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ABSTRACT

The use of the Seqiential Regression Algorithm ($ER) to

coherently remove background noise from an ELF sensor is presented.

The SER algori.hm is described for a mu li-channel application in

order to cancel coherent portions of reference sensors from a

primary sensor. The algorithm adaptively accowuts for differences

between two parallel array platforms for the purpose of coherent

subtraction. A section on likelihood detector schemes is also

presented. This v-ork is in support of a submerged ELF sensor array

project run by the Jiczis Hopkins University Applied Physics Lab.
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I. INTRODU1CTION

A. BACKGROUND

Extremely low frequen-cy (ELF) geoelectric noise has a

highly impulsive nature which makes it very d~ifficult- L

remove by filtering. The mnain contributors to the

imPulsiveness of the ELF spectrum are li-ghtning discharges.

The lowest frequencies of thie ELEiF r-ange (1, to 60?Iz) have suc

& -Ic,;: aenacnreote as th-1.ey t 1' -.-&~ ta:r Ii.hI n a

discharges all over- the world must be Considered when studying

the noise spectrum at a- single 'Location. ELF signals have

been stulied for such applications as pow.er transfer,

communications, geophysical- surveys, and so forth. The amount

of information on the subject -Ls immrense and increasing. How

1-o account f-or the impulsive background electromagnetic fields

ýnevitably present in any systemn cperating 'n this frequen~cy

rangE. -renai-ns a ser--ou.s probm -,hat any systen- designer ms

a n.s,.!er .

Thle backgrou-d, noise of the lower EFfreoru-ency range can

be tihou~ght of as consisting of' both local and gic~'.-ai

plnenomena. The glo'bal -com-onent Is co-pr~sed of signals that
are relatively Coherent over extend4e6 csA, cs dtie

recordci'no of dat-a inthis frequency range

:s characterized; by burstsc of a few cycles du-ration

wh-ich- may be ten or or t-imes the mean amplit-ude betw-en



bursts, This bursty character is apparently coherent over

most, if not all, of the Earth.(Ref, 1)

The local phenomenon is comprised of those components that are

not coherent over extended distances and are assumed to be

products of the local environment of the detector. A set of

parallel detectors separated by some distance can be

coherently combined to remove the global portion of the

background noise and thus lower the noise floor.

B. OBJECTIVE

The Applied Physics Lab (APL. at Johns :opkins Universcy

has for years studied and made measurements of the background

geoeJ.ectric noise on widely separated pairs of electrodes.

The purpose of this thesis is to describe techniques of

adaptive filtering that the author applied to data collected

by APL, in order to determine the aount Of noise

cancellation. The techniques are implemented usinr software

developed during an extended visit to the Applied Physics Lab

by the author. In a related effort, software will also be

Presented imilementing appropr•ate• detection methodoloav for

"he detection of narrown-ana signals embedded in the ucise

C. ORGANIZATION

The thesis begins with a brief discussion of the

ccnstituents of this ELF noise to demonstrate the difficu-.v

:n modeling of the spectr-um• . and to uro•u"e suucuzt no

backAround inf ora,,tion. The basic concects of the adaztive



filtering will be presented as a lead in to the adaptive

algorithm to be used to cancel the noise. These introductory

sections will be followed by a discussion of stability and

convergence concerns for the adaptive algorithm in this type

of data environment. The detection discussion is then

presented as a continuation of the processing required for the

detection of narrowband signals. The adaptive algorithm is

then used in the detector scheme to demonstrate performance of

the developed software. A final section will sumrmarize the

work perforwed, de-•w reaev-nt conclusi ons abouC the work ano

propose possible future studies that could be derived from

this work.



II. THE ELF BACKGROUND

Many studies have been conducted in an attempt to develop

an understanding of what actually constitutes the natural and

man-made background noise spectrum in the one to sixty hertz

range. The sources of the energy in this frequency range can

be primarily attributed to atmospheric disturbances and man-

made power transfer systems. A major problem with these

sources of noise is chat they are hichly irregular in boon

magnitude and duration of the noise signal. Attempts to

classify and assign specific characteristics to these sources

have proven difficult. A brief history of the research

conducted in these areas is provided in the following two

subsections.

A. ATMOSPHERIC NOISE

The source of the majority of noise in the one to s1xtV

flertz frequency range is lightning discharges. The tower A
ranoe discussed here also contains ohat s called the Schumann

Range. The Schumann range takes its name from the early

theoretical work of the German scientist 0. 0. Schumann.

Schumann theorized that the cavity created by the surface of

the Earth and the Ionosphere has naturally occurring resonant.

frequencies. He took this resec:rch further to dErlvt a set of

harmonic resonant equations for caictulatinq these frequencies.



The work of Schumann has been carried further with the

actual measurement of the Schumann resonance frequencies in

field experiments. In 1959 and 1960, H. L. von K6nig

substantiated the presence of Schumann resonances by observing

the waveforms in the output of a narrow band amplifier. The

experimental presence of Schumann resonances created a large

quantity of literature on the subject as scientists attempted

to understand the phenomenon. Once a foundation of the

propagation properties of the Earth-ionosphere cavity was

esta i ished, the search for he source of the excitation

began. [Rif. 2J

The most prominent excitation suurce of the Earth-

Ionosphere cavity is the cloud to ground lightning stroke.

The number of similar strokes present in any one flash

observed during a thunderstorm i3 a random variable that

norrnally ranges from tw,. to twelve. Since the number of

strokes is generally too high to measure Individuai waveforms,

a rmore app:licabl!e -measure _L the power spectral

density[Reef. 3 The f., Iuency spectrum of this noise ,,as

resolved in sufficient detail to estimate the quality factor,

Q, of The earth-ionosphere ca'.s-,: by M. Bal-er and C. A.

Wagner in 1960. The 0 of a cavity resonator is a measure of

the bad oith to I- resonator[Ref. 41. The source of the

nose, as theorized by H. Raemer in :161, is the response ot

the earth-ionosphere cavity to electrical discharges created

in t, r.-..r- orms a&i over the wcrid. Raermer attemtutC tc



model the ionosphere in an attempt to reproduce mathematically

the measured response of bal ser and Wagner. Although Raemer's

attempt fell short of its goal, it began the process of

refinement of a working model of the ionosphere that continues

todayi.Ref. 21

The early work performed by these scientists brought out

the difficulty in attempting to model this naturally occurring

phenomenon due to its randomness. Parameters must be

estimated by some method in order to model this random.

process. The nighly variable nature of the e parameters makes

the task of modeling the noise nearly impossible. Examples of

these varying parameters are diurnal variations in the

ionosphere, twenty-tour hour variations in the ionosphere,

seasonal variations in the locations of thunderstorm regions,

and the randomness of individual lightning strikes. These are

only a few examples of the parameters that must be considered,

in order to model the atmospheric noise.

B. MAN-MADE NOISE

The presence of atmospheric ncise is not the only concern

that must be addressed when discussing backaround noise in tne

one to sixty hertz range. Many components in today's world

emit unshielded interference that fails in this rangae. These

com•ponents are the result of either faulty equi..ment or cor



001n gD1sOt this noQ.- OUC arep er1.S that

aeused to dietribute alternating current through populated

areas.

Large ferric objects can create fields around them that

can be detected. The strength of these fields can be well

below the previously mentioned Ecurces of noise but can be

discerrnabl~e in certain situations. Motion of these large

magnetic objects in the Earth's natural magnetic field is th1-e

so~urce of a small fiel:?d.

li) c,,n of the dietector can -rea,,e an Jincr-ease In t'-e

- ; . - ý- ,-. `-ny sii -r -1 con or to-e d eec zo r c &n

create misleading information and in most cases, an increase

in the noise signal. The back-ground ELF spectrum can be

thought of as the summation of three orthogana2. vectors.

Relative motion between these three vectors and the detector

creates a false signal that can raise the noise floor. T7his

type of noise can be compensated for by the use of motion

sens-Or. [ Ref . 51

") "ne. sourc-es of man-made noise --an be found the

detector equipment itself. imcroner shneid.:"ng of ca'bles and

electrcnic devices used in the design of the detector anc its

processing cornponc-nc.- can lead to eleva-ted noise floors.

U~iiike nat-urally occurrinrq atmospheric noise, these sources

can, -e tracedi andý eliminate, . The removal o4 ,n~ os a

come in tw.ýo forms.,- eliminatilon of the source or- iso-'at.1on of

7



,he source from the detector. Thc fact that maln-Ade noise

sources exist must not be overlooked when attempting to

process signals at the output of the detector.



III. ADAPTIVE FILTERS

A. GENERAL TERMINOLOGY

The ELF background noise has been described as a highly

impulsive, non-stationary random process. Some of the causes

of These variations have been briefly described above. The

use of traditional filter designs may not be the optimum

method for reduction of the noise floor fur recept ion of low

sr renczh signals ±n the one to fifLy hertz range. Since their

introduction, tI UC Ce u e 0of vae filters 'as shown promrse in

combating exactly this type of scenario. To understand the

application of adaptive filters in this case, a brief

discussion of relevant terms must be conducted.

k. adaptiv, filter is by definition a filter that has the

capability to adjust, by itself, a set of design parameters

that are based on estimated statistical characteristics of

the signal to be filtered. This process of adjustinc toe

filter to the present situatiocn aiievia:es the need to have a

priori knowledoe of the relevant signal characteristics. The

previous chapter described how difficult it is to derive a set

of statistical characteristics for the ELF noise environment.

If a priori knowlel-e of the relevant signal characteristics

were known, an optrimum filter could be designed. The goal of

adapctive filtering is to estimate these statastical parameters



and to refine the estimation through the use of an nlgorithm.

If an appropriate algorithm can be found, then after a

sufficient number of iterations, the adaptive filter should

converge to the optimum filter. The use of adaptive filters

requires the designer to look for the optimum algorithm for

estimating the relevant signal characteristics instead of

attempting to discover the actuaI signal

characteristics.[Ref. 6]

Adaptive filters are divided into two basic categories,

ocen-loop o and closed-loop. An open-lIoop cnf :igurat .ion is

us,,•ay a two staq, process. The first stace is usec to

"learn" the statistics of the relevant signal. The results of

the first stage are then used in the second stage to compute

the filter parameters required using a nonrecursive aiaorithi,.

_n contrast, the closed-loop configuration uses only one stage

to develop the filter parameters: the relevant signal

characteristics are nCt explicitly estimated 1bu are inferred

from a recursive algorithm that updates the filter parameters

directly as each new data pon is cbt a redl The adactive

filter gains a cdi knowledge of U sna

characteristics during each iteration. The gain in know..•edge

results in an improvement of the filter parameters whicn are

adjusted and their performan•e is used as an inp--t to the next
iteration of the algorit-h. :rh-- dactiv-e filter discussed ,

this thesis fails in the closed loop category. The advantage

of closed-loop over open-loop is chat the requiremeent for o-niy



one stage generally corresponds La a 'Less expenosive

configu~ration based on its -.impler irtplernentation. [Ref 6)

The dscripti~on of the filters that- will be analyzed in

this study carries terminio-logy that is pertinent to all

filters, not Just adaptive filters. Filters are aimplement.ed

in. eit-her continuous~-time or discrete-tim~e which defines the

form of terelation~ship between the input, andocutput of the

filter. The filters that will1 be studiel are of t1he discrete-

t-'-e version vwhic- means that th',e fitr, ay be dsrbdby

a differe:-ce ecuat--on. Th~e structure of the ilesto bDe

are reieereo toas tinl e-moxe eo~e FF

t-apped-de-lay-l-ine, or transversal filters. This desc;ription

means that the filt-er's output relies only on the past and

present values of the input . The advantage of a FIR filter is

its inherent stability. [Ref 6'

The algorithmn that is used to update the filter parameters

:s generally named- after somle of ts operat-ing

cnaactr~s~cs Th a r2.r~usco h~ere i~s call±ed tne

SequentialI Regression A -L;o r 'L hxr o r SER-F!Ref. 7j. -h i s

a I go r I't- u~ :s es an- te.-a t iv e ap pr o a c t o a ppr ox in"a I In g th e

we igh-ting f actors requi.red f or a Ii~near Comb iner. F igu;r e

sho-ws a basic 'diagram. of a l'inear combiner.

hi s s ys t-e m u;s es asIm uta n eou-s s a n)ple s o I th e inrpu-t si;.gn-A L

a,,- time in'dex k, to- produce arn cutpzut signal, y.., by I a liea

o-erat-Ion ,..-th weight-ing factors, w A second -wav to-

Prnysic~ally :rterpret the liea omierI toC lok at j



we ight

xW v

0

input xw .. _ / •
X/

signal X / /
vector ,/output

s gnas gna

I

Figure 1 Basic Linear Combiner

the form of a transversal filter. Figure 2 shows how this

system is designed: Xk corresponds to the last L samples of

x at time index k. The weighting factors are dual indexed on

xX

1Wok 1k / 2k

7 k

Figure 2 Basic Transversal Filter

the time delay, 1, followed by the time index, k. The weight

factor, wk, corresponds to the weight factor for the sample

taken two samples ago from the present sample time, k.

12



B. THEORY AND DESIGN

1. Configuration

The filter to be developed here is a conbination of

the previous two figures. The transversal filter is applied

to a set of multiple sensor outputs to form an input vector

that is NT x L data points long, where L is the number of

separate inp-.ts or sources, and N is the length of the

transversal tilter. There are two reasons for using- a filter

design of tnis nature. The first is the ability to use more

tan one so•ure of inpuc , aliowina for a better s-oecýral

s.. o. 2o rucAorousi, . enoe gy. The second is -hi

ability to use the previous N\ samples thereby smoothing the

output since it is not dependent on instantaneous values which

may vary greatly from sample to sample. Both of these ideas

are beneficial to the overall perfontmance of the fil ter ing,

process.

The outputC of the f lter y.., can be expressed in

ters of the .. ut ma: . ix and the weighting factors matrix.
To do this, sore definino eouation must be expressed for the

input mat-rix X

Xk ...kX~ xL,]1I

and weight factors matrix, W.,

W_1W~k -.. ]T (2)

where each sensor's =nrut vector Is



XIk = [x, (k) x,(k'-l) x,(k-2) . . x1 (k-(NI-l)) (3)

and weiahting factor vector is

Kk" W~ I 1 ýý ,k-2 -" (4)

The first subscript of Equations 3 and 4, labeled 1, 2, 3,

S... L, indicates the source of the sample. The second

subscript, k, indicates the time of the sample. A total of N

sample values frcm each sensor are used for each calculation

of y,. A physical model for the filter to be studied is shown

in Figure 3. The scalar output value, y. in Figure 3, is

defined as:

Y k L X kWk W~k. (5

These basic equations will become the starting point

for the development of an operating filter system for the

removal of the ELF background noise. It is prcferable that

the weighting factors, W, cause the output, y•, to be an

estimate of some desired sianal, d . The concept of the

filter is to use .he wechtic f.acto. o orode....l t

differences between signals originating from the same source

but sensed at various locations. The inputs, x, in Figure 3,

represent samples of a signal taken at different locations.

The desired signal, d., is also a sample of the same

background source signal. The difference between the desi-red

signal and the output of the filter is expressed as •he error

in the estimate, c..

14



k = dk - Yk (6)

In the system designed here, the estimate error is the

output sought for analysis. If the weight factors are set

properly, they will theoretically reimove all signals that are

coherent between the different sample locations. The goal of

K* xI ... XL

-11'

z -'WI S t ,--

PHWI)i WROHWI-) %

Fe

Figure 3 bll•Can2Transversal Filter



such a system is to remove the correlated background noise

from a single sensor thus enhancing signals that are

particular to that sensor alone. If the estimated value of yA.

can be made to represent the ELF background noise, then the

estimate error, e,, can be assumed to be due only to the

signal prevent in the desired signal. The resulting output

from the noise canceler has a much lower noise floor due to

the removal of the correlated noise.

2. The Mean Square Error

The filtering process must nave a means I.by which an

optimal solution can be detined. The mean-square error wrii
be used to develop a defining equation, called the performance

surface, for the optimal solution. Combining Equations 3 and

4, a definition of estimated error in terms of the input

vector, the desired signal, and the weighting factors is

obtained. The expected value of the squared estimated error,

E(•c , assuming that e._, d, and X, are statistically

stationaary Is given as:

E e - Eld] +w'E[Xr]x-'w2E[dk Xk W (7)

The variables x, and d, are asstured to be dependent, anr, ,

this case both contain the same ELF background. rrhe equation

for the mean square error, MSE, associated with the estimate

.s thus defined in terms of the auto-correlation function of

the input vector and the cross-correiaction function netween

tne input vector and the desired siqna±.



The auto-correlation and the cross-correlation

functions will be represented by R and P respectively, The

elements of these two matrices are constant values if the

input vector x, and d, are stationary random variables. A

mathematical expression for the auto-correlation matrix, R,

;S:

X2 Ak X2; X2 kXLkl

R = E [XkX 2. =E (8)

[XLXXlk X ~.X , ... XL

and the cross-correlation matrix, P, is:

P = E[dkXk1] =-EdkXlk dkXk . d.XK] (9)

Using these two defini.tions in Equation 7 results in the

fol'v.oing definition of the mean square error in the k"'

estimate of y:

MSEEJJ=E[e,, ] SEide] + WTRW - 2P 7W (10)

The ootimuv solution for the select :on of the weightina

factors is the condition where tne mean square error is at a

minimum.

3. Minimizing The Error

The minimum mean scuare error condition can be solved

for by t-akinc the gradient of t'he MS with resnect to the

weighting factors and settLng it equal to zero. The use of

17



the minimum value of the MSE as the optimal value is based on

the assumption that the weighting factors are only designed to

model that portion of the input vector that is correlated with

the desired signal. If the error is at the minimum value,

then the filter is removing the maximum amount of correlated

data between the input and the desired signals. The system

being evaluated is based on the assumption that only the

desired signal contains beth noise and a signal of interest

while the input vector is composed of a pure noise signal

a!one. Under this azssumption, the only correlated data

between ,he two input data san-ples is the noise. The desire

is to remove as much noise as possible and thus to remove the

naximum amount of correlated data between the input vector and

the desi red signal. It is therefore assumed that the filter

is working at its optimum value when the weighting factors

meet the criteria of minimizing the mean souare error of the

output.

4. The Optimum Weighting Vector

The optimlu weight factor will be represented by the

syrnhoi W. The two concitions that must be met in -rder fcr

the value of J to be minim-zed are:

vnJIo = (11)

and



> 0. (12)

These two equations state that- when the weight vector is at an

optimurm the perforriance function is at a local minimum since

the slope is zero and the curvature is upward. The gradient

of the performance function is evaluated to be:

V = V J--VE(djk] -2Vv(W P) +VV(W TRW) (13)

-- 2P + 2RW

Set- nc the rc to ero anc scInc for --he op-

we-ghting factors results in:

W" = RiP (14)

This equation is sometimes referred to as the Weiner-Hopf

equation where the weight factor is referred to as the Weiner

weight vector. The input autocorrelation matrix, R, can be

inverted if it is "positive definite," i.e., if:

VTRV > 0 (15)

where V is any non-zero vector. When th-atix R is- "-osiie

definite' then the optimum weight. factors can be solved for

directly if the complete statistica. properties of the auto-

correlation and cross-correlation functions are k"own. The

statistical properties are not known In this case so further

developmenit is required to obtain an est•nate of the octDi

we'gn.1t tactors.

19



The second condition that ensures that the error

estimate is at a minimum is that the partial derivative of the

gradient with respect to the weighting factors is greater than

zero. To -rove this the we take the partial cOerivative of

Equation 3 with respect to W

aJ 2R (16)ow• awj-

This result again shows that the input autocorrelation matrix

must be "positive definiste" in order to solve for the optimuw

weiotjnafaCLOrS.

The perfor.ance surface can now be expressed in terms

of the minimum error possible, the weighting functionsand the

autocorrelation of the input vector. The minimurn mean square

error possible can be found for the case when the weighting

vector is at its cptimunm value. The optimumn w iting factor

is used to so've for the minitmum efror by substituting W_ into

tha minimum error ecuation.

J E[d.d] + [WR] TRWc-2PTWO

-E[d' + [R-1 P] TRR-IP-2PTR-IP (17)

- E[df] pT R- P

- Efd ]- pTWO

e-. minimum error can now be used as the base line by which

ail other errors are found. The error at any tame a.s thie

minim.um error wtnh the addition of uncertainty ti

comnonents used to derive the minimumr. error. Thus:

Zr'



MJ - n+ ( # -# R (W -W 0 )( : )

The expression can be showrn to equal that of Equation I0 by

tho following proof. Using the fact that (A-B)V in general

can oe expressed as A"-BT:

JMn + [Wo] TaWo +WTRW -W IRW -o_ [WO] 'RW (19)

since all terms are scalars, the transpose is eqcua to the

scalar value, thus the last two terms are equal. Substitutina

for the minimum error and the octimum weicbt-ng vect.or:

.: -j IR' [ .° TR W° R
J] 2 ] "Pý-r(J p P*kp 2  +W+RW -2W RW-"

kEd]] - (20)

= ( dk] +W'RW-2W7P
"2Ed1] +WTRW-2P•W

This result validates Equation 18 by showing th.at i-

equivalent to Equation 10, An important note about this

expressio(, of the performance surface is that 4t is auadratic

with respect to the weighting vector.

5. Iterative Calculation of Wl

The octimum weight factors can be arrived at

iteratively by use of a r-e search of the perfmc•nce

function. What this miu.ans is that after each estimate of the

optL.mujn weight vector, W,, the slope or gradient of the

pez forinance function, in the direction of the optrr--

we;qhtinq vector, is used to derive the next weighting vector,

W... . This methlid ensures that each est-:at•on of the -ntimur



weight factoor is at least as close or closer to the optimum

value than the previous estimate, Multiplying Equation 13 on

the left by ' R` an, combining the result with Equation 14,

we obtain:

WO = 2-V (21)

To convert this into an iterative process, the optimum

9olution is considered to be the value of the weighting vector

for the next iteration.

Wk-i = Wk-_ R-_Vk (22)

This equation is referred to as the Newton Method algorithm

for dertemining the weightin - g vector.

The algorithin takes only one iteration to ar.Ive

theoretically at the optimutm solution for :hz .' values of the

weiahting vector. This algorithnr would be the ideal method to

use if exact solutions to the gradient term and the inverse

correlation of the input vector were knowr. exactly. This -s

not generally the case and an estimate for the gradient must

be used. To compensate for the lack of knowledge of t•e

gradient at iteration k, a constant u, will be used instead of

the factor 'A in Equation 22. The requirements on the range of

values chat , can take or. are:
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0 < 4< 1 (23)

The effect of ii on the solution at each itera'tion is, that it

affects the rate o~f convergerce of the algorithm,. A

discussion of the attributes and further limitations on the

value of Li wi2.- b--e covered later. A general form.If of the

Newton's. mteth-od of gradie~nt search is therefore:

Wk 1! Wk - P R-Vi (24)

4 ~s exoression is ideal -ncier the following three -- no-t-cns:

2. Exac-t knwedge of the gradient vector, V,..

3. Exact knowledge of the (unch~anging) matrix R'I

These condit-ions, unfortunatel.y, are riot normally

attain-able. The value of i I's selected bet-ween C and 1/ so

that th e a 1g o rt _4 i overdamped and can a cccm-roda t e

flotstin in tne matrix R. Tecompernsat~on for thi:s

5e1ection of -, is thallt 'e algorithn% t-akes loncer to cQ-!ýin

~tsoot~u~, sluton. A second modiýfication to the value of

~: s t oae .ts ",alue or. th-e average e.iger~va'ue, A,., so ta

is replaced b

T'-- seco-nd con-ditiorn ppreaining to theý exact souion

to the ga%-of +the er,-or surface is, in oenerai, never

atta_-able. Th-e c~ra-4ient -must therefore be estimated in some

mianner. Thre esti-mate of the graodient that will be used- is
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based on the square of the present value of the error signal

and not the true ensemble average as it has been up to now,

-Pk 2z• • (25)

From che definition of the error signal:

aek _ atdk- k] (26)

whic'h-, leads to the following estimate of the gradient:

V;, = -2ekXk (27)

With these two relaxations from the three ideal conditions,

the algorithw is now in a form. known as the Newton/LMS

algorithmRef 71:

Wk,1 = Wk+ 2 PA8VR-ixk (28)

This is an optimum iterative algorithum that is only complete

if full knowledge of the input correlation function is known.

This is generally not the case and thus a final modification

must be done to produce a working estimate to this algorithm.

The final modification is an ite--ative estimate o0 ýte inverS-

of the input correlation matrix, R-', and is called the

Sequential Regression (SER) ýlgoritr=..



IV. THE SEQUENTIAL REGRESSION (SER) ALGORITHM

A. DEVELOPMENT

The Sequential Regression (SER) algorith.- uses the

lMS/Newton alaorithm as its basis Ai'n conjunction with a method

for iteratively estimating the value of the inverse input

auto-correlation matrix to produce the weighting vector for

the filter coefficients. The development of the algorith.

c omes frorm. Adaot've Sign&.i prcces' "v irow ar.

Stearns[Ref 7]. The core of the algorithm, is the use of an

estimate for the inverse of the input auto-correlation matrix

which reduces computational load with minimal2 estimation

etror.

The input auto-correlation matrix is

R=E[!,kXk] (29)

where the subscri-pt k goes over the entire len.t •h of T

random. process X R will be estimated iterati:Pe y usinc on y

a finite or truncated sample of the random process X . The

estimate of the input auto-correlation matrix is giver. by:

X X (3C)

This estimate is unbiased when the input variable, X., is a

stationary random process. W.er. X. Is not stationary, it can

be showrn that the estimate is not very accurate. The estimate
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of R, at each value of k is equally influenced by the

previous, k-l, estimates of the input auto-correlation matrix.

In order that the most recent estimates of R, have more

influence over the new estimate, a "fading" memory term, a, is

introduced which reduces the significance of the past

estimates. The fading memozy expression of the input auto-

correlation matrix is denoted by Q, where:

k ak 2 zKXT (31)

The val.ue of a is chosen, as a rule of chut, such that the

half life of the exponential function is equal to the length

of stationarity of X:[Ref 7]. This rule of thumb leads to the

following statements about the value of a.

a• 2 (-:/1ang~hoeatadonarityofz• (32)

0< (33)

The value of the fading memory factor over k iterations 4s:

k . k Ic

k - - (34)!-a

and thus the estimate of the input auto-correlation matrix

becomes:

k

_ - :1-a Q - a• ak-xJx ' (35)
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Th--. estimiate is exact for the condition where X, is constant.

1,f the inputl variable, X:, is stationary, a i,- one, anid if the

iitof Equation 35 is takern as a approachec one, the %,esult

is in agreei~ent with Equation 30.

I he derivation of the SER algorithn, begins with the

estirnat-e of the input Ato-correlation matrix. Using this

estimate inthe equation. for the optimurr. weighting factors

results i

ltkWk =P-(36)

Th.e dof i.ton to r -ue estim a ie of the cross -corre.iLa" lcn

veCtor, P.., is, s~riwarly to Equation 35,

k

V>ak-ldXj (37)

... e SEP. alaorlthm-- at~te:!-Is to estimate the next value of

the Wghio veo, . based on the present values- of A.

and P... To d-o Eh quat~ior 38 1becones:
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QkWk+ •_( d, 'dlr1+ dkXk
-Qk-.Vk +dkik (39)

=(Qk-1tkZ~)k + d~k

The last line rf Equation 39 is the result of the following

relationship:

O k _- t.Qk _.+ X kXk , (4 0 )

The value of d.. can be r-eplaced by recalling Equotion 5 and 6

which state that

dk k+Yk Bk+XWk (41)

thus Equation 39 becomes

,kWk-I (Qk-(kX T)Wk + (tk+XTWk)Xk

QkWk + Ckk'

Multiplying on the left by Q., gives an iterative method for

Calculating the weighting faCtor vector

Wk.: = Wk + Qk~ckXk, (43)

The expression for Wý. an EqEa+ton 43 is similar to the

LMS/NE;wton. method derived earlier. With this in mind, an

approximation for the LMS/Newton algorithm,, can be made using

the above derivation. The SER algorith.T. used as an

approximation of the LMS/Newton method is given as:
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""W2i.&X- k k (kx; ) (44)

The algorithm, requires a method of iteratively solving for the

value of 0< in order to be complete.

The method to iteratively solve for Q,- begins by pre-

multiplying Equation 40 by Q<,I post-multiplying by 0. and

then by Xji, to obtain:

-i - --! T -:(4 5 )
Q; 1QkQ1ik = Q'aoQk-lQi"Xk + Q:1XXkQKI (X

which reduces to,

=• x= aQ$XJ:x +O fQ>xA
(46)

=Qk~k (a +4QXr -X

The quantity in parentheses is a scalar and can be divided out

while the quantity X.Q. - is also multiplied on the right to

give

Q;:IZAXkQ; = Q XZX.T•0) 1 . (47)

a +±Q.-'Xk
.he first lines oF -a..ion 46 and 4; c~ n be combined and re-

arranged to form,

Q k 4Q•1- t t T. (48)

An iterative method of calculating Q, is nov; ava:labie and is

only based on its previous value, Q. -:, and the present value

of the input, X.. The value in parertheses is used three
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times, it will be calculated separaately and represented by

The SER algorithm is now completely derived as an

iterative method of approximating the LMS/Newton method of

adaptive filtering. The following surmrary shows the process

by which eacr new value of the weighting factor vector is

calculated.

S• 2 '-/1ongtho(8tatiorna~tyof I)

= dk-WkX'

(49)

Wk÷I Wk + 2QaXk(l) e•klk

The values that must be carried forward from one iteration to

the next. are Q.- , and W.. These represent the previcus value

for the estimate of the inverse input auto-correlation matrix

and the present estimate for the weighting factor vector.

The output of the algorithm is the error, c<, between the

present value of the desired sianal and estimate of the

desired signal:
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oUTPL =tk dk-WkX (50)

This value is saved after each iteration in a vector

representing the runcorrelated portion of the desired signal

and noise vector of the primary channel with the noise only

vectors of the reference channels at the time index k,

X.,. 'Ref 7)

B. INITIALIZATION

The SER alaorith. assumes that the value of t.e inverse

:nout auto-correiation matrix and the weih factors vector is

know....o e--re....s stc. . At some pcoin; in the past, a.:

estimate for these terms must have been made so that a

starting point can be established. The required accuracy of

the estimates depends on the length of time that the algorithm

wIll be operating and the earliest time that accurat e data is

required.

T'he driving force beh no the accuracy of the initial

estiate xs the sneec witn which the algoritrm can converge to

an oct.al solIuton. The sceed of convergence 1s decencdent on

two elements of the aIgorithrn. The first element is the

initial value of the inverse input auto-corre-ation matr:x,

Q. . The significance of this initial element is that the

further the initi--l estimate is from the true value, the

rurther the algorittm nas to adart in order to ar.oroximate the

ocptmum solution. The second element is the step size, 2,4..,
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which specifies how far the algorith~m can progress towards th.e-

optimum value in one iteration. The step size will be

discussed in the next section but for now it shall be assumed

to be a constant in this discussion of the initial conditions.

The use of a large constant multiplied by the identity

matrix as the initial value of the Q,", has been sufficiently

argued by Lee (Ref. 8].

q0  (51)

As discussed by Lee, the use of a large constant for q is the

proper selection for the case where the randorm process is

stationary. Widrow and Stearns argue that this same choice

for the initial value of q,, in a non-stationary condition, is

also appropriate[Ref 7]. The point is made that if a priori

knowledge of the random process allows for a better estimate

of the value of QJ', then that information should be used.

The method of initialization for this study is to use Equation

51 with q, equivalent to 100.

The initial values used in the weighting factor vector are

as~:-ui to be zero. This assumption is made since knowleoce

of the process before time zero is unknown. The use of a 32

tap delay filter also allows for an estimate of the initial

full weight factor vector but this is done so at the expense

of tne first 32 outtput data points. Thic is done by expanding

the number of elements in the weight factor vector cS eac)h of

the first 32 points are read into the alaorithm.. The
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algoritfn is applied only to the data that i- available;

therefore, the first time that each element of Wý is non-zero

is at time index 31. This corresponds to the time when the

first 32 data points are input into the algorithm. The result

of this initialization is that the first real data point to be

considered an output of the SER method used here is at k n 31.



V. STABILI TY AND CONVERGENCE

A. THE SINGLE WEIGHT CASE

The SER algorithm contains values that can be set to

affect the rate at which the algorithm, achieves the optimum

solution. A simple case where only one weight factor is

concerned wil1 be used to demonstrate the relationships

involved in the selection of the convergence rate factors.

The single weiaht iterative process using a gradient search

methiod like the SER algorithn can be represented by:

Wk-. -- Wk+ -v+ (52)

The expression for the single weight gradient at time

index k is given by:

Vk G

dw

2)ý (wk-w')

The value of the input auto-correlation matrix, r< for the

single weight case, is replaced by its equivalent eigaevaiue,

•Exy Combining Equations 52 and 53, an iterative equation

"for the weight factors is found:



wk.:L= Wk-2p;I(Wk-W) (54)

for the single weight case. The terms in Equation 54 can be

rearranged to combine like terms.

w,=wk + (l-2p;2) kw -0 ) (55)

This expression contains the geometric ratio ot successive

terms which is also used to define the stability requirements.

Stability is guaranteed if the absolute value of the

geometric ratio is less than one, i.e.,

11-2p11<11 (56)

The limits placed on the value of the V can be expressed in

terms of the eigenvalue of the input auto-correlation matrix

I by rearranging Equation 56

•>p>0 (57)

The optimum solution can be seen as the solution of Equation

55 if the limit of w. as k goes to infinity. This is because

the geometric ratio approaches zero as k approaches infinity.

The rate at which the algorithm approaches the optimal value

is dependent on the value of the geometric ratio.

Figure 4 shows the effect of varying values of the

geometric ratio on the rate of convergence. If the value of

the geometric ratio can be maintained between zero and one,

then the algorithm will always approach the optimal solution

from one side and can be considered as overdamped. For a
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geometric ratio of zero, the algorithm reaches the optimum

value in one iteration from one side and can be considered as

critically damped. If the magnitude of the geometric ratio

falls between zero and negative one then the algorithm is

underdamped.

Wo

.9=Geometric Ratio

> .6

Wopt

-. 3

S , , , , I , ,I
0 5 10 15

Iteration

Figure 4 Effect of Geometric Ratio (g) on the Rate of
Convergence: overdamped O<g<l; critically damped g=O;
underdamped -l<g<o

B. MULTI-WEIGHT CONDITION

The single-weight condition discussed in the previous

section can be expanded to develop an understanding of the

multiple weight factor case. The same conditions that applied

to the single weight case are true in the multiple weight
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case. The difference is that each weighting factor has an

associated eigenvalue and thus the condition of stability is

now dependent on a set of simultaneous equations that must

meet the stability condition.

(1-202: )

The sucscrip, orn 4 indicates the index value correspondi.ng to

a specific weigI;, value, There are a total of L weighting

factors and thus there are L individual eigenvalues, A.

The value of ,a in each of the simultaneous equations is

held constant. Since u is the same for all equations, the

eigenvalue that has the largest value will impose the most

restrictive conditions on the selection of a value for p. The

nev: range of values that u, can take on is:

• >P>0 (59)
IfldX

he conditor. stated in Equalion 59 gives the mul; -weight

stability requirements that must be met to ensure that the

aigorithm. will converge o the optimal solution.

The rate at which the algorithm will converge was shown in

Figure 4 to be depentdent on the value of the geometric ratio.

Now that the value of p is a function of the maximum

egenvauje of the input auto-correlation matrix, R, it can be
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shown how this affects the rate of convergence. By holding

the value of i constant for each weighting factor, an

undesirably slow convergence rate can occur for widely varying

values of X. As shown previously, the algorithm convergos in

one iteration when U is equal to 1/2X for the single weight

case. Using that same criteria, the value of the multi-weight

constant ,i is 1/2X,. The use of this criterion ansures that

the algorithm fal.s into the overdamped category snce u is

always less than or equal to 1/2X: for i[0, 1, 2, T!

The weiqht factor, w, with the smailes1 value V; X will have

the slowest convergence rate since its geometric ratio will be

farthest from zero. This is true because the value of 21A

wJil be at its mini-m= and will cause the geometric ratio to

approach one. When this condition holds, the algorithm, may

take excessively .ong periods of time t. converge to an

optimal solution.

C. NON-STATIONARITY EFFECTS

T1he discussion up to this point in dealiing w-ih stabiLicy

and convergence essurr.ed that the process under study was

stationary. Under stationary conditions, the %aiues of the

eigenvalues of R are assumed to be constant. A ,second key

assumption to the developme-t is that the values of the

eigenvalues are know-n. The lack of knowledge of the input

auto-correlation matrix, R, requires that some estimation be

made for the value of ji. The value of v; must be adjusted to
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ensure convergence of the algorithm in an environment where

the eigenvalues of the auto-correlation matrix are vatying at

some unknown rate from iteration to iteration.

A method for compensating for the variations in the range

of values that i can assume is to use an averaged eigenvalue,

Arn.p, for the selection of the constant i for each iteration.

The value of p is now a constant for a single iteration but is

changed from iteration to iteration based on the average

eg-enva ue. Stability of the agorithn is guaranteed if the

va'ue of the product, ia,..., s betwee2 zero and one. It is

important to note that the expression p4, is now used only to

replace the constant p used previously, The idea is to scale

the average eigenvalue for that iteration by a constant, o,

and use it as the factor for controlling convergence of the

algorithmr.

The geometric ratio which controls the convergence of the

algorithm, has now been altered to include a term to compensate

for the non-stationarity of the input ran6o: process, X. The

new expression for tne geometric ratio is

11 - 2pX,,eR-'I < 1 (60)

The inverse input auto-correlation matrix, R:, is included in

the development of the SER algorithm. The convergence

controlling ter-m is thus u,., and must be less than the

maxi4mw= eigenvalue of R to ensure stability and convergence.

A second condition that can be imposed on the product A is
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that its value must always be betweer. 2aro and one, USi6na the

fact that the spread between maximum and rrnimurz eigenvalues

car. be rather 'Large, the product of i must be much less

than one,

The EILF background noise processes have shown a te~ndency

to have a wide range between eige.-values and to slowly change

over time. Because of these two conditions, the value of the

ul,,. must be adjusted over time to account for these

variatiorns. The chosen mret-hod is to estimate the average

eigenvalue by taking the average of the square of the inpu,.t

vector, X,. This Value is multiplied by the 1/100 of the

inverse o44 the maxi-mum, of the squ~ared input vector.

= 00raxx)] (61)

The use of this estimnate for convergence control1 ir. the

algorithm. ensures that the requirements for stability are met

for each iteration. The 1/1\00 term. ensures that the miaxi-:.mu

value of -P is -ot exceeded. It was derived empirically w.'th

the use of an actual set of ELF background measurements an~d

may require adjustment- in a different environ.ment.

The choice of using the present input to the algorithm, to

get an estimate of the average eigenvaiue is used for

computational ease wit~h minimal adde3 error. The use oil thie

inverse input auto -correlation matrix should provide a mocre

accurate measure of the eigenx'a."ues; That, however, requires
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the inversion of the matrix. The prevention of matrix

inversion is the exact reason the SER algorithm is developed,

so to obtain the eigenvalues in this way defeats the reason

for the algorithm's design, and is therefore counter-

prcductive. The method has proven adequate and reasonably

accurate in empirical work up to this point, but does leave

room for improvement and further study.
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VI. IMPLEMENTATION

A. A PHYSICAL DESCRIPTION

The Applied Physics Lab has two identical sensor platforms

submerged in shallow water. Each platform has electrode pairs

for detecting the geoelectric ELF background noise. The

system has been in operation for over two years collecting

samples of the background noise envirornment.

Ideally, the two platforris are parallel when the platforrs

are placed on the bottom of the bay. Figure 5 shows the ideal

alignment of the platforms. The two platforms are labeled as

thp east, E, and west, W, platforms. Each platform has a set

of orthogonal electrode pairs, labeled X and Y. These

electrode pairs are orientated to receive the two orthogonal

source vectors, E, and E., in the horizontal plane. The

strongest geoelectric field strengths are in the horizontal

plane due to the shift in polarization as a wave crosses the

water-air boundary from vertical to horizontal.

If the two platforms are perfectly aligned and the noise

recorded on each are identical, the noise in a specific

direction, X or Y, can be removed by subtraction. To cancel

the x-direction noise simply subtract XW from XE. Because the

platforms are not perfectly parallel and the recorded noises

are not ident3.cal though highly correlated, this method is not
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XE

YE 1
YE EAST

PLATFORM

500 m

xW

YW WEST

PLATFORM

Figure 5 Iilustrat-on of Sensor Set-Up

ideal. The actual platfcrs can be misa.igned up to 10

degrees from perfectly parallel. This is due to physical

constraints such as bottom contours and mounting technique.

The result of such a misalignment is that l'oth the XW and Y'

sensors of the west platform have components that are coheren'.

with XE of the east pltfor.. Ii the electrode pairs in
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Figure E are thought of ao vectors, then it is easily seen how

misalignment can cause coherency between XE. XW, and YW.

A set of real data is traced through the signal processing

system designed to accompany this sensor system. A calibrated

source signal is embedded in the signal XE. iThe path that the

received signal follows car. be seen in Figure 6. The output

XE XW YW

SAMPLE
BPF

L

SEIT

COS (27zf-t-)-- S • - - IN %27tf ct) •-

LPF. -LPF

DET DET

V V
IN- PHASE QUADRATURE

Figure 6 The ELF Sigaral Processing Block Diagram

44



of each sensor is sampled a,,. 128 Hz. The data is bandpass

filtered and resarnpJled down to 32 Hz for processin~g. The data

'.s then Passed through the SER algorithmn where the coherent

portions of the we~st platforn are removed from XE. The output

of the SER portion of the processor is demodulatled and passed

through a likelihood ratio detector where a dec-ision carn be

made as to when the em-dbedded signal. is present.

B. INIPUTS TO THE SER ALGORITHM~

The SE?.R allgorithi-- is used tCo recu,-ce tre FLF bac.kcrcund

.Oise de-.eCted in thie primary submerged electric f ield sensor

by cancellation with the output of t-he reference parallel

electric field sensor. These parallel referenc-e sensors are

also submergedd and are, ideally, assumed to be located wlithin

the same ELF background noise as the primary channel. The

primnary, channel y represents seinsor XE and3 the reference

channels, x1 an!i x2, represent XW and Y4, respectively. T-he

sa:mnc-eF- are the act~ual output of the sensor system jsed ny

APL. Th"e samo-les are taken at the same timr-e with',out any known

S gnals present. Mhe sampling rate of the data inpu-t for the

SE?. algorithm is 32 Hz and the total length of data is 113760

poi~nts. These dat-a sam-p'les correspond to almost- an hour of"

background noise mneas'irements.

The filter is a 32 Point- transv,,ersal filt+-er that is

appled to each charnnel si'multaneously. The length of the

tran~sversal f -'lt~er means t~hat t-he previous 31 sarples of the
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;ensor are used with the present sample value for each

iteration of the algo-rithm. The goal of th,-e algorithm, is to

take the output of the two reference channels, xI and x2, and

to generate an estimate of .-he noise in the prinary channel y.

Figure 7 shows what the primary channel's data looks like in

real t1ime. The length of stationarity, used to determine the

forgetting factor, a, is assu-med to be about 300 data points

56bC 100 150 2 CO 2503O

Fig7ure 7 The Prirhary Noi.se (Y) and Calibrated Source Signal

long. This value is used based on enrpirical an~alysis of t-he

real data.

The effectiveness of the agrtmis anaiyzbciA Iby ru=ning-

a sel-: of scenarios with a knovm signal insrsing ir. the dt
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samples. The scenarios consist of manually inserting a 32 Hz

signal on a 5 Hz carrier that is 8192 data points long.

Figure 7 shows the components of the primary channel signal in

a real time representation. The primary channel is processed

by the SER algorithin while varying the strength and lbcation

of signals embedded in the background noise y.

C. SIGNAL STR±MNCTh RESULTS

The algori•t•-. is first run with the locatIon of s-he signal

within the noise held constant. The strength of the signal is

varied by dividing each data point in the signal vector by a

constant. A series of four runs are conducted, each

succeeding run has half the signal strength of the preceding

run. The initial run uses the signal shown in Figure 7 with
the amOlitude divided by 500. The signal is indistinguishable

prior to processing as seen in Figure 8.

The signals for each run are centered at time 19.2, 32 and

44.8 minutes into the noise sa-nple y. There is no

srgnliicance to t•.e nositions chosen except that the sigo.-a

data streams were not allowed to overlap. The objective of

t:•s first set of runs is to demonstrate how the SER algorithn-

enhances the abiity to distinguish small signals buried in

the noise. The data is first processed in the SEER algrithm

to rerrove the coherency ýeeen I he reference channels and the

primary channel. The output is then deimodulated leaving only

the in-phase and quadrature components of the non-coherent
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portion of the primary channel. An identical reference set of

data is demodulated without passing it through the $ER

algorithm so that a visual and quantitative analysis of the

effects -ý the SER algorithm can be made. The output of the

demodulator is shown in Figures 9 and 10. Note that the

envelope of the signal is visible to nearly the strength of

1/22 V', . the third run nmade,

"The qutput of the demodulator is passed as input into a

matched filter detector based on the demodulated signal. The

o't-)ut of this detector is shown in Figures Ii and 12 with t'•.

SER and non-SER output for a given signal strength shown

L -

4 44

-11

FC.&

Figure 8 Input Primary Channel Noise And Signal
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together. N4umerically, the reak value out of the deteCtor is

three to fivo times greater when the SEP. algorithm i s used as

compared5 t=o when it i6s not used.

A final numerical analysis is performedA by using a primary

channelL without a signal installe'd to g(t a measure of the

noise present in. the output. The standard deviation of thnis

output of the detector wh~en this noise only vector is uE'd as

input is used as an appr',-ximatior. to the noise -.ýzwer.

Divlding the outputs of the dete~ctor .-', Ficaures 11_ý ar-.K 12 by

mhis estim-ate of: th'e noise powNer, arn e3't4-mate of tht_± sig-al-

to-noise-ratio (S-R-) Cwn be made. The values of the average

peak S,%-R for the three locations in each run are p lotte

versus s.Lcynal strength in Figure 13. The SNP.R of t-he SF.R

applied data runs abu.ýt 6 dB higher than the non-SER applied

data.
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Figure 9 Demodulator Output of In-Phase Component;
(a) Signal/500 (b) Signal/lO00 (c) Signal/2000
(d) Signal/4000

50



No Noise Cancellation Noise Canceled
0.20.

0.10.

0.00.
E

-0.2 -0.2

0 10 2030 4050 60 0 10 2030 4050 60
Time (min) Time (min)

0.2

- 0.0 001
0. Q.

-0.1 -0.1

-0.2 ------- _____-0.2__ ___

0 10 2030 4050 60 0 10 2030 40 5060
Time (min) Time (rmmi)

b b

0.2- 0.2

0.1
'0

0.0 -.0'w
O'l ~-0,1

-0.2 --- 0.2 __ _ _ _ _ _ _ _ _ _ _ _

o 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (min) Time (min)

C C

0.2 0.2k

000.0 w.~: 01",j~ 111010', 10
E E

- 0.1-0.1

-0.2 -0.2

0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (mir) Time (mini)
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Non-Adaptive M.F. M.F. with SER
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Non-AdaDtive M.F. M.F. with SER
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Figure 12 Quadrature Detector Outputs: (a) Signal/500
(b) Signal/1000 (c) Signal/2000 (d) Signal/4000
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Figure 13 SNR VS Relative Signal Strength

D. DETECTOR THEORY

The process of adaptive noise cancellation is performed

for the purpose of increasing the signal-to-noise ratio. A

section on the narrowband detection schemes that have been

considered in conjunction with the noise canceler are

presented since they are integral to the analysis here. Two

likelihood ratio detectors are considered for the detection of

narrowband signals.
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The first detector is designed with the assumption that

not only is the signal known, but its peak within a given

interval is constant relative to the start of that interval.

This last assumption is to assure that the demodulated in-

phase and quadrature signals that are used in the likelihood

ratio detector match those in the noise canceled and

demodulated output cf the sensor system described previously.

1r. the second detector, the latter assumption was dropped and

the design followed that of an optimal envelope detector. In

both cases it was assured that the residual noise field was

gaussian. This assuamption, while not strictly true, seems to

yield quite reasonable results.[Ref. 9]

The signal is geAerated by a calibratcd source with know-,n

qualities. The modelling equation for the narrowband signal

is given by:

s ( t)= A (t) cos [2irfot + e(t) (62)

For the first detector, the phase term, 0, is assumed constant

wzthnn any non-overlapping interval 9 to T. The interval of

C to T is equivalent to the length ot the signal. The purpose

of this assumptrion is so that a Matched Filter can be created

for the in-phase and quadrature components by using the

demodulated in-phase and quadrature component of the signal.

Figure 14 shows the demodulated signals used for the detector.

The first detector is a multi-channel Matched Filter shown

in Figure 15. The Matched Filters, h and h•, are determined
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Figure 14 Demodulated Signal for Match Filtering

based on the requirement that the output signal-to-noise ratio

is maximized at time T. The corresponding equations are

S[ (t-T) Rqq (t-,r) q (r) Sq (T--c)

0

where the quantities R denote the various auto and cross

correlations. This detector is the one used for all

processing performed in this thesis. The input to the

detector is the noise cancelled output of the SER portion of

the processor after demodulation.[Ref. 10]

The second detector is an optimal nonlinear envelope

detector. The description of its principles and design are
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Figure 15 Linear Multi-Channel Match Filter

located in the Appendix. The detector was not used by the

author in this work re'ating to the analysis cf the SER
gr't! -s p-esentea as c--plementary wo-1 relating

to the overall project.

E. SIGNAL LOCATION

The signal strength analysis showed that the signal

divided by 2000 is easily discernable from the background at

the output of the detector. The effect of varying the

location of the signal will allow analysis to get a better

feel for the expected SNR based on a larger sample size for

averaging than previously used. A second benefit of this

analysis is to see the effect of the initiali4zaton process on

the SNR. The signal will be shifted by a quarter of its

length for each run, or 2048 points. The SNR is plotted

versus the location of the center of the signal in Figure 16.

The data is run with and withou-t the SER algorithbmu to get

a good feel for the enhancement achieved with the SER
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algo ri 4t# M. Three separate locations of the signal will be

used for each run to reduce calculation time. The use of

mu•itple signals causes no effect on the SNR calculatn4"• a3

long as the signals are not allowed to overlap.
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VIIM RESULTS AND CONCLUSION

A. ANALYSIS OF RESULTS

The use of the SER algoritým enhances the ability to

detect narrowband low power signals buried in the background

noise. Figure 17 shows the spectrrum of the noise sample from

sensor XE before and after the use of the SER algorithm. The

frequency range is from one to ten hertz, which is in the

ranre of concern fcr the JHU crcect. The snike seen at four

hertz (note the x-axis is a logarithmic scale) is caused by

the processing equipment. This is a man-made noise source and

will be filtered out in the final project. design. The figure

illustrates the 10-15 dB of noise cancellation possible by

using this method of adaptive noise cancellation.

The location of the signal in compariison to the start of

the adaptive process has been show. to have very little effect

on the signal enhancement. The system implementation wi i

most likely cause the algorithm to only require in itialization

once a week and operate constantly otherwise. The

initialization process takes about 100 iterations or 1.67

minutes before settling out but is heavily data dependent.

Even while settling, the performance of the algorithm is

adequate to receive most signals. For the purpose of this

project, initialization should be of no concern.
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B. CONCLUSIONS AND RECOMMENDATIONF

It was hoped at the beginning of the research that

information could be gained on the characteristics of the

noise environment. The stationarity of --he backagrou-.. noise

environment was found to be at least nine seconds. This is

believed to be only a characteristic of the specific data set

that is used. The length of stationarity affects the value of

the forgetting factor, a, and is implied by the use of the SEP

algorithm. A better feel for a good average valu':e tc use for

the length of stationarity will result from the use of more
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data sets. This analysis needs to be conducted and could be

a source of further work in this area,

A second area of work that cculd develop from this

research is a study of the cancellation possible from a

vertical above~-surface sensor and a submerged horizontal

sensor, Trhe Purpose of this would be to differentiate between

surface and submerged activity. This may prove to be

impossible but 'L- would be interest-ing to see the ariount of

correlation Possible betwoeen the two locations. This type of4

arr1ýr-gp~ent_ cou.-o a i e-ad to a w~rdista~nce bet-.-,'ee-

sensors which could also increase the knowledge of the

background environment.

The pur-pose of the research presented in this thesis is to

develop a miethod t.-o adaptively cancel the ELF noise present in

a submerged sensor array. The SER algorithm appears to be an

adequate method to accomplish this goal ot noise cancellation.

Thle cancellation ratio in the frequen-cy range of interest is-,

on average, 12.5 dB. TLhis cancel-lation ratiLo along- wi-th tn-e

use of cotima'L detectors will assist the systemn in detect-ing

narrowband signals buried deep in t-he background noise.
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APPENDIX

The second detector used in conjunction with this project

of measuring the geoelectric background noise is an optimal

nonlinear envelope detector. T.he syrmbolism, used ýIs slightl~y

different but efforts are made to define a~ll relevant terms.

The in-phase and quadrature data (after no4.se cancellation)

are denoted by r.4 and ~ respect-ivelly. Siniibrly the in~-phase

and quadrature noises are represented_ by r. and -... Assur.-Iino

a joint Gaussian distribution we have the followIng two

hypothe!sis:

H1  (r~, 1  (n; nq + ( a~ so )

where Hc. denotes the null hypothesis (noise only) and H.

denotes the alternative (signal and noise present) . The

vector notaticun iearns

where N denotes the length cf the Int-erva'i for wihthe

deci-'sion. is being made. It is ther. clear that the prolnab` ility

density function for the received data is as follows:

p (nH: eXpj- I ( - g) T 7 z-a
L2

where . dernotes the covarian-ce matrix of -_1 e noise vector.

In this particular case, it is assumxed that th -in-phase and3
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"the quadr3ture components have been decorrelated and whitened . .. i:

with the same variance a' so

2ttC2 2To k -

introducing polar variables ( r' , ) and ( i , t is

f o"nd thar

N

PrH1  a 2N expl 2 f Zk Ck0c' (C)1

wheze rK r2 + r42 and tan ( * ) xz / r• .Itegrating

the above over the angular variables will give-

N

p (ZAH) exp-ŽE (4+sk k i 2i

where Ic is the moditfied bessel function of order zero. The

vector r on the left hand side r .ow on iy ref ers to t:e var'ics

envelopes, r r...r:, '.. The m ame 'is tr e for the s.g "

envelope. The I ikemihod ratio detector •s f',-nd to be:

X-IDH• =x - 20 s C) ,',EŽ,.,•-- ..Ž. • " S .. 1 - )

The iog-jikelinood ratio is t-hen:

N N {
logA--M± s, 4,g log
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The first term is a constant, dependent only on the known

signal, and can be dropped, Finally the test statistic or

detector output is[•ef 10,1

log= log -0

The implementation and analysis of this detector scheme is

left as a possible follow-on thesis topic.
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