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ABSTRACT
The use of the Sequential Regression Algorithm (8ER) ¢»
coherently remove background noise from an ELF sensor is presented.
The SER algorithm is described for a multi-channel application in
order to cancel coherent portions of reference sensors from a
primary sensor. The algorithm adaptively accounts for differences
between two parallel array platforms for the purpose of coherent

subtraction. A section on likelihood detector schemes is also

presented. This work is in support of a submerged ELF senscr array

rcject run by the Jonns Hopking Urniversity Applied Physic
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I. INTRODUCTION

A. BACKGROUND

Extremely low frequency (ELF) geoelectric noise has a
highly impulsive nature which makes it very difficult ¢
remove by filtering. The main contributors to cthe
impulsiveness of the ELF spectyum are lightning discherges.

The lowest freguencies of the ELF range (i to 60Hz} h

( ave such
a low attenuaticn rate as they propagate, that light:ng

discharges all over the worlid must be considered when studying
the noise spectrum at & single location. ELF signals have
been stuilied for such applications as power transfer,
comrunications, geophysical surveys, and so forth. The amount
of information on the subject is immense and increasing. How

20 account for the impulsive background electromagnetic field

4]

inevitably present in any system operating in this freguency

range remains a serious proklsm that any system designer must

The background noise of the lower ELF freguency range can

be thought c¢f as consisting of both local and glchal

[
»

phenomena. The global compone

o

t 1s comprised of signals that
are relatively cocherent cver extended distances. A detailed
recorcding of data in this freguency range

.15 characterized by bursts of
which may be ten or more times the mean am

-




bursts. This bursty character is apparently coherent over
most, if not all, of the Earth.(Ref. 1)

The local phenomenon is comprised of those components that are
not coherent over extended distances and are assumed to bhe

products of the local environment of the detector. & set of

parallel detectors separated by some distance can be

coherently conmbined to remove the glebal portion of the

background noise and thus lower the noise floor.

B. OBJECTIVE

The Arplied Physi - (APL} &t Johns Horkins University
has for years studied ana made measurements of the background
geoelectric noise on widely separated pairs of electrodes.

1

The purpose of this thesis is to describe techniques of
adaptive filtering that the author applied to data collected
by APL, in order to determine the amoun. of noise
cancellation. The technigques are implemented using software
developed during an extended visit tc the Apprlied Physics Lab

s \ ey . - R o5 -3 3
Zy the author. in a lated erffort ftware will aiso be

methodology for

rn the ucl

C. ORGANIZATION




filtering will be presented as a lead in to the adaptive

algorithm to be used to cancel the noise. These introductory
sections will be followed by a discussion of stability and
convergence concerns for the adaptive algorithm in this type
of data environment. The detection discussion 1is then
presented as a continuation of the processing required for the
detection of narrowband signals. The adaptive algorithm is
then used in the detector scheme to demonstrate performance of
the developed software. & final section will summarize the

N 5 - Yy s . 1 . 1
iraw relevant conclus.ons akout the work and

]
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propose possible future studies that could be derived from

this work.
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II. THE ELF BACKGROUND

Many studies have been conducted in an attempt to develop
an understanding of what actually constitutes the natural and
man-made background noise spectrum in the one to sixty hertz
range. The sources of the energy in this frequency range can

be primarily attributed to atmospheric disturbances and man-

made power transfer systems. A major problem with these
sources of noise is that they are highly irreguler in bothn
magnitude and duration of the noise signal. Attempts to

classify and assign specific characteristics to these sources
have proven difficult. A brief history of the research
conducted in these areas 1is provided in the following two

subsecticns.

A. ATMOSPHERIC NOISE

The source of the maziority of noise in the one to sixtv
hertz freguency range is lightning dilscharges The lower ELF

range discussed here also contains what i1s cal

i

led the Schumann
Range. The Schumann range takes 1ts name fyom the early
theoretical work of the German scientist W. 0. Schurmann.

Schumann thecrized that the cavity created by the surface of

i

the Earth and the Icnosphere has naturally occurring resonant

freguencies. He took this reseurch further to derivz= a set of
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The work of Schumann has been carried further with the

actual measurement of the Schumann resonance freguencies in
field experiments. In 1959 and 1960, H. L. wvon Kénig
substantiated the presence of Schumann resonances by observing
the waveforms in the output of a nerrow band amplifier. The
experimental presence of Schumann resonances created a large

guantity of literature on the subject as scientists attempted

to understand the phenomenon. Once a foundation of the
propagation properties of the Earth-Iconosphere cavity was
ecstaklished, the zearch 7Vor rhe source ¢f the excitation

began, [Ref. 2]

The most prominent excitation sovurce of the Earth-
Ionosphere cavity is the cloud to ground lightning stroke.
The number of similar strokes present in any one £flash
observed during a thunderstcocrm is a random variéble that
normally ranges from twe to twelve. Since the number of

strokes is generally too high teo measure individuel wavefcrms,

a more apulicakle measure b the poweY spectrail
3 b £ 1 . £ - PR, -~
density [Ref <1 The {frequency sgectrum of thiz ncise was

Q©, ©f the earth-ionospherc caviiy by M. Bai:er and C. A
Wagner in 1960. The (@ of a cavity resonator is a measure of
the bandwiath of tl  rescnator[Ref. 4i. The scurce of the

no.se, as theorized by HE. Raemer imn 12€l, 1s the response oti
the earth-ioncsphere cavity to electrical discharges created

in thundersrorms all over the werlid. Reemer attemptad e

=
Rl




model the ionosphere in an attempt to reproduce mathematically

the measured response of Balser and Wagner. Although Raemer's
attempt fell short of its goal, it began the process of
refinement of a working model of the ionosphere that continues
today. [Ref. 2]

The early work performed by these scientists brought out
the difficulty in attempting to model this naturally occurring
phenomenon due to 1its randomness. Parameters must be
estimared by some method in order to model this random
process. The highly variakle nature cf the e parameters makeg
the task of modeling the noise nearly impossible. Examples of
these varying parameters are diurnal variations in the
ionosphere, twenty-four hour variations in the iorosphere,
seasonal variations in the locationz of thunderstorm regions,
and the randomness of individual lightning strikes. These are
cnly a few examples of the parameters that must be considered

in order to mcdel the atmospheric noise.

3. MAN-MADE NOISE

The presence cf atmospheric ncise is not the only concern
that must be addressed when discussing background noise 1in the
cne to sixty hertz range. Many components in today's world

emit unshielded interference that falls in this range. These

components are the result cf either faulty eguipment or pooy
Y 5



design. Exampies of thizs noise 20urce are power lines that

T

areas.

Lerge ferric objects can create fields around them that
can be detected. The strength of these fields can be well
below the previcusly mentioned sources of noise but can be
discernable in certain situations. Motion of these large
magnetic objects in the Earth's natural magnetic field is the

scurce of a small field.

Motion of the detector can create an increase in the
CuoxaTountt o nsige, Any slizhit motion of the detecior can

create misleeding information and in most cases, an increase
in the noiSe signal. The background ELF spectrum can be
thought of as the summation of three orthoganal vectors.
Reletive motion between these three vectors and the detector
creates a false signal that c¢an raise the noise floor. This
type of noise can be compensated for by the use of moticn
sensor.lkef. 5]

other scurces of man-made noise can be found n the

det ector equipment 1tself. Imgroper shielding of cabkles and

rrocessing componeéntZ can lead to elevated noise flilcors.
Uiillke naturally occurring atmospheric noise, these sources
cen be traced and eliminated. The removal of this noise can

come 1in two forms. elimination of the source or iso.ation cf

~J



rlie source from bthe detector. The fact that man-made noiss

sources exist must not be overlooked whan attempting to

process signals at the output of the detector.




ITI. ADAPTIVE FILTERS

A. GENERAL TERMINOLOGY
The ELF background noise has been described as a highly
impulsive, non-stationary random process. 8Some of the causes

cf these variaticns have been briefly described above. The

use of traditional filter designs may not be the optimum

.. . . . s L .
method [or reducticn 0f the noise flocr fur recepticn of low
atr vrarcr} { oM A - e a t~ f1fey hayto 5 o B ave *h A

strencii signais in g one YC fiily nercz range. inc helr
InLroduciion, tne use c¢f adartive fllters nas shown preomise 1n

combating exactly this type of scenaric. To understand the
application of adaptive £filters in this case, a brief
iscussion of relevant terms must ke conducted.

-An adaptiv: filter is by definition a filter that has the
capability to adjust, by itself, a set of design paraneters
that are based on estimated statistical characteristics of

3 . - N 3 Tim o £ . M -
the signal to be filtered. This process of adjusting the
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were known, an optimum filter cculd be designed. The goal of

adaptive filtering is to estimate these statistical parameters

Q




and to refine the eatimation through the use of an algorithm

dabiie

If an appropriate algorithm can be found, then after

i

sufficient number of iterations, the adaptive filter should

converge to the optimum filter. The use of adaptive filter

w

requires the designer to look for the optimum algorithm for
estimating the relevant signal characteristics instead of
attempting Lo discover the acctual signal
characteristics. (Ref, 6]

Adaptive filters are divided into two basic categories,

N 4 - b - b £ o N - 1
open-loopr and closed-loop. An coren-locp configuration is

8]

N = o . ~ - £iyatr - : . 3
usvasly & Lwe st > process. ine first stage 1S used tgo

o

-d

4

"learn" the statistics of the relevant signal. The results of
the first stage are then used in the second stage to compute
the filter parameters reguired using a nonrecursive algorithm,
In contrast, the closed-loop configuration uses only one stage
toe develop the filter parameters: the relevant signal

characteristics are nct explicitly estimated but are inferred

frem a recursive aigorithm that updates the filter parameters

directiy as each new data pecint 1s chtained. The adaptive
filter gains additional knowledge of Lhe signal

characteristics during each iteration. The gain in knowledge

results in an improvement of the filter parameters which are

< N 3 . T e .. < Tk 3 - .a 1 )
steraticn of the algorithm. The adaptive fllter discussed iIn

6f closed-i00p over opeén-1o00n 18 that the reguirement for only




oneé stage generally corresponds to a less expensive

configuration based on its simpleyr implementation. [Ref 6]
The description of the filters that will be analyzed in
this study carries terminology that is pertinent to all
£ilters, not just adaptive filters. Filters are implemented
in either continuous-time or discrete-time which defines the

form 2f the relationship between the input and cutput of

v

h

®

filter. 7The filters that will be studiel are of the discrete-

time version which means that the filter may be descrike

Q
g

Y

Y £ [ . - . . . £ -5 £ Y
a cifference ecueticn. The structure cf trhe fiiters tc be
O . - -y -y a3 P F 3 N T e b " FTTTo
studied are referred to as finite-lmpulse response (Fif;

tapped-delay-~line, or transversal filters. This desc.ription
means that the filter's output relies only on the past and
present values of the input. The advantage of a FIR filter is
its inherent stability.[Ref 6!

The algorithm that is used to update the filiter parameters

is generally named after some of its operating

Y

. . . » . o . . .. .

characteristics. The algorithm used here 1s called the
s a A = - - . - 3 - fal o 3ES £ M 523"

Seguential Regression Aigorithm or SER{Ref. 7j. This

algorithm uses an iterative approach to approximating the
welghting factors reguir=2d for a linear combiner. Figure 1

shows a basic diagram of a linear combiner.

This system uses simultaneous samp.es of the input signal
ar time index k, to produce an cutput signai, y., by a ilinear
cperation with welghting factors, w. A second way to

physically interpret the lin

3
D
"
1
(9]
G

b
&
}l
w3
0]
A
-
U
(as
(o)
2
@]
O
A
a1}
T
t
T
' 2




weight

W S vector
/ 0
X
nO

g

input W 1 /

X y
signal < O {;;Eij {:Egij%—sﬁ ¢
vector ' output

W
t signal

L L

Figure 1 Basic Linear Combiner

the form of a transversal filter. Figure 2 shows how this
system is designed: X, corresponds to the last L samples of

x at time index k. The weighting factors are dual indexed on

1 -1 1 X-2 Co Ll

Ox ! / ’ )([)
P

the time delay, 1, followed by the time index, k. The weight

Figure 2 Basic Transversal Filter

factor, w,, corresponds to the weight factor for the sample

taken two samples ago from the present sample time, k.




B. THEORY AND DESIGN

1. Configuration
The filter to be developed here is a combination of
the previous two figures. The transversal filter is applied
to a set of multiple sensor outputs te form an input vector
that is N x L data points long, where L is the number of
separate inputs or sources, anéd N is the length of the

eransversal filter. There are two reasons for using a filter

3 - 3~ 5 P . [aa) I 4- N 3 - - . oy

design 0f this nature. The first is the ability tc use more
o - Ty 5 - M v 3 A
than orne scurce of inpust, alliowing for a Dbetter spectral
sarp.ing of the packground ELT encigy. The seccnd 1is the

“

ability to use the previcus N samples thereby smocthing the
output since it is not dependent on instantaneous values which
may vary grea:tly from sample to sample. Beth of these ideas

are beneficial to the overall performance of the filtering

process

The output of the filter, y., can be expressed 1in
terms ¢f the input matrix and the weighting factors matrix.
To dec thnis, sorme defining eguation must ke expressed fcr the

X, 17 (1)

(2)

PEEN

Fae)



X =[x, (k) %, (k-1) x,(k-2) ... %, (k-(N-1))] (3)

and weighting factor vector is

Wip = (W Wiy Wigkea) o o0 Woeevein) - (4)
he first subscript of Equations 3 and 4, labeled 1, 2, 3,
.v., L, indicates the source of the sample. The second
subscript, k, indicates the time of the sample. A total of N
sample values from each sensor are used for each calculation

of y,. A physical model for the filter to be studied is shown

3

in Figure 3. The scalar output value, v, in Figure 3, 1is
! [ P )

defined as:

V= XKW, = WiX,. (5)

These basic eguatiocns will become the starting point
for the development of an operating filter system for the
removal of the ELF background noise, It 1is prcferable that
the weighting factors, W,, cause the output, y., to Dbe an

estimate of some desived signal, d. The concept of

the
filter 18 tc use the weighting factors +o model the
differences between signals originating from the same scurce

but sensed at various locations. The inputs, x, in Figure
represent samples of a signal taken at different locations.

The desired signal,

Q

is aisc a sample of the same
backaround source signal. The difference between the desired
signai and the output of the filter is expressed as rthe 2rror

in the estimate, €..




gkzdkm},k (6)

In the system designed here, the estimate error is the
output sought for analysis. If the weight factors are set
properly, they will theoretically remove all signals that are

ccherent between the different sample locations. The goal ¢f

L} J— '_K

-

Mok
-
'%L

Wippi1))

___;@r__{

Figure 3 Mul¢i-Channel Transversal Filter
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such a system ig8 to remove the correlated background noise

from a single sensor thus enhancing signals that are
particular to that sensor alone. If the estimated value of y,
can be made to represent the ELF background noise, then the
estimate error, ¢€,, can be assumed to be due only to the
signal precent in the desired signal. The resulting output
from the nois2 canceler has a much lower noise floor due to
the removal of the correlated noise.
2. The Mean Square Error

The filltering preccess must have a means by which an
optimal solution can be defined. The mean-sguare error will
be used to develop a defining equation, called the performance
surface, for the optimal solution. Combining Eguations 3 and
4, a definition of estimated error in terms of the input
vectoy, the desired signal, and the weighting factors 1is
obtained. The expected value cf the squared estimated error,
Ele.)*, assuming that €., d., and X, are statistically

stationary is given as:

-

(G2] +W'E(X, X IW-2E[d,X]]W (7)

as}
™
x

1

The variables X, and d, are assumed to be dependent, and in
this case both contain the same ELF kackground. Thes eguation

for the mean square error, MSE, assoclated with the estimate

th

is thus defined in terms of the auto-correlation functicn of

the input vector and the cross-cerrelation function between

{2,

signal.

the input vector and the des:ire




The auto-correlation and the cross-correlation
functions will be represented by R and P respectively. The
elements of these two matrices are constant values if the
input vector x, and d, are stationary random variables. A

mathematical expression for the auto-¢correlation matrix, R,

is:
C o,
Xlk XlkXZR v Xl:('XL'Jj
XZ}(‘Xlk XZZK e XZkXLk
R =F [X,X]!=E] ' ' (8)
KXok XpeXax o0 Xk |

“

and the cross-correlation matrix, P, is:

P = E[dX,])=EldX,;, dXy ... dX,lT (9)
Using these two definitions in Equation 7 results in the

following definition of the mean sguare error in the k'

MSE=J. _=E[ef) =E[di]+ WTRW - 2P7W (10)

-3 - Ty s £ [ T d € 3 NP .
re oprimur soluticn Cr UThe se.eltion of bthe welgnting

The minimum mean sguare error condition can be sclved
fcr by taxing the gradiznt of the MSE with respect to the

weighting factors and setting 1t equal to zero. The use of




the minimum values of the MSE as the optimal value is based on
the assumption that the weighting factors are only designed to
model that portion of the input vector that is correlated with
the desired signal. If the error is at the minimum value,
then the filter is removing the maximum amount of correliated
data between the input and the desired signals. The system
being evaluated is based on the assumption that only the

desired signal contains beth noise and a signal »f interes

(&1

£

hile the input vector 1is composed of a pure noise signal
alone. Under this assurption, the only correlated data
between the twe input data samples is the noise. The desire
i3 to remove as much noise as possible and thus to remove the
maximum amount of correlated data between the input vector and
the desired signal. It is therefore assumed that the filtex
is working at its optimum value when the weighting factors
meet the criteria of minimizing the mean sguare error of the
output.
4. The Optirmum Weighting Vector

The optimur weight factor will be represented by the

symbol W . The two conailiicns that must be met in order fcr

the value of J tc be minimized are:

Ve Josluewo = 0 (11)

oY)
o
£,




/TN
ow,dw,

(12)

These two equations state that when the weight vector is at an

optimum the performance furniction is at a local minimum since

the slope is zero and the curvature is upward.

of the perfiormance function is evaluated to be:

V = Y, J=VE[d?) -2V, (WTP) +V, (W'RW)

=~-2P + 2RW

q
O]

5 =% 3 — -
Setring the gradient tc rcex

weighting factoxs results in:

WO = R°!P

The gradient

(14)

This equation is sometimes referred to as the Weiner-Hopf

equation where the weight factor is referred to as the Weiner

weight wvector. The input autocorrelation matrix, R, can be

inverted if it is "positive definite," i.e., if:

VIRV > 0

+3 \ " v % . . - < - . .
whnere V 1s any non-zero vector. When the matrix R is “positive

he S ; -
definite” then the optimum weight factors can

o}
b
=
D
(9]
ot
fos
L<
§o
th
r
¥
0]
@]
Q
ct

mplete statistical properties of the auto-

correlation and cross-correlation functions are known. The

statlisticai properties are not known in this case so further

deve.opment 1s reguired to obtain an estimate

weight factors.

1}



Tha second condition that ensures that the error

estimate is at a minimum is that the partial derivative of the
gradient with respect to the weighting factors is greater than
zero. To rrove this the we take the partial derivative cf
Equation 3 with respect to W

ACA
ow; dw,

= 2R (16)
This result again shows that the input autocorrelation matrix
nust be "positive definite" in order to sclve for the optimun
weighting factors.

The performance surface c¢an now be expressed in terms
of the minimum error possible, the weighting functions,and the
autocorrelation of the input vector. The minimum mean square
error possible can be found for the case when the weigihting
vector is at its optimum value. The optimum weiqahiting factor
is used to solve for the minimum error by substituting W into

the minimum errcr eguaticn.
J [WP] "RWC~2P7W®

(RIP]TRR*P-2PRIP

- P'R'P

- ‘pTwo

man

nu

ty b
QR Q Q
Nw*wwgtf
+ o+

(17)

1
E

The minimum error can now be used as the kase line by which
2ll other errors are found. The error at any time 1s tne

Sp e . 345 3 £ Y. . ;
minimum  errory witn the adcditicn o uncertainty in tne

compenents used to derive the minimum error. Thus:

xS
=




J = Tyt (W-W2) TR(W-WO) (18)

The expregsion can be shown to equal that of Eguation 10 by
the following proof. Using the fact that (A-B)" in genexal
can pe expressed ags A'-BT:

J = T+ (WO] TRNO+WTRW ~WTRWO - [WO) TRW (19)

since all terms are scalars, the transpose is egual ¢ the

scalar value, thus the last two terms are egual. Substituting
for the minimur error and the optimum weighting vecoor
J o= EL] ~PTRIP+ (WO TRWO+W RW - 2W RW®
= E[dZ) ~PTRIP+PRIRRIP +WTRW-2W RR'P (20)
= E[dZ] +W'RW-2W7P
= E{d2] +WTR¥ - 2P W

This resul:t validates Equation_ 18 by showing that it
equivalent to Equation 10, An important note about this
expressic.: of the perfcrmance surface is that it is quadratic
with respect to the weighting vector.

S. Iterative Calculation of Vi,

The optirmur weight factecrs can be arrived at
iteratively by use of a greadient search of the perfrimznce
function. What this mceans 1s that after each estimcte of the
optimwn weight vector, W,, the sicpe or gradient of the
pe: formance function, in the direction of the

welqgihiting vector, 1S used to derive the next weighting vector,

W. .. This methnd ensures that each estimation of the omtirmum

a0



weight factore ig at least as close or closer to the optimum

value than the previous estimate. Multiplying Equation 13 on
the left by % R* and combining the result with Equation 14,

we obtain:

Wo sv-%n-w (21)

To convert this into an iterative process, the optimum
solution is considered o be the value of the weighting vector

for the next iteration.

RV, (22)

This equation is referred to as the Newton Method algorithm

for Adetermining the weiahting vector. |
The algorithm takes only one iteration tc arrive

theoretically at the optimum solution for the values of the

weighting vector. This algorithm would be the ideal method te

use if exact solutions toc the gradient term and the 1inverse

not generally the case and an estimate for the gradient must
be used. Tc compensate for the lack of knowledge of the

radient a% iteration k, a constant u, will be used instead cf
the factor % in Equation 22. The requirements on the range of

values chat ¢ can take con are:



0<p<i1 (23)

The effect of |y on the solution at each iteration is that it

oy

affects the rate cf convergence of the algorithm. A
éiscussion of the attributes and further limitations on the
value of u will be covered later. A general form of the

Newton's method ¢f gradient search is therefore:

W, =W, -uR:Y, (24)

K+ .

1

This expression is ideal under the following three conditions:

L

l._)

2. Exact Know

3. Exact krowledge of the (unchanging) matrix R,

edge of the gradient vector, V..

These conditions, unfortunately, are not normally
attainable. The value c¢f 1 is selected between  and % so
that the algorithm i3 overdamped and can accomrodate
luctuaticns in the matrix R. The compensation for this

selection ¢f u is that the algorithm takes lcnger toc obtain

its optimum solution. & second modification to the value of
1. 1s to base its value on the average elgenvalue, A,., sc that

i is repliaced by paA...

acttainable The gradient must thereforz2 bhe estimated in some
manner. The estimate of the gradient that will be used is



based on the square of the present value of the error signal

and not the true ensemble average as it has been up to now.

: de3 e,
= omeas = P o o 25
Vk mk 2¢ mk ( )

From cthe definition of the error signal:

oW, OW

= =ik (26)

which leads to the follecwing estimate of the gradient:

Ve = -2¢,X, (27)
With these two relaxations from the three ideal conditions,
the algorithm 1s now in a form known as the Newton/LMS

algorithm([Ref 71:

- -1 - .
W, =W +2ud, RIX, (28)
This is an optimum iterative algorithm that is only complete
1f full knowledge of the input correlation function is known.

This 1s generally not the case and thus a final modification

o
[42]

must be deone to produce a working estimate to this algor
The final modification is an iterative estimate of the invers

of the input correlation matrix, R!, and is called the

Sequential Regression (SER) elgorithm,




IV. THE SEQUENTIAL REGRESSION (SER) ALGORITHM

A. DEVELOPMENT
The Sequential Regression (SER) algorithm uses the
IMS/Newton algorithm as its basis in conjunction with a method

for iteratively estimating the value of the inverse input

auto-correlation matrix to produce the weighting vector for
the filter coefficients. The developrment of the algorithm
comes fror Adaptive Sigrnal Precessing by Widrow  and
Stearns(Ref 7]. The core of the algorithm is the use &f an

estimate for the inverse of the input auto-correlation matrix

B

which reduces computational load with minimal estimation

exrro

N

The input auto-correlation matrix is

-ply o7
R=E[X,X;] (29)
where the subscript k goes cver the entire lenzth of :th
random process X . R will be estimated iteratively using on'y

a finite or truncated sample of the random process X.. The

estimate of the input auto-correlation matrix is given by:

nis estimate 1s unrnbiased when the input variable, X, is a

stationary random process. when X. is not stationary, it can

be shown that the estimate 1 The estimate

w
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O
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<
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o
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of R, at each value of k is equally influenced by the

previous, k-1, estimates of the input auto-correlation matrix.

po-

In order that the most recent estimates of R, have more
influence over the new estimate, a *fading” memory term, &, is
introduced which reduces the significance o0f the past
estimates. fThe fading memory expressiocn of the input auto-

correlation matrix is denoted by Q. where:

k
e XN L k-le @l e
The value of & is chosen, as & rule ¢f chumbk, such thar th

half life of the exponential function is egual to the length

th
w

o} tationarity of ¥X.[Ref 7], This rule of thurd leads to the

following statements about the vaiue of «.

a = 2{~i/length of stationarityof X; (32)

N e : s .
ng mermory factor cver k iterations is:

[N

The value cof the fad

k « ket
Y et = L (34)
=0 i-Q

and thus the estimate of the input auto-correlation

=,
s
T
(5
}J
5

becomes :

1 - k v
R, = 1% g - 1@ 3 arixxl. (35)

1-ak* 1okt




[ 82

This estimate is exact for the condition where X, is constant.
If the input variable, X., is stationary, @ is one, and if the
limit of Eguation 35 is taken as @ approaches one, the vesult
is in agreement with Eguation 30.

The derivation of the SER algorithm begins with the

estimate of the input autc-correlation matrix., Using this

estimate in the equaticn for the optimum weighting factors

Rw, =8P,. (36)
The definition for tne estimate of the cross-correliation

vector, P,, is, similarly to Eguation 35,

QW = ;“k*ldle' (38)

“he weighting vector, W.., based on the present vaiues cf R

and P.. To do thnis, Eguation 38 becomes:

27



k-1
QM = Y a® b -1d X v di X,
lag

aQp- W, +d X,

!

(39)

1]

(Qk’:ki:)ﬁk+dkxk'
The last line c¢f Eqguation 39 is the result cf the following
relationship:

Q. =aQ, .+ X, X% (40)

The value of d. can be raplaced by recalling Equetion 5 and 6

which state that
dk- = Bt Y = epika (41)
thus Eguation 39 becomes
QW4 = (Qk"ikxz)vk + (zk‘”xzwk)ik

QN +eX,.

Multiplying on the left by Q,*, gives an iterative method for

(42)

calculating the weighting factor vector

W, =W+ Qe X,. (43)
The expression for W.. in Eguation 43 is similar tc the
LMS/Newton method derived earlier. with this irn mind, an
approximation for the LMS/Newton algorithm can be made usin
the above derivation. The SER algorithm wused as an

approximation of the LMS/New:ton method is given as:

Q]
[0.0]




2pA e (1-akS) oy

Wiy =W, + Qi erX;. (44)

il-a
The algorithm requires a method of iteratively solving for the
value of Q. in order to be complete.

The method to iteratively solve for Q.° begins by pre-
multiplying Equation 40 by Q, %, post-multiplying by Q. ., and

then by X,, to cobtain:

~ )

0V Q.0 X, = QK aQ 05X, + QX X0 X, (43)
which reduces ro,
Q‘{.lek = aQ;clx.k+Q~klxkx.ZQ:1xk

. (46)
= Q'K (& +XFQ; X, )

The quantity in parentheses is a scalar and can be divided out

i

while the quantity X.’Q.."" is also multiplied on the right to

give
QX X0 Lo
—UEE TR = QUK X (47)
o+ X301 Xy

‘ne f1rst lines c¢f Eguation 46 and 47 can be cormbined and re-

(Q:4X) (Qil.x )T

-1 5 PR k-1 k-1

Qi = ;Qk-;" ' o T T . (48)
G+X(Qu:Xy)

An iterative method of calculating Q. is now available and is

only based cn its previous value, Q. .7, and “he present value

of the input, X.. The value in parentheses 1is used three

29




[aa}
The

t will be calculated separately and zeprésented by

SER algorithm is now completely derived as an

iterative method of approximating the LMS/Newton method of

adaptive filtering. The following summary shows the process

by which eacr new value of the weighting factor vector is

calculated.

- 2(-1/leng:ho£eta:ionazityofi)

R
z

itk = dk-wkx}:

)
o

Q. X,

a+Xi8

-
n

(49)

i

Q;! %(o;ir%ssfj

2pA, 0 (1-a®t)
~ ¥ a"i-'a leckxk

Wiy =W, +

The values that must be carried forward from one iteration to
the next are Q .7, and W,. These represent the previcus value
for the estimate of the inverse input auto-ccrrelation matnrix

present

desired

present estimate for the weighting factor vectcr.
output of the algorithm 1s the error, €,, between Lhe
value of the desired signal and estimate c¢f the

signal:



ﬂ”
!

OUTFUT = ¢, = d,-W, X} (50)

h

pose
(]

=3

value is saved after each iteration in a vector

*

epresenting the uncorrelated portion of the desired signal
and noise vectcr of the primary channel with the noise only
vectors of the reference channels at the time index k,

X.. [Ref 7]

B. INITIALIZATION
The SER alcorithm assumes that the value of the inverse

ght factors vectcr is

(TR

input atto-correiaticn matrix and the we

known frem the

73

- .. b . N < 1
revigus step. AL sore point in the pa

n

T

3]]
1

estimate for these terms must have been made so that a
starting point can be established. The reguired accuracy of
the estimates depends on the length of time that the algorithm

will be operating and the earliest time that accurate data is

The driving fcrce behind the accuracy of the initi
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ithm can converge
- PRV Vi - [aal < ~ 3 - . N 3 H
an cptimal soluticn. The speed ¢f convergence is derendent on

two elements c¢f the algorithm. The first element 1s the

initial value cof the inverse input auto-correlation matrix,

Q.'. The signifizance of this initisl element is that the

further the initial estimate 1is from the true value, the

her the algoritiur has tc adapt in order to approximate the

cptimum sclution, The second eiement

4]

the step size, 2uA. _,

1




which specifies how far the algorithm can progress towards the

optimum value in one iteration. The step size will be
discussed in the next section but for now it shall be assumed
to be a constant in this discussion of the initial conditions.

The use ¢f a large constant multiplied by the identity
matrix as the initial value of the Q. has been sufficiently

argued by Lee (Ref. 8].

Q" = qI (51)

As discussed by Lee, the use of a large constant for g is the

3

proper celection for the case where the randcm process 1is
stationary. Widrow and Stearns argue that this same choice
for the initial value of ¢, in a non-stationary condition, is
also appropriate[Ref 7). 'The point is made that if a priori
knowledge of the random vrocess allows for a better estimate
of the wvalue of Q.7!, then that information should be used.
The method of initialization for this study is to use Egquation

51 with g. eguivalent to 1

a
O

C.

The 1nitial values used in the welghting factor vecteor are

B2

asgiiied to be zero. This assumpticon ig made since knowled

1{)

e

of the process before time zerc is unknown. The use of &

(98]

2
tap delay filter also allows for an estimate of the initial
£

uil weight factor vector but this is done so at the expense

of the first 32 output dat

W
(o]
O
[
]
(@1
42}
]
o3
I
4
"
n

deone by expanding
the number cf elements in the weight factor vector us each: of

the first 32 points are read into the algorithm. The




algorithm is applied only to the data that is available;

therefore, the first time that each element of W, is non-zero
is at time index 31. This corresponds to the time when the
first 32 data points are input into the algorithm. The result
of this initialization is that the first real data point to be

considered an output of the SER method used here is at k = 31.




V. STABILITY AND CONVERGENCE

A. THE SINGLE WEIGHT CASE

The SER algorithm contains values that can be set to
affect the rate at which the algorithm achieves the optimum
solution. A simple case where only one weight factor is
concerned will be used to demonstrate the relationships
involved in the selection of the convergence rate factors.

The single weight iterative process usi

3
Kol

a grad:ent search

metiod like the SER algorithm can ke representod by:

Wi = Wk+p(=vk) (52)

m

The expression fcr the single we.ght gradient ac time

index k is given by:

. d
Vi Gy
W Wy
. dIA(w~w©)?] (53)
dw e,
= 2A(W‘K—wo)
The value of the input auto-correlation matrix, r.. for the

singie weight case, is replaced by its eguivalent eigervalue,

A=E[x;}. Combining Eguation

471

52 and 53, an iterative equat:ion

for the weight factors 1s found:



Wiey = Wi—2@A (w,—w©) (54)

for the single weight case. The terms in Equation 54 can be

rearranged to combine like terms.

w,=wOo+ (1-2pA) ¥ (wy-w°) (55)
This expression contains the geometric ratio of successive
terms which is also used to define the stability requirements.
Stability is guaranteed if the absolute value of the

geometric ratio is less than one, i.e.,
|1-2pl|<1 (56)

The limits placed on the value of the u can be expressed in
terms of the eigenvalue of the input auto-correlation matrix

T

The optimum solution can be seen as the solution of Equation
55 if the limit of w, as k goes to infinity. This is because
the geometric ratio approaches zero as k approaches infinity.
The rate at which the algorithm approaches the optimal value
is dependent on the value of the geometric ratio.

Figure 4 shows the effect of varying values of the
geometric ratic on the rate of convergence. If the value of
the geometric ratio can be maintained between zero and one,
then the algorithm will always approach the optimal solution

from one side and can be considered as overdamped. For a

35




geometric ratio of zero, the algorithm reaches the optimum
value in one iteration from one side and can be considered as
critically damped. If the magnitude of the geometric ratio

falls between zero and negative one then the algorithm is

underdamped.
Wo T ' "
.9=Geometric Ratio i
© 3 4
2
g L \\\ -]
x T
[)) r
T
= - i
Wopt L ) ]
L -.3 4
'] ‘ A L 1
0 5 10 15

teration

Figure 4 Effect of Geometric Ratio (g) on the Rate of
Convergence: overdamped 0O<g<l; critically damped g=0;
underdamped -1<g<0
B. MULTI-WEIGHT CONDITION

The single-weight condition discussed in the previous
section can be expanded to develop an understanding of the
multiple weight factor case. The same conditions that applied

to the single weight case are true in the multiple weight




case. The difference is that each weighting factor has an
associated eigenvalue and thus the condition of stabkility is
now dependent on a set of simultanecus eguations that must

meet the stability condition,

[ (1-npa,) ]
(1-2p2.)

W, WO+ (W, ~W°) (58)

(1-2pA,) ]

L

The subscript on A indicates the index value corresponding to
a specific weight value. fThere are a total of L weighting

factors and thus there are L individual eigenvalues, A.

The value of u in each of the simultaneous equations is
held constant. Since u-is the same for all equations, the
eigenvalue that has the largest value will impose the mosh
restrictive conditicns on the selection of a value for u. The
rew range of values that u can take on is:

= >p>0 (59)

max

A

M
b3t

¥
sae coen

(o

~
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. stated in Eguation 59 gives the mult '-weight

[¥H

it

t

[

stability reguirements that must be met to ensure that the
algorithm will cornverge o the optimal solution.

The rate at which the algorithm will converge was shown in

‘7]

[

gure 4 tc be dependent on the value of the gecrmetric ratio.
New that the value of n is a function o¢of the maximunm

. v Ty - " N 1 . - y - .
elgenvaliue 0f the i1nput autc-correlation matrix, R, 1% can be

37



shown how this affects the rate of convergence. By holding
the wvalue of 4 constant for each weighting factor, an
undesirably slow convergence race can occur for widely varying
values of A. As shown previously, the algorithm convergos in
one iteration when u is egual to 1/2A for the single weight
case. Using that same criteria, the value of the multi-weight
constant u is 1/2A.,.. The use of this criteriocn uensures that
the algorithm falls into the overdamped category since u is
always less than or egual to 1/2A. fcr 1=[(0, 1, 2, ..., LI.
The weight factor, w, with the smallest value <! A will have
the slowest convergence rate since its geometric ratio will be
farthest from zero. This is true because the value of 2ui
will be at its minimum and will cause the geometric ratio Lo
approach one. when this condition holds, the algorithm may
take excessively long periods of time tc converge to an

optimal solution.

C. NON-STATIONARITY EFFECTS
The discussion up to this point in dealirg with stabkilizy
and convergence assumed that the process under study was

stationary. Under stationary conditions, the values of the

eigenvalues of R are assumed to be constant. & second key

assurption to the development is that the wvalues of the

eigenvalues are known. The lack of knowledge of the input

auto-correlation matrix, R, reguires that some estimation be

made for the value of u. The value of 1 must be adjusted to




ensure convergence of the algoristhm in an environment where

the eigenvalues of the auto-correlation matrix are varying at
some unknown rate from iteration to iteratiocn.

A method for compensating for the variations in the range
of values that i can assume is to use an averaged eigenvalue,
A.. for the selection of the constant u for each iteration.
The value of 1 is now a constant for a single iteration but is
changed from iteration to iteration based on the average
eigenvaliue. Stabkility of the algorithm is guaranteed if the
value of the product, uA,. ., i1s between zero and one. It is
impertant to note that the expression uh,. is now used only to
replace the constant u used previously. The idea i1s to scale
the average eigenvalue for that iteration by a constant, u,
and use it as the factor feor controlling convergence of the
algorithin,

The geometric ratic which controeols the convergence of the
algorithm has now been altered to include a term to compensate
for the non-stationarity of the input randor process, X. The

new expressicn for the geometric ratic is

|t - 2pA, R <1 (60)
The inverse input auto-correlation matrix, R*, i1s included in
the development of the SER algorithm, The convergence
controlling term is thus uA,., and must be less than the
maximur eigenvalue of R to ensure stability and convergence,

A4 second condition that can be imposed on the product yA,... is
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that its value must always be between zero and one. Using the
fact that the spread between maximum and minimum eigenvalues
can be rather large, the product of uA,,, must be much less
than one.

The ELF background noise processes have shown a tendency
to have a wide range between eigenvalues and to slowly change
over time. Because of these two conditions, the value of the
uA,.. must be adjusted over time to account for these
variations. The chosen method is :o estimate the average
eigenvalue Lty taking the average c¢f the sguare ¢of the input
vector, X,. Thig value is multiplied by the 1/100 of the
inverse cf the maximum of the sguared input vector.

,“ £ x2

y = - . d=0
Whove = oo Tmax(x) 12~ L

(61)

The use of this estimate for convergence control in the
algerithm ensures that the requirements for stability are met
for each iteration. The 1/100 term ensures that the maximum
value of u is not exceeded. It was derived empirically with
the use of an actual set of ELF background measuremernts and
may require adiustment in a different environment.

The choice of using the present input tc the algorithm to
get an estimate of the average eigenvalue 1s used for
computational ease with minima. added error. The use of the

inverse ilnput autc-correlation matrix should provide a mcre

accurate measure of the eigenvaliues; That, however, requires




the inversion of the matrix. The prevention of matrix

inversion is the exact reason the SER algorithm is developed,
50 to obtain the eigenvalues in this way defeats the reason
for the algorithm's design, and is therefore counter-
productive. The method has proven adeguate and reasonably
accurate in empirical work up to this point, but does leave

roorm for improvement and further study.



Vi. IMPLEMENTATION

A. A PHYSICAL DESCRIPTION

The Applied Physics Lab has two identical sensor platforms
submerged in shallow water. Each platform has electrode pairs
for detecting the geoelectric ELF background noise. The
system has been in operation for over two years collecting
samples of the background noise environment.

Ideally, the two platforms are parallel wher the piratforms
are placed on the bottom of the bay. Figure 5 shows the ideal
alignment of the platforms., The two platforms are labeled as
the east, E, and west, W, platforms. Each platform has a set
of orthogonal electrode pairs, labeled X and Y. These
electrode pairs are orientated to receive the two orthogcnal
source vectors, E, an¢ E., in the horizontal plane. The
strongest geoelectric field strengths are in the horizental
plane due to the shift in polarization as a wave crosses tie
water-~air boundary from verticai to horizcntal.

If the two platforms are perfectly aligned and the noise
recorded on each are 1identicail, the nolse in a specific
direction, X or Y, can be removed by subtraction. To cancel
the x-direction noise simply subtract XW from XE. Because the
platforms are not perfectly parallel and the recorded noises

are not identircal though highly zorrelated, this methcd is not

.
4
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Figure 5 Il.ustration of Sensor Set-Up

ideal. The actual platforms can be misaligned up to 18

“

degrees from perfectly parallel. This 1s due to physical
constraints such as bottom contours and mounting technigue.
The result of such a misalignment is that both the Xw ar.d Yw -2

sensors of the west platform have components that are coheren'. .

with XE of the east platfcrm. It the electrode pairs 1in




Figure & are thought of as vectors, then it is easily seen how
misalignment can cause coherency between XE, XW, and YW.

A set of real data is traced through the signal processing
system designed to accompany this sensor system., A calibrated
source signal is embedded in the signal XE. The path that the

received signal follows can be seen in Figure 6. The output
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of each sensor is sampled at 128 Hz. The data is bandpass
filtered and resampled down to 32 Hz for processing. The data
i then passed through the SER algorithm where the coherent
portions of the west platform are removed from XE. The output
of the SER portion of the processor is demodulated and passed

through a likelihood ratio detector where a decision can be

made as to when the embedded signal is present.

B. INPUTS TO THE SER ALGORITHM

The 8ER algorithm is used to reduce the ELF backgrcund
oise detected in the primary submerged electric field sensor
by cancellation with the output of the reference parallel
electric field sensor. These parallel reference sensors are
also submerged and are, ideally, assumed to be located within
the same ELF background noise as the primary channel. The
primary channel y represents sensor XK and the reference
channels, x1 anl x2, represent XW and YW, respectively. The
sampies are the actual outpur of the senscr system used by
APL. The samples are taken at the same time without any known
gnals present. The sampling rate of the data irput for the
SER algorithm is 32 Hz and the total length cf data is 113760

3

points. These data samples correspond to almost an hour of

.\ . . . .y .
ilter is a 32 point transversal ilter that 1is

appiied tc each channel simuitaneously. The length of the

transversal filter means that the previous 31 samples cof the




sensoy are used with the present sample value for each
iteration of the algorithm. The goal of the algorithm is to
take the output of the two reference channels, x1 and x2, and
to generate an estimate of the noise in the primary channel y.
Figure 7 shows what the primary channel's data locks like in
real time. The length of stationarity, used to determine the

forgetting factor, &, 1s assumed to be about 300 data points
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a set of scenarios with a knowm signal inserting in the Aata




samples. The scenarios congist of manually inserting a 32 Hz
signal on a 5 Hz carrier that is 8192 data points long.
Figure 7 shows the components of the primary channel signal in
a real time representation. The primary channel is processed
by the SER algorithm while varying the strength and lacation

cf signals embedded in the background noise y.

C. SIGNAL STRENGTH RESULTS

The algorithm is first run with the location of the signal
within the noise held constant. The strengrh of the signal is
varied by dividing each data point in the signal vechor by a
constant, A series of four runs are conducted, each
succeeding run has half the signal strength of the preceding
run. The initial run uses the signal shown in Figure 7 with
the amplitude divided by 500. The signal is indistinguishable

prior to processing as seen in Figure 8.

t

The signals for each run are centered at time 19.2, 32 and

44.8 mirutes intce the noise sample v There 1s no
14

significance to the positions chosen except that the signal

data streams were not allowed to overlap. The objective cf

enhances the ability to distinguish small signals b

the noise. The deata is first processed in the SER algerithm

(ad
o}
a]
©
=3
O
<&
6
T

he coherency between the reference channels and the
prirmary channel. The output 1s then demcdulated leaving only

the 1in-phase and quadrature compcnents of the non-coherent
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portion of the primary channel., An identical referernice set of
data is demodulated without passing it through the SER
algorithm so that a visual and quantitative analysis of the
effects ~€ the SER algorithm can be made. The output of the
demodulator is shown in Figures 9 and 10. Note that the
envelope of the signal is visible to nearly the strength of
1/72000%, . . the third run made.

The ~utput of the demodulator is passed as input into a
matched filter detector based on the demodulated signal. The

— -

oursut of this derector is showr in Figures 11 and 12 with th

m

SER and non-SER output for a given signal strength shown

T
N R S

on
o

Ampi

Figure 8 Input Primary Channel MNoise And Sigral

438

L




together. Numerically, the reak value out of the detector is
three to five times greuter when the SFR algorithm is used as
compared to when it is not used.

A final numerical analysis is performed by using a primarzy
channel without a sigrnal installed to ¢t a measure of the
noise present in the output. The standard deviation of this
output of the detector when this noise oenly vector is usg~d as

input 1is used as an appraximatiorn tc the noise power.

Dividing the outputs of the detector iii Figures 11 anrnd 12 by
this es-imate 0f the noise power, an estimate cof the signal-

to-noise-ratio (SNR) can be made. The values of the average
peak SNR for the three locations in each run are plotted
versus sianal strength in Figure 12. The SNR o0f the SFR

applied data runs about 6 dB higher than the non-SER applied

data.
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Figure 13 SNR vs Relative Signal Strength

D. DETECTOR THEORY

The process of adaptive noise cancellation is performed
for the purpose of increasing the signal-to-noise ratio. A
section on the narrowband detection schemes that have been
considered in conjunction with the noise canceler are
presented since they are integral to the analysis here. Two
likelihood ratio detectors are considered for the detection of

narrowband signals.




The first detector is designed with the assumption that

not only is the signal known, but its peak within a given
interval is constant relative to the start of that interval.
This last assumption is to assure that the demodulated in-
phase and quadrature signals that are used in the likelihood
ratio detector match those in the noise canceled and
demodulated cutput of the senscor system described previously.
In the second detector, the latter assumption was dropped ard

the design followed

T

hat ¢f an optimal envelope detector. In

both ¢

cr
.-

ses it was asswmed *“hat e residual neise fieild was

A2

gaussian, This assumption, while not strictly true, seems to
vield quite reasonable results.[Ref. 9]
The signal is geaerated by a calibrated source with known

qualities. The modelling equation for the narrowband signal

is given by:
s(t) =A(t)cos([2nf t+0(ct)] (62)

For the first detector, the phase term, 0, is assumed constant

withir any non-overlapping interval 0 to T. The interval of

T
t

ent to the len

th ot the signal. The purpose

«2

(=

C to T is eguiva

s sc tha% a Matched Filter can be created

b

of this assumption
for the 1in-phase and quadrature components by using the
dermocdulated in-phase and guadiature component of the signal.
Figure 14 shows the demodulated signals used for the detectcr.

The first detector 1s a muiti-channel Matched Filter shown

in Figure 15. Tre Matched Filters, 2. and h,, are determired

n
wn
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Figure 14 Demodulated Signal for Match Filtering

based on the requirement that the output signal-to-noise ratio

is maximized at time T. The corresponding equations are

}[Rﬁ (t-t) Riq(t-‘t)][hi (1:)]dt [s; (T-1) (63)

! Ry (t-t) R (t-1)|{h, (7) -[Sq(T-t)]

where the quantities R denote the various auto and cross
correlations. This detector is the one used for all
processing performed in this thesis. The input to the
detector is the noise cancelled output of the SER portion of
the processor after demodulation. [Ref. 10]

The second detector 1is an optimal nonlinear envelope

detector. The description of its principles and design are
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Figure 15 Linear Multi-Channel Match Filter

located in the Appendix. The detector was not used by the

g3

authory in this work relating tc the analysis c¢f the SE:

argorithin, put it is presented as complementary work relating

to the overall project.

E. SIGNAL LOCATION

The sig¢nal strength analysis sh.wed that the sighal
divided by 2000 is easily diséernable from the background at
the output of the detector. The effect of wvarying the
location ¢of the signal will allow analysis tc get a better
feel for the expected SNR hased on a larger sample size for
averaging than previously used. A second berefit of this
anaiysis 1is to see the effect of the initialization process on
the SNR. The sgignal will be shifted by a quarter of its
length for each run, or 2048 points. The S&NR i1s plotted
versus the location of the center of the signal in Figure 16,

The data is run with and without the SER algorithm to get

a good feel for the enhancement achieved with the SER
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Figure 16 SNR VS Location of Signal In Noise Vector (Y)
algerithm. Three separate locations of the signal will be
used for each run to reduce calculation time. The use of

multiple signale causes no effect on the SNR calculation as

long as the signals are not allcwed to overiap.




VII. RESULTS AND CONCLUSION

A. ANALYSIS OF RESULTS

The use of the SER algorithm enhances the ability to
detect narrowband low power signals buried in the background
noise. Figure 17 shows the spectrum of the noise sample from
sensor XE before and after the use of the SER algorithm. The

frequency range is £rom one to ten hertz, which is in the

. (Y

range of concern fcr the SHY proect. The spike seen at fou

t

hertz (note the x-axis is a logarithmic scale) is céuséd by
the processing equipment. This is a man-made noise source and
will be filtered out in the final proje¢t design. The figure
illustrates the 10-15 dB of noise cancellation possible by
using this method of adaptive noise cancellation.

The location of the signal in comparison to the start of
the adaptive process has been shown to have very little effect
on the signal enhancement. The system implementation wilil

most likely cause the algorithm to only reguire initialization

b

cnce a week and operate constantly otherwise. The
initialization process takes about 100 iterations or 1.67
minutes before settling out but is heavily data dependent.
Even while settling, the performance of the algorithm 1is
adequate to receive mest signals. For the purpose of this

-

project, initialization should ke of no concern.
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B. CONCLUSIONS AND RECOMMENDATIONS

It was hoped at the beginning of the research that

-

c s
cs CI the

information could be gained on the characterist
noise environment. The stationarity of “he backgrocund noise
environment was found to be at least nine seconds. This is
believed to ke only a characterictic of the specific data set
that is used. The length of stationarity affects the value of
the focrgetting factor, &, and is implied by the use of the SER
algorithm. A better feel for a good average value t~ use for

the length of stationarity will result from the use of more




data sets. This analysis needs to be conducted and could be
a source of further work in this area.

A second area of work that ceculd develop from this
research 1is a study of the cancellation possible from a
vertical above-surface sensor and a submerged horizontal
sensor. The purpose of this would be to differentiate between
surface and submerged activity. This may prove to be
impossible but it would be interesting to see the amount of
correlation possible between the two locaticns. This type of

arrargement cousd a.sc leac to & wider distance between

«Q

sensors which could also increase the knowledge of the
background environment,

The purpose of the research presented in this thesis is to
develop a method to adaptively cancel the ELF noise present in
a submerged sensor array. The SER algorithm appears to be an

adeguate method to accomplish this goal of noise cancellation.

3

i
i
&

t N
e cancel.s

T
[N

on ratio in the freguency range ¢f interest is,

-

on average, 12.5 dR.

use of cptimal detectors will assist the system in detecting

narrowband signals bu:ied deep in the background noise.
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APPENDIX
The second detector used in conjunction with this project
of measuring the geoelectric background noise is an optimal
nonlinear envelope detector. The symbolism used is slightly
different but efforts are made to define cll relevant terms.

=

The in-phase and guadrature data {after no‘se cancellation)
are denoted by ri and rj, respectively. Similarly the in-phase
and quadrature noises are represented by n; and n.. Assuming

a joint Gaussian distribution we have the following two

hypothesis:
H o+ (£ , ) = (na , n;
Ho: (£, )=(n,n0)+ (8,6 s)

where H, denotes the null hypothesis (noise only) and K.
denotes the alternative (signal and noise present!. The

vector notaticn means

r=(ri,r9) =[x}, 29 . ..., (£3, )]
where N denotes the length of the interval for which the
decision is being made. It is ther clear that the probability
density function for the received data is as follows:

4

p (r|H,) &GXﬁ-%(r—ﬂTﬁ*(r~ﬂ;

= nn i
where R.. derotes the covariarnce matrix of tle ncise vector.

In this particuiar case, it is assumed that th2 in-phase and




th the same variance 0? so

the gquadrature components have bazen decorrelated and whitened
wi ' :

1\ LI rpdo a2 @ g G\ 2
pl(r|H) = exp “ﬂ; (rg-si) *; (zx'-8x)
2%0? 20%| £ =
Introducing polar variables (ri , ¢ ) and ( ri, ¢ ) it is
found thac
N
y IIrk L e 2 ié 2 &
g Igr £1 S y ’
plriH) = o expl-=2=|Y ri+Y si-2Y r.s,cosid,)
where ' = ri? + r® and tan ( ¢,) = 29 / ri . 1Iategrating
the above ovér the angular variables will give’
N
IIIk N N
. 51 3 L2, o2 Sl k
p(r|H) = 2 expl-—= (ri+si) Iy =
] 2r a2 20°% =1 ll 0?
b
where JI. is the mod:fied bessel function of order zeroc. The
vector r ¢n the left hand side now only refers to the varicus
nvelopes, r = | r., , I The same is true for the siynal
envelope. The likelihcod ratic detector is f_und to be:
! gl K N
(rH, [ 1 < [ s
PR AL ,xp———,z;sk) 1| 2k
Dixirng | 20%f 2 o
The lecg-l1iXelinocd ratio is then
iy N s,z )\
-4 \ 4 . k*
1oga —-g;sk g;log I{ 57 ”



The first term is a cons’‘.ant, dependent only on the known

signal, and can be dropped. Finally the test statistic or -

detector output is(Ref 10):

N i
loglsz log {IO(%)} .
3

The implementation and analysis of this detector scheme is

left as a possible follow-on thesis topic.
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