
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A275 048iiimlfluIuIl~i

DTIC
ELECTE

JAN 2 7 1994

SA .,THESIS

The Covering Property of the Object-Oriented Data Model

Design and Implementation Issues

by

Todd Gregory Estes
and

Eric Martin Mueller

September 1993

Thesis Advisor. David K Hsiao

Approved for public release; distribution is unlimited.

94-02576

94 26 039



1i FwM AppnmadREPORT DOCUMENTATION PAGE I No. 70o40

V. m bundio itod ooginm. o d4mW in o sm is felb e vmmen I hMu per smpmoe. W&A" dmii nn retui mabe on" do some
@*dihi A Mmidmi d die Midc, mid tmnM' mAd 6m u*dim n . o mdnil Sai ,u . 1e4A-*, di "d of ai dietn y mpd # oa
-Itt ed dmdm~i., bi~da uj~ig.gemi le redueig dhii hud. WagmnW Msduaa Se*vime. DiMarie let hdet..l O~admui aid Ripoad. 1215 Ju.

D" 1 Noo SSuile 12M. AIn.gn, VA 2M.-432. id wS d ew m. of Mangaient md &ludge. Pewwuo P edami Ptqd (0704-1911 Wmlw.. DC 20M.

1. GENY UE OLY (Leave Blawo REOR DT TYPE AND DATES COVEREDr.oSeptember 1993 Master's Thesis
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

The Covering Property of the Object-Oriented Data Model-
Design and Implementation Issues

SL AUTHOR(S)

Estes, Todd Gregory
Mueller, Eric Martin

7. PERFORMING ORGANIZATION NAM(S) AND ADDRESS(ES) 6. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER

Monterey, CA. 93943-5000

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the authors and do not reflect the official policy or position
of the Department of Defense or the United States Government

12La. DISTRIBUTION I AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

1. ABSTRACT (Ahximimi 200 words)
Inheritance is a necessary condition for construction of an object-oriented data model (OODM), but it

is not sufficient. This is because inheritance applies to only one hierarchy. The covering construct meets
this deficiency because covering maps an object in one hierarchy to a class of objects in another hierarchy.
To date, covering has not been implemented into an existing OODM application.

This thesis implements the covering construct into a functioning object-oriented database environment.
Implementation was achieved through modification of data constructs and the creation of a user-defined
relation linking two or more hierarchies. Using the Multi-model Multi-lingual Dababase Supercomputer
(MDBS), a sample, working application is described illustrating real world applications.

The results of this thesis show that the covering property can be implemented into an existing OODM
without sacrificing the integrity of the data model. The cross-hierarchical mapping afforded by covering
is a powerful construct that expands the capabilities of the model beyond pure inheritance. This makes the
OODM suitable for a far wider range of applications. Together, inheritance and covering meet the neces-
sary and sufficient conditions of the OODM.

14. SUBJECT TERMS I& NUMBER OF PAGES
Object-oriented, object-oriented data model, covering, aggregation, 120
inheritance, hierarchical data model. ,s. ,Rs' CODE

7. SECURITY CLASSIFICATION Is. SECURITY CLASSIFiCATiON 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

Or REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified Unlimited
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

i Piecrib-'k by ANSI Std. 239-18



Approved for public release; distribution is unlimited

The Covering Property of the Object-Oriented Data Model

Design and Implementation Issues

by
Todd Gregory Estes

Lieutenant, United States Navy
Bachelor of Arts University of Rochester, 1986

and
Eric Martin Mueller;

Lieutenant, United States Navy Reserve
Bachelor of Science, University of California, Davis, 1982

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1993

Authors:

"Er~ic Martin Mueller

Approved By: •42• •4iY$C"
Dr. David K. Hsiao, Thesis Advisor

Dr. C. Tom u, Second Reader

Dr. Ted Lewis, Chainran,
Department of Computer Science

ii



ABSTRACT

Inheritance is a necessary condition for construction of an object-oriented data model

(OODM), but it is not sufficient. This is because inheritance applies to only one hierarchy.

The covering construct meets this deficiency because covering maps an object in one

hierarchy to a class of objects in another hierarchy. To date, covering has not been

implemented into an existing OODM application.

This thesis implements the covering construct into a functioning object-oriented

database environment. Implementation was achieved through modification of data

constructs and the creation of a user-defined relation linking two or more hierarchies. Using

the Multi-model Multi-lingual Dababase Supercomputer (MDBS), a sample, working

application is described illustrating real world applications.

The results of this thesis show that the covering property can be implemented into an

existing OODM without sacrificing the integrity of the data model. The cross-hierarchical

mapping afforded by covering is a powerful construct that expands the capabilities of the

model beyond pure inheritance. This makes the OODM suitable for a far wider range of

applications. Together, inheritance and crovering meet the necessary and sufficient

conditions of the OODM.

Accesion For

TCTED B NTIS CR.A-
D0ri QJALITY 5 DTIC TI. S "

By
Distr ib!utfon

IAvai! aisdi/or

D istS p c a

A-i



TABLE OF CONTENTS

1. INTRODUCTION ...................................................................................................... 1

A. BACKGROUND ........................................................................................ I

B. THE OBJECT-ORIENTED DATA MODEL (OODM) ............................. 3

1. The Basic Constructs of OODM ........................................................ 3

2. OODM As a Database Model .......................................................... 6

C. THE COVERING CONSTRUCT ............................................................. 7

D. ORGANIZATION OF THE THESIS ........................................................ 10

If. A DESCRIPTION OF MDBS .................................................................................. 11

A. THE CASE FOR FEDERATED DATABASES AND THE MULTIBACK-

END DATABASE SUPERCOMPUTER WITH THE MULTIMODEL AND

MULTILINGUAL CAPABILITIES ............................................................. 11

B. THE MULTIBACKEND DATABASE SUPERCOMPUTER (MDBS) ....... 14

C. THE MULTIMODEL/MULTILINGUAL DATABASE SYSTEM

(M 2DBM S) ............................................................................................... 16

D. SUMMARY ............................................................................................. 20

Ill. THE OBJECT-ORIENTED MODEL ON MDBS .............................................. 21

A. THE INHERITANCE PROPERTY IN MDBS ......................................... 24

B. THE COVERING PROPERTY ON MDBS ............................................. 25

IV. IMPLEMENTATION OF THE COVERING PROPERTY .............................. 27

A. NAMING THE COVERING RELATION .............................................. 28

B. ESTABLISHING THE RELATION ........................................................ 29

1. Establishing, originating and terminating objects ............................ 30

2. Searching for objects of the same hierarchy. ................................. 30
C. ESTABLISHING COVERING ............................................................... 32

1. Determining the Scope .................................................................... 32

2. Marking the covered objects .......................................................... 32

3. Writing the data to the data file ........................................................ 33

D. ACCESSING THE DATA VIA QUERIES .............................................. 34

V. ADDITIONAL MODIFICATIONS AND LIMITATIONS OF THE OBJECT-

ORIENTED INTERFACE ................................................................................. 37

iv



A. ADDITIONAL MODIFICATIONS TO THE OBJECT-ORIENTED

INTERFACE ............................................................................................. 37

B. LIMITATIONS ........................................................................................ 39

VI. FUTURE WORK ............................................................................................... 42

VII. CONCLUSION .................................................................................................. 45

A. COVERING APPLICATION ONE: A NAVAL TASK FORCE ............. 46

B. COVERING APPLICATION TWO: MULTI-LEVEL SECURITY ........ 50

C. SUMMARY ............................................................................................. 54

APPENDIX A. DATA STRUCTURES OF THE OODM .......................................... 55

APPENDIX B. SOURCE CODE .............................................................................. 59

A. SOURCE CODE FOR THE CREATION OF A COVERING RELATION. 59

B. SOURCE CODE FOR QUERYING VIA THE COVERING CONSTRUCT...

........................................................................................................................ 73

C. SOURCE CODE FOR THE OBJECTID GENERATOR ......................... 83

APPENDIX C. TUTORIAL FOR THE OBJECT-ORIENTED INTERFACE ON MDBS

........................................................................................................... 86

A. ACCESSING THE OBJECT-ORIENTED INTERFACE ........................ 86

B. SELECTING A DATABASE .................................................................. 87

C. LOADING DATA INTO THE DATABASE ........................................... 90

D. CREATING A COVERING RELATION ................................................. 95

E. PERFORMING QUERIES ON THE OBJECT-ORIENTED DATABASE 100

F. CONCLUSION ............................................................................................ 107

LIST OF REFERENCES ................................................................................................ 109
INITIAL DISTRIBUTION LIST ................................................................................... 111



LIST OF FIGURES

Figure 1, An Example of the Inheritance Hierarchy ............................................................. 5
Figure 2, An Example of the Covering Property Through the In-Law Relationship of Two

Fam ily Trees ................................................................................................... 9
Figure 3, The Multibackend Database Supercomputer (MDBS) ................................. 15

Figure 4, The Multimodel, Multilingual and Cross-Model Accessing Capability ........ 17
Figure 5, The Multimodel and Multilingual Database System (M2DBMS) .................. 18

Figure 6, The Model-Language Interfaces on MDBS ................................................... 19
Figure 7, The Object-Class-Node Data Structure ........................................................ 22
Figure 8, The Object-Oriented Attribute-Node Data Structure .................................... 23
Figure 9, The Object-Oriented Superclass-Node Data Structure ................................. 23
Figure 10, The Object-Oriented Subclass-Node Data Structure ................................. 24
Figure 11 , The Modified Object-Class Node ............................................................... 28
Figure 12, Pointers for the Two Family Trees After An Object Search ......................... 31
Figure 13, The Scope of a Covered Object .................................................................. 33
Figure 14, Example of a Covering Data File ............................................................... 34
Figure 15, Example of the object-class CARRIER and its component ......................... 48

Figure 16, Establishing a Task Force using the Covering Construct BATLE GROUP

BRAVO .................................................................................................... 49
Figure 17, Using covering to map the "Read-Down" principle .................................... 52
Figure 18, Using covering to map the "Write-Up" principle ......................................... 53

Figure 19, The Object-Class Node Data Structure ........................................................ 55
Figure 20, The Object-Attribute Node Data Structure ................................................ 56
Figure 21, The Object-Superclass Node Data Structure ................................................ 57

Figure 22, The Object-Subclass Node Data Structure ................................................... 58
Figure 23, The Schema Text File for the Family Database: FAMILYooldb ................ 89
Figure 24, Descriptor and Template Files for the FAMILY Database .......................... 91

Figure 25, Record File for the FAMILY Database: FAMILY .................................... 93
Figure 26, Screen Display of the File FAMILY.r Being Loaded Into the Database ....... 94

Figure 27, Request File for the FAMILY Database: FAMILYoolreq .............................. 102
Figure 28, Query Menu After Loading Request File FAMILYoolreq .............................. 103

vi



ACKNOWLEDGEMENTS

There is a large number of people who contributed to this work both directly and

indiretey. Although it would be impossible to acknowledge all of them, we would like to

take this opportunity to thank some of the major players. Dr. David K. Hsiao provided

endless support and encouragement during this work. Dr. Hsiao never once hesitated to

provide technical and moral support whenever we raised the flag. His guidance was

invaluable.

We would also like to thank Stan Watkins for his help in navigating through the

complexities of MDBS. Additionally we would like to thank Steven R. Zeswitz, Richard S.

Smith, and Bill Demers for imparting their knowledge of C on to us.

Eric would like to thank Alessandra A. Aubert for her infinite patience and

understanding during the many long weekends and late nights he spent in the lab. Her

positive attitude and inspiration helped him to overcome the periodic frustration he

encountered while writing this thesis.

Finally, we would also like to thank Paulla J. Estes for her help in editing our work,

transforming our writing from endless babble into a coherent document. Todd would like

to thank Paulla for her patience and love during all the late nights in the database lab, and

for taking care of his children, Andy and Samantha during his period in exile. For this, he

is greatly appreciative.

Without the help and moral support of the above people and countless others, this work

would not have been possible.

viU



L INTRODUCTION

A. BACKGROUND

Since the invention of the computer, the size and complexity of software applications

have grown steadily. Starting from simple repetitious mathematical calculations, these

applications have grown to include computer-aided design, artificial intelligence, and a

host of others. Perhaps, the most natural use for computers has been in the storage and

manipulation of large databases, since databases represent information collections.

Database applications touch nearly every use of computers, because every application

relies on some sets of data. As computers became more complex, higher-level programing

languages were developed to allow software to keep pace with the advances in hardware.

Moreover, these high-level languages have also allowed programmers to implement

abstract concepts.

Paralleling the growth in programming languages has been the development of

specific database models to handle increasingly large databases for database applications.

These include the classical relational, hierarchical, and network models. Yet, when

programs became increasingly complex, as with the development of computer-aided-

design and/or computer-aided-manufacturing (CAD/CAM) applications, these classical

models fall short of adequately supporting the more demanding and complex applications.

There is a need for a more flexible and powerful model to keep pace with the new demands.

The object-oriented approach to database management is a direct consequence of the

following two factors. One is the rapid movement away from imperative-programming

paradigms and more towards object-oriented-programming paradigms. Second is the need

for more flexibility, power, and abstraction required for modelling sophisticated

applications.

Before discussing the Object-Oriented Data Model (OODM) and its constructs, we

examine the classical data models and their intended usages:



The Relational Model: Introduced by Codd in 1970, this model stores data in the form

of tables. Each attribute is assigned a column of the table. Key attributes are used to link

the tables and provide a means of accessing data from multiple tables. This makes the

relational model ideal for record-keeping applications. For example, data regarding a

company's employees may be grouped by department. Employees of each department may

then be represented by a table, with each column of the table corresponding to a particular

employee attribute such as age, address, salary and others. Each row in the table

corresponds to an individual employee. Queries are made using a relational data language,

SQL, which translates relational language constructs into computer recognizable

commands.

The Hierarchical Data Model: As its name implies, the hierarchical model has been

developed to illustrate the many naturally occurring hierarchies found in the world.

Corporate structures, biological classifications, and family trees are logical examples of

these hierarchies. The hierarchial data model uses a "parent-child" relationship to describe

the one-to-many characteristic of a tree structure. This parent-child relationship is an ideal

modelling tool for data related to product assemblies. To illustrate, we can break down a

product into its component parts, which in turn, into their sub-component parts. Thus, there

exists a natural hierarchical one-to-many relationship corresponding to every level of the

assembly.

The Network Data Model: The fundamental constructs of the network model are

record types and set types. Data are stored in records; records of same value types of are

grouped into record types. The set type describes the relationship between the two record

types. Thus, the network model can model one-to-many, many-to-one, one-to-one, and

many-to-many relationships. This model is best suited for inventory control applications.

For example, an auto parts supplier may have many buyers for a specific part, and at the

same time the supplier may have many individual auto parts to sell. Conversely, the buyer

may buy different parts from one or many different manufacturers. Queries are written in a

network language, CODASYL.

2



These models can be termed as task-specific. That is, they are best suited for

particular tasks, but not flexible enough for the user to easily apply them to alternative tasks

and their use. The result is that the database user tends to use the model with which he is

most familiar. Furthermore, as different applications are needed, the database user will tend

to adapt the model most familiar to him rather than employ the model best suited to the new

task.

B. THE OBJECT-ORIENTED DATA MODEL (OODM)

The object-oriented data model (OODM) marks a significant departure from other

data models. First, unlike the aforementioned models, OODM is not based on a standard

language such as SQL or CODASYL. Rather, it uses conventional languages such as C,

C++, and Ada, and borrows many of its concepts from object-oriented programing. In fact,

there are many different object-oriented data models, languages, and database systems.

Second, the object-oriented data model provides constructs that allow flexibility,

modularity, and portability, previously unavailable in other models. Finally, it is powerful

enough to model many diverse database applications, in particular abstract modeling such

as applications in CAD/CAM. These final two points make OODM less task specific than

conventional models.

1. The Basic Constructs of OODM

The basic element of OODM is the "object" and "class" of objects. An object can

be defined as "a physical entity, a concept, an idea, an event, or some aspect of interest to

database application" [Booc9l]. These objects are grouped logically into "classes" and

then arranged into a hierarchy. Some examples of objects may be cars, trucks, or vans.

Similarly, cars could be grouped by types into sub-classes of sports cars, sedans, and station

wagons which are then grouped together into one class, Vehicles.

With the object as its building block, OODM comprises four major elements:

Abstraction, Encapsulation, Modularity, and Hierarchy [Booc91]. Abstraction refers to the

3



essential characteristics of an object that distinguish it from all other objects. Returning to

the vehicle example, the extended passenger/cargo compartment distinguishes a station

wagon from a sedan, and an open bed distinguishes a truck from a sports car. Both are

examples of abstraction.

Encapsulation marks a revolutionary feature of OODM. Rather than store the

data separately from the program, as in conventional database systems, the object-oriented

data model stores the data with the program; i.e., these programs, called the methods (or

actions), to be applied to the data are stored entirely within the object. This encapsulation

of the methods allows only legitimate operations to be performed on that object, thus pre-

serving data integrity.

Modularity is a direct by-product of the object structure and the encapsulation

characteristic. Because each object contains the methods necessary to operate on that

object, the object can stand alone or be moved to other parts of the database. Modularity

and portability go hand-in-hand.

Finally, the hierarchical structure gives rise to the notion of inheritance. Inherit-

ance is the key to object-oriented design and functionality. The object A is said to inherit

from the object B if the object A retains the same characteristics,i.e., data or methods, as

the object B. Graphically, the object B is located above the object A in the inheritance hier-

archy. There are two types of inheritance. Data inheritance occurs if A inherits all the

attributes of B whereas operational inheritance occurs when A inherits all the methods (or

actions) of B.

Inheritance is most naturally thought of as the "a-kind-of" relationship. For

instance, a sports car is a-kind-of car, which is a-kind-of vehicle. The benefit of inheritance

is that the methods and data of "higher" classes of objects are passed to those "lower" in

the hierarchy. If method describing tire rotation is pertinent to all three types of vehicles,

i.e.,objects, then it is only declared in the object, Vehicle. Any object further down the

Vehicle hierarchy inherits the tire rotation method. This requirement is depicted in Figure

1.



VEHICLE

COLOR TIRE ROTATION PRIJCEE

AUTOMOBILE TRUCK
NUMBER SEATINGPAL 

D

OF DOORS CAPACITY PAYLOAD

SEDAN SPORTS CAR PICK-UP

MODEL CONVERTIBLE BED LENGTH

VEHICLE contains the attributes COLOR and PRICE and the method TIRE

ROTATION. AUTOMOBILE and TRUCK inherit the attributes and methods of

VEHICLE. SEDAN and SPORTS CAR inherit the attributes and methods of

VEHICLE and AUTOMOBILE. PICK-UP inherits the attributes and methods

of VEHICLE and TRUCK.

Figure 1: An Example of the Inheritance Hierarchy

5



2. OODM As a Database Model

Abstraction, encapsulation, modularity, and inheritance make OODM the ideal

data model for sophisticated database applications. OODM offers a number of advantages

when compared to traditional data models. First, OODM, unlike the relational data model,

does not rely on the use of foreign keys in the manipulation of data. A foreign key is a key

attribute which refers from one relation to another and its use or misuse may violate the

referential integrity. Both relations must share the same domain for these attribute values.

Instead of foreign keys, OODM uses the operational inheritance and the data inheritance to

implement generalization and specialization. These inheritance properties maintain the

data integrity constraints within OODM. Thus, not only does OODM eliminate the

overhead required to maintain the foreign keys, it also minimizes the "dangling-key

phenomenon" which violates the referential integrity of the foreign key. This phenomenon

occurs when records referred to by the foreign keys are removed [Hsia92c].

Second, the hierarchical data model and OODM both use a hierarchical data

structure. The hierarchical data model differs from OODM because it uses hierarchies that

are arbitrary in nature. The hierarchies are arbitrary because they are developed by the

programmer when the database is created. This may or may not be based on logical or

natural hierarchies, and may change with time from one programmer to the other

programmer. OODM, however, uses the inheritance property to create the hierarchies.

Thus, they are more natural and less arbitrary than those found in the hierarchical data

model [Hsia92c].

Finally, the network data model, like the hierarchical data model, uses hierarchies

that are arbitrary in nature. Yet, it differs from the hierarchical model because two

hierarchies, rather than one, are used to model a relationship between two record sets. This

introduces confusion into the database design making database management more difficult

to build and use [Hsia92c].

As discussed above, the traditional data models suffer from serious shortcomings.

Furthermore, they are better suited for modelling specific tasks and concepts. OODM is

6



naturally suited for modelling complex and general concepts. With the traditional data

models, the database designer must convert the conceptual design into an actual database.

In the traditional procedure, the conceptual design may have some of its features sacrificed

in order to meet the specifications of the database. On the other hand, OODM allows the

database designer to move directly from the abstract and conceptual design to a functioning

database, without corrupting the original concept

Object-oriented databases can offer advantages in speed. Unlike the relational

model, joins are not used in the OODM. This is because the object can be directly found

using object IDs rather than using time-consuming search techniques. Also the inheritance

property insures that data are passed to lower objects in the hierarchy thus eliminating the

need for a join. Because the same data model is used by the database and the database

programming language, format conversions at the disk-level are not required. This in turn

helps speeding up the reading of data from the disk and the storage of data on the disk.

C. THE COVERING CONSTRUCT

There are various forms of object-oriented databases in existence. The proliferation

of the OODM constructs stems from a lack of the standard similar to those found in other

data models. The majority of the OODB designers agree that the inheritance is an important

characteristic of the object-oriented database. Another construct found in object-oriented

data models is the covering property. Covering (or aggregation) is the means by which an

object in one hierarchy can relate to a class of objects in another hierarchy. As explained in

[Hsia92c] that, "we say A is a cover of B if every object of A corresponds to a subset of

objects of B." In mathematical terms, this means that the object class A is related to the

power set of the object class B, though no "hard-wired" structures exist between them.

The covering property does not enjoy the same amount of popularity as the

inheritance in the object-oriented database community. This is a carry-over from object-

oriented programing where programmers did not want interaction between separate object

7



hierarchies. In programming, encapsulation prevents corruption of an object module by

another object module. This concept does not necessarily hold with database applications.

Encapsulation can prevent the sharing of data between objects. Covering is designed to

overcome this limitation. It will be shown that covering allows more flexibility in accessing

and manipulating data within an object-oriented database.

Perhaps the easiest way to visualize the covering property is to use the in-law

relationship between two family trees. Two hierarchies (family trees) are related when a

son of one set of parents marries the daughter of another set of parents. This marriage

illustrates the utility of the covering property. Though not related by blood, there is now a

recognized relationship between the groom and the bride's parents which are called the

mother-in-law and father-in-law. The same is true for the bride. Similarly, from the parent's

perspective, there is a "downward" relationship of the daughter-in-law and son-in-law. If

this covering relationship is not introduced into OODM, it will be difficult for the members

of two family trees to be related through the marriage.

Now we apply the covering property to a database. Suppose the family tree structure

exists as described above. The inheritance alone allows each child to access the birth date

of anyone within his family tree. Since the new husband is not part of that hierarchy, he

cannot access information on his in-laws. With the covering property, this is not only

possible, but other members of the opposite family tree can also do the same. This is a very

powerful construct unique to the object-oriented data model. Without the covering

property, independent hierarchies within a single database cannot be manipulated as a

whole. See Figure 2 for an illustration of two family hierarchies based on the inheritance

property and one in-law relationship based on the covering property.

To reiterate, we point out that, unlike the inheritance property, the covering property

has not enjoyed the same widespread acceptance within the OODB community. In fact,

covering has not been fully implemented into any working databases to date. Consequently,

there is a need to prove the viability of this construct and demonstrate its usefulness. This

thesis will focus on the implementation of the covering property into the object-oriented

8



SMITH JONES

1 Date of Last Date of
Name Birth Name Birth

JOHN MIKE

First Name: First Name:
John Mike

Last Name: IN-LAW Last Name:Smith Jones•

Date of Birth, Date of Birth
11FEB37 15JUL43

ERIC TODD PAULLA SUE

First Name: First Name: -- a--,--, First Name: First Name:Eric Todd (MARRIAGE) Paulla Sue

Last Name: Last Name: Last Name: Last Name:Smith Smith Jones Jones

Date of Birth Date of Birth Date of Birth Date of Birth24JUL$9 12AUG64 I6JUN67 15JAN65I

TODD and PAULLA are married and create a marriage relationship. The cover-

ing construct, IN-LAW, allows TODD to access the Date of Birth of each member of

PAULLA's tL -idly. If the IN-LAW property did not exist, TODD could not access this

information.

Figure 2: An Example of the Covering Property Through the In-Law Relationship of

Two Family Trees

9



data model of the Multimodel and Multilingual Database System (M2DBMS). Specifically,

the thesis will address the questions of feasibility, practicality, and usefulness of the

covering property of OODM. The end product will be a working, demonstrable object-

oriented database interface for an application using the covering construct.

D. ORGANIZATION OF THE THESIS

In Chapter U1 of this thesis, we provide an overview of the hardware and software of

the Multibackend Database Supercomputer (MDBS) on which M2DBMS runs. In Chapter

IM, we describe the implementation issues regarding the object-oriented data model in

MDBS. The details and design of implementing the covering property into OODM is the

subject of Chapter IV. Chapter V discusses additional modifications made to the object-

oriented interface on MDBS as well as the limitations which exist within the interface.

Future work need on the object-oriented interface in MDBS is detailed in Chapter VI. In

Chapter VII, we summarize our conclusions. The appendices contain relevant illustrations,

program logic, and a tutorial for the object-oriented interface on MDBS.

10



II. A DESCRIPTION OF MDBS

A. THE CASE FOR FEDERATED DATABASES AND THE MULTIBACKEND

DATABASE SUPERCOMPUTER WITH THE MULTIMODEL AND

MULTILINGUAL CAPABILITIES

The growth and proliferation of computers within business and industry has resulted

in their involvement in nearly every aspect of the business life. Each company, or

department within a company, accumulates and maintains different data types according to

their own particular needs. This accumulation of data in multiple forms causes redundancy

and inefficiency.

To illustrate this point, let us view a company composed of many departments, each

using a specialized database for its operations [Hsia92b]. The personnel department,

concerned with payroll-and-record keeping, might use a relational database to keep track

of employee records. The engineering department might use the software running a

hierarchical database because it is most naturally suited for engineered assemblies.

Shipping and inventory control is accomplished using the network-model software due to

the ease of representing the many-many relationships. The end result is that each

departnent uses a "homogeneous" database for its own particular use; yet together, they

form a "heterogeneous" database because they use different models and languages.

Naturally, this contributes to needless duplication of data which are common to all

departments. Moreover, since each department uses a different model, data cannot be

shared among departments. The lack of data sharing among the deparrne -its is due to the

fact that the modeled data are foreign to the user of another department. Also, as mentioned

previously, users in each department will become familiar with their own particular model/

language and thus be limited to locally available data only.

If the same company now wishes to open several other plants and offices around the

country, then the ability of each department or company division to share data is crucial for

planning, implementing, and meeting corporate strategies and goals. Clearly duplicating all

11



the databases into different forms on the basis of various heterogeneous data models is

inefficient; yet, purely centralized control requires a common type of database and model.

The solution to the aforementioned two extreme measures is a federated or nudltidatabase

structure. In a federated database or a multidatabase an user believes the user is using the

user's own database with the user's favorite language, yet the actual data may be located

elsewhere, based on a different data model and part of a larger database system. A federated

database permits sharing of data, wider availability, and optimal use of assets. Federated

database systems are actually a hybrid between a centralized and distributed systems

(Elma891.

In order to establish a federated database with efficient data sharing, the following

five conditions must be met [Hsia92b]:

1. Tran rent access to heterageneo data&"s An user should be able

to access any data using the model and language most familiar to the user. For example, the

director of engineering may want to study the inventory of the most recently designed

product. Rather than learn CODASYL-DML transactions to access the network database,

he or she may use the more familiar DLl transaction to access the data maintained by the

shipping department.

2. Local autonoy of each hetogeneous databas This condition allows

an owner to share the database with others without compromising the owners own integrity

or security constraints. Continuing with our previous example where the director of

engineering may view the data, he or she is not allowed to change the data. The ability to

change the data is retained by the owner, who in this case is the shipping and receiving

departmental manager.

3. Federated databases are multimodel and multilingual. Multimodel

means that the database supports many different models. In our company example, the

federated database would have to support the relational, hierarchical, and network models.

Multilingual means that each transaction made on the database can be made using any

language applicable to the models supported by the system. Thus, the company is able to

12



support all three models while executing transactions written in SQL CODASYL-DML,

and DL/I on their respective databases.

4. Multibackend Cap a&ilijOL This requirement is specifically aimed at

resource consolidation. Rather than let all of the software and database run in existing

computers in a multi-system environment, a specialized computer system, with many

parallel backends is used to run the multimodel and multilingual software and to store all

the databases. These backends are actually special-purpose database computers that are

dedicated to supporting the database application. Efficiency is attained through the use of

multiple backends linked in parallel. This parallelism induces high speed and great

capacity.

5. Effective and Efcient access and concurrency control mechanisms.

Because the wider access to the database allowed by the multimodel/multilingual

capability, there exists a great potential to violate integrity and security constraints in a

multi-system environment. However, despite the large number of backends and high

degree of parallelism, the multibackend is in a single system or uni-system environment.

We know how to safeguard the integrity and security of databases in the uni-system

environment.

As can be seen above, these requirements dictate the use of specialized hardware and

software. The parallel, multibackend computers are required for capacity and efficiency.

Specialized software for interpreting multiple models and languages is necessary to ensure

universal compatibility among users while still preserving data integrity and security

constraints. The database research laboratory at the Naval Postgraduate School (NPS)

combines both features into one system utilizing a multibackend supercomputer with the

multimodel/multilingual software.

13



B. THE MULTIBACKEND DATABASE SUPERCOMPUTER (MDBS)

The Multibackend Database Supercomputer (MDBS) in the NPS database laboratory

consists of one controller computer and six backend computers. The backend computers are

connected to the controller by an ethernet local area network (LAN). Figure 3 illustrates the

MDBS configuration. This system offers two significant advantages. (1) The reduction in

response time for a given query varies inversely in proportion with the number of backend

computers, and (2) if the number of backends increases proportional with the size of the

database, then there is little change in the query response time [Meek93]. Thus, the number

of backends is the deciding factor in determining transaction response time. In other words,

MDBS is scalable for the desired responses.

The controller computer is an off-the-shelf Sun model 4/110 workstation utilizing the

Sparc 4 RISC architecture, with 8 megabytes of RAM and one 373-megabyte hard drive

[Meek93]. The controller's primary purpose is to provide communication between the

backends and act as the interface between the user and the system. Unlike the backends, the

controller does not have any database. However, in case of a backend failure, the controller

can provide backup and recovery of the database with the use of magnetic tape [Meek93].

The backends are Sun model 4/280 workstations also using the Sparc 4 RISC

architecture. All backends have identical hardware and software. This parallel architecture

provides optimum speed and performance through its scalability, in terms of response-time

reduction, and the response-time invariance [Bour93]. Each backend, being a self-

contained database computer, stores the data on two types of disks. Base data (raw data) is

stored on 1000-megabyte moving-head disk while meta data (information about the base

data) and paging information are stored on two 96-megabyte Winchester-type disk drives,

respectively [Meek93]. Base data are not replicated on its disks. Instead, they are

distributed by clusters of data one cluster at a time across the tracks of the disk parallel

drives. This clustering (or partitioning) of the data and evenly distributing the clustered data

among the backend's disks help to achieve parallel access operations, because the data is

14



Meta data disk
Base data disks

Tape Drive Paging disk

q l 
Base data dfisks

Paging disk

*0 0

Meta data disk
Base data disks

Paging disk

Figure 3: The Multibackend Database Supercomputer (MDBS)

15



evenly distributed among the disks of all the backend computers [Hsia92b]. Each track is

accessed serially, while all the tracks for a cluster are accessed in parallel.

C. THE MULTIMODEL/MULTILINGUAL DATABASE SYSTEM (M2DBMS)

To meet the multimodel/multilingual requirement of efficient federated databases, at

present MDBS uses the software capable of accessing a consolidated database in any one

of four data models. These models are the relational, hierarchical, network, or object-

oriented data models. Further, each of the first three traditional models can be accessed

using their corresponding languages, i.e., SQL, CODASYL, or DL/l. The object-oriented

model does not have an associated language. The primary feature of this software is the

ability to use any of the above languages to access the database. Furthermore, some cross-

model accessing capabilities arepossible on MDBS. Figure 4 describes the system in detail.

The heart of the MDBS software is the kernel data model (KDM) and the kernel data

language (KDL). MDBS uses the attribute-based data model (ABDM) and its associated

attribute-based data language (ABDL) for the kernel data model. The ABDM supports the

five primary database operations of INSERT, UPDATE, DELETE, RETRIEVE, and

RETRIEVE COMMON [Bour93]. All data is stored on the disk in the kernel format. Each

transaction, regardless of model or language, is translated into the ABDL equivalent where

it is processed and then returned to the user in the original language. Thus the users

language is merely a convenient interface between him and the kernel data model.

When the user logs on to the system, he chooses a model with which to access the

database. The chosen model is called the user data model (UDM) and the associated

language is called the user data language (UDL). The UDL is how the user communicates

with the kernel data model.

Each data language requires four software modules to accomplish the translation into

the KDM equivalent. These modules are the language interface layer (LIL), the kernel

mapping system (KMS), the kernel formatting system (KFS), and the kernel controller

(KC) [Meek93].The relationship between the software modules and the kernel system is

16



A kernel A hiearchial An objc•t-oriented
database user databa user database user

I1- I
The kernel data model The hierarchial data e object-orited

and kernel data flmodel and DL/l model and object-oriented
language interface interface data language interace

An fl~i~Arha An objet-oriente
database schema daabs schema databae ssheaSI i

A A A An
A network hierarchical relational object-oriented

kernel database database database database

daabs in inl in inthe kernel the kernel the kernel the kernelfr on form form

\1 I - - .
Arelational dtbssceaA relational database schema

for the hierarchical daaae for the object-oriented database

datatabas ssheeaa

The netwoik data model and The network data model and
Codasyl-DML Codasyl-DML

inerface interface

A ork A relational
database user database user

Figure 4: The Multimodel, Multilingual and Cross-Model Accessing Capability

17



UDM: User Data Model
UDL: User Data Language
LIL Language Interface Layer
KMS: Kernel Mapping System
KFS Kernel Formatting System
KC Kernel Controller
M/Ll: Model/Language Interface
KDS: Kernel Database System
KDM: Kernel Data Model
KDL : Kernel Data Language

Figure S: The Multimodel and Multilingual Database System

(M2DBMS)

described in Figure 5. Figure 6 illustrates the relationship between the different language

interfaces. Each module is described in the following paragraphs [Karl93].

The function of LIL is to take the users transaction and route it to the appropriate

module within KMS. The user can access LIL by sending transactions via the terminal or

from a mass-load file. LIL also controls the order in which other modules are called.

The KMS module supports two functions. First, it identifies whether or not the user

is creating a new database. If so, then a data-model transformation must occur. The UDM-

database definition is then transformed by KMS into the KDM-database definition so that

data can be processed and the database can be created. With the data-model transformation

complete, the request can be sent to the kernel controller (KC). The KC sends the newly

created KDB-database definition to the kernel data system (KDS) for processing. KDS then

18



Figure 6: The Model-Language Interfaces on MDBS

notifies the MDBS controller that a new database has been created in the form of UDM.

Data can now be entered by the user as well as queries against that data.

The second function of the KMS concerns the data-language translation. Here the

UDL transaction is transformed into an equivalent KDL transaction by KMS. Once the

transaction has been translated, it is sent to KC and then on to KDS for execution. Thus,

KMS performs the vital functions of data-model and data-language translation, which is

essential to achieving the multimodel/multiuingual capability.

KFS is concerned primarily with returing the results of the query to the user. Once

the transaction is executed in KDS, KFS takes the results and accomplishes the translation

from the KDM form back to the UJDM form. KFS then routes the transaction back to LIL

for display to the user.

KC takes all ABDL transactions and passes them to the kernel system for execution.

The nature of the transaction determines where it is sent by KC once query processing is

19



complete. If the transaction concerns an update, insertion, or deletion to the database then

control reverts to LIL upon completion of the transaction. If the transaction is a retrieve

request, then KC routes the request to KDS, which processes it and then sends the result

back to KC. KC then takes the result and places it in a buffer for KFS which then displays

the result to the user [Karl93].

D. SUMMARY

The need for accurate and rapid access to large heterogeneous databases is an

universal problem facing business, industry, and government. Efficient management of

vast quantities of data calls for the use of a federated database structure. In order to meet

this challenge, specialized computers and software are necessary. MDBS with M2DBMS

offers one effective and efficient way of satisfying these requirements. The use of multiple

backends in a supercomputer dedicated for the database provides speed and efficiency in

database access and storage. The specialized software providing multimodel/multilingual

capabilities allows wider use and greater access among the heterogeneous database users.

20



III. THE OBJECT-ORIENTED MODEL ON MDBS

The object-oriented model is implemented on MDBS. This implementation strategy

has two advantages. First, an entire database system is not require to be written from the

scratch. Only the object-oriented interface is required. This results in a savings of time and

resources. Second, by implementing the object-oriented database into multilingual/

multimodel system, we preserve the interoperability of the heterogeneous database. This

allows data sharing among the installed interfaces.

The interface design for the object-oriented model on MDBS closely parallels the

design for the relational model [Roi184]. As in the relational implementation, the primary

data structure used is the linked list. This structure is used because it dynamically connects

related objects together and makes a hierarchical (tree) structure possible.

Each object being created is a record called an object-class node (ocls node). These

object-class nodes are connected via pointers to form a linked list of other objects. Within

each object of an object-class node, there are attributes specific to that object and pointers

connecting a list of attributes and pointers relating that node to other class nodes in the list.

Refer to Figure 7 for the layout of the object class data structure.

The attribute ocn name contains the name of the object, while the attribute

ocn.numattr holds the total number of attributes for the object. The attributes

ocnisupcls and ocn subcls contain the number of the object's superclass and subclass

respectively.

The six pointers in ocls node form a connection between the object's attributes as

well as its relationship between its superclasses and subclasses. The pointer

ocn first supdls points to the object's immediate superclass while ocn curr supcds

points to the next superclass in the list of superclasses for that object. Similarly the pointers

ocn first subcls and ocn-curr-subd~s point to the object's subclasses. Ocn..first attr

and ocn-currattr point to the object's first attribute and subsequent attributes

respectively. See Figure 19 in Appendix A. for a diagram of ocls node.

21



struct ocds node
(
char ocn-name[RNLength + 1];
int ocn.num_attr,
int ocn-supcls;
int ocn-subcls;
struct o-supcls.node *ocn_first-supcls;
struct osupclsjnode *ocn-curr-supcls;
stzuct osubclsnode *ocnfirst_subcls;
struct o_subcls_node *ocn_curr_subcls;
struct oattr_node *ocn_first.attr,
struct oattrnode *ocn_curr-attr;
struct ocls..node *ocnnextcls;)

Figure 7: The Object-Class-Node Data Structure

All attrIbutes are contained in the object-attribute node. For objects with multiple

attributes, these nodes are connected to form a linked list of attributes. Special nodes called

object-superclass nodes and object-subclass nodes are created to form a hierarchy within

the linked list. These nodes form the basis of the inheritance construct and are also the basis

for developing the new covering construct. The object-class node is the primary node,

which contains pointers to other secondary nodes that form the hierarchical linked list.

These secondary nodes are discussed in detail below [Karl93].

1. Object-attribute node. Oattr node forms the elements of a linked list

connecting all the attributes relevant to a particular object. Each object attribute, such as
name, birth date, salary, and so on is individually located in a different object-attribute
node. Within this node are three attribute fields and one linking pointer. The attribute name

(for example, birth date) is located in attribute field oan name. The data type (i.e.,
character, integer, etc.) of the particular attribute name is located in the attribute field
cantype. The length of the attribute name is contained in the attribute field oan.length.

The linking pointer in the node, called oan.next attr, points to the next attribute in the
linked list of attributes. This is used for objects with multiple attributes. Figure 8 shows the
layout of the attribute-node data structure.

22



struct oattr node
{
char oan-name[ANLength + 11;
char oantype[RNLength + 1);
int oanlength;
struct oaur_node *oanjnextattr,

Figure 8: The Object-Oriented Attribute-Node Data Structure

2. Object-superclass node. This node is called o.supcls.node. It is the

connecting point for each object to its superclass. The only attribute within this node is the
name associated with the superclass, osn name. Two pointers are contained within this
node. One pointer, osnsupcls, connects the node to a superclass, while another pointer,
osn.next.supds, points to the next superclass in the linked list of superclasses pertaining
to that particular node. The ability of the object to have more than one superclass allows for
the multiple inheritance. The superclass node data structure is described in Figure 9.

struct osupclsnode
{
char osn.name[RNLength + 1];
struct ocls.node *osn_supcls;
struct osupcls._node *osn next supcls;

Figure 9: The Object-Oriented Superclass-Node Data Structure

3. Object-subclass node. This node is called o subcls node. It is similar in
structure to the superclass node. The attribute osn name lists the name of the node, while
the pointers osn subcls and osn next subcls link the object with its subclasses. See
Figure 10. Figures 20 through 22 in Appendix A. illustrate how these three nodes are
linked together.

23



struct osubds node
I
char osn-name[RNLength + 1];
struct ocls_node *osnsubcls;
struct o-subcls.node *osn_nextsubcls;

Figure 10: The Object-Oriented Subdass-Node Data Structure

A. THE INHERITANCE PROPERTY IN MDBS

Inheritance in the object-oriented model is accomplished through the object-

superclass node and the object-subclass node and their interconnections with object class

node. When an object is first created, pointers within these nodes are initialized as null. As

subsequent objects are created, these nodes will point to objects located higher or lower in

the hierarchy. For example, if object B is to become a member of the subclass of object A,

then the following pointers will be set. The first subclass pointer (ocnfirstsubcds) within

object A's object class node will point to the newly created object subclass node

(ocnRsubds node). This node will in turn point to the object-class node (ocls_node)

belonging to B. Similarly, the corresponding superclass nodes and pointers will connect

object B up to object A.

Attributes are inherited downward within the hierarchy. Lower objects contain all of

the attributes ascribed to objects located above it, as well as those attributes specific to that

particular object. The object-oriented model on MDBS accomplishes this by using nested

linked lists. Each object node contains a pointer to a linked list containing all of the

attributes pertaining to that object. Because each object is connected to other objects in the

hierarchy via the superclass and subclass pointers, the objects themselves form a linked list.

Thus, as the hierarchy is traversed downward, the linked list of attributes grows longer as

each linked object is scanned. This is best illustrated by way of example.

Object A contains the attributes name, address, and birth date. Object B, in a subclass

of A, contains the attributes salary and employee number. As mentioned before, each of

24



these attributes ame individually located in a special object attribute node (oattr node).

These nodes are then linked together into a linked list. Thus, the attribute linked list for A

will include Name, Address, and Birth Date. The pointer called oca first attr, located

within object A's object class node, will point to the first attribute on that list.

Object A's first subclass pointer (ocn..first subds) will point to the object-class

node of B. A query requesting the name, address and salary of B will first traverse the list

of A's attributes, and retrieve the attribute nodes of name and salary. Then it will drop to B

via the subclass pointer, traverse the list of B's attributes, and retrieve the salary attribute

node The linked list of retrieved attribute nodes for B consists of Name, Address, and

Salary. The result is that the name and address attribute fields are inherited from A and

linked with the attribute fields of B. Values for each of these fields are then found by

accessing the ABDL record for object B.

The inheritance feature is ideally suited to take advantage of the hierarchical tree

structure. Attributes of any object can be accessed by searching the tree for that particular

object, then using the subclaso pointers to access the attribute linked list. This method will

not work, however, when a query involves objects from two different hierarchies.

Traditional inheritance will not work because there is no defined linkages from one the

hierarchy to another hierarchy. Without such a mechanism, the cross-hierarchical query

processing is impossible. In other words, inheritance is a necessary but not a sufficient

feature of the object-oriented data model. Hence the object-oriented model, as initially

implemented on MDBS, is inadequate for realistic database scenarios. The covering

property solves this problem by providing a mechanism for an object in one hierarchy to

access data in another hierarchy.

B. THE COVERING PROPERTY ON MDBS

Implementation of the covering property of the object-oriented model into M2DBMS

on MDBS is the subject of this thesis. The details and specific methodology are included

25



in Chapter four. For continuity purposes, however, a brief overview of the implementation

is given below.

The covering property is implemented into the existing object-oriented modeL It uses

the same constructs as inheritance, such as pointers and linked lists, to achieve cross-

hierarchical mapping. Once the user logs onto the system and chooses the object-oriented

model, he is presented with an option of "establishing a covering relationship." Once

selected, the initial menu cascades into the covering menu. Here, the user is asked to name

the covering object and select the class of objects to be covered. The user is then queried as

to the number of levels in the hierarchy to which the covering relationship will apply. The

number of levels determines the scope of the covering relationship onto the other hierarchy.

Our new software then establishes the relationship and maps the covered objects to a

database.

The database contains a listing of the covering construct's name, initial object, the

target object, followed by all of the covered objects that have been mapped. Subsequent

queries by one object of one hierarchy to an object of another hierarchy are first checked to

see if they belong to the same hierarchy. If so, then pure inheritance will suffice to satisfy

the query. If the objects belong to different hierarchies, then the data file is checked to see

if a covering relationship exists that covers the other object. If such a relationship exists,

then pointers are used to access the relevant hierarchy. The query is answered as usual in

the object-oriented interface. If no covering relationship exists, then the query is refused

and the user is notified that the requested query cannot be executed. The user then has the

option of establishing a covering relationship or exiting the menu.

26



IV. IMPLEMENTATION OF THE COVERING PROPERTY

The covering property is implemented in the object-oriented data model on MDBS.

Consequently, it is meant to supplement and enhance OODM. Every effort was made to use

the existing data constructs and original code as written by Karlider and Moore [Karl93].

This was done in order to preserve continuity and data integrity. Where changes became

necessary in the constructs, notations were made in the accompanying documentation

describing the purpose and author of the code.

This chapter will detail the implementation of the covering property in two ways. First

it will describe the changes to the data structure and then outline the additional procedures

that make the covering work. Second, it will take the reader sequentially through the

process using an illustrative example. Source code for the covering implementation is

provided in Appendix B. A user's guide to OODM on MDBS with the new covering feature

is provided in Appendix C.

The basic building block of the hierarchy is the object-class node (odis node). As

described in the chapter MI, this node contains the variables and pointers necessary to form

subclasses and superclasses within the hierarchy. Two changes have been made to the

ods node in order to form the covering relation. A new variable called ocn marked and

a new pointer called cover dIs have been added. Figure 11 illustrates these changes.

Ocn marked is a boolean variable and is used when traversing the hierarchy. This

switch, originally set to false, is set to true whenever an object in the hierarchy is visited in

the search. The ocn marked variable is set when a member of the covered class of objects

is encountered in a hierarchical search. Once the search is complete or the system is turned

off, ocn marked returns to false. This allows additional or new covering relations to be

formed using a "fresh" hierarchy.

The cover ds pointer is used to point from the object initiating the covering

relationship to the highest object in the hierarchy which falls within the scope of the

covering relation. The actual height in the receiver's hierarchy is determined by the scope

27



ods node

omnumaftr

ocnaasupds

ocumabdi

oca first supd~s

ocncurrsupds

ocn first subds

ocn-curr-subds

ocn first attr

ocn currTattr

ocn next€ds

Figure H: The Modified Object-Class Node

of the covering construct, which is specified by the user. The cover ds pointer can only

point to another node of the type, oclsnode.

A. NAMING THE COVERING RELATION

When the user decides to form a covering relation, the system will prompt him to name

the relation. The name serves two purposes. First, it gives a logical meaning to the linking

of the two separate hierarchies. Second, it allows for the formation of multiple covering

relations, each with different scope, purpose, and name. An example of such might be In-

law, Business, and Task Group. In-law would list those objects grouped by virtue of the

28



marriage relationship; Business would list objects grouped by means of a partnership or

other business relationship; Task Group would list objects, such as particular ships, that

have been grouped together to form a naval task group.

However, several relations may have the same name. There may be a need for multiple

relationships; each with a different grouping of objects for the same named business

partnership. This feature is possible by resetting the ocn marked variable to false after

each covering relationship is built.

Once the name is entered by the user, it will become the first item in a list stored in the

data file called FILE NAME>.cover. Subsequent items on the list are the "from-object",

the "to-object", followed by all other objects covered in the scope of the newly formed

covering relation. This list is maintained in a text file for future access during query

processing. Each item of the list is separated by spaces to facilitate parsing during the query

phase.

B. ESTABLISHING THE RELATION

The basis for the covering construct is the defining relation, which links the two

separate hierarchies together. This defining relation is what was named by the user as

described above. In order to create this relation, the following pointers are used:

swruct ocls_node *fromfptr,

*to-ptr,

*from-rel-ptr,

*to-rel-ptr,

*templ,

*temp2;

29



1. Establishing, originating and terminating objects.

After naming the relation, the user is prompted to enter the name of the object

from which the covering will be originated. This is called the fronm-obj. After entering the

object's name, the user is prompted for the name of the object to which the covering

relationship will apply. This is called the to-obj.

The ocls node linked list is then traversed. At each node, the first attribute, called

ocn name, is examined. If the name matches from obj, then the pointers fromreI ptr

and temp2 are both assigned to that particular ocis-node. If the name does not match, then

the search moves to the next node via the ocn next cis pointer. The search continues until

either the name is matched or until the end of the list is reached. If no match is found, the

pointers are nullified and the user is prompted to create a new covering construct.

If from obj is found, the list is again traversed from the beginning in order to

search for to obj. The same method is used in the search. Once the node is found, the

pointers to.relptr and templ both point to toobj. To illustrate, suppose to obj was

named Paulla and fromobj was named Todd. After the search, the pointers are positioned

as shown in Figure 12.

2. Searching for objects of the same hierarchy.

Once the two objects have been identified, they are checked to see if they belong

to the same hierarchy. If they share a common hierarchy, there is no need for a covering

relationship because inheritance will suffice to satisfy the query. To determine this, the

pointers to_ptr, from_ptr, templ, and temp2 are used.

Beginning at to obj, the hierarchy is traversed "upward" via the node's

ocnrfirst supcls pointer. If the object has a superclass, then to_ptr gets assigned to the

superclass. The pointer templ trails one level below to_ptr throughout the upward

traversal of the hierarchy. This continues as long as there remains a superclass to the object

being visited. By definition, the top of the hierarchy contains no superclass so that object's

30



GEORGE BERTHA

MIf!KE' PAUL JO<E SUE

toobj, tempi, from obj, temp2,

to"rel-ptr N.omrelptr

PAULLA TODD

ANDY I SAMANTý

Figure 12: Pointers for the Two Family Trees After An Object Search

ocn firstsupcls pointer is set to null. Because of this, to.ptr will also eventually be set to

null, leaving tempi pointing to the top-most node.

An identical upward traversal of the tree containing from-obj is then

accomplished. At the end of the hierarchy, temp2 will also point to the top-most object in

the hierarchy. A comparison is then made between temp1 and temp2. If they are identical,

then both toobj and fromnobj lie within the same hierarchy and a covering relationship is

not required. The user is prompted as such and asked to begin anew. If they are not

identical, then it forms the basis for a legitimate covering construct and the process

continues.

At this point, to_rel_.ptr and fromrel..ptr each still point to the objects defining

the relation. Using these pointers, the user is then asked to confirm that he wants the

covering relationship to be formed between the two objects. If the answer is yes, then, using

the pointers to access the nodes, the ocn_marked variable is set to true in each of the two

31



nodes. This prevents adding the objects to the list of covered objects once the hierarchy is

traversed. The two variables, fromTobj and to._obj, are then sent to the covering data file

and stored as the second and third item in the list respectively. If the user selects "no", then

he does not wish to continue to create the covering relation. In this case, all pointers are

returned to null and the covering menu is re-displayed.

C. ESTABLISHING COVERING

Although conceptually a link now exists between the two hierarchies in the mind of

the user, in M2DBMS no physical link exists. As such, inheritance is still restricted to one

hierarchy. The final process of creating the covering relation involves determining the

scope of the covering and accessing the relevant objects and establishing the physical links

for it in M2DBMS.

1. Determining the Scope.

The user is then prompted to determine the scope of the covering relation. The

scope is defined as the number of levels in the hierarchy above and below to obj which are

to be encompassed by the covering relation. Figure 12 illustrates the concept of scope. In

this illustration, the scope of the covered object includes one level above and one level

below the covered object. The user is first prompted for the number of levels above to.obj,

followed by a prompt for the number below to obj. Any number of levels, including zero,

can be chosen by the user for each entry. The system will automatically adjust for situations

where the object is linked to fewer subclasses or superclasses than that specified in the

scope.

2. Marking the covered objects.

The pointer to.ptr is then used to traverse the hierarchy above toobj in

accordance with the level specified by the user. When the traversal reaches either the upper

bound of the scope or the last superclass, the pointer covercds is set to that node. The

32



SCOPE OF TODD
COVERING PAULLA

PAULLA ..... ........ AumJ

ANDY SAMANTHA

Figure 13: The Scope of a Covered Object

cover cls pointer is now the starting point for collecting the objects to be covered in the

scope.

3. Writing the data to the data file.

The first three items written into the covering data file are the name of the

covering relation, to.obj, and fromobj. The relation name is taken from the entry by the

user when the relation was named. The values for from obj and to obj are determined by

accessing the attribute name of the objects pointed to by fromrelptr and torel-ptr,

respectively. Once these three items are written to the data file, the covered objects can then

be added to the list.

33



Beginning at the node pointed by cover cis, which is still pointing to the highest

object in the scope, the tree is traversed downward. The downward traversal continues until

the lower limit of the scope is reached. Each node is first checked for the existence of

subclasses that fall within the scope. Once the subclasses have been checked, the search

moves to the next node within the same level.

As each node that satisfies the scope conditions is visited, the variable

ocnimarked is set to true. This setting tags the object for membership in the covered

relation and the data are then sent to the data file. It also prevents double-counting when the

tree is traversed upward in order to move to a subclass of the next object class. For instance,

the node belonging to to obj is skipped because its ocn marked variable is already set to

true. Once the lower limit of the scope is reached, all covered objects meeting the scope

criteria have then been written to the data file. Following the writing of data to the data file,

the hierarchy is traversed again to reset all of the ocn marked variables to false. Figure

14 shows an example data file. Compare this example to the scope of the covering

relationship shown in Figure 12.

FILE: FAMILY.cover

IN-LAW TODD PAULLA MIKE PAUL ANDY SAMANTHA

Figure 14: Example of a Covering Data File

D. ACCESSING THE DATA VIA QUERIES

Queries to the database using the covering property illustrate the power and flexibility

of the covering relationship. Since queries on the covering property of one hierarchy to the

other involve these hierarchies, it is essential that the query format be compatible with

34



object-oriented queries already in place in the model for the inheritance property. With this

in mind, queries to the database using the covering property are constructed almost

identical to those without the covering property.

The Object-Oriented model on MDBS as implemented by Karlider and Moore

[BENV 91] uses the following format to make queries on the data:

<object name>. retrieve <attribute 1>, <attribute 2>,.., <attribute n>

The object name and the attributes in question are specified by the user. The query is

either read from the screen in this format or stored with other queries in a request file from

which the user can choose queries from a list.

The following modification was made to the query format to handle queries using the

covering property:

<(from object.defining relation)> <object>.retrieve <attribute 1>,..., <attribute n>

Queries constructed using this format are converted to the original format before

processed in the ABDL transaction. Each query is intercepted in the KMS module where it

is transformed before being sent to the kernel database system, i.e., KDS. Inside the KMS

module, each query is first examined for format. Queries involving covering are then

parsed and checked for compliance with the covering relationships found in the data file.

This procedure acts like a filter, transforming the covering query into a straight inheritance

query. Compliance with the procedure satisfies a boolean variable, which enables the query

to pass to the KDS as if it was a normal inheritance query. The major difference is that one

object outside the normal inheritance structure is now accessing objects in another

hierarchy.

35



The transformation process operates in the following manner. Each query is initially

parsed to check for parentheses. The presence of parentheses signals a covering

relationship query. First, the defining relation found inside the parentheses is compared to

the covering names, each of which is the first item in each list found in the covering data

file. If it does not match any of the covering names, then the query is rejected because no

covering relationship exists to satisfy the query.

If the defining covering matches a covering name, then from object in the query is

compared to from_obj, the second item in each list in the data file. Again, failure to match

results in rejection of the que-y. However, if the names do match, the balance of the list is

scanned to check for a mattn with the query object. A successful match here enables the

query to proceed.

The query sent to the ABDL translator is now in the original format, equivalent to the

covering query minus the parenthetical portion. from there, the query is handled by the

ABDL translator in the normal manner. The linked list of each object is traversed searching

for a match. If found, the attribute linked list of each object is then scanned, matching the

query attributes with those found in the object. These objects and their corresponding

attributes are collected and compiled in the ABDL form. After the translated transaction has

been executed by MDBS, the file of data satisfying the query is then sent back to KMS for

conversion back to the object-oriented form.

36



V. ADDITIONAL MODIFICATIONS AND LIMITATIONS OF THE
OBJECT-ORIENTED INTERFACE

A. ADDITIONAL MODIFICATIONS TO THE OBJECT-ORIENTED

INTERFACE

In addition to implementing the covering property, we incorporated the ability for the

object-oriented interface to generate object-ids. The object-id is set up as an attribute for

each object, and each record within that object requires a unique object-id. Prior to

modification, the user was required to manually assign an object-id to each record. In

addition, on-line insertions required that the user know in advance which object-ids had

already been used in order to avoid duplication. In a large database, this can become a

problem if careful attention is not paid to keeping track of object-ids.

Our modification uses the system clock to generate the object-id at the time of record

loading. The basic strategy used is tt retrieve the Unix system time in integer format and

convert it to a string. Conversion to a string is required because the Lil module of the object-

oriented interface reads all attribute values as strings from a text file before passing it on to

the kernel.

The advantage of using the system clock is twofold. First, each record loaded is

essentially time stamped, which gives each record a unique time. Therefore, by definition,

the object-id is also unique. Second, the use of system time allows records to be clustered

on the data disk according to their load sequence rather than the value of an attribute other

than the object-id. This is a desired characteristic for secure database systems because

intrusions into the database do not reveal the contents of a cluster data base on its grouping.

The procedure used is called getobjectido and returns a character string. It is called

by the rss load0 procedure in the Lil directory of the object-oriented interface. The mass

loading procedure is responsible for loading records into the database. As the mass load

procedure scans each line of the record file, it parses the first attribute of each record,

verifying it as the object-id. If the first attribute is the object-id, get..objectidO is called and

37



returns the new object-id for the record being loaded. This in turn is passed to the kernel

and stored in the database. The object-id attribute is still maintained in the schema because

it is an attribute of the record. Within the record file, the object-id is still used for insertion

as a place holder to avoid confusing the system when parsing the insert request. However,

all the object-id values can be the same number because they will be reassigned at load

time. The source code for this feature can be found in Appendix B.

Several implementation details arose in the writing of this procedure which are

hardware and software related. First, the Unix system time is tracked in elapsed seconds

since January 1, 1970. This time can be accessed down to the microsecond level. In order

to get a fine enough time slice for the object-id assignment, we needed to access the system

time at the microsecond level. This was necessary in order to prevent duplicate object-id

assignments when loading records. Storing a number this size would exceed the 32-bit

registers on the current platform. Given a machine with 64-bit registers, this problem would

be eliminated.

In order to work with 32-bit registers, we modified the output of the system time into

an eight digit number. The number assigned to the object-id is in the format of

<hhmmssuu>, where hh is for hour of the day (24 hour clock), mm is for minutes in the

hour, ss is seconds in the minute, and uu is thousands of microseconds.

Unfortunately, due to the limitations of the time slice, testing revealed several cases

of duplicate object-ids. To correct this problem, a delay loop was added to the procedure to

delay assignment of the object-id. This resulted in zero duplication of object-ids and the

time delay is not noticed by the user and does not affect system performance. The biggest

drawback to this solution is that non-duplication of object-ids can only be guaranteed for a

session which lasts less than 24 hours. However, since we are not producing a commercial

database, and data is not maintained in the database beyond each session, this did become

a problem during operation.

The second implementation issue is software related. The current C compiler is an

older version dated prior to the ANSI C standard. This version contains no library functions

38



which convert an integer into a character string. To overcome this problem, each digit of

the time slice is fed into an integer array. After loading the array, each field of the array is

read and a character version of the digit read is copied into a corresponding character array.

The resulting character array is returned to the nrssjload procedure and assigned to the

object-id. The incurred overhead is not noticeable to the user and can be eliminated when

the software is ported to a system with a compiler having the required libraries.

To recapitulate, the automatic assignment of object-ids is a vast improvement over

the method of manual assignment. When the software for the object-oriented interface is

ported to a newer, more powerful system, the implementation drawbacks discussed above

can be eliminated.

B. LIMITATIONS

In addition to the limitations discussed in the section above, there are some significant

limitations to the object-oriented in general and covering in particular. The object-oriented

interface does not have the capability to conduct on-line deletion and modification of

records. Deletion and modification to records must be done off-line by editing the record

and schema text files.

Additionally, methods (or actions), as described in Chapter I, are not implemented.

Inheritance of actions as well as attributes is a powerful feature of the object-oriented

model. Allowing user-defined actions to exist within an object class is essential if the full

benefits of the object-oriented data model (OODM) are to be utilized.

The object-oriented interface cannot retrieve a record without specifying the unique

object class associated with it. This is a major limitation of the current system because it

requires the user to know in advance which object class contains the desired object (or

record). Ideally, the system should be able to process the following query:

retrieve firstn, lastn, salary if ssn= 283764958

39



This query asks for the first name, last name, and salary for the individual record with the

social security number 283764958. Under the current configuration, this query requires the

user to specify a particular object as shown below:

Joe.retrieve flrstn, lastn, salary if ssn= 23376495

Because of this restriction, the current implementation requires the use of object

classes with single instances only. The end result is that each instance is actually an object.

Unfortunately, this prevents the covering property from being fully utilized. If multiple-

instance objects were possible, then covering could map from one instance in an object

class to many instances of one or more object classes.

Consider an object class called STUDENT and an object class called COURSE. Each

student is enrolled in multiple courses, while each course contains multiple students. A

query to retrieve the course load of student Jones requires a covering relationship between

one instance of STUDENT(Jones) to many instances of COURSE. If a multiple-instance

covering relationship is called ENROLL, then the query would appear as shown:

(ENROLLJones. COURSE) retrieve coursename

This query will retrieve all courses enrolled by Jones. Unfortunately, under the present

system configuration, this query cannot be performed. The best that can be achieved is to

make each instance of STUDENT and COURSE individual objects. Then a covering

relationship called ENROLL must be defined linking the object class JONES with the

group of covered object classes.

Another limitation of the object-oriented interface is the inability to perform a multi-

class join with more than two objects. The original design of the object-oriented interface

allows for an attribute of one object in an object hierarchy to point to an object class of

another object hierarchy. In a sense, this is covering, but it is covering which is hard coded

at the schema design level.

In order to perform a join under the original design, a data structure called

okitgtdsl and oki..gtc;s2 [Karl93] is used to retain two values for object names. The

purpose of these variables is to store the names of the objects used in a join for access

40



during retrievaL The two-object limitation discussed earlier is a result of only these two

variables being present A possible solution to this is to change this data structure into a

dynamic one which can grow with the number of objects in a join. However, the need for

hard coding the relation between two hierarchies diminishes because covering can now be

done on the fly. The idea of a dynamic data structure still holds merit and will be discussed

further when we review the limitations of the covering property.

The covering implementation in the object-oriented interface cannot be applied to

objects across different databases. MDBS allows for loading multiple databases in a single

session. However, only one database can be accessed at a time. If the need exists for

accessing data across different databases, the object-oriented database must be able to

provide simultaneous processing of databases. The covering construct would then need the

name of the desired database in addition to the current information normally needed to

access objects of different hierarchies.

Another limitation of the covering implementation is that the covering construct can

only retrieve data from the object being covered. It cannot retrieve data both from the

covering object and the covered object. The absence of this limitation would allow the

system to perform joins by taking advantage of the current data structure. However, as

discussed above, this join would be limited to only two objects. Therefore, since one object

can have multiple covering relationships, the implementation of the proposed dynamic data

structure would be of great benefit

The limitations discussed above are provided to inform the reader as to what is needed

to make the object-oriented interface a production-ready database interface. However, our

work here is to prove the feasibility of the object-oriented data model and in particular the

implementation of the covering property. These limitations did not interfere with our ability

to prove these points.

41



VI. FUTURE WORK

There are several issues for future work which concern both the object-oriented

interface on MDBS and the covering property. While the object-oriented interface is

sufficient for research purposes, it is not ready for real time use. Much of the future work

is related to the limitations listed in the Chapter V and will be touched upon again in this

chapter.

As discussed in Chapter V, the object-oriented interface on MDBS does not have the

capability to conduct on-line updates and deletes. Incorporating these operations into the

object-oriented interface would complete the model. In addition, this capability would be a

significant step towards a real-time user interface.

Incorporation of methods (or actions) into the object-oriented interface is still needed.

The current model on MDBS allows only the inheritance of attributes. The addition of

methods to the interface enables the user to take full advantage of the power of object-

oriented data model (OODM). This would allow CAD/CAM databases to be implemented

as well as other simulation based applications.

While we eliminated the need for the user to supply and keep track of object-ids, the

user must still name a specific object in the query. This precludes the covering of one

instance of an object class to many instances of another object class. This limitation is

discussed in depth in Chapter V. Removing this limitation is required before the full

benefits of covering can be achieved.

Another area for future research, also discussed in Chapter V, is to remove the

limitations on two class joins. This would significantly expand and enhance the capability

of the model. Furthermore, the covering construct should be enhanced to allow for single

command queries using multiple covering relationships. In conjunction with this, the

ability to retrieve data via covering from objects in other databases would also make the

system more robust. This requires simultaneous processing of multiple databases as well as

safeguards to ensure the security and integrity accessed databases are maintained.

42



The current configur,-.tion of the object-oriented interface allows the user to set certain

conditions for a search. However, this is limited to the "and" operation and does not provide

for an "or" operation. The disjunctive "or" is convenient when searching for multiple

instances within the database. For example, the following request is presently allowed by

the object-oriented interface:

george.retrieve firstn, lastn, salary if salary < 100000 and bastn = "Smith"

This query requests the first name, last name and salary of all objects whose salary is less

than 100000 and whose last name is "Smith". If we wished to retrieve all records where

salary is greater than 1000000 or whose last name is "Smith", we would have to retrieve

the data with two requests instead of one. The proposed request would be in the following

format:

george.retrieve firstn, lastn, salary if salary < 100000 or lastn = "Smith"

The current configuration of the object-oriented interface also lacks a text retrieval

capability. This feature is useful in many search applications., such as finding particular

paragraphs in classified documents. With this capability, the object-oriented interface

would be an exceptional platform for maintaining a multi-level security database.

Porting the source code for the object-oriented interface to a programing language

such as C++ or Ada would reap immense benefits. Encapsulation of code using one of these

languages improves the modularity and maitainability of the program. By taking advantage

of the sophisticated libraries in these languages, code becomes more streamlined and easier

to maintain. Using an object-oriented programming language, such as C++, provides

encapsulation and modularity to the program throughout the entire design process.

There is also a need for more sophisticated exception handling capabilities in the

object-oriented interface. Greater depth of error control pays dividends in keeping the

system on line. Often times once a mistake is made, it is impossible to correct without

stopping MDBS, zeroing the processes, and restarting the system. One advantage to Ada is

that it provides this simplified exception handling ability within its standard libraries.

43



The transition from research product to commercial product normally focuses on

improvements that make the product more user-friendly. The conceptual design is proven,

but the interface is weak. In view of this, the issues discussed above are primarily provided

as suggestions for making the object-oriented interface ready for real-time use.

44



VIL CONCLUSION

This thesis focused on the implementation of the covering property of 00DM on

MDBS. First, a case was made for the value of the object oriented model in general. Unlike

the traditional models of database design, the object-oriented model avoids arbitrary

modeling while allowing greater abstraction. At the same time, OODM provides powerful

constructs, such as inheritance and covering, which yield flexibility and modularity not

available in other models. These factors make OODM an ideal data model for database

design.

Second, the case was made for the use of the federated database structure within the

context of MDBS. Federated databases allow greater local autonomy and provide the user

with transparent access to diverse databases. The multimodel/multilingual system software

on MDBS is one means to achieve rapid access to databases using a variety of models and

languages. Using MDBS as the development platform allowed design and implementation

to concentrate on the object-oriented interface without having to develop a new DBMS

from scratch. Finally, with this background, the actual implementation of covering was

described in detail.

Covering required the modification to the data structure used in MDBS as well as the

creation of a user-defined relation between the hierarchies. Depending on the existing data

structure, changes to the data structure may or may not be necessary. In this case, the

modification was necessary, and consisted of adding an additional pointer and a boolean

attribute to the object class node.

Before two or more hierarchies can be linked together, a covering relation must be

defined. Without this relation, there is no meaning to the covering property. Covering

simply becomes an arbitrarily defined construct that has no relevance to the database.

Furthermore, it cannot be reproduced systematically with meaning from one user to the

next. By naming each covering relation, multiple coverings can be created on the same

database.

45



Finally, the covering relationship must be user-defined. This accomplishes two

objectives. First, it removes the notion of arbitrariness from the database and imposes

clarity and meaning. A covering property defined at the time of database creation, is a static

structure, defined by a programmer who may not understand the needs or purposes of the

database. The user, in contrast, has a specific need for the covering relationship and has

specific uses for the information. Therefore the user is much better suited to create and

modify the covering property. Covering now becomes a dynamic construct. Second, the

scope of the covering must also be defined by the user. Incorporating these objectives

allows the user to tailor the database t- his particular needs and provides flexibility and

clarity when forming queries.

This thesis demonstrated that it is possible to implement a covering relationship across

two hierarchies within an existing object oriented database structure. The actual product

is a working database which illustrates the covering property. The implementation of

covering onto MDBS was accomplished as proof of viability of a specific concept. Like the

multimodel/multilingual software on MDBS, however, it is currently not a working

program suitable for commercial use. With this in mind, it is worth exploring alternative

applications of the covering property beyond the family tree analogy.

A. COVERING APPLICATION ONE: A NAVAL TASK FORCE

A realistic application of the covering property within a military context is the

creation of a task force. The task force structure, in widespread use within the U.S. Navy,

has applications to the Navy as well as other services. Furthermore, the inherent

hierarchical structure of particular classes of ships makes it not only an ideal example, but

also an appropriate and applicable use for the covering property.

Carrier battle groups are normally composed of twelve ships, with the aircraft carrier

serving as the flagship and centerpiece of the task force. Each ship within the task group

serves a specific purpose and each brings their unique strengths and abilities to the battle

46



group. Yet, when the task force is constructed, each particular ship is drawn from their own

respective classes and not from a task group hierarchy. In other words, the task group is

created from existing ship hierarchies.

For example, the carrier is drawn from the object class CARRIER, which is further

divided into the object classes CONVENTIONAL and NUCLEAR. Within each of these

object classes are specific classes of carriers: the NIMITZ, KENNEDY, or ENTERPRISE

nuclear carriers and the K7T7Y HAWK, FORRESTAL, or RANGER conventional carriers.

Each of these object classes contains the specific ship objects for their respective class.

Similarly, each cruiser, destroyer, and frigate chosen for the task force comes from their

own respective class hierarchies. An example of the CARRIER object class is illustrated in

Figure 15.

The task force is essentially a collection of ships drawn from unrelated hierarchies.

Thus, the creation of a task force is actually the creation of a specific covering construct.

For example, Battle Group Bravo, as defined by higher authority, might consist of the

following ships:

CARRIER: CVN - 72

CRUISERS: CG - 52

DESTROYERS: DD - 963, DD - 982, DD - 983

FRIGATES: FFG - 7

Battle Group Bravo, as defined by the Battle Group Commander, is the covering

property that links the various hierarchies together. The scope of the covering is defined

when the admiral chooses the ships that will make up the task force. The creation of Battle

Group Bravo from the various ship hierarchies is illustrated in Figure 16.

Prior to the creation of the task force, each object in its respective class hierarchy is

able to access data on any object in the same hierarchy through the use of the inheritance

property. For example, the phalanx anti-missile gun mount is found on every aircraft

47



CONVENIONALNUCLEAR

FORSTLENTERPRISE •"NIMrrz"RE--

CARL VINSON

=T. ROOSEVELT

LINCOLN

qG. WASHINGTON

Figure 15: Example of the object-class CARRIER and its component

carrier. If parts or ammunition for the phalanx are required, the carrier hierarchy could be

searched using inheritance to find spare parts among the other carriers. However, the

phalanx is found on other ships as well. Without covering, the parts inventories of the other

ships could not be accessed from the carrier. This is because inheritance does not cross

hierarchies. Since the parts inventory can be accessed through the inheritance hierarchy of

each object class, accessing the hierarchy via covering allows access to the respective

inventories.

48



Ix

C40 0
00

IO
ago

L)

c

9.1
3.

49



B. COVERING APPLICATION TWO: MULTI-LEVEL SECURITY

A second application involves the access requirements of multi-level security

arrangements normally found in the military environment. OODM is ideal for supporting

the multi-level security policy and its associated access control requirements [Hsia9lb].

This is because OODM properties of inheritance and covering provide the necessary

mechanisms to preserve security constraints while still allowing access to the data.

All documents within the military are classified according to four primary security

classifications. These classifications, listed from lowest to highest classification, are

UNCLASSIFIED, CONFIDENTIAL, SECRET, and TOP SECRET. As the name implies,

there are no restrictions to unclassified documents. However, in order to access information

in documents other than unclassified, two conditions must be satisfied.

One, the person must possess a personal clearance level equal to or higher than the

clearance classification of the document. For example, a secret clearance satisfies this

requirement for secret and confidential documents. Two, the person must have a need-to-

know the information. Both conditions must be met before access can be granted. This is

known as compartmentalization. Therefore, simply possessing a secret clearance does not

entitle a person access to any secret or confidential document. Together, the clearance

level and the need-to-know policies govern access to classified information.

OODM, using inheritance, naturally supports the need-to-know policy and access

control requirements for unclassified data [Hsia9lb]. Within the object-class hierarchy,

there exists an owner/subclass relationship at each level. Attributes and methods (or

actions) are passed down to subclasses via the inheritance property. Restrictions on access

to data, namely the need-to-know policy, are manifested in the attributes and actions that

are passed to the subclass. This is analogous to the notion of the view in the relational

model, where the system filters the data to the user according to the parameters defined by

the owner. The advantage of OODM is that it avoids the "triggering mechanism" used to

maintain data integrity in other models.

50



While inheritance will suffice for meeting the access control requirements for

unclassified data, it is insufficient for classified data. This is due to the "read down/write

up" operations required in the multi-level security policy:

The read-down operation allows a user of the classified database to read all the
data whose classifications are either below or identical to the clearance of the user.
The write-up operation allows a user of classified data to write into the database a
piece of classified data whose classification is either above or identical to the
clearance of the user [Hsia9lc].

The read down operation may be thought of as mapping a cleared user to classified

data. Consider an object, called USER, with an attribute CLEARANCE LEVEL. A user

with a top-secret clearance level maps to all documents classified top-secret, secret and

confidential and unclassified; a secret user maps to all documents classified secret,

confidential and unclassified; a confidential user maps only to those documents

confidential or unclassified. Figure 17 illustrates this concept [Hsia9lc].

Similarly, a write-up covering maps cleared users for writing data into classified

documents. However, because of the nature of the write-up policy, the higher the clearance

level of the user, the narrower the mapping of the write-up operation. This peculiarity is due

to the intent behind the write-up operation. The write-up operation is constructed so that

high clearance users are not wasting time inserting data into databases at a lower

classification than their own. It is important to note that the write operation allows the user

to insert data into the data base, not write-over existing data. The write-up covering is

illustrated in Figure 18 [Hsia9lc].

Once the covering operation is defined (either read-down or write-up), the scope of

the covering determines the structure of the read-down hierarchy or write-up hierarchy.

The method that will perform either the read-down or write-up operations will be contained

in the object CLASSIFIED DATA. However, the read-down method can only be

performed in the read-down hierarchy, while the write-up method can only be performed

in the write-up hierarchy. The methods operating within the defined covering hierarchies

establish the access control requirements for the multi-level security policy.

51



I subsets of classified documents
with the top-secret classification)

(subsets of classified documents

with the secret classification)

An user profile with top-secret clearance subsets of classified documents

with the confidential classification)

"4{( subsets of classified documents

with the unclassified classification)

(subsets of classified documents
with the secret classification)

(subsets of classified documents

An user profile with secret clearance with the confidential classification)

(subsets of classified documents

with the unclassified classification)

( subsets of classified documents
with the confidential classification)

An user profile with confidential clearance /
(subsets of classified documents

with the unclassified classification)

An user profile with unclassified clearance -..- ( subsets of classified documents
with the unclassified classification)

Figure 17: Using covering to map the "Read-Down" principle

52



An user profile with top-secret clearance o- I subsets of classified documents
with the top-secret classification)

(subsets of classified documents

wihthe top-secret classification)
An user profile with secret clearance <.9wi

( subsets of classified documents

with the secret classification)

(subsets of classified documents
"with the top-secret classification)

(subsets of classified documents
An user profile with secret clearance with the secret classification)

(subsets of classified documents
with the confidential classification)

(subsets of classified documents
with the top-secret classification)}

(subsets of classified documents

with the secret classification)

An user profile with top-secret clearance (subsets of classified documents

with the confidential classification)

( subsets of classified documents
with the unclassified classification)

Figure 18: Using covering to map the "Write-Up" principle

53



C. SUMMARY

In conclusion, we have shown the utility and benefits of using covering as a means of

enhancing OODM. OODM provides unique modeling capabilities which can be directly

transferred into implementation. It has been shown that inheritance is a necessary but not a

sufficient property for the OODM. Covering allows access between inheritance hierarchies

within an object-oriented database. Without covering, access to objects is limited within the

hierarchy of that object. Together, inheritance and covering meet the necessary and

sufficient conditions to make the OODM a complete data model.

54



APPENDIX A. DATA STRUCTURES OF THE OODM

This appendix presents the data structures used in the object-oriented database and

their relationship with one another.

ods node

ocnuname

ocnnum-attr

ocnsupcds

ocncsub pls

ocn first supds

ocn-curr-supcls

ocn first subds

ocn-curr-subcls

ocn first attr

ocn curr attr

ocn next cis

Figure 19: The Object-Class Node Data Structure

55



oattr node
oaui name

ocls node oitp

oan next atir

oattr node
oan namw
oan type

ommnength

oaR 
next 

a tr

Figure 20, The Object-Attribute Node Data Structure

56



ods node

ocn firse supds
ocn-curT sUPClS

ojupsl node

Figur 21: e Ojc-ueds odnexDta Stuctur

ocn firt~su57



ods node

ocn fist subcls

ocn-curr-subds

odsubnoded

ocn~os nanasucl

ochi curr subcl

ods-node onnx-bd

ocn first subcls
ocn-curr subcls

Figure 2: The bject-Sbclass odeDt Srcue

ods-n de 0s -na58



APPENDIX B. SOURCE CODE

A. SOURCE CODE FOR THE CREATION OF A COVERING RELATION

/*
"* $Header o-cover.cv 0.0 93/08/31 15:10 mdbs Exp $
"* $Source: /u/mdbs/rich/CNTRIL'frILangIF/src/Obj/Lio-cover.cv $
"* $Log: o-cover.c,v $
"* Revision 0.0 93/08/31 15:10 mdbs
"* creation
"* Revision 1.0 93/08/31 20:55 mdbs
"* modified for INSERT statement accomplishment

"* This file contains the source code for the implementation of the covering
"* property. Its main purpose is to allow the user to define a covering relation
"* by naming it and defining it in terms of end points of the relation and the

"* scope of covering. This file also includes procedures which display the
"* covering choice menu, allow the displaying of existing covering constructs,
"* and displaying objects available for the construction of a covering construct.
"* Source code for using the covering constructs in the retieval of data can be

* found in the file obj..parser.c located in the Kms directory.

#include <stdio.h>
#include <licommdata.h>
#include <ool.h>
#include <oollildcl.h>
#include "flags.def"

59



/* This procedure displays the covering menu which allows for the display or
"* construction of covering relations and display the objects available for
"* covering.
,/

o-cover...menuo

char choice;
int num;
int stop; /*Boolean*/

#ifdef EnExFlag
printf("Enter o-cover-menu\n");
fflush(stdout);

#endif

system("clear"); /*Clear screen*/

ool-info-ptr = &(cuser-obj.ptr->ui_._type.lLool);
stop = FALSE;
while (stop = FALSE)

f
printf('NnEnter type of operation desiredt");
printf("\t(d) - Display Existing Covering Constructs~n");
printf('\(c) - Display Available Classesf");
printf("A(e) - Establish a Covering Construct Between Two Objects~n");
printf('t(x) - Return to previous menu~n");
ool-info-ptr->oi_answer = get ans(&num);

switch (ool-info._ptr->oi answer)
I
case 'd': /*View existing covering construct*/

o-read_coverf'fileO;
break;

case 'c' :/*View existing objects in current database*/
o-display-classesO;

break;
case 'e' /*Establish covering relation betwen two objects*/

o-get-objectso;
break;

case 'x': /*Exit menu*/
stop = TRUE;

60



break;
default: /*Ilncorrect choice*/

printfC'NnEffor - invalid operation selectedfn");
printfC'Please select a valid operation.\n");
break;

)/*Endj switch*/

)/*End while(stop==FALSE)*/

system('clear"); /*Clear screen*/
/*Returnf to previous menu*/

#ifdef EnEx~lag
printfQ"Exit o-cover-menukn');
fflush(stdout);

#endif

)/*End o-cover_menuo *

61



/*This procedure checks for existing covering constructs. Opens and reads

"<dbnane>.cover"*/
oread_coverjileO
I
char coverfile[FNLength + 3];
struct objLdbidnode *db-ptr,
FILE *Mid;

db-ptr = cuser..obj.ptr->uLIfitype.li ool.oi_curn db.cdi_db.dn-obj;
strcpy(coverfile, db..ptr->odn-name);
strcat(coverjfile, ".cover");
fid = fopen(coverjfile, "r");
if (fid = NULL) /*No covering files exist for current database*/

I
printf(\nNo covering constructs exists for this database\n");
)

else /*Covering file found for current database*/
I
o_readcover(fid); /*Read covering f'de*/
fclose(fid);

} /*End oreadcoverjileO*/

62



P This procedure reads the openned covering file and displays its contents to

* the user.
,/

o_read-cover(fid)

FILE *fid;

{
char name[21];
int cont= TRUE; /*BOOLEAN*/
int in-char,

while ((in-char = getc(fid)) != EOF) /*While not End of file*/

if (in-char !='@@') P* "@@" seperates records. Looking for end of record.*/

printf('N");
putchar(in_char);
fscanf(fid, "%s", name); /*Gets name of covering construct*/
printf("%-6s: ", name);
fscanf(fid, "%s", name); /*Gets covering object*/
printf("%-4s covers ", name);
fscanf(fid, "%s", name); /*Gets covered objects*/
printf("%-4s and includes the object(s): ", name);
)
while(cont) /*Met rest of objects in scope of covering relationship*/

{
fscanf(fid, "%s", name);
if (strcmp(name,"@@"))

{
printf("%s ", name);
}

else
{
cont = FALSE;
fscanf(fid, 'Nn");
}

} /*End while(cont)*/
cont = TRUE;

S/*End while*/
printf("•n");
} /*End oreadcovero*/

63



/P Provides the user with a list of objects available for creating a covering
* constuict. This is accomplished by pointing to the first object of the
* database and writing the name of the object to the file "cover" and then
* moving to the next object in the list. Once the list has been traveresed, the
* file is closed and then displayed to the screen. The file is deleted upon
* exiting the procedure.

o-display-classesO
{
struct obj.dbid-node *db.ptr;
struct ocls-node *cls-ptr;
struct osupclsnode *supcls_.ptr;
struct osubclsnode *subclsptr,
struct oatt _node *attrptr,
FILE *fid;

I*Point to first object of current database.*/
db.ptr = cuser.obj.ptr->ui-_type.li ool.oi_currdb.cdidb.dn-obj;
fid = fopen("cover","w");
fprintf(fid,"Database Name : %s\n",db..ptr->odn-name);/*Print name of database*/

/*Traverse list and write object names to the recieving file.*/
cls-ptr = dbkptr->odn_first_cls;
while (cls._ptr)

fprintf(fid, "CLASS %s\n", cls-ptr->ocn-name);
clsptr = clsptr->ocnnext_cls;
}

fclose(fid);
system("more cover"); /*Display list of objects.*/
system("rm cover"); /*Delete file*/
} /*End o.display-classesO*/

64



/* This procedure allows the user to define a covering relationship. It recieves
"* as input the name of the covering relation desired, the name of the covering
"* object and the name of the covered object. A search is conducted to verify that
"* the objects exist in the current database. If both objects exist, then a check
"* is made to verify that both objects are not in the same inheritance hierarchy.
"* If they are, the request is rejected. If the two objects are in seperate
"* hierarchies, then the procedure continues and the user is prompted for the
"* scope of the covering relation. Once the scope is defined, a procedure is
"* called to find the objects with in the scope of the covering and writes them
"* to the covering file for that database.

o-geLobjectsO

struct obj.dbid-node *db-ptr;
struct ocis_node *cls-pW
struct o.supcls..node *supcls.ptr,
struct ocls_node *from ptr,

*to-ptr,
*from_rel-ptr,
*to_rel-ptr,
*templ,
*cover-ptr,
*temp2;

char choice;
char from_obij[I];
char to.obj[11];
char cover-name[211; /*Name of covering construct*/
int found = FALSE; /*Boolean*/
int counter = 0;
int u_limit = 0; /*Upper limit for covering*/
int 1_limit = 0; /*Lower limit for covering*/
int num;

#ifdef EnExFlag
printf("Enter o-geLobjectsd\n");
fflush(stdout);

#endif

/*point to current database*/

db..ptr = cuser -obj.ptr->ui li_type.liool.oi currtdb.cdi_db.dn.obj;
cls-ptr = db_ptr->odnjfirsLcls; /*point to first in database.*/

65



/*Get desired object names and namne covering construct*/
printffCýnEnter the namne of the covering construct you wish to create~n");
printf("Use, all CAPITAL letters when entering nante.n");
scanf("%s". cover-namne);
printf('\nEnter the namne of the object you wish to cover FROMM");
printf("Use all CAPITAL letters when entering narne.Nn");
scanf("%s', from-.obj);
printf(N~iEnter the name of the object you wish to cover TOM");
printf("Use all CAPITAL letters when entering namneM\");
scanf("%s", to-obj);

/*earch for objects*/
while (!found && cls...ptr)
I
if ((strcmp(cls-ptr->ocn-namne, from-.obj)) =0)
I
found = TRUE; /*Object found*/
from.4flr = cls-ptr;

else

cls-.ptr = cls...ptr->ocn-next..cls;
)/*Enid if(strcmpo*/

)/*End while(noLfound)*/

if(!found)
I
printf("\n%s", from...obj);
printf(" does not exist.\n");
I

else
I
found = FALSE;
cls...ptr = db~ptr->odn_first_cls;
while (!found && cls...ptr)

if ((strcmp(cls-ptr->ocn~name, to-..obj)) ==0)

I
to-ptr = ClS-ptr,
cover--pt = opr
found = TRUE; /*Second object found*/

else

66



4
cls.ptr = cls-ptr->ocn-next-cls;
S /*End if(strcmpo)*/

S/*End while(not-found)*/

if (found)
4
printf('In%s", to-obj);
printf(" does not exist.n");
I

else
I

fromjrel._ptr = fromptr, /*Marks "from object" for relationship reference*/
to.jel-ptr = to-ptr, /*Marks "to object" for relationship reference*/

/*Check to see if objects are in same hierarchy*/

while(to.ptr)
4
tempi = to-pitr,

to..ptr = toptr->ocn first_supcls->osn.supcls;
I /*End while(toobj)*/

while(fromfptr)

temp2 = from-ptr,
fromptr = fromptr->ocnjfirst.supcls->osnsupcls;
I

if(templ != temp2)

printf(�"A covering relation is being created from ");
printf("%s", fromnobj);
printf(" to ");
printf("%s", to.obj);
printf('\nls this correct (y or n)? ");
scanf(" %c", &choice);

switch (choice)
4
case 'y': /*User accepts covering construct*/

/*Deternine number of levels above and below to object in the

67



hierarchy which will be included in the covering construct*/
printf("\nHow many levels above %s should the covering construct include?",

torel-.ptr->ocn~name);
scanf(" %d", &uqjimit);
printf("'NHow many levels below %s should the covering construct include? ",

tol..l.ptr->ocn.name);
scanf(" %d", &llimit);
counter =f Limit + u-limit;

/*Check and adjust counter for lower limit of hierarchy incase the

*lower limit exceeds the depth of the hierarchy.,/

to..ptr = torelptr,
while ((_Uimit > 0) && toptr->ocn first_subcls->osn.subcls)

4
to.ptr = to.ptr->ocn first_subcls->osn-subcls;
I limit--;
I

counter = counter - Llirnit;

/*Mark top object in covered part of hierarchy.*/

while((ujlimit > 0) && cover..ptr->ocn first.supcls->osn.supcls)
{
cover-ptr = cover-ptr->ocn first_.supcls->osn-supcls;
U_limit--;

} /*End while(u limit);

counter = counter - u_limit; *Adjusted counter for hierarchy size*/
if (cover_ptr)

I
fromjreLptr->covercls = coverz.ptr;
)

else
I
from..reLptr->cover_cls = temp 1;
coverptr = tempI;
) /*End if(cover)*/

/*Places objects of covering construct into file*/

o-coverlfile(cover.ptr, to-reLptr, from.rel-ptr, counter, cover--name);
printf('\nThe covering construct has been completed.\n");
break;

6

68



case W': /*User does not accept the covering construct*/
I
printf("kTnhe covering consuuct has been deleted.\n");
break
}

default:
I
printf('"Nlnvalid selection. Start again.\n");
}

) /*End switch(choice)*/
}

else
{
printf('Na%s", fromobj);
printf(" and ");
printf("%s", to-obj);
printf(" belong to the same inheritance hierarchy.n");
printf("A covering construct is not needed for these two objects.\n");
S/*End if(templ != temp2)*/

) /*End if (!found)*/
/*End if(not_found)*/

#ifdef EnExFlag
printf("Exit o...geLobjects~n");
fflush(stdout);
fflush(stdin);

#endif

} /*End o-get-objectso*/

69



/* This procedure traverses the hierarchy of the covered object and writes
"* to the covering file the objects which fall within the scope of the
"* covering construct.
*/
o-cover.file(cover.ptr, tojrel-ptr, fromr.rel-ptr, counter, coverjname)

struct ocis-node *torel..ptr,
*fromrel-ptr,
*cover.ptr

int counter,
char cover-name[21];

I
char coverjile[FNLength + 3];
FILE *fid;
struct obj.dbidnode *dbase.ptr;
struct ocls..node *temp.ptr,
struct o-subcls.node *follow;
int max = 0;
int leave = TRUE;
int start-up = TRUE; /*Allows counter to get into initial

loop at a max value.*/

temp..ptr = cover-ptr,
dbase.ptr - cuserobj-ptr->uijI._ftype.lLool.oi-currdb.cdidb.dn-obj;
strcpy(coverjide, dbase-ptr->odn-name); /*Gets name of database*/
strcat(cover_file, ".cover"); /*Creats name of covering file*/
fid = fopen(coverjde, "a");
fprintf(fid, "%s ", covername); /*Name of covering construct inserted*/
fprintf(fid, "%s ",from-yelptr->ocnjname); /*From object inserted*/
fprintf(fid, "%s " tojreLptr->ocn-name); /*To object inserted next in line*/
fromrrel-ptr->ocnmarked = TRUE;
to-reLptr->ocn.marked = TRUE;
max = counter,

/*The following code traverses the covered hierarchy and retrieves the names
*of the include objects. As each node is traversed, the "ocnrmarked" bit is
*set to signify that the node has already been searched and prevents another
*retrieval. The counter keeps track of how many levels have been traversed
*so as not to exceed the setting for the covering construct.

if (!temp..ptr->ocnmarked)

70



fprintf(fid, "%s ", tejnp...pt->ocnjiame);

follow = temnp..ptr->ocnjlirst subcls;
temnpjnr->ocnnmarked = TRUE; /*Marks object as visited*'/
temVp..p - tanp...pt->ocn first~subcls->osn~subcls;

while (((counter < max) 11 start-up) && (max != 0))
f

start...up = FALSE;
while(counter 1=0 && temp-.ptr && leave)

I
if (!temnp..pt->ocn_marked)

fprintf(fid, "%s ", temp...ptr->ocn-name);
temp~ptr->ocnk_marked = TRUE;
temp-..pbr = temp...ptr->ocn-first-subcls->osn..subcls;
if (temp..ptr)

follow = temp...ptr->ocn-flrst-supcls->osn supcls->ocnjfirst~subcls;

counter--;

else if (temp..ptr->ocn-first~subcls->osn-.subcls)

temnp~ptr = temp...ptr->ocn first_subcls->osit.subcls;
if (temnp-.ptr)

follow = temp-..pt~r->ocn-flrst-supcls->osn-supcls->ocnjlirst subcls;

counter--;

else

leave = FALSE;
)/*End~ if(!temnp..ptr->ocnjmarked)*

)/*Endj~ whileo*/

if (follow->osn next~subcls)

follow = follow->osn~next...subcls;
temp...ptr = follow->osn-subcls;
counter++,

71



start-up = TRUE,

ellse

if(follow->osn-.subcls)
I
follow = follow->osn-subcls->ocn-first-supcls->osn-supcls->

ocn_first_supcls->osn...supcls->ocnflirst-subcls;
tenp-ptr =follow->osn-subcls;

counter = counter + 2;

) /*End if(foilow)*I
leave = TRUE;
) /*Endj while(counter <= max)*/

fcose(fid);

/*Clear marked bits in covered hierarchy*/
temp...pt = dbase-ptr->odn-first-cls;
while (temnp..ptr)

temp..pir->ocn-marked = FALSE;
temp-...p= temp-ptr->ocfl next-cls;

)/*End ocpover~ffleO*/

72



B. SOURCE CODE FOR QUERYING VIA THE COVERING CONSTRUCT

P*
"* $Header- obj..parser.c,v 0.0 92/11/29 13:53 ksh Exp $
"* $Source: Iu/midbs/ricbICNTRLlflLangIF/srcIObjIKrns/objjparscr.c~v $
"* $Los: obj-parser.c,v $
"* Revision 0.0 92/11/29 13:53 ksh
"* creation

#include <stdio.h>
#include <string.h>

#include <Iicommidata~h>
#include <ool.h>
#include 'zooL~lldcl.h>
#include "flags.def'

parse-..oo~requestO
I

char *ooLreq,
*new-ooL req, /*Added to implement covering.

Replaced *001 req after assignment*/
temp~str[InputColsJ,
coverjtemp[InputCols],
condition_str[InputCols],
*check-coverO;

int 1,

in-..char,
covered,
qualified-attr = FALSE;

struct. obj-kms-info *kjs~ptp,
*objjkms-infbal1oc);

struct ocls_node *requested-class,
*find-classO;

FILE *tempffile;

#ifdef EnExFlag
printf("Enter parse-ool-irequesftn");

#endif

73



1* allocate and initialize first objkznmjnfo struct ~
kms-ptr = obj-kmns-infalloco;
ooLinfo...ptr->&ikms-lataic~o-k-ms = krns..ptr:,

ks-jptr->oJd-next = NULL;
Strcpy(kms-jptr->okd-tgtscls 1 .tcLnarne, BLANK);
strcpy(kms-.ptr->okij-gtclsl.comunon-attw, "OBJECfl"); 1* default commnon attr *
kms-ptr->oki-tgt clsl.tc~jtg-attrs = NULL;
kms..ptr->okd~tgt-clsl.tci~conditions =NUJLL,
strcpy(kmis...ptr->okldtgt-cls2.tcLnamfe, BLANK);
strcpy(kms-ptr->okd-tgt..cls2.commnon attr, "OBJECITD'); /* default commnon attr ~
kns-ptr->okd-gtscls2.tcLtgt-attrs = NULL;
kms...ptr->okldtgt-cls2.tci-conditions =NULL;

1* pointer to process actual ool request */
ooL-req = o-currj-eq-ptr->ri-objseq->ori-req;

in-char = strncmp(ool~req, "(", 1); /* Checks to see if the request
involves a covering cons.ac*

strcpy(cover-temp, ooLreq);
new-ool-req = coverý-temp;
if (in~cbar == 0)

/* Sends request to check_coverO to verify if it is a valid
* covering request */

new-ooLreq =checkscover(new...oolyreq);

else
I
new-ooLreq =ooLreq;

) /*End if (char = 0*

strcpy(temp...str, BLANK); /* temp string for tokens *

i = 0;
while (*ncw-ool req !"

if (*new-oo1 req=

temp-str[i] = W
strcpy(kms...ptr->okO-tgtclsl1.tci~name, temp....str);
requested~class = flnd-class(ool~nfo...ptr->oLcurr(-db.

74



cdi-db-dn..obj->odn-first-cis, temp~str);

strcpy(temp-str, BLANK);
i= 0;

else
I
temp-str[i] = *new-ool~req;

+i;
++new...ooLreq;

tep ril N'

i = 0;
if (!strcmp(temp...str, "RETRIEVE"))

ool~nfo-ptr->oi-operation = ExecRetReq;
else if (!strcmp(temp~str, "INSERT"))

ooL~info-ptr->oioperation = ExeclnsReq;
else

/* other operations are not implemented yet.
if (!strcmp(temp-.str, "DELETE"))

ool-info...ptr->oi...operation = ExecDelReq;
else if (!strcmp(temp-.str, "UPDATE"))

ool~nfo-.ptr->oi opperation = ExecUpdReq; ~

ool_info-ptr-7-oioperation = ExecNoReq;
return;

strcpy(temp-str, BLANK);

for (;(*new...ool-req =' '); -i-inew-ool-req)
/* eat the blanks in between *

switch (ool-info..ptr->oi operation)

case ExecRetReq:
while (*new ool-req != " && *new_ool-req !=,'

if (*new ool-req

temp...str[i] = W
strcpy(kms-ptr->okictgt~cisi .comnion~attn, temp..str);

75



find-component class(kms..ptr, temnp..str, requested class);
strcpy(temp-str, BLANK);
qualified..attr = TRUE;
i = 0;

else

temp~str~i] = *new-ool-req;
+i;

++new.-ool-req;

tenp-strf i] = W

while (strcmnp(temp...str, "IF))

insert-target-atwr(knis..jfr, temp-..str, requested~class,
qualified-atir);

strcpy(temp...str, BLANK);
qualified-attr = FALSE;
for (; (*new ool req == '' 11 *new oPol req =');++new-ool-req)

1* eat blanks or commas */

if (*new-ool-req =- WO) /* end of request is reached *

break;

i = 0;
while (*new 001 req != && *inewool-req !

if (*new 001 req =a'

temp-str~i) = Wf;

find_comrponenLclass(kms..inr, temp-.str, requested-class);
strcpy(temp...str, BLANK);
qualified-attr = TRUE;
i = 0;

else

temp-str[i] = *new 001 -req;

76



4+new_001_req;

temp...str[i] = W
)/* end while "EP" && BLANK ~

if (I strcmnp(temp...str, IF')) /* condition part begins *

strcpy(temp..str, BLANK);
for (; (*newj-ooreq ==1); ++new-joolreq)

/* eat blanks *
i =0;
while (*new...ooltjeq != W0) /* while not end of request *

if (*new 001 req=

temp~str[i] = W0;
strcpy(kms..ptr->okldtgtslsl .common-attr, temp...str);
findsomponent_,class(kms~ptr, temp_..str, requested~class);
strcpy(temp-str, BLANK);
qualified-attr = TRUE;
i= 0;

else if (*new ooL req = && conjunct-.exist(new-ool-req))

temp-str[i] ='0W;

insert-condition(kms-ptr, temp...str,
requested-plass, qualified-attr);

-H-new-ooLjeq; ++new-ool-req; ++new...ooLreq;
i =0;
strcpy(temp-str, BLANK);
qualified-attr = FALSE;

else

temp-str[i] = *new_ool~req;

-Hn-nwool-req;
}/* end while */

I* one more insert for the last condition *

77



temp..str[iJ = V
insert-condition(kmsptr, temp...str,

requested-class, qualified attr);
)/* end if (!strcmnp(temp...str, "IF")) *

break;

case ExeclnsReq:
/* create .insertjfile by parsing INSERT request *
tempjfile = fopen(".insert-flle", "tw");
fprintf(temp-file, "%s\n@@\,n%s\n",

ooLinfo-ptr->oi-currý-db.cdi-dbname,
kms-ptr->okijtgtslsl .tcui-ame);

while (*new ooL req != WO)

if (*jne, Ool-req != )

if (*jiew-ooL req=

temp-str[iI = W
fprintf(tempjile, "%s\t', temp-str);
i =0;
strcpy(temp-str, BLANK);

else

temp-str[i] = 001 oolreq;

++new-ool-req;

11* end while */

tenip~str[i] = W0;

fclose(temp...file);

break;

case ExecDelReq:

break;

78



case ExecUpdReq:
break;

default:
break;

) * end switch ~

#ifdef EnExFlag
printf("Exit parse...ool-requcst~n");

1* est-parser(kms-.ptr); *
#endif

I/* end parse...ool-request *

79



/* This procedure processes a request which involves a covering construct.
"* It first checks to see if a covering file exists for this database. If
"* no file exists, the procedure is terminated. If a file exists, a check
"* is made to see if there is a covering construct which has the same name
"* as the request. It then verifies that the covering object is the same
"* and if the requested object falls within the scope of the covering
"* construct. The source code for the creation of covering constructs is
"* located in the file o_cover.c, located in the Lil directory.
*/

char *check-cover(req-ptr)

char *req.ptr,

{
char temp[InputCols],

coverjname[InputCols],
fromrnobj[InputCols],
to-obj[InputCols],
cover_file[FNLength + 3];

char *str-chk,
*stringl,
*sting2,
*string3,

*string4,
*string5 = NULL;

struct obj-dbidnode *dbpr;
FILE *fid;

db._ptr = cuser..obj-ptr->ui-litype.lLool.oi curr db.cdidb.dn-obj;
strcpy(cover.file, db..ptr->odn.name);
strcat(coverjfile, ".cover"); /*Gets name of covering file for

current database*/
strchk = req-ptr;
fid = fopen (cover-file, "r');
if (fid - NULL) /*No file exists for current database*/

I
printf("\aNo covering file exists for this database.n");
printf("Query refused.\nMn');
/* fclose(fid);*/
return strschk;
}

else

80



/*Get covering construct name and name of covering object*/

stringl = strtok(str._chk, "(.)"); /*Get covering object name*/
string2 = strtok(NULL, "(.)"); /*Get covering construct name*/
string3 = strtok(NULL, "O") /*Get rest of querry*/
++string3;
strcpy(temp, string3);
string4 = temp;
string5 = strtok(string4, "."); /*Get requested object name*/

while (fscanf(fid, "%s", cover..name) != EOF)
{

/*If covering construct name is found*/
if (!surcmp(cover-name, string2))

{
fscanf(fid, "%s", fromobj);

/*If covering object is found*/

if (!strcmp(from.obj, string 1))
I
fscanf(fid, "%s", to..obj);

/*Scan file until the end of covering construct is reached*/

while (strcmp(to.obj,"@@"))
I

/*If requested object is within the scope of
the covering construct*/

if (!strcmp(to.obj, string5))
{
fclose(fid);
return string3; /*Return request to be retrieved*/
}

else
{
fscanf(fid, `%s", to-obj);

/ I*End strcmp(string5)*/
/ I*End while(fscanf "@@h)*I

/ I*End if(strcmp string 1)*/
) /*End if(strcmp string2)*/

81



fscanf(fid, '\N");
} /*End while(fscanf != EOF)*/

} /*End if(fid ==NULL*/
fclose(fid);

/*No covering construct was found matching the query.*/

printf(' .nNo covering construct exists for this query.n"),
printf("•nQuery refused.\nin");
return str.'_chk;

} /*End check-coverO*/

82



C. SOURCE CODE FOR THE OBJECTID GENERATOR

/

/* This function gets the time of day (GMT) from the system, and parses it /
/* into an 8 digit number, which is then used as an objectlD. This function*/
/* is called by mss_loado and returns a character string. *//

char *getobjectid0
I
timet mytime = 0;
long int years;
long int remainder,
long int yearseconds;
long mit julianday;
long int dayremainder;
long int dayseconds;
long int hourseconds;
long int minuteseconds;
long int objectid;
char today;
mit microseconds;
int hours;
int minuteremainder,
int minutes;
int seconds;
int i = 0;
intj = 0;
long int temp;
int inLarray[9];
char temp-array[9];

struct timeval tp;

struct timeval tzp;

mytime = gettimeofday(&tp, &tzp);

/*Total secs mod # secs in one year = total years since 1970*"

83



years = tp.tv.sec / 31536000;

/*computes the elapsed years*/
yearseconds = years * 31536000;, /* 23 years * # sec/year */
remainder = tp.tvsec - yearseconds;
julianday = remainder / 86400;

/*computes the elapsed days (julian day) */
dayseconds = julianday * 86400; /* julianday * 86400 sec/year*/
dayremainder = tp.tv-sec - (yearseconds + dayseconds);
hours = dayremainder / 3600; /* leftover day in seconds */

/*computes the elapsed hours*/
hourseconds = hours * 3600;
minuteremainder = tp.tvsec - (yearseconds + dayseconds + hourseconds);
minutes= minuteremainder / 60;
minuteseconds = minutes * 60;

/*computes the elapsed seconds*/
seconds = tp.tvsec - (yearseconds + dayseconds +

hourseconds + minuteseconds);

/*computes the elapsed milliseconds*/
microseconds = tp.tvusec / 10000;

/*Set variable temp to format needed for objectid*/
temp = hours * 1000000;
temp = temp + (minutes * 10000);
temp = temp + (seconds * 100);
temp - temp + microseconds;

/*Read objectid into integer array*/
inLarray[0] = hours / 10;
inLarray[l] = hours % 10;
inmrarray[21 = minutes / 10;
inLarray[3] = minutes % 10;
intarray[4] = seconds / 10;
inLarray[5] = seconds % 10;
in..array[61 = microseconds / 10;
intmarray[7] = microseconds % 10;

84



i-Mi0;,

/*Convert integer string into character string*/
while (i < 8)

switch(intarray[i])

I
case (1): { temparray[i] = '1'; break;)
case (2): ( temparray[i] - 21'; break;)
case (3): 4 temp_array[i] =3'; break;)
case (4): 4 temp-array[i] = '4'; break;)
case (5): { temp-array[i] = '5'; break;)
case (6): 4 temp-array[i] = '6'; break;)
case (7): 4 temp-array[i] = "7'; break;)
case (8): { temparray[i] = '8'; break;)
case (9): 4 temp-array[i] = '9'; break;)
default : (temparray[i] = '0'; break;))

i++;

for (j =0; j < 10000; j++); /*Delays program to prevent duplicate object ids*/

return tempwarray;
P/* end get._objectid function */

85



APPENDIX C. TUTORIAL FOR THE OBJECT-
ORIENTED INTERFACE ON MDBS

The purpose of this appendix is to provide the user with a brief tutorial of the Object-

Oriented Interface on MDBS. Snapshots of the system output, along with a brief

description of what is occurring will be provided to the user. Entries made by the user are

depicted in bold print.

A. ACCESSING THE OBJECT-ORIENTED INTERFACE

To access the Object-Oriented Interface, the user must first log on to DB3, using the

CS4322 account. Once the user has entered the account, he or she must go to the directory:

mdbs/rich/run. To start mdbs, the user must verify the following: (1) There are no mdbs

processes running. This is accomplished by typing "ps -ax" at the command line. If any

mdbs processes are running, type the command "stop.cmd" and the processes will be

terminated. (2) Verify there is no data on the disk from a previous session. To verify the

absence of data, the user should type "pry" at the command prompt. This should display a

line of zeros. If text appears, the user should press "CNTRL-c" to exit and then enter "zero"

at the command prompt After the zeroing process is complete, the user is required to enter

"run" at the command prompt. This will start the Mulfilingual/Multimodel system. After

the system is loaded, the screen bellow will appear.

Select an operation:

(a) - Execute the attribute-based/ABDL interface
(r) - Execute the relational/SQL interface
(h) - Execute the hierarchical/DL/l interface
(n) - Execute the network/CODASYL interface
(f) - Execute the functional/DAPLEX interface
(o) - Execute the object-oriented/OOL interface
(x) - Exit to the operating system

Select-> o

86



The user should verify that twelve processes (six controllers and six backends)are on-line

by running the "ps -ax" command in a separate window. If there are not twelve processes

running, select "x" from the menu. When the system has shut down, run the "stop.cmd"

again and restart the system. Repeat this procedure until twelve processes are running.

Note: The user does not need to zero the database because no data has been loaded to the

disk. After the system is successfully running with twelve processes, select "o" from the

menu to enter the object-oriented interface.

B. SELECTING A DATABASE

After selecting the Object-Oriented Interface, the user will be presented with the

following menu for processing a database.

Enter type of operation desired
(1) - load new database
(p) - process existing database
(x) - return to the MLDS/MDBS system menu

Action --- >

At this point, the user has two options. Selecting "I" allows the user to load a new

database. This is done whenever the interface is first used or when additional databases are

required. M2 DBMS allows the user to run multiple databases simultaneously, although

access is restricted to one database at a time. Selecting "p" allows the user to process a

database which has been previously loaded during the current session. Selecting "x" returns

the user to the previous menu. Since this is the beginning of a new session, we will chose

"I" and load a new database. This selection produces the menu display below:

87



Enter name of database --- >FAMILY

The user is prompted for the name of the database which is to be loaded. If the user

is loading the database from disk, the name entered must match the name of the database

in the file. This is also necessary for referencing template and descriptor files which will be

discussed later in this tutorial.

After the user enters the name of the database, the menu changes as shown below.

This menu request the mode of input for the schema. The user may select input from a file

or may choose to enter the schema manually from the screen. In this tutorial we will select

"f" and read the input from a text file.

Enter mode of input desired
(f) - read in a group of creates from a file
(t) - read in creates from the terminal
(x) - return to the main menu

Action --- >

Selecting "f' will cause the system to prompt the user for the name of the file. For

loading the schema, the convention used is <filename>ooldb. For this tutorial we will use

the file FAMILYooldb. Below is an example of the screen display for this procedure.

Figure 23 shows the text file, FAMILYooldb, for the FAMILY database schema.

W what is the name of the CREATE/QUERY file --- >FAMILYooldb

The user is then asked if he or she desires to use the existing descriptor file. The screen

display is shown below. The contents of the descriptor file for the FAMILY database is

shown in Figure 24. The earlier reference to the importance of naming the database

88



CLASS GEORGE
SUBCLASS MIKE
SUBCLASS PAUL

OBJECTID INTEGER
FIRSTN CHAR 10
LASTh CHAR 10
SALARY INTEGER

CLASS BERTHA
SUBCLASS SUE
SUBCLASS JOE

OBJECTID INTEGER
FIRSTN CHAR 10
LASTN CHAR 10
SALARY INTEGER

CLASS MIKE
SUPCIASS GEORGE

CLASS PAUL
SUPCLASS GEORGE
SUBCLASS PAULLA

CLASS SUE
SUPCLASS BERTHA

CLASS JOE
SUPCLASS BERTHA
SUBCLASS TODD

CLASSPAULLA
SUPCLASS PAUL
SUBCLASS ANDY
SUBCLASS SAMANTHA

CLASS TODD
SUPCLASS JOE

CLASS ANDY
SUPCLASS PAULLA

CLASS SAMANTHA
SUPCLASS PAULLA

$

Figure 23: The Schema Text File for the Family Database: FAMILYooldb

89



correctly comes into play here. If the user is not consistent in the naming of his or her

database, the established descriptor file will not be used.

Would you like to use the existing descriptor file, FAMILY.d,
for indexing information?(y or n)

Action --- >y

If the user replies to the above query with "n", the database schema will not load and

the previous menu will be re-displayed. If the user responds with "y", the schema will be

loaded using the current descriptor file. NOTE: If the schema file has been modified, the

user must delete the ".d" and the ".t" files associated with that database. These files are

found in the UserFiles subdirectory of the MDBS directory. After selecting "y", the menu

shown below will be re-displayed, giving the user the option of loading an additional

database or processing a previously loaded database. In our example we will process the

existing database FAMILY.

Enter type of operation desired
(1) - load new database
(p) - process existing database
(x) - return to the MLDS/MDBS system menu

Action --- > p

Enter name of database ---- >FAMILY

C. LOADING DATA INTO THE DATABASE

After selecting a database to process, the user is ready to proceed to the next menu.

The menu shown below provides the user with all the functions needed to manipulate the

data.We will review each item in turn.

90



DESCRIPTOR FILE: FAMILY.d

FAMILY
TEMPb s
I Georg
IBertha
IMike
I Paul

Sue
IJoe
I!Paulin
I Todd
I Andy
ISamantha
S~mm
$

TEMPLATE FILE: FAMILY.t

FAMILY 2
10 Sue
5 TEMP s
George OBJECTID i
TEMPs 2
OBJECTID i Joe
FIRSTN s TEMPs
LASTN s OBJECID i
SALARY i 2
5 Paula
Bertha TEMPs
TEMP s OBJECMTID i
OBJECTID i 2
FIRSTN s Todd
LASTN s TEMPs
SALARY i OBJECFID i
2 2
Mike Andy
TEMPs TEMPs
OBJECT'ID i OBJECIID i
2 2
Paul Samantha
TEMP s TEMPs
OBJECTnID i OBJECTID i

Figure 24: Descriptor and Template Files for the FAMILY Database

91



Enter your choice
(d) - display schema
(c) - create covering relation between two objects
(m) - mass load from a data file
(f) - read in a group of queries from a file
(t) - read in queries from the terminal
(x) - return to previous menu

Action -- >

Before we manipulate records, we must first load the raw data into the database. This

is done by selecting "mi" from the menu above. The system will then ask the user for the

name of the record file. As with the schema, the data file maintains the same naming

conventions. The name of the data file is <filenamer>. In our case we will use the file

FAMILY.r. The screen display for this sequence is shown below. Figure 25 shows the

contents of the FAMILY.r record file. Figure 26 shows the screen display as records are

loaded into the database. Note that the object-ids in the record file do not match the object-

ids in the screen display. This is because the Object-Oriented interface creates its own

object-ids which are generated from the system clock. The object-ids in the record file are

used as a place holder to ensure the proper matching of attributes in the template file and

the record file.

Enter name of record file --- >FAMILY.r

Once the mass load procedure is complete, the menu below will appear. We have seen

this menu before. The options for this menu remain the same. This gives the user the

opportunity to switch to another database in order to mass load or manipulate records. We

will select option "p" and continue processing the FAMILY database.

92



FAMILY

GEORGE
1 George Jones 50000

BERTHA
2 Bertha Smith 75000

3 Mike Jones 32000

PAUL
4 Paul Jones 45000

SUE
5 Sue Smith 30000

JOE
6 Joe Smith 18000

PAULLA
7 Paulla Jones 100000

TODD
8 Todd Smith 200

ANDY
10 Andy Jones 0

SAMANTHA
11 Samantha Jones 0
$

NOTE: FAMILY indicates the name of the database which is associated with this
record file. The "@" indicates an end of record. The "$" indicates end of file. The
capitalized names are the names of each object class. The attribute values are listed on
the second line of each record. For this database, they are from left to right object-id,
first name, last name, salary.

Figure 25: Record File for the FAMILY Database: FAMILY.r

93



[INSERT (<TEMP, George>, <OBJECTID, 03065375>, <FIRSTN, George>, <LASTN,
Jones>, <SALARY, 50000>)]

[INSERT (<TEMP, Bertha>, <OBJECID, 03065379>, <FIRSTN, Bertha>, <LASTN,
Smith>, <SALARY, 75000>)]

[INSERT (<TEMP, George>, <OBJECID, 03065380>, <FIRSTN, Mike>, <LASTN, Jones>,
<SALARY, 32000>)]

[INSERT (<TEMP, Mike>, <OBJECTID, 03065380>)]
[INSERT (<TEMP, George>, <OBJECTID, 03065382>, <FIRSTN, Paul>, <LASTN, Jones>,

<SALARY, 45000>)]
[INSERT (<TEMP, Paul>, <OBJECTID, 03065382>)]
[INSERT (<TEMP, Bertha>, <OBJECTID, 03065385>, <FIRSTN, Sue>, <LASTN, Smith>,

<SALARY, 30000>)]
[INSERT (<TEMP, Sue>, <OBJECTID, 03065385>)]
[INSERT (<TEMP, Bertha>, <OBJECTID, 03065387>, <FIRSTN, Joe>, <LASTN, Smith>,

<SALARY, 18000>)]
[INSERT (<TEMP, Joe>, <OBJECTID, 03065387>)]
[INSERT (<TEMP, George>, <OBJECTID, 03065390>, <FIRSTN, Paulla>, <LASTN,

Jones>, <SALARY, 100000>)]
[INSERT (<TEMP, Paul>, <OBJECTID, 03065390>)]
[INSERT (<TEMP, Paulla>, <OBJECTID, 03065390>)]
[INSERT (<TEMP, Bertha>, <OBJECTID, 03065394>, <FIRSTN, Todd>, <LASTN, Smith>,

<SALARY, 200>)]
[INSERT (<TEMP, Joe>, <OBJECTID, 03065394>)]
[INSERT (<TEMP, Todd>, <OBJECTID, 03065394>)]
[INSERT (<TEMP, George>, <OBJECTID, 03065397>, <FIRSTN, Andy>, <LASTN,

Jones>, <SALARY, 0>)]
[INSERT (<TEMP, Paul>, <OBJECTD, 03065397>)]
[INSERT (<TEMP, Paulla>, <OBJECTID, 03065397>)]
[INSERT (<TEMP, Andy>, <OBJECTID, 03065397>)]
[INSERT (<TEMP, George>, <OBJECTID, 03065399>, <FIRSTN, Samantha>, <LASTN,

Jones>, <SALARY, 0>)]
[INSERT (<TEMP, Paul>, <OBJECTID, 03065399>)]
[INSERT (<TEMP, Paulla>, <OBJECTID, 03065399>)]
[INSERT (<TEMP, Samantha>, <OBJECTID, 03065399>)]

Figure 26: Screen Display of the File FAMILY.r Being Loaded Into the Database

94



Enter type of operation desired
(1) - load new database
(p) - process existing database
(x) - return to the MLDS/MDBS system menu

Action -- > p

Enter name of database -- >FAMILY

D. CREATING A COVERING RELATION

The Object-Oriented database now has the ability to access data via a covering

relation. In this section we will create covering consutucts between object classes, allowing

the user access to the data in one object-class through another object class.

Having chosen to continue processing the FAMILY database, the record

manipulation menu is redisplayed. As seen below, we will select option "c" in order to

create one or more covering relationships.

Enter your choice
(d) - display schema
(c) - create covering relation between two objects
(m) - mass load from a data file
(f) - read in a group of queries from a file
(t) - read in queries from the terminal
(x) - return to previous menu

Action -- >

Having selected the covering option, the screen will clear and the covering menu will

be displayed as shown below. The covering menu gives the user several options, including:

displaying existing covering constructs, displaying classes available within the current

95



database for use in creating a covering construct, and establishing a covering construct

between two objects. We will review each option in turn.

Enter type of operation desired
(d) - Display Existing Covering Constructs
(c) - Display Available Classes
(e) - Establish a Covering Construct Between Two Objects
(x) - Return to previous menu

Action -- >

The first option in the covering menu allows the user to display any existing covering

constructs. When displaying covering constructs, the system reads the covering file

associated with each database. If the database has been newly created, no covering file for

that database should exist. Covering files are deleted when the users exits from the

Multimodel/Multilingual system. In other words, the covering file exists only during the

duration of the current session. If we select "d" when no covering file exists, we will see

the reply shown below. After we create a covering construct, we will return to this menu

selection and show a display of the existing covering constructs.

No covering constructs exists for this database

Enter type of operation desired
(d) - Display Existing Covering Constructs
(c) - Display Available Classes
(e) - Establish a Covering Construct Between Two Objects
(x) - Return to previous menu

Action -- >

Before creating a covering relation, it is sometimes useful to see which objects are

available in the database. Selecting "c" displays all the objects available in the current

database. Since spelling the object's name is important, the user should display the

96



available object classes prior to creating a covering relationship. The screen display is

shown below.

Database Name: FAMILY
CLASS GEORGE
CLASS BERTHA
CLASS MIKE
CLASS PAUL
CLASS SUE
CLASS JOE
CLASS PAULLA
CLASS TODD
CLASS ANDY
CLASS SAMANTHA

Enter type of operation desired
(d) - Display Existing Covering Constructs
(c) - Display Available Classes
(e) - Establish a Covering Construct Between Two Objects
(x) - Return to previous menu

Action -- >

The list of available objects is listed in the order they appear in the link list in memory.

These objects are not grouped by class, so the possibility exists that two objects from the

same class may be chosen. This is not a problem because the procedure that creates the

covering construct will not allow two objects in the same object hierarchy to be joined in a

covering relationship. If this happens, the system will notify the user that this is the case,

and the user can try again.

Having displayed the list of objects available in the database, we can now create a

covering relation. To refresh the reader, covering is the mapping of an object in one

hierarchy to an object class in another hierarchy. The covered object class can consist of

one object, several related objects, or an entire object hierarchy. When creating a covering

97



relation between two objects in the Object-Oriented Interface, the user can define the scope

of the relation by setting the number of objects above and below the covered object within

its hierarchy.

To create a covering relation, the user selects "e" from the menu shown above. The

user is then prompted to enter the name of the covering relation. This naming convention

allows the user to define more than one covering construct for each object or define the

same type of covering construct for different objects. After naming the relation, the user is

prompted for the name of the covering object and then the name of the object to be covered.

Having received this information, the system finds the target objects. If either of the objects

is not found, the system informs the user of the situation and returns to the covering menu.

If the system finds both objects, it performs a check to see if the two objects are in the same

object-class hierarchy. If both objects are in the same hierarchy, the system informs the user

that this is the case and returns the user to the covering menu. This is because covering only

applies between two objects residing in different hierarchies.

If the above conditions are met, the system will prompt the user for verification. If the

user answers "yes", the covering process continues. If "no" is selected, the covering process

is terminated and the covering menu returns. Having made a selection, the user is prompted

to define the scope of the covering relationship. The user is prompted for the number of

levels above and below the covered object. After the system receives this input, it writes

the name of the relation, the covering object's name, and the covered object's name to the

covering file associated with the current database. Once these names are written to the

covering file, the system searches the covering hierarchy for objects within the declared

scope of the covering relation. As each covered object is found, the system writes the

object's name to the covering file. Upon completion of the search, the covering file is

closed and the user is returned to the covering menu. The screen display of the sequence of

events mentioned above is shown below.

98



Enter the name of the covering construct you wish to create
Use all CAPITAL letters when entering name.
IN-LAW

Enter the name of the object you wish to cover FROM.
Use all CAPITAL letters when entering name.
TODD

Enter the name of the object you wish to cover TO.
Use all CAPITAL letters when entering name.
PAULLA

A covering relation is being created from TODD to PAULLA
Is this correct (y or n)? y

How many levels above PAULLA should the covering construct include? 1

How many levels below PAULLA should the covering construct include? 2

The covering construct has been completed.

Enter type of operation desired
(d) - Display Existing Covering Constructs
(c) - Display Available Classes
(e) - Establish a Covering Construct Between Two Objects
(x) - Return to previous menu

Action--- >

Once a covering construct is created, we can select "d" from the covering menu and

display the existing covering constructs. The example below shows a covering file with two

covering constructs. Note: the BUSINESS covering construct contains no additional

objects. This is because the scope of the covering relation was defined to be zero above and

zero below the covered object. Figure 14, in Chapter IV of this thesis, shows the contents

of the covering file, FAMILY.cover. The covering file for each database is maintained in

the mdbs/rich/run directory during the duration of the sessions.

99



IN-LAW : TODD covers PAULLA and includes the object(s): PAUL ANDY
SAMANTHA
BUSINESS : SAMANTHA covers JOE and includes the object(s):

The covering construct has been completed.
Enter type of operation desired

(d) - Display Existing Covering Constructs
(c) - Display Available Classes
(e) - Establish a Covering Construct Between Two Objects
(x) - Return to previous menu

Action --- >

E. PERFORMING QUERIES ON THE OBJECT-ORIENTED DATABASE

Having completed the creation of a covering construct, we can exit the covering menu

by selecting "x" and return to the database operation menu shown below.

Enter your choice
(d) - display schema
(c) - create covering relation between two objects
(m) - mass load from a data file
(f) - read in a group of queries from a file
(t) - read in queries from the terminal
(x) - return to previous menu

Action -- >

The interface allows the user to perform queries on data in two ways.The user can

load a list of queries from a text file by selecting "f', or enter queries manually from the

terminal by selecting "t". Both methods use the same format for listing queries. In this

tutorial we will load a query file by selecting "F'. The user is prompted for the file name.

The file name for the queries can be any name. The query file for this example is

FAMILYoolreq. The screen display for this sequence of events is shown below. The

100



contents of FAMILYoohreq is shown in Figure 27. The screen display of the query list is

shown in Figure 28.

I Action --- >f

What is the name of the CREATE/QUERY file --- >FAMILYoolreq

Having loaded a list of queries into the system, the user can select a query for

retrieval. We will select query number "1". The screen display for this query is shown

below. It is important to note that a query on an object not only retrieves the data for that

object but all its subclasses in the inheritance hierarchy. If we perform query "I I" in Figure

28, only the data for SAMANTHA will be retrieve because this object has no subclasses.

Action --- >1

SALARY ILASTN IFIRSTN IOBJECTID I

50000 IJones IGeorge 103065375 1
32000 Jones IMike 103065380
45000 Jones IPaul 103065382 1
100000 [Jones !Paulla 103065390 1
0 IJones IAndy 103065397 1
0 IJones ISamantha 103065399 1

Pick the number or letter of the action desired
(num) - execute one of the preceding queries
(d) - redisplay the file of queries
(x) - return to the previous menu

Action--- >

101



/File Name: FAMILYoolreq

gcorge.retrievc objectid, firstn, lastn, salary

bertharetrieve objectid, firstn, lastn, salary

mike.rctrieve objectid, firstn, lastn

paul.retrievc objectid, flrstn, lastn

sue.retrieve objectid, flrstn, lastn

joe.retrieve objectid, firstn, lastn

paulla.retrieve objectid, firstn, lastn

todd.retrieve objectid, flrstn, lastn

(paul.in-law) sue.retrieve objectid, flrstn, lastn

andy.retrieve objectid, firstn, lastn

samantha~retrieve objectid, flrstn, lastn

(todd.in-law) paulla.retrieve firstn, lastn

(saniantha.business) joe.retrieve objectid, firstn, lastn if firstn ='Joe'

(todd.in-law) andy.retrieve objectid, firstni, lastn

Figure 27: Request File for the FAMILY Database: FAMILYoolreq

102

____________________________~~. .___.__....____...___.....____..___....____..___...



1 georgc.retrieve objectid, firstn, lastn, salary

2 bertha~retrieve objectid, firstn, lastn, salary

3 inike.retrieve objectid, firstn, lastn

4 paul.retrieve objectid, firstn, lastni

5 sue.retrieve objectid, firstn, lastn

6 joe.retrieve objectid, firstn, lastn

7 paulla.retrieve objectid, firstn, lastni

8 todd.retrieve objectid, firstn, lastn

9 (jpaul.in-law) sue.retirieve objectid, firstn, lastn

10 andy.retrieve objectid, firstn, lastn

I1I samantha~retrieve objectid, flrstn, lastn

12 (todd.in-law) paulla~retrieve firstn, lastn

13 (samantha~business) joe~retrieve objectid, firstni, lastn if firstn = Joe'

14 (todd.in-Iaw) andy.retrieve objectid, firstn, lastn

Pick the number or letter of the action desire
(num) - execute one of the preceding queries
(d) - redisplay the file of queries
(x) - return to the previous men~u

Action ---> 9

Figure 28: Query Menu After Loading Request File FAMILYoolreq

103



Action --- > 11

LASTN IFIRSTN IOBJECTID I

Jones ISamantha 103065399 I

Pick the number or letter of the action desired
(num) - execute one of the preceding queries
(d) - redisplay the file of queries
(x) - return to the previous menu

Action --- >

10 retreve only the data tor the speciied item, Me query must contain a condition

specifying an attribute value which is unique. In our case, we can select number "13" from

the menu which retrieves the object JOE where the attribute 'T"rstn" equals "Joe". This will

only retrieve the data for the object JOE as shown below. If this condition was not present,

the query would also retrieve the data for the object TODD, since it is a subclass of JOE.

Action--- > 13

LASTN IFIRSTN OBJECTID I

Smith IJoe 103065387 I

Pick the number or letter of the action desired
(num) - execute one of the preceding queries
(d) - redisplay the file of queries
(x) - return to the previous menu

Action--- >

We can access data via a covering relation in the same manner. As mentioned earlier,

a covering file is maintained for each database. When selecting a query which uses a

covering construct, the system verifies that the covering construct used in the query exists

104



in the covering file. If the construct does exist, the query proceeds, if the construct does not

exist, the query is refused. If we select number "9" from the query menu as shown below,

the system will refuse the query because no covering construct exist for that query.

No covering construct exists for this query.

Query refused.

Pick the number or letter of the action desired
(num) - execute one of the preceding queries
(d) - redisplay the file of queries
(x) - return to the previous menu

Action --- >

However, if we select query number "14", it will be successful because the covering

file contains the covering construct found within the query.

Action --- > 14

LASTN IFIRSTN IOBJECTID I

Jones lAndy 103065397 I

Pick the number or letter of the action desired
(num) - execute one of the preceding queries
(d) - redisplay the file of queries
(x) - return to the previous menu

Action --- >

There are times when the queries listed in the query file are insufficient to accomplish

the job at hand. Instead of having to write a new file in order to process a few queries, the

object-oriented interface allows the user to enter queries at the terminal for record

105



processing. In order to enter queries from the terminal, the user must select "t" from the

database processing menu. After selecting this option, the system will prompt the user to

enter the queries in the format identical to the format for query file in Figure 27. Each

request should be separated by a "@" character and the last request should be followed by

a "$" character. The screen display for this procedure is shown below.

Enter your choice
(d) - display schema
(c) - create covering relation between two objects
(m) - mass load from a data file
(f) - read in a group of queries from a file
(t) - read in queries from the terminal
(x) - return to previous menu

Action --- > t

Please enter your transactions one at a time.
You may have multiple lines per transaction.
Each transaction must be separated by a line that

only contains the character '@'.
After the last transaction, the last line must consist only

of the '$ character to signal end-of-file.

Input the transactions on the following lines:

todd.retrieve firstn, lastm
@
bertha.retrieve firstn, lastn, objectid
$

After inputting the request, the system will generate a selection request menu. This

menu is visually and functionally identical to the previous request menu, which was used

to load requests from a file. Selection of a request by number will perform the query and

retrieve the data. The screen display of the query menu and a sample query are shown

below.

106



I todd.retrieve firstn, lastn

2 bertharetrieve firstn, lastn, objectid

Pick the number or letter of the action desired
(num) - execute one of the preceding queries
(d) - redisplay the file of queries
(x) - return to the previous menu

Action - > 2

OBJECTID ILASTN IFIRSTN I

01565702 ISmith IBertha t
01565708 ISmith ISue I
01565710 ISmith IJoe I
01565715 I'Smith rTodd I

Pick the number or letter of the action desired
(num) - execute one of the preceding queries
(d) - redisplay the file of queries
(x) - return to the previous menu

Action -- >

F. CONCLUSION

Before concluding this tutorial it is important to note that the object-oriented

interface, in its current state of development, cannot perform on-) ine updates or deletes. In

order to perform updates or deletes on the database, the user must exit the system and

modify the schema and record files. However, the user must be cognizent of the fact that

deletions or modifications to the schema may cause unintended changes to the inheritance

structure. For instance, when modifying the schema file, the user must avoid deletions or

modifications such that objects inheriting from the modified object become corrupted.

107



Furthermore, if an object containing attributes inherited by its subclasses is deleted, then

the same attributes will also be deleted from all of its associated subclasses.

The object-oriented database does have an on-line insert capability. This is performed

as a request using the keyword insert instead of retrieve. The insert procedure can be

performed at the terminal or called from a text file in the same manner as the retrieval

procedure. An example of an insert request would be:

<object>.insert <attribute 1 value> <attribute 2 value>,..., cattribute n value>

The desired attribute values for the record are entered in the same order that they

appear in the schema. For example, assume the record to be inserted into the object

GEORGE contained the following attribute values: "I" for objectid, "George" for first

name, "Jones" for last name, and "13000" for salary. The resulting insertion request is

shown below:

george.insert 1, George, Jones, 130000
$

It is important to note that this record does not replace the existing record, but rather

is added to the current object GEORGE. Consequently, if each object in the database

represents a single record, as in the case of the FAMILY database, then any query on

George will produce two results when only one is desired.

This completes the tutorial for the object-oriented interface on MDBS. To exit the

system, select "x" at each menu display. Remember to stop all processes and zero the disk

upon completion of the database work. For additional information on using the Object-

Oriented Interface on MDBS refer to the original thesis for this interface [Karl93].

108



LIST OF REFERENCES

[Bour93] Bourgeois, Paul; The Instrumentation of the Multimodel/Multilingual User
Interface, Master's Thesis, Naval Postgraduate School, Monterey, California, March
1993.

[Booc9l)] Booch, G., Object Oriented Design, The Benjaminvtuminigs Publishing Company,
Inc., 1991.

[Elma89] Elmarsi, R., Navathe, S., Fundamentals of Database Systems, The Benjamin/
Cummings Publishing Company, Inc., 1989.

[Hsia9la] Hsiao, David K. and Kamel, M.N., "The Multimodel and Multilingual Approach to
Interoperability of Multidatabase Systems," International Conference on Inter-
operability of Multidatabase Systems, Kyoto, Japan, April 1991.

[Hsia9lb] Hsiao, David K., "The Relationship of Data Models and Security Requirements: Part
One - The Object-Oriented Data Model and the Need-to-Know Policy," submitted to
Fifth IFIP WG 11.3 Working Conference on Database Security, West Virginia,
November 4-7, 1991.

[Hsia9lc] Hsiao, David K., "The Relationship of Data Models and Security Requirements: Part
Two - The Object-oriented Data Model and the Multilevel Security Policy,"
November 1991.

[Hsia92a] Hsiao, David K., "Federated Databases and Systems - Part I: A Tutorial on their
Data Sharing," VLDB Journal, 1, 1992, pp. 127-179.

[Hsia92b] Hsiao, David K., "Federated Databases and Systems: Part II- A Tutorial on their
Resource Consolidation," VLDB Journal, 2, 1992, pp. 285-3 10.

[Hsia92c] Hsiao, David K., "The Object-Oriented Database Management - A Tutorial on its
Fundamentals," Proceedings of the Second Far-East Workshop on Future Database
Systems, Kyoto, Japan, April 1992., pp. 398-416.

[John93] Johnston, Richard, The Relational-to-Object-Oriented Cross-Model Accessing
Capability in a Multimodel and Multilingual Database System, Master's Thesis,
Naval Postgraduate, Monterey, California, March 1993.

[Karl93] Karlider Turgay and Moore, John W., Design and Implementation of an Object-
Oriented Interface for the Multi-Model.Multi-Lingual Database System, Master's
Thesis, Naval Postgraduate School, March 1993.

[Meek93] Meeks, Andrew P., The Insmtnentation of the Multibackend Database System,
Master's Thesis, Naval Postgraduate School, June 1993, pp. 10-15.

109



[RoJ184] Rollins, , Design and Analysis of a Complete Relational Interfae for a Multi-
Backend Database System, Master's Thesis, Naval Postgraduate, School, Monterey,
California, June 1984.

110



DNIrIAL DISTRIBUTION LIST

1. Defense Technical Information Center ........................................................................ 2
Cameron Station
Alexandria, VA 22304-6145

2. Dudley Knox Library ............................................................................................... 2
Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

3. Chairman, Code CS ................................................................................................. 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

4. Lieutenant Todd G. Estes, USN ............................................................................. 1
66 Bliss Road
Newport, RI 02840

5. Captain Donald H. Estes, USN .................................................................................... 1
Military Chair of Intelligence
Naval War College
Newport, RI 02841

6. Professor David K. Hsiao ...................................................................................... 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

7. M s. Doris M lezko .................................................................................................. 2
Code P22305
NAWCWPNS
Point Mugu, CA 93042-5001

8. Lieutenant Eric M. Mueller, USN ........................................................................... 1
2823 Kelsey Street
Berkeley, CA 94705

9. Ronald J. Roland ........................ .................... 1
500 Sloat Avenue
Monterey, CA 93940

111


