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OVERVIEW

Tne research goals of this project have been:

I) To study the effects of nonlinearities on the dynamics of deployable and
maneuverable structures, including the possibility of chaotic or transient dynamics.

II) To design experiments to study slewing transients of flexible structures both to test
the anlytical models and to explore for possible unmodelled dynamic effects.

Ill) To study the motion of unfolding or deployable structures both experimentally and
analytically using one or more prototype systems. The goals are to derive
methodologies for formulation of the governing nonlinear systems of equations and
to test solutions for specific systems.

IV) To advance practical numerical simulation of the dynamic controlled deployment
and maneuver of large flexible structures by including geometrically exact large
rotation/displacement effects and by imporving the robustness and efficiency of
solution methods for the highly nonlinear effects.

The hallmark of the research has been a balance among theory, experiments, and numerical

simulation as well as a strong interaction among these components.

SUMMARY OF ACCOMPLISHMENTS

I. Developed a soliton deployment strategy for folded panel space structures.

2. Showed spatially complex and chaotic solutions of a twisted elastica.

3. Studied the impact dynamics of a multi-bay nonlinear elastic structure. Established
evidence for transition from soliton to chaotic transient dynamics.

4. Studied the slewing transients of a cable controlled flexible robot arm structure.

5. Made significant progress in the development of innovative object-oriented 3-D
nonlinear simulation tools for deployable and meneuverable space structures.
Continued to employ and improve basic nonlinear analysis capabilites for the



controlled and uncontrolled dynamics of structures which were developed in earlier
research sponsored by AFOSR (URI I) and others (NCEER, NASA LeRC).

6. Completed the structural modelling, attribute assignment, and visualization
capabilities of our interactive graphic 3-D system for dynamic and static structural
analysis.

7. Completed work on coarse-grained parallel processing for nonlinear structural
dynamics by developing explicit and implicit anlalysis capabilities as well as a new
automatic domain partitioning algorithm for load-balancing among processors.
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SEARCH ABSTRACTS

IoUowing are abstracts of each of the subprojects active at the end of the third year of the
arint project. The six topics encompassed are:

1. Soliton Deployment Dynamics for Folded Panel Space Structures
II. Impact Dynamics of Nonlinear Elastica Structures: Solitons and Spatial Chaos

III. Spatially Chaotic Deformation of the Elastica
IV. Development of Analytical Capabilities for Realistic and Efficient

Simulations of 3-D Space Structures
V. Interactive Modelling of 3-D Structures

VI. Parallel Nonlinear Dynamic Analysis

Research Abstracts

1. Soliton Deployment Dynamics of Folded Panel Space Structures

A simplified one-dimensional model was adopted to study the problem of the
dynamics of deployable structures. The model provides a nonlinear potential energy vs.
displacement function for individual sections that form a large structure such as a solar
panel The model assumes that the structure is clamped at one end, and free at the other
(Figure 1).

It was discovered that work done with nonlinear lattices, specifically molecular
systems, was very similar to the problem being studied.

Numerical simulations were conducted on both the original system and one of the
molecular systems as well. It was possible to numerically duplicate work that had been
done with solitons and molecular systems. With this as a starting point, the original system
was tested under a variety of initial conditions to see if solitary waves could be generated
within it. Solitons were generated in the original system, and were found to facilitate the
deployment process.

In addition to the one-dimensional models simulated, recommendations are
provided to extend the simulations to an umbrella-like structure with periodic boundary
c conditions.

U1. Impact Dynamics of Nonlinear Elastic Structures: Solitons and Spatial Chaos

* Evidence for transition from soliton to chaotic motion in a nonlinear elastic periodic
Sstructures has been obtained for both impact and periodic loading. Experiments and
Snumerical simulation are used to show how solitary wave dynamics in a coupled cell

system with a finite number of cells can evolve into a complex spatial pattern with chaos-
like dynamics. The experiment consists of eight elastic oscillators coupled with buckling
sensitive elastica. This structure is analogous to those found in space structures. ship ai.d
aircraft structures (see Figure 2).

Numerical prediction of dynamic deformation of imperfection sensitive structures
such as plates. shells, and arches have traditionally been poor predictors of actual motion,
especially under transient loads. In this study we provide evidence for the inherent
unpredictability of calculations of such nonlinear structural dynamics. Both numerical and

...........!... ....



experimental measurements show how spatially coherent motions such as solitary waves
break up into chaotic motions, extremely sensitive to initial conditions.

JIT. Spatially Chaotic Deformation of the Elastica

Elastica-based deployable structures have been designed for space antenna in both
the United States and Japan (Figure 3). We investigate the existence of spatially chaotic
deformations in an elastica and the analogous motions of a free spinning rigid body, an
extension of the problem originally examined by Kirchhoff. It is shown that a spatially
periodic variation in cross sectional area of the elastica results in spatially complex
deformation patterns. The governing equations for the elastica were numerically integrated
and Poincart maps were created for a number of different initial conditions. In addition.
three dimensional computer images of the twisted elastica were generated to illustrate
periodic, quasi-periodic, and stochastic deformation patterns in space. These pictures
clearly show the existence of spatially chaotic deformations with stunning complexity.
This finding is relevent to a wide variety of fields in which coiled structures are important.
from the modeling of DNA chains to video and audio tape dynamics to the design of
deployable space structures (Figures 4,5).

IV. Development of Analytical Capabilities for Realistic and Efficient Simulations of 3-D
: Space Structures

In this project we seek to develop numerical tools for simulating large deformation
nonlinear dynamics of space structures. We focus in particular on structures made of rods.
Problems of interest include activity controlled slewing, as well as deployment and
stowage. We hope to achieve realistic, accurate, and robust simulations with relatively
coarse spatial and temporal discretization, by employing geometrically exact, material frame
indifferent formulations (A. Cardona and M. Geradin (1988)] and unconditionally stable.
momentum-preserving, implicit time-integration schemes [J. C. Simo et al., (1992)]. We
follow A. Cardona. M. Geradin, and D. B. Doan (1991) in modeling constraints as special
elements, and make use of sophisticated linear and nonlinear system solvers to reduce the
need for expensive matrix factorizations.

All these methods and techniques are as complex to implement as the problems they
address are challenging, and require a significant amount of experimentation and fine-
tuning. In order to support their integration, a new object-oriented nonlinear dynamics
analysis platform (henceforth referred to as ONDAP) is being developed, which emphasize
modularity, clarity, flexibility, and reusability. It is organized in three sparsely interfacing

* modules responsible, respectively, for the finite element model (configuration updates.
* force/stiffness recovery), the analysis (assembly and solution of nonlinear system of

equations), and the input/output.

The design of ONDAP re-addresses central procedures of the method of finite
* elements as object relations and rules of production. It makes the essence of the method

obvious through innovative object classes, such as element-fields, element nodes. and
nodal-variables, instead of hiding it in page-long definitions of stiffness matrix entries.
Verifying the correctness of a new formulation's implementation is uncommonly easy in
ONDAP, due to the element mechanics being expressed in terms of algebra of vector fields.
ONDAP encourages experimentation by turning disjoint element implementations into
parameterized options (e.g., element topology, order of field interpolation. rule and order
of element quadrature, etc.). Finally, options which are mathematically, if not
conceptually, independent are identified and assigned to different object classes, to



minimize duplication and maximize reusability of code. Overall ONDAP is designed to bemodular, readable, reliable. and easy to expand.

Common operations in ONDAP have been standardized and centralized, in order to
preserve reliability. Most object data structures have been defined, although some are not
tinalized. Functionality for linear elastic material model, prismatic I-beam structural
members, and Lagrange interpolation on a Cartesian product topology have been
implemented. An extensive library of vector and tensor functions has been created, with
special emphasis on rotations and derivatives thereof. An interface with BASYS (the in-
house pre- and post-processor -- see "Interactive Modelling of 3-D Structures" below) has
been designed and is almost completely coded. Functionality that maps the BASYS
description bito ONDAP's internal representation has been designed and partially
implemented.

The tasks that must be completed before a meaningful problem can be analyzed fall
into two categories: general, having to do with the overall organization of ONDAP. and
specific. The general tasks are the design and implementation of operations for degree of

* freedom numbering, updating of configuration, force and/or stiffness recovery, and
, implicit time integration. Specific tasks include implementation of element mechanics for

rods as in Simo and Vu-Quoc (1991), Gauss quadrature on Cartesian product topologies.
value and gradient calculation for position vector and rotation pseudo-vector variables, a
simple line search algorithm, and skyline matrix functionality (initialization, assembly, left-
multiplication into vector, factorization, forward- and back-substitution.

Once ONDAP is operation and stable, the implementation of constraint finite
elements for realistic modeling of joints, and of advanced nonlinear system solvers for
increased efficiency can be undertaken.

V. Interactive Modelling of 3-D Structures

This aspect of research involves enhancement of the three-dimensional structural
modelling software BASYS [Srivastav (1991)]. A radial-edge topological database is used
by BASYS to represent frame or truss structures comprised of elements having zero. one.
or two dimensions (joint. line, and surface finite elements.) In the past. BASYS required
that structural models be created and all attributes be assigned using a separate program.
such as CU-PREPF [McGuire et al. (1989)]. As a result of this research and development
in the third year of the project, tools are now in place which permit BASYS to be used for
the entire model-building process.

Models are generated in BASYS by copying or extruding simple three-dimensional
objects to eventually generate the complete structure. The simple objects are created using
the Grid generator, or by repeated use of the Add operators (Add vertex. Add edge. Add
face.) In BASYS, copying is a two-stage operation where the entities to be copied are first
specified and stored in a temporary list, which is in turn operated upon by the copy
algorithm selected by the user. Available copying algorithms include copying along a line.
along a circular arc, along a radius, and mirror imaging about either a line (for two-
dimensional problems) or a plane. Editing functions such as Delete. Split Edge, and Move
are also available. Move operations are particularly hard to implement. even with element
geometry being an attribute of the structural topology, as in BASYS. Sophisticated checks
are necessary to ensure that (1) edges and surfaces will not penetrate existing surfaces. (2)
overlapping elements (vertex-vertex, edge-edge, and face-face) will not be generated and
pass into the database unknown to the user, and (3) surfaces do not lose their planar
geometry as a result of a move request.



Attribute assignment involves two stages. First an attribute is defined and stored,
then the components which inherit it are specified. For most attribute classes. BASYS
employs a table and pointer-to-table paradigm which is described below. Special operators
are included to accommodate orientation-dependent attributes such as orthotropic material.
principal axes of bending for beam elements, and follower-type joint or member loads.
Finally, pre-assigned attributes are conveniently propagated by the copy operators.

The table-and-pointer-to-table scheme is chosen because it minimizes storage
requirements and facilitates modifications. It is typified by its application to material
actributes. Typically, structures are constructed of several different materials. Each
material type will have a table of its properties stored as an attribute of the model. Also
stored with the material properties is a user-defined table name: subsequent references to
the material table are made through this name. The attribute assignment procedure begins
with the user specifying which of the stored tables is "active". As the table is assigned to a
structural component, the component sets its material properties pointer to point to the
currently "active" table.

Often, the user desires to know the coordinates of a specified vertex, the distance
between vertices, or the coordinates and attribute data associated with a structural
component such as an edge or surface element. An Inquiry menu page has been
implemented to satisfy such queries. with the associated information appearing in a special
Inquiry message box which is updated after each entity pick.

A mechanism has been provided which allows the user to define logical groups of
structural elements for the purposes of assigning attributes, requesting analysis output.
enhancing graphical displays, or for copying, moving, deleting, etc. Each group is
referenced through a name and is displayed with a distinct color, both of which are
specified by the user when the group is created. Extensions of this grouping feature will be
made to post-processing features as time permits.

Active control is an important feature of many space structures. Anticipating the
need to study actively-controlled systems, rudimentary features for them have been
incorporated into the current version of BASYS. Active control systems considered in this
research can be defined in terms of non-distributed sensors and control actuators. Sensors
which monitor any combination of state variables in any orthogonal set of directions, fixed
or follower, can be specified. Control actuators may be defined which are of the active
mass, active tendon, or active strut type. Currently, BASYS interfaces with analysis
software such as ABREAST and MATLAB through formatted ASCII files.

"The work associated with this aspect of the research is rapidly nearing completion.
The BASYS software is already being used to model complicated space structures,
buildings, and other structures which require surface elements. An example is shown in
Figure 6. The next logical phase of software development involves incorporating the
properties of structural connections, especially connections between two edge elements or
between edge and surface elements. Incremental improvements in postprocessing
capabilities will be undertaken as time permits.

VI. Parallel Nonlinear Dynamic Analysis

The principal objective of this portion of the research. only partially supported
under this grant, is to investigate, develop, and demonstrate coarse-grained parallel-
processing strategies for nonlinear dynamics simulations. The parallel-processing



strategies addressed include numerical algorithms for parallel nonlinear solutions and
techniques to effect load balancing among processors. The parallel environment employed
is a distributed-memory, coarse-grained one consisting of networked workstations. Both
parallel explicit and implicit time integration methods have been implemented for transient
nonlinear nonlinear solutions. In the current year, automatic domain partitioning
techniques have been investigated for load-balancing among processors. and a new version
of Simon's spectral approach [Simon (1991)] has been developed, called the recursive
spectral two-way (RST) algorithm. Advance computing environments, data structures, and
interactive computer graphics all contribute to an integrated parallel finite element analysis
system to facilitate more efficient and powerful dynamics simulations.
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