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- -~"irlmiting distributions of square-integrable infinite order U-statistics
were first studied by Dynkin and Mandelbaum (1983) and Man-
delbaum and Taqqu (1984). We extend their results to the case of
non-Poisson random sample size. Multiple integrals of non-Gaussian
generalized fields are constructed to identify the limiting distribu-
tions. An invariance principle is also established.

We use these results to study the limiting distribution of the amount
of charge left in some set by an infinite system of signed Markovian
particles when the initial particle density goes to infinity. By se-
lecting the initial particle distribution, we determine the limiting
distribution of charge, constructing different non-Gaussian general-

ized random fields, including Laplace, a-stable, and their multiple
integrals.
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1 Introduction

This paper pursues two objectives: to study the asymptotic behaviour of symmetric
statistics with random sample size, and to apply the resulting limit theorems for U-
statistics to study the asymptotic behaviour of infinite particle systems with random
non-Poisson initial distribution. Our main result is Theorem 1, which describes the
asymptotic distribution of U-statistics in terms of multiple integrals of a non-Gaussian
process, whose distribution is detcrmined by the choice of the distribution of the
sample size. The construction of these integrals is given in Sections 2 and 3 of the
paper. One motivation for studying statistics with random size is that it is not always
possible to take a fixed number of measurements. In queueing theory, reliability, and
sequential analysis, study of statistics with random size goes back to the works of
Rényi (1956), Robbins (1948a,b), Gnedenko and Fahim (1965) (see also the survey
Gnedenko (1983) and the recent monographs Lee (1990), Kruglov and Korolev (1990)
and Rachev (1991)). The rest of the introduction motivates the study of infinite
particle systems with non-Poisson initial distribution. Thus, readers who are not
interested in this second problem should skip directly to Section 2 of the paper.

In recent years much attention has been given to the description of infinite systems of
particles moving according to some law (usually Markovian). Among these are works
by Snitzman (1984), Shiga and Tanaka (1985), Walsh (1986), Adler and Epstein

(1987), Adler (1989, 1990), Epstein (1989), Adler, Feldman and Lewin (1991), and
others.

Many of these papers deal with particle systems which behave as follows: Initially (at
time zero) a number of independent particles pop into existence at locations within
the space R?, according to a Poisson point process with intensity A. The particles then
tnove about according to some Markov law. The asymptotic behaviour of this system
as A — oo has been studied in Martin-Lof (1976), 1t6 (1983), Walsh (1986, Ch.8),
Adler and Epstein (1987), Adler (1989, 1990), Adler, Feldman and Lewin (1991) for
different conditions. In particular, Adler and Epstein (1987) obtain convergence of
sums of some functionals of the Markov processes to generalized Gaussian random
fields and their functionals. The authors show how these limit theorems can be used
to study properties of the limiting random fields.

The question we ask in this paper is, “What happens to a Markovian particle system if
we change the initial distribution of the particles?” When the Central Limit Theorem
is applied to a sum of N i.i.d. random variables, non-Poisson randomization of the
sample size N leads to non-Gaussian limits (see, for example, Rachev (1991), Section
19). The choice of a non-Poisson initial distribution, e.g., geometric or “discretized”
a-stable, produces non-Gaussian generalized random fields as limits of sums of some
functionals of Markov processes, and this construction provides a tool for the study




of these fields.

Note that the limiting distributions which we obtain have many practical applica.
tions. Laplace processes, which can be generated via a geometric summation scheme,
arc used in reliability (Brown (1990), Gertsbakh (1990)), in enviromental studies
(Rachev and Todorovich (1991)), and in modeling of financial data (Mittnik and
Rachev (1990)). The recent developments and applications of stable processes are
covered in Samorodnitsky and Taqqu (1990), Rachev and Riischendorf (1990), ctc.
Blattherg and Genodes (1974) observed that the t-distribution provides a better mod-
el for “peaky” distributions than the Gaussian does. Melamed (1989) studics the
gencralized Laplace distribution. By selecting the initial distribution of the particles,
we are able to produce Laplace, stable, generalized Laplace, “t”, and other gener-
alized random fields. Note that one-dimensional time processes of these types were
obtained in Mandelbrot and Taylor (1967) and Clark (1973) and used for modeling
stock returns, providing better fits than Gaussian processes do.

We now describe several interesting ways in which particles may be born on R, d > 1.
Let R? be divided into unit cubes with vertices on the lattice Z¢. On a probabihty
space take a Poisson random variable N()) with mean A > 0. At the initial time,
N(A) particles are born independently in each cube, and are distributed uniformly.
Thus, at the initial time we observe what we will call a “Poisson picture™ in Re.
Alternatively, the particles could be generated according to the following scheme:
Imagine a generator which at each step remains active with probability q. If active,
it produces one particle (uniformly distributed) in each cube. The particles are held
in the cubes where they were born until the time of a “catastrophe”, a geometrically
distributed moment, when the generator fails. At that time particles become free to
move over the whole space R? according to some Markov law until their exponential
Jifetimes expire. Note that the starting time ¢ = 0 of the system is the moment when
the generator fails. We are interested in the case where the failure probability 1 — ¢
is very small, in which case the average density of particles is very large.

The geometric and Poisson distributions both have the property that the probability
of a large number r of particles being born in one cube approaches zero at an ex-
ponential rate as ¢ — oo. It might be interesting to consider a system in which the
initial particle density can take very large values with high probability. This requires
a distribution with a heavy tail. As an example, we use a “discretized”™ version of a
positive stable distribution. Another interesting initial distribution is a mixture of
Poisson distributions. This means that the particles are generated by several Poisson
distributions, onc of which might produce most of the particles. We also consider

mixed empirical and doubly stochastic point process of particles. each having finite
initial measure.

Following the construction of Adler and Epstein (19387), we shall assign a Rademacher
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positive or negative charge to cach particle, send an appropriate paramercr of the
intial distribution to infinity and study the limiting distribution of charge felt by the
system in a set after all particles have died. The limiting ficld, which is indexed by
sets, or more generally, by functions, will have a non-Gaussian distribution. Asspecial
cases, we obtain Laplace, stable, Gamma, “t”, and other fields. We also construct
their functionals using limits of sums of symmetric functionals of the Markov processes
in the system.

This paper is organized as follows: First, we develop some general limit theorems
for sums of symmetric functionals of independent random variables with values in an
arbitrary measure space when the number of summands is random. For fixed and
Poisson sample size, such theorems were proved by Dynkin and Mandelbaum (1933)
and an mvanance principle was established by Mandelbaum and Taqqu (1934) in their
studies of U-statistics. We describe our generalizations of their results in Section
proofs are given in Section 3. In Sections 4 and 5 we analyze the distribution of

charge left in the space by systems of Markov processes created under different initial
conditions.

2 Symmetric statistics with random sample size and mul-
tiple integrals.

This section contains our results on symmetric statistics, often called U-statistics,
when the number of summands is random. Let X, X;, X,,... be i.1.d. random vari-
ables taking values in an arbitrary measurable space (X, F) with distribution v. For
each T > 0, let Hy be a space of sequences of functions {hs;k > 0} for which hg is 2
constant, hy = hy(xy,...,74) is a symmetric function on X* such that

oo Tk .
[|R]I3 = Z X —vr(R?) <

where

VE(h?) :=//A’* W (zy, ... ze)v(dzy) ... v(dr,),
Let H = Ny50H7. The function iy will be called canonical if
/Xh,k(.r,,.. yIe-1,2)v(dz) =0 v — e

Let {hy,k > 0} be a sequence of canonical functions from H. Define sums

) =20 D0 enti(X X (1)
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for v >k and o} (he) = 0 otherwise.

The limiting distribution of n7%/2g3 as n — oo was studied by Dyukin and Mandel
baum (1983) (as well as by other authors). They also considered statistics (1) for
Poisson sample size, 1.e. the limit as A — oo of A~k2g % where N, is a Poisson ran-
dom variable with mean A > 0 independent of X;, Xs,.... In both cases Dynkin and
Mandelbaum obtain the same limits, which are written in terms of multiple Wicner
integrals of Gaussian measure defined on (&X', F).

For r > 0, let N(r) be a positive random variable taking integer values independently
of the X,’s and such that

N(r)/r-g}’a,sr—-»oo (2)
for some positive random variable Y independent of X's. We would like to study the
limiting behavior of statistics r'k/zaiv(r) as r — oo. The limiting distribution in this

case appears to be expressed via multiple integrals with respect to a random measure
{M(B),B € F,v(B) < oo} which has orthogonal increments.

We will denote by 5 weak convergence of finite dimensional distributions.
The main result of this section is the following theorem:

Theorem 1. Let h = {hi,k > 0} be a sequence of canonical functions in H. Let Ly
be the Laplace transform of Y. As r — oo the finite dimensional distributions of

Z,(h) := Y Y (hy) (3)
k=0 '
converge to those of 5 4(1/k!)Ji(hi), where J are multiple integrals with respect
to a random measure M on (X,F) such that for sets By,...,B. € F the vector
(M(B,),...,M(B,)) has the characteristic functional

EctMM(Bi)+. +irM(Ba) _ Ly (%— Z A,-,\Ju(B, N B;)) } (1)

1g=1

The construction of the multiple integrals Ji will be given later. in the course of the
proof. We will use a technique which has parallel in stochastic analysis, where many
results on continuous local martingales can be obtained via quadratic variation time
change {rom results on Brownian motion (see Revuz and Yor (1991)); our main tool
will be a “random function change” in the Wiener integrals with respect to Gaussian
measure, defined in Dynkin and Mandelbauin (1983).

Before we proceed into technicalities, let us give some examples of random measures
M which correspond to different distributions of sample size N(r).




Example 1. (Poisson sample size). If N(7) is a Poisson random vanable with mean
1 >0, then N(r)/r = 1 and M comcides with the Gaussian measure IRV
F,u(B) < oo} such that EW(B) = 0, EW(A)W(B) = v(AN B). This 1s the case
considered by Dynkin and Mandelbaum (1983) and Mandelbaum and Tagqu (1951).

Example 2. (Gcometric sample size). Let N(r) be a geometric random variable
with mean r. Then Y is a standard exponential and M is a Laplace random measure

{L(B),B € F,v(B) < oo} such that

1 .
E M L{By)+...41\n L(Bn) — . ())
¢ 1+ 15r _ Au(B.NB)

2.... k., as a sequence

Example 3. (Mixture of Poisson). Define N’(r), 7 = 1.
= 1.2.... k. Consider a

of independent Poisson r.v's with means ra;, a, > 0,7
mixture of Poisson distributions

k
PING) =0 = L PN() = D,

where p, > 0, Z, P, = 1. In this case Y is a discrete random variable with P(} =
a,) = p, and the measure M is a mixture of Wiener measures (lhon (1984) applies
such distributions to model stock returns).

Example 4. (Discretized stable sample size). Let Y be a positive stable r.v. with

Laplace transform Ee=Y = e=**/*, X\ > 0, where the index of ¥ /2 is less than 1.
Let N(7) be the following discretized version of Y

P(N(r)=k)=Pk-1<rY £k), k21 (6)

Clearly, (2) holds and the random measure M is symmetric stable with parameter o:

af?
Ect\M(By)+..+iAaM(Bn) _ erpy — (% Z /\,‘/\JV(B,' n BJ )) } .

hi=1

Note, that the measure M is different from the stable randomn measures studied i
Weron (1984) and Samorodnitsky and Taqqu (1990), since its increments are not
mdependent.

Example 5. Let 1/Y be a chi-square r.v. and let N(r) be a discretized version (6)
of Y. For Be€ F, M(B) has a t-distribution.

Example 6. (Generalized geometric sample size). Pick any m > 0. Let N(r) have
generalized geometric distribution (cf. Melamed (1989))

P(N(r) =14 km) I:I ; ] 1/'"(1 - —) fork >1

[,]




and P(N(#) = 1)~ v "™ Then ¥ in (2) is a Gamma(l/m, ) distnbated v withy
Laplace transform £07" = (1 4 mA)=Y™_ M has the distribution

mf2
MBI AdM(B) _ (1 + 55 AAuBN u,)) .

11=1

We now rigorously construct and characterize the random measurc M and its multiple
integrals. For the Gaussian case this was done by Dynkin and Mandelbaum (1983)
and extended to an invariance principle by Mandelbaum and Tagqu (1984). \We
proceed in steps, in order to show how the defined integrals appear naturally in the
study of the limiting distribution of Z,(h) of Theorem 1.

On some probability space, define a linear random family {J;(¢).0 € L2(v)} through
its finite-dimensional distributions given by

-1
~

Eeap(i\(9)) = Ly (53%(69) (
and
ady(¢) + bJi(¥) = Ji(agp + b)) ass. for alla,be R (3)

where Ly, as before, is the Laplace transform of the r.v. Y. Note that although
Jy = J} depends on Y, we will suppress the index Y in our notation. The family J,
is defined on a probability space, which may be different from the one which supports

the X;’s and Y, but we will use the same sign for expectations. If we consider the
subfamily

{M(B) = Ji(1g), B€ F, v(B) < oo},
then symbolically

Ji(¢) = /X $(x)M(dz).

Lemma 1 below shows the relationship between the statistics o{\'m and the family J,.
Let L = {¢ € L*(v): v(¢)=0)}.

Lemma 1. Under the conditions of Theorem 1,

=1

N(r)
{r"” Y ¢(X,-)} 2 {h(8)) yes (9)
P€L

Our next step is to define an analog of quadratic variation of the process J,. As
is seen from Lemma 2 below, this role will be played by the linear random family
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{K (o). ¢ LY}, which is defined on the same probability ~pace as the fanly
Ji{¢), and whose jomt distribution with J,(¢) is given by

E cop{iXJy(¢) + ink ($)} = Ly (—wu(zf"’) + %mw?)) - (10)

Here the Laplace transform Ly is defined on the right half-planc {Re z > 0).

Lemma 2. Asr — 00,

N(r) N(r)
{ (r—'/z > e(X), r Z VX, ))} B {(N(@) KW e (D)
=1 ¢ eL

As the next step, for ¢ € L define hg =1,..., hf(r,, T = owry) o o(xg). o
Then the sequence h* = {h?, k > 0} is in the space H (H was defined at the beginning

of this section) and Z,(h?) is well defined. We are now ready to find its limiting
distribution. Set

£(6) = exp {1(¢) ~ 3 K(9)) (12)

Lemma 3. Asr — o©

{z.)},., 3 (@))ser (13)

Recall that the defined function € is a generating function of generalized Hermite
polynomials which serve as multiple integrals (cf., Revuz and Yor (1990)). Specifically.
let Hi(x) be the Hermite polynomial of order k with leading coefficient 1 :

dk
_ e W & (-2

Hi(z) =€ /%(-1) o (e )

For a > 0, set
Hi(z,a) = a**Hi (2 Va).

We also set Hi(r,0) = z*. Then,

oo uk 5
Y —Hi(z,a) = exp{ur — au’/2}.
k=0 k‘

Recall that for a real-valued local martingale {A,,t > 0}, A, = 0. with quadratic vari-
ation < A.A >, the iterated stochastic integral is defined via a generalized Hermite
polynomial:

t 8 Sk-1
k!/o dA,,/o'dA,z.../o dA,, = Hy(A,< A4 >,)
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(Revuz and Yor, p. 13). Similarly, define the multiple integral of order kon the cpace
of functions {hi.d € L} as

Ju(h?) == Hi(Ji(9), K (4)) (14)

Using the last definition, linearity of the processes J, and /', (12), and Lemma 3 we
obtamn

Lemma 4. Under the conditions of Theorem 1,

{Z }dseb {Zkv‘]" h) } (12)

¢€L
as r — oo.

Since the space {h{,k > 0,¢ € L} is dense in H, the passage from Lemma 4 to
Theorem 1 i1s possible.

The proofs of Theorem 1 and Lemmas 1,2, and 3 will follow in Section 3.

We will extend the result of Theorem 1 to an invariance principle for random sums
of symmetric statistics, similar to one obtained by Mandelbaum and Taqqu (1984).
Let f: Ry = Ry < f,f >2:= [§° fA(z)dz < 00, ¢ € L. We extend the definition of
the random integral to the product space of functions L x L*(R,) by putting

Eexp{i\JyE®(¢ i) +...+ iAkJr*’""’(mfk)} = (16)
( E A V(¢|¢J < fx fJ >2) -
1,7=1

(65, f5) € L x L*(Ry4).

Then, the random measure M on the product space (X,F,v) x (R,,B(R,).Lcb)
(B(Ry4) ts the Borel o-field on positive half line) can be defined as follows:

1(B x [0,s]) = Jy***(1glpy), B € F,s>0.
On A* x R define
hio(xy, .o Tty wg) 1= he(ry, o 2e)pg(uy) - Loy (17)
We then have:

Theorem 2. Let {l, k& > 0} be a sequence of canonical functions in H. Asr — oc.
the process

Z4(h) Zr““ INY(hy), t >0, (18)

k=0

o




converges weakly in D[V, o) to

Z LlJuXLeb Il ,l)a (lﬂ)

where the multiple integrals are taken with respect to the random measure M on the

product space (X', F,v) x (Ry,B(R,), Leb) defined above.

Symbolically,
,]".’XL(.b(hk‘t) — /hk(‘Tl! ceey Ik)l(o,l](ul)' .. l[O,t](uk)A'[(d-”’ d“l ) . I‘I((I_’rki (/“L'L

where the integral is taken over the product (X x R, )*.

3 Proofs of Theorems 1 and 2.

Let ¢1,62,...,%1,¢,... be functions in L.

Proof of Lemma 2. Consider the 2k-dimensional process

{r]
(é-(2),ne(t)) Z(T-l/2¢ 7'_1"1’ ),

?ii = (QS](X,'), ve )¢k(Xi))) _IE = (¢12(Xt)’ tey d‘f(‘\,l))
on D|0, 00). ‘
From Donsker’s invariance principle, the law of large numbers and Theorem 4.4 on

p. 27 of Billingsley (1968) follows the weak convergence of (£,.7,). as r — oo, 10 a
2k-dimensional process G4, such that

Eerp {f(é,ﬁ)Gw,./.)( } = erp{rtZ#: v _§ Z A l/(d%db)}

t.7=1
Az('xla---vxk)y E=("'l\'~-v#k)

From (2) and the independence of N(r) and the X;'s, it follows that (N()/r (&)
converges weakly to (Y, G(4.y))-

By the Skorohod-Dudley theorem (cf., Dudley (1989), Theorem 11.7. ")\ there ex
1sts a probability space rich enough to support random pairs (._ W (é.,7,) ) and




(V)_.(T'(,,,‘L-.)) having the same distribution as (N0 (&, 1) and ()‘.(.'(,‘,__,. ,). Lespree
tively, and such that

d(({ (/\’7(‘1 ),ﬂr(N’(.r))) Gw“( )) -0 as.

where d is the Skorohod metric in D[0,00) (see Resnick (1987), p. 221, Rachev and
Ruschendorf (1990)).

Then,

T N(r w .
(&(N( (5 2 G

This immediately gives the result of Lemma 2.
Proof of Lemma 1. Lemma 1 follows immediately from Lemma 2 when ¢ = 0.

Proof of Lemma 3. For any ¢ € L,

N(r)
log Z.(h®) = log (H (1+ T_1/2¢(X:')))

1=1
NG) p N

E #X0) = 5 3 #H(X) + s

(04 2 0asr— oo ) In other words the field {log VA (h")} scL has the same limiting

distribution (in the sense of weak convergence of finite dimensional distributions) as

the field
N(r) 1 N(r)
{ Y H(X =5 z (Xi }

=1

¢€L

Applying Lemma 2 to the latter field we obtain its convergence (Lo {Jl(d)) -1 l\’(d))}

€l
This proves Lemma 3.

Lemma 4 was obtained in Section 2. We shall now prove Theorem 2; Theorem 1 will
follow from Theorem 2 when t = 1.

Proof of Theorem 2. On an arbitrary measurable space (X", F'.v'), define a Gaus-
sian family {I,(¢), 4 € L*(X')} with

ElL(¢) = 0; EL($)1i(¥) = V'(¢).

The multiple Wiener integral of order k associated with the Gaussian family [, is de-
fined as a linear mapping I, from the space H* of symmetric functions hi(ay, .o Te)
(v')*(h}) < oo, into the space of functionals of the Gaussian family ;. The mapping
is uniquely defined by the following conditions (cf., Dynkin and Mandelbaum (19383)):

10



AL L (0EY = H(1 v (%), ¢€ LEY).
B. For hy € HY, E1}(h) = k(o) (hE).

For {h;,k > 0} € H defire the multiple Wiener integral of the function hg, (fig, was
defined in (17)). The integral is defined on the product space (X', F',v') = (X', F,r)x
(R+,B(R4), Leb) and is associated with the Gaussian family {17t (@), (0, [) €
L*(X') x L¥(R,)}, which has mean zero and variance v(¢?) < f.[ >, (cf., (16)).

Then, for {hg,h >0} € H,asr — o0

o0
VARY = 3 r ¥ 26l by, t> 0

k=0
converges weakly in D{0,00) to
oo
Wih) =) k'l""“"(lk,,), t>0
k=

(Mandelbaum and Taqqu (1984)).

As in the proof of Lemma 2, the Skorohod-Dudley theorem and the result on p. 22]
of Resnick (1987) yield

)

To complete the proof of Theorem 2 we have to show that

5 {WY‘(h)}‘20 , 8 T — 00

>0

WY (k) 2 M'(h) (20)

From (10) and the independence of Y and I, it follows that J,(¢) is equal in distri-
bution to \/Fll(qS) 2 11(\/}_'¢ (the latter is defined on the product of probability
spaces), and ]\'(QS) Yuv(é?) = V( VY$) ) In particular, for the random measure

M we have

M(B x [0,s]) 2 Jr*E(1510.4) 2 VY I (1510.4) 2 17 (1al100)).  (21)

The last relationship follows from the facts that Y is independent from /;*%" and
that a Gaussian distribution is fully determined by its mean and covariance.

We complete the construction of the multiple integral of order & with respect to the
measure M on an arbitrary measurable space as follows. The comparison of the

11




generating functions for Ji and I for h*, ¢ € L, yields

i Z_ = exp{uldi(¢) - :—KW)}

k=0 2

2
= CIP{U\/Y;II(¢) - %)V“ﬁz)}
oo .k
= Y GV Hhd).
k=0 "

Thus, we define Ji(hy) 2 Y"/zlk(hk) for hy € H*.

Recalling relationship (21) on the product space (X,F,v) x (R;,B(R,), Lcb) and
the definitions of WY'(h) and M'(k), we conclude that (20) holds. This completes
the proof of Theorem 2.

Prooi of Theorem 1. Take t = 1 in the statement of Theorem 2. Due to the
Cramér-Wold device (Billingsley (1968), p. 49) and the linearity of Z}(4) and A'(h)
in the argument &, Theorem 1 follows if we prove that JErEe (i) Z Ji(he). However,
 this follows immediately from the definition of Ji via Ii (see proof of Theorem 2) and
the relationship I;(¢) 2 Iy*E=2($10,41). (Both variables are Gaussian with mean zero
and variance v(¢?).) This completes the proof of Theorem 1.

4 The limit theorems and random fields.

We now return to the particle picture described in the Introduction. Let Zy := {n:
n = (n,...,nq)}, i.e. the set of all d-dimensional integer-valued multi-indices. For
each n € Zy let C, be the d-cube defined by C, = {z € R : n; -1 < 1, <
n.i=1,...,d}. Let p(z,y) = p(y,z), z,y € Rt > 0 be a symmetric Markov
transition density function satisfying fgra pi(z,y)dy = 1 for each r € R?. Let g be the
corresponding Green’s function

t~
-
~—

g(e,y) = [ e plzye (2

On a probability space (2, F, P}, define an infinite collection X = {Xa(t),t > 0}nez,
of independent symmetric Markov processes on R? with common transition densi-
ty pi(r,y), each process stariing according to a uniform distribution in C,. Fur-
therinore, let the probability space be rich enough to support an infinite sequence
N Xo X,,... of such collections, all independent of each other. If X is onc of
the processes in the cntire collection (when both n € Z4 and ¢ > 0 vary), then we can
think about it as describing the movement of a particle in the system.

12



We take (on the same probability space) a sequence éay,d,,. . of collections a,
{on-1 € Zy} of independent Rademacher variables, 1.e. Plo,., = 1) = o
—~1) = 1/2. We can think about o;, as a positive or ncgative “charge” associated
with the Markov particle X;,. For additional motivation of this clioice of “positive”
and “ncgative™ particles we refer to Adler (1989).

Extend the plobal)ility space to support a random variable N(r). r > 0, independent
of the X's and ¢'s and such that (2) holds. N(r) represents the number of collections
Nioool \N(r, in the system at the initial time { = 0. We now describe the evolution
of the system in time. When a particle with charge o at time { passes through a
point r in the space RY, it leaves there a charge ¢ ‘0. Let A € B(R?) be a Borel set
in the space R?. We are interested in finding the amount of charge left in A after all
particles have lost their charge and in the limit of increasing initial particle density.
i.c. we would like to find a limiting distribution of

N(r)

r : ZZ/ma'nc tlA 1n(t)) ('Z”

as r — oo. More generally, consider a bilinear form

< fih>=<fh >g:=//ﬂu f(2)g(z,y)h(y)dzdy,
where g is given by (22). Define the class of functions
Sq = Sa(g) :={f: f on R* with < [f],|f] > < o0}.

We study the weak convergence, as r — 00, of the finite dimensional distributions of

the sum
N(r)

®.(f) = 22] Gine™ [(Xia())dl (24)

=} n

Define on some probability space a generalized random field {¢(f). f € Sq}. Thus
means (cf. Walsh (1986), p. 332):

(a) ®(af + bh) = a®(f) + b®(h) as. for all f,h € Sy, 1.e. ¢ 1s a linear random

functional,

(b) & has a version with values in the dual space S.

Corollary 4.2 of Walsh (1936), shows that in order to assure (b), ¢ has to be contin-
uous in probability. We specify the distribution of ¢ via

E exp{ir®(f)} = Ly ( M < J, j>) (25)
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Lemma 5. A lincar random functional @ with distribution (25) is continmous 1
probability on Sy.

The proof of Lemma § is postponed to the end of the section.

Theorem 3. Asr — oo, the finite dimensional distributions of the field {®,(f), [ €
S4} converge weakly to those of the field {®(f), f € S4}.

We will give the proof of Theorem 3 later.

The limit theorems developed in Section 2 allow us to build multiple integrals of the

field ®(f). To see this, consider k Markov processes Xj,..., X} from the system.
Define

Fi(Xuve s Xe) i= /0°° /0°° e (X (1) Xe(te))dty o dty (26)
for each function f; from the space
Si = 53(9) := {fu : f on R* with < [fil, /] >< oo},
where
< fi, e >:=
J o e 209(@0,0) - 9@ 9ehCs -y - dandys - .

We study the limiting distribution, as r — oo, of the sum

U, (fi) :=r~*2% . 'Zl$i1<--.<ik$ N (r)ﬁ,k()‘{.-, N ) (27)

FrXo 0 X)) =30 Y tim - Giome (X X ) (28)
ny ny

Theorem 4. Asr — oo, the finite dimensional distributions of the pair

< &, (f), ¥, (fi) > on Sq x S5 converge weakly to the finite dimensional distributions
of the pair < ®(f),(1/k)¥(fx) >, where ¥(fi) is the multiple integral of order k
associated with the field J,(f) L o(f).

Proofs of Theorems 3 and 4 are based on Theorem 1 and the following lemma:
Lemma 6. Let fi, h, € S%. The functional i’h of (28) is square-integrable and
Eﬁ}kl‘:‘hk =< fk,hk > .
Proof. For simplicity, take k = 1. For f,h € S,
0

EFEy=EY o, /oooe“f(.\’,,(t))dtz:am/ €™ h( X (s))ds (29)
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Sinee 0,04, are independent and with zero mean £ a0, = 6, and (29) 1~ cqual 1o

/L/ |7 e (X deds = (30)

2/0 /t C_z-sdtdsZ/Cn da/de,(a,:c)f(J:)d.rLdp,_,(z,y)/z(f/)(/gl.

Note that p(a,x) = p(r,a),

}:/C p(z,a)dz =

and that
2 [7 [T et tpie,y)deds = gla,9).

Thus, (30) 1s equal to

// 2)g(z, y)h(y)dzdy =< f,h > .

The proof for general k > 1 follows from similar arguments involving longer formulas
but no new mathematics and we feel free to omit it. Lemma 6 is proved.

z
Proof of Theorem 3. Let the space A’ = ((Rd)R*' x {—1, 1}) “ be the path space

of pairs ()E',&), and denote by v the probability measure the above pair induces on
X. Then by Lemma 1 the finite dimensional distributions of the sum (24) converge
weakly to those of the field J;(Fy), which is determined by

E expliMi(E})) = Ly (-;—Azu(ﬁ‘f)) .

i)

However, u(F) = Eﬁ'z =< f,f > by Lemma 6. Thus, {Jl(l:"f)’f € Sy}
{9(f),f€ Sd} This completes the proof of Theorem 3.

Proof of Theorem 4. Let X" and v be as in the proof of Theorem 3. Theorem 4
follows immediately from Theorem 1, noticing that {J,(F}), f € S4) L {®(f). f €
Sa} and so that also Ji 2y,

It follows fromn the above theorems and Examples 1-6 of Section 2 that:

(1) If N(r)is a Poisson r.v. with mean r, the random field {®(f), f € Sy4} is a centered

Gaussian with covariance E ®(f)®(h) =< f,g >. (This is the case studied by Adler
and Epstein (1987).)

(1) If N(r) is a geometric r.v. with mean r, the random field {®([), [/ € S4} has the
Laplace distribution
1

Eexp{ir®(f)} = T+ <ff>
2 k]
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(1) I N(r) is a discretized stable r.v., as defined in (6), the random field {dcfy0f
Sq) s a generalized stable random field with distribution given by

. of?
el — ap{_ (%)‘2 <fif >) }

We similarly obtain random fields whose marginal distributions include the t-distri
bution, Gamma distribution, and others.

Our last proof is of Lemma 5:

Proof of Lemma 5. Because ® is linear, it is enough to prove that

O(f) 20 as < fo,fn>— 0.

Take ¢ > 0. For any § > 0 take N large enough so that P(Y > N) < 6/2 and n large
enough so that < f,, f, >< 6¢2/2N. Then from the relationship

o(f.) B B(Fy) 2 VY I(Fy),

(Ih(F 1) is a centered generalized Gaussian random field indexed by f € S; with

variance E(I)(Fy))? =< f,f >) and from the Chebychev inequality it follows that
P(|®(f.)] > €¢) < 6. The Lemma is proved.

5 Other initial distributions.

The results of Section 2 can be interpreted via point process terminology (cp.. Dynkin
and Mandelbaum (1983), p. 742): a sample X, ..., Xn(,) can be viewed as a mixed
empirical point process defined, for example, in Karr (1991), p. 7. Of course, if N(r) is
Poisson, we have a Poisson point process. Theorem 1 then says that some functionals
represented as multiple integrals with respect to the random measure M (given by
(4)) are approximated by the functional (3) of the mixed empirical process. Similarly.
Theorems 3 and 4 state that the generalized random field ® and its multiple integrals
can be approximated by functionals of the point process on the path space of cadlag
functions, which is constructed in Section 4. If instead we consider a mixed empirical
point process on the path space we get the following result:

Proposition 1. Let X;, 7 = 1,2,..., be Markov processes as in Section 4, but with

initial probability measure p. Let N(r) be as in Section 4. Define the following
functionals of the processes:

N(r)

@.(f) = % 2 [T ot sixine (31)
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V. (fi) = 7"‘“2..‘2:%'( cen gy O N A (32

where the functional Fy, was defined in (26). Let {®([f), [ € Sq} be the generalized
random ficld whose distribution is specified via (25) with < [, [ > replaced by

< ST >0=2 [ plda)drdy(2)f ()9 (0, )glr. ) (33)

¢ I(z.y) r:/O e ¥ p(z,y)dt.
Then. the statement of Theorem 4 holds.

Proof. Asin the proofs of Theorems 3 and 4, we apply Theorem 1 to a sample living
on the product of the path space of the Markov processes and {—1,1}. We only have
to establish that EF} is given by formula (33).

E /Ow /O% =2 f(X (1)) (X (s))dtds = (34)
2/000 /t% e""dtds/Rd p(da)Ldpt(a,z)f(z)ded ps—(T,y) fly)dy.

Making the change of variables t = u,s — t = v gives

2/000 /:o c'z"""dudv/mp(da) /de.,(a,z)f(z)dx /deu(r,y)f(y)dy-

Using Fubini’s theorem and the expressions for g and ¢(® given above, we obtain the
right hand side of (33). This finishes the proof of Proposition 1.

Remark: Following Martin-Lof (1976) we can construct a stationary mixed empir-
ical point process of Markovian particles with invariant measure = x Lebesgue. In
the notation of Section 4, this would correspond to the case where the numbers of
particles in each cube C, are i.i.d. random variables, each distributed as N(r). (In
the construction of Section 4, N(r) has the same value for all cubes.) We conjecture

that a limit theorem similar to Proposition 1 will also hold in this case; however, this
remains to be proven.

As a special case of Proposition 1, we obtain the limit for functionals of the processes
which constitute a Cox point process in the path space.

Corollary. Let X;,i = 1,2,..., be as in Proposition 1. Let A(r) be a positive randoin
variable independent of the X;'s such that

=Y asr — oo, (35)




for some positive random variable Y

Let Py be a random variable such that conditioned on A. I’y 1~ Poisson witl miean

A. Then

1 B = » i D
JUESY | et pix e 2 o)

—k , N

q’r(fk) =7 k/zz .. zlfh(...(:kgl’,\ai‘ NN F!k(/\” N \,&) = \I’(fk),
where {®(f), f € S4} is the generalized random field with distribution given in Propo-
sition 1 and {W(fi), fv € S§} is the multiple integral of order k associated with ¢

Proof: Note that as r — oo,

Po_ P A0) 2,
r-A(r)r ‘

Thus, application of Proposition 1 with N(r) = Py completes the proof.
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