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Abstract

This report describes a new 4-class neural network for automated identification of initial wave
type (Teleseism, Regional P, Regional S, or Noise) for data recorded by 3-component stations or
arrays. This is an extension of the 2-class (P or S) neural network that we developed for 3-compo-
nent stations [Patnaik and Sereno, 1991]. The input data are dominant period, polarization
attributes, contextual information (e.g., measurements related to a group of arrivals), a spectral
representation of the horizontal-to-vertical power ratio, and the slowness determined by f-k analy-
sis for array stations. We used a three-staged approach, and each stage consists of a 2-class neural
network. The first stage separates signal from noise. The signals are passed to the second stage
which separates regional S phases from regional P phases and teleseisms. The regional P phases
and teleseisms are passed to the final stage which separates them into two distinct classes. A
three-layer backpropagation neural network is used at each stage. Neural networks were trained
for six 3-component IRIS/IDA stations in the CIS, and a 4-element micro-array in Kislovodsk.
The identification accuracy of the neural networks is >90% for most of the stations that we tested.
The neural network module was integrated into the Intelligent Monitoring System (I/MS), and it
was applied to the 3-component IRIS/IDA data under simulated operational conditions. The result
was a reduction in the number false-alarms produced by the automated processing and interpreta-
tion system by about 60%.
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L. Introduction
1.1 Background

The Intelligent Monitoring System (IMS) is one of several related systems that SAIC and it sub-
contractors (primarily Inference Corporation) have developed for automated and interactive anal-
ysis of data from a network of seismic stations to detect and locate seismic events. It has been
operating nearly continuously since 1989 while evolving through several increasingly capable
versions. The first version was used to detect and locate regional events recorded by two 25-ele-
ment arrays in Norway; NORESS and ARCESS [Bache et al., 1990a,b]. The second version was
extended to detect and locate all seismic events recorded by an arbitrary network [Bache et al.,
1991]. This version was installed for operation in November, 1990, with data from NORESS,
ARCESS, and a 16-element array in Finland (FINESA). In March 1991, a 25-clement array in
Germany (GERESS) was added to “IMS Version 2.”

Data from two 3-component stations in Poland (KSP and SFP) were added to IMS Version 2
between June and December, 1991, and this motivated the development of our neural network for
identifying initial wave type [Patnaik and Sereno, 1991]. IMS Version 2 used simple rules that
were based on a few polarization attributes to identify P and S waves recorded by 3-component
stations. Suteau-Henson [1991] used a multivariate discriminant analysis to show that the identifi-
cation accuracy could be increased by including several other polarization attributes, and that the
optimal discriminants are station-dependent. Patnaik and Sereno [1991] extended this by adding
other polarization and contextual attributes, and by replacing the linear multivariate method with
a non-linear neural network. They concluded that the major advantages of this approach are: (1) it
is easier to develop neural networks than it is to formulate rules for high-dimensional input, (2)
station-specific characteristics are easy to represent, (3) neural networks are 3-7% more accurate
than the linear multivariate method, and (4) neural networks are easily adapted to data from new
stations. This neural network was integrated into the Expert System for Association and Location
(ESAL) for operational test and evaluation in August, 1991. ESAL is the major knowledge-based
component of IMS Version 2 [Bratt et al., 1991].

The neural networks were tested under simulated operational conditions using data recorded by
six 3-component IRIS/IDA stations in the CIS [Patnaik et al., 1992]. Neural networks were
trained for two of these stations, but the others had too few analyst-reviewed data for reliable
training and testing. For these, average neural network weights were developed by training with
data from all six stations. ESAL was applied twice to a 6-week IRIS/IDA data set; once with the
rule-based system for initial wave-type identification, and once with the neural network. The
identification accuracy was about 95% for each of the stations with individually-trained neural
networks, which was 3-6% higher than it was for the rule-based system. The final result was a
more accurate automated event bulletin when the neural network was used. However, even with
this improvement most of the events formed by ESAL were either rejected or ignored by the ana-
lyst (i.e., false-alarms).

Most of the false-alarms were formed from noise detections at 3-component stations that were not

recognized as such by ESAL. Instead, ESAL identified all detections at 3-component stations as
either P or S phases. This problem was not encountered with data from the high-frequency




regional arrays because the phase velocity determined from f-k analysis could be used to reliably
discriminate between signal and noise. Under our current ARPA contract, two major enhance-
ments were made to the neural network to address the false-alarm problem. First, we extended the
neural network output from two classes (P or S) to four classes (Teleseism, Regional P, Regional
S, or Noise). Second, we added a new spectral representation of the horizontal-to-vertical power
ratio of each arrival to the input attributes. As described in this report, the result of these enhance-
ments was a reduction in the number of false-alarms by about 60%. We also generalized the neu-
ral network to include slowness as an input attribute for array stations. This was motivated by the
addition of data from mini- and micro-arrays whose f-k resolution is not adequate for reliable
noise screening. These include 9-clement arrays in Apatity and Spitsbergen [Mykkeltveit et al.,
1992], and a 4-element array in Kislovodsk [Berger et al., 1992].

1.2 Overview

The objective of this report is to describe IMS Version 3 which we define as an extension of IMS
Version 2 to include the new 4-class neural network for initial wave-type identification. Figure 1
shows the ESAL implementation of the neural network software module. The signal processing
component of IMS performs detection and feature extraction (arrival time, frequency, polarization
attributes, etc.). These features are interpreted by ESAL in two major stages (Station and Network
Processing) that are essentially independent [Bratt et al., 1991). Station Processing identifies ini-
tial wave type, forms groups of phases that appear to be from the same event, identifies as many
of these phases as possible, and computes single-station event locations when there are adequate
data. Network Processing uses results from Station Processing to associate as many phases as pos-
sible and to form all plausible event solutions. Detailed descriptions of ESAL’s Network Process-
ing are given by Bratt et al. [1991] and Bache et al. [1993].

The neural network software module was implemented as one of two options for initial wave-type
identification in ESAL Station Processing. The other option is the current rule-based system. The
neural network option will default to the rule-based system if a neural network was not trained for
a particular station, or if any of the input attributes are not available. The current implementation
includes dominant period, seven polarization attributes, two contextual attributes (e.g., measure-
ments related to a group of arrivals), horizontal-to-vertical power ratios at five different frequen-
cies, and f-k slowness for array stations. The output of the neural network is the initial wave type
(Teleseism, Regional P, Regional S, or Noise) and a measure of confidence. The initial wave type
is used in Phase Grouping, but the confidence measure is currently not used.
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I1. Neural Network for Initial Wave-Type Identification

This section describes the input data, general architecture, and training procedures for the neural
networks for initial wave-type identification.

2.1 Input Data

The input data include dominant period, polarization attributes, contextual attributes, a spectral
representation of the horizontal-to-vertical power ratio, and the slowness determined by f-k analy-
sis for array stations. The method used for polarization analysis was developed by Jurkevics
[1988], and its IMS implementation is described by Bache et al. [1990b]. The polarization ellip-
soid is computed within overlapping time windows by solving the eigenvalue problem for the
covariance matrix. The covariance matrices are computed in the time domain for several fre-
quency bands, and then normalized and averaged to obtain a wide-band estimate for each of the
overlapping windows. P-type attributes are calculated from the window with the maximum recti-
linearity, and S-type attributes are calculated from the window with the maximum 3-component
amplitude.

The seven polarization attributes used by the neural network are described in detail by Paraik
and Sereno [1991] and by Swanger et al. [1993]. These are rectilinearity (rect), planarity (plans),
horizontal-to-vertical power ratio measured at the time of maximum rectilinearity (hvratp) and at
the time of the maximum 3-component amplitude (hvrat), maximum-to-minimum horizontal
amplitude ratio (hmxmn), the short-axis incidence angle (inang3), and the long-axis incidence
angle (inangl). The neural network inputs are scaled to a small numerical range near £1 by divid-
ing the incidence angles by 90 degrees, and taking the common logarithm of the amplitude and
power ratios. Pre-processing is not required for the other polarization attributes, as their numerical
values are already limited to acceptable ranges. Examples of dominant period and the seven polar-
ization attributes are given in Figures 2-9 for each of the 3-component IRIS stations in the CIS for
a one-week data set recorded in July, 1991. '

Two attributes are used to parameterize contextual information about a group of arrivals. One of
these is the difference between the number of arrivals before and after the arrival in question
within a fixed time window. For example, regional P phases are more likely to have arrivals after
them than before but the opposite is more likely for regional S phases. The other contextual
attribute is the mean time difference between the arrival in question and arrivals before and after it
within the same fixed time window [Patnaik and Sereno, 1991]. Examples of these attributes are
given in Figures 10-11 for the six IRIS stations. The time windows can be determined empirically
for each station, but we used 60 s for each of the IRIS stations because of the limited amount of
analyst-reviewed training data. The first contextual attribute is scaled to a small range near 1 by
dividing by 10, and the second contextual attribute is divided by 100 s.

The broadband horizontal-to-vertical power ratio is one of the most useful polarization attributes
for identifying initial wave type, so we extended it by parameterizing its frequency dcpendcnce
We calculated an average horizontal component from the N-S and E-W components using (N-S?

+ E-W? ) . The horizontal and vertical components were filtered in 5 one-octave bands centered
at 0.25, 0.5, 1.0, 2.0, and 4.0 Hz. The peak horizontal and vertical amplitudes were measured
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using a time window that started 4 s before the detection time with a duration of 10-s for the three
lowest-frequency bands, and 8 s for the two highest-frequency bands. The horizontal-to-vertical
power ratio is defined as H%/2V? where H is the amplitude on the horizontal component and V is
the amplitude on the vertical component. Figures 12-16 show the frequency-dependent horizon-
tal-to-vertical power ratios for each of the six IRIS stations in the CIS. The logarithms of these
ratios are used as input to the neural networks.

Slowness can be estimated accurately enough from f-k analysis to enable nearly perfect initial
wave-type identification from data recorded by NORESS-type arrays. For example, the left side
of Figure 17 shows f-k slowness as a function of initial wave type for data recorded at ARCESS
between July and September, 1991. More recently, data have been added to /MS from mini-arrays
in Apatity and Spitsbergen and a 4-element micro-array in Kislovodsk. The f-k resolution is sig-
nificantly lower for these arrays (Figure 18). The last three columns in Figure 17 show f-k slow-
ness as a function of wave type for these smaller arrays. The data from Apatity were recorded
between January and March, 1993, the data from Spitsbergen were recorded between April and
June, 1993, and the data from Kislovodsk were recorded during a two-week period in October,
1992. Clearly, the f-k slowness alone is not adequate for reliable identification of initial wave type
for these smaller arrays. Therefore, we generalized the neural network for small-aperture arrays
by including f-k slowness as an input attribute. Slowness in s/km is confined to a small numerical
range near %1, so this attribute does not require pre-processing.

2.2 Neural Network Architecture

The four-class initial wave-type identification problem is solved in three stages, and each stage
consists of a neural network that solves a two-class problem. This is illustrated in Figure 19 which
is a schematic representation of our approach to the four-class problem. The dark ovals are the
final four output classes: Teleseisms, Regional P, Regional S, and Noise. The Stage 1 neural net-
work separates signal and noise. The Stage 2 neural network is applied to all signal detections
from Stage 1, and it separates Regional S phases from Regional P phases and Teleseisms. The
Stage 3 neural network is applied to all Teleseisms and Regional P phases from Stage 2, and it
separates these into two distinct classes. The input at each stage consists of the signal features
described in the previous section.

The general architecture of each of the two-class neural networks is described by Pamaik and
Sereno [1991], and it is illustrated schematically in Figure 20. They cons:st of three-layers: an
input layer, a middle (or hidden) laver, and an output layer. The input layer consists of 15 or 16
nodes (15 for 3-component stations and 16 for array stations) corresponding to the attributes
described in the previous section. The number of nodes in the middle layer is determined empiri-
cally for each station as described by Pamaik and Sereno [1991]. Although this can be station-
dependent, we found that 6 nodes in the middle layer generally provided satisfactory results for all
stations that we tested. There are two nodes in the output layer corresponding to the classes for
each of the three neural networks in Figure 19.

Networks of the type shown in Figure 20 are called layered feedforward neural networks by

Rumelhart et al. [1986). In these networks, the input nodes are the bottom layer and the output
nodes are the top layer. There can be any number of hidden layers in between (in our case there is

15




"SI1D 8y ul suonels YaI/SIY| Xis 10} suoljoelep esiou pue S [euoibel o jeuoifies ‘swisiesele) 10} pey
-jojd 1@ Z|4 G20 Jo Aouenbed} 18)ued e Je ojjes Jemod |ediueA-0)-jejuozuoy ey jo sweibojsiH *Z1 einbi4

{1aong)01 B0y {1aom)Q4 8oy (1om1)01 00y (1,001 B0y (1r0n)01 60y (1rom)01 80y
2+ 0 v 2z 2t 0 v T 2 1 0 + T L 0 v 2 zZ v 0+ 2 2+ 0 v T
« -_._ X ._. i L —_ . —- ° .—_- .
3 -] H
3 3 3 : » s N
-] m 8 a
" ) 8
s 8
{1a0m)01 801 (10m)01 B0y {1rom)0i 800 (1/0)01609 (14001601 {1ron)01 B0y
2 L 0 v 2 1L 0 - 2 2 L 0 2 2 L 0 - 2 2 v 0 2 zZ + 0 - T
o (-3 o aa 1 © o ° - g -]
T e I LT i (- I 3
- ~ 8 8
»
m w ° ] 8
d 8
L ]
p-4
(1rom)01 B0t (1A0m)01 601 (1a0m)01 604 (17001 B0t (1aow)01 Doy {(1romi)01 B0y
2 1t 0 b 2T T L 0 v 2 2t 0 v T zZ v 0 v 2 T L 0+ 2z 2L 0 + T
© ] === 1° = (-] -] s (-]
i THE T | |- TTTHE K
~n -~ w
> . > 2 n_
w > ® 8
» - m
® » » (-3 G m
(1]
(1rony)01601 (1aowmlo1 8oy (1aong)01 B0¢ {1r0m)01 00t {1004)01 B0y (1r0n4)01 00t
2 1 0 v Z 2 L 0 ¥ 2z z2 L 0 v T 2 L 0 ¥ 2 Z L 0 ¥+ 2z 2 1L 0 i T
— [-) o (-] (-] - o ™ B [-]
® — . - o — —I l-— —- . l-— ) - _ -
. 8 * - H —
o - -
& 8 3 3 3 m
[ ] -
8 @ a 2 ] B
Al ndv N8O AL b\ A ) HvO

(zH S2°0) [ediue\-0}-{ejuoZLOH




‘SID oyl Ul suoijels vQi/Sidl Xis 10} suoijoelep esiou pue § _ﬂco_mo._ d _mco_mm._ ‘SWIS|eso|e) 10} po}
-uo_a elJe zH4 60 jJo >D:0:Um._~ Jajuel v e ol Jjemod [e0IUOA-0}-|BJUOZIIOY 8} jJO wEw,.moam_I ‘tclL qu-n_u
(2ron)oL Bor (Zromdos By (2aons)01 60y (2rom)0) Boy (2romoy 6oy (2row)ot Doy
zZ 0t 0 1+ z 2+ 0 1 T zZ L 0 v 2 v 0 b+ 2T zZ v 0 4 T 2 1+ 0 b+ 2z
—_——— ~—=amEs | ° T T B —_— e I..|m||... o l.lm..llu.ll °
: - 3 — 8 — 8 — m _ s _ - 2
3 3 ; : ; s N
g m m s N
s 3 8 8 8
(Zrongo1 8oy (2rom)01 801 (2aom)04 Boy (Zaony)01 Bot (Zrons)o 1 00y (2rom)o1 B0y
2y 0 vz 2 L 0 v 2 2 v 0 v 2 2 v 0+ T 2 v 0 4 2 2 v 0 1 2
—_——, O ————————, O ——, o [ o - o ————— O
-] ° T = —- ° i — ° I |: — B |
. ~ 8
” - ~ 3 8 ] m
3 - © ) & ]
» 8
{2nomo1 001 {zr0m)01 B0y (zromoy oy (27001801 {2romlot 000 {2r0m)01 80y =
z2 0y 0 b+ 2z 2 L 0 v T 2 L 0 ¥ 2z z2 V0 v 2 4+ 0 1 2 2 1+ 0 + 2z
L E T T wi: P
-~ ~n ~ » G
® w w ) 8 o m
[ -~ » ] 8
3 » — [} a3 -] -
> * 8
(zromy)o1 80y (2ron)01 Boy (2rom)os Boy (2ronp)01 801 (2ron)01 B0y (2ron)04 Boy
2 v 0 ¥+ ZT 2 r 0 -z 2 v 0 v 2z 2 L 0 v 2z 2 L 0 v T 2 1 0 ¥+ ¥
————— e s pp ————— ) - -] © = °
” s ?° n- M - L] . - " l- - -
: . : s .
b »
3 3 ® > 3 3
w -
o - J
3 g 3 8 8
AL nyvy N8O A AVY Hvo

(zH G°0) |EOIUOA-0}-[EJUOZIIOH

|

i
S U O E B B B I G 0D BN B B B B B B B




"SID ey ul suoliels YQI/SIHI XIS 10} SUOLD8IeP 8siou P
) . I ! | |ou pue S [euoibel ¢ jeuoibes ‘swisiese|e) 410} pe
10|d aJe zH O° 1jo Aouenbelj 18jued e Je onel JIeMOd |eILIBA-0}-{BJUOZUOY B} JO mESQO_I h wuo._.*.m_h

{erom)oLdor {esomo1 B0t {er0m)01 Bot {er0m01 00y {eaon)01 B0y (erompo1 80y
zZ L 0 2 zZ v 0 1 2 2 1+ 0 + T 2+ 0 + 2 1 0 v ¥ 2 L 0 v 2
- - e T ammm= | © ™ o - o = o o
3 ! — 8 3 — . g
N 8 3
o 8 8 s 8 8
8 8 g 2 8 8
(erom)oi 6oy (eromdos Bot (eron)01 B0 (€ron)01 604 (enon)0s B0y (erom)os 8oy
zZ v 0 v T 2 v 0 T 2 v 0 v T 2 v 0 v T 2 L 0 v 2z zZ t 0 + T
—_——————" o o g o = o = o
e | SR - - B |~ — U 8
o ~ » > 3
- (-]
s ... s > 8 8
) . & o 8 8
[T o W ~
(caoni)ai 6ot (£rom)os 601 (erons)oL 00 (erom)ot 80y (Er0Ny)0s B0y (erom)oL 01
2 L 0 - T zZ vV 0 v T 2y 0 v T 2 v 0 - T zT Vv 0 v T U T G 3
JE R JE R,
- (-] (-] . o - o - (-3 - (-]
. ~ . > s 3
® 8
> « > . “
® » © R
(cronpot 8oy (erow)o1 6oy {cron)0i Boy (eroni)ns Boy (crom)oL B0y (eron)01 B0y
2 1 0 vz Z L+ 0 v 2 L 0 v T 2+ 0 - T 2+ 0 v T 2 v 0 ¥ 2
[, R
(-] T =t © - o ™ - o - -1 © - -]
» - » - L — .” _ » »
» -t
3 3 o o 3 s
- @» ® L4 2 &
» 5 3 o M -3
8 ~ 8
L
AL nuv NGO A YV HvO

(zH 0°}) 1eolua\-0)-{eluoZIIoH

18




"SI0 8y ut suoyels yQgl/Sidl Xis 10§ suoioelep esiou pue § Jeuoibas |4 reuoibel ‘swsiesele} 40} pel
-joid ese zH Qg jo Asuenbey Jejued e je oles sjemod [edleA-ol-jejuozuoy ey jo sweibolsiH ‘S| ainbi4

(yroms)01 6oy {vaow)04 Boy (vaow)01 Doy (vA0R4)01 60y (yA0m)01 60y (yrony)01 By
2y 0 - T 2 T N Y - 2 Lt 0 v 2z Z L 0 ¥ 2 2 v 0 v 2z 2 L 0 v 2z
e i we i W T W
— 3 8 —— 8 5 8 8
8 & & 8
) ) 8 s -
8
m 8
8 8 3 8 8
(va0m)01 B0y (yrom)01 60y {vrored0 Boy (vA0N)01 B0y (¥rong)01 B0y {»r0n4)04 80y
Z 1+ 0 » 2z 2 1 0 v 2z 2 1 0 - 2z 2 4+ 0 2 2t 0 t+ 2 4 0 ¥+ 2z
— e ° |
I- © - o =S - a o = — o - o W
o - - 8 -1 |
. ~ o o |
& s ° ° 2 3
w» .0; s 8
{yaomiioL B0y {yromjo1 8oy {vaom)o1 B0y (yromi)o1 60y (yaow)1 80y (va0m)01 Bot &
2y 0 1 2 1 0 - 2 2 L 0 4 2z 2+ 0 ¥+ 2z 2 L 0 v Z v 0 2
o = mm = (° o - = o - ] - o
8
; *d
3 ~ o
@ * - & -
3 “ *» o 2 8
- 8
(yron)01 By (yA0m)01 Boy (yaos)o1 Boy (yaon)g1 00y {yrorg)01 00y (yropyos Boy
2 S B TR 2 zZ t 0 1 2z 2L 0 v T 2 1 0 v T zZ v 0 ¥ 2 2 1 0 v 2
o - - o l- - o B - M - = -] - r -]
) __ HE _ ) I' i: __ ) __ -
3 - I3 °
a F N @« 8 8 lhl
@ -] o - '8
3 3 3 ) 8 5

AU nyv N8O ADI AV HvO

(zH 0°2) [ediuaA-O)-[ejuoZiIIoH

bl _ . Lo




"S1D ey ul suonels yQi/S)H) XIS 10} Suoloelep esiou pue S jeuoibes o jeuoibes ‘swisiese}e)} 10} pa)
-jo|d ase ZH 0¥ Jo Aouenbe,j Jejued e je ones Jemod [BdIeA-0)-jejuozuoy By} jo sweiboisiH ‘91 einbyy

(SAon1)04 Boy
zZ VL 0

—————————

-2

{gaom)o1 B0y
z

0o v T
_—_ )

(sron)01 B0y
z2 4

O-.N.
T emm 1 ©
~
~
>
®
N

(srowy)o1 8oy

2 1 0 vz
__- :
Al

L

050y 0020 O

o s

§

or 06 02 O

(5r0W)01 60y
.

zZ i

0

z

——————

(5A0m)01 B0y

e ]

4

o v

(sAom)0L 60y
Nu

(gaon)01 Boy

2

t 0
-— ——-

n

HvY

0o+ 2
—-

09 oy o2

3

€

[

oe 02 0

(saom)0 Boy
2 4y 0 v T

(sAon)o1 B0y

2 v 0 v 2z

{saom)04 Boy
F 2

oz
—_—-

(srow)os 8oy
zZ v 0

(O 2
B ——-

NGO

002 051 00OL 05 O

o

N

9¢re 1O

o s

St

(srom)01 By

2+ 0 v T
——l

{sron)04 80y
zZ 1 0 v Z

(gr0om)0| 8oy
2 v 0 -z
(sA0m)04 604
(S T G 3

l——_

A

0S0roE 020t 0

sToESsSLoLS O

o

o s

13

oL 9vzO0

(Sa0m)01 60y
2 & 0 v T

T eamm 1 ©
- 5
&

2

8

(sro)01 B0y

Z v+ 0 T

(5aomg)01 60y
2+ 0 T

___
(sroni)oi B0y

2 + 0 v T

AWV

05 O 010

09 O 02 O

oy 06 02 04 O

(zH 0'¥) [eoIdA-0)-[BIUOZIIOH

(saom)o1 B0y
e + 0O

————— e s

;- 2

{saom)01 Boy
2

¢ v 2z
| __-

(srom)oi 00y
2 L 0

{saon)01 Boy
2+ 0 - 2z

HvO

0 0eoroe o 00Z 051 00t 05 O

oL 08 O O

0

Oy 06 OZ O

20




"(OAIM) dspoAoisiy pue ‘(OvdS) uebieqsuds ‘(Ovdy) Amedy ‘(0
AOIS) ) | vHV) SS3OHYV e suonoeie
esiou pue S |euocibes g [euocibes ‘swsiese|e) 10} penojd ese sseumols ¥-4 jo sweibolsiH “Z1 c..:m_n

{(ws) SSaUMOIS {uny/s) sseumOS {unys) ssoUMOIS (Uny's) SSOUMOIS
S0 »0 €0 20 10 00 SO 0 €0 t4] 10 00 S0 o0 €o 20 10 00 S0 ¥0 €0 0 10 oo
—_— . = © e ° o
- o l- - e --
, ; m ‘N
a ~n
8 8 § g
b w
-] e
(unys) SSPUMOIS {(unys) sSEUMOIS (unys) SSOUMOIS (Wns) SSOUMOIS
S0 »0 €0 20 \'a 00 S0 ¥0 €0 c0 Vg 00 S0 o €0 20 1o 00 S0 *0 €0 20 0 00
-l-.||'lll o .-' P (-] r== (-] . . o
o 3 o - - 8 - g
3 . 8 g w
o
8 g S
3 $ g
(ws) SSEUMOIS (W3] $SUmOrS {unye) SSOUNDIS {unys) SSOUMOIS =
S0 »0 €0 20 10 00 S0 »0 €0 Z0 10 00 S0 *0 €0 20 10 00 S0 Yo €0 c0 10 00
=R NN I e = - =12 mgs |Z N ml P
(=] -
o
3 & g 8 n_
5 g
8 & g
(Wws) sSOUMOIS {whys) sSOUMDIS (unys) SSOUMOIS {uzys) ssoumors
S0 »0 €0 0 10 00 S0 | 4] €0 t44 1o 00 S0 ¥o €0 20 10 00 $0 %0 €0 e0 10 00
- 1 1] ° - ° - °
[13 - w W
) . 8 8
° 8
b B 8 g
OAA ovdS ovdv ovdv

SSOUMOI|S Y-}

—

-




"}SPOA

-ojsiy ul Aeise-oiow Juswele-p ey) pue ‘Amedy pue uebieqsyds ui sAeue-juw Jusweje-¢ oy} ‘Aeuse
SS3HON wswsje-Gg eyl 10} peyold si eAem eueid Ajioojea-ejuyul ue o} esuodses Aeue ey gl ainbig

OAI

0
(unyi) Ay

0VdS/OVdY
asuodsay Aeny

(uoy1) Ax

(unyy) 20t
€ 3 0 3 2 €

Sy M e

* ' L [

&
b # N
R E
Mw.,. .w L . i .
|

@ N

*
2 @ b W

22

-

-




"umoys s wojqoid uonesyiuepi adAj-enem
leniul ssejo-y ay) Guiajos o} yoeoudde yomieu jesneu ino Jo uonejuasasdes oljewayos vy 61 ainbj4

SHOMIIN NN

(g 98m18)

, . d [euoidoy
JIOMIAN [BINON

‘WISIASI[L

@

7

23




Output Layer

24

Slowness I

5 H/V Power Ratios
(vs. Frequency)

2 Contextual
Attributes

7 Polarization
Attributes

l Period |

Input Layer
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only one), but any node in a hidden layer must send its output to higher layers and receive its input
from lower layers. The input to each node in the middle layer, pj, is a linear combination of the
input attributes, a;, and a bias term to add translation to the functions modeled by the network.
That is, we define the input to each node in the middle layer as:

M
i=1 '

where W;; and X; are station-specific weights to be determined during network training (the X; are
associated with the bias term shown in Figure 20), and M is the number of input nodes (i.e., either
15 or 16). The output of each node in the middle layer, b;, is calculated by applying a nonlinear
activation function to its input. We use:

1
! T (1+e™ (

which is called semilinear by Rumelhart, et al. {1986]. They define a semilinear activation func-
tion as one in which the output is a non-decreasing and differentiable function of the net total
input, p;. This function limits the range of the output from zero to one. The input to each node in
the output layer, g;, is a linear combination of the outputs from the nodes in the middie layer:

N
Q% = Z biZy+ Y, (3)
j=1

where Z; and Y} are station-specific weights to be determined during network training, and N is
the number of nodes in the middle layer. Finally, the output node activations, c;, are calculated by
applying the nonlinear activation function to g:

Cr = f(qk) = —— 4)

The output class determined by the neural network is the one with the highest node activation, c;.
Patnaik and Sereno [1991] developed an empirical confidence scale based on this node activation,
but it is not used in the current implementation in IMS Version 3.0.

2.3. Neural Network Training
A backpropagation algorithm that uses signals with known initial wave types is used for training
the neural networks. We assume that the wave types assigned by an analyst are accurate (i.e.,

ground-truth). Network training consists of determining the weights: Wj;, X;, Z, and Y;. After
initializing these to random values, the training is conducted in two major steps. First, each train-
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ing pattern is propagated in a forward direction through all layers using equations (1)-(4) to calcu-
late the network’s output activations. The error is calculated as the difference between these and
the desired outputs. Second, these errors are propagated backward through the layers, and the
weights are changed according to the generalized delta rule for a feedforward network of semilin-
ear nodes. The weights are changed with each new presentation of a training pattern, and patterns
are presented until a convergence criterion related to the change in the sum-squared error is satis-
fied. '

The generalized delta rule for updating the weights is based on a gradient decent in the sum-
squared error, E. This error is defined as:

E =

N —

2
Y (h~cp)? o)
k=1

where 1, is the ground-truth (either 0.01 or 0.99 in this case), and ¢y is the network’s output node
activation defined by (4). The summation is over the two nodes in the output layer. Rumelhart et
al. [1986] derive the following equations for the weight updates:

Azjk(n+ 1) = nskbj+aAij(n) (6)
AY,(n+1) = nd, +0aAY, (n) 0
AW;(n+1) = nSja,-+aAW,.j(n) (8)
AX;(n+1) = n8j+aAXj(n) 9

where n is the presentation number, 1) is the learning rate, o is the momentum, and & and 8j are
defined below. The first term in each of these equations is derived from the gradient descent in the
sum-squared error, and the second term determines the effect of past weight changes on the cur-
rent weight changes (i.e., the momentum). The equation for Y, is the same as the one for Z;
except that the input to Y} is the bias node and it is always set to 1.0. An analogous relationship
exists between W; and X;. The two parameters, 1| and o, govern the rate at which the leaming
takes place, and these are determined empirically.

The functions & and §; in (6)-(9) are defined as:

8, = (h~c)f (@) (10)
8 =f(p) Zk',ﬁkl,-k (11)
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where the activation function, f{x), is defined in equations (2) and (4). The first of these equations
is for weights between the middle and output layers, Z;;, and Y}. The size of the updates depends
on the difference between the network’s node activation and the desired output, the derivative of
the activation function (which tends to suppress weight changes when a node saturated one way
or the other near O or 1), and the size of the output from the middle layer, b;. The second of these
equations, (11), is for weights between the input and middle layers, W; and X;. It represents a
recursive computation to propagate the error backward through the network.

Three sets of weights corresponding to the three stages in Figure 19 are determined for each sta-
tion. Separate data sets were used for training and testing (2/3 of the available data were randomly
selected for training and the other 1/3 was used for testing). The number of input patterns for each
3-component IRIS station was typically about 300, and these patterns were presented to the neural
network approximately 1000 times (although this varied from station to station). This represents
data from about one week of continuous operation. The learning rate was typically set to about 0.1
and the momentum was set to about C.5. The total training time for each station (all three stages)
is of the order of 45 minutes on a Sun Sparc-2 workstation.
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I11. Operational Test and Evaluation

This section gives the test and evaluation results for neural networks trained for six 3-component
IRIS/IDA stations in the CIS, and a 4-element micro-array in Kislovodsk near the Caucasus
Mountains.

3.1 Three-Component Data

Neural networks were developed and trained for six 3-component, broadband IRIS/IDA stations
in the CIS: Ala-Archa (AAK) in Kyrgyzstan, Arti (ARU) in the southern Ural Mountains, Garm
(GAR) in Tadjikistan, Kislovodsk (KIV) near the Caucasus Mountains, Obninsk (OBN) near
Moscow, and Talaya (TLY) near Lake Baikal [Given, 1990; Given, 1991; Given and Fels, 1993].
The station locations are shown in Figure 21. Data recorded during the period, 11-17 July, 1991,
that were processed by IMS and analyzed by F. Ryall at the Center for Seismic Studies (CSS) were
used to train the neural networks. Since several of these stations had few analyst-reviewed data, a
set of average weights was also derived by training a neural network with data from all stations.
The input data for the neural networks are plotted in Figures 2-16.

Figure 21. This map shows the locations of six 3-component IRIS/IDA stations
used in this study.

28




N
ol

The testing results are shown in the confusion matrices in Tables 1-7 (next page). These tables
compare the initial wave type determined by the analyst (rows) to that determined by the neural
network (columns). The diagonal elements are the numbers of arrivals for which the neural net-
work produced the same identification as the analyst (i.e., correct identification). Similarly, the
off-diagonal elements are the numbers of arrivals for which the neural network produced a differ-
ent identification than the analyst (i.e., incorrect identification). The average identification accu-
racy for each station is included in the table heading. This is equal to the sum of the diagonal
elements divided by the sum of all elements. Only one station has an identification accuracy less
than 90% (the accuracy at GAR is 89.6%). The average identification accuracy of the neural net-
work that was trained using data from all IRIS/IDA stations (i.e., average weights) is 77%.

The adaptability of our neural networks to data recorded in various geologic environments was
tested using the approach that we developed for our previous two-class (P or S) neural network
[Patnaik and Sereno, 1991]. That is, we computed the identification accuracy at each station pro-
duced by neural networks that were trained with data from other stations. The results are shown in
Table 8. The diagonal elements are the results of testing and training with data from the same sta-
tion (i.e., these are the same as the percentages given in the headings of Tables 1-7). The off-diag-
onal elements are the results of cross-testing (i.e., adaptability testing). A trained neural network
generally shows only about 50% identification accuracy if applied to data from a new station,
without retraining. The identification accuracy is generally >90% if testing and training is per-
formed with data from the same station. The cross-testing was more successful for our 2-class (P
or §) neural networks. For these, the off-diagonal terms were about 80%. The difference appears
to be related to the strong stati-_n-dependence in the characteristics of the noise.

Table 8: ADAPTABILITY TESTING
CALL | AAK | ARU | GAR | KIV | OBN | TLY

Test
ALL 712 82.5 60.9 80.1 758 95.7 73.9
AAK 45.3 954 47.2 559 19.9 10.2 472

ARU 704 294 95.4 43.8 67.1 95.3 60.8
GAR 65.9 62.3 517 89.6 39.1 68.1 56.3
KIV 63.3 213 76.2 374 94.3 94.9 48.2
OBN 64.3 21.0 85.3 342 71.3 98.4 50.3
TLY 63.0 57.0 57.8 573 517 75.6 98.5

The first operational test and evaluation of our new 4-class neural network was conducted by
applying ESAL to the one-week IRIS data set. ESAL was applied twice; once using the trained
neural networks to identify initial wave type, and once using the rule-based system (Figure 1).
Analyst-reviewed event solutions from the IMS array stations (NORESS, ARCESS, FINESA, and
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GERESS) were used as starting solutions for the automated interpretation of the IRIS data (i.e.,
the IRIS data provided an incremental addition to an existing bulletin). The results are given in
Table 9 for events recorded by at least one of the 3-component IRIS stations. The first column is
for IMS Version 2 which uses the rule-based system to identify initial wave type, and the second
column is for IMS Version 3 which uses the trained neural networks.

Table 9: PERFORMACE SUMMARYFOR 1-WEEK IMS+IRIS DATA SET

IMS Version 2 IMS Version 3
Analyst Events 265 265
ESAL Events 1069 381
Moved <50 km 118 129
Moved >50 km 92 84
Added Events 55 52
Rejected Events 859 168

The first row in Table 9 is the number of events in the analyst’s bulletin, and the second row is the
number of events formed by ESAL during the one-week test period. The third row is the number
of events whose location solution determined by ESAL differs from the analyst’s location solu-
tion by <50km. Similarly, the fourth row is the number of events for which ESAL’s location solu-
tion differs from the analyst’s location solution by >50 km. The fifth row is the number of events
that are in the analyst’s bulletin that are not in ESAL’s bulletin (i.e., events added by the analyst
and missed by ESAL). The sixth row is the number of events in ESAL'’s bulletin that are not in
the analyst’s bulletin (i.e. events rejected by the analyst as false-alarms). The most obvious differ-
ence between the two versions is the number of false-alarms. Application of the neural network
(IMS Version 3) reduced these by >80%.

A second operational test was conducted using a larger data set that did not include the data used
to train the neural networks. For this test, IMS Version 2 and IMS Version 3 were applied to differ-
ent 3-week data sets as part of a cyclical test conducted at CSS. The purpose of this test was to
demonstrate improvement in the performance of /MS for 3-component data. JMS Version 2 was
used for the first 3-week data set recorded between July 6 and July 26, 1991. The analyst-
reviewed data from this test were used to develop and train the 4-class neural networks. We only
used data from one of the three weeks for training because the analyst only identified noise detec-
tions for that week. IMS Version 3 was applied to the second 3-week data set recorded between
July 27 and August 16, 1991. This was the first operational test of the neural networks that used
data that were not included in the training. Table 10 compares the results of the two tests. As was
the case for the one-week data set, the false-alarms were reduced significantly by IMS Version 3
(by about 60% for this data set). We attribute this success to the ability of the neural network to
perform accurate noise screening.
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Table 10: PERFORMANCE SUMMARY FOR CYCLICAL OPERATIONS AT CSS

IMS Version 2 IMS Version 3
Cycle 1 Cycle 2
Analyst Events 634 723
ESAL Events 2721 1481
Moved <50 km 257 265
Moved >50 km 231 274
Added Events 146 184
Rejected Events 2233 942

3.2 Micro-array Data

Micro-arrays were originally suggested by Kveerna and Ringdal [1990] as a less-costly alternative
to the larger NORESS-type arrays that still provided slowness and azimuth estimates accurate
enough for reliably identifying initial wave type and grouping arrivals that belong to the same
event. In particular, they found that f-k analysis of NORESS A-ring data (the radius is about 150
m) provided adequate resolution to achieve an accuracy of 95% for automated identification of P
and S phases, and azimuth uncertainties of about 30° for regional P and S phases. Based on these
results, Scripps Institution of Oceanography (S10), the Center for Seismic Studies (CSS), and the
Experimental Methodical Expedition (EME) in Obninsk collaborated on an experiment to estab-
lish and operate a 4-clement micro-array in Kislovodsk [Berger et al., 1992). The center element
is a 3-component seismometer, and the other three elements are vertical-component seismome-
ters. The arms of the array are 150 m in length, and they are 120° apart (Figure 22).

KIV1
(43.9570, 42.6946)

KIV0
(43.9557, 42.6952)

(43.9554, 42.6970)

KIV3
(43.9547, 42.6939)

Figure 22. The geometry of the 4-element micro-array in Kislovodsk is plotted.
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We analyzed a two-week data set from the micro-array in Kislovodsk (KIVO) recorded in Octo-
ber, 1992. While this data set is too small for definitive conclusions, our preliminary results sug-
gest that the slowness estimates from this array are not accurate enough for reliable identification
of initial wave type (see the last column in Figure 17). In contrast, our neural network achieves
>90% identification accuracy for all wave-types (Table 11).

Table 11: KIVO (93.5%)

m T P s N
T | 9 1 1 2
P 2 93 0 4

s 2 3 83 5

N 7 4 5 232

The neural network includes all the input attributes for a 3-component station plus the f-k slow-
ness estimate, but the results are comparable to those for 3-component stations (i.e., slowness
from this array does not contribute much to .. 1nitial wave-type identification). The main advan-
tage of the micro-array over a 3-component station is that the array provides azimuth estimates for
regional S waves to aid the grouping of arrivals from the same event. However, the KIVO azimuth
uncertainties are much larger than they are for NORESS-type arrays. For example, for typical
regional signals the azimuth uncertainty is about 7° for NORESS-type arrays and about 35° for
KIVO. While this uncertainty is too large to be useful for location, it may be accurate enough to
reduce the number of false events formed by ESAL. A much larger analyst-verified data set is
needed to investigate this conjecture. Such a data set is currently being compiled at CSS for KIVO
and two 9-element mini-arrays (Apatity and Spitsbergen). These data will be used to quantify the
dependence of the false-alarm rate on the array geometry.
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IV. Conclusions

We developed and implemented a neural network technique in /MS for automated identification of
the initial wave type of seismic phases (Teleseism, Regional P, Regional S, and Noise) recorded
by 3-component stations and arrays. This is an extension of the 2-class neural network (P or §)
that we developed for 3-component stations [Patnaik and Sereno, 1991). The identification accu-
racies of the 4-class neural networks are >90% for most of the stations that we tested. The average
results for data from six 3-component IRIS/IDA stations in the CIS are:

T=825% P=958% 85=96.1% N=95.5%

when separate weights are derived for each station. The key advantages of the neural network
approach listed by Patnaik and Sereno [1991] for the 2-class neural network also apply to the new
4-class neural network. These include:

* It is easier to develop than rules because initial wave-type identification is based on high-
dimensional multivariate input data (e.g., 15 -16 input attributes).

* It is easily extended to include new features, which may be difficult in a conventional rule-
based system.

¢ It performs better than linear multivariate methods.
* It incorporates station-specific characteristics.

® It is easily adapted to data from new stations (enough data for retraining can be accumu-
lated in about 1-2 weeks of continuous station operation, and training generally takes less
than one hour on a Sun Sparc-2 workstation).

In addition, the new neural network has been extended for application to arrays by including f-k
slowness to the input attributes. This was motivated by the integration of data from mini- and
micro-arrays into the IMS whose f-k resolution is not sufficient to reliably identify initial wave

type.

The 4-class neural network was implemented in /MS and tested under operational conditions
using data from the 3-component IRIS/IDA stations in the CIS. The key result was a reduction in
the number of false-alarms produced by the automated system by about 60%, and this was accom-
plished without a significant increase in the number of missed events. We attribute this success to
the ability of the neural network to perform accurate noise-screening for data recorded by 3-com-
ponent stations.
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