing Machinery Special Interest Group for Graphics (ACM-

SIGGRAPH) conference in Anaheim, California.

This work was a landmark for implementation of the DIS protocol suite in a functional

real-time system connecting independently developed simulations on distributed local area

networks via the Defense Simulation Internet (DSI), a wide area network. It was

demonstrated at the ACM-SIGGRAPH conference in Anaheim, California, from 1-6

August 1993. This was the first public demonstration of the DIS protocol Version 2.0.3,

showing that it is a viable protocol for nation-wide distributed interactive simulations. The

demonstration allowed the general public to participate in a free-play, distributed

interactive simulation. The simulated environment was populated with nine live

participants in Anaheim, two live participants in Arlington, Virginia, twelve autonomous

participants in Monterey, California, and one participant in Dayton, Ohio.

C. BACKGROUND

The Department of Defense and other government and civilian organizations have

used simulation as a training and analysis tool for many years. The Defense Modeling and

Simulation Initiative has been instituted to promote effective and efficient use of modeling

and simulation in a joint environment [DoD92].

Even though future military spending cuts are expected to reduce the number and size

of live training exercises, the need for realistic training will not diminish [Redd92].

Realistic training is essential for our military units to maintain their high state of combat

readiness and effectiveness. Interactive simulation systems have proven to be a valuable

and cost-effective method to augment live field training when the expense of live exercises

is prohibitive [Pope89]. They provide a tool for the development of a smarter, more

effective fighting force by augmenting operational experience and improving, expanding,

and refining the thought processes of warfighters from commanders, through his/her staffs,

2

to the individual infantryman. Simulation technology is targeted to improve decision

making and skill levels through interaction with events and familiarization with situations.

Computer-based simulation training exercises permit repetition of expensive exercises.

Simulations do not endanger lives, expend live ammunition, or consume other valuable and

limited resources necessary for live exercises. Further, distributed simulation allows for

people and/or units to interact as teams in the same virtual environment. [Thor87]

For years the United States military has conducted large-scale combined arms

exercises. The exercises are expensive, but they are necessary for the successful

deployment of a Joint Task Force (JTF). An effort is underway to reduce these expenses by

conducting large-scale exercises in virtual environments [IST93a]. A virtual environment's

most significant cost is the initial implementation of the hardware and software to model

the scenario. These costs are dissipated over time as software libraries expand with

standard, reusable models. These libraries are a tool that can be used to quickly configure

a virtual environment with a wide range of terrain and equipment models. [Lora92]

In addition to employment in operational training, simulation is being used for rapid

prototyping and analysis. The sophistication of simulations has increased to where they can

be constructed in a very short period of time and quickly modified as required to provide

the desired level of realism. Research in computer science and communications is

contributing to the continued advancement of techniques and technologies needed to gain

greater benefit from simulation as a training and analysis tool. [Bogg92][Chun92]

Advances in modeling and simulation technology have lowered the cost and increased

the usefulness of sophisticated training and decision support tools that meet many military

and civilian needs. The list of applications include: force planning, training and readiness,

doctrinal development, combat development, logistics, operation rehearsal and planning,

operation analysis, training development, and system acquisition and development.

However, most simulations developed over the past two decades were designed for

individuals and/or small units. [Lora92][Pope89][Redd92]

3

Experimentation with networked virtual environments began with the initial

development of the Simulation Networking (SIMNET) project in 1983 [Pope89]. This was

a DARPA project to explore large scale simulator networking. Six years later, the SIMNET

system and protocols were delivered for use in DoD. SIMNET was adopted as the de facto

DoD standard for distributed simulation. As SIMNET protocols were being delivered, it

immediately became the baseline for a much more ambitious standard, DIS. [IST93a]

D. SUMMARY OF CHAPTERS

Chapter II provides an overview of the philosophy and components of the DIS

standards. Key components of the DIS application architecture, communications

architecture and protocol data units (PDUs) standards are presented. Chapter III contains a

description of the NPSNET project and its achievements as a networked simulator. Chapter

IV discusses the construction of the network architecture integrated with NPSNET.

Chapter V presents the usage of the DIS network library. Chapter VI discusses the results

of testing the network architecture locally and over long haul networks. Chapter VII

contains recommended topics for continued research and concluding remarks. Appendix A

is a user's guide for the functions contained in the network library. Appendix B is the

source listing of the data logging program developed in conjunction with this project. The

program demonstrates the use of the network routines. Appendix C contains manual pages

for the user functions in the network library.

4

II. STANDARDS FOR DISTRIBUTED INTERACTIVE
SIMULATION

This chapter provides a description of the philosophy and key components of the DIS

standards, the framework in which our network library was developed. It presents the

underlying goal of the standards, the DIS architecture, and the specific standards that are

relevant to our implementation.

A. INTEROPERABILITY

In the computer simulation context, interoperability is the ability of a set of simulation

entities to interact with an acceptable degree of fidelity [IST93a]. For example, a Marine is

operating a M- 1 tank simulator from a training cell at Marine Corps Base, Camp Pendleton,

California. He is not alone in this virtual environment. A platoon of Light Armored Vehicle

(LAV) simulators from Camp Lejeune, North Carolina, and a reserve F- 18 simulation from

Naval Air Station, Miramar, California, is also participating. The terrain model being used

is the Delta Corridor of the Marine Corps Combat Training Center, Twenty-nine Palms,

California. The tank and LAVs are high fidelity simulators procured from different vendors

and the aircraft is a low fidelity simulator that was procured from a third source. The tank

is facing north, the platoon of LAVs is in a line formation turning to head west 500 meters

in front of the tank, and the aircraft flies over the tank heading north at 1500 feet. In an

interoperable simulation, these events would be accurately represented within the fidelity

capabilities of the participating simulators. Interoperability requires a sufficient level of

correlation between simulations [Lora92]. In man-in-the-loop battlespace simulations, like

we have just described, the correlation is measured by the perception of the operator. The

key question is: Does the information display accurately reflect the spatial and temporal

properties of the events being simulated? The DIS standards are being developed to

facilitate an affirmative answer to this question.

5

B. CONCEPT

Simply stated, a distributed interactive simulation is a man-in-loop simulation in

which participants interact in a shared environment from geographically dispersed sites

using communication networks. A man-in-the-loop simulation is a system in which a

human plays a critical role in the simulation system. The human acts as the operator,

analyst, or trainee. In this type of simulation the human interacts with events and/or objects

in the simulation. The shared environment is the space and time coherent "world"

represented in the simulation. Geographic dispersion is limited only by the extent of the

communication system supporting the simulation and the ability of the communication

system to transmit events quickly enough to maintain coherence in the human perception.

Distributed interactive simulation implies a degree of interoperability between different

simulators. The degree of interoperability can be increased by the adoption of standards

which specify a minimum level of system functionality. [Stal9l]

The development of DIS standards began in 1989 as an initiative sponsored by the

United States Army Simulation, Training and Instrumentation Command (STRICOM), the

Advanced Research Projects Agency (ARPA), and the Defense Modeling and Simulation

Office (DMSO). The University of Central Florida Institute for Simulation and Training

(UST) was contracted to coordinate the development of the standards. The standardization

process is an evolutionary process based on the consensus of operators, managers,

technicians, analysts, and engineers from government and industry. The standards aim is to

use commercial, off-the-shelf (COTS) technology and standardized protocols whenever

possible. [IST93a][Lora92]

C. OBJECTIVES OF DIS

The objective of DIS is to develop standards that provide guidelines for

interoperability in defense simulations. The Protocol Data Unit (PDU) definition is the first

of the DIS standards to be adopted by Institute of Electrical and Electronic Engineers

6

(IEEE) [IEEE93]. Other aspects of DIS are being refined and extended to address all

interoperability issues of distributed simulation.

The DIS standard has three main purposes. The first is to provide a characterization of

distributed interactive simulation. The standards address communications architecture,

format and content of PDUs, entity information and interaction, simulation management,

performance measures, radio communications, emissions, field instrumentation, security,

database formats, fidelity, exercise control and feedback. Continued research further

clarifies the requirements for the components of distributed simulation. The second

purpose is to provide specifications to be used by government agencies and engineers that

build simulation systems. The third purpose is closely tied to the characterization. It is to

define the terminology of DIS [IST93a]. Terminology is very important as words and

phrases that are commonly used in the computer science or communications community

have unique meanings in the DIS context. "Tightly-coupled," for example, means two

processes are dependent on a common resource (e.g. a particular memory segment). In the

DIS context, the same phrase means two :iulated entities which are in close physical

proximity [IST93b]. Figure 1 shows how specific DIS standards relate to a distributed

system framework of application, protocol, and physical network. For instance, the security

standard addresses issues at all three levels of the framework.

Recently, the standards have expanded their scope to dual-use applications. Dual-use

is a term describing the application of technology to both military and civilian enterprise.

The simulation technology used by the military for training and analysis can also be applied

to non-military endeavors such as law enforcement, fire fighting, disaster recovery,

manufacturing, and entertainment.

7

D. RATIONALE

Simulators have been developed using different software and hardware architectures

coupled with unique protocols for interaction. The DIS protocols are being developed as an

international standard to affect meaningful communication and seamless interaction

between heterogeneous simulations [IST93a]. DIS used SIMNET as its functional baseline

[Lora92]. The scope of the simulated environment in DIS is considerably larger than

SIMNET. The DIS environment simulates events on the surface of the earth, both ocean

and land, below the surface of the ocean, and in the atmosphere, including space; based on

a round earth model. SIMNET simulated engagements on the surface of a flat earth and in

the air. [IST93f]

The standards provide guidance for data formats, data representation, model

representation, and communication network services. DIS addresses issues relating to

network-based simulations. Issues effecting the performance of individual simulation

systems are not included in the DIS standards. [IST93a]

A
J P

PDUs for DIS applications C "I0 PCU " ..0 L

. C
i A

'A 3 T

0

0 PR
Communications Architecture (U

for DIS C.• OTOCoL

N
Physical Medium and E

Related Protocols T
W
0
R
K

Figure 1 The Standards for Distributed Interactive Simulation (DIS)

8

E. DIS ARCHITECTURE

In March 1993, the honorable Dr. John J. Hamre of the Senate Armed Services

Committee addressed the workshop audience at the Eighth Workshop on Standards for the

Interoperability of Defense Simulations. In his comments he compares the architectural

magnificence of the Cathedral at Chartre to the architecture being created for DIS. The

cathedral is still standing after 900 years. It was designed and constructed using tools and

techniques of the day, 1172 A.D., by a host of architects and engineers [Hamr93].

Similarly, the DIS architecture is being designed and constructed with the tools and

techniques that are available today. However, the tools and techniques are evolving very

rapidly and the expanse of the envisioned simulation continues to grow. To manage the

enormity of this task a flexible and extensible paradigm is being adopted. Throughout the

literature on DIS architecture, the emphasis is on modular, object-oriented, and reusable

designs. [lST93b][Lora92][SR192]

The DIS architecture is a framework for identifying requirements and specifications

for component subsystems and their functional interrelationships. A layered, modular

model is used for flexibility, consistency, and extensibility. This model is used to

accommodate extensions of the framework and inclusion of new technologies as they

become available without redesign.

DIS incorporates the same basic distributed simulation principles as SIMNET

[IST93a]. All participating hosts in a networked simulation are responsible for maintaining

the state of the entity that they are modeling and the virtual environment. Changes in entity

state must be communicated to all other simulation hosts using standard protocols. Each

simulation is ,esponsible for the interpretation of messages received from the network.

[Lora92]

Figure 2 shows the key elements of the DIS architecture. The functional baseline for

warfighting was initially the characteristics and interactions provided by SIMNET. The

functional baseline is extended by the inclusion of models that conform to the standards

associated with data base formats and functional specifications. Other related issues

9

complete the architectural description. They include procedures for the verification and

validation of DIS compliant simulations, specification of protocols and interfaces for

information interchange, and specification of required communication services.

DISTRIBUTED INTERACTIVE SIMULATION
ARCHITECTURE

ARCHITECTURE

Policy Standard Protocols Communication
Correlation reusable Standards services
Benchmarks architecture Interfaces

Databases Lbaes
Libraries

Functional Baseline

Figure 2 Architecture for Distributed Interactive Simulation

F. COMMUNICATION ARCHITECTURE

A critical component of DIS is the standard for communication architecture.

Communication architecture is the description of software and hardware components that

comprise a communication system [Stal91]. Like the system architecture, the

communication architecture is modular and somewhat open-ended to allow for the

10

inclusion of emerging technologies (ATM/SONET, light-weight transport protocols) as

they mature and become standardized. The standard defines the service requirements for

the communication architecture and recommends profiles that provide the services to

satisfy the requirements [IST93c]. The standard focuses on using standard protocols,

minimizing latency, and providing required levels of service for locally and globally

distributed simulation.

1. Assumptions

Basic assumptions about the requirements of DIS simulation and the general

structure of DIS are considered throughout this discussion of the communications

architecture. The communication architecture must support a variety of devices to include:

simulators, stimulators, field instrumentation, large-scale wargame simulators, and all

other participants in a DIS. The myriad devices will be operating in multiple simulated

exercises dispersed over a large geographic area requiring long-haul communications

support. The supporting networks will not be special purpose networks. The same network

that supports simulation exercises will support other voice, data, and video traffic that is not

related to the simulation exercise. The network will be managed by an agency not affiliated

with a simulation exercise or those organizations conducting the exercise. The last

assumption is that security is a user issue. It is the responsibility of the user of the DIS

simulation to identify risks and countermeasures to protect classified or proprietary data.

The standard does not prescribe or preclude the use of specific security mechanisms,

however, the standard does prescribe minimum latencies that must be considered when

adding security mechanisms to an application.

The approach for developing the communication architecture standard is based on

the International Organization for Standards Open Systems Interconnection (ISO/OSI)

Reference Model. The reference model provides a framework for modular system design

for distributed application protocols [IST93d]. Table 1 shows the correlation of DIS

protocols to the layers of the 7-layer model. [IST93b]

11

Table 1: CORRELATION OF DIS PROTOCOL TO THE ISO/OSI REFERENCE
MODEL

Layer Layer Name DIS Content
Number

7 Application Type of data exchanged.
Rules for determining effects of events (e.g. collision)
Remote Entity Approximation (Dead Reckoning)

6 Presentation Representation of position, orientation, units and

encoding

5 Session Procedure for starting, stopping, joining and exiting
an exercise

4 Transport source and destination process to process addressing
packet assembly/disassembly, if required
ordering, if required
reliability, if required

3 Network source and destination host addressing

2 Data Link framing onto physical link
logical link control
medium access

1 Physical signals on the medium

The standard employs a phased approach to implementation of communication

profiles. It uses proven, widely available, standard protocols in the communication

subsystem. We are in phase one of implementation using the Internet protocol suite at the

transport and network layers, respectively. Phase two will use OSI/ISO compliant protocols

at these layers and phase three will use protocols that comply with the Government Open

Systems Interconnection Profile (GOSIP). [IST93d]

12

2. Communication Service Requirements

Communication service requirements vary based on the need for reliability and

the number of destinations. In distributed simulation there are two types of data, each with

its own requirements.

The two types of data are simulation and control. In DIS, simulation data is used

to communicate entity state updates and coordinate logistics operations. Entity state

updates must be sent to all other simulators. This state information must be communicated

quickly enough to present a coherent representation of the entity at the destination.

Information is broadcast to expedite and disseminate entity state updates.' It is sufficient

for the entity state information to use a best-effort communication service because an

entity's state is continuously transmitted for the duration of the exercise.

Logistic coordination and control data requires reliable, point-to-point

communications. Logistics coordination in a simulation is an exchange of requests, offers,

and cancellations for logistical support. Control data are messages from the simulation

manager(s) to specific "players" to coordinate the execution of the simulation [IST93a].

Best-effort broadcast and reliable point-to-point service requirements are satisfied by using

the Internet protocol suite. [IST93d]

3. The Internet Protocol Suite

a. Transmission Control Protocol (TCP)

TCP ensures that communications are completed correctly. The

communication services discussed in this section are reliable services because they

guarantee delivery of datagrams. TCP provides a point-to-point connection-oriented

service. It remembers what has been sent and retransmits the data if it is not received

correctly at the destination. If a datagram is too large to fit in one datagram it is segmented

1. The standard specifies multicast service based on the assumption that multiple exercises will use
the same network. Refer to the discussion of IP addressing in Chapter VI. As a practical matter
broadcast, a special case of multicast, is used for our implementation.

13

Lito a sequence of smaller datagrams. At the destination, datagrams are ordered,

reassembled and delivered to the application process. The destination must send

acknowledgments of datagrams that are received intact [Hedr87I. These communication

services add to the complexity and processing time of the protocol and are only used when

required. Simulation management PDUs use TCP because the simulation manager must

ensure that its control information is received by the destination.

b. Vser Datagran Protocol (UDP)

UDP provides a more streamlined connectionless alternative for transport

services and also facilitates multicast [Hedr87]. It is a best-effort communication service.

If a datagram is somehow corrupted or lost during transmission, there is no attempt to

retransmit the data. The reliable services provided by TCP are not required for entity

interaction in DIS. Exceeding dead reckoning thresholds and update timers ensure a

continuous flow of entity state update information [IST93a].

c. Internet Protocol (IP)

IP encapsulates the TCP or UDP packet into an IP datagram. UDP/TCP tells

IP the IP address of the computer at the other end. The IP header contains source and

destination EP addresses, a protocol number to indicate UDP or TCP, and a check sum to

confirm uncorrupted transmission.[Hedr87]

4. Performance

Performance standards for communications subsystems are imposed to maintain

the coherence of the simulation. As mentioned above, man-in-the-loop simulators function

in wall-clock time (real-time) and are measured in the human perception timeframe, which

is approximately 100 milliseconds. Update information must be received by all other

participating simulation hosts in sufficient time for reading the information from the

network, updating the database, and rendering the display. Thus the network can add no

more than 100 milliseconds latency for the coherence of the simulation to be maintained

[IST93d]. The standard permits an exception for the case when entities are not in close

14

proximity of one another. In such a case the network can impose up to 300 milliseconds

latency. This latency includes the accumulation of delays as the transmission passes

through routers, gateways, switches, interfaces, and all other communications equipment.

The standard further specifies timeframes for ascending and descending the OSI Reference

Model from application to the physical layers and vice versa. Figure 3 illustrates DIS

maximum latency in the context of the ISO/OSI Reference Model.

Maximum Latency

100 ms
Application OwOOP' , Application

300 ms
Presentation Presentation

10 Session Session 10
MS Transport Transport

Network Network

Data Liik Data Luik

Physical Physical

Figure 3 DIS Maximum Latency Specification

G. INFORMATION INTERCHANGE

The DIS Standard for Information Technology, Protocols for Distributed Interactive

Simulation Applications, [IST93fJ, defines the content and protocol for exchanging data

messages between simulation applications. The data messages, or protocol data units

(PDUs), constitute the user data in the network environment. PDUs convey data pertaining

to the state of simulated entities, interaction between entities, simulation management, and

15

the environment [IEEE931[IST93f]. There are a total of twenty-seven PDUs. Four PDUs

are for entity interaction, six PDUs for logistical support modeling, twelve PDUs

simulation management, and five PDUs for intelligence and electronic warfare (IEW)

modeling. The standards drafting committee has not agreed upon the protocols for

simulation management and environmental effects so they are not included in this

discussion. [IST93fl

1. Entity State

Host computers require current and accurate information concerning all entities

in the simulation. This requirement is satisfied by broadcasting Entity State PDUs

containing updated state information [IST93fl. The format of the PDU is tailored to convey

all of the information that is required to display an accurate representation of the entity. DIS

simulators are required to transmit Entity State PDUs whenever their behavior exceeds the

approximated behavior calculated in a predetermined dead reckoning algorithm, or they

have not transmitted a PDU in a specified period of time.2 Entity state PDUs are broadcast

to ensure timely dissemination of current information to all other participating simulators.

Entity state information consists of the type of entity, the location in the simulated

world, the orientation of the entity, and selected appearance information. Allowable entity

types are defined in an associated document, Enumeration and Bit Encoded Values for Use

with Protocols for Distributed Interactive Simulation Applications [IST93e]. Entity type is

conveyed using a 64-bit record that includes the kind of entity, the domain in which the

entity operates, the country that designed the entity, the main category, subcategory, and

specific information about the entity. Entity types are constructed in a hierarchical fashion.

As an example, the U.S.S. Valley Forge, CG 50 would have an associated entity type record

with the information contained in Table 2.

2. The maximum time between Entity State PDU transmissions is exercise dependent. In the
absence of a specified time, the default is five seconds. [IST93flIPope89]

16

Table 2: ENTITY TYPE DATA RECORD FOR U.S.S. VALLEY FORGE

Field Description Value

Kind Platform 1

Domain Surface 3

Country U.S.A. 225

Category Guided Missile Cruiser 3

Subcategory Ticonderoga Class 1

Specific CG 50 U.S.S. Valley Forge 4

Each entity is represented by a model based on a set of vertices and their

correlation to a center point, or origin, of the model. The location of the entity is the location

of the model's origin in the world coordinate system. The DIS standard specifies a

geocentric coordinate system with the origin at the center of the earth [IST93f]. The entity

orientation is a combination of three angles which represent the yaw, pitch, and roll of the

entities local coordinate system in relation to the world coordinate system. These three

angles are expressed in radians. Precise communication of this information is necessary to

maintain the fidelity of distributed simulation.

Appearance data can add to the realism of the simulation. The standard provides

for visual details of an entity, such as paint schemes, battle damage, smoke, lighting

configurations, and whether hatches and launchers are raised or lowered. [IST93fl

2. Entity Interaction

There are two kinds of interaction in distributed interactive simulation, operator

interaction and entity interaction. Operator interaction is the exchange between the operator

and the simulation. Entity interaction is interaction between entities that populate the

simulated environment. Entities target, fire upon, and damage other entities in a

warfighting simulation. Entities also collide with other entities or the terrain model. Entities

17

must have a mechanism for communicating these events for realistic simulation. Three

types of interaction are currently specified: weapons fire, logistics support, and collisions.

Logistics is an important part of realistic warfighting simulations. For this reason,

entity models are created to simulate requirements for logistic support. For instance,

vehicle entities are modeled to consume fuel and ammunition; and require repairs. Six

logistics PDUs are provided to simulate logistical coordination and replenishment.

Weapons fire information is conveyed using a Fire PDU. The Fire PDU identifies

the entity that fired the weapon and the specific characteristics of the weapon that was

deployed. DIS provides for both tracked and untracked weapon systems. A tracked weapon

system creates another entity, the projectile, when it is activated. When the weapon

detonates a Detonation PDU is transmitted. The Fire and Detonation PDUs, and the

creation of the projectile entity is the responsibility of the simulator which fired the

weapon. The target simulator is responsible for damage assessment in the case where he is

hit by a weapon. The target entity then sends an Entity State PDU to notify the other

simulators that his state has changed. More detailed information is available in the

reference, [IST93f1.

18

HI. OVERVIEW OF NPSNET

This chapter provides a general description of the NPSNET project and its

achievements as a networked simulation. NPSNET is the simulation application used for

the development of the network library.

NPSNET is a real-time, three-dimensional visual simulation system, developed at the

Computer Science Department of the Naval Postgraduate School (NPS) in Monterey,

California [Zyda92]. It provides a platform for exploration and development of interactive

3-dimensional graphic techniques with the goal of providing a fully-interactive and

believable virtual environment that can be configured for many diverse applications. The

system's purpose is to develop software for virtual world construction, multimedia

applications, and distributed simulation; and to make that software widely available to

other government agencies and industry in order to accelerate the development of virtual

world technology.

NPSNET is designed as a low-cost simulation system using commercially available,

off-the-shelf hardware. Silicon Graphics, Inc. (SGI) IRIS workstation, are used to develop

and use NPSNET. Networking is accomplished using an SGI implementation of Ethernet

for the local area and subscription to the Defense Simulation Internet (DSI) for the wide

area.

A. NPSNET IV

NPSNET was completely redesigned during the course of this research. The result,

NPSNET IV, was written in C++ using SGI's Performer, an application program interface

(API) for graphics applications. NPSNET IV is a real-time, interactive vehicle simulation

system in which the user can configure the simulator as an air, ground, nautical (surface or

submersible) or virtual vehicle. A virtual vehicle is a non-invasive vehicle that maneuvers

in the simulated world but is not represented by a model. We refer to this type of vehicle as

a stealth vehicle. The user controls the vehicle by selecting one of three interface devices

19

which include a flight control system (throttle and stick), a six degree of freedom

SpaceBall, and a keyboard. The system models vehicle movement on the surface of the

earth (land or sea), below the surface of the sea, and in the atmosphere. Other vehicles in

the simulation are controlled by users on other workstations. These users can either be

human participants, rule-based autonomous entities, or entities with scripted behavior.

The system is automatically configured for network operations at start-up. This mode

presents the greatest challenge to the operator since it matches the operator's skill at fire

and maneuver to that of other human participants. The virtual world is populated with up

to five different players at NPS (limited by the number of machines in the laboratory), and

other participants from around the country. Participation of other sites requires prior

coordination for reserving bandwidth on the DSI. NPSNET IV was the simulation system

that we used to observe the performance of networked man-in-loop simulations, rule-based

autonomous vehicle simulations, and scripted simulations interacting in the same virtual

environment.

B. NETWORKING IN NPSNET

Initial networking of NPSNET was achieved using a locally designed network

scheme. The scheme used Ethernet and used the basic concepts of SIMNET and DIS

discussed in Chapter II. Packet formats were locally designed to transmit information. They

were in ASCII format so packet lengths were disproportionately long for the amount of

information they contained. This did not present a problem for a distributed simulation on

a very small scale. This scheme was used in NPSNET Versions I and 2 [Prat93]. The

protocol did not require privileged access, but it did not comply with any standard,

therefore it restricted use of NPSNET to the local LAN segment.

Another developmental effort of NPSNET was the NPSStealth. NPSStealth is a

version of NPSNET that integrated a translator for the SIMNET protocol for interaction

over local and long-haul networks. The inclusion of the SIMNET protocol enabled

NPSSTEALTH to participate in distributed simulations with other simulations developed

20

elsewhere using the SIMNET protocol. This implementation was used under strict

supervision because the SIMNET protocol required the simulation to run with root

privileges. Root access is required because SIMNET requires the use of the 48-bit Ethernet

interface address by the application layer. Figure 4 shows the evolution of NPSNET

networking.

Evolution of NPSNET Networking

DIS PROTOCOL

DISTRBUED IINWA NPNE

LOCAL PROTOCOL SIMNET PROTOCOL
DISTRIBUTED LAN '~ROOT ACCESS

SDISTRIBUTED LAN/WAN

NPSNET I

Figure 4 Evolution of NPSNET Networking.

21

IV. CONSTRUCT OF THE NETWORK ARCHITECTURE

This chapter discusses the construction of a network architecture that satisfied two

basic criteria. The architecture must support real-time graphics and it must be DIS

compliant.

A. NETWORK ENVIRONMENT

This research was conducted using three network topologies. Each configuration was

progressively more complex.

Initially, a small-scale simulation with up to five simulation hosts was conducted in

the NPS Graphics and Video Laboratory. This provided a platform for the development and

testing of the DIS network library. The laboratory is equipped with three multiport

transceiver units (MTU) and SGI workstations with integral Ethernet controllers. The

machines are a mixture of multiprocessor and single processor machines.1 All components

are connected by standard transceiver cables. Figure 5 shows the configuration of the local

segment.

The second configuration used the T-1 based DSI to link NPS and AFIT, Wright

Patterson Air Force Base, Ohio. A BBN T-20 gateway provides access to the DSI. The

gateway has an Ethernet controller to bridge communications between the local Ethernet

segment and DSI. (Figure 6)

The third configuration was the most expansive. Five sites were interconnected using

the DSI and other leased T-1 facilities. In addition to NPS and AFIT, ARPA's Simulation

Center and the exhibition booth at the ACM SIGGRAPH conference in Anaheim,

California, were connected. NPS, AFIT, and the Naval Research and Development (NRaD)

facility in San Diego, California were connected by DSI. ARPA was connected to NRaD

1. The SGI workstations are equipped with different Ethernet controllers. The difference does not
effect the interface with the device driver for networking routines. [SGI9 11

22

using their own facilities. NRaD bridged the two networks to a leased T-lI link that

terminated in the Anaheim Convention Center. (Figure 7)

ET
R

MTU 4D/3 '11GATWAY-X

236

Dayton, OH

Monterey, CA

Figure 6 Wide Area Network Configuration 1

Monterey, CA Dayton, OH Arlington, VA

NPS AFIT ARPA

Anaheim, CA 1

TRG LEASED T- 1

LEASED T- I

NRaD San Diego, CA

Figure 7 Wide Area Network Configuration 2

24

B. SOFTWARE ARCHITECTURE

The software architecture has two basic components. The DIS network library

provides which provides the interface to the kernel's networking functions; and, a module

integrated in the application which contains a set of routines to map DIS PDUs to NPSNET

data structures.

1. DIS Network Library

The DIS network library is an extensive redesign of the internal components of

John Locke's DIS 1.0 client library [Lock]. The library can be linked to ANSI C or C++

programs. We have maintained the basic user interface of previous implementations of the

NPSNET network API: net_openO, net read(, netwriteo, and netcloseO [Lock92]. We

have also added a function to allow the user to configure a filter when opening the network,

netiopensel ct(). The functions have been modified to woi,. with our redesigned network

harness.

2. Network Harness

A key component of the library is the network harness. When designing the

harness, our intent was to minimize the processing overhead and latency incurred in a

networked environment by using the multiprocessing capabilities of the SGI machines. The

harness resides between the application and the operating system routines that are used for

low level network operations. It uses the 4.3 BSD socket-based interprocess

communication (IPC) facilities available in the IRIX operating system. [SGI91] We used

two sockets, one to receive and one to send DIS PDUs. The sockets are configured for

datagrams in the internet domain using UDP/LP. Figure 8 illustrates the conceptual

framework of the network harness.

The harness has two functional parts, Figure 8. The first is for sending data. It is

invoked by a call to netgwrite(). This function interacts directly with the kernel. The second

part is for receiving data and is implemented as a client-server model using a shared

memory buffer for incoming PDUs.

25

The buffer is located in an arena.2 The data structure in the arena is a linked list

implemented as a first-in-first-out (FIFO) queue. The server process, receiveprocesso,

retrieves data from the network, packages it in a local DIS PDU structure, and writes the

PDU to the buffer. This process executes a loop that reads data from the receiving port. The

system call recvfromO fits nicely into our scheme because it is a blocking read operation

[SG191]. If the function is called when there is nothing to be read from the network, it

blocks, waiting for data to arrive on the network. This facilitates removing data from the

network immediately upon arrival, and, since the process blocks it does not consume CPU

time. The client process removes a PDU from shared memory and returns it to the

application.

3. Basic User Interface

This section provides details of the basic user interface functions mentioned

previously. The functions are contained in the file client_lib.cO.

a. neLopenO

net-openO is used to initialize data structures for receiving PDUs,

configuring send and receive sockets, starting the receiveprocessO, and validating the

Ethernet interface provided by the user. The first step is to configure and initialize the arena

with calls to usconfig() and usinit(), respectively. usconfigO is called to establish the initial

size of the arena, 320Kb. usinit() initializes the arena and creates the file /usr/tmp/

NPSNET.net.arena.X. X is a unique integer to ensure a unique filename.

The arena contains the queue and two control features. A binary semaphore is

included to protect the queue from coincident access by the client and server. A barrier is

established as a rendezvous point to ensure the send or receive processes do not begin

execution before both sockets are set up. The first process to complete initialization will

wait at the barrier until the other process arrives. Both processes arrive at the barrier after

their respective socket configuration is successfully completed.

2. An arena is an SGI facility for memory shared by two or more processes

26

Simulation Process
4• API A

net. t '

B uffer .

Operating System

N___ETHERNET

Figure 8 Network Harness

At this point, receiveprocessO is spawned using sproc%). The process

identification is stored in a global variable to be used for termination when the user

application tenrinates. The process opens a socket for receiving data using socket() and

bindo. Once the receive socket is initialized, the process waits for the sending socket to be

initialized.

27

While receiveprocessO is waiting, the send socket is configured with a call to

wndsetupo. send.ftup() opens a socket for sending data. The send socket is set for

broadcasting using setsockopt(). After sendsetup() returns and providing both sockets were

successfully opened, the processes rendezvous at the barrier and proceed.

The last operation of net_openO is to check the interface controller name

argument. netopenO retrieves the interface configuration structure from the system and

compares the system interfaces to the argument. If a match is found, the interface provided

in the argument is used. This allows the user to select the interface to be used when the

machine has more than one interface.

netopenO returns an integer to the user process. The value one is returned

when the network was opened successfully. The value zero is returned when the opening

the network failed. The spawned process is terminated when opening the network fails.

b. neLopen_selec()

netopenselect() is identical to netopenO with the added feature of

selecting PDUs to be read from the network. It also provides for send-only agents.

We want to discard unneeded PDUs as soon as possible. Recall that we rely

on the kernel for low level network operations. The earliest that we have access to a PDU

is when we read it from the socket. Immediately after reading a PDU from the socket the

filtering mechanism is used to discard PDUs.

The filtering mechanism uses a global array and integer. The user provides

the quantity and a list of PDU types to be accepted from the network as arguments in the

function call. The list is copied into an array that is indexed from zero to the integer

provided by the user. This array is used in the receiveprocessO as discussed earlier.

Send-only agents are supported by an argument of zero in the function call.

This means the user does not want to accept any PDUs. This argument is checked before

starting receiveprocessO, If the value is zero receiveprocessO is not started, the send socket

is configured and net~open.select() returns to the calling program.

28

c. receiveprocesso

receiveprocess(O is not a user function, but its functionality is vital to the

performance of the network harness. This section discusses the operation of this process.

When both socket are configured, the receive process begins its loop. It first

allocates memory to a temporary buffer in anticipation of receiving data,

malloc(ETHERMTU). We use Ethernet maximum transmission unit (MTU) as the size

argument for malloc0 to accommodate all known DIS PDUs.3

The process then makes a call to recvfromo, the blocking read. If no packets

are present, it blocks. When a packet arrives, the packet is checked to make sure it was not

sent by the same host that received it. The packet is then type cast as a PDU header4 to

check the PDU type. If netopenselect() was used to open the network, the PDU type is

compared to the list of acceptable types. If the PDU type is included in the list, then the

PDU is processed, if not, the PDU is discarded.

PDU processing is different ior variable length and static length PDUs. Table

3 lists the static and variable length PDus. The variable length PDUs must be unpacked by

routines provided in recvs.c. The variable length of a PDU is caused by a variable length

array of records in the DIS PDU. The records are fixed length, but the quantity of records

vary. As an example, a tank entity may have a number of articulated parts (e.g. a turret, a

primary gun). This information is appended to the end of the Entity State PDU. This Entity

State PDU has a length of 176 bytes. The base length is 144 bytes and each articulated

parameter is 16 bytes. Length = 144 + (2 * 16) [IST93f]. Unpacking is necessary because

the network library uses a linked list for this structure.

If the PDU was processed successfully it is appended to the queue in the

buffer. This completes one iteration of the loop. The loop continues to execute until a call

to neLtclose() terminates the receiveprocessO.

3. DIS PDU length is restricted to be less than or equal to Ethernet MTU [IST93f]
4. PDU header types are defined in pdu.h

29

Table 3: VARIABLE AND STATIC LENGTH PDUS

Variable Length Static Length

Entity State Fire

Detonation Resupply Cancel

Service Request Repair Complete

Resupply Offer Repair Response

Resupply Received Collision

Action Request Create Entity

Action Response Remove Entity

Data Query Start/Resume

Set Data Stop/Freeze

Data Acknowledge

Event Report Laser

Message

Emission

Transmitter

Signal

Receiver

d. net_readO

net_readO is used to retrieve a PDU from the buffer. This is the client process

in the network harness discussion. It acquires the semaphore and takes the PDU5 from the

head of the list, providing the list is not empty. It then releases the semaphore.

5. Note that the network harness allocates memory for incoming PDUs. The network harness deal-
locates memory for its list structure, but, the memory containing the PDU remains and must be
deallocated by the user process to prevent memory leaks.

30

The function returns an integer value, a handle to a PDU, and a PDU type.

The PDU type is read from the PDU header record. The integer value is zero if the list was

empty; greater than zero if the list was not empty, and negative one if the operation failed.

e. netwrte(O

net_writeO is used to transmit PDUs. The functions arguments are a handle

to a PDU and a PDU type. First the PDU header record information is completed. The

header record includes the exercise identification number, the PDU type, a time stamp, and

the protocol version.

As discussed in receiveprocess(), variable length PDUs require processing

due to the list structure that we use for appended features. Functions arc provided in the file

sends.c to remove imbedded structures from variable length PDUs before transmission.

These functions complete the header record with the PDU length and pass the PDU to

send ito. Static length PDUs have their header records completed and are passed directly

to send it(). senditO(), in file sends.c, makes the sendtoO call to deliver the PDU to the

kernel.

f. net closeO

netcloseO is used to terminate network operations. It closes the send and

receive sockets using closeo, and terminates receiveprocessO using kill().

4. Network Utilities

netutil.cc contains the function parsejnet-pdusO which makes the call to the

network interface function netreadO. The file also contains the functions that initialize

and manage the NPSNET data structures for incoming DIS PDUs. The two primary

structures are a vehicle hash table and an entity type tree.

The hash table is used to find an index into the NPSNET entity array. The hash

function uses the site, host, and entity fields in the EntitylD record to find a location in the

table. The location is in one of three states: empty, available, occupied. Empty and occupied

are self explanatory. Available indicates that the location is available for use because a

31

vehicle has been removed from the table, but the next location in the table is occupied. This

mechanism reduces the chance of duplicating a vehicle in the table. Occupied locations are

checked for their EntitylD. The table is searched sequentially (circularly) until a match or

an empty location is found. It is assumed that the PDU represents a new vehicle when an

empty location is found. When it has been determined that the entity is a new vunicle the

entity type must be determined.

The entity type tree is used to map DIS entity types to NPSNET vehicle types

when a new entity is introduced to the simulation. The tree is designed to model the

hierarchy used for the definition of DIS entity types [IST93e]. The top level of the tree

corresponds to the fields in the entity type record [IST93fJ.It is initialized with data from

the dynamic models file. The tree is traversed to find the type of the new vehicle which

serves as an index to the NPSNET vehicle types array.

The library also includes three programs that are useful for troubleshooting and

monitoring the performance of DIS distributed simulations. print.c contains print routines

for DIS PDUs and the component records of PDUs. These routines are used in the program

test_it.c to decode packets. pacrate.c is a program that monitors the packet transmission

rate of all simulators on the network. It uses five second samples to report the average

transmission rate of entities in the simulation. Entities are uniquely identified by their site,

host, and EntityID. We used this program to ensure that our dead reckoning algorithms

were functioning properly to prevent excessive network loading.

5. Packing and Unpacking PDUs

recvs.c contains the functions to unpack variable length PDUs. Unpacking is

required because we employed a linked list structure for the elements of a PDU that causes

the size to vary. The functions are called by receiveprocessO and all have the same basic

operations.

The routines allocate memory to a buffer using the functions in mallocs.c (e.g.

mailocEntityStatePDUO). The size of the buffer is determined by the PDU type and

32

structure6 which are a fixed length in our implementation. They include a pointer to a list

structure for elements that would otherwise cause the length of a PDU to vary. These

elements could be articulated parameters for a vehicle or the number of supply types on a

resupply offer. The basic, or fixed length, part of the received PDU is copied into the buffer.

All variable length PDUs contain a field that tells the number of elements (e.g.

numarticulat-params) that are appended to the PDU [IST93f]. The elements are fixed

length. Memory is allocated for each element (e.g. mallocArticudatParamsNode)), the

element is copied from the incoming PDU, and attached to a list. When the element list is

complete, it is attached to the pointer in the buffer (e.g. articulaLparams head). This

completes the unpacking and the PDU is returned to receiveprocessO.

sends.c contains functions that pack variable length PDUs from our local

structures to DIS PDU structure- and "•:e kernel interface for network operations. The

packing functions remove the information from our list structures (e.g. articulated

parameters) and append it to the end of the bit stream that will be transmitted.

Memory is allocated for the PDU transmission based on the fixed length of the

PDU7 and the number of additional elements. Recall that the elements all have the same

structure with a fixed length.

size = base length + (number of elements * size of element)

First the fixed length data elements are copied into a buffer, then, if the number

of appended elements is greater than zero, the data from the list structure is appended to the

buffer. When complete the pointer to the buffer is passed to the sendjito function fcr

transmission.

sendjt() is the interface to the kernel and underlying network for all

transmissions. Its arguments are a pointer to a buffer and a length. The buffer contains the

6. PDU structures are defined in pdu.h.
7. In computing the base length we found that sizeofO) returns four extra bytes which caused the
data to be corrupted and the PDU to be too long. To resolve this we did not use the sizeof0 func-
tion. We instead used a defined base length for PDUs with variable elements. These definitions are
in pdu.h.

33

PDU. It transmits the PDU by calling sendto). The function returns a zero if the operation

failed, otherwise it returns a one.

6. Memory Management

The file malocs.c contains memory allocation routines that are used when

receiving PDUs. The functions are tailored to the PDU types and structures that we have

defined in pdu.h. Their construct allocates memory using mailoco. On successful

completion they return a pointer to the desired PDU type. When the allocation fails a null

pointer is returned.

In addition to the functions for specific PDU types there is a general purpose

function, mallocPDUO, that can be used to allocate memory for all PDU structures. The

function takes a PDU type as an argument. The argument is used to call the specific

memory allocation function.

The implementation of NPSNET IV uses these functions to allocate memory for

temporary structures to send PDUs. As an example, there is a sequence of function calls

that NPSNET uses to send an EntityStatePDU. First a pointer to an EntityStatePDU is

declared and initialized with a call to mallocEntityStatePDUO. This function returns a

pointer to an EntityStatePDU structure in memory. Then the structure is loaded with the

data to be transmitted and the pointer is passed to net-write() to transmit the PDU. After

neLwriteO returns successfully, the memory for the temporary structure must be

deallocated usingfreePDUO. The argument tofreePDUO is a PDU type.

The file free.c contains the routines to free memory that was allocated for PDU

structures. For PDUs with appendages, the appendages are freed first. Then the memory

used by the basic structure is released. The discussion in the preceding paragraph provides

an example of howfreePDUO is used.

34

C. SUMMARY

This chapter covered the construct of our DIS compliant network architecture that

supports real-tine graphic simulation in a distributed environment. The architecture was

used on three network topologies based on Ethernet and a T- 1 backbone wide area network.

The software has two basic components, the DIS network library and an application

module, netutil cc, that efficiently maps DIS data to NPSNET data structures. The DIS

network library is built on an optimized harness that uses socket-based IPC and takes

advantage of our multiprocessor hosts. The API has five basic functions: net_openO,

net_open-select(), net readO, net_writeO, and net_closeO. The library includes

supporting programs and routines for memory allocation/deallocation and monitoring

distributed simulation. The library is portable and can be linked with ANSI C or C++

programs.

35

V. USING THE DIS NETWORK LIBRARY

The DIS Network Library incorporates the DIS Version 2.0.3 standards for

communication architecture and PDU formats. This chapter discusses the use of the library.

Each function description begins with a function prototype and includes some sample code.

A. HEADER FILES

The library's header files are located in -zeswitz/network/h. These header files

contain definitions of the information that is in the Enumeration and Bit Encoded Values

document [IST93e]. Two of the header files deserve particular attention. The file disdefs.h

contains all common informatiun used for the network harness. disdefs.h must be included

in the user program when linking to the library in -zeswitz/network/bin. The header file

also includes all required header files to recompile the library. pdu.h contains the data

structures that we used for conveying PDUs between the application and the network

harness.

B. USING net openo

prototype: int net.open(char *interf);

The function net_open(is used to initialize the network for a user program. The user

must specify the name of the interface to be used.1 It returns a value of one if the network

opened correctly and a value of zero if the network opening failed. An example of the

function call is:

char interf[3] = "et0";
/* initialization routine */
if (neLopen(intert) == FALSE)

printf("neLopen failed");

1. If the interface name is not known, it can be obtained by executing the user command netstat -i.
The command will display the system's interface names.

36

A user can not have more than one process use a port in our configuration 2. If you

attempt to bind a socket the second time, the system call, bindo, will fail and a message,

"bind(sock-recv): port busy" is displayed to the standard output device. The user must

identify the process that is using the socket and preempt that process or assign a different

port and recompile.

C. USING netopen selecto

prototype: int net.open.select(char *,int, short *);

The function neLopenselect0 allows you to specify the types of PDUs to be

processed by the network library routines. The user application passes the interface name,

the quantity of PDUs to be received, and an array of PDUs as arguments.

char interf[3] = "et0";
int howmany = 3;
short whichPDUs[3];

whichPDUs[O] = EntityStatePDUType;
whichPDUs[I] = FirePDUType;
which_PDUs[2I = DetonationPDUType;

/* initialization routine */
if (net.openselect(interf,howmany,whichones) = FALSE)

printf("neLopen-select failed");

This function can also be used to create a send-only agent by using a quantity argument

of zero. The process that reads PDUs from the network is disabled when the network

harness is configured to send-only.

D. USING netread(and freePDU0

prototype: int netread(char **, PDUType *);

prototype: void freePDU(char *);

2. For simulators this is acceptable since there is likely to be only one simulation running on a sim-
ulation host.

37

The function net readO is used to retrieve a PDU from the network process. It returns

a pointer to a PDU, the PDU type, and an integer value. The integer value is greater than

zero if the operation is successful. 3 A value of zero indicates there were no PDUs in the

queue to be retrieved. A value of negative one indicates the function call failed to read the

queue correctly. After the PDU has been processed by the user program, the memory

allocated to the PDU structure must be freed to prevent memory leakage. The function to

free a PDU isfreePDUO in the filefree.c.

int nodes;
char *pdu;
PDUType pdujtype;

while (0 < (nodes = netjread(&pdu, &pdutype))) I

/* successfully read PDU from the queue */
/* the user program must deallocate the memory used by the pdu

after the pdu has been processed */

/* process PDU */

freePDU(pdu);
)

if (nodes -=-1) 1
printf(" error in netjreado\n");

E. USING net write0 and mallocs.c FUNCTIONS

prototype: int net.write(char *, PDUType);

prototype: char *mallocPDU(PDUType); or

char *malloc<PDUType>0;

3. The positive integer returned from net_readO indicates the number of PDUs that were in the
queue before the function was cailed.

38

The function net_writeO is used to send a PDU to the network process. The discussion

of the mallocs.c routines are included because they allocate memory for the temporary

structure that is loaded then transmitted.

Prior to sending a PDU to the network, a function in maUocs.c is called to allocate

memory to a temporary structure that is loaded with user data, then transmitted using

net-writeO. The arguments to neLwrite) are a PDU pointer and a PDUType. The function

returns the value one if it is successful and the value zero if the operation fails.

EntityStatePDU *ESpdu;

ESpdu=(EntityStatePDU *) mallocPDU (EntityStatePDU Type);

/* fill in the fields */

if (net-write(ESpdu, EntityStatePDUjType) = FALSE)
printf("error in net-writeo\n");

free(ESpdu);

F. USING netclose(

prototype: void net-closeo;

netcloseO terminates network processes. No arguments are required.

39

VI. EXPERIMENTAL RESULTS

Our experiments focused on: (1) determining whether the semantics and syntax of the

protocol was properly implemented; and (2) informally gauging the performance of the

network harness and DIS implementation relative to the number of hosts and entities

participating in a given simulation. From these experiments, we concluded that our

software functioned properly and we extrapolated the upper bounds of network

performance given our current hardware and software configuration (Chapter IV). The

primary measure of network performance was the observed performance of the simulators.

We employed a variety of network monitoring tools for our experiments. SGI

NetVisualizer provides facilities for recording packet counts, byte counts, and Ethernet

capacity measurements. TCPDUMP, a public domain network monitor developed at

University of California, Berkeley [Jaco92], performed initial connectivity tests. Both

monitors gather data at the hardware interface level. We developed other programs to

monitor the network from the application level. These tools decode and generate packets,

and measure packet rates. We conducted experiments in three phases (as previously

discussed in Chapter IV). During the first two phases, our simulations contended for

network resources with the other hosts on the network. No effort was made to isolate

simulation hosts from other network traffic. In the third phase modifications were made to

the Ethernet to increase the probability of a successful demonstration.

A. PHASE I: NPS LOCAL SEGMENT EXPERIMENT

The first phase was conducted on the NPS Graphics Laboratory Ethernet segment

using from one to four simulation hosts. The experiments were primarily connectivity tests

to ensure DIS compliance of the network library routines. We regularly observed Ethernet

frames containing DIS PDUs encapsulated in UDP/IP packets on the network. The content

of the DIS packets was consistent with the data loaded by the application in accordance

with DIS protocols. However, the length was incorrect due to the linked list structure used

40

for variable length PDUs (as discussed in Chapter V). We corrected this deficiency and

observed from continued experimentation that the DIS network library was working

properly.

We experienced our worst performance during local segment tests. There were four

participating hosts and a sound server on the network. The queue of received PDUs grew

to over 600. Graphics displays halted and the sound server became overloaded. The reason

appeared to be that the simulation was not sufficiently insulated from other activities

supported by the laboratory LAN segment. In addition to the simulation, three other hosts

were executing an interactive animation program that resides on a simulation host. Four

other hosts were being used for artificial intelligence research. All hosts on the segment use

the file server, an Indigo Elan, which was also the sound server. The harness continued to

queue incoming packets in spite of the heavily loaded network. Since the queue length grew

to 600, it appeared that the latency was not caused by the network harness and its associated

processes, but instead, by host process scheduling. After this experience we minimized

incidental use of simulation hosts during testing and the problem did not reoccur.

B. PHASE II: NPS AND AFIT USING DSI

The second phase of testing was conducted with ART during five separate

experiments over a period of one month using the DSI. DSI linked two LAN segments

together revealing the importance of IP addressing. Because we were broadcasting, the

destination IP address was also a broadcast address. Broadcast addresses are unique to a

local network and can not be legally duplicated on other subnetworks. For multiple remote

LANs to communicate in broadcast mode they must be using the same broadcast address.

Specifically, hosts on the Graphics Laboratory Ethernet segment use an IP broadcast

address of 131.120.7.255. Hosts on the AFIT Ethernet segment broadcast to 120.17.56.255.

When a packet is broadcast over DSI from NPS to ART, the packet will have an IP

destination address of 131.120.7.255. As this packet ascends to the IP layer on an AFIT

host, the address is not recognized and the packet discarded. To resolve this problem we

41

configured the Ethernet hardware interface to broadcast to a common IP address and added

a routing table entry to direct the specially addressed packets to the local host. This

technique was applied to each participating host. Having satisfied the technical

requirements of the UDP/IP protocols we were able to reliably exchange packets

containing DIS PDUs with AFIT.

During the second experiment the network harness failed on the receipt of zero length

DIS PDUs causing a segmentation fault. Though the PDUs were the result of an error in the

application transmitting them, we added code to handle the condition gracefully. We

initialized the incoming PDU buffer to all zeros before reading a PDU from the socket.

This second phase was in preparation for the ACM SIGGRAPH demonstration. Load

testing was minimal because the experiments involved one or two simulations at each site

to expedite the resolution of simulation fidelity issues.

C. PHASE III: ACM SIGGRAPH 93

The third phase was the ACM SIGGRAPH demonstration. The general configuration

was described in Chapter IV. The T-1 was multiplexed with a televideo conference

restricting simulation bandwidth to 704 Kilobits per second.

Our intent was to reduce the amount of non-simulation traffic. During this phase we

distributed all required files to the participating hosts to eliminate file server access. We

also took a different approach to IP addressing. Each host was configured with the IP

address from an ARPA LAN segment. By using the ARPA addressing our network

received ARPA's non-simulation traffic. Simulation traffic accounted for 65% of the total

load when we were connected to ARPA. When the T-1 would lose synchronization,

simulation traffic accounted for 100% of the total load.

D. LOAD ANALYSIS

Our primary test of network performance was visual observation of the smoothness

of the simulation displays, which can be degraded by network latency. In addition, an

informal load analysis was conducted to approximate an upper bound of the number of

42

simulation hosts and entities that can reliably participate on our Ethernet segment. We use

offered load as our performance parameter, defining it as the percentage of total bandwidth

that a simulation host used at peak packet transmission rates. Packet transmission rates and,

thus, offered load depends on the number of hosts, the number and type of entities, the

scenario, the dead reckoning algorithm and thresholds, and the activities in which entities

are engaged [IST93c][Prat93].

Our simulation hosts were used for man-in-the-loop and semi-autonomous

simulations. Man-in-the-loop simulation hosts model a single high-performance aircraft

and its weapon systems (gravity bombs, missiles, and guns). The aircraft models were not

physically-based and, thus, were capable of performing some incredible, if not impossible,

flight behavior (e.g. stopping in mid-air). All weapon systems were modeled as guided

munitions. At any given time, a single host was limited by the application to generating

PDUs for up to six entities (1 aircraft and 5 weapons). The semi-autonomous simulation

hosts model multiple air, ground, or surface vehicles.

1. Packet Rates

Graphic simulations are capable of generating Entity State PDUs at a peak rate of

one per frame. For example, a simulation that displays thirty frames per second can

generate thirty Entity State PDUs per second. Weapons were restricted to one firing per

second. Upon a firing, the simulation generates two additional packets: one Fire PDU to

establish the firing and one Entity State PDU to model the munition. Upon munition impact

one Detonation PDU is transmitted. Potentially, a simulation can generate forty-one PDUs

per second; thirty Entity State PDUs for the aircraft, five Entity state PDUs for munitions,

one Fire PDU and five Detonation PDUs. However, during experimentation we observed

a peak rate of twelve Entity State PDUs per second for the aircraft. The packet rate was

constrained by dead reckoning thresholds. In addition to the twelve packets per second, the

aircraft simulator generated at most three packets for a weapon firing sequence totalling

43

fifteen packets per second. The peak packet transmission rate for this type of simulator is

fifteen packets per second.

Semi-autonomous simulation hosts modeled multiple slow moving vehicles. One

simulation modeled three sailboats on a lake; another modeled twelve aircraft slowly

circling at different points in the world; a third modeled twelve ground vehicles moving in

formation. These models generate packets at a peak rate of five packets per entity per

second.

2. Packet Length

Packet lengths were small relative to the 1500 bytes that Ethernet allows for user

data. We transmit one Entity State, Fire, or Detonation PDU per Ethernet frame. The Entity

State and the Detonation PDUs are variable length by definition, but had a constant length

in our application since we did not use the variable length features. Implementing UDP/IP/

Ethernet adds forty-six octets of overhead to each frame of data transmitted.' Table 4 shows

the base length of the DIS PDU types, the overhead associated with this network

architecture, and the total frame length.

Table 4: TOTAL FRAME LENGTH (IN BYTES) OF DIS/UDP/IP/ETHERNET
FRAMES

% of
DIS PDU Base Total Ehoe

Type Length UDP IP Ethernet Length EthernetType Lengh Legth MTU

Entity State 144 8 20 18 190 12

Fire 88 8 20 18 134 9

Detonation 104 8 20 18 150 10

3. Simulation Bandwidth Utilization

The bandwidth required for the three phases of distributed simulation experiments

was predictable based on the previous discussion. In the third phase there was a maximum

1. A frame is a packet that has been transmitted on the communications medium.

44

of eleven hosts simulating a maximum of 50 entities during the free-play scenario. Seven

of the simulators were high-performance aircraft. Four of the simulators modeled multiple

slow moving vehicles. The average packet length was 190 octets, including network

overhead. Simulation traffic peaked at 168 packets per second accounting for 2.5% of

Ethernet and 16% of T-l bandwidth. Total utilization peaked at 3.2% of Ethernet and 20%

of T- I capacity. This allows us to approximate the number of entities that can be simulated

on our current network configuration.

We approximate a mraximum of 1093 entities could be simulated using Ethernet

assuming the same ratio of slow to fast moving vehicles and that optimal Ethernet

performance can be achieved (Figure 9). A more reasonable expectation is simulation of

312 entities with a network load of 20%. Using a T-I (1.544 Mbps) long haul service

restricts Ethernet use to approximately 15% for 234 entities. NPSNET IV, which currently

allows 200 entities, will use no more than 12.8% of Ethernet and 83% of T-1 bandwidth.

[Stal9l1

1093-

'~468 -----

E
312

200

50"

3.2 12.8 20 30 70

% of 1OMbps Ethernet Bandwidth

Figure 9 Ethernet Bandwidth Approximation Based on Number of Entities

45

These approximations establish the upper bound of the number of entities that can

be simulated using our current EthernetT-1 configuration. Many other factors contribute

to effective throughput and need further study.

46

VII. CONCLUSION AND TOPICS FOR FUTURE RESEARCH

A. CONCLUSION

The objective of this research was to develop a library of network routines that: (1)

comply with the DIS communication architecture and information interchange standards;

and (2) support distributed real-time simulation. The library was developed and

successfully tested in three network configurations. We have reached the following

conclusions:

"* The library routines comply with the aforementioned standards

"• Ethernet is capable of supporting distributed real-time simulation on a small to
moderate scale

"* The first network bottleneck will be the T-I wide area network

"* Distributed simulation performance can be improved by insulating simulation hosts
and network bandwidth from non-simulation traffic

B. TOPICS FOR FUTURE RESEARCH

This research provides a baseline for study and development of network

configurations for distributed simulation. The following is a list of topics for future

research.

"* further optimization of the network harness

"* implementation of the other DIS standards

"* aggregation of DIS PDUs in single network frames

"• formal network load studies

"* formal studies of packet loss rates

"* implementation of networks that provide bandwidth reservation

"* implementation of IP multicast

47

APPENDIX A: DIS NETWORK LIBRARY USER'S GUIDE

DIS NETWORK LIBRARY

Steven R. Zeswitz, John Locke, Mike Macedonia and David R. Pratt

Department of Computer Science
Code CS/Pr

Naval Postgraduate School
Monterey, California 93943

pratt@cs.nps.navy.mil
Fax: (408) 656-2814

Overview

The DIS network library was developed to provide a network interface for DIS

simulation systems using SGI workstations communicating through Ethernet. It has been

tested in a number of network configurations and should be portable across any SGI

workstation. This document is designed to give the user the ability to configure the

simulation host and invoke the application program interface (API) routines that interact

with the network.

The library includes data structure definitions for DIS Version 2.0.3 PDUs. The

library routines manage the conversion between memory data structures and the

corresponding network packet formats and provide a number of memory management

functions. The code is written in C and supports programs written in C or C++.

Please let us know of any improvements for the library. We keep a record of all known

users and provide e-mail announcements of updates to the library.

Capabilities

The library supports asynchronous communication between DIS processes. It is based

on a network harness designed for multiprocessor machines using the 4.3 BSD socket-

48

based interprocess communication facilities of the IRIX operating system. Sockets are

configured for UDP/IP broadcast.

The library API consists primarily of five basic routines: net_openO,

netopenselect(), net read(), netwrite() and net_closeo. net openO and

met-open-selec*() opens the sending and receiving ports, configures an arena (shared

memory), initializes a semaphore and creates the process that reads PDUs from the

network. netopenaselectO permits the user to filter unwanted PDUs as soon as they are

read from the socket. The arena is used to queue incoming PDUs. net readO retrieves a

PDU from the head of the queue. netwriteO transforms the PDU structure to network

structure, if necessary, and writes the outbound PDU to the socket. netclose() closes the

sockets and terminates the receiving process.

Memory management routines are provided for DIS PDU structures contained in the

library. The functions are tailored to specific PDU types.

Directory Structure

The network library directory structure is self-contained in -zeswitz/network, with

the exception of the standard header files from /usr/include. The Makefile uses relative path

addressing.

The header files are located in -zeswitz/network/h. The file disdefs.h contains all

common definitions used in the library routines including the UDP send and receive port

numbers, the exercise identifier, and the default Ethernet interface name. pdu.h defines the

memory structures for PDUs. The other header files contain the defined constants for DIS.

The source code is located in ~zeswitz/networklsrc. The API functions are contained

in the file clientlib.c. The supporting memory management, reading and writing functions

are contained in the other files in this directory.

49

The executable library is located in "-eswitz/network/bin. Programs can invoke the

network routines by linking to this library.

Some network monitoring utilities are located in -zeswitzunetwork/utils. These

programs monitor packet rates, decode packets, and log all packets from an exercise.

Using the Network Library

The network library is simple to use. disdefs.h must be tailored to the user application.

The user must specify the send and receive port addresses for UDP if the defaults of 2999

and 3000 are not satisfactory. If disdefs.h is changed, the library must be recompiled. This

header file must be included in the application program and the program must link to the

library.

Performance and Limitations

There are no known limitations at this time.

Acknowledgments

We wish to acknowledge the sponsors of our efforts, the ARPA Advance Simulation

Technology Office (ASTO), in particular Lieutenant Colonel David Neyland, U. S. Air

Force.

50

APPENDIX B: SAMPLE PROGRAM DATALOG.C

This appendix contains the listing of a sample program that uses the DIS network

library. It demonstrates the use of the five basic user functions and selected memory

management functions. The program is a data logger. It is used to record DIS PDUs from

the network and transmitting the contents of a logged file. The user specifies whether the

program will read from the network or write to the network in the command line. The user

also specifies the name of the log file. The command line is:

datalog [-i (to read from a file) I -o (to read from the network)) <file name>

/* File: datalog.c
* Description:This program reads DIS PDUs from network and
* writes them to a file /daily/zeswitz/<filename>. Filename
* is specified in the command line.It also reads the PDUs from
* a file and transmits them.

* Revision:l.0 - 15 Sep 93

* Author: Steve Zeswitz
* CS Department, Naval Postgraduate School
* Internet: zeswitz@taurus.cs.nps.navy.mil
*/

#include <unistd.h>
#include <sys/times.h>
#include <gl.h>
#include <device.h>
#include "disdefs.h"

#define LOG_PATH '/daily/zeswitz/"
#define TOUCH "touch "
#define HZ 100

main(argc, argv)
int argc; char **argv;

{
int i = 0, print help = FALSE,

read_flag,
writeflag,
nodes,

51

PDUlength,
eof = FALSE;

char *pdu, ether-interf [MAXINTERF+l], c;

PDU~ype type;
double time_stamp, start_time;
short value;

I* pointers to PDU structures *
EntityStatePDU *ESpdu;
FirePDU *Fpdu;
DetonationPDU *Dpdu;
ServiceRequest PDU *SRpdu;
ResupplyPDU *Rpdu;
ResupplyCancelPDU *RCpdu;
RepairCompletePDU *RC~pdu;
RepairResponsePDU *RRpdu;
CollisionPDU *Cpdu;

ArticulatParamsNode *APNptr;
SupplyQtyNode * SQNpt r;

1* command line file info */
char DATALOGII4O]; /* file name ~
int datalog; /* file handle *
char touchfile[60]; /* cmd line

/* datalog file path */
strcpy (DATALOG, LOG-PATH);

/* Parse command line */
for (i = 1; i < argc; i++){

if ((argv[i][Q]!= '-') 11 print~help){
print-help = TRUE;
break;

switch (argv[i][l]){
case 'h': /* help *

print~help = TRUE;
break;

case '0': /* read PDUs and write to file *
if (i+1 < argc)(

52

read~flag = TRUE;
write_flag = FALSE;
strcat (DATALOG, argv[++iI);

Ielse
print_ help = TRUE;

break;
case 'il: /* read PDUs from file and transmit ~

if (i+1 < argc){
readj lag =FALSE;

write-flag =TRUE;

strcat (DATALOG, argv[++i]);
Ielse

print_ help = TRUE;
break;

default:
print_ýhelp =TRUE;

W1 end :witch ~
)/* end for */

if (argc == 1 11 print_help){
printf("Usage:%s (-o <file> to write to I -i <file> to

read from] I[-h]\n", argv(O]);
exit (0)

strcpy(ether_interf, BCAST_INTERF);

strcpy (touchfile, TOUCH);
strcat (touchfile,DATALOG);
system(touchfile);

if (read...f lag) {/* create dat~alog file ~
qdevice(ESCKEY);
start-time = times(&timing...info);

1* open the network *

if (net~open(etherý_interf) == FALSE){
printf(mmain(): net...open(\H%s\II) failed\n",

ether-interf);
exit(l);

53

/* open the datalog file ~
if ((datalog = open(DATALOG, 0_ýWRONLY)) == -1){

perror("\nCould not open datafile\no);
exit (0);

printf(o Logging file /daily/zeswitz/%s\n\n",argv[2]);
printf(O PRESS ESC KEY TO STOP \no);

while (TRUE){

if (qtesto))
if (qread(&value) ==ESCKEY)

break;

1* read from the network *

nodes = net-read(&pdu, &type);

if (nodes == -1) { /*Error reading the network*/
pr-intf("main(): Error on net-readU\n'4);

Ielse if (nodes == 0) {/* No pending PDUs ~
continue;

/* time-stamp the PDU *
time_stamp = times(&timingjinfo) - start-time;

/* get the PDU length from the header */
PDUlength = ((PDUHeader*) pdu) ->length;

/* write the data to the file */
write(datalog, &time_stamp, sizeof(time~stamp));
write(datalog, &type, sizeof (type));
write(datalog, pdu, PDUlength);

1* deallocate PDU *
freePDU(pdu);

54

/ end while(TRUE) *

/* close the file ~
close(DATALOG);

/*end if (read~flag) *

/* read PDtJs from datalog file and send to the network ~

if (write_flag) {/* write datalog file to the network ~

start-time = times(&timingjinfo);

/* open the network to send only ~

if (net...open_select (ether_interf,O0, (short *)Q0) == FALSE){
printf("mainO:net-open(\N%sVu) failed\nu,

ether-interf);
exit (1)

/* open the datalog file ~
if ((datalog = open(DATALOG, 0_RDONLY)) == -1)

printf(s\nCould not open datafile\n", DATALOG);
fflush(stdout);

exit (0)

do
/* read the time-stamp from the file ~

if (i = read(datalog, &time_stamp, sizeof (time_stamp))
== eof){

eof = TRUE;
continue;

if (i == -1){
perror("Error reading time_stamp from file");
break;

55

/* read the PDU type from the file
if (i =read(datalog, &type, sizeof(type)) ==eof)

eof =TRUE;

break;

/* spin until it is time to send this pdu *
while ((times(&timing~info)-start time)<time-stamp)(

switch (type){

case (CollisionPDUType):
Cpdu= (CollisionPDU *)

mallocPDU(CollisionPDU Type);
pdu = (char *) Cpdu;
break;

case (RepairResponsePDUType):
RRpdu= (RepairResponsePDU *)

mallocPDU (RepairResponsePDU...Type);
pdu = (char *) RRpdu;
break;

case (RepairCompletePDU_Type):
RC~pdu = (RepairCompletePDU *

mallocPDUJ(RepairCompletePDU-Type);
pdu = (char *) RC~pdu;
break;

case (ResupplyCancelPDUType):
RCpdu = (ResupplyCancelPDU *)

mallocPDU (ResupplyCancelPDUType);
pdu = (char *) RCpdu;
break;

case (ResupplyOfferPDU_Type):
case (ResupplyReceivedPDUType):

Rpdu =(ResupplyPDU *)
mallocPDU(ResupplyOfferPDUý_Type);

pdu =(char *) Rpd-
break;

case (ServiceRequestPDU_Type):

56

SRpdu = (ServiceRequestPDU N)
mallocPDU(ServiceRequestPDU_Type);

pdu = (char *) SRpdu;
break;

case (DetonationPDU_..Type):
Dpdu = (DetonationPDU *)

mallocPDU (DetonationPDUType);
if (i=read(datalog,Dpdu,DetonationPDUBaseLength)

== eof){
eof = TRUE;
continue;

if (i= -1)
perror("Error reading PDU from file");
exit (0);

pdu = (char *) Dpdu;
break;

case (FirePDUType):
Fpdu = (FirePDU *) inallocPDU(FirePDU_Type);
if (i=read(datalog,Fpdu,sizeof(FirePDU)== eof){

eof = TRUE;
continue;

if (i= -1){
perror (HError reading PDU from file");
exit (0)

pdu = (char *) Fpdu;
break;

case (EntityStatePDUType):
ESpdu = (EntityStatePDU *)

mallocPDU(EntityStatePDUl'ype);
if (i=read(datalog,Dpdu, EntityStatePDUBaseLength)

== eof){
eof = TRUE;
continue;

if Ai= -1)
perror("Error reading PDU from file");

57

exit (0)

pdu = (char *) ESpdu;
break;

default:
printf(odefault case reached!\n");

1 * end switch(type) *

1* writing to the network *

if (net_write(pdu, type) == FALSE)
sprintf(stderr, Tunet-write() failed\n");

/* deallocate the PDU ~
freePDU(pdu);

fflush(stdout);

}while (!eof);

/* close the file ~
close(DATALOG);

)*end if (write-flag) *

/* close the network ~

net-closeo;
exit(0);

/* EOF ~

58

APPENDIX C: DIS NETWORK LIBRARY MANUAL PAGES

This appendix contains DIS Network Library manual pages. It provides a quick

reference for the purpose and use of key network library functions.

59

NETOPEN Naval Postgraduate School NETOPEN

NAME

net-open-open the network to send and receive DIS protocol data units.

SYNOPSIS

#include <disdefs.h>

int neLopen(interf)

char *interf;

DESCRIPTION

net_open returns a value of I when the network is opened successfully. A value of

zero is returned when opening the network fails. The argument, interf, is the name of the

Ethernet hardware interface to be used for communication. It is only used when the system

confirms its presence, otherwise the system provides the name of the interface and a

message displays the name of the interface is being used.

SEE ALSO

neLopen.selecto, neLclose0

AUTHOR

Steven R. Zeswitz

60

NET OPEN SELECT Naval Postraduate School NETOPENSELECT

NAME

net.open-select-open the network to send DIS protocol data units and receive only

requested protocol data units.

SYNOPSIS

#include <disdefs.h>

int netopen(interf, num, typelist)

char *interf;
int num;
short *typelist;

DESCRIPTION
netopen_select returns a value of I when the network is opened successfully. A value

of zero is returned when opening the network fails. The argument, interf, is the name of the

Ethernet hardware interface to be used for communication. It is only used when the system

confirms its presence, otherwise the system provides the name of the interface and a

message displays the name of the interface is being used. num specifies the number of PDU

types to be included in the incoming PDU queue. typelist is an array of PDU types. The

types included in the list are appended to the incoming queue.

SEE ALSO

net-openo, net-close0

AUTHOR

Steven R. Zeswitz

61

NETREAD Naval Postgraduate School NETREAD

NAME

net_read-read a PDU from the queue of incoming PDUs.

SYNOPSIS

#include <disdefs.h>

int net-read(pdu,type)

char **pdu
PDUType *type;

DESCRIPTION

netread returns a value equivalent to the number of PDUs in the queue. A value of

zero is returned when there are no pending PDUs. A value of -A is returned when the read

operation fails. The argument pdu is a pointer to a memory structured PDU that is returned.

The argument type returns the DIS PDU type.

NOTE
The network processes do not deallocate the memory used by the PDU that is

returned. The memory must be deallocated with freePDU(PDUType).

SEE ALSO

freePDU0

AUTHOR

Steven R. Zeswitz

62

NETWRITE Naval Postgraduate School NETWRITE

NAME

netwrite-transmit a DIS PDU.

SYNOPSIS

#include <disdefs.h>

int netwrite(pdu, ptype)

char *pdu;
PDUType ptype;

DESCRIPTION

net_write returns a value of 1 when the send operation is successful. A value of zero

is returned when the send operation fails. The argument pdu is the memory structured PDU

to be transmitted and the argument ptype is the DIS PDU type.

SEE ALSO

mallocPDU0

AUTHOR

Steven R. Zeswitz

63

NET CLOSE Naval Postgraduate School NET CLOSE

NAME

netclose-terminate the network process.

SYNOPSIS
#include <disdefs.h>

void neLclose0

DESCRIPTION

net_close closes the send and receive sockets and terminates the receiving process.

SEE ALSO
neLopeno, neLopenselect0

AUTHOR

Steven R. Zeswitz

64

MALLOCPDU Naval Postgraduate School MALLOCPDU

NAME

mallocpdu-allocate memory for a DIS PDU.

SYNOPSIS

#include <disdefs.h>

char *mallocPDU(ptype)

PDUType ptype;

DESCRIPTION

mallocPDU returns a pointer to a buffer allocated for a DIS PDU. NULL is returned

when the operation fails. The argument ptype is determines the size of the buffer.

SEE ALSO

net-writeo, freePDU0

AUTHOR

Steven R. Zeswitz

65

FREEPDU Naval Postgraduate School FREEPDU

NAME
freePDU-deallocate memory used by a DIS PDU.

SYNOPSIS

#include <disdefs.h>

void *freePDU(pdu)

char *pdu;

DESCRIPTION

freePDU deallocates the memory used by pdu.

SEE ALSO

net_writeo, mallocPDU0, net_read0

AUTHOR

Steven R. Zeswitz

66

LIST OF REFERENCES

[Bogg92] Boggs, David R., Mogul, Jeffrey C., Kent, Christopher A., Measured
Capacity of an Ethernet: Myths and Realities, WRL Research Report 88/4,
Western Research Laboratory, Palo Alto, California, September 1988.

[Blum92] Blumenthal, Steven, Future Trends in Networking Technology for
Distributed Simulation, Presentation to the Defense Science Board Sub-
Panel on Technology Forecast, BBN Systems, Cambridge, Massachusetts,
July 1992.

[Chun92I Chung, James W., An Assessment and Forecast of Commercial Enabling
Technologies for Advanced Distributed Simulation, Institute for Defense
Analysis, Arlington, Virginia, October 1992.

[DoD92] Department of Defense, Defense Modeling and Simulation Initiative,
Washington D. C., May 1992.

[Frie88] Friedman, Dan, Haimo, Varda, SIMNET Ethernet Performance, BBN
Communications Corporation, Cambridge, Massachusetts, January 1988.

[Hamr93] Hamre, John, Key Note Remarks to the Eighth Workshop on Interoperability
of Defense Simulations, Orlando, Florida, March 1993.

[Harv92I Harvey, Edward P., Schaffer, Richard L., The Capability of the Distributed
Interactive Simulation Networking Standard to Support High Fidelity
Aircraft Simulation, BMH Associates, Inc. and BBN Systems and
Technologies, Norfolk VA, Cambridge, Massachusetts, July 1992.

[Hedr87] Hedrick, Charles L., Introduction to Internet Protocols, Rutgers University,
September 1988.

[IEEE93] Institute of Electrical and Electronics Engineers, International Standard,
ANSIIEEE Std 1278-1993, Standard for Information Technology, Protocols
for Distributed Interactive Simulation, March 1993.

[IEEE85] Institute of Electrical and Electronics Engineers, International Standard,
ANSVIEEE Std 802.3-1988, Information Processing Systems, Local Area
Networks, Part 3: Carrier Sense Multiple Access with Collision Detection
(CSMA-CD) Access Method and Physical Layer Specifications, First Edition,
December 1989.

[IST93] Institute for Simulation & Training, IST-TR-93-11, Distributed Interactive
Simulation Guidance Document [Draft 2.11, University of Central Florida,
Orlando, Florida, March 1993.

67

[IST93a] Institute for Simulation & Training, IST-TR-93- 11, Distributed Interactive
Simulation Operational Concept (Draft 221, University of Central Florida,
Orlando, Florida, March 1993.

[IST93b] Institute for Simulation and Training, IST-TR-93-20, Communication
Architecture for Distributed Interactive Simulation (CADIS) (Final Draft],
University of Central Florida, Orlando, Florida, June 1993.

[IST93c] Institute for Simulation and Training, IST-TR-93-20, Guidance Document
Communication Arc'hitecture for Distributed Interactive Simulation (CADIS)
(Draft], University of Central Florida, Orlando, Florida, June 1993.

[IST93d] Institute for Simulation and Training, IST-TR-93-20, Rationale
Communication Architecture for Distributed Interactive Simulation
(CADIS), University of Central Florida, Orlando, Florida, June 1993.

[IST93e] Institute for Simulation and Training, IST-CR-93-02, Enumeration and Bit
Encoded Values for Use with Protocols for Distributed Interactive
Simulation Applications, University of Central Florida, Orlando, Florida,
March 1993.

[IST93f] Institute for Simulation and Training, IST-CR-93-15, Standard for
Information Technology, Protocols for Distributed Interactive Simulation
Applications [Proposed IEEE Standard Draft], University of Central
Florida, Orlando, Florida, June 1993.

[IST93g] Institute for Simulation and Training, IST-TR-93-08, Simulator Networking
Handbook, University of Central Florida, Orlando, Florida, June 1993.

[Jaco92] Jacobsen, Van, Leres, Craig, McCanne, Steven, TCPDUMP, Lawrence
Berkeley Laboratory, University of California, Berkeley, California,

[Lock] Locke, John, Pratt, David R., and Zyda, Michael J., A DIS Network Library
for UNIX and NPSNET, Naval Postgraduate School, Monterey, California,,
undated

[Lock92] Locke, John, Pratt, David R., and Zyda, Michael J., Integrating SIMNET with
NPSNET Using a Mix of Silicon Graphics and Sun Workstations, Naval
Postgraduate School, Monterey, California, March 1992.

[Lora92] Loral Systems Company, Strawman Distributed Interactive Simulation
Architecture Description Document Volume 1, Advanced Distributed
Simulation Technology Program Office, Orlando, Florida, March 1992.

[Pope89] Pope, Arthur, BBN Report No. 7102, The SIMNET Network and Protocols,
BBN Systems and Technologies, Cambridge, Massachusetts, July, 1989.

68

[Prat93] Pratt, David R., A Software Architecture for the Construction and
Management of Real Time Virtual Worlds, Dissertation, Naval Postgraduate
School, Monterey, California, June 1993

[Redd92] Reddy, Bob, Col USA, Advanced Distributed Simulation Concept Briefing,
Defense Advanced Research Projects Agency, November 1992.

[SG191] Silicon Graphics, Inc., Document Number 007-0810-030JRIS Network
Programming Guide, Mountain View, CA, 1991.

[SR192] SRI International, ATD-I Architecture White Paper Edit Draft, Menlo Park,
CA, undated.

[Stal9l] Stallings, William, Data and Computer Communications, Third Edition,,
Macmillan Publishing, 1991.

[Thor87] Thorpe, Jack A., LtCol USAF, The New Technology of Large Scale Simulator
Networking: Implications For Mastering the Art of Warfighting, Defense
Advanced Research Projects Agency, Arlington, Virginia, November 1987.

[Zyda92] Zyda, Michael J., Pratt, David R., Kelleher, Kristen M., 1992 NPSNET
Research Group Overview, Naval Postgraduate School, Monterey,
California, May 1993.

69

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library 2
Code 052
Naval Postgraduate School
Monterey, CA 93%43-5002

Dr. Ted Lewis, Chairman and Professor
Computer Science Department Code CS/LT
Naval Postgraduate School
Monterey, CA 93943

Dr. David R. Pratt, Assistant Professor 2
Computer Science Department Code CS/PR
Naval Postgraduate School
Monterey, CA 93943

Dr. Gilbert M. Lundy, Assistant Professor 2
Computer Science Department Code CS/LN
Naval Postgraduate School
Monterey, CA 93943

Michael J. Zyda, Professor
Computer Science Department Code CS/ZK
Naval Postgraduate School
Monterey, CA 93943

LtCol David L. Neyland USAF
ARPA/ASTO
3701 Fairfax Drive
Arlington, VA 22203

Maj Michael Macedonia USA
Computer Science Department Code CS
Naval Postgraduate School
Monterey, CA 93943

70

LCdr Don Brutzman USN I
Computer Science Department Code CS
Naval Postgraduate School
Monterey, CA 93943

Capt Steven R. Zeswitz USMC 2
MCCDC
Quantico, VA 22134

71

