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1 Introduction

This pap)er pursues two objectives: to study the asymptotic behaviour of Sy"rnu0l t'i"C
statistics with random sample size, and to apply the resulting limit theorems for U-
statistics to study the asymptotic behaviour of infinite particle systems with randoml
non-Poisson initial distribution. Our main result is Theorem 1, which describes the
asymptotic distribution of U-statistics in terms of multiple integrals of a non-Gaussian

process, whose distribution is determined by the choice of the distribution of the
sample size. The construction of these integrals is given in Sections 2 and 3 of the
paper. One motivation for studying statistics with random size is that it is not always

possible to take a fixed number of measurements. In queueing theory, reliability, and
sequential analysis, study of statistics with random size goes back to the works of
R6nyi (1956), Robbins (1948a,b), Gnedenko and Fahim (1965) (see also the survey

Gnedenko (1983) and the recent monographs Lee (1990), Kruglov and Korolev (1990)
and Rachev (1991)). The rest of the introduction motivates the study of infinite
particle systems with non-Poisson initial distribution. Thus, readers who are not
interested in this second problem should skip directly to Section 2 of the paper.

In recent years much attention has been given to the description of infinite systems of
particles moving according to some law (usually Markovian). Among these are works
by Snitzman (1984), Shiga and Tanaka (1985), Walsh (1986), Adler and Epstein
(1987), Adler (1989, 1990), Epstein (1989), Adler, Feldman and Lewin (1991), and
others.

Many of these papers deal with particle systems which behave as follows: Initially (at
time zero) a number of independent particles pop into existence at locations within
the space Rd, according to a Poisson point process with intensity A. The particles then
move about according to some Markov law. The asymptotic behaviour of this system
as A --+ oo has been studied in Martin-L6f (1976), Rt6 (1983), Walsh (1986, Ch.8),
Adler and Epstein (1987), Adler (1989, 1990), Adler, Feldman and Lewin (1991) for
different conditions. In particular, Adler and Epstein (1987) obtain convergence of
sums of some functionals of the Markov processes to generalized Gaussian random
fields and their functionals. The authors show how these limit theorems can be used
to study properties of the limiting random fields.

The question we ask in this paper is, "What happens to a Markovian particle system if
we change the initial distribution of the particles?" When the Central Limit Theorem
is applied to a sum of N i.i.d. random variables, non-Poisson randomization of the
salmple size N leads to non-Gaussian limits (see, for example, Rachev (1991), Section
19). The choice of a non-Poisson initial distribution, e.g., geometric or "discretized"
o-stable, p)roduces non-Gaussian generalized random fields as limits of sums of some
functionals of Markov processes, and this construction provides a tool for the study



Of . Ies', field".
Note that the limiting distributions whiclh we obtain I ave mima m\ practmcal I ~ pll C-

tionss. Laplace processes, which can be generated via a geometric sunimiation scliclnc,
are used in reliability (Brown (1990), Gertsbakh (1990)), in enviromental studies
(Rachev and Todorovich (1991)), and in modeling of financial data (Mittniuk and
Rachev (1990)). The recent developments and applications of stable processes are
covered in Samorodnitsky and Taqqu (1990), Rachev and Riisclhendorf (1990), etc.
Blatt.berg and Genodes (1974) observed that. the t-distribution provides a better mlod-
el for "peaky" distributions than the Gaussian does. Melamed (1989) studies the
generalized Laplace distribution. By selecting the initial distribut ion of the particles,
we are able to produce Laplace, stable, generalized Laplace, "t', and other gener-
alized random fields. Note that one-dimensional time processes of these types were
olbtained in Mandelbrot and Taylor (1967) and Clark (1973) and used for modeling
stock returns, providing better fits than Gaussian processes do.

We now describe several interesting ways in which particles may be born on Rd, d > 1.
Let Rd be divided into unit cubes with vertices on the lattice Zd. On a probability
space take a Poisson random variable N(A) with mean A > 0. At the initial time,
N(A) particles are born independently in each cube, and are distributed uniformly.
Thus, at the initial time we observe what we will call a "Poisson picture" in Rd.
Alternatively, the particles could be generated according to the following scheme:
Imagine a generator which at each step remains active with probability q. If active,
it produces one particle (uniformly distributed) in each cube. The particles are held
in the cubes where they were born until the time of a "catastrophe", a geometrically
distributed moment, when the generator fails. At that time particles become free to
move over the whole space Rd according to some Markov law until their exponential
lifetimes expire. Note that the starting time t = 0 of the system is the moment when
the generator fails. We are interested in the case where the failure probability 1 - q
is very small, in which case the average density of particles is very large.

The geometric and Poisson distributions both have the property that the probability
of a large number x of particles being born in one cube approaches zero at an ex-
ponential rate as x -- oo. It might be interesting to consider a system in which the
initial particle density can take very large values with high probability. This requires
a distribution with a heavy tail. As an example, we use a "disc retized" version of a
positive stable distribution. Another interesting initial distribution is a mixture of
Poisson distributions. This means that the particles are generat.ed by several Poisson
distributions, one of which might produce most of the particles. We also consider . ...
mixed empirical and doubly stochastic point process of particles, each having finite
initial measure.

Following the construction of Adler and Epstein (1987), we shall assign a Rademacher
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I)Osit i\C OF i(,gativ, hliarg" Ito each particle., s lld an alplpropriate I)arl,)! 'lq', ('f I IIi
ii It Ia I di.tiIbutioII to InIIIIty aii d study the liniting distribution of cha rg, Ihci I I lII,'
system iII a. set after all particles have died. The limiting field, which is inuhdexed hi\
sets, or more generally, by functions, will have a non-Gaussian distribution. As special
cases, we obtain Laplace, stable, Gamma, "t", and other fields. We also coiistruct
their functionals using limits of sums of symmetric functionals of the Markov proce.ss('
in the system.

This paper is organized as follows: First, we develop some general limit thorcills
for sums of symmetric functionals of independent random variables with values iII all
arbitrary measure space when the number of summands is random. For fixed and
Poisson sample size, such theorems were proved by Dynkin and Mandelbaunl (198:3)
and an invariance principle was established by Mandelbaum and Taqqu (1984) in their
studies of U-statistics. We describe our generalizations of their results in Sect ioi "2.
proofs are given in Section 3. In Sections 4 and 5 we analyze the distribution of
charge left in the space by systems of Markov processes created under different iit ial
conditions.

2 Symmetric statistics with random sample size and mul-
tiple integrals.

This section contains our results on symmetric statistics, often called U-statistics,
when the number of summands is random. Let X,XI,X 2,... be i.i.d. random vari-
ables taking values in an arbitrary measurable space (X,Y".) with distribution 1'. For
each T > 0, let ?iT be a space of sequences of functions {hk; k > 0} for which h0 is e
constant, hk = hk(.rl, ... ,xk) is a symmetric function on Xk such that

12l k-(h2) < 00,
k=O k!

where
vk(11) :flkh'(xl,. . Xk)/(dxl) .. . v(dl'rj.

Let R = nfT>OT. The function h k will be called canonical if

JhA(.ru,. .. ,x&.kl,x)v(dx) = 0 - ..

Let {hk, A' >_ 0} be a sequence of canonical functions from R. ItijuC sums

,,nI( ]
k(I") "= ........ "V
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for ii --- I.- andaio (I ) U t|lier|WIS.

TIi" lil liLtijig distiilbution of n-k/ 2o o as i• o0 wa. studied by IDynkiui ,•iml Ma•11h1l

bautm (1983) (as well as by other authors). They also considered statistics (1) for

lPoisson sample size, i.e. the limit as A - oo of A k/2A, where NA Is a Poisson ran-

(do0n variable with mean A > 0 independent of XI,X 2,.... In both cases Dynkin and

Maidelba.um obtain the same limits, which are written in terms of multiple W\ienV'r

integrals of Gaussian measure defined on (X,YF).

For r > 0, let N(r) be a positive random variable taking integer values indepenident 1\
of the X, 's and such that

N(r)/r T+ Vasr --+oo (2)

for some positive random variable Y independent of X's. We would like to st idy I tiw
limiting behavior of statistics r- k/2a (r) as r -+ 0o. The limiting distribution in thil

case appears to be expressed via multiple integrals with respect to a random measure
{AI(B), B E £, v(B) < o}) which has orthogonal increments.

P
We will denote by => weak convergence of finite dimensional distributions.

The main result of this section is the following theorem:

Theorem 1. Let'h = {hk, k > 01 be a sequence of canonical functions in R. Let £C
be the Laplace transform of Y. As r -- oo the finite dimensional distributions of

00

Z,.(h)Zr-k/2orI(T) ( hk(3k=O

converge to those of E=o(1k!)Jk(hk), where Jk are multiple integrals with iespect
to a random measure M on (X,,F) such that for sets B 1,...,B, C .T the vctor
(M(Bi),. . ., MA(B,)) has the characteristic functional

EC"\IAI(B)+'"+iAnM(B.) =£ r(-'yt"(BtfBi))"(-

The construction of the multiple integrals Jk will be giveui later, in the course of IIIh
proof. We will use a technique which has parallel in stochastic analysis, where ilall\
results on continuous local martingales can be obtained via quadratic variation t iMw
change from results on Brownian motion (see Revuz and Yor (1991)); our main tool
will be a "randonm function change" in the Wiener integrals with respect to Gaussian
ineasure, defined in Dynkin and Mandelbauin (1983).

Before we proceed into technicalities, let us give some examples of random measures
Al which correspond to diferent distributions of sample size N(r).



Example 1. (I~oissIi saiiiple size). If A(r) is a Poisson itailoiii Imiabl ii • ilI•'II •

7 > 0, h 'CII .\( )/" - ahd l ( oiiA(:id s wilth the Ca.IjsNi1I III(S'ii,(' S Ii ( ). H

.7, v•( ) < o0) such that EW(B) = 0, EW(A)W(B) = v(A nl 13). This is the(am-

considered by l)yikiin and Mandelbaini (1983) and Mandelbaumn and 'laqql (19,li I).

Example 2. (Geometric sample size). Let N(r) be a geomictric random variable

with mean r. Then Y is a standard exponential and M is a Laplace random rneasiiu

{L(B),B E .J, v(B) < oo0 such that

Er ,. 1 t(1 1 )+...+u)XL(B.) -=1 (.)
1 + A A1 Av(B, n H)

Example 3. (Mixture of Poisson). Define NJ(r), j =1,2.... S a asequ('l('o

of independent. Poisson r.v 's with means raj, a, > 0, j = 1. 2... ,k. Considr a

mixture of Poisson distributions
k

P(N(r) = 1)= =_3p2P(N'(r) = 1),
j=1

where p. > ,= p = 1. In this case Y is a discrete random variable with P(V
o0) = p, and the measure M is a mixture of Wiener measures (Kon (1984) applics•

such distributions to model stock returns).

Example 4. (Discretized stable sample size). Let Y be a positive stable r.v. with

Laplace transform Ee-`Y = e-\*/2,A > 0, where the index of Y a/2 is less than 1

Let N(r) be the following discretized version of Y:

P(N(r) = k) = P(k- 1 < rY < k), k>1 (6

Clearly, (2) holds and the random measure M is symmetric stable with parameter o:

Ec'\jM(B))+'''+iX\ýM(B n) = exp {- ( • n A, v(B , n Bj) ) •a/2

Note, that the measure M is different from the stable random nieasures studied iII
Weron (1984) and Samorodnitsky and Taqqu (1990), since its increments are TIOI

independent.

Example 5. Let 1/' be a chi-square r.v. and let N(r) be a discretized v'ersion (6)
of '. For B E F, M(B) has a t-distribution.

Example 6. (Generalized geometric sample size). Pick any m > 0. Let N(r) have
generalized geometric distribution (cf. Melamed (1989))

1P(N(r) =+ kin) _ (- +j)(- for k > I
j== r r r
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and P(NA'(r) I) The I/Y l'ei 1 in (2) is a Gamma( I /m ý i, i 1-i i• j I. .i wil I i
Lapla) I a(-( l' ornt I-'-s = (I + nA)-l M'. ia h Ls te distrilio 1i1H

EAjA1(Bj)+.-.+AnM(Bn) = AAv(, ) /Ec'("\ I'+"i•MB I - + •- AiAjv(B, n 13j)

We now rigorously construct and characterize the random measure A1 and its multiple
integrals. For the Gaussian case this was done by Dynkin and Niandelbatim (1983)
and extended to an invariance principle by Mandelbaum and *Vaqqu (1984). \V(,
proceed in steps, in order to show how the defined integrals appear naturally in the
study of the limiting distribution of Z,(h) of Theorem 1.

On some probability space, define a linear random family {J1 (O). o E L2(v)} through
its finite-dimensional distributions given by

Eexp{iZAJ1 (¢)} = Ly I A2v(o2) (7)

and
aJ,(0) + bJ,(0) = Ji(aq + b4) a.s. for all a, bE R (8)

where Cy, as before, is the Laplace transform of the r.v. Y. Note that although
J1 = Jj depends on Y, we will suppress the index Y in our notation. The family J,
is defined on a probability space, which may be different from the one which supports
the X,'s and Y, but we will use the same sign for expectations. If we consider the
subfamily

{M(B) = J(lB), B E -F, v(B) < oo0,

then symbolically

JM = (x)(dx)

Lemma I below shows the relationship between the statistics Or'(" and the family .1.

Let L= {JE L2 (v): v(¢)=O}.

Lemma 1. Under the conditions of Theorem 1,

1/2 O(X ,) : {J 1(¢ )})) (- )
= OEL

Our next step is to define an analog of quadratic variation of the process Ji. As
is seen from Lemma 2 below, this role will be played by the linear random family

6



{1Jx(.',).,: t. /. (',)}. \hiI l is d(lfined onI t sae ,itjII" )Ip ol)abIlI •\ 'I ( C , !Ii faI1i 1i
•1 (q), �~lid whl.l ' jo.itlf (hs.tribution with .J1(q) is given by

E c.rp {iAJ,(0) + iplK(V])) 4 £ V- () + lAIQ2)) - 1(o

Here the Laplace transform C) is defined on the right half-plane (Re z > 0).

Lemma 2. As r -, oo,

{ (.- ), -' N b2 (X,) LE. {(J,(0), 1(L' )}•.. 1 . 1%"('

As the next step, for q5 E L define ho = 1,...h ... ,(.) = .) ... )..
Then the sequence h= {h, k > 01 is in the space H (- was defined at the beginning

of this section) and Z,(hO) is well defined. We are now ready to find its limiting

distribution. Set.

()= exp{IJ, (0) - I K(O)) (12)2(2

Lemma 3. As r -- oo

{Zh0)}, 1L = {W(R)},EL (13)

Recall that the defined function - is a generating function of generalized Hermite
polynomials which serve as multiple integrals (cf., Revuz and Yor (1990)). Specifically.
let Hk(.r) be the Hermite polynomial of order k with leading coefficient 1

Hk(x) = C'2/2(-1)k dk _r2/2)

For a > 0, set
Hk(Xr,a) = a kl'Hk(XrV/a).

We also set Ilk(x,0) = x . Then,

00 Uk

E T!Hk (x,a) = expiux - au2 /2).
k=0

Recall that for a real-valued local martingale {AOi > 0}, A0 = 0. with quadratic vari-

ation < A. A >, the iterated stochastic integral is defined via a generalized lterinite
polynomial:

J' dA,, j dA,,... ' _' dA,, := Hk(At, < A..A >,)

7



(It'v IIz a lld Y ,r. I, p .) 3). Sit Ilil , delitI , 11 ' I It ll.i e IIrII eg al of o d ,(1 1 ,, )11 I"F.

of ft ,ict ioll. j / 1 } k

Jk(ho) := Hk(J,(k), A' (0))(1)

Using the last definition, linearity of the processes J, and K, (12), and Lenlilii 3 we
obtain

Lemmna 4. Under the conditions of Theorem 1,

{ZTh}k! { k~ (15)

as 7 ---4 W.

Since the space {h",k > 0,0 E L} is dense in 7-, the passage from Lenima 4 to

Theorem 1 is possible.

The proofs of Theorem 1 and Lemmas 1,2, and 3 will follow in Section 3.

We will extend the result of Theorem 1 to an invariance principle for random sums
of symmetric statistics, similar to one obtained by Mandelbaum and Taqqu (1984).
Let f : R+ --+ R; < f, f >2:= fo f 2 (x)dx < oo, 4 E L. We extend the definition of

the random integral to the product space of functions L x L2(R+) by putting

E xp {I jJxLeb(O4f 1 ) + ... + iA,- J -+(q¢kf)} = (16)(: k
£v -F, AiAjtV(Oij)< f,.f. >2)

(2i~j=l

(0j,/j) E L x L 2 (R+).

Then, the random measure M on the product space (X,. F, v) x (I?+, S(R, ), L b)
(B(R+) is the Borel a-field on positive half line) can be defined as follows:

AI(B x [0,sI) = J,,xLeb( 1BlI0,,1 ), B E F,s > 0.

On X' x R' define

Ilk, (.r , ... , .k, ,.. ,uk) hk(X , 1 ,xk)I[ojt](U )I lI0,fi(u i-)- (17)

We then have:

Theorem 2. Let {hk, k > 0) be a sequence of canonical functions in R' As r - o.
the process

z:(F) k= 0::/°"''~•, 0 , (S
k=O

8



(OM t,'r g kl\ i,1  I)n 0 0, ) t

M t(h): JvxLeb ( hk t (i

k=O

where the inultiple integrals are taken with respect to the random ncasure A! (on th
product space ( I,Y,-) x (R+, B(R+), Lcb) defined above.

Symbolically,

j;.,~~ = Lb(kt) =Ihk(.TC, .... I ,•)0.(,,,I) ... lo.,fl(,,,)A1(,.,,, d,,, .. I. t((a.,-, du,

where the integral is taken over the product (A' x R+)k.

3 Proofs of Theorems 1 and 2.

Let 01, •2,.,1,02,.... be functions in L.

Proof of Lemmna 2. Consider the 2k-dimensional process

[nj

i--1

, : = (¢ , X , ) , .. .O k ( X , ) ) , 2 . 2=( • x ) . . ¢ x )

on D[O, oo).

From Donsker's invariance principle, the law of large numbers and Theorem 4.4 oin
p. 27 of Billingsley (1968) follows the weak convergence of (ý,.Y1,). as r - 00, to a
2k-dimensional process G(O,,,) such that

E ,,.p {i(A, •)G(c.,t.)(t)} = exP {it Z ,,,(¢')- - k A\,•,(€,•

A (= ,.. .X), P = (,,,...,Lk)

From (2) and the independence of N(r) and the X,'s, it follows that (N(r)/r, (&, 1,? r

con'verges weakly to (Y, G(•,O)).

By the Skoroliod-Dudley theorem (cf., Dudley (1989), 'I'heoreilm 11.7.2), there ex-
ists a probability space rich enough to support random pairs (-Y(r)/r, (-•, O)) and

9



(V.~~ it,: Lj) l IaIig the sait Ic (list Ii) Itt I of ~I a ( \(iI/ 1/, '111dl' (. .
I VC'I.V, ;AII( such that.

(1 ((•r(7N(r) ) 7 jT(-Ncr)-) G 1,,(fl) -- 0 as

where d is the Skorohod metric in D[0,oo) (see Resnick (1987), p. 221, Rachev andl
Rfiscliendorf (1990)).

Then,

r rT,•GI.•Y

This immediately gives the result of Lemma 2.

Proof of Lemma 1. Lemma 1 follows immediately from Lemma 2 when 1', 0.

Proof of Lemma 3. For any 0 E L,
.N(r)-)

log Zr(h') -- log ( + r-1/2l(X.))

- V (r) N (r)= E oE) +0.
i=1 2r l

(o _0 0 as r -- oo.) In other words the field {log Zr(hO)} L has the same limiting
distribution (in the sense of weak convergence of finite dimensional distributions) as
the field

N()(r)

7r---I 2r 10EL

Applying Lemma 2 to the latter field we obtain its convergence to {I1 (q) -J I

This proves Lemma 3.

Lemma 4 was obtained in Section 2. We shall now prove Theorem 2; Theorem I will
follow from Theorem 2 when I = 1.

Proof of Theorem 2. On an arbitrary measurable space (A",.'. 'v'), define a (aus-
sian family {I,(1), 0 E L2(A")} with

E1 1(o) = 0; E11 (4)1,(tp) = v'(OV,).

The multil)le Wiener integral of order k associated with the Gaussian family 1, is de-
fined as a linear mapping Ik from the space ,.k of symmetric functions hk(x,,..., rk).
(V')k(h') < oo, into the space of functionals of the Gaussian family I. The mapping
is uniquely defined by the following conditions (cf., Dynkin and Mandelbaum (1983)):

10



.'\ / l",') = Id.(/,,,/(W")), ¢c / (v)

13. 1ýor Ilk E Hk, El'(1hk) =k!(l,)k (hQ).

For {hk, k > 0} E H defi;." the multiple Wiener integral of the function Ilk,, (hk, wa.s
defined in (17)). The integral is defined on the product space (A", F', v') = (.'F, v) x
(R+,8(R+),Leb) arid is associated with the Gaussian family {l[×Lc1(Of),(6j) E
L2(X) x L 2(R+)}, which has mean zero and variance V((2 ) < f.f >2 (cf., (16)).

Then, for {hk, k _> 0) E H", as r -+ c

V/;t(h) - r /tk(h,) t > 0
kz=0

converges weakly in D[O,oo) to

W t (h) := j kX(hk,t), t > 0
k=o"

(Mandelbaum and Taqqu (1984)).

As in the proof of Lemma 2, the Skorohod-Dudley theorem and the result oil p. 221
of Resnick (1987) yield

{Vr r(h)} L_ {u' JWY(h)} _ , as r -*

To complete the proof of Theorem 2 we have to show that

W"'(h) 2- M(h) (20)

From (10) and the independence of Y and I, it follows that J1(6) is equal in distri-
bution to v'YAI(O) - I1 (v'q¢) (the latter is defined on the product of probability

spaces), and K(O) 1 Yv(O2 ) __ v ((/v/-)2). In particular, for the random measur,'e
M we have

I [(B x [0,s]) R jV•Leb( Vfy/jLxLeb( 1 lo) I'XL 1810Osy]). (21)

The last relationship follows from the facts that Y is independent from If"xLc' and
that a Gaussian distribution is fully determined by its mean and covariance.

\Ve complete the construction of the multiple integral of order k with rcspect to the
measure M on an arbitrary measurable space as follows. The comparison of the

11



gW1'Cl1,1 6l1 f11110 Mhll.'S for A itl I• for 0", 6 C L, viel(d

-. Jk(h") = exp{uJ(4) - 2- (0)
k=O k!

U 2-- exp IUV1() I•",V(0)}

Thus, we define Jk(hk) E yk/21k(hk) for hk E Hk.

Recalling relationship (21) on the product space (X,.F',v) x (R+,3(R+), Lb) and

the definitions of WM'(h) and M(h), we conclude that (20) holds. This completes
the proof of Theorem 2.

Proof of Theorem 1. Take t = 1 in the statement of Theorem 2. Due to the

Cram&r-Wold device (Billingsley (1968), p. 49) and the linearity of Z,'(h) and M'(h)

in the argument h, Theorem 1 follows if we prove that j,, xLeb (4.1) P. 4(110. IlOWC\'C,

this follows immediately from the definition of Jk via Ik (see proof of Theorem 2) and

the relationship 11(0) = Ix, b(•li 11). (Both variables are Gaussian with mean zero

and variance V(02).) This completes the proof of Theorem 1.

4 The limit theorems and random fields.

We now return to the particle picture described in the Introduction. Let Zd {77

n = (li,...,nd)}, i.e. the set of all d-dimensional integer-valued multi-indices. For

each n E Zd let C,, be the d-cube defined by C,, = {x E Rd : hi- 1 < .x, <

)= 1,...,d}. Let pt(T, Y) = pt(y/, -), x, y E Rd,t > 0 be a symmetric Markov

transition density function satisfying fRd p,(x, y)dy = 1 for each x Ez Rd. Let g be the

corresponding Green's function

gxy) = je pt(xy)dt. (22)

On a probability space (f,.", P), define an infinite collection " = {X,,(t), t > 0}nEZd

of independent symmetric Ma-kov processes on Rd with common transition densi-

ty pg(.r,y), each process starting according to a uniform distribution in C,,. Fur-

thermore, let the probability space be rich enough to support an infinite sequence

.' 1.-A2. ..... 'i,.., of such collections, all independent of each other. If X is one of

the processes in the entire collection (when both n E Zd and i > 0 vary), then we can

think about it as describing the movement of a particle in the system.

12



\We takc (on 0ihe sanlle l)Ioblal)llty space) a s.(luI'ene (i" . . f ( '1, IoIi ý (7,

{ (.... .71 C Y,,} of indeI(•Ien)ldcent ladciachlei variabh's, i.e. 1 (7,.,, 2 I) 2 I '( ....

-I) = 1/2. We ca.n think about ao,, as a positive or niegat-ive --charge" associatc..(

with thie Markov particle Xi,,,. For additional motivation of this choice of "positiv"
and "negative" particles we refer to Adler (1989).

xten'nd the probab)ility space to support a random variable Ni(r). r > 0, independcnt
of the X's and a's and such that (2) holds. N(r) represents the umiber of collectiOls

- ~......N(r) in the system at the initial time t = 0. We now describe the evolution

of the system in time. When a particle with charge o at time I passes through a

point .r in the sp~ace Rd, it leaves there a charge c t a. Let A E L(Rd) be a Borel set

in the space R". We are interested in finding the amount of charge left in A after all

particles have lost their charge and in the limit of increasing initial particle density.
i.e. we would like to find a limiting distribution of

N(r)
4)r(A) :=.. 7= I' °'inC-A(in()d(•)

i=1 i

as r --+ oo. More generally, consider a bilinear form

<f, h >=< f,h >9:= h)x

where g is given by (22). Define the class of functions

5d Sd() { f f on Rd with <Iflfi >< oo).

We study the weak convergence, as r - oo, of the finite dimensional distributions of
the sum N(r)--~ ~ j e1 -'fo i,, f(Xi,,,(I)) di (24)

7r j1 n 0

Define on some probability space a generalized random field {((f),f E Sd). I'ltis

means (cf. Walsh (1986), p. 332):

(a) 4b(af + bh) = a4)(.f) + b4)(h) a.s. for all f,h E Sd, i.e. 4) is a linear random
functional;

(b) (b has a version with values in the dual space Sd.

Corollary 4.2 of Walsh (1986), shows that, in order to assure (b), 4F has to bc contin-
nous in l)rol)al)ility. We specify the distribution of 4) via

Eexpj.iAF(.f)} = Cy, (IA2 < f,f >). (25)

13



Lemma 5. A lhinar ranldoi fnctliooial 4) with di.stri'iull, i -l.) U. ý IIII iMPII, III

p)robability oil ."~.

The proof of Lemma 5 is postponed to the end of the section.

Theorem 3. As r --+ oo, the finite dimensional distributions of the field {f4(f), .f E
.'d} converge wcakly to those of the field {ft)(f), f E Sd).

We will give the proof of Theorem 3 later.

The limit. theorems developed in Section 2 allow us to build multiple integrals of til
field (4(f). To see this, consider k Markov processes X1 ,. . . . . .\ from the systell.
Define

Ff/,(,- , ...... ) =1 ..j-rti -tkfk(X,(t,),...,Xk(tk))dtI ... dt•k (26)

for each function .fk from the space

dk -= 5ý(g)):= {fk: fk on Rdk with < Ifk1,1fkI >< oo},

where

< .fk, Ik >-=
J JRdk fk(X.1,... -, Xk)g(X,, Y,) ... 9(Xk, Y )h(y,,..., Yk)dx,...d k y .. k

We study the limiting distribution, as r -• oo, of the sum

'Y,(fk) := r-k/ 2 . Z1 <iz< <ik.,N(r) fIjf,,..., X') (27)

PA,()ýii,... )ýik)):= E_... l, niOi, n .. ,,,Ffk (Xil,.n,,1...,iXq,n,,, (28)

Theorem 4. As r -. oo, the finite dimensional distributions of the pair

< (D(.f), 1rU(.) > on Sd x Sk converge weakly to the finite dimensional distributions
of the pair < 41(f), (1/k!)ýV(fk) >, where 'I'(fk) is the multiple integral of order k
associated with the field J1(f) 1- t(fl.

Proofs of Theorems 3 and 4 are based on Theorem 1 and the following lemma:

Lemma 6. Let f.', hk E Sk. The functional FI of (28) is square-integrable and

EFj, Fk, =< fk,hk >.

Proof. For simplicity, take k = 1. For f, h E Sd

EFf-"Ph = E : n ('f(X.(t))dt -•a, h(,.s))ds (29)
n 1In

14



S-r', I cc ,Y (..., are' Indlcl)<lde'l alld withl Zero 111can • ,•. ...... aw. (T• i- .lJ ,I ,

12 >, ~/ IC-'-sf( \X,(1))h(X,,(s))dtds = ( *)

2j'j'c-'sdtds j JdaJ pt(a,x)f(x)dx4 f -((y)h(q)d!1.

Note that p,(a,x) = pt(,r,a),

P, /.p(x, a)dx = I

and that
2j je-'sps..t(x,y)dtds = g(x,y).

Thus, (30) is equal to

IJR,, (x)g(xy)h(y)dxdy =- < f,h >

The proof for general k > 1 follows from similar arguments involving longer formulas
but no new mathematics and we feel free to omit it. Lemma 6 is proved.

Proof of Theorem 3. Let the space X = ((Rd)R+ x {-1, 1 })Zd be the path space

of pairs (A', &), and denote by v the probability measure the above pair induces on
X. Then by Lemma 1 the finite dimensional distributions of the sum (24) converge
weakly to those of the field JI(Ft1), which is determined by

E expj1iAJI(P1 )) = Cy (2 '.V(Ffr)

However, v(F]) = EF] =< f,f > by Lemma 6. Thus, {J,(F 1),f E Sd} _
{1(f), f E Sd}. This completes the proof of Theorem 3.

Proof of Theorem 4. Let X and v be as in the proof of Theorem 3. Theorem 4
follows immediately from Theorem 1, noticing that {J1 (PF),f E Sd) __1 {1(f),f E

Sd} and so that also JA R '1.

It follows from the above theorems and Examples 1-6 of Section 2 that:

(i) If N(r) is a Poisson r.v. with mean r, the random field {D(f),f E S} is a centered
Gaussian with covariance E 4D(f)D(h) =< f, g >. (This is the case studied by Adler
and Epstein (1987).)

(ii) If N(r) is a geometric r.v. with mean r, the random field {4(f),f E Sd} has the
Laplace distribution

Ec.rp{iA4(f)} = 1+ •2 <f,f>

15



(ii ) If A(r) is a discretized st abl,, rA%., as dlefilcd in (6), thle, raIaillI field {4( f i.
.",d) is a gci'h ralized stable ranidon)n field with distribution given I I,

-e~tf exp{- (A2 <f;f > /

We similarly obtain random fields whose marginal distributions include the t-dist II
bution, Gamma distribution, and others.

Our last proof is of Lemma 5:

Proof of Lemma 5. Because (D is linear, it is enough to prove that

P,(f,,) -+ 0 as< f,,f, >-0.

Take f > 0. For any 6 > 0 take N large enough so that P(Y > N) < 6/2 and ni large
enough so that < f, f,f >< 6 2 /2N. Then from the relationship

¢() _ Ji(FI) _vjl(b}

(11(F1 ) is a centered generalized Gaussian random field indexed by f C Sd with

variance E(II(Ff))2 =< f,f >) and from the Chebychev inequality it follows that
P(I(D¢f•)I > c) < 6. The Lemma is proved.

5 Other initial distributions.

The results of Section 2 can be interpreted via point process terminology (cp., Dynkin
and Mandelbaum (1983), p. 742): a sample XI,...,XN(,) can be viewed as a mixed
empirical point process defined, for example, in Karr (1991), p. 7. Of course, if N(r) is
Poisson, we have a Poisson point process. Theorem 1 then says that some functionals
represented as multiple integrals with respect to the random measure N1 (given by
(4)) are approximated by the functional (3) of the mixed empirical process. Similarly.
Theorems 3 and 4 state that the generalized random field 4) and its multiple integrals
can be approximated by functionals of the point process on the path space of cadlag
functions, which is constructed in Section 4. If instead we consider a mixed ermpirical
point process on the path space we get the following result:

Proposition 1. Let XA, i = 1,2,..., be Markov processes as in Section 4, but with
initial probability measure y. Let N(r) be as in Section 4. Define the followitng
hinctionals of the processes:

1( = ( 1 -'f f(Xi(t))dt (31)

16



where Ithe filictional ',jt was defined in (26). Let {f(,),(.f )E 5 d)} be te •(•g,(',a lized
ranidoin field whose distribution is specified via (25) with < f, [ > replaced IhJ

< f, f >U:-- 2 fR3d pJ(da)dxdyf (x)f (y)g(2) (a, Tg(r.Y:(3

g(2 )(.x,y) := -j2tp,(x, y)dt.

Then. the statenment of Theorem 4 holds.

Proof. As in the proofs of Theorems 3 and 4, we apply Theorem I to a sample living
on the product of the path space of the Markov processes and {- 1, 1 ). We oild have
to establish that EFJ2 is given by formula (33).

E J c--f(X(t))f(X(s))dtds = (:.1)

2 J 'e-sdtdsJ I d) pi (a, x) f (x)dx i s(, )f z )d
,,o)a 4d J,,,

Making the change of variables t = u, s - t = v gives

2J' 1' r72u-dudv J ~it(da) J, pu (a, x) f(x)dx J . (.T, y)f (y)dy.

Using Fubini's theorem and the expressions for g and g(2) given above, we obtain the
right hand side of (33). This finishes the proof of Proposition 1.

Remark: Following Martin-12f (1976) we can construct a stationary mixed empir-
ical point process of Markovian particles with invariant measure r x Lebesgue. In
the notation of Section 4, this would correspond to the case where the numbers of
particles in each cube C,, are i.i.d. random variables, each distributed as AT(r). (In
the construction of Section 4, N(r) has the same value for all cubes.) We conjecture
that a limit theorem similar to Proposition 1 will also hold in this case; however, this
remains t.o be proven.

As a special case of Proposition 1, we obtain the limit for functionals of the proc(ess(s
which constitute a Cox point process in the path space.

Corollary. Let A,, i = 1,2, ... , be as in Proposition 1. Let A(r) be a positive rando:i
variable independent of the \, 's such that

A-r) P* ),as r --4 oo, (35)
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form I,,.•Itivc Noeadoimi variable '
Lot PA b a raiimlhi variable such that co.ditioned on A. P)A 1h lPoi .•)II 1%,1h li ,jj

A. Then

$,(f) 1= E

qI,(f1) 11... <,,<...<1k <PA F f)

whcre {4(f), .f E Sd} is the generalized random field with distribution given in Propo-
sition I and {'1'(fk), fk. E S} is the multiple integral of order k associated with 1.

Proof: Note that as r 0 0o,

PA PA A () D
r A(r) r

Thus, application of Proposition 1 with N(r) = PA completes the proof.
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