
NAVAL POSTGRADUATE SCHOOL

Monterey, California

AD-A275 032

I JELECTE

THESIS

NPSNET: ENVIRONMENTAL EFFECTS FOR A REAL-TIME
VIRTUAL WORLD BATTLEFIELD SIMULATOR

by

Daniel P. Corbin

September 1993

Thesis Advisor: Michael J. Zyda

Co - Advisor: David R. Pratt

Approved for public release; distribution is unlimited.

94-02735

94" 1 2 6 1 91

Form A•rvoved
REPORT DOCUMENTATION PAGE oM No. o0704.01

Pih ,•opmi buiden I& Iam -CO 'tmn C, atayat,, n wiv mtuato ae I Mw per 'w .9m.* ,ebodign fte Wm mw rav,•m ,m•aon. sowCdu•q e"i dam tau-e
9g"era iw4MhAw• ow damt ne. and aof" ad tmng sm ooleaof •sdma0fn Send mumo amWdmg mm bkwde OmtyAe or any omr spew oftChe
weaeWn ci aumbon. mndud1g auuw or red, " ". bufdm oWas•wqlan HoedwAa Sevm. Douramttv I do 00 Operanwn Wa Pport 1215 J60lmm
Davm H.way Suts 1204. Atnpon. VA =0243=. &d to the 0imc at Man~ ad Budgo. perwork Redu•m Ptu• e (070-01UI) Wsahnp. DC 20603

I. AGENCY USE ONLY (Lve BIlnk) . rEPORTATE 3. REPORT TYPE AND DATES COVERED
r| 93 September 23 |Master's Thesis From 6/91 to 09/93

4. MLE AND A SUBTILE s. N NUMBERn
NPSNET: Environmental Effects For A Real-Time Virtual World
Battlefield Simulator

*. AUTHOR(S)

Corbin, Daniel Patrick

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) a. PERFORMING ORGANIZATION
Computer Science Dept. REPORT NUMBER

Naval Postgraduate School
Monterey, CA 93943-5000

0. SPONSORAING MONITORING AGENCY NAME(S) AND AOORESS(ES) 10. SPONSORINGJ MONITORING
Naval Postgraduate School AGENCY REPORT NUMBER

Monterey, CA 93943-5000

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

12a. DISTRIBUTION I AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release;
distribution is unlimited

13. ABSTRACT (Maximum 200 words)
The Computer Science Department at the Naval Postgraduate School in Monterey. California has developed a low-cost real-

time interactive simulation system using the Distributed Interactive Simulation (DIS) Protocol. known as NPSNET. that works
on commercially available Silicon Graphics IRIS workstations.

The DIS protocol has provisions for an environmental effects Protocol Data Unit (PDU). but effects of a changing
environment have not been implemented to use it. Furthermore, this lack of environmental effects reduces the realism of the
simulations, such as NPSNET. that use the DIS protocol. The challenge in implementing environmental effects such as smoke.
dust and the passage of time is to develop a model that users perceive as realistic, but is computationally cheap enough to be
used in real-time applications. It is the lack of environmental effects, usable in interactive simulations, that we attempt to solve.

This thesis focuses on creating a library of visually realistic environmental effects for NPSNET that includes smoke, flames,
clouds, lightning, the passage of time and night observation devices. The algorithms were initially derived from physical
models, but were found to be too computationally intensive to be used in a real-time application. Thus, it was necessary to
simplify the model by depending mainly on visual realism over physical models in creating the effects presented here. The
result is a library of environmental effects that are both "visually accurate" and usable in real-time applications.

14. SUBJECT TERMS 1S. NUMBER OF PAGES
Graphics, Smoke, Fire, Night Observation Device, Clouds, Environmental 88
Effects 15. PRICI cook

I7. SECURITY CLASSIFICATION 1S. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

NPSNET: ENVIRONMENTAL EFFECTS FOR A REAL-TIME VIRTUAL
WORLD BATTLEFIELD SIMULATOR

by
Daniel P. Corbin

Lieutenant, United States Navy
B.S.Mathematics, University of Florida, 1985

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1993

Author: LLLtp P &4J
Daniel P. Corbin

Approved By:
Dr. Michael J. Zyak ~ "" v"

Dr. David R. Pratt, Thesis Co-Advisor

Dr. Ted Lewis, Chairman,
Department of Computer Science

ii

ABSTRACT

The Computer Science Department at the Naval Postgraduate School in Monterey,

California has developed a low-cost real-time interactive simulation system using the

Distributed Interactive Simulation (DIS) Protocol, known as NPSNET, that works on

commercially available Silicon Graphics IRIS workstations.

The DIS protocol has provisions for an environmental effects Protocol Data Unit (PDU),

but effects of a changing environment have not been implemented to use it. Furthermore,

this lack of environmental effects reduces the realism of the simulations, such as NPSNET,

that use the DIS protocol. The challenge in implementing environmental effects such as

smoke, dust and the passage of time is to develop a model that users perceive as realistic,

but is computationally cheap enough to be used in real-time applications. It is the lack of

environmental effects, usable in interactive simulations, that we attempt to solve.

This thesis focuses on creating a library of visually realistic environmental effects for

NPSNET that includes smoke, flames, clouds, lightning, the passage of time and night

observation devices. The algorithms were initially derived from physical models, but were

found to be too computationally intensive to be used in a real-time application. Thus, it was

necessary to simplify the model by depending mainly on visual realism over physical

models in creating the effects presented here. The result is a library of environmental effects

that are both "visually accurate" and usable in real-time applications.

DTIC QULkMAT-I1•NSPECTED 5

Ae1eeulon •or

INTIG ORA&I
DTIC TAB 0
Wnznnoumed 0

JDittat A tiop/

WDi__st ..VE± 1 O ..

TABLE OF CONTENTS

1. INTRODUCTION ... I

A. BACKGROUND ... I

B. OBJECTIVES ... 2

C. ORGANIZATION .. 2

II. ENVIRONMENTAL RESEARCH .. 3

A. PARTICLE SYSTEMS .. 3

B. OBSCURANTS .. 4

C. TIM E OF DAY .. 8

D. PREVIOUS RESEARCH SUMMARY 9

Ill. ENVIRONMENTAL OBSCURANTS 10

A. OBSCURANT PLUMES ... 10

1. Behavior Of Smoke Plumes Defined By Briggs' Equations 10

2. Control Of Particle Systems Using Newtonian Mechanics 17

B . FO G .. 19

C. OBSCURANTS SUMMARY .. 20

IV. NIGHT OBSERVATION DEVICES AND THE PASSAGE OF TIME 21

A. NIGHT OBSERVATION DEVICES 22

1. Image Intensification (12) ... 22

2. Therm al Imaging ... 22

3. Laser Radar (LADAR) ... 22

B. PASSAGE OF TIM E ... 23

1. Defining The Time Of An Event 23

2. Specifying A Location Of A Body On Earth 24

3. Specifying The Location Of A Celestial Body 24

4. Defining Celestial Events Of Interest 24

iv

5. Available Lighting .. 26

C. THE CELESTIAL MODEL ... 26

D. LIGHT M ODEL .. 28

V. IMPLEMENTATION ... 30

A. IMPLEMENTATION OF THE ENVIRONMENTAL EFFECTS 30

1. Obscurant Generator .. 30

2. Passage of Time .. 37

3. Night Observation Devices 39

4. Lightning ... 41

B. IMPLEMENTATION USING THE IRIS PERFORMER TOOLKIT 42

C. PERFORM ANCF ... 48

D. IMPLEMENTATION SUMMARY 49

VI. NETW ORKING ... 50

A. BACKGROUND .. 50

B. NETWORKING THE SIMULATION 50

C. DIS 2.0.3 PROTOCOL ... 51

D. ENTITY STATE PROTOCOL DATA UNIT 52

E. IMPLEMENTATION .. 53

1. Effects That Must Be Networked 53

2. Networking Smoke And Flames 54

3. Networking Vehicle Dust Trails 55

4. Networking The Passage Of Time 56

5. Networking Lightning ... 57

VII.LIM ITATIONS .. 58

A. OBSCURANTS ... 58

B. NIGHT OBSERVATION DEVICES 58

C. PASSAGE OF TIME ... 59

D . CLO UD S .. 59

v

VIII.SUMMARY AND CONCLUSIONS 60

A. CONCLUSIONS .. 60

B. RECOMMENDATIONS .. 60

1. C ++ 60

2. Perform er ... 61

C. FUTURE DEVELOPEMENT .. 61

I. Parallel Processing .. 61

2. Other Environmental Effects 61

3. Lightning Effects Communications And Destroy Objects 61

APPEND IX 62

A. ENVIRONMENTAL EFFECTS LIBRARY MANUAL PAGES 62

B. SMOKE GENERATOR .. 64

C. FLAME GENERATOR ... 66

D. DUST GENERATOR .. 68

E. GENERATE CLOUDS ... 70

F. LIGHTNING ... 71

G. NIGHT OBSERVATION DEVICES 73

H . TIM E ... 74

I. INITIALIZING LIGHTING AND MATERIALS 76

LIST OF REFERENCES ... 77

INITIAL DISTRIBUTION LIST .. 79

vi

LIST OF FIGURES

Figure 1. COMBIC Smoke Plume Footprint 5

Figure 2. Gaussian Puff Geometry Used By Gardner In [GARD92] 6

Figure 3. Gaussian Plume Geometry Used In [GARD921 7

Figure 4. Description Of Stability Classes 13

Figure 5. Plilme Behavior ... 16

Figure 6. The Horizon-Sky Sphere Model 25

Figure 7. Puff W ith Texture Applied 31

Figure 8. Life Cycle Of An Obscurant Puff 33

Figure 9. Obscurant Footprint .. 34

Figure 10. Smoke And Flame Generator 35

Figure 11. Vehicle Dust Trail .. 36

Figure 12. Relationship Of Ground In Scene To That In View Volume 37

Figure 13. Similar Triangles ABC And A'B'C' 38

Figure 14. Night Observation Devices 40

Figure 15. Lightning Strike With Density Of Fifty Percent 41

Figure 16. Performer Plume Hierarchy 45

Figure 17. Performer Implementation Of Smoke Generator 46

Figure 18. Functions Used In Performer Implementation 47

Figure 19. Low Fidelity Smoke Plume In Performer Environment 48

Appendix Figure 1. Initialization Portion Of Program Using EEL 62

Appendix Figure 2. Main Graphics Loop Of Program Using EEL 63

vii

1. INTRODUCTION

A. BACKGROUND

Current trends indicate decreases in funding to the Department of Defense (DoD) will

continue and as the money available decreases, the need for alternative and less expensive

forms of training and prototyping will be on the rise. As all available resources decrease,

simulators can serve the purpose of testing tactics and doctrine prior to their actual use in

the field. Once developed in the virtual world (VW) they can be practiced and refined in

the field [PRAT93].

In order to properly test any doctrine for validity, attributes and characteristics of the

real-world environment to which the doctrine apply must be addressed in the simulator. It

is often desirable to use simple computationally inexpensive objects which give the viewer

a representation of the item. This use of simple icons to represent more complex objects is

referred to in [THOR87] as the "70% solution" and suggests that a participant given the

most important cues of a scene can be expected to imagine the remaining details [PRAT93].

However, under certain situations, such as billowing smoke in the distance or dust seen on

the horizon, the level of detail can determine the amount of information provided. In such

a case, a simple icon representation is not sufficient. Here deviation from realism can cause

improper actions on part of the player resulting in "negative training". A simulator which

utilizes "realistic" obscurant will require the participant to expend resources determining

what is burning or how many tanks are approaching a position.

Previous research at the Naval Postgraduate School has resulted in the development of

a real-time VW combat simulator known as NPSNET [ZYDA93I. The main objective of

the NPSNET is to provide a realistic real-time combat simulator that can be executed on

"inexpensive" graphic workstations such as the Silicon Graphics IRIS 4D family of

machines. It also communicates with numerous other stations using standard message

formats such as the U.S. Army's Simulation Networking (SIMNET) [DARP89] system or

the Distributed Interactive Simulation (DIS) [ISTB93] Protocol Data Unit (PDU) formats

I

[PRAT93][ZYDA93]. Research is ongoing to develop a fully interactive, believable

environment while maintaining the ability to execute the simulator on the low cost

workstations [ZYDA93].

B. OBJECTIVES

The objective of this research is to develop a library that provides smoke, fire, clouds,

vehicle dust trails and the passage of time that can be implemented into a real-time

distributed VW. This library of functions called the Environmental Effects Library (EEL)

is implemented for use in NPSNET running on the Silicon Graphics IRIS 4D family of

workstations using the DIS protocols.

To meet the objectives, the following list of assumptions were utilized (1) An

algorithm is considered "real-time" if six frames per second is maintained. The increase in

technology will allow speedup to an acceptable rate. (2) Realism of the effects is based on

a simplified physical model. While this assumption provides sufficient effects for human

training, it prevents its use for engineering purposes because the models have been

simplified to meet the real-time objectives.

C. ORGANIZATION

The previous sections of this chapter have stated the objectives and reasoning behind

providing environmental effects in the NPSNET. Chapter II reviews the previous work

accomplished in this area of research while Chapter HI discusses the algorithms used to

generate the environmental effects including the smoke generator, cloud generator, dust

generator and lightning models while Chapter IV discusses night observation devices

(NOD) and passage of time models. The implementation details and performance

characteristics of the algorithms are discussed in Chapter V. The networking method is

discussed in Chapter VI. Chapter VII discusses limitations of the EEL. Chapter VIII

describes future extensions, research topics and concludes with conclusions and a summary

of the research conducted. The Appendix contains manual pages to explain the use of the

Environmental Effects Library (EEL).

2

!1. ENVIRONMENTAL RESEARCH

The environmental obscurant models presented here are based on the models and

research described by Reeves in [REEV83J and Gardner in [GARD85][GARD92]. Those

models are based on physically based equations that are so computationally complex that

computation and rendering times are too long to be used in a real-time system. Many

simplifications were used to reduce the computations of the models to allow their use in

real-time applications.

A. PARTICLE SYSTEMS

Modeling objects such as clouds, smoke and water that do not have well defined

shapes and surfaces using traditional graphic techniques is difficult since the most

commonly used primitives consists of polygons, patches and surfaces. The surfaces of the

fuzzy objects are irregular, ill-defined with dynamic surfaces, so traditional primitives are

difficult to use. It is the dynamic and fluid property of the fuzzy systems that is desirable

and should be preserved in the rendered object.

Reeves presents a method for modeling fuzzy objects using a technique called particle

systems in [REEV83]. A particle system differs from an object represented using

traditional image synthesis techniques. First, the object is represented as a cloud of

primitive particles that define its volume rather than by a set of surface primitives. Second,

the particles of the system are not static but change form, move, are born and die over time.

Third, once the basic shape is determined using a procedural algorithm, the primitives are

randomly placed in the volume defined by this shape resulting in an image with the desired

dynamic and fluid properties.

The particle system has several advantages over surface-oriented techniques. The first

being that a particle is much simpler to represent than a surface object because orientation

is normally not a major concern. Hence the computation time for each primitive is reduced

allowing objects made of more primitives to be rendered in the same time period. Second,

3

the model definition for translation of the particles is procedural, usually based on a

physical law, controlled using random numbers, allowing the modeler to adjust the level of

detail to fit the specific situation. Third, the primitives of the object are dynamic which

allow then to change shape over time, an attribute that surface-based modeling has only

limited capabilities to accomplish.

The basis of the particle system is that each primitive is given its own attributes. The

attributes can control the age, color, size, lifetime and position. The individual

characteristics allow the primitives to be controlled independent of the surrounding

neighbors that make up the object. Over a period of time, particles are generated into the

system, move, change attributes and then eventually die off. The steps are continued as long

as the object exist.

B. OBSCURANTS

Geoffrey Gardner discusses a method to generate realistic smoke and clouds in

[GARD92] and [GARD85]. The models he presents uses ellipsoids that are covered using

a texture derived as a function of the transmittance of the obscurant.

A plume of obscurant is created by positioning five smoke columns using the footprint

shown in Figure 1. Within the footprint, 13 individual subplumes generate puffs to define

the shape of the smoke plume. The obscurant is produced by generating a series of textured

ellipsoids that are translated as a function of the ambient wind conditions. The ellipsoids

when generated, become part of a smoke column. The center column's puffs are translated

along a path defined by the movement of the ambient air. The remaining columns are

translated to fill the trajectory envelope defined using the Gaussian distribution of the puff

mass.

The transmittance or transparency of each obscurant puff is calculated using (Eq 1).

This is accomplished by first determining the transmittance through the center of the

ellipsoid. A Gaussian variation is then applied to this value to increase the transmittance of

the ellipsoid near the edges of the ellipsoid. Statistical variations in mass concentration are

4

simulated by applying a fractal function which modulates the transmittance over the

ellipsoid puff. Lastly the total transmittance at each pixel is calculated by combining the

transmittance through all ellipsoids covering the pixel.

0 Column
Plume •

Wind

0 0o
Subplume 0

Figure 1. COMBIC Smoke Plume Footprint

T = e (-ak) xJL M YZ)dI (Eq 1)

Where:

T: Transmittance of the obscurant.

a: The extinction coefficient of the obscurant.

X: The wavelength of the sensor.

SC (X, Y, Z) di: The integral of the obscurant mass over the path length 1.

X: The downwind direction of the cloud along the line of sight.

Y: The crosswind direction of the cloud along the line of sight.

Z: The vertical direction of the cloud along the line of sight.

Z: hevetialdiectonofth cou aongth lneofsiht

The model represents the obscurant cloud using from one to five subclouds that are

then positioned using a Gaussian distribution of the mass to form a Gaussian plume. The

Gaussian ellipsoid shown in Figure 2 has a Gaussian distribution that can be used to

represent the obscurant puff.

MASS M(t)

z

y WIND

Figure 2. Gaussian Puff Geometry Used By Gardner In [GARD92]

The Gaussian variation of mass concentration is given by (Eq 2), (Eq 3) and (Eq 4).

Where the variables are as shown in Figure 2. The generated Gaussian plume is an

elongated envelope representing a continuous obscurant. A typical smoke plume is

illustrated in Figure 3.

c = ((Eq 2)(2n) 3/" (7X x Gy X Oz)q2

D (lx j+ (YCYYC)+((rZZ (Eq 3)

M(t) = Moefd+ (1--fd) xe -) (Eq4)

6

Where:

M.: The original mass.

fd: The fraction of long term mass.

d: A scavenging coefficient defining the rate of mass decrease.

Gardner's model is conducted in two phases. The first phase computes a time history

of the obscurant trajectory, mass concentration and mass production. The trajectory is used

to represent the geometric envelope in terms of a downwind coordinate system. For any

puff, the history contains the X and Z positionsI and X, Y and Z dimensions for any specific

time. The leading edge of the plume is defined by this time history.

a
z z

Y

Zc

Y XX
x

Figure 3. Gaussian Plume Geometry Used In [GARD92]

After the position and dimension of the leading edge have been determined the

remainder of the plume is backfilled with scaled puffs to yield a continuous envelope of

obscurant. The backfill is accomplished by spacing the filler puffs to minimize the amount

of overlap between puffs.

1. Y is always zero because the plume coordinate system is setup so the X axis is oriented directly
downwind.

7

The time history data used to determine the position of the puffs is computed in the

first phase. In the second phase, after the position of each of the ellipsoids has been

determined, the transmittance through a given line of sight is computed using (Eq I).

Gardner's cloud model uses textured ellipsoids in the same fashion as the smoke

model. The method of positioning the ellipsoids in the scene, however, is different. When

generating a cloud formation, ellipsoids are grouped and positioned depending on the class

of cloud being modeled.

The method presented by Gardner produces extremely realistic obscurant clouds

however, the numerical computations are so extensive rendering frequency is measured in

minutes per frame. We present a model that uses a plume made up of five columns of

continuous puff primitives translated along a centerline. The columns are situated similarly

to the foot print shown in Figure 1. but with five instead of 13 subplumes. Furthermore, the

method we present is based on a particle system so each puff primitive is translated as a

function of its own attributes. Using this method there is no need to backfill to maintain a

continuous plume. Since our model uses an existing image file as a texture, there is no need

to calculate the transmittance. The simplifications we made allows for an algorithm that can

be used in real-time applications. The final obscurant cloud is not of as high quality as

Gardner's model, but it provides for real-time obscurant usable on hardware currently

available.

C. TIME OF DAY

Klassen [KLAS87] presents a method of determining sky color by approximating the

atmosphere as multiple layers of parallel planes each containing a partial atmosphere of

uniform density. His method calculates the reduction in light intensity caused by Rayleigh

particle scattering. He then determines the color of each pixel in the scene by applying the

change in light intensity to a precalculated sky color. The computation time using this

method on a VAX 111780 is approximately one tenth of a second per pixel for a 512 by 256

image.

8

Nishita [NISH93] describes a method to determine the color of the Earth's atmosphere

as a function of position of the observer and elevation of the Sun. He discusses a spherical

shell atmosphere that provides an accurate model of the sky's color. The model calculates

the amount of color change caused by Rayleigh and Mia scattering of the incoming light.

The time to calculate sky color for a 500 x 490 image ranged from just under four minutes

to about 12 minutes per frame using an SGI IRIS Elan[NISH93J.

Both models provide for accurate representation of the sky color. However because of

the large number of calculations that must be performed to determine the color of the entire

sky, the methods presented are not usable in real-time applications. As Klassen states in

[KLAS87I, there is no accurate method known to date that is able to produce a background

sky quickly. Hence it is up to user to develop an algorithm best suited for the task at hand.

D. PREVIOUS RESEARCH SUMMARY

The methods presented here by Gardner and Nishita, although providing high quality

images of high physical precision, cannot provide a model that is usable in real-time

applications because of the number of calculations that must be performed during each

cycle. We are willing to concede some of the realism their models provide if our simpler

versions render images that are nearly what the participant of the simulation expects to see

under the given situations.

9

III. ENVIRONMENTAL OBSCURANTS

The latest version of the NPSNET has a limited capability of providing obscurants

such as smoke and flames. It does, however, provide fog and simple icons that can be used

to give the participant a visual cue that there has been an event that causes smoke and

flames to occur.

There are times when the use of a simple icon is adequate. The times include when

computation time is so high that to compute the complex object properties prevents real-

time display or when the object's significance is so small that rendering the object is not

justified. However times do exist when expending resources to render a complex object is

justified. This can occur when the presences of an object such as the smoke of a burning

building in the distance or the generated dust cloud of a column of vehicles approaching

from the horizon causes actions to be taken by the participant.

This chapter discusses briefly the underlying theory of the models used in the smoke,

fire and vehicle dust trail algorithms. For a complete discussion on the topics of gas and

smoke rise and dispersion see [BEYC79] and [BRIG69J.

A. OBSCURANT PLUMES

1. Behavior Of Smoke Plumes Defined By Briggs' Equations.

Plume dispersion is most easily described by discussing separately the three

aspects of plume behavior: (1) aerodynamic effects due to the presence of the source of the

smoke; (2) rise relative to the mean motion of the air due to the buoyancy and initial vertical

movement of the plume, and (3) diffusion due to turbulence in the air. In reality, all three

effects occur simultaneously, but to simplify the model each is treated separately and are

generally assumed not to interact. This simplification can be accomplished without losing

the correctness of the model at the level of detail desired in our application.

Turbulence is created as gases and smoke are generated and as the shear wind

force acts at the source of the plume. The turbulence causes a phenomena called

10

entrainment when the gases are mixed with the ambient air. The entrainment decreases the

upward movement and buoyancy of the plume by changing the composition of the

generated gases and as the entrainment continues, the plume increasingly takes on the

characteristics of the surrounding air mass.

As the plume bends into the wind, it moves horizontally at nearly the wind speed

of the entrained air, however it continues to rise relative to the position of ambient air. As

the gases encounter ambient air above the plume, vigorous mixing occurs all across the top

of the plume, causing the plume diameter to grow approximately linearly with the height

of its rise [BRIG69I.

If the plume gases have a temperature greater than that of the surrounding air or

have a mean molecular weight less than ambient conditions then, because of their lesser

density, they will be more buoyant. As the heat is lost, the total buoyant force in a given

part of the plume will decrease causing the upward momentum of the segment to decrease

until it eventually starts to lose height. It is important to note that as the puff moves

downwind its relative velocity with respect to the wind will always approach zero because

of the loss of momentum brought about through entrainment.

At some point downwind from the source of generation, the turbulence and

vertical temperature gradient of the atmosphere begins to effect the rise of the plume

significantly. If the atmosphere is homogeneously mixed, it is said to be neutral or

adiabatic. In such situations, the temperature gradient is a constant at approximately 5.4

degrees Fahrenheit per 1000 feet. This is known as the adiabatic lapse rate. If the

temperature lapse rate is less than the abiabatic lapse rate, the air is said to be stably

stratified. Air lifted abiatically in a stably stratified environment tends to become cooler

than the surrounding air and tends to sink after reaching some maximum height. If the

temperature of the air actually increases with altitude, the air is quite stable with little air

movement and is referred to as an inversion. This is the situation that exists in Los Angeles

during the summer months when the smog layer becomes trapped in the valley.

II

If the temperature lapse rate of the atmosphere is greater than the adiabatic lapse

rate, the air is said to be unstably stratified. Air lifted in such an environment becomes

warmer than the surrounding air and all vertical motion tends to be amplified.

The potential temperature, t, is defined as the temperature that a sample of air

would acquire if it were compressed adiabatically to standard pressure (1 atmosphere). The

potential temperature can be used to measure the stability of the atmosphere as is shown in

(Eq 5).

St BT
.= - r(Eq 5)

Where:

T: Temperature of the surrounding air.

Z : Altitude of the observer.

r: 9.8 degrees Celsius.

(Eq 5) shows the potential temperature gradient is positive for stable air, zero for

neutral air and negative for unstable air. If the air is unstable, the buoyancy of the plume

decays as it rises since the plume entrains air from below and carries it upward into regions

of warmer ambient air. If the air is stable throughout the layer of rise, the plume eventually

becomes negatively buoyant and settles back to the height where it has zero buoyance

relative to the ambient air. If the atmosphere is neutral, the buoyancy of the plume remains

constant in a given segment provided the plume does not experience loss of heavy particles

or absorb significant amounts of heat. Since neutral stability is a sign of turbulence, there

is increased activity in the plume resulting in increased air entrainment and hence there will

be a rapid decrease in the upward movement of the plume.

The rise of a smoke plume is a function of the upward movement of the puff mass,

while diffusion is an indication of the dispersion of the smoke particles in relation to the

mean centerline of movement. The shape of the plume is a function of the traversal and

dispersal as the plume ages. There have been numerous mathematical models proposed to

12

calculate the shape and resulting chemistry of a plume over time. We use the equations

proposed by Briggs as our model, a thorough discussion of many of the other equations can

be found in [BEYC79] and [BRIG69].

The Briggs' equations were derived by observing numerous smoke plumes under

various atmospheric conditions and graphing the position of the plume over time and a

method of best fit is used to develop an equation that defines the function of the smoke

movement. All smoke plumes belong to one of several specific class of plumes depending

on the conditions of the ambient environment under which they are generated. Within a

class of plumes, the shape of a specific plume is found by using the dispersion coefficients

as inputs to the appropriate plume equation. The dispersion coefficients are used in

conjunction with the stability classes shown in Figure 4 to determine the movement of the

plume over time.

Stability Classes Ambient Temoerature Gradient

class A is the least stable F011000 Ft.

class F is the most stable A-- less than -10.4

B-- -10.4 to -9.3

C-- -9.3 to -8.2

D E D-- -8.2 to -2.7
alt /,E E-- -2.7 to 8.2

F F-- more than 8.2

temperature

Figure 4. Description Of Stability Classes

Briggs divides plumes into four general categories based on the source of

generation and the velocity of the prevailing winds. He considered the trajectory of cold

13

and hot plumes generated under calm and windy conditions, but we will consider only hot

plumes generated under windy conditions here.

In general the Briggs equations for hot windy plumes are for bent-over, buoyant

plumes and are based on observation data involving hot plumes from typical burning fossil

fuels fires. Briggs equations assume the plumes are generated when draft velocities of the

gases from the source are at velocities in the range of 6 - 30 meters per second and the exit

temperatures are in the range 120 - 260 degrees Celsius.

The dispersion of a smoke plume is determined by statistical estimates derived

using a Gaussian distribution [BEYC79]. The results of the estimates are used to determine

dispersion coefficients that are in turn used in conjuction with the prevalent stability classes

to determine the distance the plume translation differs from the plume centerline over time.

One of the most accepted equation for determining the value of the dispersion coefficient

o was presented by McMullen in [BEYC79] and is presented in (Eq 6) where the values of

1, J and K are taken from Table 1. The subscript y and z of Table I represent dispersion

along the y and z axis in the coordinate system in which an increase in y indicates an

increase in vertical movement and a change in z represents change in horizontal movement.

ar = exp(I+Jxlog (x) +Kx log2 (x)) (Eq 6)

The values in Table I are based on data obtained in rural areas with open, level

terrain. The effect of urban area or non flat terrain is an increased amount of turbulence on

low altitude plumes. This has the same effect as if the plume is generated in an environment

of less stable conditions. The dispersion values for urban environments can be found in

[BEYC79].

The dispersion of the plume is directly related to the value the coefficients. Hence

the resulting values of a should increase as the stability of the surrounding atmosphere

decreases.

On a clear night, the ground radiates heat which is lost to the atmosphere and in

the process the air near the ground is cooled and an inversion is formed. A plume rising

14

through it quickly loses its buoyancy awid levels off. The behavior of smoke generated under

these conditions is called fanning and is illustrated in Figure 5a.

TABLE 1. RURAL DISPERSION CONSTANTS FOR USE WITH (Eq 6)

class lz Jz Kz ly Jy Ky

A 6.035 2.1097 0.2770 5.357 0.8828 -.0076

B 4.694 1.0629 0.0136 5.058 0.9024 -.0096

C 4.110 0.9201 -.0020 4.651 0.9181 -.0076

D 3.414 0.7371 -.0316 4.230 0.9222 -.0087

E 3.057 0.6794 -.0450 3.922 0.9222 -.0064

F 2.621 0.6564 -.0540 3.533 0.9181 -.0070

When the sun comes up, convection eddies are created and penetrate high into the

atmosphere. When they reach the level at which the plume levels off, the eddies will cause

the air to become mixed and fall toward the ground while the inversion aloft prevents

upward diffusion. This phenomena is called fumigation and causes large amounts of the

plume to be forced to the ground and is illustrated in Figure 5b. After an inversion is broken

down by convection eddie currents, the atmosphere will be well mixed and neutrally stable

and the plumes rise and diffuse in a smooth fashion known as coning which is shown in

Figure 5c.

When diffusion is decreased and an inversion builds from the ground up, there is

a ground inversion so weak that the plume can penetrate it and the plume diffuses upward

but is prevented by the stability below from diffusing downward. This lofting causes the

plume to remain high in the atmosphere for an extended period of time. Lofting is

illustrated in Figure 5d.

15

a. FANNING b. FUMIGATION

c. CONING d OTN

e. TRAPPED f. LOOPING

Figure 5. Plumie Behavior

16

When an inversion layer exists above the plume, it is unable to ascend higher than

the lower level of that air mass. Under this condition, a plume will be trapped as is

illustrated in Figure 5e. As the heating of the ground intensifies, large convection eddies

may develop and twist the plume in a looping manner which causes turbulence to the plume

as shown in Figure 5f.

2. Control Of Particle Systems Using Newtonian Mechanics

According to Wejchert [WEJC911 models of natural phenomena are often too

complex to be applied by an animator using traditional techniques because the numerical

calculations are too intensive to be used for real-time systems. However simplifying the

model by disregarding factors that are insignificant to the level of detail desired in the

implementation can lead to applications that are usable in real-time graphic programs.

To determine the shape of the obscurant plume, we first determine the total force

on the obscurant. We can integrate the acceleration to determine the velocity and likewise

the velocity to calculate the position of each of the obscurant puffs.

(Eq 7) can be used to determine the force on an object when acted upon by a fluid

and (Eq 8) is used to find the total force on an object by summing all the forces acting on

that object.

Ffluid = pA x v2 (Eq 7)

Fwola = XFi (Eq 8)

a(time) = (F,oai)/m (Eq9)

where:

Fpw5d: The force of the fluid acting on the body.

Ftota: The total force of the object.

p: The density of the fluid the object is immersed in.

A: The area of the body the fluid is acting upon.

v: The relative velocity between the object and the fluid.

17

m: The mass of the object.

a: The acceleration of the object.

Once the total force acting on the object is known, we can integrate (Eq 9) with

respect to time using Euler's numerical method to calculate the velocity and position of the

object over time.

Euler's method is a simplistic numerical method but does have the draw-backs

that it is fairly inaccurate, can be unstable and is often inefficient because the time step must

remain small to maintain its accuracy. These problems have little impact on our application

since our time step is driven by the time through the graphics loop is relatively small

compared to the speed of the objects. The inaccuracies do, however, provide the benefit of

adding a sense of air turbulence by increasing the randomness between obscurant puffs

without additional computational cost.

In using Euler's method, discrete time steps are used starting from the initial value

when time equals zero. To take a step we use the derivative of the function to calculate the

approximate change in the dependent variable with time. For a thorough review of

numerical methods see [ANDR93]

The movement of the objects is determined by solving the force function for

acceleration (Eq 10) and using Euler's numerical methods to integrate with respect to time

to determine acceleration at each time step At for each object in the obscurant plume using.

Likewise (Eq 11) and (Eq 12) are used to extrapolate the velocity and position for each

cycle of the graphics loop.

ai = (Fi)/rn (Eq 10)

vi = vGi 1) + aiAt (Eq 11)

ri = .'(i- 1) + vixAt+ xaixAt2 (Eq 12)

This simplified model, as discussed previously, does not consider turbulence of

the ambient air. However to give the appearance of turbulence random perturbations are

18

added to each of the objects to give a reasonable movement of the obscurant objects by

making a call to a random generator and through errors inherent in the Euler method. The

model presented is a balance between the physical model, speed of execution and control

of the object immersed in the fluid.

B. FOG

A uniform density and linearly varying fog model is available on the IRIS series of

machines using a call from GL so there existed no need to implement it into the EEL. A

description of the GL fog is described below and a complete discussion of its use can be

found in [SGIA92]. GL creates the uniform effect by blending the object and fog colors

based on the distance to the object from the viewer. When objects are near, the objects

appear as they would in the absence of fog, but as the distance increase the objects look

washed out as the colors of the fog and objects are blended. At a certain distance from the

object, the fog will completely obscure the object.

There are several different fog characteristics that can be set by the user such as color

and density. The values of the density range from 0.0 where there is no apparent fog to 1.0

where fog totally obscures the color of the object at a distance of one eye unit in eye

coordinates. The eye distance is the reference to which fog density values are normalized.

The proportion of the objects true color that contributes to the apparent color is called the

blend factor and is computed at the vertices of each of the graphics primitive when fog is

turned on. The vertex blend factors are interpolated to determine the blend factor at the

intermediate pixel values of the graphics primitive.

The blend factor is calculated using (Eq 13), (Eq 14) and (Eq 15). The first two

equations are used to calculate fog in eye coordinates for uniformly distributed fog. The last

equation calculates fog varying linearly with distance when given the distance the fog starts

and stops from the viewer.

fog - (1 -e) (5.5 x density x ZY) (Eq 13)

19

Cog - (I -- e) (-5.5 x (density xZ,,,)2) (Eq 14)

f 1- (endfog + Zeye)
fcog = 1- (endfog- startfog) (Fq 15)

Where:

fog: The calculated blending factor in [0, 1].

density:The fog density.

Zeye: The eye space Z coordinate of the pixel or vertex being fogged.

startfog :The distance from the viewer where the fog begins.

endfog :The distance from the viewer where the fog becomes opaque.

The color of each of the pixels when the fog is active is determined using (Eq 16).

C = CPx (l-fog) +Cfxfog (Eq 16)

Where:

C: The resultant color.

Cr,: The color of the incoming pixel.

Cf: The color of the fog.

C. OBSCURANTS SUMMARY

There are numerous methods and equations available in the literature to model the

movement of obscurants like smoke and fog. We have chosen to use Brigg's equations to

model the translation and dispersion of our smoke plumes because of its simplicity and ease

of implementation. The dust trail and flame generators determine the forces on each of the

puffs and calculate the translation and dispersion based on the change of the force over

time. The IRIS family of graphics workstation provides a uniform fog algorithm that

calculates the color of each pixel based on the distance of the viewer to the object.

20

IV. NIGHT OBSERVATION DEVICES AND THE PASSAGE OF
TIME

Those that use combat simulators need various battlefield characteristics modeled in

the VW so all aspects of their warfighting capabilities can be tested. This should include

every weapons system, environmental effect and possible advisory.

Characteristics associated with the passage of time, such as the amount and direction

of available light, can play a role in determining if a certain action should be undertaken on

the battlefield. Consequently, it should be modeled in the VW. If a simulator fails to address

an environmental characteristic such as the approaching nightfall, the participant will have

to contend with the changing environment for the first time in the field. As Zyda [ZYDA93]

states

Realism is an important factor in virtual world development, but truthfulness is as
important to simulations. If we teach people incorrectly in a simulator, we put that
individual in danger and lose the usefulness of the simulator.

The forces of the U.S. demonstrated in Panama and then again in the Persian Gulf

Crisis of 1991, the advantage of using n;ght vision devices to increase combat capabilities

during night operations. The current advantage may decrease as opposing forces are

outfitted with similar equipment. As this occurs, it will be the forces that have thoroughly

trained and integrated the systems into their battle doctrines that will have the advantage.

The earliest versions of NPSNET did not model the passage of time but rather had one

time setting for the entire time of play. The latest generation of NPSNET, NPSNET-IV,

allows the participants to discreetly establish a time of day that sets the amount of light and

color in the scene, but there is no change in environmental aspects such as light

directionality. The players continue to play in the set time frame until actions are taken to

modify the time setting. To increase the effectiveness of the simulator, the effects of the

passage of time that occurs naturally without intervention should be integrated.

The following short discussion explains the basic concepts used in developing the

model for the "Night Observation Devices" and "passage of time" algorithms.

21

A. NIGHT OBSERVATION DEVICES

Over the past forty years, night vision technology has steadily improved to its current

state of relatively inexpensive, lightweight devices. The available devices are based on

three varied systems each providing air and ground forces an extreme advantage over non-

equipped advisories in all low light battlefield conditions. Each of the three technologies

have advantages and drawbacks under varying conditions.

I. Image Intensification (12)

Image intensifying systems are passive instruments that intensify available light

so the user can see surrounding objects and terrain in detail. Newer systems using this

technology require a minimum of light and can be operated successfully in overcast or

moonless nights but their use is limited in environments where there is virtually no light.

Then image intensification systems are small enough to be used as a gunsight and are

relatively inexpensive making outfitting large numbers of personnel possible. They do

however have a relatively poor resolution. [LESS93]

2. Thermal Imaging

This type of system, unlike the 12 systems, requires no existing light, but depends

upon the temperature differential of objects in the viewed area. Because most objects in

typical environments have unique temperatures, a viewer can easily distinguish between

the terrain, vehicles and personnel in environments involving light foliage, smoke, dust and

camouflage. However in situations involving rain showers or snowstorms, the

effectiveness of the system decrease. Some models are small, weighing less than six

pounds. [LESS93]

3. Laser Radar (LADAR)

LADAR technology operates much like radio-frequency radars, using the

measured time-of-flight of its pulsed energy to produce an image. The components for

scanning the energy beam and detecting the return are similar to those used in imaging

22

infrared sensors. This system is very effective in no-light situations and is effected less by

temperature effects than the previous models but because of its non-passive method of

imaging, is limited by Emission Control (EMCON) conditions. Current prototypes have

dimensions as small as eight inches in diameter by eight inch length, weighing less than 12

pounds.[LESS93]

The advantage of having the ability to fight unhindered in the dark is well documented

and the US armed forces are acquiring devices to outfit everyone from the aviators that fly

close air support, to tank and truck drivers to the infantry soldier [LESS93]. The training of

these individuals in operational exercises and in simulators should include NOD's if their

use is to be as effective as possible.

B. PASSAGE OF TIME

I. Defining The Time Of An Event

The year, month, day, hour and location must be included whenever an event such

as sunrise or moonset is defined for it to be meaningful to another person located at some

other position on the earth. Specification of the date and time can be expressed as local

mean time, relative to the meridian of the event, in Standard time, relative to a standard

zone meridian, or to Universal Time which is relative to a world wide standard.

The local mean time standard is expressed in terms of the meridian of the location

of the object and as such is an isolated time measure of no interest to any other meridian.

The Standard system divides the Earth's into 24 time zones and all the clocks in any one

zone are set to the same hour. The time zone designation of the event and the observer must

be known for time correlation between two parties. The last method called Universal Time

(UT) commonly called Greenwich Mean Time or Zulu military time uses a 24 hour clock

as c~ppý.-ed to the standard 12 hour clock. When using this system when it is midnight at

Greenwich, England, it is time 0000 UT. The advantage of using Universal Time is that

individuals need only know their own zone designation to convert UT to their zone time

[MILL78].

23

2. Specifying A Location Of A Body On Earth

In order to specify a location of an observer on the earth, two coordinates called

the latitude and longitude are needed. Latitude, is the distance from the equator expressed

as an angle measured northward or southward from zero degrees at the equator along the

meridian of the observer to the observer. Longitude, expressed as an angle measured

eastward from the prime meridian located in Greenwich, England to the local meridian of

the observer. In this system of coordinates, the maximum possible latitudes and longitudes

are 90 degrees North and 90 degrees South and 180 degrees West or East of the prime

meridian [MILL78]

3. Specifying The Location Of A Celestial Body

As in the position on the Earth, two coordinates are required to specify the

position of an object in the sky. One coordinate called the altitude is referenced skyward

from the horizon and is the angle measured upward to the point occupied by the celestial

body. The altitude in Figure 6 is represented by the angle DcP. The maximum value of the

altitude measurement is 90 degrees

The second coordinate called the azimuth is the angle measured along the horizon

eastward from true North to the observer, It is represented in Figure 6 as NcD. The location

where the arc of the altitude intersects the altitude is the location of the body of interest

[MILL78].

4. Defining Celestial Events Of Interest

When an individual is located on the surface of the earth, the area in the

immediate vicinity appears as a flat plane,1 while the sky appears as the inside surface of a

sphere. The horizon is the intersection of the sky sphere with the plane (see Figure 6).

During the course of a day, the Earth rotates on its axis and the celestial bodies

appear to rise in the east and set in the west. The most noticeable of these events is the rising

1. This disregards all geological structures such as hills, valleys or mountains.

24

and setting of the sun and the moon. The rise and set for the sun and moon is defined as the

time when the upper semicircle of the body is even with the horizon of the observer

[USNO871.

horizon

P Z \ sky sphere

azimuth ••\• p

E

Figure 6. The Horizon-Sky Sphere Model.

In certain locations on the Earth, such as those areas north of the Arctic Circle and

South of the Antarctic Circle, the phenomena of sun and moon rise and set do not occur as

an unbroken interval. There are days when the sun and moon do not rise or set according

to the model presented. This occurs because of the imprecision of the calculations and

atmospheric conditions that may cause the light to be reflected so much that the phenomena

does not appear to take place [MILL7T1.

There is a period of time prior to sunrise and after sunset during which there is

natural light provided by the scattering of sunlight in the upper atmosphere. This period is

subdivided into three periods depending upon the number of degrees the center of the sun

is below the horizon. When the sun's center is between 0 and 6 degrees below the horizon,

the period is known as civil twilight. The period when the center of the sun is between 6

25

and 12 degrees below the horizon is known as nautical twilight and when the sun's center

is greater than 18 degrees it is said to astronomical twilight [USNO87].

5. Available Lighting

Illuminance measured in lux or lumens per square meter, is the flux or radiation

per second received on a unit area of any surface. In ordinary terms, iluminace is the

amount of natural light reaching the surface of the Earth. The ambient atmospheric

conditions modifies the illuminance to a considerable degree. Hence, the amount calculated

by the model presented here will most likely differ from the amount of light actually

received on any given day. The recommended approach to interpreting the calculated

illuminance is to consider the numbers as threshold values which, without additional

information, determine only when certain activities can take place in natural light or when

optical devices should be utilized [MILL78].

C. THE CELESTIAL MODEL

The EEL contains the function calls to model the movement of, and the light

contributed by the sun and moon and the procedures to determine the times of nautical

twilight. The equations used in developing the algorithms are briefly describe here. For a

full description of celestial navigation see [MILL78]

The equations to model the movements and calculate the position of those bodies have

been known since ancient times and in the past large almanacs with pre-calculated values

were need to simplify the mathematics, but with the advent of computers the calculations

are now straight forward.

sin (a) = sin (p) x sin (5) + cos ((p) x cos (5) x cos (LHA) (Eq 17)

A = (sin (LHA))/(cos(LHA) x sin(qp) -tan(8) xcos(p)) (Eq 18)

LHA = GHA+X (Eq 19)

GHA = (GAST-RA) x 15 (Eq20)

26

(Eq 17) through (Eq 20) are the used to determine the altitude a and the azimuth A of

a celestial body where:

a: The altitude of the celestial body.

A: The Azimuth of the celestial body.

P: The latitude of the observer.

b: The declination of the body.

LHA: The local hour angle of the body.

GHA: The Greenwich hour angle.

X: The local longitude of the observer.

GlAST: The Greenwich apparent sidereal time that is a function of the Julian

date and universal time of the observation.

RA: The apparent right ascension (referred to the true equator and the

equinox of date) in hours.

For latitudes between 65 degrees North and 65 degrees South (Eq 21) through (Eq 26)

can be used to determine the times of sunset, sunrise and twilight with an accuracy of about

two minutes. Above latitudes of 65 degrees the results become less accurate so the results

should not be relied on for purposes requiring high precision.

M = 0.9856 x t- 3.289 (Eq 21)

L = M + 1.916 x sin (M) + 0.02 x sin (2 x M) + 282.634 (Eq 22)

tan (RA) = 0.91746 x tan (L) (Eq 23)

sin (8) = 0.39782 x sin (L) (Eq 24)

cos(H) = (cos(z) -sin(8) x sin((p))/(cos((8) xcos(p)) (Eq25)

T = H + RA - 0.06571 x t - 6.622 (Eq 26)

Where the variables are given the following meaning:

M: The sun's mean anomaly.

L: The sun's true longitude.

The approximate time of the local phenomenon in days since January 1.

27

z: The sun's zenith at rise, set or twilight.

H: The sun's local hour angle.

T: The local time of the phenomenon

In extreme northerly or southerly latitudes, the calculated events such as sunset or

moonrise may not always occur because of round off error or other atmospheric conditions.

The moon or sun may remain above or below the horizon for more than one day or the sun

may remain above or below the horizon for months. Because of the intended use of the

algorithm in the NPSNET simulator and the desire to reduce computational complexity, we

determined that this slightly less accurate model provides results sufficient for our needs.

D. LIGHT MODEL

The Earth is continually bombarded by electromagnetic radiation. The waves in the

electromagnetic spectrum seen by the human eye are said to be in the visible spectrum and

have lengths ranging from 0.710 to 0.40 micrometers.

As the light from a celestial body enters the atmosphere it is refracted, scattered and

reflected by clouds, fog, smoke haze and the molecules of the atmosphere itself before it

reaches the Earth. The amount of available light and the extent to which it is scattered is the

dominate factor in determining the color of the sky.

Rayleigh's Law indicates the light energy scattered per unit volume of air is inversely

proportional to the fourth power of the wavelength of the illuminating radiation. This

phenomena is called preferential light scattering. Rayleigh's Law predicts the probability

that blue light will be scattered out of a volume of air is 16 times that of the red light. This

is why the sky appears blue during the day. However, during twilights, the sun's altitude

becomes small and the amount of air the light must traverse increases to the point where

most of the blue light is reflected into space and prevented from reaching the observer at

all so the majority of the light reaching the observer is scattered red light, so the observer

will sense a red atmosphere. In contrast when the sun is directly above, the amount of

28

scattering of the red band is so small the sun appears to have a white appearance. A more

thorough discussion on the optics of the atmosphere can be found in [CAMP77].

29

V. IMPLEMENTATION

A. IMPLEMENTATION OF THE ENVIRONMENTAL EFFECTS

The discussion of implementation includes an explanation of procedures, structures

used in the algorithms and the methods used to achieve the desired affects such as the

proper dispersion of a smoke plume and the effect of wearing night observation devices

during daylight hours.

The methodologies used in the implementation of the smoke, flames, cloud and dust

generators are similar, so they are discussed as a group. The "lightning", "passage of time"

and "night observation device" algorithms are discussed separately, followed by a review

of how the algorithms interact with one another.

A set of manual pages for the GL applications that describe the functions, the C

specification and notes helpful to the user is provided in the APPENDIX.

1. Obscurant Generator

Reeves discusses the use of particle systems to render objects not readily modeled

using simple polygons in [REEV83] and Gardner discusses a method to generate a smoke

plume using a series of primitives in [GARD92]. The basis of our obscurant generator is

derived using characteristics of both methods. We use a three-polygon primitive,

considered as a point mass, that has its own individual attributes such as age, position and

size. Unlike a true particle system in which every particle has its own attributes, the method

used assumes particles near each other have similar characteristics and can be grouped and

transformed as a group. This assumption can be used when the existing wind is uniform and

obstructions to the fluid flow are considered insignificant.

The particle primitive of the obscurant cloud is called a "puff' and consists of

three 12-sided textured' polygons each aligned perpendicular to the other as shown in
Figure 7. The vertices and the texture mapping coordinates are generated using the

1. The vehicle dust trail generator uses a non-textured object. The non-textured object yielded bet-
ter results than we could obtain using the method described for the smoke and flames.

30

equations x = r x cos (0) y = r x sin (0) and stored in a lookup table to reduce the

number of sine and cosine calls

12 sided polygon

Figure 7. Puff With Texture Applied

The characteristics of a puff primitive are defined by the individual attributes

maintained in the puff structure and are used to determine the size, shape, translucence,

position and age of the puff. Since each primitive maintains its own characteristics and is

considered a point mass, orientation in the world is insignificant and the resulting shape and

appearance of the overall plume is determined not by one puff alone but by all puffs of the

plume. Furthermore, Reeves states in [REEV83] the modeling of the transformation is

essentially procedural with slight differences provided using random numbers. This allows

a large number of primitives to be transformed in a short period of calculation time.

The age of the puff is calculated by determining the elapsed time since its creation

and is used to calculate the position, size and translucence of each of the puffs. The

maximum obtainable puff age is a function of the number of puffs available and the

maximum downwind distance the puffs are expected to traverse. The limitation on the

number of puffs is determined by the allowable amount of space allocated to puff storage

and more importantly the acceptable increase in rendering time associated with the increase

31

in puffs. The current implementation of smoke uses 75 puffs per column, which is 1125

textured polygons for a plume that is in a full bellow. With three plumes of smoke and

flames being put into the graphics pipeline, the simple driver program used in

implementation and testing was slowed from 40 frames per second to just under 10 on a

IRIS 4D/440 RE.

The polygons are textured using a four-component, image file of a smoke puff

applied in an environment defined with the property TVMODULATE which causes the

RGBA characteristics of the resulting object to be derived from the RGBA values of the

underlying polygon and the applied texture [SGIA921. The alpha value of the underlying

polygon is reduced with age so the resulting image appears to fade away as the puff moves

far away from the source of generation.

A puff primitive is in one of the three states illustrated in Figure 8 during the life

of a plume; the "unused queue", the "active queue" or in the "transformation and rendering

phase". Puffs in the unused queue have initial attribute values and are ready to enter the

smoke plume at the source as new virgin puffs. Those puffs in the active queue have been

rendered at least once in the currently generating plume but have an age less than the

maximum life of a puff.

Initially all puffs are in the unused queue but as the algorithm generates obscurant,

they are popped off the queue, the attributes are updated, the puff becomes part of the

obscurant column and are moved according to the appropriate translation model2, scaled

and placed in the queue of active puffs. Since each puff's size is known throughout its

lifetime, we can reduce the number of puffs needed to generate a full plume by translating

each puff a sufficient distance prior to generating the next one. Once the puff primitive is

sufficiently translated from the source, the next puff taken off the queue undergoes a similar

set of transformations.

2. The smoke generator uses Briggs' equations while the other generators use equations derived
from the Newtonian equation F=ma to calculate the amount of translation.

32

START

initialize attributes S h.0Q 0

* 0

Unused queue Active queue

reset attributes

0 0
O 6 03

If at max age return to Unused

queue for reuse else continue to 0
perform transformations. 4

uupdlate

attributes

Figure 8. Life Cycle Of An Obscurant Puff

33

Each suosequent puff added to the active queue causes the length of the plume to

increase. Once a puff's age exceeds the maximum life time defined for the plume, it is

pushed onto the queue of unused puffs and reinitialized again for reuse.

The resetting of puff attributes allows the algorithm to run for any desired time

with a finite number of puffs. It does however limit the maximum downwind distance that

the obscurant can be translated. If this distance is not properly set for the available number

of puffs, a discontinuity in the smoke generation at the source will be apparent during

generation.

An obscurant plume is generated by simultaneously generating five columns

using a footprint similar to the one suggested by Gardner in [GARD92I and shown in

Figure 9. Each of the columns are independent so it generates and maintains the

information for each plume and puffs in its own smoke structures.

Plume

Figure 9. Obscurant Footprint

By rotating the footprint of the flame generator 45 degrees from that of the smoke

generator, a fuller more robust flame smoke combination is achieved adding to the realism

of the model. The shape of the plume is determined by the path of the puffs as they are

34

effected by the wind of the surrounding air mass and the smoke dispersion over tim=. Figure

10 illustrates a petroleum fire with a wind speed of 2.4 meters per second. Notice that the

wind has more effect on the smoke as the distance from the source increases and the

momentum caused by the initial updraft of the flame decreases. Figure I l shows a vehicle

dust generator being created by a vehicle traveling at 45 m.p.h. on light dusty terrain and

demonstrates how the dust trail becomes noticeably less dense at the trailing edge.

Figure 10. Smoke And Flame Generator

Initially an attempt was made to change the alpha value of the underlying polygon

as a function of the puff's chemical composition, but we found using a linear decrease in

alpha with the age of the puff provided a sufficiently realistic result at a very small

computational cost. The simplification resulted in a visually realistic plume without

requiring the chemical concentration of each puff to be computed.

35

Figure 11. Vehicle Dust Trail

36

2. Passage of Time

The passage of time algorithm uses a set of functions derived from the equations

for celestial bodies and daily solar events information discussed in Chapter IV. The purpose

of the algorithm and supporting functions is to enable the user to position the sun and moon

in their correct locations and determine the amount of available light in the scene and color

of the horizon relative to the of line of sight, latitude and longitude of the observer.

The horizon is implemented by having a "horizon polygon" rendered as the first

object in the graphics loop in 2-D orthographic mode. It is positioned at the farclipping

plane of the observer. Since the viewer has the freedom to move in all three directions, the

position of the horizon polygon is a function of the viewer's coordinates, reference

coordinates and the dimensions of the view volume shown in Figure 12. The vertex

locations of the horizon polygon are determined using the relationship between the height

of the viewer, height of the reference point, and distance to the farclipping plane.

a horizon polygon
od aapositioned at te V: veit f iefr oc view

farclippingLS~plane

Grun aWu~iee hr. dsheight of viewernepo

seen by viewer f: dist to farclipping plane

Figure 12. Relationship Of Ground In Scene To That In View Volume.

Using (Eq 27) and noting the similarity of triangles shown in Figure 13, we

determine where the horizon meets the ground (shown as I in Figure 12) in screen

37

coordinates. The color of the horizon polygon is determined by assigning a color to each

vertex of the horizon polygon and the resulting polygon color is determined by the Gouraud

shading model. The color of the vertices is based on the probability the light of the blue

band has a 16 times greater chance of being scattered than the red light in a same volume

of air [SCHA8 1]. Our model calculates the number of relative atmospheres as a function of

the inverse of the sine of the sun's altitude. The upper vertex color is determined by

adjusting the color of the blue band as the day progresses and holding the red and green

band constant at zero.

a

B
C A' °

• •Cb

B'

Figure 13. Similar Triangles ABC And A'B'C'

V l) fxtan (O)))
horizon - ground - intercept = - I Xcos f) tahv (_ q 27)

When the sun is directly overhead, no scattering of light occurs and the RGB

values of the lower vertices is set to 255. However as the sun's altitude decreases, the value

of the red band is decreased at a rate so it will have a zero value at nautical twilight.

38

Likewise, the green and blue band are decreased respectfully ten and sixteen times as fast

for any given decrease in altitude. The gives the horizon a white scattered effect during mid

day and falls off to a bright red and then dark sky at the end of twilight.

The amount of light in the scene is determined using the method discussed in

Chapter IV. To use the resulting information in a meaningful way, we calculated the

amount of light in the scene at the equator on June 21 at 1200 and arbitrarily set this value

as the maximum ever possible. Then for any desired time, we set the intensity of our

defined light to the ratio between the calculated light in the scene and the maximum

possible available. This allows our model to have nights when there is enough illuminance

from the moon so objects are visible.

When a light model is defined with a one-sided characteristic, the position of the

light source determines which side of a polygon is colored and which is not. This gives the

effect of having shadowed surfaces in the scene. As the position of the light source rotates

around an object, the side that is colored will change. To model the changing position of

the light source and illumination, we locate the defined light source by setting its position

to the brightest of the sun or moon.

3. Night Observation Devices

The night observation devices (NOD) are modeled after the image intensification

systems discussed in Chapter IV. When the NOD's are donned, black goggles are drawn

over the scene to limit the field of view, electronic noise is simulated and the scene is given

the distinct greenish glow present in the actual devices (see Figure 14).

To reduce the field of view, a mask is generated by drawing four rectangular and

four triangular polygons in two-dimensions at the end of the graphics loop to produce the

effect of wearing goggles. To simulate the electronic noise noticeable in the actual devices,

we randomly place black and green points in the region of the screen where the goggles are

drawn. By placing the points just in the eye piece rather than the entire screen area, we can

achieve a high point density using a relatively low number of points. When the NOD's are

39

donned, the RGB values of the defined light is modified to obtain a greenish glow by setting

the ambient component to (0, 0, 0) and the color component to (0,.68, 0). Since the horizon

polygon has minimal significance during the night hours and the NOD's are unusable

during daylight hours, it was decided the horizon polygon should not be rendered during

use of the NOD because to do so requires constantly updating the color of the polygon when

it is not viewed.

Figure 14. Night Observation Devices

The amount of light in the scene is used as an input to the algorithm to determine

if the "light gain" of the NOD's is such that the image is washed-out because of an over

abundance of ambient light. The "washout" is modeled by placing a polygon generated

using a material with an alpha value directly proportional to the amount of illumination in

the scene over the goggles. A lightning bolt causes the amount of light in the scene to reach

a maximum for a short period of time and then quickly return to the amount defined by the

illumination equations.

40

4. Lightning

The algorithm used to model lightning uses a recursive function to generate a tree

of nodes and branches when the root node's location is given. The user defines the

bounding coordinates of the world so the length of a bolt of lightning can be limited.

The angle any branch makes with the ground plane is randomly chosen from the

set (225, 315) and the corresponding branch length is randomly chosen from the set (0,

100). The algorithm starts to back out of the recursion when a leaf node falls out of the

bounding volume defined by the user or a node has no offspring. The user defines the

probability a node will generate a left or right leaf which in turn determines the density of

the generated lightning bolt. Figure 15 illustrates a typical set of lighting bolts with a

density of 50 percent.

Figure 15. Lightning Strike With Density Of Fifty Percent

A call to the lightning algorithm causes the illumination in the scene to be

momentarily set to the maximum amount possible and then is linearly decreased back to

41

the amount calculated by the illumination equations for the time of day. This causes the

NOD's to "washout" during any lightning strike regardless of location of the wearer

relative to the lightning bolt location.

B. IMPLEMENTATION USING THE IRIS PERFORMER TOOLKIT

IRIS Performer is an application development tool that combines a programming

interface for creating visual simulation applications and a high-performance rendering

library. It provides a powerful and general means of high levels of graphic performance

from the IRIS workstation. It consists of two libraries: libpr.a and libpf.a. Libpr is a low

level library that provides high speed rendering functions, state control and other machine

oriented functions. Libpf is a rapid prototyping environment that uses libpr functions to

create a multi-processing, automated database rendering system that takes advantage of

IRIS multi-CPU hardware. [SGIB92I

Libpf provides a pipelined multiprocessing model for implementing graphics

simulations. The three pipeline stages are (1) simulation, (2) traverse and cull and (3) draw.

The simulation stage updates and queries the sene, the traverse and cull stage traverses the

scene and adds geometry to the display list, which is then rendered by the draw stage.

[SGIB921

Performer uses a run-time database structure and hierarchy to maintain state

information and geometry. This provides for a fast efficient method of object rendering.

During execution, Performer examines the scene database, culls as necessary and then

renders the geometry contained in the scene. The scene hierarchy describes how items in

the scene database relate to each other in both the logical and spatial organization. The

spatial organization of the database is used to increase the performance of certain

operations such as drawing and determining the intersection of objects.

The basic element of the database hierarchy is the node and each of the nodes has a

specific function. Table 2 lists the nodes pertinent to our work that are available and a brief

42

description of the functions they provide. For a complete description of their use see

[SGIB92].

TABLE 2. PERTAINENT IRIS PERFORMER NODE TYPES

Node Type Class Description

pfNode Abstract Basic node type

pfGroup Branch Groups zero or more chil-
dren

pfScene Root Contains the visual data-
base

pfDCS Branch Dynamic Coordinate Sys-
tem

pfSwitch Branch Selects active children

Performer uses inheritance to allow nodes in the tree structure to share attributes with

any leaf below it. The base node is called pfNode and all nodes inherit its attributes. This

allows the children nodes to have properties that are not specifically designated by the user.

The Perturmer implementation of the smoke generator is a low fidelity version of the

generator discussed previously. It is written in C++ and has only slight changes from the

original GL version. To reduce the computational complexity, it uses a simple natural log

function to translate each of the puffs in a single column. This method of transformation

was found to be an order of magnitude faster than when using Briggs' Equations on the

IRIS Indigo Elan. It uses the same queues and structures for maintaining the individual

plume and puff information as discussed previously.

The differences in the GL and Performer version of the algorithms exists in the

rendering phases. The main difference between GL NPSNET and NPSNET-IV using

performer is that it requires the geometry to be passed from the simulation process to the

43

draw process by attaching the applicable plume nodes to the scene via a smoke group node

before it is rendered.

To implement the smoke generator using Performer, in the smoke initialization

function we first define and establish the smoke plumes' hierarchical tree structure

consisting of all nodes from the plumeswitch to the puff image geometry and define a

smoke group and attach it to pfScene as shown in Figure 16. To the smoke group, we attach

a root node of the terrain database. The terrain is divided into subterrain blocks that allows

for efficient spatial traversal of the database.

Individual plumes are made up of a plswitch and plDCS node to which we attach as

many puffswitch and puffDCS node combinations as there are puffs in each plume. The

code fragments listed in Figure 17 and Figure 18 along with the following description

provides an explanation of the implementation of Performer smoke functions. When smoke

is required, the structure containing the information of all plumes is traversed to locate the

next available smoke plume. After the next available plume is identified, the plume switch

is set ON and the plume is transformed by applying the necessary translation values to the

plume DCS so that the plume is moved to the appropriate position in the terrain database

and attached to the sub-terrain node.

As each puff in the column is needed, it is taken off the active queue, its puff switch is

turned ON and translated according to the translation and dispersion algorithm using the

puff DCS. Once translated, the geometry is sent to the draw process for rendering. The puff

continues to be taken off of and returned to the active queue as long as it remains alive.

(using the same criteria as in the previously described smoke generator). Once the puff

reaches the end of its useful life, the puff switch is turned OFF and the puff is placed back

on the inactive queue of unused puffs. The plume will continue to generate puffs for the

duration time set by the user. Once it has existed for the duration time, the plume switch is

turned OFF and all the puff and plume parameters are reset so the plume will be available

for reuse.

44

pfcn smoke group

SwAttached atinitialization~eri oe

sub-terrain node s • ub-terrain node

Figurhe1• 6 -.P•eromer Plume Hirch y

4sw: p fswitch

Plume Structure pl: plm

Fiur 16. Pefome Pum Hierrch

0*0 09 0605

maino{

smokeplume plume;

initialize~systemo;

initialize_all_variablesO;

initialize fire(numberofplumes, winddirection. windspeed);

while(TRUE) loop I

pfSynco;, //get the processes working together

pfChannelO; //setup the view point

do-an-event requiring~smokeo;

usenextsmokeplume(x,y,z,duration);

generateali smokeo;

pfCullO;, I/find out what to draw

pfDrawo; I/draw a frame

Figure 17. Performer Implementation Of Smoke Generator

46

initialize-fire(int numberofplumes, float winddirection, float windspeed)1

set.pfSwitches~and-pfDCSO;

set..puff-attributes-of-aillpiumeso;,

build-plume...structureo-,

build-trigiookup-jableso;

)//end initialize-fire

usenextsmokeplume(float x. float y, float z, int duration) I

int plumenumberused

findnextavailableplume(plumenumberused);

addplumetoterrain(plumenumberused);

retum(plumenumberused)

)//end usenextplume

generateall smoke() I

loop through active queue I

if(duration then stopandresetplume() and returno);

getnextpuffo;

translatepuffO.

if(puffisold then resetpuffo)

else

putbackinactivequeueo;

Figure 18. Functions Used In Performer Implementation

47

The Performer based simulation was able to maintain 30 cycles per second with up to five

plumes generating simultaneously when positioned close together. We ran the application

with up to 15 plumes generating and the simulation maintained between 20 and 30 hz if all

the plumes were not in the view area simultaneously. A typical smoke plume generated in

the Performer environment is shown in Figure 19. It is a low fidelity version using one

column of 15 textured puffs translated with a natural log function and scaled based on age.

The puff object is textured using an image that is applied prior to compilation.

Figure 19. Low Fidelity Smoke Plume In Performer Environment

C. PERFORMANCE

The program used to test the performance of the GL obscurants typically operated

between 30 to 40 cycles per second (cps) and was slowed to about 10 cps when three

plumes of any type were generating in the field view close to the viewer. The lag decreased

as the distance of the viewer to the plumes increased. The lightning function, because of its

recursive nature, caused the movement of objects in the scene to stop while it was being

generated. As long as the probability of having a left or right child was maintained below

fifty percent, it was not disturbing to the viewer. The passage of time algorithm was only

48

called once per minute so its effects on performance is negligible. The program was able to

maintained 30 to 40 cps when the NOD functions were being executed.

D. IMPLEMENTATION SUMMARY

The implementation of the obscurant functions are similar in their use of data

structures and method of maintaining the state of each entity in both the GL and Performer

versions. The lightning, Night Observation Devices and passage of time implementations

are different from each and are designed so they can be used together or independently of

each other, however if used together there is the interaction that causes the NOD's to wash-

out in high light environments.

The environmental effects were implemented using techniques that allowed their use

in a real-time application and often forego computationally expensive calculations for

inexpensive yet visually accurate algorithms.

49

VI. NETWORKING

A. BACKGROUND

The large scale and complexity of real-time simulations are testing the limits of even

the most powerful processors available. To overcome this limitation, large simulations can

be broken down into smaller stand-alone workstation simulations systems that interact with

each other over a high speed network [SCHM93]. This breaking down of the simulation

requires each node to control and maintain certain aspects of the world. Additionally each

node must inform all other players when actions it is controlling have changed. Although

it introduces some redundancy in the information that is maintained by all nodes, it removes

the requirement that there exist a super controller constantly communicating the state of the

world to all players. With the removal of the requirement for a main node controlling the

simulation, there is a decrease in network traffic since each node can proceed with the

simulation while only requiring periodic updates.

A networking protocol that allows workstations to communicate the events of a

simulation that has been "broken-down" into the necessary pieces so individual nodes can

interact without a main controlling processor is called the Distributive Interactive

Simulation (DIS) Protocol [IST911.

B. NETWORKING THE SIMULATION

The purpose of networking a simulation is to allow multi-player interaction from

numerous nodes over long distances. With a networked simulation, numerous personnel

can play from any location by just joining the simulation using an inexpensive workstation.

A networked simulation provides a virtual representation of the warfare environment that

is inexpensive enough to be available at most duty stations and allow frequent use by

members of the forces. With the development of the DIS protocol, it is becoming increasing

more feasible to generate large scale network simulations that can be executed on

50

inexpensive workstations that cost far less than the super computers that were once

required.

The goal of NPSNET is to develop a basic virtual world shell that allows one to visit

any area of the world for which a terrain database is available and to interact with other

human or autonomous players found "in the system". Further, it is to construct a low-cost

visual simulator/virtual world explorer interoperable with the DARPA SIMNET system

and the follow-on DIS networking standard. [ZYDA93]

C. DIS 2.0.3 PROTOCOL

NPSNET-IV uses the DIS protocol to communicate with other nodes on the network

during a simulation. The primary mission of DIS is to create synthetic, virtual

representations of warfare environments by systematically connecting separate

subcomponents of the simulation which reside at distributed, multiple locations [ISTA93J.

The DIS protocol is a highly structured communication system designed as the follow-

on to the SIMNET protocol. It has the capability to send pertinent information about

warfighting units over a network.

The basic DIS concepts are first, to have a system in which there is no central computer

for event scheduling. This removes the requirement of some simulations that there exists a

high powered computer capable of maintaining the state of the world. Second, each node

is responsible for maintaining the state of one or more entities and sending out information

pertinent to other players in the simulation. Third, there is a standard protoccl to

communicate ground truth data that allows each node to determine whether another entity

is visible or perceived by the host node. Fourth, nodes communicate only what changes in

the state of the simulation and dead reckoning of dynamic objects is used to reduce traffic

on the network [ISTB93]. These concepts allow dissimilar simulations to interact over a

large area using inexpensive workstations. In developing the method of networking the

environmental effects, consideration was given to all of these concepts. We had to

determine how and when a node would perceive an effect, how to maintain its state, how

to communicate the change in an effect while attempting to reduce the amount of traffic

necessary to relay the information.

The DIS method of sending data places all information into a packet called a Protocol

Data Unit (PDU) and places the PDU on the network to transfer the information to all

players taking part in the simulation. We will be dealing specifically with the entity state

(ES) PDU so a discussion of that PDU is given. However for a complete discussion of DIS

and its PDUs see [IST911, [ISTA93] and [ISTB93].

D. ENTITY STATE PROTOCOL DATA UNIT

One of the PDUs provided by the DIS protocol is called the entity state PDU. That

PDU is used to communicate the information needed for a receiving host computer to

represent an entity in its own version of the simulation. Since ninety-five percent of

network data transmitted is entity state data [ISTA93], most of the packets placed on the

network are ES PDUs. The PDU contains an entity's information such as position, type and

capabilities and is used by a host node to determine how to render and react to a specific

entity. The ES PDU contains the information found in TABLE 3.

TABLE 3. DIS ENTITY STATE PDU INFORMATION

Field Description

Header Identifies the DIS version, exerciser ID and PDU type

Entity ID ID of the issuing entity.

Force ID ID of the force to which entity is assigned.

Entity Type Issuing entities specific entity type.

Entity Type Issuing entity's alternate entity type used when the func-
Alternate tion of guises is employed.

Time stamp Time for which the PDU information is valid.

Location The location in the simulated world.

Velocity The linear velocity of the entity

52

TABLE 3. DIS ENTITY STATE PDU INFORMATION (Cont)

Field Description

Orientation The orientation of the entity in the simulated world.

DR The parameters used as inputs into the dead reckoning
algorithm.

Appearance The appearance including smoke, dust and presence of
articulated parts.

Capabilities The capabilities of the entity such as logistic or repair.

Markings Specifies the unique markings on an entity.

Articulation The number of articulation parameters for the entities
articulated parts.

E. IMPLEMENTATION

In implementing the environmental effects, we are concerned with the method of

communicating the effects to other nodes interacting in the simulation while reducing the

amount of information placed onto the network. We reduce the traffic placed on the

network for several reasons. First, the probability of information loss on the network

increases as the percentage of used network bandwidth increases and second, as the traffic

increases, latency also increases because of the time required to process all the information

placed onto the message queue.

1. Effects That Must Be Networked

The EEL contains a group of effects that need to be communicated to all other

players in the simulation for realistic interaction because if one node is rendering the effect

then it should have the capability of being perceived at every node in the network. This

group of effects consists of the smoke, flames, vehicle dusttrails, and the effects of time

passage. The Night Observation Devices have only a local effect so it is not necessary for

other players to be notified they are in use.

53

To prove the concept of networking the environmental effects using the DIS

protocols, we have implemented the smoke generator algorithm into NPSNET-IV. The

method used for networking smoke and a description of an implementing method for the

remaining effects is presented.

2. Networking Smoke And Flames

The method presented here deals specifically with smoke but it can be used to

network flame generation. We tested our method of communicating the environmental

effects to others players in the simulation by putting the smoke generator into NPSNET-IV.

A smoke plume becomes an entity of the node generating it. The entity state PDU

appearance field provides a method of communicating the generation of a smoke plume by

setting the appropriate bits in the ES PDU of the generating entity. In our network model,

we implemented a method that does not use the appearance bits but instead generates

smoke at the location that it is perceived to be required, such as when a detonation occurs.

We based our concept on the idea each node is responsible for maintaining the

state of its own world and must determine what is perceived at that node. With this in mind,

our method causes a node to start the smoke generator when it perceives smoke is

necessary. In NPSNET-IV this occurs when either a bomb or missile strikes a building, the

ground or when a detonation PDU resulting from a ground or building impact is received

over the network.

Our method has the advantage of not having to test the appearance bit each time

the entity is rendered however, it has the limitation that if a smoke plume is created by an

event not perceivable by other nodes, then all nodes will not know to generate the plume.

This can occur when an event such as an overheating vehicle occurs. Another limitation is

each node will be generating smoke plumes that are dissimilar to the plumes on all other

machines. The difference in plumes are brought about by the randomness that is built into

each algorithm. The first limitation can be overcome by using the appearance bits in the ES

PDU but testing of the smoke bits for each entity will be required. The only method to solve

54

the dissimilar plume problem is to treat each plume puff as an entity of the node that caused

its creation and send an ES PDU to communicate its location. This solution will

dramatically increase the traffic on the network and is not a viable solution.

3. Networking Vehicle Dust Trails

The entity state PDU is used to communicate when an entity is generating a dust

trail by sending one of four possible values in the dust cloud appearance field. The value

defines the size of the dust plume being generated with 0 corresponding to no dust cloud

and 3 corresponding to a large cloud.

The dust trail generator in the EEL requires the vehicle direction and terrain soil

type to determine the size of the cloud generated for a given velocity. To use the dust cloud

attribute of the ES PDU to network the dust trail, it will be necessary to create a lookup table

that can associate the received dust cloud field value with the proper dust generator input

parameters.

We present an alternate method of networking the dust trail that does not require

the use of a table but uses values available in the ES PDU. To understand the method, we

first explain how the vehicle movement status is communicated. An object controlled from

another node Is dead reckoned by the processor which is rendering it using the last

acceleration, velocity and heading values received until the values are updated by the

controlling node. Since the dust trail generator uses velocity information from the

generating vehicle as inputs, we use the dead reckoned values as input parameters to the

dust trail generator until updated information is available from the controlling node.

The dust trail algorithm is designed so that once a dust puff is generated, its

translation is a function of the vehicle speed at generation and the existing wind. This

method will present a noticeable gap in the dust trail when the updated position of the object

generating the dust differs significantly from the dead reckoned position.

55

4. Networking The Passage Of Time

The algorithm used to calculate the effects of time passage requires a starting time

to define the time of the simulation. The simulation world time (SWT) is the time of the

events as perceived by an object in the simulation. The SWT is determined by adding the

accumulated elapsed time to the starting time of the simulation. Each node calculates its

own elapsed time using its own system clock. The elapsed time of unique nodes may differ

because of system inaccuracies or the different clock resolutions across machines. This

type of error should be insignificant since the clock drift is so much less than the resolution

of the time of day algorithms.

There is however an "asynchronized player" problem since all nodes may not

enter the simulation at exactly the same time. For example, the first node may start the

simulation with a starting time of 1200, some time later a second node may enter with the

starting time of 1200. This discrepancy will cause the two nodes to have different SWT's.

We need to be able to synchronize players as they enter the simulation. The method

presented here describes one technique that can be used to synchronize nodes as they join

the exercise.

To overcome the "asynchronized player" problem we create an entity called the

Time Control Monitor (TCM) which defines the SWT for all incoming nodes. The duties

of the TCM are to inform all new nodes of the SWT and that the TCM already exists.

Each node, upon entering the simulation sends out a message claiming he is the

TCM with his SWT. Unless the new node receives a message informing him a TCM

already exists, he will start to fulfill the duties of the TCM and monitor the network for

newcomers to the simulation. If however, the new node receives a message stating a TCM

is already active then he sets his SWT to the received SWT and joins the simulation. In the

event the acting TCM leaves the simulation, the next node to enter the simulation will

assume the duties of the TCM when it does not receive a message stating one already exists.

The simulation may find itself without an acting TCM if: (1) The acting TCM

leaves the - aulation and no new node enters to replace it or (2) The fiNt ;everal nodes

56

entering the simulation do so at nearly the same timeI and receive each other's message

claiming to be the TCM and set their SWT to the received SWT. The first case presents no

problem since the time drift caused by differing clock resolutions or the clock inaccuracies

during a normal simulation duration should be less than one minute. In the second case,

since both are starting at nearly the same time, even if both use the other's SWT, the time

difference between any two nodes should be less than one minute so there should be not

noticeable difference in time of day effects.

5. Networking Lightning

Our implementation of lightning is only for visual que and has no effect on objects

in the scene so it is necessary to send only a message to the other nodes that lightning is

occurring in the simulation. Each node in the simulation will, using a method similar to the

smoke, have the responsibility of generating its own lighting flashes. As the simulation

becomes more complex and the lightning effects communications, sensors and causes

damage, it will be necessary to inform each node when the flash has occurred and the

effects of the lightning flash.

1. The phrase "at nearly the same time- means the difference in starting times between the nodes is
less than the time latency of the network.

57

VII. LIMITATIONS

The functions in the Environmental Effects Library use simplifying assumptions that

reduce the computational complexity of the algorithms. Additionally, limitations are

imposed by the amount of space that can be allocated to structures in the algorithms.

Because of the simplifications made and the limitations imposed, the models presented

cannot be used in applications requiring precise physical accuracy. But they all are

"visually accurate" and suitable for use in DIS implementations. The major limitations are

discussed below.

A. OBSCURANTS

The length of the plume of obscurant is limited by the number of puffs that are used to

generate a column. As each puff reaches the end of its useful life, it must be reset so that it

can be reused as a new puff at the puff source.

The method we chose to network the smoke generation allows each node to determine

when and where smoke is required. This method reduces the traffic associated with smoke

on the network but requires each node to generate its own version of the plume. Since the

smoke generator algorithm is developed to present a random appearance, each plume will

not be an exact duplication on every node of the network.

B. NIGHT OBSERVATION DEVICES.

The NOD's are modeled after a generic version of the Image Intensification systems

available so the levels of light intensities that cause them to wash-out is arbitrarily

determined. The actual amount of light causing the effect may be different depending upon

the actual devices used.

There is a distinct blurring of bright objects when viewed with actual NODS. Our

attempt at modeling this effect using the accumulation buffer slowed the performance to

such an extreme that it was abandoned and the effect is absent from the model.

58

C. PASSAGE OF TIME

We based the numerical calculations for the sky color on a simplified probabilistic

model, but to meet real-time constraints, we had to create an algorithm to determine sky

color that is derived more from observations than the true physical models of light

scattering. The resulting color of the sky is close to what you see on a typical day.

Although the amount of illumination in the scene considers the phase of the moon and

time of year, the moon is always rendered as a full moon. Additionally no effort in

determining and changing the observed colors of the celestial bodies is made.

D. CLOUDS

The cloud model presented is not effected by the movement of the ambient air mass

surrounding it. Once the clouds are positioned they remain in that location throughout the

simulation.

59

VIII. SUMMARY AND CONCLUSIONS

A. CONCLUSIONS

Developing a realistic model of natural phenomena with such as smoke, fire, clouds

and dust plumes and sky color is computationally expensive. The resulting images of the

complex models are realistic, however the time required to determine the transformations

and characteristics of the object primitives prevents their use in interactive simulations. It

was therefore, necessary to deviate substantially from the true physical model and rely

more on user perception of the image to provide functions usable in real-time applications.

The intent of this thesis was to develop visually realistic environmental effects that

could be integrated into the NPSNET battle simulator. Our research concentrated on the

development of library of environmental effects usable in real-time graphics simulations.

We developed a computationally simple algorithm for generating smoke, flames and dust

trails, clouds, lightning and the effects of time passage as it relates to the sun and moon

position and sky color. The limitations prevent the models provided from being used in

scientific modeling, but they do provide the visually accurate effects usable in the

NPSNET.

B. RECOMMENDATIONS

I. C ++

The complete EEL is written in C as a library of functions. The implementation

in the Performer version is written as a library of functions that can be integrated into

NPSNET-IV, but it does not use the object oriented programming (tOP) approach that

makes C++ so powerful. It is recommended the library be changed so they are set up in

classes and use the OOP paradigms.

60

2. Performer

The speed and high quality images achieved using the Performer environment can

enhance the simulation. The effort needed to change from the GL to the Performer version

is small once the Performer environment is understood. NPSNET can benefit by having the

EEL changed to C++ and implemented using Performer.

C. FUTURE DEVELOPEMENT

I. Parallel Processing

The obscurant generators lend themselves to being placed onto multiprocessors

by spawning a child to perform the calculations for each column to decrease elapsed time

spent computing attribute values. Once parallelized, it will be possible to increase the

physical reality of the plume since additional resources will be available for computation.

2. Other Environmental Effects

There are many effects that still remain to be modeled and integrated into

NPSNET. They include rain, flooding, weather fronts and snow.

3. Lightning Effects Communications And Destroy Objects

The current lightning implementation gives a visual cue that there is an electrical

storm occurring but it has no effect on objects in the world. It is desirable that a method be

developed to have the lightning destroy objects and effect communication and other

electronic gear when it strikes nearby.

61

APPENDIX

A. ENVIRONMENTAL EFFECTS LIBRARY MANUAL PAGES

The Environmental Effects Library (EEL) contains the procedures necessary to

initialize and simulate smoke, fire, clouds vehicle dusttrails, the passage of time and Night

Observation Devices (NOD). Appendix Figure I and Appendix Figure 2 give an example

of how the functions of the EEL can be used in a simple program. The calls from the EEL

have the prefix EEL_ for ease of identification.

#include "environ.h"
#include <allothers>
main{

int number of vehicles = 10; /ten vehicles
float starting-time = 1200.0; /start at noon
boolean startlightning = false; /no lightning yet
fov = 450; //field of view
float lookfx. lookfy, lookfz, looktx. lookty. looktz wvel, wdir,
initvariablesO;
init_graphicso;
EELinitializelmodelO; //set up EEL light model
EELinitializelightsO; //set up EEL lights
EELinitializematerailsO; //set up EEL materials
EEL initialize_ smoke(5); //set up the smoke puffs for 5 plumes
EELinitializeflame(5); //set up the flames for 5 plumes
EEL initialize-dust(number of vehicles); //establish dusttarils for 10 vehicles
EELinitialize_cloudO; //set up random clouds

Appendix Figure 1. Initialization Portion Of Program Using EEL

The EEL is set up so the function calls can be called independently or in conjuction

with any of the other EEL calls once the appropriate initialization routines are executed.

The NVD, lightning and passage of time functions have the capability of interacting if used

in conjunction with each other.

62

while(TRUE) I //main graphics loop
getmenustuff() //user inputs
perspective(fov. 1.25. NEARCLIPPING, FARCLIPP[NG): //set up perspective
EEL-.passj-hejime(head. &startingjtime, 1.0. nodisý_on. lookfx. lookfy. lookfz. looktx.
looktyJooktz. FARCLIPPING. fov/1O.0): //setup to pass the time
EEL...generate-cloudo: //reader the clouds
dosomestuffO: #lthere is more than EEL
if(startlightning) then

//set up the lighning to start with root node at (0. 200. 0) with the first
//angle to be 6.14 rails from the horizontal, any branch falling outside the
/,box with sides 20(X) on a side will stop and there is a 99 percent chance
I/each node will have a left and right branch.
EEL-do-lightning(l.0. 2W0.0. 0.0. 6.14,.0.. 1000.. 1(XXNI. .999):

shootsomemissijes(missi~e),
if(nijssilehitstank) then

EEL-use-next-smoke(tanklxl. tamk~yJ. tankiz]. 25.)llgenerate smoke at tank posit for25
secs

EEL-use_next-flame(tanklxJ. tankly). tank jz]. 25.)//generate flame at tank posit for 25
secs

pushmatrixo;,
transilae(tank-.x. tank.y. tank.z),
rot(tank.heading):
display-this-.object(tank):

popmatrixO:,
//generate dust behind tank using dustplumel I . that uses stoppingdustf 11, llwithwvel and

fl wdir. the tank is located at (tank.x. tank.y. tank-z)
I/tra veling at tank.velocity. on a sandy road made of light dust.

EEL..generate...dust(dustplume[I J.dustcol 1. &dustplumel 1 J.stpuff. wvel. wilir. tank.x,
tank.y.

tank.z. tank.velocity. 0.5, 1.):
if(nods..are..on) then EEL-don-nvg(50) else EEL-doff-nvg(): //don the nods if you want

//to
EEL...generate-all-smokeo, I/render the smoke
EEL...generate-afllflameo: //render the flames
switch -bufferso: //switch the drawing buffers

I//end graphics
1//end main

Appendix Figure 2. Main Graphics Loop Of Program Using EEL

63

B. SMOKE GENERATOR

The smoke generator consists of functions used to create plumes of smoke puffs at the

position and for the time duration inputted by the user. To generate smoke the user

initializes the smoke generator, associates a smoke plume with a specific location and then

renders the smoke.

NAME

initialize smoke - Used to initialize the smoke generator.

use next smoke - Associates a plume of smoke with a location in the simulation.

generate all smoke - Generates all the plumes given a location and duration time.

C SPECIFICATION

#include "environ.h"

void initialize-smoke(int number of plumes)

void usenextsmoke(float x, y, z, duration)

void generate all.smoke()

PARAMETERS

number-of-plumes Number of plumes available at any one time

x, y, z The location of the plume.

duration Time in second the plume will exist.

DESCRIPTION

To initialize the smoke generator, the algorithm initialize-smoke must first be called

to establish the number of smoke plumes needed, initialize the attribute values of the smoke

puffs and identify the texture mapped to the individual smoke puffs.

A plume is associated with a given location by making a call to the function

use next smoke. The function traverses the array of all plumes for the next available

64

unused plume and sets the status to "active" and the "duration" in seconds to the amount

desired by the user.

The function generate all smoke is called after the locations have been defined for

each of the plumes by use next.smoke during each pass through the graphics loop. The

function traverses the array of all columns and renders the puffs of the active plumes.

NOTES

If the next available plume is in use when this call is made, it will be stopped, reset and

started at location x, y, z.

65

C. FLAME GENERATOR

The flame generator consists of functions needed to create plumes of flame puffs at the

position and for the duration inputted by the user. To generate flames the user initializes the

flame generator, associates a flame plume with a specific location and then renders the

flame.

NAME

initialize flame - Used to initialize the flame generator.

use next flame - Associates a plume of smoke with a location in the simulation.

generate all flame - Generates all the plumes given a location and duration time.

C SPECIFICATION

#include "environ.h"

void initialize flame(int number of plumes)

void usenextflame(float x, y, z, duration)

void generate all flame()

PARAMETERS

number.of-plumes Number of p: umes available at any one time

x, y, z The location of the plume.

duration Time in second the plume will exist.

DESCRIPTION

To initialize the flame generator, the algorithm initialize flame must first be called to

establish the number of flame plumes needed, initialize the attribute values of the flame

puffs and identify the texture mapped to the individual flame puffs.

A plume is associated with a given location by making a call to the function

usenextflame. The function traverses the array of all plumes for the next available

66

unused plume and sets the status to "active" and the "duration" in seconds to the amount

desired by the user.

The function generate-all smoke is called after the locations hae been defined for

each of the plumes by usenext smoke during each pass through the graphics loop. The

function traverses the array of all columns and renders the puffs of the active plumes.

67

D. DUST GENERATOR

NAME

initialize-dust - Initializes the vehicle dust trail generator.

generate-dust - Generates the dust associated with a given vehicle.

C SPECIFICATION

#include "environ.h"

void initialize.dust(int number of trails)

void generate dust(DUST dustcol, int *stoppingdust, float windvel, winddirection,

posx, posy, posz, speed, dustindex, roadtype)

PARAMETERS

number of trails Number available during the simulation at any one time.

dustcol Identifies which column is associated with a vehicle.

stoppingdust A counter associated with a specific plume.

windvel The speed of the wind in meters per second.

winddirection The compass direction in radians.

posx, posy, posz The position of the vehicle.

speed The speed of the associated vehicle

dustindex The index of the soil from Appendix Table 1.

roadtype The index of the road from Appendix Table i.

DESCRIPTION

The algorithms to generate a vehicular dust trial are used by first initializing the

generator with initialize-dust to establishes the number of trails to be used and set the

attributes of the individual puffs used in creating the trails.

A specific trail is associated with a vehicle by making the call generate-dust. The

parameters dustcol and stoppingdust are values associated with the individual trail to be

used and are set by the generator algorithm. The windvelocity is the speed of the wind in

68

kilometers per minute, winddirection is the direction of the wind in radians with 0.0

representing true north. The parameters posx, posy, posz, speed are the position of the

vehicle and its velocity in meters per second. The dustindex and roadtype indicate the type

of soil and road type being traversed by the vehicle. Typical soil and road types are defined

in Appendix Table 1.

APPENDIX TABLE 1. INDEX FOR DUST AND ROAD TYPES

dustindex dust type roadtype road type

0.0 no dust 0.0 paved

0.5 dry clay 0.5 clay

1.0 light sand).0 sand

69

E. GENERATE CLOUDS

The cloud generator consists of an initialization routine that establishes the structures

and defines the texture used in generating the clouds. A number of clouds are generated

with random positions in the world and rendered in those positions by the generate-cloud

function.

NAME

initialize-cloud - Used to initialize the cloud generator.

generate-cloud - Renders the clouds in a random position in the sky

C SPECIFICATION

#include "environ.h"

void initialize-cloudo;

void generate cloud(;

DESCRIPTION

Initializing the cloud generator by calling initialize-cloud defines the cloud texture

and sets the location of the clouds with random positions. Once the generator is initialized

a call to generate-cloud renders the cloud puffs in the random positions set in the

initialization routine.

70

F. LIGHTNING

NAME

do lightning - Generates lightning bolts of varying densities at random locations.

C SPECIFICATION

#include "environ.h"

void do-lightning(double x, y, z, angle, ground elevation, x-boundary, zjboundary,

density)

PARAMETERS

x, y, z Position of the root node of the lightning bolt.

angle initial angle the branch makes with the ground plane.

ground elevation Elevation of the ground in world coordinates.

x_boundry, z-boundry Absolute value of the bounding volume of the world.

density Probability node will have a left or right child.

DESCRIPTION

Lightning is generated by calling the function do lightning. The parameters x, y, and

z represent the position of the root node of the lightning bolt. The angle parameter is any

random value between 0 and 45. It is the angle the branch of each bolt makes with the

normal to the ground. The ground elevation. x boundary and z boundary parameters

define the volume the lightning is to be maintain in. The density parameter establishes the

probability a node has a left or right leaf attached to it.

NOTES

When a call to do lightning is made and there is a lightning flash the Night Vision

Devices will be effected and will wash-out.

71

SEE ALSO

donnvg

72

G. NIGHT OBSERVATION DEVICES

The night observation device functions are used to simulate an illumination

intensification system. They can be used in conjunction with the passage of time function

to enable the user to view items when the amount of light in the scene is low.

NAME

don nvg - Used to simulate night observation devices.

doff-nvg - Used to remove the effects of the night vision goggles.

C SPECIFICATION

#include "environ.h"

void don nvg(int density);

void doff nvgo;

PARAMETERS

density Determines the amount of noise visible in the NOD's

DESCRIPTION

The night observation devices are turned on by making a call to the function don nvg.

The density parameter defines the amount of random noise rendered in the goggles of the

NODs. The call changes the value of the defined light and must be placed just prior to

switching the drawing buffer at the end of the graphics loop. To remove the NOD's and

reestablish the ambient lighting conditions the call doff nvg is made.

73

H. TIME

The passage of time functions are used to position the Sun and Moon and determine

the amount of light in the scene. Additionally it determines the color of the horizon as a

function of the time of day.

NAME

passthe-time - Used to simulate the effects of time passage.

C SPECIFICATION

#include "environ.h"

void pass.the time(float heading, double *startingtime, int nodsare_on, float

minutesperminute, veiwx, viewy, viewz, refx, refy. refz, farclippingdistance, fieldofview)

PARAMETERS

heading Direction the viewer is headed.

startingtime The starting time of the simulation.

nodsareon Boolean used to determine if the NOD's are donned.

minutesperminute Used to scale time in the simulation.

veiwx, viewy. viewz The eye position of the viewer.

refx, refy, refz The reference point of the viewer.

farclippingdistance Distance from the viewer to the farclippingplane.

fieldofview The viewers field of view.

DESCRIPTION

A call to pass the time updates the world time, positions the celestial bodies and

renders the horizon polygon. The parameter heading represents the heading of the viewer

in degrees. The parameter *startingtime represents the world time the play commences.

The parameter nods-are on is a variable defined in "environ.h" and is set as a function of

nod use and it is sufficient to use the actual variable nods are on. The parameters veiwx,

74

viewy, viewz, refx, refy, refz, farclippingdistance, fieldofview refer to the viewing and

reference coordinates of the viewer and the distance to the farclipping plane and the field

of view of the viewing volume.

NOTES

If the NOD's are being used and the amount of light in the scene becomes high enough

then the goggles will be washed-out until the light level falls below an appropriate level.

SEE ALSO

don_nvg

75

1. INITIALIZING LIGHTING AND MATERIALS

The environmental effects library uses a lightmodel, defined light and materials that

are defined in environ.h and must be initiaized prior to their use. If another light is defined

and used then the EEL function involving light may be effected.

NAME

initializelmodel - initializes the lightmodel used with the EEL.

initializelights - defines the light used in the EEL.

initializematerials - defines the materials used in the EEL.

C SPECIFICATION

#include "environ.h"

void initializelmodel()

void initializelightso;

void initializematerials()

DESCRIPTION

The light model is defined and bound to the attributes maintained in the array

MYMODEL and is created by making the call initializelmodel. The light is defined and

bound to the lighting properties in LIGHT by making the call initializelights. The property

arrays are defined in the file environ.c.

The materials used to define the underlying polygons for the obscurant puffs and the

material used to wash out the NODs is defined by making the call to initializematerials.

The material properties are maintained in the arrays lightmaterial and nodmaterial. The

property arrays are defined in the file environ.c.

76

LIST OF REFERENCES

[ANDR93] Andrew. W.. Baraff. D., "Differential Equations Basics," paper presented at SIGGRPH93
20th International Conference on Computer Graphics and Interactive Techniques. Anaheim.
California. Ito 6 August 1993, pp. BI - B8.

[BEYC79] Beychok. Milton. R.. "Fundamentals of Gas Stack Dispersion,- Milton R. Beycock
Consulting Engineer. 63 Oak Tree Lane. Irvine, California. February 1979, pp. 15 - IX8.

[BRIG69] Briggs, Gary. A.. "Plume Rise." Air Resources Atmospheric Turbulence and Diffusion
Laboratory Environmental Science Services Administration. Oak Ridge National
Laboratory. 1969. pp. 5 - 15.

[CAMP77] Campbell. Ian. M., "Energy and the Atmosphere A Physical-Chemical Approach." 2 nd

Edition, John Wiley & Sons LTD. New York. 1977. pp. pp. 79 - 120.

[DARP89J Defense Advanced Research Projects Agency. Report No. 7102. "The SIMNETNetwork and
Protocols," by A. Pope. July 1989.

IGARD851 Gardner, Geoffrey. Y.. "Visual Simulation Of Clouds.'" Computer Graphics Proceeding, Vol.
19. No. 3. 1985. pp. 297 - 303.

iGARD92] Gardner, Geoffrey, Y.. "Battlefield Obscurants Final Technical Report." Grumman Data
Systems Corporation. Woxlbury. New York, September 1992. pp. 8 - 31.

[ISTg9l] Institute for Simulation & Training. "Military Standard Protocol Data Units For Entity
Information and Entity Interaction in a Distributive Interactive Simulation," Final Draft.
Institute for Simulation & Training, Orlando. Florida. October 1991, pp. 47 - 50.

[ISTA931 University of Central Florida Institute for Simulation And Training Draft 2.2. Distributed
Interactive Simulation Operational Concept. by B. McDonald, March 1993.

[ISTB93] Institute for Simulation & Training. "Proposed IEEE Standard Draft for Information
Technology- Protocols for Distributed Interactive Simulation Applications." Version 2.0
Third Draft. Institute for Simulation and Training, Orlando, Florida. May 1993.

[KLAS871 Klassen. V. R.. "*Modeling the Effects of the Atmosphere on Light," acm Transaction on
Graphics. Vol. 6, No 3. July 1987, pp. 215-237.

[LESS93] Lesser. Roger. -Night Vision Technology Continues To Improve." Defense Electronics.
January 1993, Vol. 25. No. 1 pp. 45 - 48.

[MILL78] Mills. H.R.. Positional Astronomy and Astro-Navigation Made Easy." John Wiley & Sons
New York.. 1Q78.

[N1SH931 Nishita. Tomoyuki and others. "Display of The Earth Taking into Account Atmospheric
Scattering." Computer Graphics Proceedings. Annual Conference Series 1993. ACM
SIGGRAPH 1-6 August 1993. pp. 175-182.

[PRAT93] Pratt, David, R.. Construction and Management of Real-Time Virtual Worlds, Doctoral
Dissertation, Naval Postgraduate School. Monterey, California. June 1993.

77

[REEV83] Reeves. William T. "Particle Systems--A Technique for Modeling a Class of Fuzzy
Objects," acm Transaction On Graphics, Vol. 2. No. 2. April 1983. pp. 359 - 376.

[SCHA8I] Schaefer, Vincent J.. Day. John. A.. "A Field Guide to the Atmosphere." Houghton Mifflin
Company, Boston, Massachusetts. 1981, pp. 155 - 173.

[SCHM93] Schmidt. D.. NPSNET: A Graphical Based Expert System to Model P-3 Aircraft Interaction
With Submarines and Ships, Master's Thesis, Naval Postgraduate School. Monterey.
California, June 1993, p. 56.

[SGIA92] Silicon Graphics, Inc. Document Number 007-1210-040. Graphics Library Programming
Guide, by P. McLendon. March 1992.

[SGIB92] Silicon Graphics. Inc. Document Number 007-1680-010, IRIS Performer Programming
Guide. by P. McLendon. September 1992.

ITHOR871 Thorp, Jack A.. "'The New Technology of Large Scale Simulator Networking: Implications
for Mastering the Art of Warfighting." Proceedings of the 9th Interservice/Industry Training
System Conference, November - December 1987.

[USNO87] U.S Naval Observatory, Washington D.C.. "'Computer Programs for Sun and Moon
Illuminance With Contingent Tables and Diagrams." Circular No. 171. February 19. 1987,
pp. 3 - 24.

[WEJCYl] Wejchert, Jakub. Haumann. David. *'Animation Aerodynamics." Particle System Modeling.
Animation and Physically Based Techniques Course Notes 16. ACM SIGGRAPH'92. July
1992. pp. 2-12 - 2-21.

IZYDA931 Zyda, Michael. J.. Pratt. David, R., Falby. John. S., Lombardo. Chuck. Kelleher. Kristen, M..
"The Software Required for the Computer Generation of Virtual Environments". Presence.
Vol. 2. No. 1. 1994.

78

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, Va 22304-6145

Dudley Knox Library 2
Code 052
Naval Postgraduate School
Monterey, Ca 93943

Dr. David R, Pratt 4
Code CS/PR
Computer Science Department
Naval Postgraduate School
Monterey, Ca 93943

Dr. Michael Zyda, 5
Code CS/ZK
Computer Science Depatment
Naval Postgraduate School
Monterey, Ca 93943

Mr. Jeffery Turner
Topographic Engineering Center
Fort Belvoir, Va 22304

Mr. Stanley Goodman
U.S. Army Simulation, Training and Instrumentation Command
12350 Research Parkway
Orlando, Fl 32826-3276

79

