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Cover Picture.

The cover picture shows retrieved land surface types using the SSM/I land surface typing
algorithm given in Section 9. 1. The Mollweide equal-area projection is composed of SSM/I
measurements from 64 consecutive revolutions of the DMS? satellite over a four day period
starting September 21, 1987. The surface of the earth has been divided into 17 separate surface
categories. Each of the categories has been assigned a unique color to produce this image. The
land surface types are as follows. Starting at the left end of the color bar, medium blue
represents the land surface type of standing water or flooded conditions. Examples of this type
can be seen in Bangladesh, Nepal, and Thailand. The dark green represents dense vegetation,
as seen in parts of Brazil and central Africa, followed by light green which is dense
agncultural/rangeland vegetation and can be seen in Argentina and the east coast of the United
States. Dry arable soil is next, shown as beige, followed by moist soil colored brown, semi-arid
surfaces tan and desert yellow. Dry arable soil can be seen in Angola, Zambia, and the northern
Great Plains of North America Examples nf moikt SOil can n1en he wepjt in tho nnrth_.rn .. ro-awt

Plains of North America. Semi-arid conditions exist along the Andes in South America and
north of the Kalahari Desert in Africa. Desert surface types are seen in the Sahara, the Arabian
Peninsula, Australia and other regions of the world. These are followed by precipitation over
vegetation shown as blue gray and seen in small regions in South America and central Africa
and precipitation over soil shown as turquoise and seen, for example, in southern Africa.

- Composite vegetation and water is shown as light blue and is seen in large regions of South
America and Africa, composite soil and water/wet soil surface is shown as re(' and is seen in
Canada and other regions. The land surface types finish with three snow types. DMy snow is
white and L, seen in central Asia, wet snow is light gray which can also be seen in central Asia
and refrozen snow, which is medium gray, can be found in Greenland. The black areas in
Greenland and Antarctica are regions where a land surface type could not be identified. The
ocean is divided into 2 categories. Dark blue ,aiich represents open ocean and dark gray which
is sea ice. The final category is violet which designates the coastal regions.
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7.0 WATER VAPOR AND CLOUD WATER VALIDATION

*'.1 INTRODUCTION

Two of the many useful geophysical parameters that the SSM/I can measure are the
amnount of water vapor and the amount of cloud liquid water between the ocean's surface and
the top of the atmosphere. The water content of the atmosphere is very important for
meteorology, climatology, and hydrology. The evaporation of water from the ocean surface and
its condensation into clouds and precipitation is an important energy transport mechanism for
the dynamics of the atmosphere. The amount of liquid water in ,;iouds affects the incoming and
outgoing radiative fluxes. The water that eventually falls as precipitation over land comes from
the ocean.

The objectives of this investigation were to validate the initial or Hughes algorithms for
total precipitable water and cloud liquid water and, if necessary, derive a new or improved
algorithm. The Hughes algorithms (see [1]) are divided into eleven (11) climate codes per
hemisphere. Each climete code represents a set of coefficients for a particular !atitude zone and
season. There are thre-e distinct sets of coefficients for the retrieval of water vapor and nine for
the retrieval of cloud liquid water over the ocean. For the retrieval of cloud liquid water over
land, there are eleven distinct sets of coefficients.

Validating the Hughes algorithm required the acquisition of surface measurements from
a variety of latitude zones and seasons. For the total water vapor validation, radiosonde data
from small island stations and the few remaining weather ships was collected. Initially a list of

* 49 potentai stations was compiled "w.n, size and mittude beuig the only considerations. Once
the various match-up criteria were invoked, data from only 19 stations were used. The criteria
were that the satellite observation and radiosonde must be coincident within 2 hours and 2
degrees of latitude and longitude. These radiosonde observations were collected from National
Meteorological Center (NMC) files, integrated to obtain the total procipitable water, and
matched with the satellite data. The period of collection of data was from June, 1987 to August,
1988.

The selection of sites for surface measurements is important in that the launching site,
be it ship or island, must be sufficiently small so that it does not affect the radiometer measure-
ments.

Initially it was planned that surface observations of cloud liquid water would be obtained
from upward looking radiometers and aircraft. Due to delays in the launch of the SSM/I, it was
not feasible to acquire aircraft data. Data for the cloud liquid water determinations over the
ocean were taken by NOAAIWave Propagation Laboratory (WPL) personnel from San Nicholas
Island as part of Project FIRE and by University of Massachusetts (UMass) personnel from
Kwajalein Island. Data over land were taken by NOAAIWPL from the four stations that make
up the Colorado remote profiling network.

O 7-1



NESDIS contracted with S. M. Systems and Research Coqrxration (SMSRC) of
Landover, MD, to develop and run the necessary software to do the comparisons and the
algorithm refinement.

W Since the preparation of material for Volume I of the Cal/Val Teaw,- Final Report

additional analysis has been done and additional data have been acquired. Th1e continuiaig
process of algorithm d4velopment and refinement has led to some minor changes in the
coefficients used to derive total p'ecipitable water and completely different algorithms for cloud
liquid water. Additionally we are now expressing our results in the more commonly used kg/m2.

7.2 DATA PROCESSING

The data handling procedures described in this scction were devised, encoded, and

executed by SMSRC personnel. The details are given in [2].

7.2.1 Data Handling - Total Precipitable Water

1. Radiosonde Obser,'ation (Raob) Collection

Raob reports were collected daily from the NMC ADPUPA files for 00 UTC and 12
UTC for the selected radiosonde stations. The job was submitted operationally beginning June
23,1987, and ending August 3, 1988. All reports found for the seiected stations were picked
up without regard to quality of data.

O 2. Surface Report Collection

Reports of surface conditions from the radiosonde stations were picked up immediately
after the raob collection job finished executing. This job was submitted operationall from July
3, 1987, to August 3, 1988.

3. Collection of SSMIl Data

Matches between SSM/I data and collected raob reports, 'ere predicted using a version
of SMIOPS which runs on the NAS 9050. Based on these predictions selec :-d SSM1I revolu-
tions were requested from NRL. When data were received, the tapes are mounted on tie
system. Those SDR files on tape which contained desired data were reid and the daia (bright-
ness temperatures) were unDacked and stored in an 'SSMJI temporary file'.

4. Matching between SSMII Data and Raob Data

A match program was run which read the SSM/I temporary file ind iae raob holding file
and found the fonr closest SSMRI footprints to each raob rmpor. All matches had to be, withirg
2 hours and 2 degrees latitude and longitude of the ,' h at.
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5. Calculation of Total Precipitable Water

A program, which was based on the FNOC code provided to us, read the matches from
the match file, and calculates the total precipitable water values from the SSM/! brightness
temperatures. Values which were outside specified limits were set to 12.70. Values which
could not be calculated due to presence of rain or ice were set to 12.75.

6. Quality Control

Resulting matches were printed it, a summary report. Matches which have SSM/I
retrieved or cal'Iu lated values of total precipitable water which were unreasonable were investi-
gated. If necessary, these matches were removed. Raobs were screened for missing surface
pressure values.

7. Statistics

Means of raob and SSM/I rc ieved precipitable water values, the bias, and RMS errors
between them were calculated.

8. Regression

Raob - retrieval matches were used in a regression to obtain total precipitable water as
a function of brighness temperatures.

7.2.2 Data Handling - (loud Liquid ),gt•r

1. Observation Collection

Cloud liquid water observations were received from the various observation sites. The
data were then reformatted inio the 'SSM/I temporary file' format.

2. Collection of SSM/I Daz

Matches between SSM/I data and cloud liquid water observations were predicted. All
SSM/1 data within 2 degrees latitude and longitude of the observation sites were collected.

3. Matching between SSM/I Data and Observations

A match program was run which picked the four SSM/I retrievals which were closest to
the observation site. Then the observation which was closest in time to the SSM/I overpass was
chosen for the match.
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4. Calculation of Cloud Liquid Water

A program, based on the FNOC code, read the match file and calculated the cloud liquid
�water value using the SSM/I brightness: temperatures.

Statistics

Means and RMS enrors between the observed and retrieved cloud liquid water values
were c,.ulated.

7.3 TOTAL PRECIPITABLE WATER (WATER VAPOR)

7.3.1 Surface Data Sources

The major source of surface data for the validation of the SSMI1 determinations of total
precipitable water wis the international radiosonde network. The pressure, temperature, and
humidity data from the radiosondes were integrated numerically to give a value which could be
compared with SSM/I values. It was required that the radiosonde station be a small island or
one of the remaining weather ships. Small is defined as less than 18% of the instantaneous
field-of-view (IFOV) of the 19 GHz channels. Initially a list of 49 possible stations was
prepar, J. These stations are shown in Table 7.1. Most radiosondes are launched at 0 and 12
UTC, while the SSM/I has an approximately 0600 1ST ascending node. Of the 49 possible
stations, matches from only 19 were obtained. The Rttatinng _ndi.tpi ui.t_ _n , ,t~r ,are th.
".match-up' stations. To be considered a wmatch-up" it was required that the radiosonde and
satellite measurements be coincident within 2 hours and 2 degrees of latitude and longitude.

The radiosondes measure pressure, temperature, and humidity at various levels in the
atmosphere. These measurements are then transmitted worldwide to various meteorological
centers, including the U. S. National Meteorological Center. The raobs and selected .nrface
observations were combined with matching SSM/I brightness temperatures to form a data sei
which could be used to evaluate algorithms for deriving total precipitable water over the ocean.

The total precipitable water was calculated from the equation

U = 1/2g E• (%- + %-+,)(g, - l•+t1) (1)

where g = accelernation of gravity- %. = the mixiig ratio of water vapor to dry air at the ith
level, and p,, = pressure at the ith level. The units of U are kg/m2, thus requiring g to be
expressed in m/s 3, qL in kg/kg, and p, in newtons/rn 2 .
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TABLE 7.I
RADIOSONDE STATIONS _.__-

NAME NUMBER LAT LONG AREA IFOV

MACQUARIE IS.* 94998 -54.50 158.95 B 109 4.41

MARION IS 68994 -46.88 37.87 B 388 15.71

GOUGH IS. 68906 -40.35 9.88 W 83 3.36

I.N. AMSTERDAM* 61996 -37.80 77.53 E 62 2.51

KERMADEC IS. 93997 -29.25 177.92 W 34 1.38

NORFOLK IS, 94996 -29.05 167.93 E 34 1.38

AUSTRAL IS. 91958 -27.62 133.33 W 47 1.90

EASTER IS.* 85469 -27.17 109.43 W 117 4.74

TOTEGEGIE 91948 -23.10 134.87 W 31 1.26

COOK ISLES 91843 -21.20 159.82 W 218 8.83

TRINDADE IS. 83650 -20.50 29.32 W 10 .40

TUAMOTU 91944 -18.07 140.95 W OK N/A

ST. HELEN,4 61901 -15.97 5.70 W 122 4.94

PAGO PAGO 91765 -14.33 170.72 W 135 5.47

COCOS IS.* 96996 -12.18 96.83 E 14 .57

ATUONA 91925 -9.82 139.02 W 200 8.10

PENRHYN 91801 -9.02 158.07 W 10 .40

FUNAFUTI 91643 -8.52 179.22 E 2.80 .11

ASCENSION IS. 61902 -7.97 14.40 W 88 3.56

DIEGO GARCIA* 61967 -7.35 72.48 E 152 6.15

MAJURO 91367 7.03 171.38 E 10 .40

KOROR 91408 7.33 134.48 B 8 .32

TRUK 91334 7.47 151.85 E 118 4.78

KWAJALEIN 1 91366 8.72 167.73 E 16 ' .65

, YAP 91413 9.48 138.08 E 54 2.19

ISLA SAN ANDREAS* 80001 12.58 81.70 W 20.50 .83

TARAWA 91610 13.05 172.92 E 23 .93

BARBADOS* 78954 13.07 59.50 W 431 17.45

JOHNSTON IS. 91275 16.73 169.52 W 1.30 .15

SAN MAARTEN* 78866 18.05 63.12 W 85 3.44

WAKE IS. 91245 19.28 166.65 B 8 .32

ROBERTS FLD.* 78384 19.30 81.37 W 183 7.41

MARCUS IS. 47991 24.30 153.97 H 2.60 .11

ISHIGARIJIMA* 47918 24.33 124.17 E 215 8.70

MINAMIDAIrO JIMA* 47945 25.83 131.23 B 46.6 1.89

CHICHI JIMA 47971 27.08 142.18 E 24.6G 1.00

MIDWAY 91066 28.22 177.37 W 15 .61

TANGO CiT 29 135 E OK N/A

KINDLEY FIELD* 78016 32.37 64.68 W 53 2.15

HACHIJA JIMA* 47678 33.12 139.78 E 69.90 2.83

ROMEO C7R 47 17.0) W OK N/A

SHEMYA IS. 70414 52.72 174.10 E 21 .85

COCA* C'7C 52.75 35.50 W OK N/A

LIMA* C7L 57 10.00 W OK N/A

ST, PAUL IS.* 70308 57.15 170.22 W 90.60 3.67

MIKE* C7M 66 2.00 E OK NIA

JAN MAYEN 01001 70.93 8.67 W 373 15.10

BJORNOYA* 0128 74.52 19.02 E 179 7.25
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In Table 7.1 the entries are the name of the station, its World Meteorological
Organization number, latitude with degrees south expressed as minus, longitude, the area in

S square kilometers, and the percentage of the 19.35 GHz IFOV that the station occupies. We
were unable to obtain exact estimates of the areas of some of the islands. We were able to
verify that they were small in comparison to the 19 GHz footprints. The weather ships also
were assumed to be small.

7.3.2 Comtisnms

7.3.2.1 Initial A~gorithm

The initial algorithms for retrieving SSM/I geophysical parameters are described in [11
and will be referred to in this section as the Hughes algorithm or more precisely the Hughes
algorithms as in reality there are several algorithms. The Hughes algorithm is divided into
eleven climate codes for each hemisphere, each of which relates to selected latitude zones and/or
seasons. This approach permits 'fine tuning" the coefficients for a particular climate, h- wever
the boundaries between the latitude zones are "hard" and the climate changes occur iLstanta-
neously. This approach can lead to unnaturally large gradients in parameters at these
boundaries. In addition to validating the algorithms for each climate code, it was felt that it was
necessary to check for the existence of these boundary gradients. Figure 7.1 shows the boundary
discontinuities between climate codes. 'Tihis figure shows data for August 11, 1987 for revs 740,
741, and 742. The land mass in rev 742 is Africa and Saudi Arabia. Deep red denotes flagged
areas which are either land or areas of precipitation. Revs 740 and 741 show boundaries at 25
degrees south bWitude and the equator. The equatorial boundary shown in yeflow to the south
and red to the north is particularly noticeable. The boundary at 25 degrees south is noticeable
as a line between lighter and darker blue. The s~harp boundary near 20 degrees south is a
boundary betweem air masses. Lesser amounts of water vapor are shown in darker blue and
Lncreasing amounts are shown in lighter blue, yellow, and light red.

Table 7.2 shows the comparisons for the Hughes algorithms with radiosonde determi-
nations for the latitude zones and also globally. All entries in the table are kg/rn2 or precipitable
millimeters. The columns labeled mean show the mean value for all the retrievals and
radiosondes for that particular latitude zone. The columns labeled standard deviation (STD
DEV) are the natural variance of the sample set. This is the variance exhibited by the wotal
precipitable water in this climate zone. The column labeled rms diff is the rms difference
between the SSM/W retrieval and the corresponding radiosonde value. The column labeled bias
is the difference bdween the mean SSMII retrieval and the mean radiosonde retrieval. A
negative bias indicates an underestimate by the SSM/I and a positive bias indicates an
overestimate.
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TABLE 7.2
HUGHES ALGORTITHM RETRIEVALS

LATITUDE SAMPLE MEAN STD DEV RIMS BIAS

SIZE RET RAOB RET RAOB DIFF

ZONE I I

60-90 N 209 8.7 i 1.0 4.3 4.2 3.2 -2.3
55-60 N 37 12.7 13.3 10.6 8.0 3.8 -0.6
25-55 N 59 23.6 27.1 15.0 14.0 5.2 -3.5
20-25 N 35 45.3 38.9 13.8 12.2 7.4 6.4
0-20 N 134 44.2 39.8 11.7 9.0 6.7 4.4
0-20 ' 66 53.8 50.4 10.2 9.3 6.3 3.4

20-25 S 0
25-55 S 47 23.5 22.2 11.1 9.9 3.8 1.3
55-60S 0
60-90 S 0

GLOBAL 587 27.0 26.3 20.1 16.9 5.1 0.7
_ L - .- ______]I

The algorithm used in the polar regions has a distinct tendency to underestimate the
amount of water vapor that is present and the algorithm used in the warm tropics shows a
tendency to overestimate the amount of water vapor that is present. These two tendencies
effectively cancel each other as the global data set shows a negligible bias. All of the rms
differences are larger than the desired ± 2.0 kg/m2 . Figure 7.2 is a scatter plot of the global
data set.

At least two factors are sources of differences between ti - radiosonde and the SSM/I
derived values of total precipitable water. One is errors in the radiosonde determinations of
temperature, pressure, and humidity. A coefficient of variance of 0.042 for US radiosondcs was
obtained in [3]. This translates into an error of 1. I kg/mr for this sample set. The other factor
is small scale variability in water vapor. An estimate of this was obtained by comparing the four
values derived from the SSM/I with each other. The rms difference between the four samples
for each raob match-up is 1.5 kg/m 2 . When these two factors are taken into account the rms
difference betwccn raobs and the Hughes algorithm becomes 4.7 kg/mr. The data presented in
Table 7.2 and shown in iligure 7.2 are from the trimmed data set. Tlhe trimming procedure is
discussed in Section 7.3.2.2.
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Figure 7.2 - Retrievals from the Hughes algorithm vs raobs. Units are kg/mr or precipitable
millimeters. Values are from the trimmed data set and are composited from the climate codes
that comprise the Hughes algorithm for total precipitable water.

7.3.2.2 Algorithm Improvement

Previous experience with tde SMMR instruments on SEAS AT and Nimbus 7 shows that
it is possible to achieve rms differences between satellite and radiosonde determinations in the
range 2.0 to 2.5 kg/m2 [3j and [4]. In addition the SMMR algorithms are global and do not int-
roduce latitudinal or seasonal discontinuities in the retrieved water vapor maps.

A global linear algorithm was determined to reduce the retrieval errors presented in Table
7.2. A statisticai regression between the set of SSM/I brightness temperatures and tie
corresponding total water vapor as determined from the racbs was used. This preliminary
algorithm was presented at the July 1988 Cal/Va Team meeting. This algorithm was based on
matches that had been obtained up to that time. The data set was biased in that thLre was an
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over representation of arctic soundings which biased the sample toward small values of water
vapor. When additional soundings from the tropics were obtained, it was noted that the

* preliminary algorithm did not estimate large values of water vapor very well.

In working with stvh a large and heterogeneous data set, there are many possibilities for
errors. To eliminate the erroneous data that had not been eliminated earlier, 2 % of the largest
positive and 2% of the largest negative differences betwee, raob and retrieval were eliminated
(i.e. trimmed) and the statistics were re-computed. This trimming procedure is described in [5].

U3ing standard regression techniques and the larger, more complete data set, an attempt
was made to develop a global, linear algorithm. Figure 7.3 shows the best linear relation'up

Nesdis Linear
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xXI

x x Y Xl >Sp x

S40 XX
SX, """

*0 X XL

10 x 
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0 20 40 60

ACTUALCKG,•, A2)

Figure 7.3 - Retrievals from a linear, global algorithm developed at NESDIS vs raobs. Units
are kgln 2 or precipitable millimeters. T'he linear algorithm has significantnon-linearifirs in the
rfrievals. It shows a tendency to overestimate at medhtm valueb and underestimate at larger
values.
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for the dependent data set. In Figure 7.3 there appears to be a non-linear relationship between
total precipitable water as deduced from radiosondes and that deduced from the SSMJW. The
linear algorithm overestimate-s water vapor in the mid-range and underestimates large values.
This observation plus a review of previous v'-ork (6-8] led to the consideration of a non-linear
algorithm. Q:

The square of the 22 GHz brightness temperature was introduced as a predictor and the
regressions were performed as before. Figure 7.4 is a scatter plot of the best four clhannel
non-linear algorithm. This algorithm uses 19V, 22V, 37V, and 22V squared. Thus the equation
becomes

TPW = b0 + bITBmgv + b2Tmnv + lbh(TrnV) 2 + b4TB3V (2)

The coefficients are given in Table 7.11.

Table 7.3 gives the statistics for this algorithm for both the global data set and latitude
zones of the Hughes algorithm. When the radiosonde precision and small scale variability of
water vapor are taken into account, the rms difference becomes 2.4 kg/m2.

IMPROVED NON-LINEAR ALGORITHM

LATITUDE SAMPLE MEAN STD DEV RMS BIAS
ZONE SUE RET RAOB RET RAOB DIFF

60-90 N 209 11.0 11.0 3.8 4.2 2.0 0.0
55-60 N 37 14.1 13.3 7.7 8.0 1.9 0.8
25-55 N 59 26.2 27.1 14.4 14.0 3.3
20-25 N 35 41.3 38.9 11.1 12.2 3.7 2.4
0-20 N 134 40.3 39.8 9.2 9.0 3.5 0.5
0-20 S 66 48.2 50.3 8.2 9.3 4.3 -2.1

20-25S 0
25-55 S 47 22.8 22.2 10.2 9.9 2.6 0.6
55-60S 0
60-90S 0

GLOBAL 587 26.3 26.3 16.7 16.9 3.0 0.0

The non-linear algorithm still shows a tendency to underestimate at the highest water
vapor values, but overestimates slightly for the next two largest classes. There should be no
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Figure 7.4 - Retrievals firom the NESDIS or improved algorithm vs 'aobs. Units are kg/M2

or precipitable millirneters. Values arc from the trimmed data set and were derived with a
global, non-linear algorithm.

bias in the global data set as it is the dependent data set. Another encouraging fart is that the
standard deviations of the raob and predicted (retrieved) sets are . bout the same globally and in
the latitude zones. Figure 7.4 'lso gives a hint of the tendency to underestimate at large values
and also a hint of a tendency to overestimate at the lowest values.

Additionally, we investigated a segmented non-linear algorithm using the square of the
22V brightness temperature with a weighted average in the transition zones. The best of these
gives very slightly better results than the global algorithms, but has not been implemented due
to coding complexity.

The results presented above are for dependent data that were taken between July, 1987
and April, 1988. We continued to collect raobs until August, 1988. Thus the data 'ken from
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May through July, 1988 constitute an independent data set. Figure 7.5 is a plot of retrieved vs. ,-
observed for the independent data set.

Retr- i oved VS Observed
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Figure 7.5 - Retrievals from the non-linear •"gorithm for an independent data set collected May-_
July, 1988. Statistics are in Table 7.4.

The fractional error {(tins diffimean) x 100) of the water vapor data s )wn in Table 7.4__-_
is 10. 8% which is very comparable to the dtpendent data set's fractional error of 11. 4.%. All -entries in Table 7.4 ar in kg/m2.

In addition lo the n n-finear algorithm used to I• roduce the results thus far presented, two
other non-linear algorithms have been suggested [81 'id [9]. The non-linear algorithm f [81
uses variables of the form log (To - T•), where T., is the brightness temperature and To is
a threshold temperature greater than any TI,. Using our dependent data set of 587 observations, •
we derived coefficients for an algorithm using four logarithmic variables. The rr.s difference
between predicted and observed is 2.97 kg/m2. T1he be~st four channels are 19H, 21N, 37V, and
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85H. The 22V is obviously the dominant predictor and other combinations involving '2V do
almost as well.

TABLE 7.4
INDEPENDENT DATA SET

LA-TUDE SAMPLE MEAN STD DEV RMS BIAS

ZONDE SAMZE--_ _

ZONE SIZE RET RAOB RET RAOB DUFF

60-90 N 33 14.6 14.2 5.4 6.3 3.3 0.4
55-60 N 0 0 0 0 0 0 0
25-55 N 19 35.1 36.7 11.3 12.1 5.2 -1.6
20-25 N 16 46.5 45.3 12.4 1237 4.1 1.2
0-20 N 40 45.6 46.4 7.1 8.8 5.1 -0.8
0-20 S 51 50.3 51.9 7.0 8.3 3.8 -1.6

20-25S 0 0
25-55 S 12 21.7 22.0 9.5 11.1 4.0 -0.4
55-60S 0
60-90S 0

GLOBAL 171 38.2 38.9 16.1 17.1 4,2 -0.7

. 7.3.3 CONCLUSIONS

Ba.'-.d on comparisons of the SSM/I retrieved total water vapor and total water vapor
derived from radiosonde data, the Hughes algorithm does not meet the SSW/I specifications of
± 2.0 kg/m2 over the range 0 - 80 kg/rn. A global rms difference of 4.7 kg/mr war observed
with zonal rms differences ranging from 2.6 kg/m 2 in the Arctic to 7.2 Vg/m 2 in the tropics.
In addition due to the intrinsic limitations of the zotud or sequential algorithm at tie boundaries,
obvious erroneous di.continuities were irntroduced in the retrieved water vapor maps.

Initial efforts to improve the a'gorithm ;entered on derivi a gkobal linear ilgorithmr.. When
this formulation also proved inadequate to meet specifications, a non-i:-f.ar algorith;m was
constructed using a qiadratK. term for the 22V chpimel. T".15 algorithm resulzd in a large
reduction of the rms retrieval errors on a global and zonal basis arid renmoves the discontinuitics
at the boundaries (,f dhe zonal regions. The global rms difi-hrence. were reduced to 2.4 kg/mn.
It should be noted th:at due to the 4exibility of the SSMil softwa. e, the non-linewr a"goritIimn used
to generate results in Ta!es 7.3 and 7-4 may bc readily isnplementee.

A few cautionary r,'maiks are in order. The use of a nonlie-,&, algorithm will
undoubtedly increase the sensitivity of water vpcr -_'trievals to cloud water o'mo,.nt, the
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presence• of prmeipitation, and the presence of sea ice. it is very important that tlhe ptuicipitation
screen given with the algorithm coefficients be used with this algoiithm. It is also inpoitant that
retrievals not be attempted when ice is in the SSM/I 5ield-of-view.• -,

It is recommcnded that radiosonde data be collected periodically to provide a quality
control on the waler vapor product. Thi% could be accomplished by the periodic collection of
maobs from the stations used in the validation study and comparing ictrievals.

As part of our validation effort for total precipitable water, we investigated both linewr
and non-linear algorithms. Our results indicate that a non-linear algorithm is required for besi
agreement between observed and derived values.

7.4 CLOUD LIQUID WATER

74.1 f a S ources

The sources of d.ta for validation of the cloud liquid water content were upward looking
microwave radiometers. Measurements were made by NOAA-WPL personnel and University
of Massachusetts (UMass) personnel. The NOAA measurements were made at San, Nicolas
Island as part of Project FIRE and at the four sites of the Colorado remote profder network.
The four sites are IMnver (Stapleton kirport), Fleming, Flagler, and Platteville. The
radiometers in the Colorado network are fixed zenith viewing radiometers that operate at 20.6
and 31.65 GHz. The Stapleton airport installation also has four frequencies in the oxygen
complex for temperature profile retrievals. All of the stations have Doppler radars for wind
* .,ec arnu uirect•uo nCasubumleiis. Thýee stations are described in Liul. lhe San Nicolas
measurements were made by a poitable radiometer that has a steerable beam and is described
in [11]. Data from the Colorado network stations which operate in an automated continuous
mode were obtained for the periods July 15-October 15, 1987 and January 15-April 15, 1988
to provide for a range of seasons and surface conditions. The San Nicolas Island data were
taken between July 2 and July 19, 1987. The accuracy of the NOAA profiler network
dterminations of cloud liquid water are estimated [12] to be 5.2 E-3 kg/rn.

The UMass measurements were made using an autocorrelation radiometer operating
between 20.5 and 23.5 GHz and an auxiliary radiometer at 37 GHz. These measurements were
made at Kwajalein Island. The operation of the autocorrelation radiometer is described in [13].
The Kwajalein data were taken between March 24 and April 7, 1988.

To compensate for the different fields-of-view of the surface based radiometers and the
SSM/J *he NOAA data were averaged over a two hour txtriod, one hour on either side of the
overmass time. The UMass data were averaged over a oue hour time period, one half hour on
eith..r side of the overpass time.
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Charactc.cii.tics of U,,- NOAA profiler iadionictrs are. given ir Table 7.5. All latituds
are Nu. th a id i.11 '-gihs.p are Wes~i I•h.; cffridive fields-of view (EFOV) a-t the 3 101, be aw'dih.s ;nd the epot ,;TS a-, itl r,,cte for a d5t.=nce of I kin.

TABLE 7.5

CHARACTERISI ICS OF NOAA PROFILING NEDWORK

NOAA PROFILER NET WORK EFOV SAMPLING
TIME

SITE LAT LONG DE• JREE SPOT

'DENVER 39.8 105 2.5 44 M 2 MIN
'I FLEMING 40.6 103 4 70 M 2 MIN

FIl AGLER 39.1 103 4 70 M 2 MIN
PLAITEVILLE 40.2 105 4 "10 M 2 MIN
SANNICOLAS 33. 119 2.5 44 M 1 MIN

Characteristics of the UMass autocorrelation radiometer (CORR.AD) are given in Table
7.6 The priuision estimate for the CORRAD is given in [14].

TABLE 7.6

CIIARAC(TERISTICS OF CORRA1)

RF BANDPASS 2115-'73.5 GHz
TIME DELAYS i.2 TO 6.1 NS (0. 1 NS STEPS)
FREQUENCY RESOLUTION 1 (,0 MKI/100 MHz (3 dB)
RECEIVER NOISE TEMPERATURE 20G0 K
NOISE FLOOR (AT) 0 " K(SEC)Irn
EFOV 2 DEGPFFS
FCOTPRfNT @ 1 KM 35 M
SAMPLING TIM 10 MIN
KWAJALEIN ISLAND (8.7 N, 167.7 E)
PRECISION 8.0E-3 kg/mr

7.4.2 Comparisons

7.4.2.1 JLi tial Hughes Algorithm
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The initial Hughes algorithm [1] used to retrieve cloud liquid water was a linear, four-
channel algorithm that was generated by regression using L-rightness temperatures calculated
from simulated clouds and a radiative transfer model. The algorithm was divided into latitudinal
and seasonal segments called climate codes. There were eleven climate codes per hemisphere.
Over the ocean there were nine distinct sets of coefficients that used the 19H, 22V, 37V, and
37H channels. Over land there was one set of coefficients per climate code which used the 19V,
19H, 37V, and 85V channels. Another set of coefficients was used to retrieve cloud water over
snow. This set of coefficients was used for all climate codes and utilized the 22V, 37H, 85V,
and 85H channels.

The latitude zones were the same as those used in the water vapor algorithm. The opposite
henmsphere is seasonally adjusted so that seasonal algorithms are used in the appropriate season
and latitude zone.

Two special categories of retrievals were created; out-of-limits and indeterminate. All
geophysical retrievals were tested to determine whether they were within a physically possible
range of values. If they were outside the physically possible range, they were assigned an out-
of-limits value, usually 1 less than the maximum number of counts allocated for that parameter.
The indeterminate classification implies that certain logical conditions ant not being met or that
the pixel under consideration may b part ocean and part land (i,e., coast 1). The indeterminate
category was assigned the maximum count value.

We found that more than 90% of all retrieved values of cloud liquid water were either
out-of-limits or indeterminate values. This percentage was found at all test sites and before and

.00 . .C.- &- V LSt..t£..I,4 ... ,.. flw.yibr yni * ,,a3 iup-f , nfthiA iindiing, wp
6LLQ1 UIQ ,.•30VAJL1 • aiULUUVVAI %&UAAC, "Ad IS4 2"num * A.

decided to improve the algorithm.

7.4.2.2 Impvv _ Algorigythm

"The approach taken to improve the cloud liquid water algorithm was similar to that
employed for the water vapor algorithm development. Su. "ace values and brightness
temperatures were matched and standard linear regression techniques were used to find the best
set of channels and c:,efficients. Our retrieval equation is linear in brightness temperature and
of the form

CLWI = ao + E; a,*T•i, i = 1,2,....7 (3)

where. the a,'s are coefficients and the Ti•'s are brightness temperatures. Table 7.7 givws the
explicit relationships between chanacl frequency and polarization and coefficient number.
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TABLE 7.7

ALGORITYM CHANNEL AND COEFFICI.ENT DESIGNATION

C-ANNEL NO COF FICIENT SYMBOL CHANNEL__

a0

1 al TBA 19V
2 az TM 19H
3 a3  Tin 22V
4 a4  TP 37V
5 as TM 37H
6 a6  TM 85V
7 a., T137  8511

=,11 - - - - , . .: m ,_

The land and ocean cases were separated and the land cases were further divided into
snow and no snow groups. Initial correations on the entire data set, which consisted of clear
and cloudy cases yielded very low correlation coefficients. Next cases, where the CLW content
was < 5.OE-3 kg/m2 were excluded from the data set. The channels which gave the best
correlation are 19V, 19H, 37V, and 85H. The 85V cl-annel was excluded from the regressions
because of its increased noise. The snow data set waa analyod separately.

Using the discriminants 19H - 85H > 8K and maps of weekly snow cover to establish
the prese.ce of snn'', 2-----. .... ... hilL 4,A UIu U , WdALL -IIlliL- _Al

cases where the CLW content was < 5-0E-3 kg/n9 were excluded. The best results of our
attempts to find an improved cloud liquid water algor thm over land are shown in Table 7.8. It
is readily apparent from the low values of the correlation coefficients in Table 7.8 that the
development of a CLW algorithm for land and snow surfaces will be very difficult at. best. It
is worth noting the correlation coefficients improve if the presence of clouds can be inferred
from other sources.

The cloud liquid water det-rmiriations over the ocean yielded bettem results. Initially it
was intended to analyze the San Nicholas Island and Kwajalein Island data separately and then
as a combined data set. When the sizes of the two data sets were considerel (10 samples per
island), the decision was made to analyze them as a combined data set. In addition to the
standard linear regression procedures, we performed additional independent statistical analysis
as well. In analyzing the data all possible tour channel combination were considered as well as
a full six ciiannel algorithm. The six channel algorithm gives a slightly higher explained
variance or corn lation coefficient than any four channel algorithm, however the standard error
of the estimate is greater because of the reduced number of degrees of freedom. Table 7.9 gives
the correlafion coeffici, it (R) and standard error of the estinate (S.E.E.) for some channel
combinations. Figure 7.6 is a plot of satellite versus surface values for the combined oceanic
data set using the best four channel algorithm. After zompleting our analysis of the best four
channel algorithm, the 85H channel became quite noisy. The other four channel algorithm
shown in Table 7.9 is the best algorithm excluding 85H.
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TABLE 7.8

CLOUD IJQUID WA -ER ESULTS

I RMS DIFF
NO. OBS. CORR. COEFF. MEAN(KG/M2) (KG/MZ)

I LAND

232 0.214 0.005 0.021

CLW > U.005

32 0.445 0.037 0.045

SNOW

201 0.185 0.007 0.031

CLW > 0.005

41 0.369 0.0.2 0,063

CLW ALGORTHDM RMSULTS

CHMANEL NO. SAMPLES MEAN S.E.E. R

1,2,3,4,5,7 20 0.136 0.042 0.892
2, 3, 4, 7 20 0.136 0.039 0.891
2, 3, 4, 5 20 0.136 0.040 0.886
4 20 0.136 0.039 0.L871

As part of our statistical analysis, it was noted that the 37V channel alone is a good
predictor of cloud liquid water. The s, tistics for the 37V channel are also included in Table
7.9.

Because. of the limited size of the ocean data set, further statistical analysis was
performed. We used the cross-validation and jackknifing techniques to examine our results.
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Petrieved vs. Obs•erved
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Figure 7.6 - A plot of retrieved vs observed cloud liquid water for the combined San Nicolas
and Kwajalein data sets. The units are kg/rn2. The San Nicolas points are shown as pluses and
the Kwajalein points are shown as diamonds. The solid line is the "perfect ageement" line.
The retrieved values are from the dependent data set.

These procedures are discussed in [15]. For cross-validation we generated a quasi-independent
data set by using 19 of the 20 points as dependent data and predicting the 20th. This
was repeated until all 20 points had been predicted independently. We used the same four
channels that gave the lowest rms difference for the completely dependent data set.

Using a procedure known as jackknifing [15), we generated another independent estimate
of the retrieved mean, standard deviation, and nms difference between the retrievals and the
ground based cloud liquid water measurements. The relationship [15] (PARMSTAR) = 20*(-
PARMALL) - 19*(PARM)i, where PARMALL is the parameter from the completely dependent
data set and PARM is the parameter when it is calculated from , tata set of 19 points, was used.
The jackknifed values presented in Table 7."10 are average, of 20 such computations of
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PARMSTAR for each parameter. Table 7.10 presents a summary of the observed and three
retrieved data sets.

TABLE 7.10

STATISTICAL COMPARISONS

OBS REGR CROSS-VAL JACKXNIFE

NO OF CASES 20 20 20 20
NU M 0.00 -0.02 -0.04 -

MAXIMUM 0.28 0.22 0.23 -
MEAN 0.136 0.136 0.140 0.136
STh DEV 0.077 0.067 0.068 0.077
RMS DIFF 0.035 0.048 0.040

The three retrieved data sets are. quite consistent. All have a negligible bias about the
mean when compared with the obsl•,, I dati set. The standard deviations of the retrieved values
are slightly smaller than the standard deviation of the observed value, a fact not uncommon to
regression algorithms. The rms differences are r.-narkably si-nilu for the three computations.
Even thotiph the~ samisle. 6tiD iu v%i72I thp-p2 ~ ~ .~ .-. ~.. ~ ~ TL

* improved algorithm seems to be statistically significant and 'robust".

7.4.3 Ci2&iusions

In view of the very low correlations between brightness temperatures and cloud liquid
water content over land and snow, it is recommended that retricvals of thi% pararneteir not be
attempted. If an independent way of determining the presev.' of clouds caa be fotiid, it might
be possible to devise an algorithm that will give a usefo, estimate of the cloud lii'i'id water
content.

It should be noted that C lorado is not an ideai site for testing cloud liquid water content
algorithms b.ecause of its altitude and generally dry conditions. The NOAA profiler network is
almost tht only source of routine measurements of clo,-d liquid water. It is 6i1.ely that the SSM/I
can detect heavier water clouds over land tefore the onset of actual precipitaition.

It is recommended that a quality control procedure be instituted for the cloud liquid water
product as well. Collecting significant amounts of cloud liquid water measiren mnts from surface
based systems is a major undertaking. The recommended procedure is to use either OLS data
which can be co-located with the SSM/I or GOES visible and inflated data and compare q alita-
tively where the :SM/I algorithm places clouds and their water content versus the visible and
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IR images which should show cloud location over the ocean rather well. It should be obvious
if the SSM!I *misses" clouds or places them in clear areas.

The initial recommendation w.?s to use the six channel algor.thm because it explained the
most variance. Further examination revealed that a four chanael algorithm probably gave better
results, especially when "onsidering the standard error of the estimate. Our additional analysis
also revealed that the 37V channel alone is a very good predictor of cloud liquid water. After
most of the analysis for the Cal/Val effort was completed, the noise of the 85H channe!
increased significantly. As a result, we developed a CLW algorithm that does not usc either 85
Gliz channel.

Table 7.11 gives the actual coefficients for the channels used in the recommended
algorithms. We show the latest total precipitable watcr algorithm which is non-linear and global.
We show algorithm1; for cloud liquid water. Included are coefficients for a six channel
algorithm, coefficients for two four channel algorithmsi with and without 85H and a single
channel algorithm using only 37V. The retrieved paran iters will have te units of kg/m2 .

The results nresented here have also been presented in Alishouse et al [16] and Alhshouse
et al [17].

TABLE 7.11

RECOMMENDED ALCORITHM COEFFiCIENTS

CHANNEL WATER CLW CLW CLW CLW
VAPOR OCEAN OCEAN OCEAN OCEAN

6 CHANNELS W 85H W/o 85H 37V

19V -0.148596 1.5817E-3
J9H - 5.80-75E-3 6.0257E-3 8.4333E-3
22V -1.829125 -5.6345E-3 -4.8803E-3 -7.5959E-3
22V (SQRD) 6.193E-3 ---

37V -0.36954 2.0097E-.2 1.9595E-2 2.0131E-2 1.18122E-2
37H -7.200 E-A -5.3066E-3
85V .... .[
3511 -- 7658E-3 -3.0107E-3
INTERCEPT _232.89%93 -3.31378 -3.14559 -2.838179 -2.45276

Precipitation Screen:

If -11.7939 - O.C2727*Tarv + 0.09920VTa37..<_. 0 K

then compute water vapor and cloud liquid water over ocean.
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8.0 WIND SPEED VALIDATION

The SSM/I wind speed retrieval algorithm developed by Environmental Research and
Technology, Inc. (ERr) for Hughes Aircraft is called the D-matrix algorithm and has the
following form [1]:

SW = CCI+Clj.TBg9-4-Czj.Tgv+C3j.TB3v+Caj.Tm7. (8.1)

Equation (8. 1) is valid only over open ocean where the wind speed, SW, is in m/s and
referenced to a height of 19.5 m above the surface. Equation (8.1) also contains the terms T.
which represent the brightness temperature of frequency/polarization combination "x" and the
D-matrix coefficients, C,, where "j" is the climate code index and varies from I to 11. The
eleven sets of coefficients (only 9 of which are distinct) used in the original D-matrix algorithm
are listed in Table 8. 1. Each of the 9 distinct cLmate codes represents a particular season and
latitude band as shown in Table 8.2.

Since microwave radiation at the SSM/I 1requencies is heavily attenuated by rain in the
earth's atmosphere which masks the wind speed signature generated by waves and foam on the
ocean surface, ERT suggested the use of a rain-flag for the purpose of identifying conditions

TABLE 8.1

COEFFICIENTS OF THE ORIGINAL HUGHES D-MATRIX ALGORITHM

Climate Co CA C2 C3 C4Code

1 191.560 .4903 -.4432 -.9199 77
2 168.390 .5366 -.4548 -.7656 .- o35
3 177.315 .3913 -.2818 -1.0083 .4095
4 147.760 .5077 -. 3547 -.7409 .2333
5 127.130 .4788 -.2546 -.7162 .2030
6 163.07,0 .2923 -. 1204 -1.0967 .4612
7 95.994 .6i06 -. 3034 -.4638 .0192
8 130.420 .3676 -. 1508 -.8400 .3056
9 117. f)0 .4225 -. 1899 -.7096 .2081

10 130.420 .3676 -. 1580 -.8400 .3056
11 117.590 .4225 -.1899 -.7096 .2081
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TABLE 8.2

CLIMATE CODES OF THE HUGHES D-MATRIX ALGORITHM

SEASON CLIMATE
ZONE (NC' -jIERN HEMISPHERE) (ODE

Tropics . -- JUN-NOV 1

(0-20 LAT.)-.-.._2_"....
-- '-- DEC-MAY 2

LoAw-Lat. Transition JUN NOV 3

(2G.25 LAT.) DECMAY 4

Mid-Latitude SEP-NOV, MAR-MAY 5

Arti, MA 8

* [ 5590 LAT.) ,::: NOV-APR 9

under which less accurate %.nd speed retrievals are produced. The original rain-flag kogic is
shown below.

IF: TB1gH > 190K
OR: [T3v - T ] < 25K
Then possiblz rain exists and rain-flag := I

IF: (l'wTv - T83713 < 10K
Then heavy rain exists and rain-flag = 2
Otherwise rain-flag = 0

The accuracy specification for wind speed retrievals under conditions of no rainfall (i.e.,
rain-flag = 0) was + 2 n/s over the range 3 to 25 mn/s. Accuracy was not Tpecified for wind
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retievals from clls flagged either I or 2. In fact, the original D-matrix algori'hm did notA
attempt to retieve winds wider rain-flag 2 condiions.

8.1 NOAA BUOY SYSTEM AND CRITERIA FOR COMPARISON t:-

Validation of the SSM/I wind speed retri;evals was done using the anemometer measured
winds of open ocean buoys maintained by the National Oceanic and Atmospheric Administration
(NOAA). These buoys rec,3rd an 8.5 minute average of the wind once every hour with an
accuracy of ± 0.5 mis for winds less than 10 m/s and 5% for winds greater than 10 m/s [2].

In anticipation of SSM/I antenna sidelobes, which could give rise to land contamination
of ocean brightness temperatures, only buoys further than 100 Inn from land were chosen for
the validation. The 19 NOAA buoys actualy used for the validation are listed in Table 8.3.

The wind speed observations taken by the ocean buoys were at heights of either 5 or 10
meters above the surface. These measurements were converted to equivalent winds at 19.5
meters above the surface [3] so that they could be compaeir directly to the SSM/I estimates
which predict winds at the 19.5 meter level. Converted buoy winds and D-matrix winds were
paired only when the SSIVI retrieval was located within 25 Ikn of the buoy position and the
SSMI oveP time was within 30 minutes of the buoy wind speed measurement. Basud on
the work of Monaldo [4], a spatial difference of 25 Inn and a temporal differemnce of 30 minutes
between SSM/I and buoy measured wind speeds adds variances of approximately 0.5 m/s and
0.2 -Ws, respctively, to Liar to, vIa.ui uf th volnparison, TInese variances increase the totalu-, standard deviation of 2 m/s by less than 10% and therefore contribute only slightly to the overall
error. Because a 25 km spatial separation introduces little additional error to the comparison
of SSM/I and buoy winds, the SSM/I geolocation problem (see the instrument calibration section
of this report) which results in positioning errors of between 5 and 25 kilometers, does not
.mgnificantly affect the wind speed validation. Tihis comparison criteria also stipulates that only
one SSMI-buoy pair be selected from each SSM/I overpass. Thus the validation data set was
composed of independent comparisons.

8.2 REQUIRED NUMBER OF COMPARISONS

The accuracy specification of ± 2 m/s for D-matrix wind speed retrievals can be
interpreted in at least two ways. One interpretation is that this is the standard deviation, in an.
average sense, of the difference between all coincident buoy and SSM1I wind speed
measurements. An alternative interpretation is that !he standard deviation of such comparisons
in any sub-interval of the 3-25 ni/s wind speed range must not exceed 2 m/s. The first of these
two interpretations can disguise the fact that over certain sub-intei vals of the 3-25 m/s wind
speed range, the accuracy of the D-matrix prediction may be worse than ± 2 ra/s. In fact, a
modeled error budget (discussed in section 8.3) predicts that the accuracy is wind speed
dependent. It is possible that sub-intervals with accuracies worse than ± 2 rn/s could average
with sub-intervals having accuracies better than ± 2 nils to give a resulting overall accuracy of
better than ± 2 m/s. This is often true for regression-type algorithms, like the D-matrii, which
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TABLE 8.3

NOAA BUOYS USED FOR THlE SSM/I WIND SPEED VALIDATION

NUMBER OF
BI OY I.D. LATITUDE LONGITUDE ZONE SSM/I

(E) PASSES

IN 30 DAYS

51002 17.2 20212 Tropica 31
51004 17.5 207.4 Tropics 31
51003 19.2 199.2 Tropics 32
51001 23.4 197.7 Low Lat Trans 33
42001 2.5.9 270.3 Mid tat 33
42002 26.0 266.5 Mid Lat 33
42003 26.0 274.1 Mid Lat 33
41006 29.3 282.6 Mid Lat 34
41002 32.2 284.7 Mid Lat 35
44004 38.5 289.4 Mid Lat 38
46006 40.8 222.4 Mid Lat 39
44011 41.1 293.4 Mid Lat 40
46002 42.5 229.6 Mid Lat 41

r A V " A"%1 .I 1 T a' I-,r-P, .F IV,,. I LY1. MI. I.J.L 41
46005 46.1 229.0 Mid Lat 43
46004 50.9 224.1 Mid ]-at 47
46003 51.9 204.1 Mid Lat 48

46001 56.3 211.7 Arctic 55
46035 57.0 182.3 Arctic 56

tend to make especially good predictions near the overall average wind speed and predictions
of less accuracy for wind speeds which are removed from the average wind speed. For this
reason, the 3-25 m/s wind peed range of interest w. divided into the 6 sub-intervals shown it,
Table 8.4 and the D-matrix performance was analyzed in each sub-interval. Also shown hi
Table 8.4 is the number of comparisons out of 1,000 for which the buoy wind speed falls within
tl:C particular sub-interval range. These comparison counts are based on the global distribution
of winds given by Schroeder [5] which is shown in Figure 8.1.

It is preferable to have a sample size of 30 or more when doing statistical analysi:. [6]
of the data. For wind speed sub-intervals 1, 2, and 3, it appears that this sample size can be
obtained by coliecting approximately 140 comparisons. Preliminary studies showed that about
15% of the data are rain-flagged and since the comparisons are made only with data which is
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not rain-flagged, the sample size required TABLE 8.4
for each climate code needed to be TABLE 8.4
increased 15% from 140 to 161. Although

O this relatively small number of comparisons D-MATRIXCBUO Y WIND SPEED
could be obtained in 60 days using three COMPARISONS
buoys, other factors af" ct the total
required buoy count. ThILse include lost Comparisons
data due to periodic buoy maintenance and ID. Rge (m/s) per 1000
the likelihood of encountering wind speeds I

distributed according to Figure 8. 1. These 1 3-6 260
factors were determined from actual 2 6-10 395
climatic summaries [7M prepared by the 3 10-14 215
National Climatic Data Center for the 4 14-18 50
individual data buoys. 5 18-22 25

6 22-25 1
Finally, to complete the validation

within one year we must have enough
buoys within each of the D-m-.trix latitude
bands and enough SSM/I overpasses per buoy to collect the required 161 comparisons per
season. The number of SSM/I overpasses depends on the latitude (LAT) of the buoy and can
be approximated by using equation (8.2).

SSII 'I(mg t,30Dag J, I .sOAT),e (.2) i

L!- Ire.

SEquation (8.2) is reasonably accurate up through 60 degrees latitude, above which the error
exceeds 15%.

This awalysis established that the 19 buoys selected could more than satisfy all but the
highest wind speed validation requirements. That is, the low probability of observing winds
greater than 15 in/s made iA difficult to evaluate the overall performance of the D-mai.rix
algorithm in the range 15-25 rn/s. This problem is discussed more fully in section 8.6.

8.3 FRE-L.AUNCH VALUDATION MODELING - ERROR BUDGET

The sources of random errors associated with the comparison of SSM/I wind retrievals
and ocean buoy measurements are summarized in the following error budget.

* Extrapolation noise. (Buoy average at a point differs fronm the instantaneous

spatial average made by the SSMiW).

SSM/I instrument noise.

* Buoy ins ient noise.
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D-matrix algorithm model noise. (Inability of algorithm to model exactly the
radiative transfer processes). ,

S* Decorrelatior. noise. (Spatial and temporal separation of the SSM/I and buoy
0 measurements).

* Translation noise. (Errors in translating the buoy wind measurement to a height

of 19.5 m).

* Round-off noise. (Error due to rounding SSMJI winds to the nearest m/s)

The magnitude of these errors (less decorrelation noise and translation noise) is shown
in Figure 8.2 over the wind speed range of 3 to 25 m/s for the Climate Code 5 algorithm. Plots
for the other 8 versions of the D-matrix algorithm are very similar to the results of Climate
Code 5 and are therefore not shown. In generating the extrapolation noise curve of Figure 8.2,
the one-dimensional wind fieOd model of Pierson [8] was used as ware effective footprint
diameters of 55, 49, and 32 km f-ir the 19, 22, and 37 GHz SSM/I channels, respectively. The
buoy noise, which was discus.,ed previously, is from Gilhousen [2]. The model noise was
specified by Hughes Aircraft in a report by Lo [9].

The instrument noise as specified by Hughes [1] for the 19H, 22V, 37V, and 37H is
0.41, 0.75, 0.38, and 0.39 degrees Kelvin,respectively. The round-off noise is due to the fact
that the operational D-matrix algorithm retrievals are rounded off to the nearest whole m/shofni,• hotina rpn,-cdp4 A lthe~virh fj,ý *.,"A •-4T ,.•.- • .. ... A _ •.;,. :: ... . I- -t 1

* error of D-matrix ietrievals, subsequent users of the data will introduce an error due to rounding
when converting from m/s to either miles/hour or knots (in the case of knots, an average error
of 0.7 knots and a maximum error of 1.5 knots will result) The average errors due to spatial
and temporal separation of SSM/I and buoy measurements are. not included in the plot since they
do not contribute significantly to the total. Likewise., errors in converting the buoy wind
measurements to :. height of 19.5 m are insignificant and are not shown in the plot.

8.4 VALIDATION RESULTS

Performance of the climate code 5 version of the original D-matrix algorithm is shown
by the scatter plot in Figure 8.3. Ile legend shown in the lower right hand corner of the scatter
plot is interpreted as follows. The bias and slope data indicates the y-axis intercept and slope
of the regressior line which has been chosen to minimize the sum of the squares of the
hgri9 distances from each point to the regression line. The SD is the standard deviation of
the quantity, (D-matrix winds minus buoy winds). The line labeled "CORR(R)" is the
cmrelatitm coefficient [10] betveen buoy winds and D-matrix winds. Finally, the line labeled
"VMBS" gives the number if observations or data points in the scatter plot. Figure 8.3 indicates
tht the Climate Code 5 D-matrix wind speed retrievals are scaled and biased by 0.85 and 5.7
mis, reslpctively. This poor performance of the Climate Code 5 algorithm is typica! of the
other versions of the original D-nmatrix algorithm.
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Figure 8.2 - Random errors affecting D-matx wind speed
retrievals from climate code 5.
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To correct this problem new coefficients were generated using standard linear ,egression
of buoy wind speed on the coincident SSMA'I brightness tempera ure measurements, T3lgH, T"Rnv,, Ta,,, and Ts7. Performance of the new Climate Code 5 D-matrix algorithm is shown in
Figure 8.4. The regression line associated with this scatter plot now has the desired slope of
1.0 and bias of 0.0 indicating that the scale and bias problems of the original algorithm have
been corrected. Despite the apparent good performance of the new al, orithms, additional
improvements are necessary and will be discussed later in section 8.5.

Before analyzing the retrieval accuracy over various wind speed sub-intervals, it was
nccessary to ,-L-evaliate the rain-flag criteria. New rain-flag thresholds were determined using
residual plots like those shown in Figures 8.5 and 8.6 which indicate the performance of the new
1; rr:trix algorithm as a function of the parameters used to determine rain, which are (Tww -
'F,3.) and T,91 H. Each of the data sets in the residual plots were then sub-divided into a number
of range bins and the standard deviation, SD, and average (also called bias) of the points falling
withit e-ach bin were calculated. The results of these calculations are shown in Figures 8.7 and
8.8. The rain-flag thres", olds we.re determined from these plots by l,-oating values of the rain-
flag pararneters for which either the "SD" or "BIAS" cunes crossed some predetermined
accuracy level. For example, the accunacy mequirement for retrievals with rain-flag ze! ;s 2
m/s.

From Figures 8.7 and 8.8. one can sef that the algorithm fails to meet this specification
when either (Twrr-T" < 50 or T,11 > 150. In this way, entirely new rain-flag criteria were
uJit-ICL. I ItC N- are surnmarM~i1f in -. ie.. . !0 __t. ..... A.AVA -* W . -U, r Mil-

flags 0, 1, 2, and 3, instead of the original three. It ; recommended that wind spet.ds be
calculated under all rain-flag conditions and that th,. a-: .•.cated rain-flag be the user's guide to
the accuracy of the -etrieval. T1 is practice differs from the operation of the original D-matrix
which retrieved winds only unzder rain-flag 0 and I conditions. Finally, it should be pointed out
thaz the term "rain-flag" is somewhat misleading since the rain-flags (except rain-flag 0) indicate
auiy condition (including r-in) which leads to reduced retrieval accuracy. The accuracy of the
D -matrix retrievals is, in i ct, very sensitive to rain since rain rawes of less than 1 mm/hr will
trip rain-flag 1 [11] (see also the section of this :z4port on the validation of the D-matrix rain-rate
algorithm).

Table 8.5 shows the new D-matrix coefficients for all 9 climate codes which were
derived using actual SSM/IJ data from the period 10 July 1987 through 31 March 1988. The
measured utandard deviation of the difference between buoy winds and D-rnatrix winds for each
of the cl ate codes under rain-flag 0 condit;ons is shown in Table 8.6. At least in the average
sense, all 9 D-matrix algorithms appear to exceed the accuracy specification of ± 2 m/s. AUs
hown in 'Fable 8.6 is the total number of buoy/D matrix wind comparisons from each climate

code and the per,-enta :e of these that were tagged with a vain-flag of I or higher. Although the
results shown r•. Table 8.6 arc quite good, the D-matrix wind speed algorithm has several
limitations which are discussed in the following sction.
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Figure 8.4 - Performance of the revised D-matrix algorithm
for climate •.de 5.
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Figure 8.6 - D-matrix residual versus T819 H for climate code 5.
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Figure 8.7 - Standard deviation and bias of D-matrix winds as a
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code 5.
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TABLE 8.5

NEW RAIN-FLAG CRITERIA AND COEFFICIHNTI

Rain Flag Criteria Accuracy
0 To2ms

and TBgH < T,

1(TwTV - TRH) < Tr
or TB.gjH > T, 2 - 5 mn/s

2 (TR.v- TW) < T 2  5 - 10 m/s

3 (TWTV - TB) < T 3  > 10 m/s

Climatel C2 C C.'CJ C,_{C T, I T-,4 3

ii 2i.22 iU.F5-I I 1~U I .. 11AA 11AA~rU iCfI 1'7C I~

.. ..... .. .P, v A I J L- .U

2 202.87 0.1316 -0.2455 -1 3138 0.8080 50 175 25 20
3 195. 8 0.2996 -0.2363 - .2266 0.5776 5u 175 25 20
4 172.72 0.3908 -0.3130 -.I0.96 0.4926 50 175 25 20
5 158.63 0.4224 -0.2439 -0.9839 0.3725 50 165 30 25
6 161.45 0.2964 -0.1613 -1.063" 0.4524 50 165 30 25
7 151.04 0.5994 -0.3274 -0.9.3, 0.2977 50 165 30 25
8 137.72 0.7330 -0.4208 -1.75333 0.1804 50 130 35 30
9 109.93 0.8695 -0.4710 -0.6008 0.1158 50 130 35 30

_:_ _ ,. • - ,• - , : :- -. . . - ' ~. =

8.5 D-MAT'IX LIMITATIONS

Wind speed residual plots were again used to study limitations of the D-matrix algorithm.
Plotting the residual as a function of buoy measured wind speed demonstrates the D-matrix
performance over sub-intervals of the 3-25 m/s range. Figure 8.9 shows the plot for C!imatei
Code 5 which is typical of all 1 climate code versions of the D-matrix. Dividing the region of
Figure 8.9 into a number of range bins and calculating the S ) and bias (i.e., average) of the
points falling within each bin results in the "interpreted' residual plot shown in Figure 8.10.
"This figure shows that the accuracy of the D-matrix retrievals ;s bscst near the global average
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Figure 8.9 - D-matrix residual versus buoy winds for climate
code 5.
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PERFORM ANCE OF REiWISED 1)-MATRIX -

AL.GORITHM

-Climate fS.D. Prcentage Numbiier of
Code mi, s Rain Flagged Comparisons

1 - 1 7 376V) 1. 10 63
4 t1sj 9 43
5 1.8' 13 1296~
6 1. 1263

7 . 18 51
S.6 1 2-79

1 .69 27 7

wind speed of 7 miis and becomes warve for prediitione. iu'qv fipm - /-. rNotp thqt the tre'ndl

* Ct the SD) curve agrees quite wvell with the pre-launch eýrror budget model describeed in figure
8_2. A! note from theias curve of F-igure 8. 10 that the high wind speed (> 15 mins)
retriev.als are biased low by more than 2 ni/s.

Although the retrieval accuracy is met, across the climate code boundaries, the
discontinuity of t he retrieved winds across these boundaries isdisturbing. [his is illustratedi
tuie global chwrt (see Figurv 8. 11) of SSM/i wind speeds for the period January - February 1988.
'1 'ie average discontinuity across each latitude band boundary was also zalcu!ated using actual
SSML/I data. 'The results arc sumimarized in Table S7.

The accuracy of the wind ,I.,ed retrievals deteriorates rapidly in rain a-, was indicaited
by Figure TL. lhis is not so inuch a problemi with the algorithm i s it is aproblem with the
frequencies used by the SSM/1. Microwave radiation at 19, 22 and 37 GIU is heavily attenuated
.)y w-,ater vaport and raini in the carth's atmoý.phere, effective-ly masking the wind speed signature
gecnerated by ocea,, surface foami and waves. 'this attenuation significanitly aft- -cis the Ability (of
the SSMI' I to rCL~ieve ;icc'Jrde winds in and around typhoons and hurricanes where rain and
huavy clke. I arc. prc-vah-nt. Figuwe 8. 17( shows the rain-flagged areas of typhoon Wynnc ,is it
aopeaft-d or. Jt.iy '25f, 1987 ot approximatsely 2040Z. Ac.ýording to :iircr~ift reconnaissatice data
coilectt :i by the, Air Force/Navy Joint Typhoon Warning Ceniter. imoundary enclosinig the

ran -fag ara errcpondi roughly to the 25 in/s viind speed radius of- this stormi. Visu~ally

nb1- .rved winds f; -, the ;Lilcraft ikar the stormn center were reported to be as high as 60 mins.
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TABLE 8.7

WIND s'EEI) DSCONrINUITY ACROSS THE D-MATJX ZONAL BOUNDARIES

I Cimate,
1 2 3 4 5 6 7 8 9

1 0 0.111.4 0.5/0.6 ---...

2 0 --- 1.2/1.8 .......

3 0 -- 1.9/1.6 2.0/1.5 ....

4 0 1.4il.2 - 0.8/2.1 --

5 I ~0 -- 0.4/1 .3

6 0.5/1.5

9

9_ ._1_ . ..

AvIirage (r/.q)/Standa.-d Devintion (m/s)

ARIM An appax-a"i SSM/i scan positio, ',ias iF. the D-matrix winds has been observed using the
residua! plot Tho-'n in 1.igure 8.13. \ pitt h, yaw and roll error of the SSM/I is believed to be
partly responsible for thi-ý phenoriena. This question is discussed further in another section of
this report which addresscs the gwlolocation problem. When the geolocation problem is solved,
a slight adjustment of th.e' D-matrix ccefficients may be necessary.

In cJo, eluding this section, it should be noted that two and possibly th x serious
limitations of the 9-version original. P--matrix algorithm warrant use of an alternate algorithin.
As will be shown in the next section, i'oth the high wind bias and 7onal discontinuaty problems
can he partially solved using a-1 alternate D.*matrix type algorithm which itilizes a single set of
co- icients, inste;:d of ninc, withou• a loss in thc specified + 2 mis ac uracy.

8.6 IMPROVED AUGORITHM

A single D-..rqtrTi algorithm, valid at all latitudes and during all season:, was developed
and found to meet the +- ? mi/s accuracy specificatioit under rain-flag 0 conditions. This globai
wind spczd algorithm was devcloped using 90.3 randomly selected SSM!l buoy p,.ir, (100 from
cach of the 9 climate codes). Out tof this total, on!y 708 rnatche. air- (raia-flagg,_-l either 0 or
1) were ;-etaiacd to develop the new algorithin. In 1'is way, tht c :;ients for the algorithm
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were gencw.ald using some data affected by rain (rain-flag I data), making the global algorithm
somewhat tolerant of rain.

A weighted linear regression [10] of the buoy wind speeds on the coincident SSMA
brightness temperatures, of TE,~v, Trv Tw~, and Tm~w, was done using the data set described
aibove. 'The reason for using T9 1 9 ~v instead of T 19H wRil be discussed later in this section. The
weights used in the reji,>ession were. set equal to one ove. the square root of the wind speed
density function (see Figure 8. 1), evaluated at the particular buoy wind speed. This type of
weighting has thic effect of making all wind speed ranges equally important in the creation of the
new algorithm. In contrast, the unweighted regression used previously tends to emphasize those
wind speed rang,-s with the grew-test amount of data and de-emphasize the ranges where little data
was collected. This ;s precisely wihy the original D-matrix performed well near the. global
average wind speed of17 rn/s and performed poorly (5oth in terms of SD and Wias) in the high
(> 15 m~s) range.

Performance of the alternaie global D-matrix algorithm, under rain-free conditions, is
shown in F.' uie R 14. The data used in this figure is comprised of withheld data taken from
all 9 of the origir . D-matrix climate codes. In other words, the global wind speed algorithm
vas generated using one set of data and tested on another independent set. From Figure 8.14,

the retrieval SD is found to be 2.0 mis which meets the ± 2 rn/s accuracy specification.

Although the regression line in Figure 8.14 shows slight errors in bias and slope, true
perfor-mance of the alternate global wind speed algorithm is best illustrated by the interpreted
reSdAv 0 n1,%tA rw,.i x;" .. -rS'j. %hI ihA- M11ie hdui ir- mief nt I-n har'h e v,i% . A k~;-............. ...... ~ *5L. lr% .A 5J.jI __UI--------._... Ot ...1 .11iC; .. 0% W"1Z.

*dO associated with the original D-mnatrix retrievals has been removed by the weighted regiession
4Ptechnique. The sensitivity of t ~e gIh 'lal wind speed algorithm to rain has not improved

signiificantly as revealed by Figures 8.16 and 8.17. The feasibility of special D-matrix
algorithms designed for use under rainy conditions will be addressed later in this section.

It is useful to know what SSM/I channels are most important in the )retrieval of wind
speeds. This aides in the constructiorn of new algorithms and indicates what retrieval accuracies
are possible should an SSM/I channel become inoperative. To this en 1, the 7/08 matched pairs
of data previously described were again used to create the best global multichannel regression
algorithms where the. number of channels varied from I to 5. The results are summarized in
Table 8.8 wvhere the SD shown indicates the rclat've retrieval accuracy.

it is interes.ting to note thait ihe best 4-channel algorith.n (the proposed alternate global
algorithm) does not use the samet. four channels as the original D-matrix algorithm. ''he
piopo-sed global algorithm uses Tja19v instead of the T,19 ,1 chaniiclI employed by the original DI-
matrix algorithmn. If 'BI9Hg h- d been chosen instead of T99v the performance would hav'e been
slightly worse with an SD ofl 2.1 m/s under rain-flag zem conditions. As in the original
algorithm; the altemnatr global algo~rathin aist. ý.es the 4-channiel 1)-matrix sir'ze it represents a
good comnpromi e between calcuiation efficiency and retrieval accuracy.

3-24



C,

4.

GLOBAL DMATRIX

25 r-rT-

20 *

10~

15

COR (R 08
r • . 10 15,20..

. BU OY WINDS -1-o
F. - o t.orithmS5 :• •S.D. 2.0 rn/s

.~ .. *'.. ,* ocoRR (R) 0.88

0 e"L ,,... l ..I

0 5 10 16 20 2

BUOY "WINDS (Mv/S)

Figure 8.14 - Performance of the global D-inafrix algorithm.
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TABLE 8.8 """

COEFFICIFNTS AND RELATIVE PERFORMANCE
OF THE BEST MULTICHANNEL D-MATRIX ALGORITHM .

NO._OF COEFFICIENTS

NO. _ _F_

CHAN. CON 19V 19H 22V 37V 37H S.D

1 44.38 ... -0.1495 ...... 5.0
2 195.07 ......... -1.5341 -0.9144 2.5
3 237.57 0.2613 ...... -2.0413 1.0092 2.3
4 147.90 1.0969 .. -0.4555 -1.7600 0.7860 2.0
5 148.25 1.0233 0.0678 -0.4692 -1.6859 0.7371 2.0

Should one of the four selected chamiels become inoperative, a 3-channel or 4-channel
algorithm can be constructed which would perform as indicated in Table 8.9. All algorithms _

coefficients in this table were ge"er"ted*. -- f tih saine dama set used to make the global
a!go ii0m.

In an attempt to get more accurate retrievals under rain-fagged conditions, special ,ain
D-matrix algorithms were ci-ated and tested. These algorithms were constricted using a data
set containing SSM/I-buoy pairs that were rain-flagged either 1, 2 or 3. The results are shown
in Table 8.10. Note that the low-frequency channels (19 and 22 GHz) were identified as being
"best" for the 1 and 2-channel algorithms indicating that they are less attenuated by the rain than
are the high-frequercy channels. The SD of the rain D-matrix retrievals under rain-flag 1, 2
and 3 conditions appear quite good. However, the results are misleading as indicated by Figure
8.18. This figure shows that the best rain D-matrix algorithm is simply predicting a near
constant wind speed of approximately 10 rt./s. The correlation coefficient associated with Figure
8.18 is 0.53, indicating that the algorithm can account for only about 25% of the oariance in
buoy wind speeds. The global D-matrix performance on the same data %et is shov,., in Figure
8.19. A fair number of the global D-matrix retrievals in rain are quite good. This is expected
since the algorithm was constructed using data that was rain-flagged either 0 or 1. Figure 8.19
also shows that the rain-flagged retrievals are typicaliy biased high and the correlation coefficient
of 0.27 indicates that the global wind speed algorithm performs poorly in rain as did the .special
rain D-matrix algorithms. Based on this analysis., it can be concluded that a special rain D-matrix
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TABLE 8.9

GLOBAL WIND SPEED ALGORITHMS WHIC:H (CAN BE USED
IF THE SSM/I LOSES A CHANNEL

AILGOR. COEFFICIENTS

ID CON 19V 19H 22V 7 37 S.D.

(3-Channel Algorithms)

1 198.66 X ... 0.0072 -1.5642 0.9227 2.4
2 2371.58 0.2613 ... X -2.0413 1.0092 2.3
3 -47.46 0.8133 ... -0.6816 X 0.2988 3.3
4 -113.06 1 8278 ... -1.1173 0.0419 X 3.7

(Revised 4-Channel Algorithms)

5 165.86 I X 0.7208 -0.4729 -0.9091 0.2983 2.1
6 213.29j 1 0437 -0.5325 X -2 5612 1.3443 2.3
7 93.68 -0.1989 1.1056 -0.7511 X -0.1703 2.5
8 124.65 0.1256 0.9607 -0.7236 -0.. 350 X 2.3

7" = Lost Channel I

algorithm is not required and that the global D-matrix algorithm should be used to calculate
winds under all conditions. It should be pointed out that 45 of the data points in Figure 8.18
do not appear in Figure 8.19 because the D-matrix value,, were above 50 m/s.

Although the D-matrix wind speed retrievals me't specifications under ra"r.4-fee
conditions, it has been sugge •ed that an iterati --type algorithm might improve retrieval
a curacy. Unlike the D-matrix algorithm, the itrrative algorithms are based or, a physical model
which accurately predicts the effect that both wind speed and rain have on the measured
brightness temperature. Since. the rain.dependence is known, its contribution to the total
brightness temperature can be effectively subtracted out making a more accurate wind speed
retrieval possible under rain-flee and lUght rmin conditions. However, a fuwidarmental limit on
the retevoq accuircy of any wind speed algorithm is determined by the fact that microwave
radiation at the selected SSM/I frequencie-s is heavily ateniated by rain. More spccifically,
microwave radiation emitted from the ceani surface, which contains ii.fonnation from which
wind spl*:d is interred, must pass through the water laden atmosphere b:fore being measured
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TABLE 8.10

MUJLTICHANNNE1 D MATRIX WIND SPEED ALGORITHM
FOR RAIN-FLAG 1, 2, AND 3 CONDITIONS

NO. OF
CHAN. CON 19V 19H 22V 37V 37H S.D.

j 32.98 .... -0.0979 .... 3P.6
2 81.87 -0.5612 0.2895 3.5
3 78.02 -0.6193 0.3045 ... 0.0597 3.5
4 86.37 -0.8860 0.4861 ... 0.2471 -0.1270 3.4
5 79.72 -0.8291 0.4689 -0.0324 0.2862 -0.1477 3.4

by the SSMIJ. If this important s.gnal is attenuated to a level below the SSM/I instrument noise
then accurate wind speed retrievals are no longer possible. The rain rate at which accurate
SSM/I wind speed retrievals begin to degrade, regardless of the algorithm, seems to be about
2 mm/hr.

SSMAI wind speed retrieval accuracy in tropical storms, typhoons and hurricanes is
ilmi~eir um n nMffiv fly the-' "in - .,,zUth I*,, I,,, tk, - ; I ,#.. f.1.ll-

* 22 and 37 GHz channels (55, 49, and 32 km). Wind speed gradients in the core regions of a
storm are typically on the order of 2 m/s per kilometer and can persist over a listance of 25 km
or more. Any SSM/I wind speed retrieval under these conditions would be a gross
underestimation of the highest winds present in the resolution cell.

In an attempt to gather additional high wind spe data for ihe validation, D-matrix
retrievals were compared with aircraft reconnaissance observed wind speeds mi the 15-25 mis
range near typhoons Letty, Cary, Thelma, Vernon ,and Wynne. The reconnaissance flights were
made during the typhoon season of 1987 by Aircraft from the Air Force/Navy Joint Typhoon
Warning Center. From this large set of data, less than 15 SSM/1-aircraft data comparisons tret
the criteria of being within 25 kIn and within 30 minutes of one anothet. Since only a few of
the 15 match-ups were for winds exceeding 20 m/s, the results are considered statizAcally
insignificint and am not shown. However, further analysis of this nature is need xt to validate
the high wind (>15 m~s) peleiriance of the D-matrix algorithm.

8.7 CONCLUSIONS

Although wind speed rearievals from the original versions of the D-matrix algorithm did
i-ot me.,.t !he accuracy specification of + 2 m! ;, regeneration of the D-matrix toefficieits using
standard linear regression fesulted in an algc *thrn whose retrievals did meet specifications.
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TABLE 8.1i

3ThJE RECOMMENDED GLOBAL D-MATRIX ALGORITHM

SW = 147.90 + 1.09069 - T - 0.4555 •T* v
- 1.7600 - T,,-, + 0.7860 - Twrrf

RAIN FLAG CRITERIA ACCURACY

0 Tonv - TW-,a > 50 <2 m/s
AND

TUg9V < 165

I Tom - Taj < ;10 2 5 Wds
CR

~ TimmH >' 165

2 TR37V - Tr < 37 5 -10 m/s

3 r,3  - Tv < 30 > 10,his

An improved global D-)matrix igvriithnm wfit. a single set of ccwTfficents has been m
develop'ld wP;'- meets retreval, d cu-y spec-Acfiatiows but does not have the zoaLX discontiuhity
and high y ;.tu bias lirrhi-donz' found in the originaJ 9-version D-iairix algorithm.
Coeffici- : in--flag rriteria for t'e. global algorithm are given in Ta.le 8. A.

. ", criteria was revis," to he more resLictive. aud the. global al -ithni now
us!s fobt.. J' thru 3, which ind(;Qtz retrieval icciracy SD'! of <2 .- s, 2-5 m/s, 5-10
m/s and > JG (mns, reqpectively fr. light of 4,hii_ redefinition it is perhaps more appropriate to
use the term accuracy flag iystead of rain-flag. Approximatc-ly 85.% of the time, all forms of
the D-rnatrLx aOgorithw c;mv be exputed to rctrieve ocean surface winds with ai accuracy of ±
2 mis. 7he remaining b% of the time, the ý2.=ene will be rain-flagged and re'ieval accuracies
will be worse than :± 2 mnl.

8.8 REFERENCFS

[1] J. Hollinger, R. Lo, '3. Poe, R. Savage, and J. "eirce, S.M .. nqor.Micwmt -
•j..eU1r's Guide, Naval Research Loratotry, Washington, DC, 120 pp., 1987.



'21 D. B. Gilhouen, "An Accuracy Statement for Meteorological Measurements Obtained
from NDBC Moored Buoys," in 1 J S '86 Marine Data Svst. Int. Symp_ , Marine
Tech. Soc., New Orleans, LA, April 30 - May 2, 1986&m -

[3] W. T. Liu and T. V. Blanc, "The Liu, Katsaros, and Businger (1979) Bulk Atmospheric
FPux Computational Iteration Program in FORTRAN and BASIC", Naval Research
Laboratory, Memo. Rep. 5291, Washington, DC, 1984.

[4] F. M. Monaldo, "Expected Differences between Buoy and Radar Altimeter Estimates of
Wind Speed and Significant Wave Height and ibeir Implications on Buoy-Altimetea
Comparisons," LGeohyso RA.s, vc-. 9?, no. C3, pp. 2285-2302, 1988.

[5] L. C. Schroexer and J. L. Sweet, "Merge and Archival of Sr .SAT-A Sattdllite Data and
In situ at Selected Illuminated Sites Over the Ocean," NASA Langley Tech. Memo.,
Hampton, VA, 1986.

[6] S. R. Book, SIA.IS._Tl.CS, New York: McGraw-Hill, 1977.

[/] )D. B. 6ilhocsen, M. J. Changery, R. G. Baldwin, T. R. Karl, and M. G. Burgin,
"Climatic St .naries for NDBC Data Buoys," National Data Buoy Center Pub., NSTL,
MS, 1986.

[8] W. 1. Pierson, "The Measurement of the Synoptic Sczle Wind Ovez- the Oce mr," _
___ ~V011. 80', OY

, [9) i•,gICS Aircraft Company, "Special Sensor hMicrowave/Imag-r SSM/I Critical Design
RtV*C',', vol. 2, Ground Segment Report, pp. 117, Los Angeles, CA, 1980.

[(It] N. R. Draper an-id H. &mith, Aplied Rerssi(' Analysis, 2nd ed. New Y-,rk: Wiley,
1981.

[I] W. S. Olsor,, priv:te communication, University of Wisconsin, Madison, WI, 1988.

j12] W. L. Jonrs, et al, "Airborne, Microwave Remote-Sensing Measurements of Hurricane
Allen," 5, vol. 214, 1981.

3



Z.

SECTION 9

LAND PARAMETER ALGORITrHM VALIDATION AND CALIBRATION

by
Marsha~i J. McFarland

Professor
Deparment of Agiicultural Engineering

Texas A&M University

and
Christopher M. U. Neale

A&sant Professor

Utah State University

contributors.
Matthew Batchelnr, Dennis Hill, Robert Miller

Jeffrey Miller, Ric~hard Miller, Sanjay Splem, Susan Auinbcrg
Departments of Agricultural Engineering, Meteorology,

and EectricgJ Engineering
Texas A&M University

and
Bruno G. Gerard

Department of Agricultural and T-rigatim.' Engineering
Utah State University

A0b

4. . . .. ... . . . . . ..P.. s - - =. - ._ . . .



7~1
9.0 LAND PARAMIET~ER ALGORflIIM VALIDATION AND CALPMRATrION

* 9.0.1 Data iA SSfwelApr an

The calibration~ and validation )f algor-ithms to retrieve land paraw~c.Lers from the SSM/I
passive --iicrowave data required the development of databases for several land areas of the
world. For example, test areas over tropical jungles, desrts, and agricultural areas were
established for the. development of land surface type classification rules. Additional test areas
were developed in the United States where groun, truth was available from surface observations.

The Hughes Early Orbital Display System (HEODS) software was used for- the selection
L f satellite ov--rpasses for areas and dates of interest. The SSM/I data of interest were fur?.ished
on 9 track, 625~0 bpi magnetic tape from the Naval Research Laboratory. Data fromn thu- tapes
were downiloaded to files on a clustered computer system consisting of a VAX-8300, a VAX-
8650, and a VAX-8890. The S or D'hta Records (SDRs) were pre-processed to strip themn of
Lnter-record blank spaces, heaoer records, and other non-relevant information. T1hese files,
saved in the conical scan format for the test areas, were denoted as SCAN files. The SCAN
files for the test areas were backed up on magnetic tape. Fi vironmental Data Records (EDRs)
were processed in a similar manner. Images were created from SCAN files for visual screening
on an International Imaging System operated Ps a peripheral on a VAX-750.

The SDR SCAN files, which consisted of the seven channels of inicrov. ave brightness
ur nperatures and the latitude-longvitude tags for each pixel, were then loaded into a relational

* U*LdtAkLW, al D~. L.AULUUr- dfU lUflgiMUC, WeC rulaiion of ine iwzB, was used to facilitate the
development of the ground truth data base coircident with the SSMII database. With the
specification of latitude and longitude coordinates, ail SSM/I and ground truth data could be
assembled as one file.

Data sets of coincident SDRs and ground truth were extracted from the RDB in the form
of one-half degree laitude and longitude cells. These CELL files contained the avenage of all
data with a latitude--longitude location in the cell. Sonrk_- CELL files we: ý-, also cre-ated for one-
quarter degree latitude-longitude boundaries. SPOT tiles were created by matching the closest
SDR file of seven camnnel-, of brightness temperatures with a specified latitude and longitude.

The primary source of ground trutth consisted of climatological data from the National
Oceanic and Atmosph-ric Adrninistratioai (NOAA) cooperative observer network. The
Summaries of the Day Elements (MD3200) from the reporting stations wer, provided on 9 track,
6250 bpi magnetic tape fromk NOAAINESDIS, Asheville, NIC. These daily elements included
maximum and minimum aic wmiperatures, rainfall or water equivalent of snow, daily snow
depth, anid toWa snow accumulation. GOEIS satellite imagery from the Department of
Meteorology at Texas A&M University was used to visually vu-rmn thr hraa for cloud and
synoptic weather conditions.
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9.1 LAND SURFACE TYPE CLASSIFICATION SCHEME

o9.1.1

The EXTLND module, described in the SSM/I User's Guide [1), is a subset module of
the entire environmental parameter =xtraction software. Surface types over land are classified
within EXTLND usi -ig SDR brightness temperatures so that appropriate parameter extraridon
algorithms are used. hitial analysis of EDR's resulting from the original EXTLND algcrithms
indicatd numerous misclassifications with respect to land surface types. One of the most
common misclassifications was the indication of rain when no rain or ciouds were present in the
scene. This was due to a flag within the original OXLND logic which compared the brightness
temperatures in the 37 GHz and 19 GHz channels. !f the 37V brightness tempcratur"s were less
than 19V brightness temperatures, a heavy rain event was classified. However, over naturally
occurring surfaces such as vegetation, bare soil, and deserts, the brightness temperatures at 37V
GHz were frequently found to be less than those at 19V GHz.

In addition to misclassification within the F.XTLND logic, it was imperative that surface
types be differ.ntiated prior to the creation of calibration/validation databases. Tie reasons
were:

1. The calibration/validation project requhred parameter extraction algorithms over
different surface types. Some extraction algorithms are mutually exclusive, such as surface
moisture and snow parameters, but require the proper identification of those conditions- Otwher
-u�-tce tMy"pesVsIUII gstn..n .watew, do nuot nquire the extraction of surface parameters. In, addition, during the course of an annual cycle for an agricultural r gion. such as winter wheat
production areas, a natural change in the land surface type s, ccurs Surface conditions would
begin with dry snow ip the middle of the winter. The snow wot 'd urdergo morphological
changes and additional accumulation in the snow accumulation phase. With the onset of warmer
weather, the snow would enter the ripening phase, again with pronounced responses in the
microwave frequencies and polarizations. With complete snow melt, a flooded or wet soil
surface =iy occur. Spring tillage or -,reenup of winter grains would be associated with arable
land, with varying degrees of soil moisture. Incremse in vegetation canopy density would
decrease the response to soil moisture, but theoretically should increase the accuracy of the land
surface temperature retrieval. From harvest to snow accumulation, the cycle continues with bare
soil, developing canopy of the wintei wheat, frozen and unfrozen soils, and si Dw accumulation.
Rains and varying atmospheric water vapor and liquid water contents occur throughout the entire
year.

2. Over land, there may be a large variability of natural xurfacc types within an SSM/I
footprint. These inc!ude different degrees of vegetation cover, topographic claracteristics, ar.if
the prse.nce of water bodies s -ch as lakes and reservoirs. Water bodies can increase the nois•-
ih parameter extraction regrsion data sets for surface meisture and land surface tenvIper•t•rr
if included. As they have a distinct detectable signature in the 85.5 GHz channels, their
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classification and removal from the data sets would ultimately increase the con.idence in
parameter retrievals.

3. The surface moisture retieval algorithm was based on an apparent emissivity
(19H137V). The degree of vegetation cover within a footprint affects the scnsitvity of this
variable with respect to moisture at the soil surface, thus requiring further categomzation.

9.1.2 Land Surface Type 'Csifbim ' n etodology

9-1.2.1 Observations

The approach used in the development of the classification rules can be considered a
combined physical/statistical method. Channel brightness temperature and polarization
differences along with statistically determined threshold values were used to form the rules. For
a particular surface type, the channel combination or polarization difference selected had a
microwave physial basis. The basic land surface types developed were selected to fur-tien with
th2 land surface parameter extraction algorithms being validated in a parallel effort and presented
in Sections 9.2, 9.3 and 1.4 of this report. Additional land surface classes are possible, but
would probably be subsets of the major classes presented herein or anomalous cases.

9.1.2.2 Methodology

The CLIPS expert system environment, created by NASA, was used to develop the land
SuLac, LyVJ, ,A hM M MIgJlui1s. An rtxr•t.n syNsim rnvirnnm.n_ Wa. SeIe-_.. for Thit.

* purpose because it facilitated the addition, removal, or modification of rule as well as brightness
temperature and polarization difference thresholds without the necessity of recompiling the
software. code. The CLIPS shell and the rules for classification were embedded within a main
program module written in the C programming language.

The initial set of classification algorithms incorporated th - logic and thresholds of the
original EXrLND module, described in the SSMII Users Guide [11. These classification
algorithms, and their subsequent modifications, were used to classify various land surface types.
Images of the classifications were used in conjunction with geographical and navural Y:ei.ource
maps to determine the accuracy of the classification scheme.

Training areas were selected for the various surface types in different reg ons of" the
world and the United States. For example, control areas in the Ama&,on and Congo jungles were
used to identify the characteristic microwave signature of dense vegetation in the SSMII
channels. Control areas in the Sahara and Sonoran deserts were used to identify :be desert
signatures. A summary of the main training (contiol) ajeas is shown in Trble 9.1.

SDR data from several orbits over these training a i-s wer- grouped according to
overpass time, cloud condition, and scason. T7e SDR data us(-d consisted• c~f the sever
brightness temperatures of ihc A scan concentric fktprints. The value fmr ale 85.5 (Gri



channels assigih "d to the concentric footprint consisted 1 an average of the surrounding eight
85.5 GHz footpi ints from A and B scans. Several combinations of SDR hrightness
temperatures with respect to frequency and pola-ization 6ifferences were calculated. These
combinations are zihcwn in Table 9.2.

Basic statistics of brightness temperatures and polarization differences were obtained for
each surface type. These basic statistics included mean, standard deviation, mode, skewness,
distribution type etc. i set of new rules, identified th ough the statistic;-' analysis, were
developed based on brightness temperatures, brightness tr nperatur, combinations, and
polarization differences. New rules were added tc the expert system module and tested against
independent data sets. These data sets were either for different geographical areas with similar
characteristics or for differe.nt seasons.

Aother source of ground truth infomiation for the validation of classification rules was
the major land resource area (MLRA) classifications of the Soil Conservation Service [2]. These
classifications grouped a.-eas with similar characteristics with respect to topography, natural
vegetation, land use, climate, soils and water resources.

TABLE 9.1 A SUMM,,RY OF SOME CONTROL AREAS USED IN SURFACE TYPE
IDENTIFICATION

Control Area Surface Type ! cation Boundaries
, " ¢0 Ai,, n A TV,.,•0.M-. . . , r, o ,v

SE Corner: 4°S 52'W
B Dense Vegetation Congo Jungle NW Comer: 1'S 20*E

SE Comer: 3"S 23°E
C Dense Vegetation Amazon Jungle NW Corner: 5°S 69oW

SE Corner: 8*S 66°W
A!nawon Basin De-se Vegetation Amazon NW Cc-'-er: 0OS 64°W

SE Con-.r: 100 S 50 0 W
MLRA #130 Dense, Vegetation Appalachian NW Comer: 36.3"N 830 W

SE corner: 35.3"N 82°W
Appa'achian Dense Vegetation Appldachian NW corner: 40'N 87°W
Forest SE corner: 33"N 80'W
Central PlMins Mixed Vegetation United States NW Comer: 50"N 105*W

& Soils SE Corner: 32°N 95' W
MLRA #30 Semi-Arid Veg. & Mtojave Desert N\V comer: 35.5"N 118°W

Soils California SE corner: 34.5°N 116'W
S,fiara Desert Sahana, Libya NWN comer: 16°N 18'E

SE corner: 140N 21 0E
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TABL.E •.2 COMSINATIONS OF MICROWAVE BRTGH') ziSS TEMPE"RA FIJM P USED , -
FOR O IF. CHARACTFRIZATION Of LAND SURFACE TYPM"S

0,22v'- T19v) [a] (Ti9V + T37V)/2 - (Tr911 + T37H)/2 [b]

(T19V 4- T37V)/2 (T37V -T19V) [c]

(7T8V - T37V) [d] (85H - TI37) lei

(T37V - T37H) [f] (T37H - T19H) [i]

(-i9V -Ti9H) [iii ,185 .' - T8MW.

2tt(crS in bracke.ts [ ] indicaat, how the combination is referred iv
throughout the text.

9.1.3.1 Dense Vegetation

u$nj vjtmpy LAnvirus m comirnnimmi rkn iP aunn i. ver n*

9 well as from th. underlying soil surface [3]. At the SSM/I chanre? frequencies (19.35 GHz and
greater), vegetation canopies can be trIeatei as semi-infinitL. mediums with respect to ernission
properties. Accordi.ig to Ulaby et J. [3), the brightns te mperawure of a weakly w.,ttering
media above a semi-infinite medium ami be simplified to:

S'I•..,{Op)= (1+Pr.(O,p)IL(•))(1 -I1/0))(1I-a;TI\ + (1!-r,(o,p)'r,'L(,•,) (1)

wihere:

P, = the air-soil reflectivity
L(O) = the loss factor of the vegetation c•anopy
a = single-scattering albedo of vegetation
T, =physical "emperatutr of the vegettion layer
T, physical temperature of the soil surface
O incidence angle
p - polarization index equal to v or h

"The loss factor L(O) depends -,n the hig.,ht of the vegetation layer:, te incidence angle
anri the microwave frequency. For frequencies above 10 GHU, tew optical thickvess is large ard
1(0) > > 1. Equation (1) can then be approximatuAd by:
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Th . implies that the canopy brightness temperature is independent of the incidesice angle
0* , ann of aritenrma polasi~zation if a is isotrolpicz. T~his tas certainly been true for the SSM/l
frequencies, in tb.ý case. of very lossy canopies such as dense jungle. Brightness temperature
I olarination differences at all frequcrncies have been very small for pixels over the Amazon and
Congo j itn& g1-. .L3wever a dependence of brightness temperature with frequency has been
observed which implies that equation (2) is only a first-order approximation of the emission from
vegetation for the SSM/I frequencies.

Table 9.3 summarizes the main statistics for selected channel combinations over dense
vegetation, -control areas. Thes locations, selected from natural resource maps, avoided large
rivers and lakes. Figure 9.1 shows a histogram of average brightness temperature polarization
differowr.:s in the 19.35 and 37.0 G11z freqjuencies for combined ascending and descending
-overpass data over control areas A anJ B in the Amazon region. The distribution was close to
a nc'rtual di MribLution with a mnean polarization difference of 0.67 K (combination Jjb] in Table
9.3). Brightness termperature.3 in the 37.0 V Gffz channel were on the order of 4 K lower thaia
in Lhe '9 35 V GW. Janel while the 85. 5 *V GJ~z brightness temperatures (l's's) were around
2K highcr than ia the 37.0 V GH2z channel. No physical explanation was found f'or this "dip"

in the 37 (Th1ft brightness terr-neratures over dense vegetation.

By selecting twice the standard deviation as the upper and lower limits for the normal
distribution of brightness temperature combinations shown in Table 9.3, 96% of all occurrences
will f~l1 hetw-Pln thnvp 1iwmite 79'2r-t 4%.%Oeva vgk (.J . +l^- Ax co- areas---

'jlvegetation, the upl- r limit of average brightness temperature polarization difference in the 19.35
SGliz and 37.0 Gf-Le (combination [b)) was set at 1.9 K. The lower limit was around -0.4 F'

using the sainie rationale. Although true negative polarization cifferences, are physically
impossibie from horizontalJ surface ., a small amount of samch cases were observed in the SSM/I
data ever dense vegetation. Thi~s could be due to random noise within the individual channels.
As the energy being e-mitted from dense vegetitior. is essentially def*1arized, it is possible that
the brightness temperatures in Uthe horizontal channels can become greater than in the vertical
channels an some occasions, but still be within. the acceptable variability of the instrument. A
second possible explanation involves the structure of jungle vet !tation. Microwave energy
emitted frornOcnse vegetation will be isotropic. If any pr~tdorninant orientation is present in the
vegetation, the emnitted etiergy will have polarization differeace-s. For a *ropical rain forest, th
tall, % -AticaJ bree. trunks co'ild provide the predominant orientation. If this were the case, thec
framne of reference for the tiorizontaI arnd vertical polarization-) would reverse. TI ! largest
component of the emitted tat.iation would be In a plane pei-pendicular to the vertical tree trunks.
For the frame 0 r reference of the v -rticaly and horizontally polarized brightness temperatures
of the SSNVA, tile horizontally polarized brightness temperature could exceed the verticatll'
polarized brightness temperature. Based on the combinations shown in Table 9.3 as well as
statistics for single channels, the. title to classify dense vegetation becomes (all thrcshoi,. and
temperatures in Kelv~n):

9-6



(2-

TA-I-,.E-3T-- STATISTICAL N-UF'R SELECT l BRItJHTlIESS3---
TEMPERATURE COMBINATIONS OVER DENSE VEGETATION CONTROL
AREAS

CO- OL AREAS AW& "
Go-mb-hation Mean SD) "'---T6-ow";r _U .T Ov~erpass-

Limit Limil Calendar
(K) (K) (K) (K) Date

22V- 19V TaiT --. T7F T1.T -4.00 0.52.D988)5D 57D
(I b] 0.67 0.53 -0.39 1.73 58D, 59A2 2

37V-719V [7 -5.6 H---M- 1987)
M76D, 178D

9SV-37V L[d 2.46 -T.73 U.WJ 4.92 222A, 242A
____ ___ ___ ______ ___ ___ ___ 243A, 2W'-A

8511- 37H Iel 2 .58 T .0 0.52 4.64

CONTIROL AREA C

9____.3__ - L9H 37W ..j ... 4' 0.49 -2-- 1V .. ..
2 2

85V 737V Td] 3.26 1.28 0.70 5.82 180A, 222A

85H-37H [e] - 3.04 0.87 30-l?7g 23 A

* -_ AZON __ASIN
"-TEI----- 0.17 ... 0.54 -. '- 525215

2 2

MSV - 37V [a] .. .30 .f- -"'2 -- Lg
85" - 37H Idi ... U9- i244.7B4

E -AI'.- k ppalachia orests
Mean SD Mean SD

L•3jbl 1.• •I57---f2 1.41) 0.40--1 246

2 2
247D
225A

' -7 - V [ - 22 - .7------. ---- . 2 .7A
244A

"3TV [d] 1.9 �-1 l~"- T-:-- 245A
248A

- [1-T 2--- -6--TT- 250A
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*i Dense Vegetation
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0

L- 0.20-__ ~

0
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cr 0.00
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Ii-
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ID•0.00

-0o.88 -0.13 0.63 1.38 2.13• 2.81 3.63
(T19V f T37V)/2 - (T19H I- T37[7/2 (K)

* Figure 9.1 Distribution histogram of average polarization in the 19.35 GHz and 37.0 GHz
channels over dense vegetation.

22V- 19V < = 4.0 [a]
((19V + 37V)/2.0) - ((19H + 37H)/2.0) < = 1.9 [b]
85V - 37V >:= -1.0 [d]
85H - 37H < 4.5 [e]
19V > 262 [g]

Conditions [a] and [e] check for the presece of large quantities of water on the surface
within the footprint and will be discussed later. Condition [b) is the check for low polarization
differences, the characteristic microwave signature of denie jungle vegetation. Condition [dM
is a precipitation flag and is based on the lower limit for this channel combination shown in
Table 9.3. The adjusted threshold of -1 K is suggested instead of 0 K (lower limit for the
disiribution shown in Table 9.3) to ensure that only precipitating clouds are classified for the
precipitation over vegetation rule, also discussed later. Condition [g] is a check for above
ftrezing temperatures in the vegetation canopy (for a single-scattering albedo of 0.04).
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"Table 9.3 also premsnts brightness ternperatmui combination statistics for additional (and

indcper.dent) orbits over control area C of the Congo Jungle and a scene encompassing a large
portion of the Amazon basin For the latter scene, data corresponding to footprints sensing
rivers and other non-vegetation classifications were removed from the data set. These results
are not significantly different from those of control area A and B. Results from the independ,!nt
data confirm that this rule properly classifies dense vegetation situations.

In the United States, the closest vegetative covers to dense tropical jungles are found in
the hardwood forests of the Appalachian mountains. SSMII data obtained over a small area of
the Appalachian mountains as well as the Major Land Resource Area (MLRA) #130 are also
shown in Table 9.3. The MLRA 1? esource rugion consists of dense forests of different oak
varieties, white pine, hemlock, re. spruce, balsam fir and se,-eral species of understory
vegetatiJn [2]. The polarization differences were about 1 K greater than for the dense. jungle,
and resulted from a lower density canopy.

9.1.3.2 Dense Agricultural Crops and Rangeland Vegetation

This rule applies in situations where soil is totally or partially c( -ered by vegetation
within n n SSM/1 footprint. Such occ,,rrences are common in agricultural regions with crops at
different stages of growth or canopy cover; on rangeland with grasses and shrub type vegetation
at peak gro,' th, or on combinations of these. This category of vegetation is still considered
dense with, ýespect to st. face soil moisture retrievals. As discussed in section 9.3 of this report,
the snsitivity to surfac,- moisture i% very small for ave,-pe Tvilariirrtinnq iv. the 19. '5 G(JI 2Tan n

37.0 Gliz of less than 4 K, rendering retrievals physically impossible. Examples ot such ,-egions
, are:

1. Agricultural areas and girasslands of the Central Plains of the U.S. and ;ome
rangeland of the western U.S. at peak vegetation cover.

2. The "cerrado" vegetation regior, of central Brazil. These are savanna tye areas
with extensive grasslands mixed with small trees and !hrubs.

3- T,..: Savanna regions of Africa at peak vegetation cover.

The green vegetation density, which can be quantified by the Leaf Axea Index (LAI), will
vary considenbly throughout the 3) ar in these regions, according to season. The pe-k IAI for
an agricultural region in the Centraw Plains can occur daring the months of May through August,
depending on the latitude and type of vegetation, and if the vegetation is grow ig under r.",.a.,
precipitation or irrigation (crops). Vegetation densities in grasslands and savannas will also vary
according to the precipitation amount and distribution throughout the year.

"Table 9.4 shows ,he mean and standard deviations for some of the main SSM/1 channel
combinations required for characterizing dense agricultural and rangeland vegetation.
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TABl.E 9.4 MEAN AND STANDARD DEVIATIONS FOR BRIGHTNFSS TEMPERATURE
COMBI!ATIONS OVER DENSE CROPIAND/RANGELXND VEGEI'ATION
COVER IN DIFFERENT AREAS OF TI E WORLD

Central Plains Cerrado Region African Savannas
Combination Mea. SD Mean SD Mean SD

(K) (K) (K) (K) (K). (K)

22V - 19V [a] -1.12 1.24 -0.12 1.03 -2.49 0.98

(19V+37V) - LI9H+L3- H [b] 3.20 0.63 3.57 0.37 2.84 0.7
2 2

37V - 19V [c] -3.54 0.83 -4.22 0.69 -4.42 0.85

85V - 37V [d] 1.52 0.96 2.32 0.75 2.08 0.71

85H - 37H [ej 2.32 1.03 3.20 0.52 2.93 0.77

The dense agricultural and rangeland vegetation "~n he c2ssi-fie,•,• ,,•6.1 h f ..... .

22V - 19V < = 4.0 [a]
1.9 < ((19V + 37V))/2.0- ((19H + 3" 1)/2.0) < = 4.0 [bl
85V - 37V > = -1.0 [d]
85H - 37H < 4.5 [e]19V > 20,.0 1g]

The 4 K upper thre-;hold for the average polarization in "'e 19.35 GHz and 37.0 GHz
channels, though slightly lower than the mean plus twice the standard deviation limit for that
distribution (approximately 4.2 K), is the polarization above which sensitivity to surface moisture
begins to occur (see Section 9.3).

9.1.3.3 Soil Rules

Passive microwave emission from a water surface is highly polarized, with an emissivity
of about 04 for the 19.35 GHz horizonraily polarized channel. The emission from bare soil is
.%Iso polarized, but to a lesser extent, wi&h higher emissivities (typically 0.9 and above in the
horizontal channels for a dry surface). The influence of water in an essentially bare soil is to
depress the brightness temperatures and to increase the polarization difference-. If vegetation
is present, the vegetative scattering decreases the polarization difference. Therefore, the soil
riles were developed to classify a dynamic combination of bare soil, water in or on the soil
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surface, and different degrees, of vegetation cover. The n.,iural vegetation cover varies as a
function of season and the soi water content. The water preswent on the soil surface varies aLs

* a function of the rainfall ,nd thi hydrologic rvs! )nse. Tn - n, t effect is a broad range of
brightn.ss temperatui . and )olarizat n dii i-ereraces within this class. T)-se. range-s are.
functic , also of frequenc, du to c variation of the real comp rient ( r tht electric constant
with frequency. The dielectric constant -f , iater .s higher at longer wavelengths (lower
f, quencies). The dcpth of the emittixi, layer is also greater, the h Oger wavelLngths.

An SSM/I fou print with fecreasing vegetation cover is characeriz•.d by average
polarization diffe rences at 19-35 GHz and 37 GH7 angii Z from 4 K to 19 K, with polarization
increasing as more soil i 'radiom,'t icc-ily" isiblk. This ra'ige v s dkvid~xl into two large sub-
groups. The arable,- Mi classier ,aon with average polarization aifferences from 4 K to 9.8 K
(using 19.35 and 317.0 GHz channels) and t!;e semi -arid classification with average iolarization
differences ranging fro-, 9.8 to 19.` K. This was done because most SSM/I footprints in the
latter grotp, were idetaified fre MLRA re,-;*ns found in dhe western Unte-1 States (Arizona,
Nevada, Utah, and Califoniia) in v-hich a semi-arid, desert climate is predominant, and
vegetatlon is s;parse.

During the development of thi surface moisture .etrievai algorithms it was determined that
the two large polarization sub-g oups mentioned above needed to be firti.er broken down
according to vegetation density. This .,as due *o the effect of vegetation density on thfc
sensitivity to surface soil moisture and the need for different retrieval equations according to this
SerAsiuvini. JLJ[Ais will LKM IUIUIErI MAJII IL. &1.W U11U"I LAM 311VISL ZI.1I 111W~.

. 9.1.33.-! Dry Arablc Soil

The average 19.35 and 37.0 GHz brightness temperature polarization differences are-,
shown in Figure 9.2 for the Cent-al Plains of the V A States under the arable soil heading.
Statistics are shown in Table 9.5 for the summer and winter season separately. Fvotp.ints
influenced by rain, snow, water or dense vegetation cov . were removed. The iarger influence
of vegetation e ,nng the summer season due to natural vegetatic, and crop cover is evident by
the lower mean of combination [b). During the winter, the soil is mostly bare which mesuls in_
: .gnificattly larger polarization differences in the 19 GHz and 37 GHz chiannels The upper
tnd lower limits contained in Table 9.5 for both seasons were ,tsed to defint. the range of
poiar -ation for arable soil. Thus, the classification rule fCr dry amab!' sAil L:.

22V - 19V < = 4.0 [a]
4.0 < ((19V + 37V)!2.0) - (( 9H + 37H)/2.0) < = 9.,. (b]1
37V - 19V - -6.5 [c]
-5.0 < = (85V - 37V) < 0.5 (d]
85H - 37H < 4.2 eilL J

Conditions [a] and [e] check for flfedLd conditoans or water bodies and w.ii be
discus.sed later. Condition [b] classifie, the i rea in terms of brightness tempe.,ai.re polar.-izatk.m
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differences, condition [c) is a snow flag which will be discussed later, and condition [d] is a rain
and surface moistuve flag which also will be discussed later.

0_
TABLE 9.5 BRIGHTNESS TEMPERATURE COMBINATION VALUES FOR THE

CENTR.%L PLAINS STATES OF THE U.S. CORRESPONDING TO THE
ARABLE SOIL CLASSIFICATION

Box size: NW corner: 50'N 105'W SE corner: 32°N 95"W

JUMI0lEk SEASON

Combination Mean SD Lower Uipper Calendar
Limit Limit Date and

(K) (K) (K) (K) Node

19V - 22V [a] -1.90 1.31 -4.52 0.72

19_V±32Y, - (12,H+7 l[b] 5.72 1.25 3.22 8.22
2 2

(1987)
37V-lQV ' 0.94 -,7 -. 711, 222A

85V - 37V [d] -1.17 1.15 -3.47 1.13 235A
244A

85H - 37H [e] 1.30 1.61 -1.92 4.52 253A

WINTER SEASON

22V- 19V t[a] -1.47 0.94 -3.35 0.41

fI9M - (92 3H7H) [b] 7.34 1.27 4.80 9.88
2 2

(1988)
37V - 19V [c] -4.06 0.99 -6 04 -2.08

55A
85V - 37V [d] -2.17 1.25 -4.67 0.33 59A

95H - 371H [el -0.87 1.79 -4.45 2.71
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9.1.3.3.2 Semi-Arid Rule
41

___ The semi-aid classification corresponds to areas where natural vegetation is sparse and
of a desertic type. A typicai example of this type o-' vironment is MLRA region #30 [2], the
Soncran Basin and Range. Most of this area is government owned and consists of thin stands
of desert vegetation, mostly Bursage, Joshua tree, juniper, yucca, and cactus. Grasses grow
only in years with favorable moisture conditions. T'he histogram of the brightness temperature
polarization difference distribution is shown in Figure 9.2. Table 9.6 contains the statistics for
the main channel combinations.

Polarization Dependence of Different
Surface Types

0.4
S05Dense VegetationS0.35

03 Dense AgricLtfurol and Rongeland VegetationS0.3
o

"6 0.25 Arabl Soil

___ ~021 A Pmi - rid

o 0.1 2

.~ 0.5 Il/Deseri
•0.05-

-5 0 5 10 15 20 25 30 35 40 45
(T19V + T37V)/2 - (TI9H + T37H)/2

Figuie 9.2 Polarization delendence in the 19.35 GHz and 37.0 GHz channels to different
surface types.

Based on the estimated uppter and lower limits, the threshold values for the channel
combinations which best classify semi-arid conditions are:

22V- 19V < = 4 [a]
9.8 < ((19V + 37V)/2.0) - ((19H + 37H)/2.0) < 19.7 [b]
85V - 37V < 0.5 [d]
85H - 3711 < 6.0 [e]
3711 - 19H < -1. 8 [b]
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TABLE 9.6 STATISTICAL ANALYSIS RESULTS FOR SELECTED BRIGHTNESS
TEMPERATURE COMBINATIONS OVER SEMI-ARID AREAS, MLRA
REGION #30, BASED ON DATA FRZ)M 19 ORBrrS

Combination Mean SD Lower Upper
Limit' Limit'

(K) (K) (K) (K)

22V - 19V [a] -2.08 3.60 -9.28 5.12

.(19V+37V) - (19H+37-!) [b] 13.61 2.02 9.57 17.65
2 2

37V - 191' [ci -8.00 1.30 -10.60 -5.40

5V-37V [d] -3.17 2.18 -7.53 1.19

85H - 37H [e) 2.03 2.35 -2.67 6.73

37H- 19H [j] -404 1.15 -6.34 -1.74

'Limits are 2 stanxdard deviationq fr, r the mein.

Condition [a] is the check for large water bodies and flooded conditions. The lower limit
for the polarization difference (combination [b]) was 9.57 K while the upper limit for arable soil
(Table 9.5) was 9.88 K during the winter season. An :itermediate value of 9.8 K was used as
the dividing threshold between the dry arable soil and semi- -id classes. Large negative values
can sometimes be observed in the vertical polarization chamiel differences ot combinations [c]
and [d]. This is the result of a surface scattering phenomena caused by smooth bare soil which
could be confused with atmospheric scattering or scattering due to snow cover. The upper limit
of combinations [d] and [e] are the tlhrsh3lds between dry and moist soil and will be discussed
later. Condition U] is also a moisture flag which differentiates dry soil surfaces from wet snow
surfaces.

9.1.3.3.3 Desert Rule

Deserts are characterized by very large brightness temperature polarization differences
in all channels. The distribution histogram of average polarization differences in the 19.35 GHz
and 37 Ghz channels is shown in Figure 9.2. The statistics for several orbits over the control
area are shown in Table 9.7. Polarization differences in the 19.35 GHz channel were, in some
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cases, above 40 K, and in the upper 30s (K) for the 37.0 6112. channel. These extreme P
polarization differences are ca:i'.ed by very smooth, sandy sta faces in the Sahara desert and the
total absence of regetatioi cover. The relatively high dielect-ic constant of quartz, the dominant
component of desert sand, undovotedly contributes.

0

TABLE 9.7 STATISTICS FOR SELECTED ERIGH'INESS ThkJPERATURE
COMBINATIONS OVER THE SALURA DYLSERT COL TROL AREA

Combination Mean SD Lower Upper Calendar
rimit' Limit' Date of

(K) (K) ,K) (K) Overpass

22V - 19V [a] -3.15 1.14 -5.43 -0.87

(.- 919H+37Ha [b] 32.24 3.46 25.48 39.32 233A
2 2

37V - 19V [c) -8.49 1.22 -10.93 -6.05 328A

85V - 37V [d] -9.26 2.24 -13.74 -4.78 176D/178D
224D/232D

851-1 - 37H [e] 5 77 2.33 1.11 10.43 233D

'Limits are 2 standard deviations from the mean. ,

The classification rule is:

22V - 19V < = 2.0 [a]
((19V + 37v)/2.0) - ((19H + 37H)/2.0) > = 19.7 [b]
85H1- 37H > -1.0 [e]
19V > 268 [g]

Condition [b] is the primary discriminator for deserts with 19.7 K being the upper limit
for the semi-desertic regions considering three standard deviations from the mean (Table 9.6).
Brightness temperatvtres in the vertical polarization channels decreased with increasing
frequency, with large negative values occurring for combinations [c] and [d] ir Table 9.7.

ese large negative values could be confused with scattering due to heavy rain or snow cover.
For this reason, combination [e] is used as an additional check. If 85H - 3711 is greater than
-1 K, the decrease in brightness temperature in the vertical polarization channels is due to
surface phenornen , and not atmospheric scattering. Combination [g] also ensures a snow ree
surface..
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9.1.3.4 Classification of Surface Water and Soil Moisture

___� -e short wavelengths cf the SSM/I sensor are not stited for soil moisture retrievals due
to their small penetration depth in soils and consequeatly smail moisture semsing depth. In

W addition, there is a considerable loss of sensitivity to surface moisture due to vegetation cover.

However, under sparse or incomplete vegetation cover, an .assessment can be. made of the
quantity of water retained on the stfAace ýftei a heavy rainfall event as well as moisture in the
immediate soil surface layer down to a few millimeters. Ii Section 9.3, a specific
quantification of :his surface moistuic is ccnduc.Ad using an Antecedent Precipitation Inde-,
(API) as a surrogate vaiiable.

The main SSM/I channels used for surface moisture retrievals are thf 19.35 H GHz ard
the 37.0 V G(3z channels in the form of a normalized brightness temperarure 'I 19H/T37V.
However, the 85.5 GHz channels have turned out to be excellent for identifying the presence
of water bodies within the SSM/I footprints. i, s the proportion of most soil and surface water
within an SSM/I 3 db footprint increases, the emissivity of the surface layer decreases resulting
in lower brightness temperatures. Relative changes are first observed between the 85.5 GHz and
the 37.0 GHz c hannels in both polarizations: the Tb's decrease in both channels but to a greater
extent at 37.0 GI. due to the fact that both the permittivity and the dielectri - loss factor of
wate are smaller at 85.5 GHz than at 37.0 GHz [4]. It is important to note that these relative
changes in Tb's between the two channels are occurring because the resolution of the 85.5 GHz
channels (approximately 14 ki) was decreasd to that of the 37.0 GHz channels (approximately
33 kmn) as a result of the averaging scheme. In this way, both channels were sensing
approximately the same proportiorns of water, soil and vegetation in the concentric footprint -

9 s~en-es.

Moist soil surfaces and footprints containing 1; rger water bodies therefore are
differentiated from dry surfaces with the 85.5 V - 37.0 V and 85.5 H - 37.0 H channel
combinations. Several classification rules were developed to identify surface moisture and
surface water bodies (tLooded soil, moist soil surface, composite water and soil or wet soil
surface, composite water aiad vegetation). The classification of footprints containing water
bodies such as reservoirs, lakes etc. and their removal from Lhe parameter retrieval algorithm
regression data sets, decreases the introduced noise and increases the retrieval accuracy of
paramete, s such as land surface temperature over soil and vegetation, assuming the same
classification scheme is used operationally. This is because the brightness temperature of a
footprint containing a water body would not be. lower due to the lower physical temperature of
the soil or vegetation but as a result of the contaminatiot: by a surface with compltely different
microwave emission properties.

9.1.3.4.1 Moist Soil Surface

Moist soil surfaces are differentiated from dry arable soi*s usi.ig a threshold value of 0.5
K for combination [d]. This value was approximately the upper limit for this combination under
dty arabic soil conditions (Ta:'le 9.5). In order to differentiate moist soil surlaces from very
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wet soil- surfaces, or footpiints containing larger water bodies, an upper thrreshold value of 4.0
K is usedi Cor co~mhination [dl -id 4.2 K for comabination te], 351- - 37H. The rule is:

22V- 19V<--4.0 [a] tz-
4.0 < ((19V.+ 3-OV)/2.0) - ((19.H + 3-11)12.0) < 19.7 [b]
37V -19V > =-6.5 ic
0.5 < = (85V - 37V) < 4.0 [d]
8511 - 3711 < 4.2 lei

whew~ con~iriation [c] is a snow identifier.

The moist soil surface rule was tested along witi other moisture sensing ;ules by
stratifying 0.25 degrees latitude/lon~gitude grid cells aco-ordiiig to AP115 (based on available water
for evar~oration of'15 mm) values between 0 and 10 mm and greater than 10 mm as well as the
number of days shice. the last precipitation event in each of those classes. These 'var"iables are
defined and explained in the methodology of Section 9.3 of This report. Table 9.8 summarize,,
the results.

As expxerted, 9C.5 % of the dry soil classifications (DS5) had API,5 values of less than 10
mm in those grid cells with an average of 2.7 mm. rin the other hand 9.5 % of the dry soil
classifications had A-PI 15 values greater thai, 10 mm with an average value of 16.8 mni. Most
of these cases were probably due to localized precipitation events that did not entirely -wet the

-.ftt ^f *O h' In * nt IQQu Tf* t% n

Moist soil surface classifi ations (MS) occurred for API115 values less tha 10 mm, 83 "A
of the tiewith an average v;; ue of 3.2 mmi. Tlie remaining 17 % of the values above 10 miy,
had an average AT'lls vah. - Of i6.4 mm.

These results are. simiiar to the dri soil classification rule, indicating that spatial
distribution of moisture is obv.iously a factor. In addition, this rule will also sometimes classify
footprints which contain small bodies oi water such as small lakes and reservoirs as moist soil.

9.1.3.4.2 C umposite Soil and Water or Wet Soil

The development of this rule becam~e necessary to ituentify footprints wiih locally flooded
soil, lakes, large rýivcrs, ane dther surface waters. These land footprints with water as a
component of the land surface- would have a ;massive microwave si ,nature that is a combination
of land and water. Ber-ausp- water hqs a n 'ch lower emnissivity and a much higher polarization
difference than ither land s-urfaces, the re~uairig brightness temperatures would be very difficult
to) interpret in termas of physical surface tiumpematurc. This rule was developed to exclude
footprints with a wat.vr component in signature from the calibration/validation regressizon
databa~se, thus increasii , the accuracy oi die algorithms.

* 9-17



everal dozen cases were examinee over the course of our calibration/validation effort.
Comparisons wet, conducted between brightness temperaturcs from footpi ints on the border of
large lakes or which contained small water bodies, with non-contaminated surrounding
footprints. Surface physical terx-'cratures were compared a.,; wel when available. Possible
SSM/l footprint geolocation errors were also taken into consideration in this analysis. Both
85.5 GHz channels were 3ensitive to the presence of water in the footprint, especially the 85.5
H channel. The 85.5 H - 37.0 H T. difference is a small positive ir negative number for a
mixed soil and vegetation scene (Tables 9.3, 9.4 and 9.5). With a cLAain proportion of water,
the emissivity is lowered in both channels, but to a greater extent at 37.0 H GHz due to the
higher dielectric constant of water at 37.0 GHz. N threshold value of 4.2 K was determined for
this cnannel c- nibination. Over deserts, valut. greater than 4.2 K have been commonly
observed (Table 9.7). Therefore the 85.5 V - 37.0 V combination is checked as well to prevent
misclassificationi.

22V - 19V < = 4.0 [a]
6.4 < = (19V + 37V'/2.0 - (19H + 37H)!2.0 [b]
37V - 19V > = -6.5 [c]
85V-37V >= 0.5 [d]
85H- 37H > 4.2 [e]

Combination [a] is the check for flooded surfaces. Condition [b] identifies large.
polarization differences due to water in the 3 di footprint. To differentiate between large
polarization differences due to water and those associated with barren deserts, condition [d] is
Rnnpii.

Footprints cla-sified by this ru,,:, were tested against ground truth API15 values gridded
at 0.25 degree latitudullongitude cells for the central plains area of the U.S. during 1987. Fifty
orbits were includeC in the analysis. The results are also sLown in Table 9.8. and indi.cate that
footprints with high API1 5 values are also classified by this rule. The results were more evenly
distributed with 58 % of the grid cells having API,5 values less than 10 mm (average of 4.0 mm)
and 42 % having values greater than 10 mm (average of 21.3 mm). It is prol able that most of
the grid cells with moisture values less than 10 mm were a result of contamination by water
bodies while for API1 5 values greater than 10 mm, most of the classifications resulted from a
wet soil surface.

Footprints with a wet soil surface have a similar microwave signature to dry soil
footprints contninated I Y laige water bodies. This presents a problem for the use of the
surface moisture retieval algorithms which should be a )plir W to r,.trieve moisture when the
API,, is high but not to the !ditter case. The solutimn is to maintain previous surface
classifications over a geographic location in a dynamic database and use additional logic to
differentiate between these cases- In Section 9.3 of this report, a dynamic latabase scheme is
proposed to work in conjunction with the surface moisture cla.isificadion ruies absove.
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TABLE 9.8 STRATIFICATION OF CLASSIFIID) 0.25 DEGREE GRID C01S,
ACCORDING TO SURFArP MOISTURP VA!I'ES (API,,) AND NU.MBlR -i
OF DAYS SINCE LAST PRECIPITATION EVENT

Classification APIls < 10 u. API, 5 > 10 mm
Rule Number of Ay-- ..cc L.t prLlipitatiorn event

1 2 3 4 5 ,5 1 2 3 4 5 >5
5 DS : 251 248 313 392 297 86"; 68 82 55 32 II 2

APIs1: 4.1 4.2 4.0 3.3 2.7 1.1 18.1 18.8 15.0 13.( 12.4 11.

MS NO: 287 313 367 373 302 997 138 "4115 77 45 20
API1 1 : 4.7 4.6 4.5 4.4 3.5 1.2 18.6 ,j.I 16.1 14.8 13.4 17.6

WS NO: 462 342 317 286 180 625 707 429 266 13) 38 14
AP1,5: 5.4 5.3 5.1 4.4 4.1 1.4 A 20.6 18 17.2 17.3 16.6

WV NO: 549 430 403 299 27! 1328 7e3 376 236 128 36 18
APIls: 5.3 5.3 4.6 4.1 3.7 1.1 25.1 22.3 19.5 19.6 19.3 22.2

DS = Dry Arable Soil
MS Moist Soil Surface
-a v- soij .auda" or composite soil and water

* V V = Vegetation wihn wet soil background or composite vegetation and water
NO: Nuimber of occurences

9.1.3.4.3 Composite Dense Vegetation and Water

This rule classifies footprints with mixed dense vegetation and wz:er. It is sirmlar to the
composite soil and water rule, but with different threshold values. Dense vegetation has a strong
un olarized signature with usually warm brightness temperatures. On the other hand, water has
a low emissivity, thiis colder brightness temperatures, and a highly pnikrized signature.
Depending on the proportons of water and vegetation as well as the density of the vegetation,
the average pokarization in the 19.35 GHz anu 37.0 G3Hz channels (combination [b]) will vary.
By observing numerous cases the upper threshold value of 6.4 K was determined, allowing for
greater polarizations induced by water in the footprint sctnes. The rule is:

22V - 19V < = 4.0 [a]
((19V + 37V)/2.0) - ((19H + 37H)/2.0) < 6.4 [b]
85V - 37V >z -10 [d)
85H - 37H > 4.5 [ei
37V > 257 I
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The threshold value for combination [c] was bas, I on observations of v gctation/rivcr
footprinis in the Amazon jungle and is approximately the upper limit obtained for this
comhination over the dense vegeta!ion control areas (Table 9.3). Combination [dl is the

*IL prcvipiation flag and condition [hi is a snow flag.

This rule was als - tested along with the other moisture sensing rules in Table 9.8.
Results indicate that 69 % of tht; grid cells were classified as such, having an API,.s value of less
than 10 mm (average 3.3 mm). The remaining 31 % of the grid cells resulted in an average
API1 s value of 22.9 mm, indiating that the rule is also sensing vegetation with a wet soil
background.

9.1.3.4,4 Flooded Soil

Large amounts of water on the soil surface due to a heavy precipitation event, flooding
due to heavy rain or melting snow or the presence of large natural lakes and reservoirs, will
lower the brightness temperatures at all frequencies due to the high permittivity of water.
Brightness temperatures at 22.235 V GHz will be greater than at 19.35 V GIz because the
microwave emissivity of water increases with frequency and both channels have approximately
the same 3 db footprint size. In addition, the 22.235 GHz channel is sensitive to water vapor.
A threshold value of 4 K was determined for the difference between the 22.235 V (G1 z and the
19.35 V GHz brightness temperatures based on observations of large lakes and reservoirs and
areas flooded by large precipitation events. This condition (a] is checked within all classification
niles. If the surface is classified as flooded, no parameter retrieval algorithms are applied.

9 9.1.3.5 Classification of Precipitation ] :vents

9.1.3.5.1 Rain Over Vegetation Rule

Precipitating or convective type clouds within an SSM/I footprint over vegetation will
have a drastic effect on the 85.5 GHz brightness temperatures. Clouds containing large water
droplets and/or ice will scatter radiation at smaller wavelengths resulting in lower brightness
temperatures at 85.5 GHz than at the smaller frequency (longer wavelength) channels. This is
especially true over warm, dense tropical vegetation.

Numerous storms were identified through SSM/I data and confirmed by visual analysis
of GOES imagery and/or by checking I"OAA precipitation charts over the United States. The
microwave signature of a large thunderstorm over the Amazon jungle is shown in Table 9.9.
The brightness tempeyature combination data for clear conditions on calendar days 180 and 231
were similar to the expected microw ve signature over dense vegetation shown in Table 9.3.
The polarization difference (combinJ.ion [b]) was higher because footprints which had other
classifications, i.e footprints containing surface water, but which fell within the selected area,
were included.

9-20



TABLE '.9 EFFECT OF LARGE PRFCIPITATIHG STORM CLOUDS OVER DENSE
VFiGITTATION ON SELECTED BRIGHTNESS TEMPERATURE
COMBINATIONS

Amazon Jungle, South America. Box boundaries:
NW corner: 6.5°S 59°W SW corner: 8°S 57°W

CD180 Asc. CD222 Asc. C0231 Asc.
Combination Mean SD Mean SD Mean -D

(K) (K) (K) (K) (K) K)

(19Y.±.-2 - (12J±I [b] 1.17 1.02 1.26 0.87 1.46 0.96
2 2

3YV -- 19V [c] -3.71 0.69 -8.70 5.81 -3.93 0.76

85V - 37V [d] 5.82 1.17 -15.39 18.40 3.87 1.02

C. -I M71 i..1 dc f"1 I dO 111711 I~ f% Vr & I

tL)AA, IA . eA LIJu~• •.UO -i1e..J. LU. AJ '4'.I I.'4t

With the presence of storm clouds on day 222, the temperatures in the 85.5 GHz
channels were depressed below the brightness temperatuies in the 37.0 GHz channel. The
hydrometeors were also sufficient in size and quantity to scatter microwave radiation at the
longer wavelengths of the 37.0 GHz channels, as indicated by the decrease in the mean value
of the 37.0 V GI1z - 19.35 V GHz brightness temperature difference (combination [c]). The
non-uniform nature of the precipitation within the selected area can be seen by the very large
increase in the standard deviation for combinations [c], [dJ and [e]. This can be visualized in
Figure 9.3 where the 85.5 V GHz - 37.0 V GHz distribution histogram is plotted for the selected
area, for the ovtcrpasses with and without precipitation. For vegetated surfaces, a threshold
value of -1 K was determined for combination [d] as a precipitation flag. This value is
approximately 2.5 standard deviations from the mean value over dense vegetation areas with
no precipitation shown in Tables 9.3 and 9.4. The rule isý

22V - 19V < = 4.0 [a]
((19V + 37V)/2.0) - ((19H + 37H)/2.0) < = 4.0 [b.
85V - 37V < -1.0 [d]
19V > 268.0 [gl
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Dense Vegetation - Amazon Jungle

o. Ib

c 01

a 0.12 No Precipitation
Io

S0.14

• 0.02

-4 - o ) 50 - o - I2 - ol

>n oPrecipie tion

-S0 -70 -60 -50 -40 -30 -20 -10 0 10
T85V - T37V (K)

eFigure 9.3 Effect of heavy precipitation on the 85V - 37V brightness temperature
difference over dense vegetationt.

().1-3-5.2 Rain Over So~I Rule

The det1ecijn of precipitation over soil is similar to the detectioi of precipitaition over
vegetaiuon. S-attering by hydrometeors in the atmospi ere decreases the brightness temperatures
in the 85.5 Gflz channels more than in the other SSM/I frequencies. However, the background
microwave emission by so;1 is polarized and the relative brightness temperature differences
among frequencies are different. Several storms were identified using SSM/I data over the
United States test regions. The storms were, ;hecked against National Weather Service radar
(tiarts, when available, to confirm the locations of thunderiorm cells and uecurrence of
precipitation. An example is shown in Table 9.10 for a squall line occurring over Oklahoma
and Texas on Day 228, 1987. Combination val-aes for Day 227 are typical average signatures
for pooled footprints containing mostly dense rangeland and agricultural vegetation and dry
arf;Ole soil classifications (Tables 9.4 and 9.5). The thunderstorm acti' ly on Day 228 resulted
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i considerable scattering in the 85.5 GHz channels (combinations Id) and lei) and some
scattering in the 37-0 (;Hz channel (combination [el).

"Thre-shold values for flagging precipitation with combinations (c), Idl and [el were
deternined based on the lower limits for these combinationis after pooling the data shown in
Table 9.5 (dry arable soil) and the stLdy of numerous confirmed precipitation cells over the
central plains of the U.S.. The rule is:

22V - 19V <- =40 [a]
((19V+ 37V)12.0) ((19H + 3714)12.0) > 4.0 [b]
37V - 19V < -3.0 [c]
85V - 37V < -5.0 [d]
85H- 37H < 4.1 [e]
19V > 268.0 Ig1

Combination [g] is a snow tlag, to differentiate the signature caused by hydrometeots,
from scattering caused by snow which also depresses the brightness temperatures of the shorter
wavelength (higher frequency) SSM/I channels

TABLE 9.10 EFFECT OF A SQUALL LINE ON BRIGtITNES S TEMPERATURE
COMBINATION VALUES OVER MOSTLY ARABLE SOIL FOOTPRINTS TN
THE CENTRAL PLAINS OF TH', UNIlEI, STATES

Cia~iTod iA'fis of UkiirJ Swkczý A,,mpaimate box _i-wr*
NW corner: 37 0 N 102"W SE correr: 32 0 N 95°W

,SD228 Desc. CD227 Desc.
With Precipitation No Precipitation

Combination Mean SD Mean SD
(K. (K) (K) (K)

(19Vi3ý-J 4-91L-Y__ [b] 6.28 2.05 5.45 1.43
2 2

37V - 19V [c] -9.39 4.74 -3-92 0,99

85V - 37V !d) 21 71 13.69 0 j70 0.9 9

85H - 37H [el -21.06 15.03 2-49 0.86
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9.1.3.6 Classification of Snow Covered Surfaces

Microwave emissions from snow covered su faces depend on several factors. These

* include: (1) the underlying surface type, (2) the moisture content of the underlying soil and if
the water is frozen or in liquid form, (3) the depth of the snowpack, (4) the density of the
snowpack, (5) the shape and size of t.e snow crystals and, (6) the liquid water content of the
snowpack. Thus, the classification of snow is complicated as the microwave signature. from a
snowpack with constant depth can vary with snow morphology, snow ripeness and cycles of
melting and re-freezing under spring weather conditions. Therefore, the interpretation of
microwave signatures from a snow covered surface at any point in time would benefit from the
history of previous weather and snowpack conditions.

The characterization of snow signatures and their relationships with parameters such as
snow wetness, snow depth and water equivalent has been studied by many authors such as [5],
[6], and [7]. Other research concerning snow microwave properties has also been described by
[41.

Specific research on snow classification has been done by Kunzi et al. [8] in the
development of snow extent, snow depth and water equivalent algor-thms for SSMR. Schanda
et al. (9] proposed a snow classification scheme based on several years of observations which
included classes such as winter snow, wet spring snow and dry, refrozen spring snow.
McFarland et al. [10] investigated snowpack propeizies using SMMR brightness temperatures
and were able to detect dry snow accumulation, and snow melting and refreezing processes.

Ah 9.1.3.6.1 Dry Snow

The normal dry snow microwave signature is the depression of brightness temperatures
in the 37.0 GI-z channels with respect to the 19.35 GHz channels due to volume scattering. At
37.0 GHz, scattering is the main component of the total extinction loss of the medium [4].

Channel combination data for footprints cont-'ining dry snow over the northern plains of
the U.S. during a few days in February, 1988 are sh,,wn in Table 9.11. The ground truth snow
depth values were obtained from the NOAA cooperative network of weather stations in the
central plains states of the U.S. Average daily snow dept!- values and corresf-nding SSM/I
brightness temperature data were gridded to 0.25 degree latitude/longitude cells for analysis.
The developed rule for dry snow can be written as:

22V - 19V <-- 40 [a]
((19V 4 37V)/2.0) - ((1911 + 3711)/2.0 > 4.0 [b]
37V - 19V < -6.5 [c]
19V- 19H > = 5.0 [i]
225 < 37V = 257.0 [h]
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Conditions [c], [i] and [h], together differentiate snow from cold bare soil situations as
well as large precipitating thunderstorm clouds. The thresbold for combination [c] is

* approximately the lower limit for this brightness temperature difference over dry amble soil with
no snow. When snow is present, brightness temperatures in the 19.35 (Hz channels also
decrease, partly due to scattering and partly due to the decreased physical i-mperature of the
snow and underlying soil.

Results in Table 9.11 also show the greater variability in brightness temperatures
(reflected by the larger standard deviations) caused by the spatial distribution of snow at different
depths.

TABLE 9.11 SELECTED BRIGHTNESS TEMPERATURE COMBINATIONS OVER DRY
SNOW IN THE CENTRAL PLAINS OF THE UNITED STATES

Approximate box size:
NW comer: 49'N 105*W SE corner: 45'N 100°W

Combination SNOW NO SNOW Calendar
Mean SD Mean SD Date of
00 (K0 (K) (K) Overpass

991/ - 1QV rni -1 )9 1 fiA ..n .- 1 ibI

'19_+_.3+_ - (19H+37H) [b] 12.02 2.33 10.09 1.41 51A

2 2 :1A

37V - 19V [c] -11.55 4.10 -2.24 1.21

85V - 37V [d] -8.36 5.92 -0.86 1.34 55D
(1988)

85H - 37H [e] -4.48 5.72 1.42 1.37

9.1.3.6.2 Wet Snow and Refrozen Snow

The • issification of wet snow or mzelted snow containing water in liquid form as w 11
as refrozen snowpacks requijr.es the use of tae dynamic database scheme, as their microwave
signature could be confused with other surfaces. A small amount of liquid water (volumetric
water content of 0.01) will increase the volume absorption coefficient of the medium to a value
greater than tie :'attering coefficient, thus reducing the scattering albedo to a very small value
[4]. For Higher volumetric water contents, scattering is practically non-existent ard the

9-25



snowpack begins to behave like a blackbody radiator. Such conditions are normally encountered
in the spring, when the snowpack undergoes successive cycles of thawing and refreezing.

An During the day, when temperatures are above the freezing point, the top layers of the snowpack
will partially melt, increasing the volumetric water content of the snow. As a result, the
microwave brightness temperatures at 37.0 H GHz will increase with respect to the T, at Y).35
H GIdz. This is shown in Figure 9.4 for a 10 day sequence of SSM/I data over north-central
Nebraska during February, 1988. The last snowfall over that region occurred on Day 50-51
with 50 to 75 mm of new snow being ieported by the weather stations in the area. Average
snow depths changed throughout the period from 254 mm on day 51, to 55 mm on day 59
(Figure 9.5). Maximum and ninimum air tempj.-atures awe also shown in Figure 9.4,
corresponding to desc.'nding and ascending overpasses respectively. The first available SSMWI
data after the snowiAd is for the ascenaing overpass on day 51. The T. difference of
approximately 20 K between the 19.35 H and 37.0 H GHz channels as well as the low
brightness temperatures in both channels are an indication of dry snow and were classified as
such with the dry snow rule. The signature for the ascending overpass on day 53 is similar to
that of day 51 with slightly cooler temperatures. On both days, the minimum air temperature,
which probably occurred a few hours prior to the overpass, was below the fi..zing point.

The descending overpass on day 53, showed a marked increase in the 37.0 H GHz
b-ightness temperature to within 1 K of the 19.35 H GHz channel as a result of a wct snow
surface layer. Thawing at the snow surface occurred during the day due to warm air
temperatures (the maximum air temperature was 7' C). Data from the ascending oYerpass on
day 55 shows a drastic decrease in brightness temperatures in both horizonta'iy polarized
channels. The minim.,, tf..m-r otre ,,.,""- approxiraatcly -. ' s..uisat- " it) r-- -..... any

~ liquid water in the snowpack. The thawing and refreezing proc••.. increases the -ize and
changes the shape of the ice crystals, which tend to become spherical as the snowpack ripens
and undergoes several of these cycles. The increase in particle size will increase the scattering
albedo and decrease the polarization dependence causing additional scattering at longer
wavelengths and lowering the T,,'s.

Figure 9.6 shows brightness temperatures in the horizontal and vertical polarizations for
the 19.35 and 37.0 GHz channels for the same period. Brightness temperatures for the
ascending overpass on day 55 were lower than those of day 53 for both frequencies and
polarizations while the polarization difference was smaller, indicating a refrozen snow surface
layer. Subsequent overpasses beginning with the descending overpass on day 56 indicate a cycle
of thawing during the day with re-freezing overnight. During this period, the vaciability in tie
19.35 H - 37.0 H GHz T, difference for the descending overý as.•,:s was i~robably due to
different volumetric water content in the snowpack. In addition, the snow depth continuously
decreased throughout the period (Figure 9.5), with the snowpack depth on day 59 being less than
half its depth on day 53.

These variable mierL wvave snow signatures are difficult l. accurately interpret with stand
alone independent rules. A dynamic database scheme should be implemented, if accuracy is
desired, in order to differentiate diy sno%, from re-frozen snow a.d wet snow signatures as the
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Dry Snow-Wet Snow--Refrozen Snow Cycle
Nebraska (Lat:42.5N Long.99.OW) T
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Figure 9.4 Variation in horizontally polarized brightness temperatures in the 19.35 GHz
and 37.0 GHz channels throughout a ten day period in February, 1988.
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Fi.gire 9.5 Snow depth changes c, 7.r a ten day period in February 1988, for a region , '
central Nebraska.
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Dry Snow-Wet Snow-Refrozen Snow Cycle
Nebraska (Lat:42.5N lonig99.OW)
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_P Fi,,v..e 19.6 VI Liation in b.thl polari~itzis of the 19.35 GHz and 37.0 GlHz channels
throughout a ten day period in February 1988.

snow depth retrieval algorithm should only apply to dry snow conditions. A dynamic databasc
scheme would check for the accumulation of snow during the winter period as well as the onset
of the thawing and re-freezing processes, and allow for the consideration of the previous history
of the snowpack in the classification logic.

The following additior.al snow classificatio i rules attempt to classify some of the
changing snowpack conditions without the use of a dynamic database. It must be noted that due
to the variability in snow microwave signatures, the rules are not perfectly accurate. Footprints
which contain a mixture of snow with different degrees of liquid water content, wet soil and
vegetation result in complex microwave signatures that cannot be interpreted by stand alone
rules, requiring the knowledge of previous history for accurate classifications.

Based on the analysis of several time series of SSM/I data along with snow cover ground
truth data as shown in Figures 9A4, 9.5 and 9.6, the wet snow nile can be written as:

9-A8

jim~i - -



22V- '9V <=4.0 [a)
((19V 37V)/2.0) - ((1911 + 37H)12.0) > 9.8 [b]
-6.5 < = 37V- 19V <= -0.8 [c-
85V - 37V < 0.5 [d]
-1.8 < = 37H - 19H <= 6.5 []
253 < 37V < = 268 [h]

where condition [b] ensures that a high polarization exists due to the presence of liquid water,
condition [c] sets the range of scattering in the 37V caused by snow or a snow/soil mixture. It
differentiates the wet snow pack from cold semi-arid surfaces. Condition [d] is the flag used
to differentiate between dry and moist soil, condition U] identifies the liquid water in the
snowpack and condition [hi] allows a range of brightness temperatures within which wet
snowpacks usually occur, based on observations of SSM/I data. The rule is complex as a result
of the complexity of tw, surface being classified. Cold secii-arid surfaces with moisture in the
top layer, could be confused with wet snowpacks. Also, frozen ground signatures can add to
the misciassifications.

Re-frozen snowpacks have a distinct signature from dry and wet snow. Brightness
temperatures decrease with increasing frequency in both polarization channels, and additional
scattering at 37.0 GHz aaid 85.5 GHz results in very low brightness temperatures. Thus:

22V - 19V < = 4.0 [a]
((19V + 37V)/2.0) - ((19H + 37-)/2.0) > 4 [b]
37V- 19V < -6.5 [c6
12TmI -, =- 11CMo .,f V - (L'19V < 37V < 85V

19H < 37A' < 85H

9.1.3.6.3 Snow Over Lake Ice and Composite Snow Over Soil and Lake Ice

Some additional interesting microwave signatures involving snow include snow over ice
in freshwater lakes during the winter and footprints which contain a mixture of snow over ice
and surrounding soil surfaces.

Snow over lake ice can be identified by:

22V- 19V < = 6 [a]
((19V + 37V)/2.0) - ((19H + 37H)/2.0) > 4 [IN
37iV - 19V > = 0 [C]
37V < 250 Jjh]
85V- 37V < 37V- 19V

and a snow-soil-.ake ice mixture is detected by:
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22V- !9V < = 4 [a]
((19V + 37V)/2.0) - ((19H + 37H)/2.0) > 4 [b]
37V- 19V < 0 [C]
37V < 250 [h]
85V - 37V > = 37V - 19V
85H - 37H > = 37H - 19H

The above rules address anomalous cases with complex signatures and were based on
observations of microwave brightness temperatures over lakes in Canada during winter. They
need to be further tested with SSM/I data collected over lakes in other parts of the world.

9.1.3.6.4 Snow and Dense. Vegetation

This is a fairly common naturally occurring surface - j many mountain ranges in the
temperate zones have evergreen forests and snow cover during the winter. The microwave
signature is characterized by a small polarization difference due to the dense vegetation but with
lower brightness temperatures as frequency increases due to surface scattering. The rule
attempts to classify these cases, thus decreasing tne number of "rain over vegetation"
misclassifications which would result otherwise. The rule is:

22V- 19V < = 4.0 [a-
((19V + 37V)/2.0) - ((19H + 37M/)2.0 < = 4.0 (b]
37V- !9V < -4.0 [c]
19V < = 26a [_I

In the winter, under dry snow cover conditions, brightness temperatures in the 19.35 V
are usually well below 268 K. However in the spring, the snov pack at higher elevations under
trees is usually the last to melt and contributes to surface scattering in the footprint scene.
Physical surface temperatures are much higher and the overall effect is a higher brightness
temperature in the 19.35 V GHz channel. Snow cover and vegetation can still occur with 19.35
V brightness te iperatures greater than 268 K, as it is also theoretically possible for heavy
rainfall to occu, over a cool vegetated surface, resulting in si" -vlar microwave signatures. Most
of the time it is possible to differentiate between both surfaces as scattering in the 85.5 GHz
channels is greater for atmospheric phenomena such aq thu derstorm clouds while for snow
covered surfaces, the scattering occurs in both the 37.0 GHz and 85.5 GlHz channels.

9.1 3.(s.5 Snow Edge

No particular classification rule was developed to detect snow edge due to lack of precise
ground truth data. However under the present scheme, footprints wculd be classified as dry or
v-:t snow, refrozen snow, moist soil or dry soil. Thus, the position of the snow edge would be
determined geographically by the classification of congruem), lootprints - % one of these surface
types. However, as mentioned above, microwave signatures from footprins that contain a
mixture of snow at difterent liquid water contents, along with wet soil and/or vegetation are
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complex and difficult to classify with stand alone rules. In many instances, thcse situations
occur at the edge of the snowpack and will result in an indeterminate classification (a default
classification when no other classification rule applies). The use of additional satellite instrument
datasets, such as visible data from the OLS or AVHRR under clear conc7itions would be useful 21
in identifying the exact position of lie snowpack edge and serve as "ground trljth" for the SSM/I
data.

9.1.4 Summary Mand Conc~lsiuQs

A list of the developed classification rules is shown in Table 9.12. All temperature
threshold values are in degrees Kelvia, based on SDR brightness temperatures. Unless otherwise
stated, all conditions within a rule must be true for the rule to apply.

It must be noted that no surface type classification scheme based solely on microwave
brightness temperatures will be perfectly accurate. Over Jawd, the large SSMII footprints
integrate emissions from highly heterogeneous surfaces wit different microwave properties
(soils, vegetation, water). Thus, the rules will classify a given footprint according to the surface
type which is most prevalent within it. However misclassifications can still occur, as composite
microwave signatures from a mixture of surfaces with different micro% we emission properties
can be misleading. Misclassifications could possibly occur between:

(1) heavy rainfall over cold, wet soil and snow covered soil

%&-I.halo L VT l .. . lII VMAU i1 14VJij UVCi" CJUZ01 de AS CI V eg-44Udl

(3) wet snow with cold wet soil surface

,4) cold wet semi-arid surface and ripe snow covered soil surface.

(5) snow edge or snow-soil mixtu. !s classified as indczerminate

The rules presented in Table 9.12 were designed to be used in combination with the
developed overland parameter retrieval algorithms definaed in sections 9.2, 9.3 and 9.4. Due to
the complex mixt ire of surfaces which can naturally occur, there will ,e instances of
indeterminate classificafions. It is expected that these will be kept to a minimum, not affecting
the retrieval of the paramneters. Additional rules to deal with these anomalous cases could be
developed in th - future if necessary

A listing of the parameter retrieval alg ithms which apply to each surface type
classification rule are shown in Table 9.13.
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"TABl7S 9T-f UMMARY OF SURFACE TYPE CLASSIFICATION RULES USING THE
SEVEN CHANNELS OF THE SSM/I

BRIGHTNESS TEMPERATURE COMBINATION THRESHOLD VALUES
LAND SURF. [a) [b] [cl [d] [e] [g) [h] [BI
TYPE (K) (K) (K) (K) (K) (K) (K) (K)

iooded Cond. > 4

Dense Veg. <4 < 1.9 >-1 < 4.5 > 262

Dense Agrie./ > 1.9
Range Veg. _4 < 4 > -1 < 4.5 > 262

Dry Arable > 4 < 1,.5
Soil < 4 <9.8 >-6.5 .2.> -5 < 4.2

Moist Soil > 4 > 0.5
<4 < 19.7 > -6.5 < 4 < 4.2

Semi-Arid > 9.8
Surface <4 < 19.7 < 0.5 < 6 <-1.8

Desert <2 > 19.7 > -1 > 268

Precinitation < 4 < 4 , A 2;R
Over Veg.

Precipitation <4 > 4 < -3 < -5 < -4.1 > 268
Over Soil

Comp.Veg. < 4 < 6.4 > -1 > 4.5 > 257
and Water

Comp. S it& <4 >_6.4 >-6.5 > 0.5 > 4.2
Water/%V-;t Soil

Dry Snow' <4 > 4 < -6.5 > 225
K 257

Wet Snow < 4 > 9.8 <.-0.8 < 0.5 <. 268 Ž. -1.8
> -6.5 > 25'.' _ 6.5

Refrozen Snow 2 < 4 > 4 < -6.5 < 225

j_-T-?2V-1V [o] (19V+37Vj7- - (19H+37H)/2 [c] 37V 19V
I-d' 85V- 37A [e] 85H - 37H [fI 37V - 37H
[g] 19V [hi 37V [j2 37H --19H
Additional conditions: ' 19V - 19H > 5 2 19V > 37V > 85V, 19H > 37H > 85H
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TABLE 9.13 CLASSIFICATION RULES AND APPLICABLE ALGORITHMS , "g

Surface. Type Algorithm

Flooded conditions (7) No EDR

Dense vegetation (1) Surface temperature over vegetation (STV)

Dense agriculture crops (3) Surface temperature over land (STM)
and range vegetation

Dry arable soil (9) Surface temperature over desert (STD)

Moist soil (18) Surface temperature over moist soil
(STML), Surface moisture (SM)

Semi-arid surface (15) STD

Desert (10) STD

Precipitation over vegetation (4) Precipitation over land (RL)

* Precipitation over soil (8) RL

Composite vegetation and water (2) ST7V

Composite soil and water/wet soil (6) STML, SM

Dry snow (14) Snow depth (SD)

Wet Snow (19) No EDR

Re-frozen snow (13) No EDR

hideternminate Classification (0) No EDR

STV, S!Th, STD, STML, SM, RL, and SD denote retrieval algorithm codes. Numbers in
parenthesis are the proposed EDR surface type codes.
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9-1.5 Jtmms _

In mid March 1988, after the SSM/I was turned back on, an increaw. in the noise level
of the 85.5 GHz veitical polarization channel was observed. This channel continued to
deteriorate until the data was rendered useless by the middle -f that year. Later, similar
problems with the 85.5 GHz horizontal polarization channel occurred.

The failure of both channels posed a problem for the use of some retrieval algorithms,
including the land surface type classification scheme which depends on these brightness
temperatures for the accurate classificatio, of water in the footprint scenes as well as
pr :ipitation events over land. To address ti: unavailability of data from these channels, two

alternative schemes were developed: (1) c!assification rules to be used when only the 85.5 V
GHz is not available and (2) rules to be used when both 85.5 GHz channels are imusable.

9.1.5.1. Rules for the Loss of the 85.5 V GHz Channel

Ile methodology used in the development of these rules was the same as described in
section 9.1.2. The difference being that the 85.5 V Gliz was not included in the analysis.
Channel brightness temperature differences and combinations in the original rules which were
based on the 85.5 V GHz channel were substitated, for most part, by combinations using the
85.5 H GHz channel. An analysis of the changes to the original riles is conducted in the
following Sections.

9.1.5. i. 1 De ev tge ion, illexnse A,,t,.- It. w,-1.
J..se Agri-ult-"a- and Rzuigeland Vegetation, Composite9 Dense Vegetation and Water, Rain Over Vegetation

in the original scheme, the 85.5 V - 37.0 V channel combination is used as an indicator
of rainfall for the above listed rules. The modified rules are based on the 85.5 H - 37.0 Ii
combination instead. Microwave radiation in the 85.5 H GHz chznnel will be scattered by
hydrometeors in the atmosphere in a similar manner as the 85.5 V Ghz channel, due to its smail
wavelength. Based on the analysis of numerous storms and, considering a lower limit for this
combination of approximately three standard deviations from the mean in the case of no
precipitation (Trable 9.3), a threshold value of -0.8 K was determined for the flagging of rainfall
over vegetation. Therefore, if the combination 85.5 H - 37.0 H < -0.8, rainfall 's preselt
within the footprint. Table 9.14 summarizes the new rules.

9.1.5.1.2 Dry Arable Soil, Semi-Arid Conditions, Desert, Composite Soil and Water or Wet
Soil, Moist Soil

The 85.5 V - 37.0 V combination was used in th w rule., both as an indicator of rainfall
and for the detection of surface rooisture along wit- the 85.j H - 37.0 H . The latter
combination can be used on its own or both purposes with different brightness temperature

threshold values. The classification res will be less accurate (more m.isclassifications) but
overall, the rules perform satisfactorily.
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To differentiate between dry arable soil and moist soil, the 85.5 - - 37-0 H combination -

must 'ave a value less than 3 K, but greater than -4.1 K, the latter being the threshold value,
belouw which rain is pres, t within the footprint scene. For moist soil, the 85.5 H- - 37.0 H is
greater than 3 K but less than 4.3 K, while for wet soil or composite soil and water 85.5 H -
37.0 H > 4.3 K. A summary of the rules is shown in Table 9 14.

9.1-5.1.3 Flooded Conditions, Snow Rules

These rules are unaffected by the loss of the 85.5 V GHz channel.

9 1.5.2 Rules for the Loss of Both 85.5 GHz Channels

With the unavailability of both ý'..5 GHz channels, the classification of surface moisture
is practically impossible with any acceptable degree of accuracy. To detect moisture on the
surface due to precipitation it will be necessary to maintain a running average of the 19.35
H/37.0 V normalize46 brightness temper. ture and observe significant decreases in the value of
this parameter due to moisture, as described in Section 9.3. Composite water and soil or
vegetation scenes are harder to detect with just the lower frequency channels. Precipitation can
be detected with the 37.0 V - 19.35 V channel imbination, however, due to the lesser
sensitivity to small hydrometeors of the longer wa, ,ngths at 37.0 GHz, the classification of
rainfall is less accurate. Thunders:orm events with large water and/or ice droplets will be
classified, bat sir~aller events with finer precipitation might not be detected without the 85.5 GHz
channels.

The resulting rules to be used without the 85.5 V GHil channel are shown in Table 9.14
and the rules to be used if both of the 85.5 GHz channels are missing are shown in Table 9.15.
The ap, -opriate retrieval algorithms to be used when all channels are present or when the 85.5
V (GHz chiunel is missing are given in Table 9.13. When both 85.5 GHz channels are missing
the retrieval algorithms to be used are given in Table 9.16. The Ary arable soil rule will be
called arable soil as it will include surfaces that a e moist or that contain water bodies. Thus,
algorithm parameters such as land surface temperature retrieved ovcr such areas could be less
accurate.

Snow detection is limited to dry snow as the 85.5 Gl-14 channels are required to
categorize other snow surfaces such as wet snow or re-frozen snow.
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TAiTAT4- LAND SUiR-FA--- 1YjCLASSIFICATION R 'iI-F-S "O BE USED WHEN
85.5 V GHz CHANNEL IS MISSING

O •-MP MN•1 TMPkATURE COMBiNAt'I'iON THRESHOI.D VALUEFq
LAND SURF. [a) [b] [c] [dl tel tgi [hi IUl
TYPE (K) (K) (K) (K) (K) (K) (K) (K)

Hol•1dedC'i d - - >--_-

Deolse Veg. < 4 < 1.9 < 4.5 > 262
> -0.8

Dense Agric./ > 1.9 > -0.8
RangeVeg. < 4 < 4 < 4.5 -262

Dry Arable > 4 > -4.1
Soil < 4 < 9.8 > -6.5 < 3

Moist Soil > 4 > 3
<4 < 19.7 >-6.5 < 4.3

Semi-Arid > 9.8 > -4.1

Surface < 4 < 19.7 < 6 < -1.8

Desert _2 19.7 > -1 > 268

Precipitation <4 < 4 < -0.8 - 21 o
Ovcr V".-

Precipitation < 4 > 4 < -3 < 4.1 > 268

Over Soil

Comp. Veg. _ 4 < 6.4 4.5 > 257
and Water

Comp. So.] & < 4 > 6.4 > -6.5 > 4.3
Water/Wet Soil

Dry Srow' < 4 > 4 < -6.5 > 225
,257

Wet Spow <4 > 9.8 < -0.8 < 268 > -1.8
> -6.5 > 253 < 6.5

Refrozen Snow' < 4 > 4 < -6.5 < 225

[al 219:5-P [bi (19V+37V)/2 - (l9H+37ff)7- [c1 37V- 19V
[d] 85V - 37V [e] 85H - 37H [fJ 37V - 371H
[g] 19V [h] 37V j] 37- -191H
Additional conditions. ' 19V - 19H > = 5 19. > 37H1 > 85H
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C-.

8.5 GIltz CHANNI-S ARE MISSING
-- BqlGW1 NFESS TEM PFJ•ATURLF ~ K.(f(Bl•'Fi•NlRPSP61IiVL-t-

LAND SUiRF. [al [bh [C) 1d] V"- i 1gl 1b] b
TYPE (K) (K) (K) (K) (Y. (K) (K) (K)

Dense VeY.. <_ 4 < 1.9 > -6.4 > 262

Dense Agric./ < 4 < 4 > -6.4 > 262
Range Veg. > 1.9

Arable Soil' < 4 < 9.8 > -6.s
>4

Semi-Arid <4 <. 19.7 < 1.8

Surface > 9.8

Desert < 2 >_ 19.7 > 268

Precipitation < 4 < 4 < -t3.4 > 268
Over Veg.

Precipitation < 4 > 4 < --6.4 > 268

Dry Snowi < , > 4 < -6.5 > 225

. 257

[a) 22V-19V [b] (19V+37V)/2 -_-(19H 4 7371/2 [c] T V -19V
[d] 85V - 37V [ej 85H- 37H [f] ..7V - 3711
g] 19V [hi 37V j] 3711- 19H
Arable soil type includes the types dry arable soil, moist soil, and composite soil and
water/wet soil.

2Additional conditions: 19V - 19H > 5
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TABLE 9.16 CLASSIFICATION RULES AND APPLICABLE ALGORITHMS TO BE USED
WHEN THE 85.5 GIIz CHANNELS ARE MISSING

Surface Type Algorithm

Flooded conditions (7) No EDR

Dense vegetation (1) Surface temperature over vegetation (STV)

Dense agriculture crops (3) Surface temperature over land (STL)
and range vegetation

Arab!e soil' (9) Surface tempe 'urc all types (STA)
Surface moisture (SM)

Semi-arid surface (15) Surface temperature over desert (STD)

Desert (10) STD

Precipitation over vegetation (4) Precipitation over land (RL)

Precipitation over soil (8) RL

Dry snow (14) Snow depth (SD)

L-Ideterminate Classification (0) No EDR

STV, STL, STA, SM, STD, RL, and SD denote retrieval algorithm codes. Numbers in
parenthesis are the proposed EDR surface type codes.
'Arable soil type includes the types dry arable soil, moist soil, and cempg3site soil and

water/wet suil. The Al! Types land surface temperaturc algorithm is to be used.
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9.2 LAND SURFACE TEMPERATURE ALGORITHMS

9.2.1 Alerithmin Deeopment RationA

The retrieval of surface temperature over land has been an (:mission in the development

of applications of passive microwave radiometry. Microwave radiometers on satellites have been
designed to retrieve the atmospheric temperature profile and sea surface temperature. The
radiometers for atmospheric profiles have several channels on the flank of an absorption band,
such as the 50 to 60 GHz oxygen absorption bane.. In order to retrieve an atmospheric
temperature profile, the temperature of the lowest atmospheric layez is needed. Sources of this
temperature can be either surface temperature reports or a channel in a window adjacent to the
absorption peak. While considerable research has been conducted in atmospheric temperature
microwave sounders [1], the specificatir•n of the surface temperature field over land has not been
a product of this research. A major complicating factor has been the variability of the land
surface in the field of view of the radiometers. Water in any form in the atmosphere, on the
land surface, or in soil (without significant vegetative cover) changes the emission, absorption,
and scattering of the emitted radiation. These problems are g--merally viewed in terms of
standardizing or normalizing the background temperature so that the water, in its various forms,
may be quantified.

The potential exists for retrieval of land surface temperatures without a priori knowledge
of the emissivity, absorption, or scattering. The temperatures of densely vegetated or dry land
surfaces, each with a high emissivity, should be easily retrievable from vertically or horizontally
polarized brightness temperatures. Lambert and McFarland [2l found exrellent c-orrelaItions-

o betwee" he "i fbus-7 Scanning Multichannel Microwave Radiometer (SMMR) in the 18 and
37 G1-z vertical and horizontal channels, and air ,emperature for dry range and prairie areas in
the northern Great Plains. The observed air temperatures were meAsured at screen height, 1.2
m, ind reported as daily maximums and minimums in the NOAA climatological data.
Incorporation of the 22 GHz vertical chanhel should aid in the correction for atmospheric water
vapor absorption of the emitted radiation. The horizontally polarized brightness temperature at
either 19 or 37 GHz should similarly correct for effects of surface or soil water on the
emissivity. Land surface temperature retrieval from passive microwave m; ! not be possible or
meaningful in the presence of snow, ice, or water.

The original Hughes Aircraft Company (HAC) algorithm for the retrieval of land surface.
tei iperature had three forms. Temperature over cloudy land (1LC) was not investigated due to
an inability to discriminate extensive cloud cover in the land surface classification module.
Previous experience [3] indicates that temperature over snow (STS) and cloudy snow (TSC)
would be extremely difficult, at best, to retrieve. The passive microwave radiation front a snow
pack is a combination of attenuated radiation emitted from the underlying soil, the reflected sky
radiation from the snow surface, and the radiation emitted firom the snow. ThIis radiation is
strongly influenced by the cry, talline structire of the snow, which changes slowly throi gh hoar
crystal development and rapidly through freezing and thawing cycles. Although snow Is
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regarded as a blackbody radiator, it does not function as a black body at the incidence angles
of the SSMI.-

For surfaces with a high emissivity (dense vegetation, frozen soil, and glacial), !he
original HAC algorithm was:

ST = C, * 19V, (1)
where:

ST = surface temperature (K)
C, = 1.09 fc "vegetation

1.07 for frozen and glacial, and
19V = 19.35 GHz vertically polarized brightness temperature.

These values for C, are the inverse. of the modelled emissivities for these surfaces. The
influences of the atmosphere on the emitted radiation were not considered in this algorithm.
For surface temperature over arable. land (agricultural and range land), desert, and snow, the
original algorithm was:

ST = Co + C1*37V - C,,22V - C3*19H + C4*85H. (2)

Here Co = -36.4 and CN = the coefficients for the channels, as indicated. The physical
explanation for this algorithm can be discerned by rewriting the equation as:

ST = Ao + A,*37V + A2*(37V-22V) + A3*(37V-19.11) + A4*85H. (3)

In this form, the 37V channel is the primary channel to retrieve the land surface temperature.
Three corrections were made to this estimate. The brightness temperature difference between
37V and 22V is a measure of the atmospheric water vapor which attenuate the emitted
radiation. As the difference increases, the amount of the correction must also increase. The
polarization difference between the 37 and 19 GHz brightness temperatures is a function of the
water present in the land surface scene. As before, the greater the channel-polarization
difference, the more the correction is required. The 85H correction is small, between 15 and
20 K, and is a function of the attenuation by atmospheric water. The actual correction for
atmospheric water is less, but in this form of the equation, the constant is included in the overall
regression constant (CO). Rearrangement of these terms produces:

ST = Ct, + (Ai+A 2+A3)*37V - A2*22V - A3*19H + A4*85H (4)

Here A, = the inverse of the emissivity of the dry scpne in the 37V channel, A2 = 0.127, the
value of C1, A3 = 0.459, the value of C3, and A4 = 0.0636, the value of C4. If the inverse of
the emissivity is set at 1.024, the sum of the coefficients is equal to C,1 which is 1.610. If the
contribution of the 85H channel were neglected, the inverse of the emissivity should be increased
to 1.07.
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The purpose of this investigation was to validate the basic rationale of the algorithms
based on multiple linear reghession, to select the optimal channels for various categories of land

O surface types, and to calibrate the coefficients of the regression.

9.7..2 Meft¢_m

The management of SSM/I and climatological data has been discussed in Section 9.0.1.
Files of SSM/I brightness temperatures and air temperatures (24 hour minimum, maximum and
temperatuia at time of observation) were created for the Western Desert and Central Plains test
area.s. Air temperatures at screen height (1.2 m) were used for the calibration and validation
of the coefficients, as opposed to estimates of t! . temperature of the emitting layer. Air
temperature at screen height is the standard for incorporation of temperature into numerical
meteorological and agricultural meteorological models. Under cloudy or high humidity
conditions, the surface and screen temperatures should be very close. For clear, d& conditions
the deviations between the surface and screen temperatures will be the greatest, espcially if the
radiating surface is characterized by a high emissivity and a low density. These conditions
promote strong radiational inversions in the early morning hours and superadiabatic lapse rates
near the surface in the early afternoon hours. A coefficient of determination of 0.94 for 974
pairs of screen temperatures and the radiometric temperature of the earth surface from thermal
infrared or microwave sounder nmasurements from NOAA 6 has been reported [4] with a
standard deviation usually less than 2.0 K during the summer mcnths, but in the 3 to 4 K range

Temperatures from the climatological ni work were used, as opposed to hourly
temperatures from first order weather stations, in order to achieve the required density of surface
temperature observations. The operation of climatological stations requires volunteex observers

- to record temperatures and other climatolooical elements eaci day. The temperatures are the
maximum and minimnun. during the past 24 .ours and the temperature at the time of observation.
The time of observation is either during the early morning or the late afternoon, normally at the
convenience of the observer. Federal stations (National Weather Service and Flight Service)
record the climatological elements at midnight, local time Consequently, the temperatures
recorded for a given day may have occurred the previous day. The actual time of the satellite
overpass was about 0615 local standlard time, whiciI corresponds fairly closely with the early
morning observing time for the temperatures. The late aftemrnon observing times are generally
in the 1700 to 1900 time iange, orIinafily. everal hours after the time of the occurrence cf the
maximum temperatures. A.n attem)t was r ade using curve fitting techniques to estima - tOwe
screen air temperature at the time of the satellite overpass (,kcar '110 local standard time). A
combination of sine and exponential terms incorporating the t mes ot sunrise, sunset, and normal l

occurrence of the air maxima and minima were used to determine the 1800 temperature.
large variance was noted ; hen the estimate was compared with the temperature it an obsenvation
time of 1800. A decision was made to confine the data set for algorithm development to the
ascending, or early morning, overpass.
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The meanls and standard deviations of the differences between the reported minimum
temperature and the temperature at time of observation was calculated for about 600 -
climatological stations in the Central Plains for days 231, 234, 235, and 240, 1987. The
comparisons are presented in Table 9.17. For climatological stations with 0500 and 0600
observing times, the reported 24 hour minimum temperature did not agree with the temperature
at observation time, This is probably due to an occurrence of the minimum temperature on the
previous morning. For this reason, stations with 0500 and 0600 reporting times were excluded
from the ground truth data set. For stations with 0700 and 0800 rtporting times, the average
differences were generally in the 2 to 4 C range, with standard deviations of 2.6 to 3.4 C. In
general, the minimum temperatures that constituted the ground truth were about 2 C less than
the air temperatures at the satellite overpass time. The ground truth temperatures ranged from

I.1 to 26.7 C during the test period. Additional information on the variance within the ground
truth is in Miller [5].

TABLE 9,17 COMPARISON OF REPORTED MINIMUM TEMPERATURES WITH
TEMPERA'i URES AT TIME OF OBSERVATION FOR CENTRAL PLAINS
TEST AREA, DAYS 231, 234, 235, AND 240

Means (C) of Differences, Temperature at Time of
Qryation& and 24 Hour Minimum Temperature

Time of Calendar Day
_____qv Li! 234

0500 19.5 12.5 12.2 16.5
0600 6.2 3.5 4.7 4.8
0700 2.7 1.7 2.1 2.1
0800 4.2 3.3 3.3 3.5

Standard Deviations (C) of Jifferences Temperature at Time of
Observation and 24 Hour Minimum Teme-rature

Time of Calendar Day
.jQservation 231 234 2M3 240

0500 4.95 9.62 4.63 7.74
0600 9.02 6.15 5,48 6.89
0700 2.97 2.67 2.95 2.69
0800 3.40 3.35 3.13 3.24
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A multiple linear regression analysis was performed for each surface type identified in
the land classification module (EXTLND). Tuitially, all seven channels were used in the

* regressien. The best four coanneis were ident fled, based on .he coefficient of determination
(R2) and the root mean square error (RMSE). Similar categories of surface, type were
aggregated, primarily to prevent gradients in the temperature field across surface classifications
[6]. Pixels classified as rain, flooded, and snow were excluded from the regression analyses.
No stratification was made for cloudiness, due to an inability to classify different cloud types
and amounts in the land classification module. The algorithms that were identified were then
tested against independent data for both the Central Plains and the Western Desert test areas.
The surface temperature files from the Climatological Data contained tCumperatures trom single
stations.

9.2.2.1 Multiple Linear Regression With Brightness Temperatures

Four major assumptions are inherent in mul iple linear regression analysis. The basic
assumption is that the regression model is linear. The other assumptions are that the values of
the dependent variable (the retrieved variables, or EDRs, in the SSM/I analyses) are independent
of each other ant' ire normally distributed and that the variance of the independent variable is
ihe same for all, aiues of the independent variables. Violation of any of these four asum.ptions
leads to problei s with the ialysis [7].

In the land surface temperature investigations, the basic form of the D-matrix algorithm
was linear. The validity of this assumption was examined by plotting the predicted values

A against the observed values of lan( surface temoerature and curvilinearitv was not apparent The
relationships between the surface temperature and the brigntness temperatures were. also expected
to be linear from a theoretical basis, primarily for single channel regression models. The data
were autoc ,rrelated both spatially and temporally within a specific time frame and a test area
and the regression equations were tested against independent data for tother locations and
seasons, so the implications of autocorrelatic 1 are not expected to be significant.

Multicoilinearity is a problem when two or more of the in, ependent variables are highly
correlated with each other. In this event, the regression model will not be able to separate out
the effect of each brightness temperature on the surface, temperature. In the presence of
pronounced multicollinearity, the estimates of the coefficients will have large st indard errors and
will terid tt. be unreliable. Multicollinearity is present when a high coefficient of determination
is accompanied by statistically insignificant esi mates of the regression coefficients ["J. This
degre. of multicollinearity in the D-matrix approach is evident from the correlation matrix of
SSM/I brightness temperatures for the test area and penod as shown in Table 9.18. Every
channel was highly correlated with every other channel. The highest correlation coeffit ient was
0.99 between 19V and 37V, the channels least influenced by atmosphere (after rain and standing
water pixels were removed from the analysis). The lowest channel to ch-nnel conrelation was
0.84 between 85V and both 19H and 371J, the channels least sensitive and most sensitive to
surface moisture, respectivell The 85V i also the most sensitive to clouds. The correlation
between the horizonal and vertical components at a given freq, ency, or the within channel
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correlation, was very high for the 19, 37, and 85 GI-iz channels. In data not presented, the
within channel correlation ir. vegetated terrain was highest for the 83 GHz channels.

I "iBLE 9.18 CORRELATION MATRIX OF SSMP/ BRIGHTNESS TEMPERATURES FOR
LAND SURFACE TYPES USED IN 'k HE LAND SURFACE TE! PERATURE
RETRIEVAL

SSM/I CHANNEL

19V DE 2Z_ 37V 37 B51

19V 1.00 0.96 0.98 0.99 0.95 0.91 0.93
19H 1.00 0.93 0.94 0.98 0.84 0.90
22V 1.00 0.98 0.93 0.95 0.96
37V 1.00 0.96 0.93 0.94
37H 1.00 0.84 0.91
85V 1.00 0.97
85H 1.00

A recommende1 d procedur-e when Inulticuiiinearity is present is to drop the correlated -

vwkiables from the equation, depending on the test of significance of the regression coeffi, icint
and the judgement of the. researcher [7]. If a highly correlated variable is dropped from the

-ession equation, the coefficient of determination will not change. This was apparent in the
kidple linear regression analyses, as will be shown in the discussion.

Another recommer~ded approach to remove the effects of multicollinearity is to change
the form of the indepetad2?it variables. Normalization or differencing techniques may be
emp' ved. A principal component analysis was performed to account for the effects of
mult..ollinearity of the SSM/I brightness teinperatures. Principal components is a multivariate
ai. .is technique used to describe. relationships between independent variables. A set of linear
transformations is used to create a new set of independent variables that are jointly uncorrelated
[8]. The first principal component has the largest variance of any linear finctien of the original
brightness temperatures. The second component has the second largest variance, and so forth.

Principal component (or factor) analysis was used to determine the most significant
physical factors that relate the SSM/I brightness temperate es to the land surface temperature.
The principal compon,.nts were determined for each land surface category of the aggregated set
and used as independent variables in :. linear regression analysis. The importance of each
coefficient was determined ba-ie in the 2ý -tc of the probability level (p) and the t statistic. The
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p value is a two-tailed significance probability that the ceefficient (and correlation) is zero. A
low value of p indicates a high probability that the correlation is significant.

Idea ly, the variance of the independent variable is not a function of the values of the
independent variables - a c;ivdition known as homoscedasicity. If the variances are not equal,
then heteroscedasticity will be a problem. This condition was iot rigorously tested in thu.: SSM/1
data sets, but is not believed to be a problem. A visual examination of the scatter plots of
predicted versus observed land surface temperatures did not reveal any pronounced change in
variance distribution as a function of the vaiue of the observed land surface temperatme. A
simple mean and standard deviation analysis of the SSM/i brightness temperatures in the analysis
also did not indicate a problem with heteroscedasticity. Because the principal components are
standardized and uncorrelated, the coefficient estimates have standard errors, thus avoiding
hetecroscedasticity. The standard deviations of the brightness temperatures were of the same
order of magnitude as the land surface temperatures, as shown in Table 9.19. The standard
deviations were slightly higher in the horizontal channels, as expected from influence• of surface
moisture. The standard deviations of the SSM/I brightness temperatures were also higher in the
lower frequencies, as expected from the decreased influence of scattering at the lower
frequencies.

In the linear regression analysis, the C, statistic was used to determine the optimum
multiple linear regression models for each surface type aggregate. The C. is a measure ef the
total squared error for a model with n independent variables [8]. The C, provides a measure
of the error variance plus the bias introduced by failing to include significant variables in a -

mAOdel. Th•,,e smallest value of the Cp statistic indicates the optimum model, but the subsets that
* show a wide divergence between the C, values are indicative of useful subset sizes. The C.,

values are in Miller [5].

TABLE 9.19 MEAN AND STANDARD DEVIATION OF ITE SSM/I BRIGHTNESS
TEMPERATURES FOR LAND SURFACE TYPES USED IN THE LAND
SURFACE TEMPERATURE RETRIEVAL

Vaable Me__an_ Std.Dev(K) Rage(K)

'9V 275.6 7.47 258.0-290.6
19H 269.0 8.06 243.3-286.0
22V 275.5 6.52 260.2-289.2
37V 272.7 6.82 257.3-286.7
37H 267.6 7.56 240.1-284.5
85V 275.9 5.56 265.5-288.4
85H 272.9 6.13 255.0-286.0
TEMP 285.9 5.09 272.2-299.9
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9.2 3 Results iadDji_ si_-
ts~~ a ,so

Two sets of results will be presented; with and without the 85 GIIz channels as a
con.;_tcuence of the degradation of the 85 GHz channels on the SSM/I on DMSP F-8. The
primary data set used for the analysis was from days 231, 234, 235, and 240 in August, 1987
when the 85 GHz channels were not as yet degraded. Consequently, two sets of al.-orithmsaie
developed- In the event that the loss of the 85 GHz channels degrades the capabilit to
discriminate between land surface types, four categories are used: agricultural/range, dry soil,
mnoi- soil, dense vegetation, and all categories. The number of data points in each category for
the ',Vestern Desert and Central Plains test areas is shown in Table 9.20.

TABLE 9.20 NUMBER OF DATA POINTS, BY CATEGORY, FOR PRINCIPAL
COMPONENT AND MULTIPLE LINEAR REGRESSION ANALYSIS OF
LAND SURFACE TEMPERATURE

Surface 3jypK West nri ) sert Centl Plains Tot-d

Dense agric./range 317 122 439
All moist soils 955 900 1855
A!i i _dry ,oniiis 1.,q

Dense vegetation 133 6 139
All types 1804 1135 2939

,).2.3. I Algorithms Without the 85 GHz Channels

The results of the regression analysis of principal components for all land surface types
in the Western Desert and Central Plaii s test areas are contained in Table 9.21. The
independent variable was land surface temperature, as inferred by screen temperature, at time
of overpass. The five eigenvalues which sum to 5.0 correspond to the five SSMIW channels used
in this investigation. A set of eigenvalues of relatively small and equal magnitude indicates th t
the multicollinearity is small, which is not the case with the SSM/I brightness temperatures. The
cumulative sum of the variance explained is 1.00. The first factor explains nearly 90 percent
of the variance and the second factor explains eight percent. The p level is very low for all five
factors, as expected due to the intercorrelations.

• _••• ,tt-,••.•tt• la0H • i I~llq~~lbm•m~•IN~9-17~~lmllit



TABLE 9.21 PRINCIPAL COMAPONENTS ANALYSTS FOR ALL LAND SURFACE TYPES
FOR 19, 22, AND 37 GHz CHANNELS, WESTERN DESEI'T AND CENTRAL
PLAINS TEST AREAS

Factor

I 23 4

Eigenvalue 4.47 0.40 0.08' 3 0.0319 0.0115
Cumulative 0.894 0.974 0.991 0.998 1.0K)0
t statistic 46.24 -48.54 -8.05 15.04 -6.07

p level 0.0m-- 1 0.0001 0.0001 0.0001 0.0001

The significaice or factor loading o each channel within each factor is shown in Table
9.22. These correlations within a factor hel, with the physical explanation of the factor. Factor
1 represents radiative emission. Although all correlations are high (over 0.92), the 19V and 37V
GHz channels have the highest correlations. This is expected because vertically polarized
radiation is affected less by surface moisture and reflectionq from hare dry snil than hnrirenntfy

polarized radiation.

9
TABLE 9.22 CORRELATION COEFFICIENTS OF THE PRINCIPAL COMPONENTS FOR

ALL LAND SURFACE TYPES FOR 19, 22, AND 37 GHz CHANWELS,
WESTERN DESERT AND CENTRAL PLAINS TEST AREAS

Charnel Factor

19V 0.9(6 -0.215 0.091 -0.100 0.055
19H 0.920 0.346 0.181 0.003 -0.040
22V 0.943 -0.303 0.034 0.133 0.004
17V 0.974 -0. 148 -0.144 -0.058 -0.067
..7H 0.923 0.347 -0.157 0.07 0.048

Factor 2 is a polarization difference term, as indicated by the opposite sign.; of the
correlations in the vertical and horizontal polarization channels. Two sources of polarization
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difference in radiation emitted tTin land surfi-ccs are surfacc raoisture and reflection from .-
smooth, dry sttrfaces such as deserts. As surface meistuc inc..,;Lses, the emissivity decreases
due to a higher dielec.tric constant. This effect is frequency dependent, with a greater effect at
the low frcquencics. The horirontally polarized brightness temperature-s will decrezsc more thn
the vertically polarized brightness tcr.ptcratures. TIe net effect of incrcased soil moisture is to
decrease the brightness temperatures anid ko increase the pd!arization differenccs. This is
consistent with the principal component analysis with land surface temperature as the dependent
variable.

A second source of polarization difference- is sky and cloud reti coon from bare. di y
soils. Deserts are identified by the large polarization differences, which reached 30 C at 19
GHz for deserts in Africa and Norih America. As the land surfacr. be.omes roughcr and more
vegetated, the polarization difference decreases due to decreased reflcction. A pi'incipal
components analysis for the Central Plains data set, without the bare dry soil influence, is
presented in Tables 9.23 and 9.24. The value of the eigenvalue decreased from 0.40 to 0. 11
when the Western Desert was excluded from the data set. The correlations of factor 2 with all
channels also are lower; attributed to the decreased influence of strong polarization differences
from bare, dry soils.

Factor three is characterized by positive, but low, correlations with the 19 and 22 GHz
channels and ncgative correlations for the 37 GHz channels. Factors 4 and 5 are characterized
by very low correlations with all chanaels.

* appear to have a major influence on land surface temperature retrieval from the SSM/I
brightness temperatures. The percent variance explained by factors 3, 4, and 5 is very !ow when
compared to the variance explained by the emission and poiarizationi difference factors. This
indicates that -egression coefficients to correct for these influences for land surface temperature
retrieval may not be statistically significant.

TABLE 9.23 PRINCIPAL COMPONENTS ANALYSIS FOR ALL LAND SURFACE TYPES
FOR 19, 22, AND 37 GHz CHANNELS, CFNTRAL PLAINS TEST AREA

Factor

2 3 4

Eigenvalue 4.83 0.11 0.03 0.02 0.005
Cumulative 0.967 0.989 0.995 0.999 1.000
t statistic 51.96 -2o.53 12.25 12.99 7.06
p level 0.0001k 0.0001 0.0001 0.0001 0.0001
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TABLE 9.24 CORRELATION COEFTICIENIS 01- THE PaINCIWPAL COMPONENTS FOR
ALL LAND SURFACE TYPES FOR 19, 22, ANI) 37 GHz CHANNELS,
CENTRAL PLAINS TUST AREA

Channel Factor

I 2 3•
4

19V 0.993 -0.076 0.001 -0085 -O.040
19H 0.977 0.081 0.016 -0.028 0.024
22V 0.979 -0.1175 0.075 0.079 -0.005
37V 0.989 -0.100 -0.093 -0.024 0.3)44
37H 0.0-79 0.172 -0.089 0.059 -4C. 022

The principal comporent analysis for the agricultural/range land surface type is shown
in Tables 9.25 and 9.26. Emission, the first factor, accounts for 98.7 pement of the variance
and all channels am very highiy corielated with this factor (over 0.98). Because the
agricultural/range land surface type was charactcriz=d by low polarization difference, the
physical interpretation Af the secorad fvtor will change. The 19 GHz channels are pcsitively

Cre~teir~2U~eo~iir 'anPe~sare neg.atvely Corre~ateW I~tflt1's~atr

eA principal components analy!v"s of the Central Plaiss dpta set shows only th emission
facter to be significant at the 0.05 level, as shown in Tables 9.27 and 9.28. The correlatio:;.0
are over 0.99 for all channels. This suggests that a single channel algotithm could be used for
land surface temperatur for this land sarfae category.

TABLE 9.25 PRINCIPAL COMPONENTS ANALYSIS FOR AGRICULTURAIJRAN3E
1AND SURFACE TYPES FG3 19, 22, AND 37 GHz CHANNEL'ý WESTERN
DESERT AND CENTRAL PLAINS TFST AREAS

Factor

3 2- 4 5

Eigenvalue 4.88 0.054 0.044 0.014 0.010
Cumulative 0.975 (" )86 0.995 0.998 1.000
t statistic 27.80 -8.18 -0.19 -2.05 2.20
p level 0.0001 0.0001 0.8464 0.0407 0.0284
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TABLE 9.26 CORRELATION COEFFICIENTS OF THE PRINCIPAL COMPONENTS FOR
AGRICULITRAL/RANGE LAND SURFACE TYPES FOR 19, 22, AND 37
GHz CHANNELS, WESTERN DESERT AND CENTRAL PLAINS TEST
AREAS

Channel Factor

19V 0.993 0.062 0.033 -0.074 -0.058
19H 0.983 0.174 0.012 0.046 0.031
22V 0.982 -0.110 0.151 0.029 0.007
37V 0.992 -0.)6I -0.075 -0.052 0.067
37H 0.988 -0.066 -0.120 0.053 -0.046

TABLFE 9.27 PRINCIPAL COMPONENTS ANALYSIS FOR AGRICULTURAIURANGE
LAND SURFACE TYPES FOR 19, 22, AND 37 GHz CHANNELS, CENTRAL
PLAINS TEST AREA

Factor

2 1 4

Eigenvalue 4.94 0.028 0.022 0.008 0.00"
Cumulative 0.987 0.993 0.997 0.999 1.000
t statistic 22.36 -1.84 1.91 -1.59 1.03
p level 0.0001 0.0681 0.0584 0.1145 0.3039
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TABLE 9.28 CORRELATi1ON COEFFICIENTS OF THE PRINCIPAL COMPONENTS FOR
AGRICULTURLAJ.IJANGE LAND SURFACE 'tYPES FOR 19, 22, AND 37
GHz CHANNELS, CENTRAL PLAINS TEST AREA

Channel Factor

1 2 3 4_

19V 0.997 0.051 -0.009 -0.041 -0ý048
19H 0.992 0.121 0.001 0.034 G 025
22V 0.991 -0.053 0.125 0.002 0.904
37V 0.996 -0.044 -0.055 -0.050 0 J37
37H 0.994 -0.075 -0.061 0.055 -4.017

"The principal component analysis for the moist soils land surface type is presented in
Tables 9.29 and ).30. As expected, the emission term was factor I and the polarization
difference term was factor 2. These terms together accounted for 97.5 percent of the variance.
All factors were significant, however. This is pewrhaps a result of correlations between land
surface types and atu'ospheric conditions. For example, when the land surface is moist. tft

* atmospheric water vapor and cioud water content may rave more of an effect on microwave
emission than when the suriace is dry.

TABLE 9.29 PRINCIPAL COMPONENTS ANALYSIS FOR MOIST SOILS L WNLD
SURFACE TYPES FOR 19, 22, AND 37 GHz CHANNELS, WESTERN
DESERT AND CENTRAL PLAINS TF ST AREAS

Factor

Eigenvalue 4.59 0.283 0.085 0.028 0.010
Cumulative 0.919 0.975 0.992 0.998 1.000
t statistic 44.00 -32.05 -3.00 13.31 -5.52
p level 0.0001 0.0001 0.0027 0.0001 0.0001
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TABLE 9.30 CORRELATION CGEFFICIENTS OF THE PRINCIPAL COMPONENTS FOR
MOIST SOILS LAND SURFACE TYPES FOR 19, 22, AND 37 GIIz
CHANNELS, WESTIRN DESERT AND CENTRAL PLAINS TEST AREAS

r4-

Channel Factor

1 2 3 1

19V 0.974 -0.185 0.073 -0.092 0.055
19H 0.94Z 0.273 0.191 0.000 -0.034
22V 0.959 -0.254 0.028 0.125 0.00'
37V 0.979 -0.124 -0.134 -0.055 -0.065
37H 0.937 0.307 -0.157 0.025 -0.041

The principal components and correlations for the dry soils land surface type are
presented in Tables 9.31 and 9.32 Four factors were significant, including emission and
polarization difference, but thL. first three factors accounted for 98.9 percent of the variance.
The emission and polarizntion difference factors were apparent. Factor 3, characterized by
positive correlations between the factor and the 19 and 22 GHz channels and negative
correlations with the 17 GHz chnnekq; wa% al1cp p rewnt.

TABLE 9.31 PRINCIPAL COMPONENTS ANALYSIS FOR DRY SOILS LAND
SURFACE TYPES FOR 19, 22, AND 37 GHz CHANNELS, WESTERN
DESERT AND CENTRAL PLAINS TEST AREAS

Factor

2 2 1 5

Eigenvalue 4.39 0.402 0.155 0.041 0.015
Cumulative 0.877 0.958 0.989 0.997 1.000
t statistic 12.32 -2.76 3.36 2.75 -1.73
p level 0.0001 0.0068 0.0011 0.0C71 0.0859
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TABLE 9.32 CORRELATION COEFFICIENTS OF THE PRINCIPAL COMPONENTS FOR
DRY SOILS LAND SURFACE TYPES FOR 19, 2- AND 37 G.1z
CHANNELS, WESTFRN DFSERT AND CENTRAL PLt 4S TEST AREAS

Channel Factor

12 2 4

19V 0.954 -0.243 0.122 -0.110 0.061
19H 0.920 0.303 0.244 -0.004 -0.054
22V 0.933 -0.327 0.028 0.146 -0.006
37V 0.962 -0.084 -0.240 -0.071 -0.065
37H 0.913 0.372 -0.149 0.044 0.064

The dense vegetation principal component analysis and the correlations with the factors
are shown in Tables 9.33 and 9.34. Than:e factors were significant at the 0.05 level. As with
the agriculturallrange land surface type, the dense vegettion category is characterized by a very
low polarization difference. Consequently, polarization difference did not emerge as an obvious
factor in the analysis. Factor 2 was characterized by negative, but small comvlation coefficients

C 5U~pubiu4, IU;AV~ A1114UUII WAUI UIC .AL Vclne.If

* coefficient of determination, however, was very low. Theoretically, a single channel, vertical
polarization, should be sufficient to retrieve the emitting layer temperature. With the best single
channel, the 22V, the coefficient was only 0.21. With all five channels, the coefficient of
determination increased to 0.29. Addition of the 85 GHz channels in the regression did not

TABLE 9.33 PRINCIPAL COMPONENTS ANALYSIS FOR DENSE VEGETATION LAND
SURFACE TYPES FOR 19, 22, AND 37 GHz CHANNELS, WESTERN
DP3SERT AND CENTRAL PLAINS TEST AREAS

Factor

Eigenvalue 4.65 0.156 0.097 0.053 0.039
Cumulative 0.931 0.962 0.982 0.992 1.000
t statistkr 5.92 2.71 0.14 -3.25 0.67
p level 0.0001 0.0075 0.0829 0.0014 0.5059
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TABLE 9.34 CORRELATION COEFFICIENTS OF THE PRINCIPAL COMPONENTS FOR
DENSE VEGETATION LAND SURFACE TYPES FOR 19, 22, AND 37 GHz
CHANNELS, WEST-RN DESERT AND CENTRAL PLAINS TEST AREAS

Channel Factor

2 -4

19V 0.967 -0.038 0.212 -0.i25 0.035
19H 0.966 -0.180 0.072 0.169 -0.007
22V 0.939 0.339 0.008 0.061 0.014
37V 0.981 -0.030 -0.098 -0.060 -0.155
37H 0.970 -0.080 -0.192 -0.041 0 116

impr ,ve the performance statistics. The poor performance of the retri, val algorithms is most
likely due to the non-representative ground truth. Virtually all of the dense vegetation land
surface types were in the mountainous areas of the Western Desert test area. The temperatures
of the emitting surfaces, the coniferous tree canopies in the mountains, are not represented by
the neares*t climatological stat~on. Theme ntntions tend- to be in ,w,-er ,e .- .i-ti.,o,'

valleys.

Factor analysis and regression of the principal components indicated that a four channel
linear regression model should include 19V, 19H, 22V, and 37H. The recommended four
channel land surface temperature retrieval algorithm, without the 85 GHz channels, based on the
C. statistic for each of the land surface types is given in Table 9.35. It is interesting to note that
22V was the single channel with the highest correlation with the surface temperature ground
truth. In the factor analysis, 22V did not have the highest correlations with the individual
factors.

As discussed previously, the estimated variance in the ground truth in the Western Desert
was about twice that of the Central Plains. Consequently, the algorithm development is based
on the Central Plains data set, with the addition of the dense vegetation land surface type from
the Western Desert. The performance statistics of the recommended algorithm are given in
Table 9.36. The coefficients of determination range from 0.64 for dry soil to 0.81 for
agricultural/range land surface types. The root mean square errors are around 2.5 C.

9.2.3.2 Algorithms With the 85 GHz Channels

"The results of the regression analvsis of principal components for all land surface types
for the Western Desert "ind the Central I ins is contained in Table 9.37. The factors will not
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TABLE 9.35 RECOMMENDED LAND SURFACE TEMPERATURE RETRIEVAL* ALGORITHMS WITHOUT THE 85 GHz CHANNELS

Temp (K) = Co + C1*T19V + C2*TI9H + C 3*T22V 4 C 4*T37H

Surface

Dense veg. (STV) 32.4 0.31 -0.26 0.82 0.04
Ag/range (STT) 32.4 0.31 -0.26 0.82 0.04
Moist soils (STML)l 89.6 -0.47 0.01 1.49 -0.32
Dry soils (STD) 76.7 -.0.39 0.31 1.24 -0.42
All types (STA) 83.7 -0.49 -0.02 1.58 -0.34

included in case future dry/moist soils differentiation is developed.

TAB-LEýA A3 -1 %(WI DLr,"AiATJL"ý LT V DXA (' ~I¶k%&JI AJ t1V A 1L% T1DtJ --&A

RETRIEVAL. A _i30RTWq .iVIIkTIOUT THE 85 GHz CHANNELS

Dense vegetation 3.03 0.27
Agriculturallrange 2.61 0 21
Moist soils 2.32 0. :9
Dry soils 2.43 064
All types 2.45 1

correspond identically to the factors witho,. the 85 GH.,' ,'hdnnels, due to the natute of principal
comp onents analysis. However, the dominant fact--rs will continue to havw. physical
explanations. The magnitude of the eigenvalues and the cumulative v;uiance explained by each
factor indicates that there is relatively little variance explained by the third through seveath
factors (less than two percent). The p level, however, emains very low for all factors, as
expected from the intercorrelations of the charnels.
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TABLE 9.27 PRINCIPAL COMPONENTS ANALYSIS FOR ALL LAND SURFACE TYPES
FOR 19, 22, 37, AND 85 GHz CHANNEIS, WESTERN DESERT AND
CENTRAL PLAINS TEST AREAS

Factor

! 2 3 4

Ligenvalue 6.07 0..48 0.32 0.07 0.03
Cumulative 0.867 0.936 0.982 0.992 0.997
t statistic 59.59 -61.16 7.37 7.55 4.96
p level 0.0001 0.0001 0.0001 0.0001 0.0001

Factor 1 has a high positiv.. correlation with ail channels, as shown in Table 9.38, and
is therefore interpreted as the emission factor. The cirrelations are the highest for the 19V,
22V, and 37V 2hannels, as expected from physical considerations.

TABLE 9.38 CORRELATION COEFFICIENTS OF THE PRINCIPAL COMPONENTS FOR
ALL LAND SURFACE TYPES FOR 1,2-2, 31, AND 85 (3Hz CHANNELS,WESTERN DESERT AND CENTRAL PLAINS TEST AREAS

Channel Factor

19V 0.948 -0.098 -0.289 0.009 -0.049
1911 0.892 0.411 -0.072 0.166 -0.029
22V 0.946 -0.225 -0.191 0.038 0.128
37V 0.977 -0.091 -0.096 -0.144 -0.060
37H 0.913 0.372 0.079 -0.134 0.033
85V 0.928 -0.022 0.361 0.008 -0.077
85H 0.914 -0.318 0.227 0.069 '.059

The correlations between factor 2 anti the 19 and 37 GHz channels indicate that factor
2 is due primarily to polarization differen."e. The 85 GHz channels are less polarized than the
other channels as a result of increased surface and atmospheric s4attering and a lower response
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to surface moisture. Factor 3 may represent a cloud factor, due to the relatively higher positive
correlations with the 85 GHz channels.

Principal component and correlation analyses for the Central Plains are contained in
Figures 9.39 and 9.40 and show more variance explained by factor I and a higher correlation
of all chapnels with factor 1. As with the analysis without the 85 GHz channels, when the
analysis is performed on the Central Plains data set, there is less of an influence of the strongly

TABLE 9.39 PRINCIPAL COMPONENTS ANALYSIS FOR ALL LAND SURFACE TYPRS
FOR 19, 22, 37 AND 85 GHz CHANNELS, CENTRAL PLAINS TEST AREA

Factor

1 2 4

Eigenvalue 6.62 0.25 0.03 0.02 0.01
Cumulative 0.946 0.981 0.986 0. )88 0.989
t statistic 65.55 37.95 11.16 -3.13 3.71.
p level 0.0001 0.0001 0.0001 0.0018 0.0002

TABLE 9.40 COUKcbATION COEFFICIENTS OF THE PRINCIPAL COMPONENTS FOR
ALL LAND SURFACE TYPES FOR 19, 22, 37, AND 85 GHz C-ANNELS,
CENTRAL PLAINS TEST AREA

Channel Factor

1 32 4

19V 0.987 -0.068 0.007 0.035 -0.037
19H 0.961 -0.237 0.118 0,031 0.001
22V 0.987 0.069 0.057 -0.096 0.012
37V 0.989 -0.025 -0.093 0+023 -0.001
37H 0.965 -0.227 -0.085 -0.02.1 0.034
85V 0.948 0.311 0.025 0.051 0.044
85H 0.970 0.183 -0.01- 7 0.020 -0.050

polarized emnission from dry soils. Consequently, factor 2 appears to shift from polarization
difference uue to dry soils and surface moisture to an overall moisture term. This could include
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surface moisture, cloud watci, and aemospheric water vapor. Factors 3 th-uugh 7, although
significant, account for less than two percent of the variance. The very low correlations of the
SSM/I channels with these factors renders physil inteipretation more piecarious. The

4 interpretation of the physical rationale for :ch of the factors in the principal component analysis
is similar to that of the analysis without the 25 GHz channel. Tiwt additional data is contained
in Miller [5].

Table 9.41 contaias a conpaxison of the performnmce of the land surface retrieval
algorithms with and without tihe 85 GHz channels. In general, the incorporation of the 85 GHz
channels improved the algorithm performancc. The improvement in root mean square error was
about ,.5 C, with a corresponding increase in coefficient of determinati, of 0. 1. The principal

TABLE 9.41 COMPARISON OF STATISTICS FROM PRINCIPAL COMPONENT
ANALYSIS FOR SF.LIC-ED LAND SURFACE TYPES AND "IF1ST AREAS
WITH AND WFrHOI[ INCLUSION OF THE 85 GHz CHANNELS

Without With Without M\. th
• _ ~ ~ ~ ~ -A T_:_ _ i _' z 85 GQH4

All surfaces
WD 3.79 3.17 0.64 0.72

•.r .42 .050. 7i 0 . 70

All 3.ý17 3.18 o.62 0.72

Agric./rangc
WD 2.32 0.50
CP 2.37 0.85
All 3.00 2.77 0.66 0.71

Moist soils
WD 3.87 3.45 6.64 0.71
CP 2.30 1.80 0.80 0.88
All 3.53 2.93 0.63 0.74

Dry soils
¢D 3.9 3.W9 0.54 0.55

CP 2.44 2.47 0.64 (V.64
All 3.41 0.53

Dense veg. ati(A1
WD -...92 2.93 0.32 0.33
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component statistics will not be in exact agreement with the statistics of the multiple linear
regression, but will be sufficiently similar for a conclusion- The 85 GHz channels improve the

A I wccxuraey of the land surface temperature retrieval algorithm. If the 85 GH? channels are not
available for accurate classification of land surface type, an aggregation of all surface types leads
to an RMSE of about 3.7 C. Scatter plots of the land surface temperature calculated with the
recommended algorithm with the minimum air temperature show a linear dependence [6].

Optimum model selection based on the C. statistic for all land surface types is shown in
Table 9.42. The 85V is the single channel model with the highest coefficient of determination

TABLE 9.42 MULTIPLE LINEAR REGRESSION MODEL FOR ALL CHANNELS IFOR
RETRIEVAL OF LAND SURFACE TEMPERATURE FOR ALL LAND
SURFACE TYPES

Channels in Regression Model

22V 1213. 0.666
85H 978. 0.700
85V 380. 0.784

85V 19V 181. 0.813
oci w 135. U.1MU85V "31 .......

85V 37H 116. 0.822

85V 19V 22V 89.1 0.827
85V 37H 22V 70.5 0.829
85V 37V 22V 58.3 0.831

85V 37V 22V 19H 28.6 0.835
85V 37H 22V 19V 17.0 0.837
85V 37H 22V 37V 15.7 0.837

85V 37H 22V 37V 85H 13.9 0.838
85V 371- 22V 19V 19H- 8.1 0.839
85V 3714 22V 37V 19V 7.2 0.839

85V 3711 222V 19V 19H 85H 8.9 0.839
85V 37H 22V 37V 19V 85H 8 4 0.g39
85V 37H-I 22V 37V 19V 19H 6.9 0.839

25V 37H ?2V 37V 19V 19H 8511 8.0 0.839
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and lowest value of the CP statistic, in contrast to the 22V of the analysis without the 85 GHz
channels. The coefficients of determination indicate that only two or three terms in the, regression equation are sufficient to produce essentially the same value as th0e full seven term
model. This is due to the multicollinearity of the channels.

A larger ground truth data set was assembled, but the areas and dates remained the same
as previously, to compare algorithm performance with and without the 85 GHz channels.
Additional data from days 50, 51, 53, 56, 57, and 59, 1988 were included as an independent
data set. A multiple linear regression analysis on the Central Plains and Westem Desert cLata
for days 231, 234, 235, and 240, 1987 was conducted for all land surface types except snow,
rain, and standing water. The coefficients of determination ranged from 0.15 for dense
vegetation to 0.86 for vegetation with some water present. The RMSE's ranged from 1.87 C
for vegetation with some wat:-r present to 3.58 C for dense vegetation. The lower statistics for
the dense vegetation may be more of a function of the variance between the surface temperature
observations and the temperature of the emitting canopy than of the site to site or day to day
variance of the brightness temperatures. The same land surface type categories were constructed
as previously. A multiple linear regression analysis was perforied for each category with the
Central Plains data set. The channels that are optimal, based on the Cp statistic and the
statistical significance of the regression, are prese:nted in Table 9.43 for the Central Plains data
set only. The 85V and 37V channels are dominant, followed by the 22V and 19V channels.
However the 85V, 37V, 22V, and 19H channels wece selected for a four channel retrieval
algorithm. The coefficients of determination showed essentially no change from the optimal
esM,,nrcls. -,ll ri.•,ijmieded Avin channei lard .urfard- ,e--ieAs lartigr-thm,, with e 85 (;miHz

* channels, for each of the land surface types is given in Table 9.44. The performance statistics
are given in Table 9.45.

TABLE 9 43 OPTIMUM MODELS FOR LAND SURFACE TEMPERATURE RETRIEVAL
FROM THE 19, 22, 37, AND 85 GHz CHANNELS, BASED ON THE C(Gs)
STATISTIC, CENTRAL PLAINS TE ST AREA

R2

Agricultural/range 0.90 85V 37H 0.812 0.817
Moist soils 6.23 85V 37V 22V 37H 19V 19H 0.851 0.851
Dry soils 3.55 22V 85V 37H 0.622 0.634
All types 5.55 85V 37H 22V 19V 19H 0.79i 0.79-
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, TABLE 9.44 RECOMnMENDED LAND SURFACE TEMPERATURE RETRIEVAL
ALGORITHMS WITH THE 85 GHz CHANNELS

Temp (1 Co + C1*T19H + C2*'r2V + C,*T37V + C4vT5V

Surface

Dense vW¶•. (STV) 24.94 -1.2784 0.8800 0.5933 0.7299
Ag/range (STL) 6.97 -0.6266 0.2716 -0.1297 1.4820
Moist soili (STML) 23.J6 -0.1873 0.5221 -0.6271 1.2320
Dry soils (STD) 72.68 -0.4598 0.5984 -0.8828 -0.2623
All types (STA)l 26.46 -0.3133 0.7327 -0.4469 0.9540

'Can be used if above four types cannot be differentiated.

RETRIEVAL ALGO TrrHMS WITH THE 85 GHz CHANNELS

Ii MSE (0 K

Dense Veg. 68 3.45 0.21
Ag/range 237 2.69 0.77

oist soils 1230 2.78 0.76
Ory soils 229 3.60 0.46
All types 1764 3.14 0.71

9.2.4 ,

1. Algornthms should be implemn-ted, with or without the 85 Ghz channels, for land
surfau. t1i mtpenat retreval.

2. 1Deise vegetation will kive the same coefficients as agricldttual and range lands for
the algorithms to bc used wht,,.' the 85 GHz chaannis are noý available.
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3. If the land smf.dzt, cl?.ssificalion is degiaded due to tlae loss of the 85 Ghz chr inels,
an all surface. types land surface ;emperature retrieval algorithm should be implemcJd-6

4. Algorithms shoulC be deferred far srtface temperatures for cloudy land, snow, cloudy
snow, and glacial.

Additional research should include digital thermai infrared surface temperatures under
clear, rclatively dry sky conditions as the ground truth. The logical source of this irformation
is from the Operational Line Scanner (OLS) on the DMSP satellite. The major difficulty to date
with thb use of OLS thermal data as ground truth for the SSM/l surface temperature retrieval
is the difficulty in assigning a latitude and longitude for each OLS pixel (the operational uses of
the OLS data are based on visual interpretation of the images) and nimerging this infonnation with
the SSM/I information. The use of OLS data under near-ideal conditions wi'A facilitate the
calibration of algorithms for surface conditions of dense vegetation and fore-st areas, mountainous
areas, and areas with a low density of surface weather stations. Particularly with areas of dense
vegetation and forests, the thermal infrared channel will provide a source of ground truth that
is representative of the emitting surface. The variance. of the ground truth may also be
determined for all land surface typ.s and locations. The algorithms developed are intended for
use on both ascending and descending p~asses with the knowledge that a bias will be inherent
with the descending pass 3late afternoon) retrieval. This bias can be determined with the use of
OLS thermal infrared data.

An "Aditional recommendation is to use SSM/I land surface temperature data in the
retrieval of atmospheric profiles with other sensors onr me DMSP satellite series.
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4.3 SIIRFACE MOISTURF AI.GORiIFHMS

9-.3. 1 Algfn)hDtv._j•R tp_.1 i aonaek nkeo_

Free water in pores of soil suitace layers will lower the einissivity of those layers due
to the increase in the soil permiitivity. The results of several field experiments have generally
shown a linear relationship between normalized brightness v.lniperature an6 soil moisture
expressed either on a gravimetric or percent of field capacity basis [1), [21, [3]. Wang et al.
131 also showed a lihnAr relationship between normalized brightness temperatures ard the
volumetric water content in tic top 10 cm layer of soils at different frequencies (1.4, 5 and 10.7
GHz). The linear variation of biightness temperatures at a particular wavelength with the
volumetric moisture content of the soil will be approximately ihe same for most soil texture
types.

Emitted microwave brightwiess temperatures have also bcA P correlated to estimates of
surface moisture snch as the antecedent pr-ecipitation index (API) [4], [5], [6]. High correlations
were found at several frequencies including !9 GHz and 37 GHz. Recent studies by Choudhury
et al. [7] and Owe et al. 18] have also used the API as a measure of soil surface wetness and
incorporated soil evaporation in the estimation of the recession coefficient.

Several physical factors affect the sensing of soil moisture at different microwave
frequencies. At short wavelengths, most of the brightness temperature contributions from a soil
are emitted by a shallow layer at the soil surface. For a wet soil, this moisture, sensing depth
is on the order of ten rercent of the wavelength. This would represent an emitting layer of onlyWa couple of miilimeters at the 09.35 GHUZ (1.55 cm) channel, of "tie S,,I., ,L s-•,.t. 0_-
roughness and texture also affect the measured brightness temperatures by decreasing the
scns.tivity to soil moisture. This was shown to be the case by Wang et al. [3] ard Newton and
Rouse [9] for several microwave frequencies.

Vegetation cover will also decrease the sensitivity to soil moisture due to self emission
as well as scattering and de-polarization of microwave radiation emitted by the soil. Several
studies have indicated that longer wavelengths can better penetrate vegetation cover and therefore
are better suited for soil moisture sensing. Vegetation effects on microwave sensitivity to soil
moisture have been studied and discus.sd by Wang et al. [101, Burke and Schmugge [11], Theis
and Blanchard [12] and Ulaby et al. [13].

The short wavelengths of the SSM/I will result in a small soil penetration depth ;x- well
as a reduced sensitivity to surface moisture if any vegetation is present above the soil surface.
tn addition, the large SSM/I footprint sizes will lead to the introduction of noise due to surface
type variability as well as the random nature of precipitation occurrences and spatial patterns at
that sca)e. For these reasons, the correlation of SSM/I variables based on brightness
temperatures with an antecedent precipitation index was deemed the best approach for moisture
retrievals at the soil surface.
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9.3-2 M .eodology

. 9.3.2-1 Passive Microwave Data

SSM/I overpasses over the Central Plains and Western areas of the United States were
selected a'ed on the potential presence of surface moisture. This was determined by locating
storm systems with significant precipitation on daily and weekly weather maps piblished by
NOAA. Only large frontal systems were selected Ls small convective storms can be a source
of error due to the spatial resolution of the sensor and the relatively sparse distribution of
weather stations at that scale. The SSM/I data were ordered to cover a time period ranging from
1 or 2 days before the storm to several days after it. In this way, it was possible to detect
abrupt changes in surface moisture on the day of the storm and the subsequent dry-down period.
SDR brightness temperatures over the area of interest were downloaded to disk using software
supplied by NRL for the VAX VMS operating system. The data were then submitted to a set
of programs developed at Texas A&M University which removed header records and prepa: d
the data for the surface-type classitication expert system program [14) The classification scheme
as described in section 9.1 determined the major surface types, i.e., water, snow, and dry and
wet soil su. faces as well as vegetation densities based on average polarizations in the 19.35 GHz
and 37.0 GHz channels. Classified footprints were gridded to 0.25 degree latitude/longitude
cells which contained the seven brightness temperatures and a surface type classification code.
Because the distance between concentric A-scan footprints of the SSM/I is on the order of 0.25
degrees at mid-latitudes, most of the time only one footprint was placed in each
latitude/longitude 0.25 grid cell.

. 9.3.2.2 Ground Truth Data

Climatic data used as "ground truth" in this study covered a period from July to Octcber
1987 and January to December 1988 and consisted of daily maximum and mimmuin
temperatures and precipitation amounts from the coopertive network of weather stations
operated by NOAA. The data tap s were ordered from NOAA and were downloaded to disk
using a VAX mainframe computer with special software developed for this purpose. The
climatic variables for each weather station were gridded to 0.25 degree latitude/longitude cells
for the entire USA and for each calendar day of the year. If more than one weather station were
present in a particular grid cell, the values for each climatic variable were averaged.

Daily antecedent precipitation index (API) values were calculated for each
latitude/longitude cell based on the available temperature and precipitation data. The API was
caiculated as:

API, = (APli.J + P)* K (1)

wh - K is the recession coefficient, P is the effective precipitation, and i and t- represets the
cuM t and preceding days respectively.
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Two methods of estimating the recession coefficient (K) were used: (1) a method
proposed by Wilke and McFarland [6] where the K factor was allowed to vary between a, minimum of 0.70 in the summer and a -•ximum of 0.92 in the winter to account for seasonal
changes in evaporation potential, and (2), a K factor described by Choudhury et al. [7]:

S= exp(-FjW.) (2)

where EA is the evaporation on day i and W. is the maximum depth of soil water available for
evaporation.

As stated by Choudhury et al. [171, the magnitude of W. is uncertain because f the small
sampling depth at microwave frequencies. They concluded based on a sensitivity analysis that
the correlations betwuen brightness temperature and API consistently increased as W. is
decreased. Due to the small moisture sensing depth at 19.35 GHz and the empirical nature of
the above mentioned equation, five recesion ccefficients were computed for values of W. equal
to 5, 7.5, 10, 15, and 20 mm which resulted in five API values with notation API,, API 2, APi 3,
AP4, and API5 . The notation API= was used for the API estimated using the recession
coefficient proposed by W-Jlke and McFarland [6]. Because the API value for a given day at a
given grid cell location depends on the API of the previous day, missing records in weather data
files were checked and reported in the output file as number of days since last missing record.
If for a given grid cell location on a given day, the precipitation data were available but no
temperature data were reported, an estimate of the maximum and minimum temperatures for that
grid cell was obtainWd by averaging data from surrounding cells. This was acceptable because

- u.,A~. aalJlgDuItt .. I) @ GJ.Lty •tjALLS.A1V I.AA~il~ .MA VaLV. V(UtJL4Ufl.' •tiUP •II|UM1A3L •A*., UUVkdt 1-UA~ JL U I.•4 .•d• .

a flag was set in the output file in order to allow furthtr screening of those data if their
reliability was questioned during the analysis. An additional variable calculated for each grid
ce.l was the number of days since the last rainfall event. In fhis way its sigrdficance in the
algorithm development could be evaluated.

The potential evaporation or evapotranspiration was computed using the Hargreaves
equation [15]. This equation was selected because it required input data which were retadily
available such as the day of the year, the latitude, and daily minimum and maximum
temperatures. The Hargreaves equation is in good agreement with the Penman equation in
relatively dry climates with no or moderate wind. The H-argreaves equadlion can be written as:

ETP = 0.0023 Ra (TC + 17.8) TDI) (3)

where ETP is the potential evapotranspiration for grass in mm/day, Ra is the extraterrestfial
solar radiation in mm/day, TC is given by (Tmax + Tmin)/2 (Average Daily Temperature), TD
is given by (Trmax - Tmin), Tmax is the maximum daily temperature, and Tmin is the minimum
daily zemperature.
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The extraterrestrial radiation can be expressed as a function of the latitude and the day
of the year:

9167.32 ES [OM si-i(Lat) sin(DECI +cos (Lat) cos (DEC) sin(OM)] (4'Ra= 596-0.55TC

whe.."
Lat = latitude of the location in radians,
DEC = 0.40876 cos(0.0172142 (I + 192)),
J day of year,
ES = 1.00028 + 0.03269 cos(0.0172142 Q + 192)),
OM Arc.cos (-tan(Lat) tan(DE.)).

The latitude of the lower right hand comer of each grid cell was used as the latitude
value in this equation. Other ground truth data used consisted of the Major Resource Regions
and Major Land Resource Areas of the United States (MLRA) by the Soil Conse vation Service
[16]. This land classification scheme groups areas .ith similar soils, natural vegetation, climate,
and topography and arsigns a code number to each area. Thes& code numbers were also gridded
to 0.25 degree cells.

9.3.2.3 FRegression Data File Preparation

Gridded classified SSM/I files were merged with griddt4 API files for the appropriate
* dates and overpasses with a computer program, resulting in output I 1es which contained primary

data for statistical regression. The implied assumptions with the form of the API equation used
(Equation 1) were that no evapotranspiration occurred during the night and that the precipitation
events occurred between 12 am and 6 pm. Therefore, the morning overpass gridded SSM/I files
were merged with the gridded APi file for the previous day while afternoon overpasses were
merged with API files for the same day. If no API data were available for a particular 0.25
degree cell, data front that cell were omitted in the output daily regression file. The mer-cd
daily regression files contained the latitude/longitude location of each grid cell, the
corresponding seven measured brightness temperatures, the classified surface type code, the
surface temperature, the precipitation amount for the day, the number of days since the last
rainfall event for that location, the MLRA region code, missing data flags and 6 estimated API
values. All gridded daily files were !hen transferred from the VAX to a microcomputer via
KERMIT for further preparation.

A computer progra m was written for the PC to read these files and search for locations
with high API values in order to confirm on independent weather maps that storms actually had
occurred. A second computer V. ogram screened the regression fi is wi~h the purpose of building
time series for a given MLRA region (MLRA region files) which included data prior to the
storm as well as for the dry-down period after the storm. In this procedure, grid cells with at
least one high Ai I value were detected and tagged during the successive reading of all input
files. Tbhe average polarizatior: n the 19 GHz and 37 Gilz channel: was calculated for dry

9-68



surface conditions just prior to the storm in order to further categorize vegetation cover densit-
for the tagged grid cells. During a second reading of the input files, time series for grid cells

* with at least one high API value were created and the data placed in different MLRA sub-region Z
output files according to vegetation of the dry cell. A maximum of six possible output files
(ILRA sub-region files) were created for each MLRA region according to vegetation cover
density for the period of analysis. The six initiL classes corresponded to average polarizations
in the 19.35 GHz and 37.0 GHz of: (6) less than 4 K, (5) between 4 and 6 K, (4) between 6 and
8 K, (3) between 8 and 10 K, (2) between 10 and 12 K and, (1) greater than 12 K.

9.3.2.4 Data Analysis

The regression analysis was conducted on MLRA sub-region files grouped according to
vegetation density class. The ground truth variables consisted of the 6 API values while the
SSMII variables consisted of several forms of normalized brightness temperatures and apparent
emissivities. Apparent emissivities were obtained for each channel by dividing the brightness
temperatures b, the surface physical temperature. As simultaneous OLS surface temperature
data were not available, the measured air temperature at the time of the overpass was - zed. Air
temperatures can be fairly good substitutes under stable climatic conditions. For ascending
overpasses, the minimum air temperature was used as it usually occurs close to 6 aii in a semi-
arid environment. For descending overpasses, the, temperature at 6 pm was predicted using a
sinusoidal curve adjustment based on maximum and minimum temperature for t1 e day [17].

For best operational use. the surface moisture algorithms ideally should be based solely
on SSM/I brightness temperatures without requiring any additional ground information. Because
both vertically and horizontally polafize4 brightness temperatures are influenced by the physical
soil and vegetation temperatures in the samne way, but vary in magnitude with moisture (at the
53* incidence angle of the SSM/1), normalized brightness temperature ratios consisting of
horizontal channels divided by the vertical channels were tested as well. As it will be seen later
in the analysis section, the T19H GHz channel was found to be the most sensitive to surface
moisture. The following SSM/I variables were tested:

1) Tl9h
2) Tigh / TI,
3) T1 • / T1s,

4) Tlsh I T37,
5) TI. / [0-5*(TI%, + T 37,)].

As previously mentioned in section 9.3.i, most of the correlations between microwave
emission versus surface moisture have been explained by linear relationships. This was
examined in The data analysis by using the following mdels:

X = -0 2- fl, API
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where:
API = Antecedent Precii itation Index (API,, API1 , ... , or API5),

At& X = brightness temperature, apparent emissivity,
or normalized temperature ratio,

= regression coefficients.

The second model tested was a logarithmic trandormation of the API values versus the
radiomet-ic data:

X = 60 + 16 In API)

The third model correlated the SSM/I variables with estimated reflectivity coefficients
obtained by transforming API values using a simple radiative transfer model:

x = olo + 3, r -, .

The radiative transfer equation was defined in section 9. 1 and the assumptions involved
are described by UJab, et al. [18]. In this procedure, volumetric Fil moisture values were
estimated from API values using 0,, = C... API. The value of the C. coefficient was
determined by looking at its effect on the goodness of the fit of the linear model. The soil
dielecrxic constant can be estimated from the volumetric soil moisture content using an empirical

e, = (a + a1 S + a2C) + (bo + bS + b2C) 0, + (c0 + cS + c 2C) 82  (5)

where:

9, -- vnlumetric soil moisture coatent,
S = sand content in %,
C = clay content in%,
a,b,c = empirical coefficients.

Hallikainen et al. [19] p•ovide values for the empirical coefficients to determine the real
and imaginary part of tie dielectric constant for frequencies between 1.4 GHz and 18 GHz.
They showed that as the frequency increas, the soil dielectric constunt versus soil moisture
relationship is less sensitive to soiR texture. At 18 GHz the influence is minimum. For this
study, the empirical dielectric behavior at 18 GHz was assumed to be applicable to the 19.35
Gliz which was the SSM/I frequency selected for the soil moisture algorithm development.

The real and imaginary parts of the dielectric constant were then used to estimate the
sj ,cular reflectivity cotffi.•ient afier the trigonometric transformation of the following equations

I $_)
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Finally, the specular reflectivity was then used to dstimate the soil surface reflectivity
coefficient (r..). The use of this regression model for surface moisture prediction however
would require an iterative method to solve for API from Fr because the equation is implicit
for unknown soil moisture.

The regression analysis was conducted on a VAX using the SAS statistical package and
on a microcomputer u! ing a simple regression program written in Turbo Pascal 5.0. The latter
program was tailored to handle the above mentioned models, allowing for the selection of
different SSM/I and ground truth variables. Figure 9.7 represents a general flow-chart of the
data analysis methodology.

9.3.3 Selection of the SSM/I• Channels Most Sensitive to Surface Moisture

9.3.3.1 SSM/I Channel Selection

Many studies in passive microwave remote sensing have shown a decrease in sensitivity
to surface moisture as wavelengths decrease, due to smaller penetration depths. To test this fact,
stepwise regression using the logarithmic model was conducted with SAS on 21 MLRA sub-
region files for the 1987 data set. Regressions of apparent emissivities (SSMII brightness
temperatures divided by the surface physical temperature) versus API were carried out and in
all cases, the channel resulting in the highest correlation was the 19.35 GHz horiD ntal
polarization. The decrease in correlation was quite drastic wvhen other channels with shorter
wavelengths were used in the regression. Based oi' this analysis and due to the larger available
penetration depth and sensitivity at the 530 incidence angle, the 19.35 H channel was considered
best suited for surface moisture retrievals.

9,3.3.2 Vegetation Cover Effects

Vegetation overlying the oil surface will decrease the sensitivity of moisture detection
at the short wavelengths of the SSM/I. At high vegetation densities, reta ievals of surface
moisture are physically impossible. To illustrate this fact, several time series of SSMII
signatures, ATI values, and precipitation values were plotted for single latiut:-de/longitude cells
in regions with different vegetation covers. The SSM/I variables or signatures represented in
the following graphs consist of the apparent emissivity for the 19.35 GHz horizontal channel
(eL9H = T19H/Ts) and the normalized temperature ratio 19.35 H GHz divided by the 19.35 V
GHz channel (TI19/TI9V). "1ie API values were obtained using Equation I and 2 with a W.,
of 10 mm.
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In Figure 9.8, for an agi ýcultural area in Wst. Texas, tWe normalized teriperature
(Tl9H/TI9V) at the beginning of the season was relatively low, gradually increasing ane

* peaking around day 220. The increase in normalized temperature as the seaw;)n progrcssed was Z
a result of a decrease in polarization caused by inereased vegetation density. Precipitafion events ,7
resulting in considerable surface moisture caused an at-rupt lowering of the SSM/I variab`ýs due
to a decrease in soil emnissivity. The storm on day 141 resulted in a much greater micnr vave
response than the larger event around day 190. This could have occurred due to z combination
of two factors: a denser vegetation covev on day 190 and/or a localized storm ',Nhich did not
thoroughly wet the entire footprint. Figure 9.9 shoi s a similar pattern with peak vegetation
occurring around day 180. A well vegetated foopriin from a location further east is sLown in
Figure 9.10. The normalized temperature hd a value closer ti, one indicating small
polarizations and the sensitivity to surface moistue resulting from prexnipitation was lower. In
all the series examined, the apparent .-missivity carried more unexplained variability than the
normalized temperature.

To further study vegetation effects on surface moisture retrievals, aa analysis was also
conducted on the MLRA sub--region files for the central plains of the United States for the year
1988. In this way, differences due to vegetation tpes and seasonal effects could be considered.
Table 9.46 shows the resulting vegetation density classifications of the sub-region files for the
three seasons analyzed. A change in veg tation density over the time period studied (from
spring to fall) occurred for most of the areas under investigation. For cropland areas in the
central plains, spring time is characterized by relatively bare soils followed by a rapid increase
in vegetation density at the end of sp. ',ng, to full cover during summer and low vegetation cover

-'"t a i Il' se, i n r ý 4nr .,. A a l LIM *ha L a cam. -s nflan

U . 4"., T~ ýJ AL # &"V- .. &AI&A&A M. Allýh . WE,& 1 Lh.A ý. AR ý ~.%,J a' J1JWAS flJ Ak A &%J L LA) LP IAL AIU.ELL

precipitation with the exception of the south eastern plain regions (West Texas, Oklahoma, East
Colorado, and Nebraska) which have a significart area under irrigation. Other major vegetation
types consist of rangeland, and pasture. Natural vegetation is mostly comprised of short,
medium, or tall grasses with peak vegetation density occurring in late spring and early summer
depending on the latitude. Changes in vegceation density for this type of land cover are not as
extreme as the case of cropland regions. The area covere, in this study ranged from a latitude
of 30 to 49 degrees north latitude, which implied a spectrum of vegetative calendars accordhig
to location and elevation.

The MLRA sub-region files were clipped to contain data for a period of not more than
25 days in a particular season and included data from the dry surface prioi to thc. storm, tho
passage of the storm and increase in surface moisture, and the subsequent recession pemrid as
the surfacc dried. For most data sets shown in Table 9.46, the average polarization over drý
soil was ý,ighc4:t in the spring, lowest in the summer, and showed an intermediate value in the
fall. Polarizations in spring and fall were. similar for cropland areas, with a decreas.: of several
Kelvins in the summer. Some regions did not show any significant change.; across sers•,ns and
were either 1) scmm-arid regions or lakes if the average polarization was large, or 2) d&I:se
natural vegcation- if '..he average .olmaization was low. Vegetation density had a major L tfluence
on the sensitivitv to surface moisture. Figure 9. I1 shows distinct difiterences between he thrfx
seasons foor MLRA 106 (Nebraska and Kansas Loess-Drift Hills) in the Centra Peed (-C ains and.
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Figure 9.10 SSM/I signature response to surfare moisture over a g'id
cell with dense vegetation.

SSM/I Signature Response to Surflac,
Moisture for VLRA 106
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Figure 9.11 The influence of vegetation cover on th= ý5-ntsitivily to
surface moisture for the MLRA 106 region.

0 9-75



TA-I• .4A•U-'r ZEED -c1P-n 'ME -MI B- REGI ON FIA
DLiNSI.VY CLASS AND THE AVERAGE POLARIZATION PRIC 1 TO THE
STORM

MM. Vegetation Avenige Polarization Q/er
Density Class Dry Soil Prior to the Storm (K)

5 SUMMER 8.8"U 5 4.6
55D SPRING 3 9.0
" FALL 2 -

"3 8.3
s6 SPRING 2 10.6
" " 3 9.7

"FALL 2 10.7"" 3 8.2
"" 4 6.2

57 FALL 5 5.6
67 SPRING 3 8.5

"4 6.5"" " 54
69 SPRING 5 5.9
70 SPRING 4 7.6
71 SPRING 3 8.0"" 5 4.0

V- A~AL I T.

72 SPRING 4 6.6
"SUMMER 3 8.9

4 6.4

"FALL 4 6.8
73 SPRING 5 4.4
75 SUMMER 5 5.6
77 SPRING 2 10.1""a 4 6.9

"FALL 3 8.1"" 4 7.7
78 SPRING 4 7.9" FALL 4 6.3"v 5 4.9

80A SPRING 4 7.1
81 FALL 4 6.5"U S 5 5.5
"S " 3 8.7

""FALL 3 8.3
102B SPRING 4 6.4" " 4 6.0
"H 5 6.8
106 SPRING 3 9.5
" " 4 8.0

"FALL 5 5.3
107 SPRING 3 8.4
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Livestock Region. Corn and wheat are the main crops in the area. The average polarization
in the 19 and 37 GHz channels over dry grid cells was 8.2 K for spring, 4.6 K for summer, and
7.0 K for fall. 'Tihe greater sensitivity to soil moisture. in the spring resulted in lower normalized* temperatures as API values increased. Figure 9.12 correspoi.,s to MI.RA 103 (Cenirnd Iowa
and Minnesota Till Prairies), a corn and soybean region with overall denser vegetation in tlkr
summer and fall seasons. The average polarization over dry grid cells was 7.5 K in the spring,
4.5 K in the summer, and 5.4 K in the fall.

SSM/I Signature Response to Surface
Moisture for MILA 103

0.98 I I , ,ii p I I •

;> 0.96 W N,

N .094-

-40.92

4 0.88 -t ---------
0 5 ib 15 20 255 30

API (mm)

Fki g A Summer IFall

Figure 9.12 The influence of vegetation cover on the ensitivity to surface ,noisture for the
MLRA 103 region.

Analysis of the T19HTJT7V versus API relationship for the MLRA sub-region files lead
lo the following conclusions:

1) The strongest correlation between TI9HMI37V and API occurred in the Northern
Great Plains Spring Wheat Region (MLRA 54. 55B, 56), in the Central ('reot :lains Winter
Wmeat and Range Region (MLRA 70, 71, 73, 77, 78), and in the Centoil Feed Grains and
Livestock Region (MLRA 102A, 102B, 106). The calculated polarization difference over dry
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soil for those regions was usually rclatively high in spring (7-10 K), low in summer (4-6 K), and
high again in fall (6-10 K).

2) The Deseric Basins, Plains, and Mountains (MALRA 42) located in New Mexico and
TJrexas had high polarizations over dry -soils suggesting low vegetation densities. However,
precipitation over that area was mainly due to local convective storm systems. At the SSM/I
reso!ution scale, the correlation between T1911/T37V and API was low even over footprints with
low density vegetation.

3) Observations in the Westem Great Plains Range and Irrigated Region (MILRA 65,
67, 69, 70) resulted in usually good correlations. The Nebraska Sand Hills (MLRA 65) in the
spring had high average polarization over dry soil. However, high API values weren't always
associated with low TI9H/T37V ratios. Most of the soils in that region are deep and sandy
which result in fast drainage and low moisture retention. A large part of this area is also under
irigation (spi-inkler and sub-irrigation).

4) The screening program classified the MLRA 119 region (which is about 76 percent
forested) a% high density vegetation (class 6) for the spring, summer, and fall seasons.
Observations over tirie did not show any significant decrease in brightness temperatures for
large API values.

V .... .. AL.. .. .. _. . iil tdie oriLinai six usin g
regression analysis on the data of Table 90.6 anr moisture retrieval equations would be
developed. These classes wid their respective thre-shol-I valuts were:

1) Low density vegetation: for avg. •l. diff. > 8 K
2) Medium density vegetation: 6 K < avg. pol. diff.. <= 8 K
3) Mediunm high density veg.: 4 K < avg. pol. diff. <- 6 K

where avg. ,ol. diff. is defined by: (19V + 37V)/2 - (19H + 37H)/2.

A fourth class (dense vegetation) would encompass average polarizations of less than
4- :X_ luiwever, a moisture retrieval equation was not developed for this class due to very small

The clipped ML.RA sub-r,:gion files were randomly grouped into the thtrr 2bove
uwn,-tior:cd classes according to average polarization prior to the storm. Two independent data
seýs weai created for each class: one for algorithm development and one fic r verification.

i :.4 A! oiL,_ibm Develo;netnt

Ukhc analysis was conducted on MLRA sub-region files stratified according to vegetation
. nA generated by the screening program described in 9.3.2. The obje._tives ane general

i~roctx,,w of algorithm development were to:
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1) Test the use of different SSM/I variables for model development and selWt the. most

sensitive to surface moisture.

2) Select the most appropriate API values according to moisture sensing depth.

3) Select the statistical model and test against independent data.

4) Develop and test the surface moisture retrieval algorithm logic.

9.3.4.1 Selection of the Best SSM/I Variable For Algorithm Development

Microwave brightness temperatures are influenced by the physical temperature of the

emitting surface; therefore, the apparent emissivity (brightness temperature divided by the

physical temperature) should be a more accurate indicator of surface moisture because it removes

some variability in the observations due to changes in the surface physical temperature. For this

reason, the apparent emissivity along with normalized 19.35 H GHIz brightness temperatures

using the 19.35 GHz and 37.0 GHz vertical polarization channels were compared in order ,o

select the most significant SSM/I variable for algorithm development.

Table 9.47 shows the correlation coefficients obtained for the line-a model between !he

different SSM/I variables tested and the API3. The best correlation was obtained for the

normalized brightness temperature TI9H/T37V. Physically, this can be explained by the fact

that the 37 GHz channel is closer to the skin temperature due to its smaller penetration depth•.
"1VhP q1Tnjt1Vnt immifrlshim( tt 0ne wi" t nvo-ý •ev r Is1-MU 1 iv-Dvibtlat1 i" th,. %x ,.% r wy 1'altionn fo,-v m.et

* cases. Unfortunately, surface skin temperatures were not available for this research so air
temperatures recorded by the weather station network were used instead. This introduced some
additional unexplained variance to the data.

TABLE 9.47 CORRELATION COEFFICIENTS OBTAINED FOR THE LINEAR MODEL
BETWEEN SSM/I VARIABLES AND API3 FOR DIFFERa .-NT VEGETATION
CLASSES

-- g on Corr aton i!Tiqcient
Density T19H el9H T191I/T19V T19HWT37V 2 * T19H/
Class (737V +TI9V)

"-0.7022 -A.6E845 7.7451 - -0.7745- -U.76608
1 -0.7467 -0.6532 -0.7507 -0.7726 -0.7667
2 -0.6825 -0.5291 -0.6644 -0.6921 -0.6857
2 -0.5903 -0.4784 -0.6742 -0.6952 -0.6914
3 -0.6058 -0.4060 -0.6984 -0.7074 -0.7162
3 -0.6381 -0.5260 -0.6402 -0.6912 -0.6756

e s: -- a + b f "13

3 TI9H/TI9V = + b API3  41 T19HIT37V = a + b API3
5 2*T19Hi(T19V+T37V) = a r- b API3 .
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The relationship between API and normalized bri thtiess temperature was non linear for

large API values. Therefore, API3 values greater than 70 mm were not included in this analysis.

. 9.3.4.2 Selection of the API Ground Truth Values

The linear model was used to determine the best conrration between API and the
normalized brightness temperatium (TI9HITI9V). As described in section 9.3.2, each file
pnrpared for statistical analysis contz ned a set of 6 API values, fiNe of which were computed
using a r.ession coefficient estimated from local potential evapoumnspiration with a soil water
depth available for evaporation (Wj) of 5, 7.5, 10, 15, and 20 mm (designated as API, to APIs,
respectively). Correlation coefficients obtained through this analysis are shown in Table 9.48.
The best correlation among the three vegetation density classes resulted from the API4 (W. =
15 mm). Except for one case, the API, resulted in poorer correiation ooeffkients than the API
values derived from daily tvmpotranspiration.

TABLE 9.48 CORRELATION COEFFICIENTS FOR DIFFERENT API ESTIMATES
USING THE LINEAR MODEL

Vegetation Correlation Coefficient
Density API1  A PI3 API3  AP14 APIS API,
Class

~~_1 An I-o 00 -,• 077,4 073 -0.77/69 -0. 70 19m

1 -0.7430 -0.7637 -0.7726 -0.7746 -0.7603 -0.6753
2 -0.6790 -0.625 -0.6921 -0.6795 -0.6573 -0.6855
2 -0.5797 -0.6682 -0.6952 -0.6943 -0.6774 -0.7048
3 -0.6808 -0.6983 -0,7074 -0.7137 -0.7058 -0.6348
"3 -0.5137 -0.6389 -0.6912 -0.7263 -0.72•2 -0.6946

-'l--H-T137V = a T b AV,

Vegeltion Density Class:

CLASS I. (T19V + T37V)/2 - (T19H + T37H)/2 > 8 K
CLA'S 2:X K < 1I9V + T37V)/2 - (TI9H + T37H)/2 < -8 K
CLASS 3:4 K < 919V + "3'7V)/2 - (TI9H + T37H)/2 <-= 6 K

Modq-, Sol -tion

The rclationsh`p between volumetric moisture content and k.ormalized temperature is
c,,wIn-linear axnordirg to the Radiative Transfer Model (RTM). Such a trend was observed in the
d.,a for '-rg-.: APk va•ues when normalized temperatures (T19HITI9V) were tlotted against API
for fo~tpri.f_ s g!WZf•. by MLRA class (Figure 9.13). It appeared from the ob.servatim and
•s-•Won iaiysts if several such cases that the relationship becam. non-linear for API, value5
g, ,_&n thast-' 70 Win,
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TI9V/T37V vs API4 for
SMLRA 78 in the Fall Season r_

1.02 

4;

1I

0.9-

0-96 '

[0.9 4 - zW m WO-mi "
m om=

* mUl

Pi4- (M)U

O Figure 9.13 Normalized temperature versu.: API relationship showing vhe decrease in
sensitivity to surface moisture for large API 'values.

'Me third mode) teste, which used zin e,ftimatedl soil surface reflectivity coefficient
based on the APT and the RTM, resulted in a better correlation for those data sets with very
large ANI vahims, due to linearization o.-- the data. However, that. model was deemed impractical.
to be used for the final surface moisture retrieval equations because. the surface ieflectivity
coefficient is implicit for "PI when the normalized temperature is known. In addition, and an
abriorxrkaly *low normalized temperature could lead to very large and unrealistic APIJI e-sftiates.

The linear model was determined to be the most .appropriate and simple for algorithmi
develc~pawnt providing that vegetation density was "taken into consideration. T•herefore,observations with A.PI4 vahes greater than 70 mm were not included in the analysis so &.at the

linear mode.] would apply.

Curve fitting was conducted on the three regression data sets representing the- three
vegetation densities. 'Me norm~alized tenqxrature (1'19H/lIr37V) was expre-ssedl as a linear
comnbination of AP4. Table. 9.4,9 shows the slope and intercept as well as the xegtession
coefficients obtained. The resulting regression equations Pie' plotted together in Figure; 9.14.
The absolute value of the slope was directfly proportional to di~e ave.-go polarization In the 19.35



CHz and 37.0 GHz channels prior to the storm and thus inversely proportional to the vegetation
density. The intercept (TI9HT37V for API4 = 0) increased as the vegetation density increased
due to the decrease in polarization. As expected, the standard error of estimate for the API
increased as the vegetation density increased.

T)MB W-9-.4--RFiRMSION COEFFICIENTS FOAl THREE VEGIlI ON DENSITIES

Vegetation Density Slope Intercept R Sb dd FI7_K
Class Norm. Temp. AP14 (mm)

Low Density - -- ."01481 0.9765 -0.88. 0.0"67
Medium Density -0.000873 0.9935 .-0.6785 0.0151 11.7
Mea High Dt-sity -0.000580 0.91,02 -0.7137 0.0098 12.0

Model: T19P/T37V =-a + bAPI4.

Normalized Temperature vs. API
for 3 Veg tation Densit.y Classes

1--

0.4 -1 Medium High Dens.ty V-'tatian
> . . ' .• ..• .. -....................-..........
0.96

Yledlum Die isitye.y•.- 5- -•--

0.91-•. .

0.91 I nw Density Vegetation -

0 .9 _ _ _ = ! • - - :. . . 1 . .
0 5 10 15 20 25 S 0 35 40 45 50

A14 (trim)

Figure 9.14 Normalized Temperaturt versus API4 zmgccssion lines fet three vegetation,
densities.
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Thie model scatter plots and correslpnding residual plots :or each vegetation density class
can be seen in Figures 9.15 through 9.21 . The residual plots indicate that the relationship .
between T19H/Tl9V and API can be assumed linear for API4 values less than 70 mm. The
T19H/7'19V residuals were larger for observations over low density vegetation (maximum of
0.05) and medium density vegetation. For relatively high density vegetation, the residuals were
less than 0.03. This is in agreement with passive microwave theory as the variability in
normalized temperature should be smaller for observations over vegetated areas. The largest
residuals found in the data sets always corresponded to an overestimation of T19HI3"7V for
small API values. In other words, relatively small API values were sometimes associated with
low normalized temperature values. This can be explained by the fact that small precipitation
depths uniformly spread over a SSMII footprint area just prior to the satellite overpass could
result in a low normali-,ae temperature. Contamination by water bodies -,ot detected by the
classification schen -, w )uid also produce the same effwct.

Other sources of noise resulted from the methodology used hi estimating the API and
merging those gridded files with, the SSM/I gridded files. The assumption that precipitation
events occurred between 12 am and 6 pm might not have held for til cases. If rainfall occurred
at night (after 6 prn), the morning SSM/I overpass would record low brightness temperatures
but the computed API values would have included the re -ssion coefficient for the previous day.
In addition, some weather stations report on an evening schedule (5 or 6 pm) and a precipitation
event occurring afutr 6 pm would -* considered the next day. ThL_;e two facts could lead to
observations in the data where abnormally low normalized temperatures were associated with
API values of zero. The alternative however, would have been to group the morning SSM/I
overpasses with API values based on precipitaficn of the same day. This would havw lead to
high APi vatues associated to higr norrnauizei temperatures for pr'-ipitation occurring atter
6 am. Thbese cases would have beep more common, producing num,,,ous leverage points in the
data which wc Ald have artificially reduced the slope of the regression line. The heterogeneity
of precipitation over a 30 km grid cell even for the large frontal systems used ;n this analysis
resulted in some observations with high API values being paired with normalize-'1 temperatures
higher than expected. Such problems are unavoidable at the spatial resolution vthe SSM!I.

9.3.4.4 Model Testing

The regression equations for ce-ch veetation density class were tested with independent
'-ita sets described in section 9.3.2. These equation, are shown in Table 9.50 in their
Cr;,iiona form, a; inversions of the equations develt xd in Table 9.49. If API values
predicteý by the regression equations were negative, they were set to zero, and if they were
larger than 70 nam, 0 -y were set to 7-0 mm. Figures 9.21 to 9.23 show plots of the predicted
API versus actual "ground truth API" values. Th11e correlation between predicted API and actual
"ground truth" API was satisfactory for the three vegetation density classes. The best
correlation occurred for the low density vege-tation class fR = 0.7686).
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Figure 9.15 S.;attei plot and regressiol.fine for the low density vegetation class (R
0.7835).
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Figure 9.17 Scatter plot and regression line for the medium density vegetation (R = -

0.6785).
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Figure 9.18 Residual plot for the ined'-wn dta-sity vegetation class.
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Scatter Plot and Regression fine
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Figure Sd 9 Scatter plot znd regression line for the medium high density vegetation class
(R -- -0.7137).
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Figure 9.20 Residual pl r ir the eedlium high density vegetation class.

e 9-86



TAB1LE 9.W0 "MMENDE-D SURFA UVAL AGORITHMS FOR

THREE VEGETATION r4Sl f Y CLASSES

vgetation Ucns-Fty as--s ' Al TEST

Lcw 3&W Vegetation 659.3, "K
Medium Dnsity Vegetation -i145.48 1126.58 6 < [b] ! 8 K
Med High Density Vegebttion -1724.i4 1701.24 4 < (b] :5 6K

"API - Al + BI T19HI3"TV [b] Y + 37"Y - 19 + 37i
2 2

Surface Moisture Retrieval
Low DensitLy Vegetation

70-

60-IM N

{30 .U2-.,, - - M.

420 M ON M

30- M ar iwpm II• ai O

0 10 20 ,0 .40 50 60 7

CatoO Truth AP14 (mm)

Figure 9.21 Plot of p..ndic.ed v;rsus actiral API. .•urf'ce. moimt. vabues for the
indepatdent data :et (R = 0.7686).
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Surface Moisture Retrieval
Medium Densitv Vegetation
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Figure 9.22 Predicted versus - -.tuaI API4 values for the independent data
set (R =0.6871).
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Figure 9.23 Pr eicted versus actual API4 values ft, th indej'p eent data

set (R = 0.72'6).
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9.3.4.5 Surface Moisture Prediction Algorithm

5011 The normalized temperature ratio does not vary considerably from day to day over dry
soil conditions. In regions with similar climatic conditions to the Central Plains of the U.S., it
will slowly increase and decrease over the growing season following the growth and senescence
of natural vegetation or the seasonal variations in agricultural vegetation densities. However,
if the vegetation is not too dense, a precipitation event will cause a sharp decrease in the ratio
which will gradually, over a period of tirae, return to its value prior to the event, assuming that
the vegetation density has not changed considerably during the period.

Thus, for the best use of the developed models, we recommend that the algorithm be
implemented in the dynamic database framework described in the land surface type classification
section of this report (section 9.1). This implies calculating and storing a running average of
certain SSM/I variables for grid cell locations of interest, which are updated at each available
overpass of the instrument.

The following steps are recommended for the use of the algorithm:

1) Compute a running average of TI9H/T37V and of the average polarization in the 19
and 37 GHz channels for each overpass and grid cells in the -xea of interest. The average
polarization is used as a vegetation density index while the T19H/T37V normalize&; temperature
is the indicator of surface moisture. The running averages would include brightness
temperatures for the five last overpasses.

2) Before including the SSM/I variables from the latest overpass in the runnhig averages,
compare TI9H/f37V to its running average. If TI9H/T37V is not significantly different and
the surface type classification code does not indicate moisture, the soil is considered dry. If a
significant reduction in Tl9HIT37V has occurred aid the surface type classification code
indicated moisture, the surface is considered moist or wet.

3) If the soil surface is determined to be dry, include the latest values for the SSMWI
variables in the running averages.

4) If the soil is classified as moist, the latest values for the SSM/I variables should i.ot
be included in the running averages. The value presently in the database for the average
polarization in the 19 GHz and 37 GHz channels is used to select the appropriate surface
moisture retrieval eqluations for that vegetation density class.

5) For subsequent overpasses, estimate surface moistu) using the selected equation until
the predicted API reaches zero or until the TI9H/T37V normalized temperature is close to the
running average value prior to the storm.

The algorithm was applied to many grid cells representing diffezrent MLRA regions in
the central plains over the snow-frue period in 1988. Examples are shown in l-igures 9.24 and



Surface Moisture Retrieval Algorithm
(KURA 55B, lat 45.3, [ong. 98.3)
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Figure 9 24 Application of the surface moisture retrieval algorithm to an
grid cell in the Central Black Glaciated Plains Region in North Dakota
during the snow-free period in 1988.
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Figure 9.25 Application of the surface moisture retrieval algorithm to a
grid cell in the Rolling Till Prairie Region of Fastern South Dakota,
during the snow-free period of 1988.
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9.25 for two different MLRA regions. The algorithm rasonably predicted surface moisture for
both large and small precipitation events.

S ').3.5 Observations and Recwomij'n,-ada_ i-

The developed surface moisture retrieval algorithms are satisfactory considering the
physical limitations of the SSM/I instrument for this purpose. The short wavelengths of the-
SSM/I channels only permit very small soil mois.ture sensing depths. V'getation is an
additional complication which .auses further decreases in moisture ser'sitivity. The large
footprint size at 19 GHz introduces unavoidable noise due to the spaaal variability in surface
types as well as the random nature of precipitation and consequently soil moisture at that scale.
Therefore, thexe algorithms are a compromise, retrieving surface moistare witq the API
surrogate while taking into consideration vegetation dens. ,y effects. Surface type variability
effects are partially removed in the classification scheme as the retrieval equations only apply
to certain surface types i.e. moist soil and arable soil. Under flooded conditions, the API will
usually be greater than 70 mm rendering accurate retrievals almost impossible due to the non-
linear nature of the response.

The most accurate operationai use of these algorithms will require the maintenance of
running averages for the appropriate SSM/I variables within a dynamic database continuously
updated with eazh overpass as described in section 9.3.4.5. The running average of SSM/I
variables are necessary for establishing the vegetation cover density and selecting the appropriate

hIf the use of the dynamic database is not possible, the retrieval equations can be used

over certain surface type classifications providing the predictions are limited to zero for the

lower limit and 70 mm for the upper limit. It should be understood that thu errors in surface
moisture retrievals could be greater than the standard errors described in the analysis section.
The applicable surface type classifications would be noist soils and wet soils. The equations
would not be applicable to the other surface tyl es.

TheoreucadIy, volumetric soil moisture. to a certain depth can be estimated from a time
series of soil surfacxe temperature and moisture, both retrievable with the SSMII. This would
require the knowledge of certain soil physical ch;,racteristics such as water holding c:.vpacity,
infiltration and hydraulic conductivity. At the spatial resolution of the '"SiI.fI ht. wever, any such
modelling attempt would be questionable. As an alternative, a gross value of soil moisture for
a grid c.:l. location could be, estimated during a limited period after a storm I i assuming an
average value for the soil water holding capacity of tic grid cell and distributiing the retrieved
surface moi ture down to a certain depth of the soil profile. The average value of soil water
holding capacity would b- stored in the database as well.
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9.4 SNOW PARAMETER~ AUGORr{mm

Pass.v mirwv adoet a sigriftic-'W promise fto thle remote sensing of

snowpack propeities. Snow imrti-Cle-s behave as volume szatte=is of the radiati-an emitte fr; mm
the. underlying surface [1], [2). 'he ahctr-mg -Is a itin1ng function of wavelength. At
wavelengths less than I cent., Mie scaftermig by in~dividual snow mvticle~s such as cr, sials aw1.
grains is pronounced [3). The lopgcr wa%,e-lengths, such as thie A 66 Cif (18 (3HZ) of the
Nimbus 7 SMIM and the 1.55 cir (19 Gift) (-f khe SSMII, are tw-iltered less by a typical
snowpack. Consequently, n~diation at thew- wave engthls emitted from ;A snow. covered surface.
wiU be a function of the state &-~ the '-;aface be~cath ithe snow~pact. Froam grour~d has a hiigh
emissii'y, greater fthn 0.90. duT to the low pznxutivity vnf ice j-11, Moist soil with i -e wvater
present has an emnissivity a- low~ &! 0.'>)0 et thcz- *w.v !otingti due to the high permittivity of
liquid water [5]. The physical lenmpem~sre of a dry snowp~ark 'S not a n~akor infhs ýCnm due to
the low conitribution of eniize'd radieijoni froin !W- snow 161'. In rxiythc; passive m'crowave
radiation rocc',ivcd fivin a srijwpack is ;:. funtirion of the ftcquencv distribution of snoDw crystal
anid grain si7es. This frequency distrilaution is highly carre,,mt~ wiAki snow depth and with snow
water cantent, for typical snow diensities.

Frozen ground prior to a snowfall evenst will have fairfy sim-ZW brightness ten -)Crature,
with low polarization differences, at tie SSM/I fteqou~zcie~s. Vcgetation and roughnes. AIements
wII decrea:-- t&e polirization differeces, while bare ý,rd moilst soill will incrTease the 'oiarLiz. lion-

I ~ -- 1. W 1

*temperatures in the shorter wavele.'gths (highzi- fr--,uerc-ies~i. If Ohe snow crystals- are very
small, ý!i 85 GHz channels will s!iow q niarkrA dru-: in brigntiness tempo-rature J'roroiw~ced
decreases L. ..he 37 GHz channels are mnom. typical of -!t new tonow. 7"se polarization differenes
will also increase dramatically. For new.. dry sn,-w of thr. order of tens of centimetc-s depth,
the ')rightness temperaturts ir the longer wvave'engths3 are essen"idl un'changed from th~r-.se prior
to the snowfali.

Thc c.-'ystallinc structure. of a new sawollack initWiay is intluencei- by snow c., Wta size,
,;ness, temperature. v-d wind. ihe crystalline structure wili change on a day to dy basis ass
result of tiermal gradients in the srio.Avpxck and U it; caieirgy balance of the snow surface Lay'ez.

A net effect of both processes - hca crystal fornnatior' in the lower layer of the snowpack t7J,
[8] and Wag.--r grain sizes arid layer formation from thaw xnd f'reeze cycles - is to progressively
increas the -nean crystal size. This will produce a further decrease in brightness temiperatures
at 37 (3Hz (see, for example, [9]). Large crystals will decreise the vadiation at the 22 and 19
(3Hz frequencies. as will be shown.

Snow edge is relatively ý--sy to detoc:. with prssive microwave. The radial in from thx
underlying 3urface is scattered miore -. 0.81 --m that. at 1 .55 01 1,66 cm. The polarizAtion
difference inricra=e mrkedly at 0.8.1 cmn. Grody (10), Kunzi, PA a!. jill], and McFarland, et
al. [9] used comparisons of 0.81 cm with 1.66 cm brightness temperatures ')r polarization



diffe, nce at 0.81 cm to deecwt snow edge or discriminate snow covered areas from areas without
snow with SMMR data. The threshold was of the order of 2 cm snow depth, although others
have noted a threshold of 5 cm [121.

V
Investigations on determination of snow depth or snow water equivalent have focused on

the 37 GHz channels [9], [11], [12], .13]. Foster, et al. [3] reported coefficients of
dt•ermination approaching 0.9 at the 0.81 cm wavelep-th (37 GHz) of the Nimbus 6 ESMR.
These correlations were obtained with the vertically polarized brightness temperatures for one
degree latitide-longitude cells in North Dakota and Montana. Chang [14] used the difference
between the 1.66 (18 GHz) and 0 81 cm horizontally polarized brightness temperatures of
SMMR to retrieve snow denths over several large open land areas in Canada, the U. S. Great
Plains, and central Russia. Correlation coefficients of 0.85 were obtained. Gloersen, et al. ['2J
retrieved snow water equivalent as a linear function of the brightness temperature difference
between the 1.66 and 0.81 horizontally polarized brightness temperatures from SMMR.
Goodison, et al. [15] found excellent correlations between snow depth and the 37V channel of
an airborne radiometer, with the ground truth from airbome gamma and surface snmw surveys.
The coefficient of ,Fe-wrminatior, was 0.86 and the slope of the linear r.gr= ,ion line was 1.83
mm/K.

Kunzi, et al. [11] noted that microwave signature of a snowpack was indepenent of
epth for dry snow depths greater than 50 cm. McFarland, et al. [9], in their study ot snow

depths in the northern Great Plains, found the upper threshold to be somewhat lower, around
40 cm. This upper threshold apparently marks the depth where al emitted radiation from the
uimerI�|insi•i r is qaryfulA O- _nhnwf n Ir &lW Slh w1Pflmt Wh,, , thf #*kr., - -1n1 #h,-

radiation is a function of the crystal morphology in the pack and reflected radiation from the
crystals and itermal layers.

Ideally, the brightness temperatures before. the first snowfall would be incorporated into
the algorithm to retrieve the snow depth or water equivalent 16]. The decrease in microwave
emission due to 3now would be a result of the scAttering. The algorithms that combine the 37
GHz channels with lowe: freqtency channels represent an atterns to incorporate th. pre-mow
passive microwave signature into the algorithm. This procedure would be espeially useful with
varving vegetation, soil, and soil moiste within a region. This procedure is not feasible in the
D-matrix algorithm approach, however. Incorporation of a longer wavelength (lower frequency)
in the snow depth or water equivalent algorithm could pr vide .- ',. mari. a on the state of the
grounr ,r'derlying the snowpack [14].

A,-y liquid water in the snowpack increases the microwave brightness twnperatures [1],
[141. A chang- of one percent in liquid water results in a change of 70 in the 0.81 cm
horizontal polarization brightness tcznperature [4).

McFa•,land, et al. [91 %-parated 1he snow ,.son into two phascs; the a.cumulatien phase.
and .ne ripening and meltiurg phase. Schanda, et al. [161 had -sserith'ly the samt clasification
scheme wiTh wiuter snow (no melting metamorphism), wet spring snow (wi h a layer of wet
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snow crystals at the surfarze), and dry. refrozen spring snow. The brightness temperatures and
the polarization differences do not have the same patterns after the onsei of crystal

.ietamorphism produced by mzlting. Daytime melting produces marked increases in brightness
* temperature [9], [17]. Nightime refreezing after a daytime melt does not return the brightness

tempers.Vares to pvc-melt values. McFarland, et a]. [91 noted a gradual incgcase, in the nighttrme
I rightness temperatures from the onset of the. ripening and melting phase to full peness and
n.'ting. The obvious implication is :hat an algorithm to retrieve the snowpack pwamneters has
to initially discriminate between these phases or classes. Different algorithms are needed: one
to determine snow depth or water equivalent before the melt phase and anotner to determine the
stage of ripening.

9.4.2 W€..g~hdQ1.Yz

The data sets of SSMII brightness ;nemperatu cs and limdtological data were assembied
as 0.25 or 0.5 degree grid files prcviously described. 71a- climatological data consisted of
snowfall in the preceding 24 hours, total snow depth, and % ater equivalent of &.e new smow.
Daily air maximum and minimum temperatures were also avwilable.

Sevemi separate data sets were analyzed. The full data set consisted of the SSM/I
brightnes temperatures from day 343, 1989 to day 60, 1990 for the Central Plains test area. for
quarter degree grid boxes. The cases analyzed included those overptsses, both ascending and
descending, when the test area was largely covered by the overpass. The SSM1I data set
consisted of 344a, 344d, 346d, 353d, 363d, 007a, 008a, 024a, 047a, 049a, 050a, 055a, 056a,
057a, and 058a. where each overrn" s .q i&dntifieA hy tOe c1en•tdar •ry .,,v ,vo "..r.. A ft r

Sascending or d for descending. Only those grid boxes with a climatological reporting station
were included in the analysis Additional data sets were processod "Tom Fcbrniar, 1988.

9.4.3 RoullAn[ D

The snow depths and the microwave brightness temperatures are highly correlated, as
shown in Figures 9.26 thmrugh 9.29. Figure 9.26 shows the reported snow depths and Figures
9.27, 9.28, and 9.29 the SSM/I brigltiaess temperatures at 19V, 37V, and 85V GHz respectivety
over the CentWa! Plains for day 51, 1988, ascending pass. Figure 9.30 shows the minimum
surface air temperature for this same day. A visual correlation of the snow depth with th-e
brightness temper,.tures appears to show excellent agreement. However, when multiple liner
regression was performed. thie 13.st R souared was in the vicinity of O.2C wiuh an RMSE of 1I
cm. The snow depths for this case generally match the observed depressions in the SSMI
channeJs, but the lcalized nature of the heavier amounts may be a source of var~ance. A
geolocation correction was not applied to the SSM/I data.

The full data xet was analyzed spatially and temporally for two separate sections of the
Central Plains, as shown in Figure 9.31. The eastern area was defined by 41 to 47 degrees
north latitude and 88 to 96 degrees west longitude. This area covers Iowa, Minnesota, Zasd thef
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Figure 9.26 Accumulated snow Figure 9.27 SSM/I brightness
depth for the Central Plains on temperatures at 19V over the
day 51, 1988. Central Plains on day 51, 1988.

TM LAT85V51

Figure 9.28 SSM/I brightness Figure 9.29 SSM/I bricghtness
temperatures at 37V over the temperatures at 85V over the
Central Plains on day 51. 1988. Central Plains on day 51. S. .
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Figure 9.30 Observed surface Figure 9.31 The test area for
minimum air temperature for the the analysis of snow.
Central Plains for day 51,
1988.

western half of Wisconsin. The western area was defined by 41 to 47 degrees north latitude and R

northern two-thirds of Nebraska. Spatial data sets were organized Ln a spread sheet by d y, with
all seven brightness temperatures, the major land resource area (181, the classificatio by the
EXTLND surface type classification modu"e, an the •limatological data. The first step in the
analysis was to calculate the correlation coeffici nt matrix fur all variables. ThiS correlation
analysis included several derived variables from t ie brightness temperatures, such as channel
and polarization differences. Separate correlations were calculated for various categories of
snow depth, major land resou-cc area, and location.

The snow season for the winter of 1989 in the teat area was characterized by a few major
snowfalls that melted/sublimed significantly in the several week periods between the snowfalls.
'The snow cover reported in the Weekly Weather and Crop Bulletin showed very Little snow or.;
January 16, 1989 -nd agaii, on February 12, 1990.

Figures 9.32 and 9.33 show the correlation coefficients between the 19V and 37V
brightness temperatures and snow depth for days between 344, 1989 and day 58, 1990. All grid
cells with snow depths greater than 0 mm and less than 400 imm were used in the correlation
analysis. No stratification was done for land surface type -fnd no points were removed based
on obvious itilier locations, such as the Black Hills of South Dakota. ') -ral patterns tre
readily appareat. The 37V channel has the higher correlation coefficient tham t] t 19V channel.
but the 19V channel shows a marked response to snow dept, (aLtually grain size characteristics

9-98



Ash 0.--- 4--. .--- "-

M.-6 .9.. .. I •L -- 80-., -- -. T "'

S4.1 
-

_A2. -

-- ni

- 1 3 02 16r,4 I I71 Yfl77 733I - I I il7 so41so71 ,1l 7 75)Vo
DAY (MY I - DM GAY 344. ISM) WIi (MY I - W W.MX Y 344. lI W)

Figure 9.32 Correlation coeff- Figure 9.33 Correlation coeff-
icients between snow depth and icients between snow depth and
37V brightness temperatures, 37V brightness temperatures,
western test area. eastern test area.

within the snowpack). This indicates that the 19V channel will not necessarily provide
information from the surface. beneath the snowpack. The 19V channel will provide information
on the aging of the snowpack and the development of larger crystals in response to surface
thawing and refreezing and to hoar crystal formation in response to thermal gradients.

Annther nmtttrn iq thid thE' P~nt-pltinv, -1%ffj,_j,.nfC are 16ftl __ý' _r~1 ... A4..

light and decreasing snow amounts. Correlation coefficients that remained fairly stable from day
to day did not occur until late February. For days 0 t7, 050, 055, 056, 057, and 058 which
were all ascending overpasses, correlation coefficient. were calculated between snow depth in
mm and the 37V brightness temperature in K for all grid cells with the land surface category of
snow present (EXTIND). These correlation coefficients ranged from -0.50 to -0.84. The
correation coefficients were higher for the eastern test area, although the regression coefficients
were similar. Selected scatter plots and des--riptive statistics are presented in Figures 9.34
through 9.37. The 85V channel is considered unreliable in these data sets due to the high
standard deviations and the means less than those of the 85H channel. In Figures 9.34 and 9.35
for the western test area, the maximum snow depths in the data set were less than 400 mm and
the relationships between snow depth and the 37V brightness temperature were fairly linear. In
contrast, note the relationship between snow depths greater than about 400 mm and the 37V
brightness temperatures in Figures 9.36 and 9.37 for th1. eastern 4 -.st area As noted in previous
invmtigations, the passive microwave response is significantly decreased with snow depths
greater than about 400 mm.

As shown by the statistics in 'ables 9.51 through 9.54, which correspond to Figures 9.34
through 9.37, the correlation coefficients w re high for ill channels, which is expected due to
tue high intercorrelations between the channels (excluding the 85V). The 37V chamnnl was
consistently a better predictor of snow depth, which is consistent with several other
investigations. Several combinations of channels were also examincW. These included the
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Figure 9.34 37V 3Hz brightness temperature and reported snow
depth for the western test area, day 47, 1990, ascending pass.
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Figure 9.35 3 711 G Hz brightness temperature and reported snow
depth for ,he western test ar~ea, day 58, 1990, ascending pass.
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TABLE 9.51 RELEVANT STATISTICS BETWEEN SSM1 'i BRIGHITNESS
TEMPERATURES AND REPORTED SNOW DEPTH FOR THE WESTERN1•
TEST AREA, DAY 47, 1990. ASCENDING PASS

----------------------- +---------------------------------

css/pc: rLebcriptiv, statistics in dbl precision
basic Nurrmber of Cases - 126
stats t (MD pairwise deleted)

--- - --------------- +-----+-----+------

N m Min Max zMean Std-Err: Std.Dev.J
4 ----------------------------- +-----+-----+ ---- 4--------

lat 126 41.)000 47.0000 44.5349 .156786' 1.75992
Ion 126 96.0000 '104.0000 99.7492 .215347 2.417261

tl9v 1126 246.4000 261.9000 254.0595 .325702 3.65599
t1gh 1-26 225.5000 252.0000 239.4f5 .621787 6.97954,
t22v 126 242.9000 261.0000 251.4. 1 .373291 4.190181
t37v 126 220.6000 255,2000 1242.35b6 .733083 8.22884-
t37h 126 204.8000 249.0000 231.5802 .914381 10.263901
t85v 126 1104.5000 1335.9000 1209.5564 13.7244591 41.80695_
t8Sh 126 1172.3000 1277.5000 1223.0738 1.588973 17.836171

surft 126 14.0000 14.0000 14 0000 1 0000001 000001
I mlra 1126 53.2000 106.0000 65.6389 11.4709741 16.511641
anw ' 126 .0000 1482 6000 86.2460 8.4468391 94.815541
onow 126 .0000 50.80.u 6.0175 1.2055381 13:53213.

----------------------- +-----+-----+ ---- +--------

coo/pc: Ccrrelations r(x,y)
basic Number of Cases = 126
stato I YMD pairwise deletecý2)I---• ------------ +--------------------------------------
ztd.mode I lat Ion tl9v I tU9h t22v : t37v

lat 1.0000 -. 0909 -. 7957 -. 7492 -. 7946 -:6969
Ion -.0909 1 0000 ' 1624 .2784 1559 2714

tl9v -. 7957i :1624 1.0000 .9397 .9780 .879& I
VtIqh I--7492 -785A I 1' ann -1n- I * I
t22v -.7946 .1559 .9780 .9387 .0000 00 .9058
t37v -. 6969 .2714 .8796 .9124 .9058 1.0000
-031h 6618 1 .3610 8637 .9375 8825 .9799 I
t85.v *1127 .1565 - 0305 -. 0615 -:0372 1, :0198t85h -. 3936 -,2602 .5342 .6043 1 5432 -658S

• surft - .. - -
A.•ra -3210 -. 4363 ! 2417 . 2119 .2569 .3058onwd :5189 -:3168 -j5183 -._ :5937 -.:5509 .7064

snow .3040 -I 29 -. 80!-229 -29:16

cas/PC: Correlations r(x,y)
banic N. of CASES = 226
stato (MD pairwiue deleted)

*------------------- ------+--------+---------

ttd.vacde t37h t85v tBSh surtL mIra onwd

lat -. 6618 .1127 -. 393f , -- -. 321C .5189
Ion .3610 .1565 .2602 -- -> L' --3768

t19v .8637 -- ,0309 .5342 -,- .241"7 .5183
tl9h .9375 -. 0615 .6043 -- 2-593
t22v .8825 -. 0372 .5432 .2569 -1"'550'
t37v .9799 .0198 .6585 .3058 -. 064
t'3Th 1.0000 -. 0081 .6982 .2376 -. 7072
taSv -. 0081 1.0000 -. 1719 -. 016 J-.0051
tSSh 6982 -. 1719 1.0000 -- .76" -. S412But-ft ...... -

w1la .2376 -.1016 1 0768 !1 000 -.2151
anwd -. 7012 0051 -. 5412 -- -. 152 1 0000 oo
snow -. 1865 0273 -. 0587 1 -- .I.479 .1655"
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TABLE 9.52 RELEVANT STATISTICS BETWEEN SSM/I BRIGHTNESS
TEMPERATURES AND REPORTED SNOW DEPTH FOR THE WESTIERN
TEST AREA, DAY 58, 1990, ASCENDING PASS

Scos/pc: I Descriptive statistics in dbl precision
ibasic Nunmber of Cases - 73
state I (MD pairwis. deleted)

+ - - +-...--+ - - - + - - - - - + . - +- -....... .. +

w M.in Max I mean I Std.Errl Std.Dev.1
- - - -... . .... . . - ---------------------- -

lat 72 41.0000 47.0000 45.4370 .153368 _1.31038
Ion 96.0000 104.0000 99.2110 .264342 2.25854

tlgv! 247.1000 265.7000 254.1069 -554792 4.7403.5
tl9h ;j 225.9000 253.4000 236.8781 .887327 17.58132 1
t22v 73 242.9000 263.3000 251.6438 .613062 5.23800t379 73 212.5000 258.7000 238.9534 1.395477 111.922961
t37h 73 201.3000 251.4000 227.3671 1.573632 !13.44S12
tBSv 73 143.3000 299.2000 211.6479 4.293872 '36.68686,
t85h 73 170.5000 273.1000 220.4137 2.842392 124:28541

surft 73 14.0000 14.0000 14.0000 .000000 : .00000
mlra 73 53.2000 106.0A00 64.4945 2.236502 19.10868

w 73 0 1330.2000 96.7288 9.600029 '82 02268
snow J 73 .0000 63.5000 10.7904 1.787244 15.:7022

+- - - - -....+--... --......- -. $.. - - - - -- -4

+---------------------+---------------------------- 
-- +coS/pc: Correlations r(xy)

basic Number of C&ses - 73
stat. (MD pairwise delete,')

-------------------------- +----.4----+------
std.mode lat Ion ! tl9v I tl9h t22v 1 t37v

4 ------------------- +-------+--------------4---- - ----- 4--------------+---------------+
let 1.0000 f .3627 -. 2450 -. 3137 -. 2645 -. 3265
1on .3627 1.0000 .6542 .5039 .6252 .4815

tl9v -. 2450 .6542 1.0000 .9583 .9780 R7qi.
4. 1 ouJ.. 2.-. U U j L L

-,5,-t22v -. 2645 06252 .9780 .95 s8 1.0000 :9216
t37v -. 3265 .4815 .8796 .3721 .923.6 1.0000
t37h -. 3546 .4291 .8954 .9229 .9290 .9848
t85v .1123 .1713 .0858 .0900 .1065 .1228
tS5h .2033 .3745 .6411I .6589 .6578 .7865surft ....... I ,--
mlr% -. 5898 1 5641 -. 0668 0764 - 0056 1982

nwd .3503 -. 3523I -. 6445 -. 64131 .6503 .6948
now ,.2005 I -. 1106 I -. 1865 -. 1752 -. 170o -. 0630

--------- $----- -+ -- + - -t
----- ------------------------------------.---------

cas/pc: Correlations r(xy)
basic Number of Cases - 73
wtats (MD pairwize deleted)

+.--- -.----------------------- +----+ ------.---- +--------

I std.mode t37h I t85v 1 t85h surft : mlra 1 snwd
I--- -:------------- -- 4------ -----------. ----. 4------

lat -. 3546 .1123 -,2033 - -898 .3503
1on .4291 .1713 .3745 .. 5641 -. 3523tlgV .8954 0•8e .6451 -06 -64

tlgh .9229 .0900 .6589 -- .0764 -. 641364St7t22v :9290.94 .1065 .6578 -- I-.0056 -. 6503
t37v 9848 .1228 .7865 -- .1982 -. 6948

t37h 3.0000 .1202 .7850 -- .2220 -. 6755t85v .1202 1.0000 -. 0280 -- -. 0966 --. 0077
t85h .7850 -.A280 1.0000 - .2088 -. 5684-Gurft. ...........
mira•e 2220 )66 .2088 1.0000 -. 1044

I -. 6755 .,!077 -. 5684 -- .1044 1.0000
snow -. 0968 -. 0239 -. 0195 .2103 .2677

---------- --0-
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TABLE 9.53 RELEVANT STATISTICS BETWEEN SSMI BRIGITNESS
TEMPERATURES AND REPORTED SNOW DEPn FOR THE EASTFR?
TEST AREA, DAY 50, 1990, SCENDING PASS

----.--------------------------------------.-----------

!CE/pc! Descriptive statistlca in dbl precision 3
b1as1 Nunmber of Ca90 s 131state (MD pairwise deleted)

1,N Min I max Imean I Std-Errl Std.Dev-1

lt 131 4100 4.0043.7519 .153 1.8923
Ion 131 90.0000 196.0000 ;92.6664 A]5851 1.81431

t19V 131 238.8000 1260.7000 1253.8069 1.51849 15.9344
tl9g 131 1221.7000 1251.1000 1239.9221 .69832 7.9927
t22v 131 235.5000 1259.1000 251.1534 1 .57253 6.5529
t37v 131 1209.7000 1253.0000 1239.2802 1.17946 13.4995

1 t37h 131 1198.5000 1246-7000 1229 .3076 1.24080 114.2016
t85V 131 1117.7000 1303.4000 202.4667 13.53691 140.4818
t85h 131 1173.4000 1290.2000 218.1198 11.48938 117.0468 1

surft 131 14.0000 14.00u0 14.0000 .O00001 .0000
mlra 131 1-99.0000 '107.0000 1-66.5916 6.36067172.8012

00131 1 685 8000 1187.5916 13.683971I2S86202-now -- 131 .0000 , 88.9000 0 9.2863 , 1:49697, 17:13361

---------------------------------------------------------------------------
COS/pc: ' Core1aationa r(x,y)
bagic Number of Cases - 131
state I(MD pairwine deleted)

-------- 4 -----------------------------------
std.mode let I Ion I ti 9 v I tl9h I t22v 1 t37v

------------ +------------4------------+-------------I---------*------------
lat 1.0000 .2419 -. 8964 -8426 -. 8974 1.83181

:lop 2429 1.oo0) -. 1739 -. 3031 - 1808 -2383
t19v -. 8964 .1739 1.0000 .9313 .9855 902!~.VV vildl -- 92 --. h3 -1.
t22v -. 8974 -. 1808 .9855 .9481 1.0000 .9372
t37v -. 8318 -. 2383 .9082 .9451 .9372 1.0000

t37h -. 7994 -. 3102 .8685 .9577 .9012 .9851
t85V .0044 -. 2065 .0029 .0278 -. 0095 .0063

* taSh -. 5691 -2205 5954 7271 .6265 .7731aurf- -- ....-- -.
mlra .1116 .7143 .0021 - 0675 0287 .0161
snwd .8054 .2609 .8145 -8212 -. 8196 :8301

ow -1985 --. 2361 .2774 .3907 :2844 .3269
4-------------+---- 4---- +------------ 4.------------ .------------ +------------4

csa/pc: Correlations r(x,y)
basic Number of Caseo = 131state {MD pairwiss deleted)

+---------+---------4----+------------+---------*--+----

tad.mode I t37h t85v t85h I aurt mira anwd
+------------4----+--- --------- +------------+-----------*. ----- 4

lat -. 7994 0044 -. 5691 - .1116 .80541
Ion -. 3102 -. 2065 -. 2205 .7143 .2609

tl9v .b685 .0029 .5954 -- .0021 -. 814S
t19h .9577 -0278 .7271 ... . 0675 -. 8212
t22v .9012 -_0095 .6265 .-- 0287 .8196
t37v .9851 .0063 .7731 '.016 -. 83012
t37D 1.0000 .0160 .8092 -- -. 0449 -. 8245
t85v .0160 1.0000 .0228 ... -. 2140 .0562
t85h .8092 .0228 1.0000 -. 0036 -. 6537

su r ft 2 1 .. .0.. ......
mlra -. 0449 -2140 -. 0036 -- 1.0000 .0947
anwd .:-.8245 .0562 -. 6527 -- 0947 1.0000snow 3836 .0968 .3638 - -. 0554 -. 2971
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TABLE 9.54 !(EI.EVANT STATISTICS BETWEEN SSM/I BRIGHTNESSr
TEMPFRAWIJRES AND REPORTED SNOW DFVPTH FOR THE EASTERN
TEST AREA, DAY 58, 1990, ASCENDING PASS
+- -.----- ---.---- 4- ------- ----------------- ------------------------ --------- ------

1 coo/pc: Descriptive statistics in dbl. precision ' r
' b&sic Nunmber of cases - 130Sstats (ND pairwise deleted)'

~sttg---------eleed---- ----------+---------------------
1 N I Mini May ' M-an : Std.Err, Std-Dev-1

------------------- +----+-----+----4---- -------- +----.---- -----------+
lat 130 41.0000 47.0000 43.f331 .16737 1.9083
Ion 130 90.0000 96.0000 92.4831 .15089 1.7204 1

130 239.8000 258.6000 250.0223 .37497 4.2753i1tl9h 130 217-1000 243.6000 234.2392 .57502 6.5563 1
"2v 130 235.2000 258.0000 1246.8938 .47530 5.4193

;7v 130 200 1000 248.7000 1231.8923 1.04472 11.9116
17h 130 186.9060 2403000 1222.2762 11.13770 12.9718

t85V 130 74.5000 302.3000 208.4746 3.75692 42.8355
t85h 130 140.3000 270.9000 203.1923 2.00235 122.8303

surft 130 14.0000 14.00000 14.0000 .00000 .0000
, nwd r 130 -99.0000 0000 -74.8892 68800 1648532

I' sn 0000 1774.7000 1152.8885 15 33124 174 80301
: snow 130 :0000 184.1000 7.568! , 1.94649 22.1934!

.4- - ----------------------- -----------------------------------------------------+

css/pc: Correlations r(x,y)
basic I Number of Cases - 130
stats (MD pairwise deleted)

S+---------+----------4-------------4---------------4------+--4
std.mode lat Ion ti9v I tl9h I t22v t37v1
+--------- ----4------------4-----------+----+ ----- +--------------+----+

1 908 -!2i -M iiifat 1.0000 ;.1066 -. 08 -. 7156; -. 8786 '-.699
A. C' 9 0ý4 .V .%AM, Z # I a %*---' I

tl9v -. 9082 .0194 ' 1.0000 .8701 ' .9724 ' 8483
tl9h -. 7156 -'.1620 .8701 1.0000 .8915 .901! it22v -. 8786 .0097 .9724 .8915 1.0000 1 8994
t37v -. 6995 -. 0 4 1 3  .8483 .9015 .8994 1.0000
t37h -. 6393 -. 0 9 6 7  .8090 .9258 .8653 .9880 I
tg5v -. 0667 .0469 .0441 .0462 .0719 .0450
t85h 1-. 3198 .0074 .4823 .6262 .5358 7335

Burft .. ..... -- --.
mlra I037 .6871 1146 -0028 .1245
0nwd 7985 .0784 -:843- -:6990 -. 8192 7259

, snow • 3009 .1036 -. 2414 -. 1834 ; -. 2229 --:1393
+------------------+--------------+-------------------------

cs/pc: 1correlations r(x,y)
basic , Number of Cases - 130 I
state (ND pairwise deleted)

4--------- + ------------ +-------------------------- 4----------------------4-
utd.mode I t37h I t85v I t85h surft I mIra 1 onwd I

4----+------------------+------------------------------------------0-------------

1at -.6393 -. 0667 -. 3198 -- 0437 .7985!
, Ion -. 0967 .0469 0074 ---- .6871 .0784

tl9v 8090 .0441 .4823 -- .146 -. 8436

St19h .9258 .0462 .6262 -0028 -. 6990
t22v 8653 .0719 .5358 :-- 1245 - 8192
t37v .9880 .0450 7335 10-- I 10 -7259
t37h 1.0000 .0416 °l578 -- .0510 -:6o
tS~v .0416 1.0000 0087 --. 0281 -. 0486
t85h .7578 0087 1.0000 -- 1073 3911

surft 7...mira Oslo 0281 .073 -- 1.0000 -0135
ariwd -6870 -- 0486 -. 3911 .0135 1.0000 i

snow -. 1280 0792 .0273 --- .1567 .3407
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polarization difference in tie 37 GHz channels and the difference betwecn the 19V and 37V
channels. The 37 Gflz polarization diffcrencc was a pow- predictor, with correlation coefficients
for all data sets less than 0.50. The correlation coefficients between the 19V and 37V channel
difference term and snow depth were generally in the iange 0.55 to 0.75, which were about 0.15
lower than those of the 37V channel. On the few occasions when the correlation coefficients
were higher, the interchannel correlation coefficient was also high. This indicated that no new
information was available from the 19V channel. Based on these complete analyses, with
analyses of partial data sets from February, 1989, the conclusion is that the use of a single
channel, the 37V brightness temperature, provides the highest correlation coefficient of an"
SSM/1 channel or channel combination.

The results for the 3 7V regr tssion with snow depth for all grid cells were:

T.et Area n_ intermg t
Ea, t 614 2468 -0.0488
West 609 248.4 -0.0625

The regression equation for this combined data set is:

37V (K) = 247.6 -A5V*SD (mm)

9.4.4 RecoMmendatijOt_-

It was not possible to construct an algorithm which is suiwed for automatic determination
A' of snow depth or snow water equivalent under all snow conditions. The interpretation of the

algoti61m predictions should be conducted, with previous data, other sources of data, and a
knowledge of te areas of concex.a. However if the snowpack is known to be dry, that i3
classified as dry snow by the surface type identifier (see Section 9.1), the snow depth may be
exti icted with a high degree of accur-y with a single channel algorithm based on the 37V GHz
brigt'tness temperature. 1l-e snow dipth (SD) algorithm, in millimeters, is tie inverse of the
regresion equaton determined in Section 9.4.3 and is given in Table 9.55.

TABLE 9.55 RECOMMENDED SNOW DEP'TH RETRIEVAL ALGORITHM FOR
DRY SNOW

SD 444.5 - L.9*T37V ( ,)
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10.0 SEA ICE VALIDATION- -

10.1 INTRODUCtI7ION

The validation of the Special Sensor Microwave/Imager (SSM/I) for sea-ice parameters
was carried out by the Atmospheric Environment Service (AES), Environment Canada on lata

collected from June 1987 to September 1988. The objective of the validation project was to
determine the accuracy of the Hughes Aircraft Company (HAC) sea ice algorithm* and the
AES/YORK algorithm for Lotal sea-ice concentration, ice age (i.e., first year or multi-year ice),
ice type fractions, and the location of the ice edge. The aim was to see if these retrieved
parameters cor 'd be predicted within the specifications given in Table 10.1 and, if retrieval
para neters fail to reet the specifications, to determine, if possible, corrections needed to bring
the parameters within specifications. A description of the HAC and AES/York algorithms is
presented in Appendix 10A.

The performance was to be a.ssesse.d for all seasons and in different Yeographic areas. In
this project, four seasons were identified; ice formatiov- (freeze-up), wint--r, initial melt, and
advanced melt. The difference between the two stages of melt is the presence of snow cover
during initial melt.

The validation also included tih operational demonstration of the HAC and AES/YORK
algorithms for ice reconnaissance and forecasting, which was carried out at the AES Ice Branch
in Ottawa and at the U.S. Navy/NOAA Joint Ice Center in Washington, D.C.

The validation of the two algorithms for the three ice Iarameters involved the comparison
of map products produced by the algorithms with airborne radar imagery flown over the same

area as close in time as pissible to the sateldite overpass. This was no trivial task, because the
radar imagry had to be 6otained from AES ice reconnaissance aircraft which have op.-rational
constraints. ) the timing and location of flights. Therefore, the number of successful events, that
is, where airborne radar imao-ry is collected within six hours of an SSM/I orbit and over a large
enough area to match the SSM/1 orbit, was only a fraction of the total planned events.
Nevertbless. a sufficient number of events and numbers of validated SSMII footprints were
available to perform a statistical comparison for total ice concentration and ice edge location.
There were insufficient ice fraction samples available to undertake any statistical analysis; only
some trends in the data can be reported. Altogether 1.6 million se km were validated for total
ice concentration, and more than 6000 km were validated for ice edge position.

The sea ice validation ,rogram required that the overall accuracy of the ice parmnetei s
(regardless of geographic location, total ice concentration, or season) be determined. This

"-Highes Aircraft Company develope I the sea ice algorithm and associated ground software

used at FNOC and AFGWC to process the S iMfl data.
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objective was achieved in this pro,ect by pooling all the data together as a combined areas data
set.

TABLE 10.1

ICE AND WIND PARAMETER REQUIRFMN-rS FOR SSMII VAJJDA'i ON

Parameter Gcometr:c I Raage of Values Quantization Validation
Resolution (Ian) Levels Criteria

(a) IIAC Algorthm

Concentration 25 0 to 100% 5 ±10%
Age 50 first-year 1 yr none

multi-year >1 yr none
Edge lo&ation 25 present/absent N/A ± 12.5 km

Surface Wind
Speed 25 3 to 25 1 ±2 m/s

(b) AFS/YORK Algorithm

Concentration 25 0 to 100% 7 ±10%
* Age 25 Fractions of

0-100% first-year I y±" 10%
old ice > I yr ±10%

Edge. location 25 preseat/absent N/A -112.5 k]n

Surface Wind
Speed 25 3 - 40 mis 1 ±2 m/s

Because ice prcperti.s, ice V nce trations and combinations of ice types differ I ttween
geographic axeas and times of yelr, the performance of tit algorithms were examined as a
function of these parameters. plassive miirowave sensors are sensitive to the aimount of free
war content in the overlying snow, a parameter that varies with season.

The validation project also examined algorithm performance over interval' of ice.
concentration as well a• f, r different geographic areas and seasons. The statistical criteria for
whether or not an algorithiit mei the originally defined criteria were more rigorously defied as
follows:
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1. The algorithm is judged successful if the average differenct in tctal ice
concentration was within ±12% (HIAC algorithm) or :±,10% (AE.S/YORF
algorithm) as well as at the 95% confidence interval. 2

2. The algorithm is marginal if thz average difference in totai ice concentration was
within +12% (±10%), but was eater than ±12% (±10%) at the 95%
confidence interval.

3. The algoritlhm failed if the average difference in total ice concentration was
greater than ± 12% (± 10%).

The same criteria were used to judge the algorithm performanc, for ice edge location, with a
limit of ± 12.5 kin. Evaluation war, not performed for ice fraction because of insufficient data.

The validation team felt that it was important .o study the perforriance of each algorithm
o,,er intervals of ice concentrations as well as combining all the data. Sea-ice concentrations
occur at 0-10% aid 90-100% in many areas for lengthy periods of the year; however, during
periods of break-up, movement and formation, ice concentrations vary widely and can change
quickly. It is itrpe-tant to know how well the algorii ms perform at intermediate concentrations,
and to determiine if the performance is consistent or varies as a function of concentration
interval. The inter,.,l selected was 10%, which is the same division used by AES Ice Branch in
repoiting ice conditions.

A . .. . . . . 1 0 2 ,,,E,,, ,, ,IC O., u,. , • t A ' #Vt w o V- .,o ;r a l .,A W , • .e g t vn s , t h e C m A r ct i c a n d th e

* Gulf of St. Lawrence where corroborating airborne radar data were availabie. In the Arctic,
most of the validated SSM/I footprints were in the Beaufort Sea. A small percentage of the total
sample (< 10%) was in Northern Baffin Bay, Amundsen Gulf and M'Clure Strait. The Arctic
data se: for total ice concentration comprises slightly more than 80% of the validation samples
where a sample is a validated SSM/I footprint. The validation results for these. areas are
discussed in detail below.

The performance of the two algorithms was estimated by performing statistical analysis
of the data set. The statistics used include determining an average difference of all the samples
combined. This provider. an indication of algorithm performance in the real world, but it can be
biased by the distributioi, of samples over the range of concentration. To overcome this sampling
bias, a uniform samp!ng of the Arctic data set was undertaken. The resulting statistics, e.g.
mean difference, standard deviation and 95% confid-nee interval between the algorithm and the
radar total ice concentrations provides the overall estimate of accuracy.

The sampling for total ice concentration was biased towards the 0-10% and 90-100%
concentration bins which made up a large proportion of the samples. Part of the problem was
that the airborne radar imagery covered areas and time of year where an almost complete ice
cover was present, e.g., Beaufort Sea in the fall and winter, or where the aircraft flew along or
adjacent to the ice edge such that one of the two radar swaths imaged mostly :.pen water
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conditions. Figure 10.1 illustrates the distribution of ,%amples for the SSM/I algorithm for all
areas and seasons combined. Over 2/3 of Zbe samples were either at 0-10% or 90-100% ice
concentratioi, intervals. The bias was removed using two techniques:

50

4007

40D

S 300

10 O

506~ 4"4

1 0 200 ,55/

Figre 0. -Distribution of total ice concentration samples, HAC algorithm.

1. Examining M~e mean differences over 10% ice concentration intervals.

2. Extracting equal numbers of .samples over the range of concentrations to produce
statistics and distributions similar to those for the entire sample population.

10.2 TOTAL ICE CONCENTRATION RESUDLIS

10.2.1 Ca~nainArct-y

Using the acceptance criteria, the results of the two algorithmns for all data pooled and

by season are presented in Table 10.2.
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TABLE 10 2

rOTAL ICE CONCEN'" RATI'7N EVALUATION CRITERIA FOR ARCTIC

Algorithm Pooled IcIe Winter -FInitial Melt Advanced
Formation Melt

HAC Failed Failed Successful Sucmessful Failed

AESiYORK Successful Marginal Succes, ul Successfol Marginal
I - u' -- J

The results are for samples where there was less than 3 h between the radar imagery and
SSM/I overpass. The average difference and standard deviation in concentration between
algorithm ,and radar-lbased estimates for the SSM,/I and AES/YORK algorithms are pr-wsenteJ in
Figures 10.2 and 10.3.

TI

O .... x-• _----- • • L---,-S -'1%- t ----- - r- --- f-•-

Figure 10.2 - Mean difference and standard Figure 10.3 - Mean difference and standard
deviation HAC vs radar for otal ice deviation AESIYORK vs radar for total ice
concentration, Arctic, pooled, concentration, Arctic, pooled.

o Both algorithms tnderpredict total ice concentration acrss the entire
concentration range.

o Both algorithms work best at low ice concentrations, less than or equal to 20%
for HAC, less than or equal to 30% for AES/YORK.

o The AES/YORK algorithm perform, better at h~gh concentrations (90- 100%)
where the average difference is underpre~dicted by less than 10%.

o Both algorithms significantly underpredict in the middle range of ice
concentrations. Both exhibit a characteris c "curve" where the underprediction
increases with increasing ice concentration until it readi:cs a maximum at 70 to
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TABLE 10.2

FOTAI. ICE CONUWTFRATION I-VAi.UAI-('IN CRITERIt A FOR ARCT!C

Algorithm Pooled Ice W intcr Initi,', Melt Ndvanced
Formation Melu

HAC Failed Failed Suc cessfil Successful Failed

AESiYORK Successful Marginal Successful Successful Marginal

The results are for samples where there was less than 3 h between the radar imagery 4-'nd
SSM/I overpass. T •e average difference and standard deviation it concentration between
algorithm and radar-based es. imatcs for the SSII and AES/YORK algorithras are presented in
Figures 10.2 and 10.3.

St Tftr if
L

Figure 10.2 - Mean difference and standard Figure t0.3. - Mean difference and standa-r-,
deviation HAC vs radar for total ice deviation Ai3S/YORK vs radar for t ,ta] ice
concentration, Arctic, pooled. concentration, Arctic, pooled.

o Both algo.-ithm% eytderpredici iotal ice c(ncentration across the entive
concentration range.

o Both algorithms work best at low ice concentrations, less than ,-)r equal to 70%
for HAC, less than. or equal to 30% for AES/YORK.

o The AES/YORK algorithm performs better at high concentrations (90-100%)
where the average diffcrence is undicpredicted by less than 10%.

o Both algorithms significantly underpredict in !he middle range of ice
concentrations. Both exhibit a characteristic "curve" where the underprediction
increases with increasing i( : concentration until it reaches a maximum at 70 to
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90% concentrations for MIAC, 50% for AE.SfYORK. Both algon1Lhnt i', p•..e for
the 90-100% intcrv4, but HAC still urlerpredicts by over 2U%. The improved
performance for 90- 100% is still not as good as for the lower ,'.wcentrations.

10.2.1 j.fnatio

For the ice- formation phase Pr- restuts rLmeal that:

0 o&rn algorithms pefformi a,-iccessfully within the criteria for the 0-10% ice
conicentration bin but both underpredict ftr t~he higher intervals.

o Fo)" concentrtions 20-30% a.J ax!'e (including 90-100%), the HAC algorithm
iinderprtdicts well below the :2% acceptance criteria.

0 The AES/YORK algorithm shows the same trend, but begins to unde='predict by
mote th-.t 10% at lk:, 4,0-50.% concentration bin. There is improvement at 90-
10U%, similar to 1he pooled data results.

c The. underpiedictiota is due to the presence of new ice and the refrec,-ing of ol,
ice freshwater meltponds.

10.2.2 Wine

For the winter ice phase the results show that:

o Over 90% of the samples are in the 90-100% concentration bin, reflecting the
typical ice conditions for the Arctic at this time cf year.

o Both algorithms pzrforni well iih cold conditions and at high ice concentrations.

Their perfoimancc in winter is better :ban any other ie.ason.

o There were ingtifficient samples a. lower ice concentrations to fully teit the
accuracy of the I, gorithms.

10.2.3 Initial Melt

For the initial melt phase the results indicate that:

o Between 65 and 70% of the samples were at ice concentrations less than or equal
to 10%. This sampling is not typical of ice conditions in the Arctic at this time
of year. The data set was limited by the lack of radar coverage of the aina
because the AES aircraft does not cover t2te area operationally at this €: "
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o No infercncc man be made about the accuracy of the algorithimas at higher ice
concentrations. More samples arc necc'cd at the higher ice concentrations to 4-,

confirm algorithm performain. 'e.

1o.2.4 AdYa•_ne~L j-

* Thcre were tuifficient samples over the range of concentration to determine
overall algorithm ,crformance as wel! as 1: tween ice concentration bins.

o Both algorithms underpredict to!al ice concentration for all the concentration bins.

o Ij he HAC predicts best for concentrations less than 20%. For all concentration
bins above 10-20%, including the 90-100% bin, it significantly underpredicts ice
concentation. This is probably the result of high water coverage on the ice at this
time of year [1].

o The AES/YORK a1gorithm shows a similar trend to HAC, except that the

underprediction is less (by at least 10%) for All concentration bins.

10.2.5 Gulf of St. LawVj. i nA1ZIfRls

The number of samples is considerably less than in the Arctic. Samples were available
for onflv two seasons, ice formation and winter. The evaluation criteria applied to the two
algor )s tor this area is summarizea in tabie 10.3.

o More than 80% of the samples are in the 90-100% concentration interval. The

acceptance criteria can only be applied to this bin because of insufficient data in
the other bins.

o At high concentrations the HAC algorithm in piaricular has difficulty predicting
the presence of new and thin ice types.

TABLE 10.3

TOrAl. ICE CONCENTRATION EVALUATION CRITERIA
FOR GULF OF ST. LAWRENCE

Algorithm Fooled Ice Formation Winter

HAC FaikVx Failed Failed

AI3S!YORK Successful Marl mal Margal ___
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o Figuires 10.4 and 10.5 prresent mean difference and standard deviation by
concentration interval. The variabifity of the data reflects the low number of
samples. The following observations may be made:

I'igure 10.4 - Mean difference and standard Figure 10.5 - Mean difference and standard
deviation HAC vs radar for total ice deviation AFS/YORK vs radar for total ice
concentration, Gulf of St Lawrence, pooled. concentration, Gulf of St Lawrence, pooled.

10.2.2.1 Ice Formation and Winter

For the ice formation and wir.ter phases the results indicate that:

-. • 'ir; 11 aiuVatiOn .- irita "esu! -- i nfLiu11cAIIdA by 1e 1C high proportion of
V, new and thin ice types which the algorithms zppear to have difficulty predicting.

o The first-year ijt in the Gulf is not as thick as that in the Arctic in the winter
n.onths and, there is a higher percentage of new and thin ice in the matrix. These
factors contribute to the differences in algorithm performance for the Culf.

10.2.2 Unifojm 3amp!ing

To remove the bias of the total ice concentration pooled data set for the disproportionate
number of samples in the 0-10% and 90-100% concentration intervals. (where both algorithms
perform better), an equal numlk,•r of samples fnr n each 10% interval was analyzed statistically.
The resulting distributions of uniform sampling for the RAC and the AES/YORK algorithms are.
presented in Figures 10.6 and 10.7, respectively. Note that

o Both algorithms show degraded pertormance, with increased mean differences and
higher standard deviations.

o The trend in thO: differences over the mid-range of concentrationis is similar to the
compiete data set (Figures 10.2 to 10.5). The distributions confirm the tendency
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for the algorithms to underpnxeict total ice concentration particularly in the middle
concentration ranges.

0 Using the evaluation criteria for total concentration on the uniform sampling of
the pooled data set, both algorithms failed.

Figure 10.6 - Mean difference and standard Figure 10.7 - Mean difference and standard
deviation HAC vs radar for total ice deviation, AES/YORK vs radar for total ice
concentration, Arctic, uniform sampling, concentration, Arctic, uniform sampling.

10.3 ICE EDGE LOCATION RESULTS

Validation of ice edge was only possible for relatively simple ice edges. Sections of the
ice edge that were convoluted, consisted of plumes or embayments, or were otherwise complex
could not be validated because there was no consistent way to make measurements between the
radar and the algorithm ice edge locations. This difficulty reduced the number of samples
available for subsewuent statistical analysis.

During the ice formation and winter seasons -.ce edge comparisons were further
complicated by the presence and formation of new ice. Ice edge measurements were made only
where no ambiguity existed in interpreting new or thin ice in the radar imagery. However, the
time between the radar coverage and the SSM/I overpass was critical because the two sensors
may detect different distributions of the edge simply because of new ice growth. These factors
reduced the leagth of ice edge available for comparison of the radar and SSM/I.

Almost 90% of ice edge measurements were made for the Beaufort Sea data. The
distribution of ice edge displacements for the combined areas provide a representative and
consistent measure of algorithm performance.

The distribution of ice edge measurements for the HAC algorithm (Figure 10.8) shows
a tendency to underprediA the ice edge location. The samples an skewed into the if - with a
mean difference between -11 and -20 km (bin no. -1).
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Figure 10.8 - Distribution of ice edge differences, HAC vs radar
for all arms combined.

". g p r, t,• ULt for te AF _'ORK algorithm are presented in Figure .
10.9. More wian 90% of the samples fall within ±20 km of the ice edge as derived from
airborne radar imagery. The samples are uniformly digi-ibuted about the ice edge localion, with
positive displacements representing edge locations beyond the ice edge and negative
displacements indicating ice edge locations within the ice.

Tables 10.4 and 10.5 summarize the evaluation criteria for ice edge location for the two
algorithms for the Arctic and Gulf of St. Lawrence respectively.

TABLE 10.4

ICE EDGE EVALUATION (CITERIA FOR CANADIAN ARCTIC

Algorithm Poole(. Ice Formation Initial Melt Advznced Melt

HAC Failed Marginal Failed jeFailed
LAESIYOkK- Successful Successful - Successful jMarginal
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TABLE 10.5

ICE EDGE EVALUATION CRITERIAL POR GULF OF ST. LAWRJ NCE

Algorithm Pooled Ice Formation

rgAC wgira. Marginal

AES!YORK Margital Marginal

10.4 ICE FRIACTION RESULTS

The validation of ice fraction was not possible because of the low number of samples.
Consequently no statistical .'nalysis was undertaken. Of the total sample population, only 10%
were at high old ice concentrations (81-100%) because of the scarcity of coincident airborne
radar coverage for such areas.

The HAC algorithm does riot produce an old ice concentration; it reports old ice if the
concentration is above 35 %. Therefore the v.didation of the HAC algorithm for ice fraction was
really a question of whether or not it reliably reports old ice when its fraction is ibove 35%.
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The only trends apparent were that for the ABS/YORK algorithm, it was underestimating
the old ice fraction for the limited number of samples available, and for old ice concentrations
above 80%, the JAC algorithm flagged old ice in about half of tie samples.

10.5 ADDITIONAL RFSULTS

There were additional shortcomings with the HAC algorithm which are not apparent in
the statistical results cxnceming adverse weather conditions and the ice edge contour. There were
areas occasionally shown by the algorithm as ice covered where no ice should be present. An
example in the Labrador Sea, is shown on the left in Figure 10.10, where ice along the coast
was extended by the HAC algorithm into an apparent ice cover all the way to the west
Greenland coast. The problem could be eliminated by a suitable weather filter algorithm, as is
incorporated in the AES/YORK algorithm, and illustrated on the right in Figure 10.10.

The appropriateness of the 30% RAC ice edge contour as the one to define ice edge is
questioned because of high ice concentrations observed along it. The ice edge (or 0% ice
concentration contour) as determined on the radar imagery corresponded to a HAC algorithm
ice concentration of between 25 and 50%, with an average of 35% ice concentration, depending
on the ice types present. The 30% HAC algorithm ice contour was observed to correspond to
an average ice concentration of f5%. In comparison, the AES/YORK algorithm at the 0% radar
ice concentration contour corresponded to an ice concentration of between 0 and 25 %, with an
average ice concentration of 16%, depending on ice type and the 10% AES/YORK algorithm

. The HAC algorithm was designed to flag the presence of old ice only when
concentrations reached 35% or -dore of the total ice concentration. Because it only flags, but
does not determine the icc fraction concentration, its usefulness is reduced for operational
purposes. The AES/YORK algorithm is designed to provide open water, first-year, and old ice
fractions. It also allows retrieval of the ocean surface wind speeds, cloud cover, precipitation,
and water vapor for ice-free an as.

10.6 CONCLUSIONS/RECOMMENDATIONS

o The AES/YORK algorithm is recommended for operational use. It is superior to
the HAC algorithm for total ice concentration estimates and ice edge location for
lie geographic areas and seasons validated in this project. ABS/YORK also

produces more specific estimates of old ice concentration.

It is recommended that a tailored or reduced version of the /LS/YORK algorithm be
implemented for operatiov-I use. See Appendix A for a description of the co nplete AES/YORK
algorithm. This tailorin, is necessary for two major reasons, First, the AFS/YORK was
constructed to rtrieve not only the basic SSM/I parameter of sea ice concentration and identify
first-year and multi-year ice types but also additional parameters such am the fractions of first-
year, multi v ar, and thin ice within thc, SSMII footprint as well as ocean surface wind speed
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and vertical columns of wate vapor and liquid cloud water. Second, the computer resources
required to implement the complete AES/YORK algorithm are significantly greater than the
proposed tailored version. The error in the retrieved sea ice con,.entration using the tailored
ALS//YORK algorithm is essentially [hat associated with the complete algorithm and as discussed
earlier is typically less than 10-12%.

10.6.1 Recommended Sea Ice Algorithm

Figure 10. 11 presents a flow chart of the reduced version of the AES/) ORK sea ice
algorithm. Specific equations id decision tests employed in the algorithm are presented in
Table 10.6 and the ocean regions where sea ice is possible and the algorithm should be
implemented are given in Table 10.7. The initial test identified in the flow chart, Test 1, checks
for the reasonableness of the 19V, 19H, 37V, and 37H SDRs and polarization differences 19V-
19gi, 37V-37H. If any of the inequalities in Test 1 of Table 10.6 are true, no sea ice

concentration or ice type identification is retrieved. If none of these inequalities are true, the
SDRs are reasonable for open ocean or sea ice and total sea ice concentration, TOTICE, is
computed either for wirter/fall conditions or summer/spring conditions. Equation A in Table
0.6 is used to compute TOTICE ard employs only the 19V and 37V SDRs. Depending on the

value of TOTICE and several subsequent threshold tests, new values of TOTICE may be com--
puted. As shown in Figure 10. H, a threshold TC :s selected depending on the condition of
winter/fall or summer/spring. TC is essentially an atmospheric offset threshold used later. The
next step in the algorithm is to c! rmpute a discriminate D which is an estimate of the total ice
concentration independent of Equation A and is expressed by Eqruation C in Table 10.6. Test

* 2 which folloa-;,ws thc computatioi of D is a consistency check between T11iCE ancI D. If
TOTICE and D are both less than .r equal to 0.7, additional testing is necessary to dc-termine
the influence of clouds and/or ocean roughress. These tests are identified as tests, 3, 4, and 5
in the flow diagram. ýf TOTICE is greater than 0.7 or in the event the output of these tests
results in TOTICE being less than or equal to 0.5 and D greater than 0.15 (test 6), then the
effects of cloud and ocean roughness are unimportant and the algorithm recomputes TOTICE
using only the 37V and 37H channels with Equation D of TFable 10.6. This is done to take
advantage of the higher resolution of the 37 GHz data and provides greater accuracy in
determining sea ice edge. (The highest resolution 85 G-z channels are currently not employed
in sea ice concentration retrievals. Under c;ear skies and calm ocean surface, the 85 GHz data
offers the potential for determining sea ice edge to ±6 km). In the event clouds or ocean
roughness is important, the previuus value of TOTICE is used. Test 6 is followed by out-of-
bounds checking of TOTICE and if TOTICE is less than 0.25 no ice type identification is made.
If TOTICE is greater than or equal to 0.25, the ice type identifier TBI is computed with
Equatior E. If TBI is less than 238, the fraction oi ice is predominately multi-year ice.
Otherwise the traction is predominately first-year.
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TABLE 10.6OF_,QUAIrIONS AND TESTS USED IN RECOMMENDED SEA ICE ALGORITHM

A. TOTICE CWF(1) * Tj7v + CWF(2) * Tsjv + CWF(3)

B. TOICE CSS(1) * Tro + CSS(2) * T-1,, + CSS(3)

C. D 1.0 - 0.0513 * (Tyv - Ts9 gv)

D. TOTICE (Ta-, + 0.5 * T•vn -265.0) * 0.01

E. Tml r.., -TW - (.0 - TOTICE) * 18-JrIcE

F. TC 14.0

G TC =6.8

ft WCUT = 6.0

i WCUT = 8.5

* W1NrER/FALL COEFFICIENTS SUMMER/SPRING COEFIMCIENTrs
CWF(I) = -0.013656219 CSS(1) = -0.015231617
CWF(2) = 0.024412842 CSS(2) = 0.025911011
CWF(3) = -1.677645 CSS(3) = -1.656920

1. .v 151.0 OR
TB1,9 H 92.0 OR
Twrl 171.0 OR
TB370 125.0 OR

krrtwv - Tiltj) uJ 80.0 OR
-'Tar") Z 80.0 OR

TB194 > T119V OR
Tu-m 1> TWI-V

2. TOTICE •5 0.7 AND D -<e 0.7
3.. D -- 0.3 AND [Tl- * 1.5 - T119vJ > 120.0
4. TO-TV !- 215.0
5. D - 0.15 OR [TwH -2 * Tam, + 270.0] 1 WCUT
6. TUPICE 0.5 AND D > 0.15
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TABLE 10-7

REGIONS WHERE SEA ICE MAY EXIST AND THE RECOMMENDED
ALGORITHM SHOULD BE IMPLEMENTEE-

1. Southern Hemisphere: ALl ocean regions less than 50S latitude.

2. Northern Hemisphere: All ocean regions above 65N latif ie.

A. Alaska Area: longitude 165-200E and latitude 50-90N

B. Gulf of St. Lawrence and Hudson Bay: longitude 24iJ315E and latitude 42-90N

C. Sea of Japan and Sea of Okhotsk: longitude 130-155E and latitude 40-90N

D. Baltic and North Sea: longitude 5-30E and latitude 53-90N

E. Kamchatka Peninsula: longitude 155-165E and latitude 45- 90N

F Iceland: longitude 330-350E and latitude 60-90N

fl. ft-*b ti-nAft1* in a.' VW0S*s.t fl~ 0.tAV

H. White Sea: longitude 30-50E and latitude 63-90N

I. Yellow Sea: longitude 115-130E and latitude 37-90N

J. Kodiak Island: longitude 200-210E and latitude 55-90N

K. Gulf of Alaska: longitude 210-240E and latitude 58-90N

10.7 REFERENCES

[1] D. A. Etkin and R. 0. Ramseier, wValidation of a Passive Mi- romwave ,ea Ice Data Set
for Hudson Bay," First Circumpolar Symposium on Re.iote Sensing of Arctic
Environments, Yellowknife, N.W.T., CanaL, InO.
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TABLE 10 -.7

REGIONS WHIERE SEA ICE MAY EXIST AND THE RECOMMENDED

ALGORITHM SHOULD BE IMPLEMENTEIt

1. Southern Hemisphere: All ocean regions less than 50S latitude.

2. Northern Hemisphere: All ocean regions above 65N latitude.

A. Alaska Area: longitude 165-200E and latitude 50-90N

B. Gulf of St. Lawrence and Hudson Bay: longitude 240-315 . and latitude 42-90N

C. Sea of Japan and Sea of Okhotsk: longitude 130-155E and latitude 40-90N

D. Baltic and North Sea: longitude 5-30E and latitude 53-90N

E. Kamchatka Peninsula: longitude 155-.65E and latitude 45- 90N

F. Iceland: longitude 330-350E and latitude 60-90N

( Grpremnnd- lnnmohntid 3A-1330_EM knd !utiiide 'q-90N

Is H. White Sea: longitude 30-50E and latitude 63-90N

I. Yellow Sea: longitude 115-130E and latitude 37-90N

J. Kodiak Island: longitude 200-210E and latitude 55-90N

K. Gulf of Alaska: longitude 210-240E and latitude 58-90N

10.7 REFERENCES

[1] D. A. Etkin and R. 0. Ramseier, 'Validation of a Passive Microwave Sea Ice Data Set

for Hudson Bay," First Circumpolar Symposium on Remote Sensing of An-tic

Environments, Yellowknife, N.W.T., Canada, 1990.
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ACRONYMS

O ACIF icc Forecasting TiiVion of AES Ice Branch (Ottawa, Ontario, Canada)

AES Atmospheric Environment Service (Canadian Department of the Environment)

AES/PhD algorithm developed by AES and PhD Associates 7 c.

AES/YORK algorithm developed by AUS and York University

AIMR airborne imaging mi -owave radiomete

DEF ephemeris data tapes

FNOC Fleet Numeric Oceanographic Center (Monterey, California, LU.S.A.)

ICEC Ice Centre, Environment Canada (Ottawa, Ontario, Canada)

ISTS Institute of Space and Terrestrial Science, York University

JIC Joint (NOAA/NAVY) Ice Center (Washington, D.C., U.S.A.)

NOAA U.S. National Oceanic and Atmospheric Administration

. NPOC U.S. Naval Polar Oceanographic Center (Washington D.C., U.S.A.)

NRL Naval Research Laboratory (Washington, D.C r.S-A.)

SAR synthetic aperture radar

SLAR side-looking airborne radar

SSMiI special sensor microwavelimager

SSMR scan. ;ng multichannel microwave radiometer
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APPENDIX 1OA

. 1 OA.0 DFSCRIPTION OF* IIAC AND COMPLETE AESIYORK SEA ICE ALGOILUIIS 2:

10A. l BACKGROUND

The sea ice algorithm used Oy the U.S. Navy for the SSM/I was developed during the
1970s by Environmental Research and Technology Im:. under a subcontract from Hughes
Aircraft Corporation, and was tested during the NIMBUS satelite series of scanning
multichaimel microwave radiometers (SMMR). The HAC algorithm was tested extensively from
1982 to 1987 by the IL_ Research and Development Division of Ice Branch, Atnospheric
Environment Service (AES) which is part of the Canadian Department of the Erivironment, for
both research and operational purposes. To improve the retrieval of ice information in all
weather conditions and to optimize the use of SMMR channels another algorithm was developed
(produced under contract to AES by PhD Associates Inc.). Known as the AES/PhD version, it
also underwent research and operational testing from 1984 to 1987.

By the time of the SSMII launch in Jun 1987, an updated version of the AES!PhD
algorithm was introduced by AES and the Microwave Group at the Institute of Space and
Terrestrial Science (ISIS), York Univcrsity, w."ch is now known as the AES/YORK algorithm.
This algorithm has been evaluated with the HAC algorithm in this validation program. The
AESIYORK algorithm incorporates weather and sea state corrections to aid in the retri-val of
_ipg G &%, A AR. P i-------. The Canadian validation program was based on the criteria listed in Table 10.1, and the more
stringent Canadian criteria for resolution requirement of ice age and total ice concentrati.n were
applied to the AES/YORK algorithm while the U.S. criteria were applied to the HAC algorithm.

The Canadian validation program also involved an operational demonstration and
evaluation projed t in which both the AES Ice Branch, Ice Forecasting Division (ACIF), and the
U.S. Navy/NOAA Joint Ice Center palticipated. Both ice centres were given near real-time ice
charts using the AES/YORK ice algorithm by pulling near real time SSM/I data from the Fleet
Numeric Oceanographic Center (FNOC in Monterey, Califtrnia. This was made possible
through support from the Naval Research Laboratory (NRL).

Because. the AES/YORK ice algorithm uses weather a .1 sea state corrections to enhance
the retrieved ice parameters, a number of usefui side products were obtained for the ice-free
ocean area, such as wind speed, areas of precipitation, atmospheric water vapor, and cloud
amount. Six Canadian weather centres participated in an operational demonstration and
evaluation of these parameters front 20 January to 31 March 1988. The restdts of this exercise,
which were very promising, have been published in a report by Raiziseier et al. [1]
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10A.2 THFORY

In the microwave region, the radiation intensity received by a radiometer is proportional
W o die absolute temperature of the medium. This apqprent temperature is referred to as brightness
temperature, I'F The attenuation of the surfacc-emitted radiation and the transmittance of the
atmosphere are both related to the optical thickness of dte atmosphere (c).

In the ab.sence of scattring, the brightness temperatur. sensed by a satellite radiometer
can be represented by [2]:

T,(z,e) = T51(z,O) = e-TeT,+(I-e)TJ (1)

where Ta = brightness temperature,
z satellite location height,
3 = incidence angle,
c -- effective surface emissivity,
c tota1 opacity of the atmosphere along the line of sight,
T, -"surface temperature.

The quantities T 1, and T. 2 are. proportional to the upward and downward emission from the
atmosphere, respectively, plus attenuated sky background radiation, and cnin he ,--k-t.- ream:

T, f r1z ')g(z ' e' secdzI (2)

where
c(z) = I g(z)secddz,
g(z) = total opacity at height z, representing the sum of the cnmtributions from water
vapor, oxygen, and liquid water droplas in cloud.

As the mixing ratio of oxygen is essentially constant and the absorption coefficient is very
weakly temperature dependent, they contribute to a constant offset in the I to 40 GlIz region.
The absorption caused by non.-prel:ipitating watev droplets in the atmosphere has a linear
dependence on the amount of liquid water and a quadrat-c variation with frequency [31.
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The intensity of the atmospheric radiation can be calculated using results from Swift et
al., [4]. For the frequencies used in the algorithms validated some typical values for the opacity

O coefficient and the atmospheric contribution to the observed brightness temperature are presented
in Table 10A.1

TABLE 10A.1

TYPICAL VALUES FOR THE OPACITY COEFFICIENT (C- AND TILT
ATMOSPHERUC CONTRIBUTION (Tal) TO THE OBSERVED BRIGHTNESS

TEMPERATURE

I lcation Typical Values at 19 GHz Typical values at 37 GHz

c TDICT81  c TBICT-r7I

Polar Regions 0.025 6.7 0.049 13.0

Midlatitudes 0.050 12.5 0.100 25.0

The emissivity of different targets is a consequence of their dielectric properties. As
water is a polar molecule, it has a very large dielectric constant at microwave frequencies which
results in a large reflectivity (low emissivity) for a liquid water surface such as the ocean. Most
solid surfaces have emissivities in the range 0.80 to 0.95, so therr is a significant contrast
""e•.r •iinLqu'; wai.wr sur_'ac-s, swh as iake-s, riwr, anti thu i,',-• ani iP3d ,'•..•_. M3Xah.s
land and sea-ice. The low emissivity of the open ocean makes it a ood background for viewing
the intervening atmosphere.

The higher salinity of first-year ice causes it to be optically opaque and, therefore, its
microwave signature is almost frequency independent. The virtually de-salinated near surface
jortion of old ice makes it optically thin, i.e., radiation emanates from a thicker layer of old ice.
A significant part of the radiation from old ice is suppressed by volume scattering within the ice
because of air pockets formed during summer melt and brine drainage. The brightness
temperature signature of old ice is, therefore, generally lower than that of first-year ice. As the
sensitivity to volume scattering is inversely related to the wavelength of the radialion, at higher
frequencies one would observe larger variability in the brightness temperaturc c old ice.

The upwelling brightness temperature of a scene containing open ocean and various
amounts of sea-ice is a function of the ice concentration, ice emissivity (i.e., icc type), the
physical temperdture of the components, and the amount of water vapor and liquid water in the
intervening atmosphere. Assuming that fe ice cover within the field of view is a mixture of old
ice and first-year ice, the brightness temperature sensed on the i-th channel of the radiometer
can be expressed as:
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= ed (F[eTr+(l-eR)TJ +M[Af TM +(-em)TO +(1-IC)[,,sT.+( -aw)TMg+J *T~

(4)

where
ci = total atmospheric opacity,
IC = total ice cover iact;on,
F = fraction of first-yt ice,
M = fraction of old ice,
epl, em, e, = surface emissivities of fhst-year ice, old ice, and sea water,
Tv, Tu, Tw = surface temperatures of first-year ice, old ice, and open ocean,
TW = incident sky temperature at the surface caused by atmospheric downward

emission,
T91 = contribution from atmospheric upward emission.

From ,quation 4 it follows that by considering the difference of T3 v (from vertical
channel) and T,. (from horizontal channel) for 37 GHz, one minimizes the contribution from
the atmosphere:

Tr--Tm-e'[FdTr-Tm)+Mdeq'u-Tw) + (-4C)dew4Tw-)J (5)

where dep = ev-e,,

de• = Ew-ewx,dcw- cmvv-e,.

This equation was used in developing the HAC algorithm.

An algorithm that calculates ice concentrations by solving equation 5 for IC, i.e.,
assuming that a possible solution can be of the form:

IC =A*DTB+B (6)

where coefficients A and B are calculated from equatiren 5, after making reasonable assumptions
about the physical temperatures of the various components and seleceing appropriate a- nospheric
parameters. It can be demonstrated that DTB=TBv-TDn decreas, with the increase in optical
opacity Q ecause of larger amounts of water vapor and cloud cover) aid! the increase in
emissivities of open ocean (because of surface roughness), which implies that an algorithm of
the type described above will yield erroneous ice concentration Metrieals, particularly in weather
where high levels of water vapor in the atmosphere, cloud cover, and wind--roug! :ied seas are
experienced. To improve on the ic -information retrieval reliability for all weather conditions,

I 1,A.4
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a dual frequency, dual polarization (19, 37 GHz) algorithm was developed and is described in
Section 1OA.3.

10A.3 HAC ALGORITHM

The HAC algorithm was derived by using equation 5. "h, iollowing asumptions were
used to be able to evaluate IC from equation 6: the surface temperatures TF=TN=Tw=T5 ,
de,-(dE=de1 . Using simple algebra, the coefficients A and ' can be calculated from the
following:

A (e'/[(T1 -To)(de-w)] (7)

B =dewj(dev-de1  (8)

Climatological mean values of atmospheric water vapor, liquid water, ice surface temperature,
and emissivities were used as inputs to evaluate parameters A and B for different climatic zones
[5].

Determination of ice type is achieved by computing the effective average ice brightness
temperature within the footprint and comparing it with a preselected value, Tc (e.g., brightness
temperature of a sample of 35% old ice at. 1 65% first-year ice cover). The equation for the
ralculation of effective hrightnePQm tempernhfre T__ naing the CO .•..mrnt fr, *d , 37 (-fl

* ,ertical channel (Tocq,), is as follows:

"Tx =[Co + C 1*T"J*IC +C, (9)

ThIe coefficients Co, C 1, and Cq are calculated using climatology. If Tx>To., the sea-ice fraction
within the observed area is flagged as first-year ice. For TX<Tc the ice cover fraction is
identified as old ice.

Weather correction criteria were imposed on sea-ice concentration retrieval after it was
observed that false ice information was obtained because of the influence of wind and
atmosphere. The coiTectien procedure uses cut-off values for the 19 GHz horizontai component,
T'(,g,,, and T.3. -T&Tm. The ice concentrations are calculated only if the following conditions
are met-

IC > 10%
TW1WID > 1400K
TB)(3-TBMM >5-K

If these conditions are not met, the footprint is declared to be ice free. Figuies 10A. 1 to IOA.4
illustrate the results of such weather corrections (Lo, personal communication, 1987).
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Figure 1OA.1 - The effect of weather Figure lOA.2 - Comparison between total
filtering on the HAC algorithm retrieval of ice concentrations retrieved with
total - z concentrations, orbit 3967, AFS/YORK and HAC algorithms, orbit
Labrador region. 3967, Labrador region.

o

Figure 10A.3 - The effect of weather Figue IOA.4 - Comparison between total
filtering on the HAC algorithm retrieval of ice concentration retrieved with AES/YORK
total ice concetrations, Gulf of St. and HAC algorithms, orbit 3379, NE
Lawrence, 27 January 1988. Newfoundland waters, 14 February 1988.

The HAC algorithm was first tested on SMMR data. During the evaluation it became
obvious that although the retrieval of total ice cncentration was within the specifications for
ideal weather conditions, areas of rough seas and overcast sky were identified incorrectly as ice-
covered ocean.

Prior to launch, a simple procedure for removing some of the weather effects on the ice

retrieval was added to the algorithm, but as shown in Figures 1OA. 1 and 10A.2, the problem
was not solved for severe weather conditions. In addition, the accuracy of the ice edge location
was degraded by introducing a lower limit (10%) on the calculated ice concentrations. Using
only the 37 GHz channel provides the highest avdlable resolution, however, it could lead to
errors in total ice concentration estimate and ice type flagging whea the icA surface is wet or

IOA.6
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under a heavy snow cover. At the onset of snow melt one would also observe large differences
in retrieved ice concentrations, depending on the time of the observation.

10A.4 AES/YORK ALGORITHM

Equation 4 written for the 19 and 37 GHz channels can be solved for F and M, with
seasonal/regional values for c (optical opacity' and T.. (atmospheric component). Sample areas
in the Arctic and the east coast of Canada were selected for establishing passive microwave
signatures of first-year ice, old ice, and ,;alm open ocean.

Equation 4 can be rewritten fir each channel (1-4) in the following manner-.

Tal = A,(BI*F +C 1 *M+ Dt * W)4-TO1 (10)

T2 = A2(B2*F +C 2 *M+ D2 * W)+T02 (11)

T83 = A3(B3 *F +C 3 *M+ D- * W)+T03 (12)

T2 = A,(B,*F +C 4 *M+ D4 * W)+TO4 (13)

where F, M, and W are fractions of first-year ice, old ice, and open ocean, respectively. A1,
A2, A3, A4 , and TO1 to T04 are atmospheric correction parameters for each channel. A2, A3 ,
and A4 can be expressed in terms of A, using frequency dependence of atmospheric a"," ption

11. . C. ant, D, renrep•._i _ feoi. fnlyv1 nCo pq.Mt q thpe -nP#a, 0! ,n't _-, --

types and open ocean All these parameters were described in detail in 2hD Associates Ltd.,
[6]. The set of equations 10 to 13 n be solved for A,, F, M, and W. Prior to the calculations
of ice concentration and ice type identification, the input brightness temperatures (at 37 GHz
and 19 GHz for both polarizations) are subjected to a multi-step testing procedure. The results
of this testing detfrmine whether the sensed radiation was emitted from an ice-covered area or
from open ocean, as shown in the flow chart given in Figure 10A.5.

The first test decision was made using the contrast between the brightness temperatures
of open ocean under heavy cloud cover and ice cover r2 liance. A discriminating function (D)
of 19 and 37 GHz vertical components was generated. Critical values for D were derived by
simulating brightness temperatures for open ocea with heavy cloud cover and ice cover near
the ice edge. Four ranges of critical values were selected to rt present a cross section of
atmospheric coniditions. Drmw represents a criti.a value for discriminating the ice edge area
from the open ocean with a surface roughness caused by wind speeds greater than 10 m/s. Drm
is used for differentiating the ice edge from partially overcast sky and wind-roughened open
ocean surfa e. Dm1 x is a criteria for distinguishing icL cover greater than 35% concentration.
The open ocean, with fully overcast sky, will always result in L < DMAX. When D > 1, the
ice concentration will be more than 90% -And old ice is arcsent in the fleid of view.
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The data points for which D < DmAx and D > Dm are given a second test. This test
was designed to distinguish low ice concentration areas from open ocean with low winds and low
to moderate cloud cover. This filter component (labelled R) relies on the contrast in sensitivities

O of the vertical and horizontal components of thu 37 GHz channel to the presence of sea-ice.

The third step in the filtering algorithm was set up for the artalysis of data points with
a To- greater than that for open ocean, but less than that for a 50% ice-covered value.

The measured brightness tcntperatures at 19 and 37 GHz are assumed to originate from
a partially ice-covered area and partially from open ocean roughened by wind. The possible ice
concentrations and wind speed in the ixe-1ee segment within the field of view are calculated
using 37 GHz (vertical and horizontal Domponents) and 19 G-z brightness temperatures. Only
data points for which calculated ice concentrations are greater than 5 % are sent to the data pool
for ice chart plotting.

The fourth step is used. on data points with D x > D > Dm.,, hut with R values the
same as for a rough ocean surface. Assuming that the field of view is an ice-free area, possible
surface wind speed and atmospheric contribution to the observed 19 and 37 GHz are calculated.
Comparison is then made between the atmospheric information from 37 GHz with the amount
estimated for 19 GHz. If the ratio is outside the range (determined from theoretical simulations),
the data points are assigned to be from the ice-covered areas.

.h.., , -f e. 5-U., , ' h-- had to
be tested. Figures 10A.6 to 10A.8 illustrate the testing of the various components of the filtering

O procedure in comparison with the HAC algorithm.

i a-

-_Z -Xo IFM a

Figure F Comparison between total Figure 10A.7 - The effect of weather
ice con( rations retrieved with filtering on the HAC algorithm retrieval of
AESiYOR!_ : HAC algorithms. Gulf of total ice concentrations, Beaufort Sea, 26
St. Lawrence, 27 January 1988. October 1987.
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Figure 10A.8 - Comparison between total ice concentrations retrieved with A-9/SYOR.• and
RAC algorithms, Beaufort Sea, 26 October 1987.

After the faltering procedure is completed, ice c.onct~ntration and ice fractions are
calculated using equations 10 to 13, for data points with D > Dmux. For data points with D <
Dw,,x, 37 GHz channels are used for the calculations of the ice concentrations, therefore using
the best resolution in the proximity of an ice edge. The ice type fractions are checked for
consistency with the brightness temperatures observed on all four channels used in the algorithm.
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11.0 PRECIPITATION VALIDATION

11.1 INTRODUCTION I.

This section summarizes the results of the SSMII rainfall rate retrieval algorithr_
validation effort, which has been completed for the midlatitude and tropical climate zones. The
validation is presented, followed by an evaluation of the operational D-Matrix rainfall rate
retrieval algorithm based upon available ground truth. This section concludes -,ith recommenda-
tions for the improvement of the existing retrieva! algorithm, and an ex"-iple application of an
alternate algorithm to tropical cyclone data.

11.2 VALIDATION PLAN

11.2.1 Nayy Specifications

The validation plan was specifically designed to evaluate the performance of the Hughes
"D-Matrix" algorithm for obtaining rinfall rates from SSM/I brightness temperature data. The
SSM/I specifications called for an algorithm which would enable the retrieval of cainfall rates
from the observations of the DMSP-F8 with 5 mm/hr accuracy over the range 0 - 25 mm/hr at
25 km spatial resolution.

11.2.2 Methcd

""aingages provide the most accurate standard for point estimates of surface rainfall.
O However, because of the high spatial variability of precipitation intensity and the requirement

to validate 25 km space-scale estimates over ocean as well as land areas, area-averaged radar
rain estimates were utilized as the primary source of validation data in this study.

in order to maximize the correlation between the radar rain rate estimates and surface
rainfall amoupts, only low antenna elevation angle (or < 10) plan-position indicator (PPI) scans
were. used. Also since the radar beam height increases with range, no radar measurements
beyond a range of 220 kin were considered. Ground clutter and obvious radar artifacts were
also screened. The remaining bin reflectivities were. converted to rainfall rate using a standard
relationship between the reflectivity factor Z and the rainfall rate R (Z = 200 RW-) and then
interpolated to a 5 km cartesian grid. In this report R is in units of mm/hr.

Typically three radar PPI sweeps bracketing the DMSP-F8 overpass time were processed.
All gridded rainfall rates falling within a 625 kin' circular area of a given SSMII all-channel
brightness temperatuie scene were time-interpolated to the SSMIl measurement time. The time-
interpolated, gridded rain rates were subsequently area-averaged and then stored along with the
corresponding seven sensor data record (SDR) brightness temperatures. In addition, the time-
interpolaled rainfall rates at 5 laa resolution were recorded Wo allow for improved calibration.

11-1



Since individual radar-derived rainfall rate estimates can have a high unceatainty,
simultaneous raingage measurements were also recorded for the purpose of calibration. Wilson
and Brandes [1J demonstrated that errors in radar storm-total estimates of rainfall rate could be
reduced from 63% to 24% using calibrating raingages.

11.2.3 IMM-Source

SSMiI sensor data re)rds (SDR) and environmental data records (EDR) coinciding with
radar measurements of precipitation were obtained from the Naval Research Laboratory (NRL)
archive.

Surface truth for nmidlatitude validations was obtained from seven radar sites in the United
Kingdom, operational network and the Patrick Air Force Base (PAFB) r, dar at Cape Canaveral,
Florida (see Table 11.1 for specifications). lEach of these radars provided significant coverage
of both land and ocean areas, and were operating almost continuously since the launch of the
DMSP-F8.

The United Kingdom data were obtained from archives maintained by the British
Meteorological Office (BMO), and the PAFB data were retrieved from laser disk recordings
compiled by personnel at the Severe Storms Laboratory at NA3A/Goddard Space Flight Center.

%^Pdt*r • 4.i4' Vý"Y1, J -ký. -- a U W -LL -J- F "- .. ..

for five of the seven United Kingdom sites. If sufficient raingage hourly totals are recorded in
the same time frame as a given radar sweep, then a real-time correction is applied to the radar

* data using the scheme described by Collier, et al. [2]_ Hourly raingage totals and corresponding
hourly-integrated radar totals were proviided along with the radar data on BMO archive tapes.

Hourly raingage data from National Weather Service (NWS) gages in the vicinity of the
PAFB radar site were obtained from National Climatic Data Center ar=hives at Asheville, North
Carolina. Twenty-one raingages in the NWS network provided hourly rainfall rate totals within
a 200 km radiu& of the PAFB site.

Radars operating continuously at Darwin, Australia and Kwajalein, Marshall Islands wem
utilized to validate rain rate retrieval algorithms at tropical latitudes. Located on the northwest
coast of Australia, the Darwin radar provides reflectivity data both over the continent and over
the Indian Ocean. The Kwajalein radar yields rain rate data exclusively over the Pacific Ocean.
Networks of raingages were maintained in the vicinity of both radars to check the calibration of
the rainrate estimates; however, no real-time correction, was applied to the data from either site..

11.2.4 & __J24 Geoln(_fio

Since rainfall is highly variable in both space and time, accurate geolocation of both the

satellite and radar data was essential to the vablidation effort.
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"IABLE 11.1

VALIDATION RADAR SITES AND NUMBER OF CALIBRATING RAINGAGES

Radar Site Specifications Latitude Longitude Number
of gages

(Midlatitudes)

Patrick Air Force Base .5 cm, C-band, 28.255N 80.606W 21
Cape. Canaveral, Florida 1.1 0 beamwidth

Ca'borne, England, 10 cm, S-band, 50.218N 5.327W 3
United Kingdom 2' beamwidtb

Upavon, England, 10 cm, S-band, 51.299N 1.781W 3
United Kingdom 20 beamwidth

Clee Hill, England, 5.6 cr , C-band, 52.297N 2.597W 3
United Kingdom 10 beam width

Hameldon, England 5.6 cm, C-band, 53.756N 2.281W 5

Chenies, EngLand 5.6 cm, C-band 51.688N 0.053W 5

United Kingdom 1" beamwidth

Shannon, Ireland, 10 cm, S-band 52.791N 6.936W 0
United Kingdom 20 beamwidth

Castor Bay, 5.6 cm, C-band 54.503N 6.341W 0
North Ireland, 1V beamwidth
United Kingdom

(Tropics)

Darwin, Northern 5.3 cm, C-band, 12.457S 130.925E 26
Territory Australia 1.7' bearmwidth

Kwajalei,. 1 7 cm, S-band 8.72N 167.73E 9
Marshall Islands 20 beamwidth
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Errors as great as 30 km were observed in the position of land-ocean boundaries in the
DMSP-F8 SSM/I imagery. Since precipitation fields can vary greatly on a spatial sale of 10

AB& kin or less, correlations between brightness temperature features in the SSM/I image.,y and radar
4P echoes were degraded in many situations. Through a cooperative effort between scientists at

University of Wisconsin, University of Massachusetts (UMASS), and the Naval Research
Laboratory (NRL), a method was developed to automatically relocate the SSM/I data.

The method consisted of an optimization routine which searched for corrections in the
spacecraft pitch and yaw angles that maiximized the correlation between discontinuities in the 85.5
GHz horizontally-polarized SSM/I brightness temperature imagery and the known location of
coastal boundaries as specified in the World Data Base HI (WDB 11) coastline map. The
transformation between pitch and yaw perturbations and perturbations in the earth coordinates
of SSM/I measurements was provided by Mark Goodberlet of UMASS. The World Data Base
II coastline map was provided by Gene Poe and Pete Conway of NRL.

A digital edge detector was applied to the 85.5 GHz horizontally-polarized brightness
temperature data in original scan format to locate coastal discontinuities in the imagery. If the
edge detector identified a brightness temperature discontinuity bet veeni adjacent footprints of at
least 30 K in the United Kingdom or Kwajalein imagery, or a discontinuity of 15 K in the Florida
or Darwin imagery, then the location of the discontinuity was recorded on a 4 kIn resolution grid
using a standard map projection. The World Data Base II coastlines were referred to the sa -e
grid. A snaller edge detzctor threshold was utilized at tropical and subtropical latitudes o
account for the smaller land/ocean contrast at those latitudes. Swath data from Alaska or tlh .

04wI , 1& !- !U tIU -L tatl p utk o lU.S.S.R_ wnc tiv to w!...t A'1,'apeleia -BAIA IrM --Cn &ý.. •.r t lue tohED pu.t o a
* land masses in the vicinity of Kwajlein Island.

A simplex algorithm was invoked to iteratively search for the spacecraft pitch and yaw
perturbations which maximized the number of grid-point "matches" between the edge-detected
coastline and the World Data Base II coastline over a 2000 km section of the SSM/I swath
centered on the region of in' rest. The effect of adding a roll perturbation to the optimization
scheme did not fignificantly improve image registration.

Upon review of 10 to 20 relocated SSM/I images, the automated procedure appeared to
locate the satellite data to within about 6 km of the World Data Base II coastline. The WDB H
coastline is reported to be accurate to within 3 kmn.

The validaton radar data were earth-located using the recorded zange of the radar bin and
the elevation and azimuth angle of the radar antenna. The range of th!! radar bin along the
eart-.'s surface and the bin altitude were computed using the standard formulae presented in
Battan [3]. Given the earth range of the bin, the azimuth of the radar antenna, and the known
latitude and longitude of the radar site, the earth location of *he radar bin was determinied using
the geodetic formulae of Sodano [4]. The uY certainty in th... earth location of any radar bin is
estimated to be on the. order of 1-2 kin..
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11.2.5 Bdar Calibration

With the exception of the Shannon and Castor Bay radars, for which no raingage data
were available, an attempt was made to calibrate the midlatitude radar-derived precipitation
intensities using coincident hourly raingage recordings. Approximately 50% of all the United
Kingdom radar data corresponding to DMSP-F8 overpasses had been pre-calibrated using the
scheme described in Collier, et al. [2]. Their scheme relies upon a time-series analysis of radar-
to-gage ratios, determination of radar "bright-bands", and adjustments for orographically-forced
precipitation. Rainfall ratk. obtained from the uncalibrated United Kingdom radars, which had
been assessed using Z = 200 R"-' (Marshall and Palmer [5]), were left unaltered.

For the remaining DMSP-F8 overpass: times, there were generally insufficient raingage
data to perform a radar calibration, unless gage data covering a period of one day or more were
incorporated into the analysis. Despite the relatively large number of raingages recording in the
vicinity of the PAFB radar site, there were again insufficient data to perform instantaneous radar
calibrations for most ,MSP-F8 overpass times. The inadequacy of the gage networks for
instantaneous calibrations is due to the high space- and time-variability of precipitation.

The radar data available from Darwin and Kwajalein were insufficient for performing
rai-igage calibrations. The Marshall and Palmer [5] relationship was utilized to interpret the
reflectivity data from these radars.

All r-Ar1-r.JierkPh vu~inf-i1 r-itp'e 'uitnht a A g,, L f.;rri11'jfr '2rm. ~n cvvn (WAVY"

* all-channel scene were time-interpolated to the SSM/I measurement time and subsequently area-
averaged to yield a ground truth rainfall rate product.

11.3 VIA.LIDATION ERROR

The total validation error can be divided into two general categories: (1) errors in the
gridded radar estimates of rainfall rate (at 5 km resolution), and (2) errors arising from
atmospheric variability linked to discrepancies in the space and time collocation of the 625 kn2

area-average rainfall rates and the SSM/I all-channel measurements.

These error categories can be further subdivided into contributing error sources. It will
be assumed in this analysis that raingages provide an accurate standard for surface rain totals over
a period of one hour. If it is also assumed that the errors from contributing sources are
uncorrelated, then the error variance of a gridded and time-interpolated radar rainfall rate with
espect to a.gage estima!e can be expressed as

ffi z 92 + 2 (il)

where a, is the error of an instantaneous gridded radar rain rate, and a• is the error arising from
tine-interpolation of the gridded radar measurement to the SSM/[ measurement tir..
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In practice it is only feasible to estimate thi. error of hourly-integrated radar rain rates
with respect to gage totals over the same period. In the British Meteorological Office radar

* calibration scheme, rain rates from approximately 12 radar sweeps are ave.aged to obtain an
hourly total. The error variance of hourly-integrated radar rain rates may be approximated by

a, = {o3./n) 4- or,'- (2)

Here, n is the number of radar sweeps utilized in the hourly integration and af is the error
introduced by integrating a finjite number of sweeps to form an hourly total. Combining Eqs.
(1) and (2):

U nil 2= fo - or,2} + qj2 (3)

A value for qO of six tenths of the rac.r-deiived rainfall rate (i.e. 0.6 R, where the rain
rate) was taken from a study by Wilson and Brandes [1]. Harrold, et al. [6] showeca uat ot was
on the order of 0.1 R. It is assumed that R. which is based on hourly averages in the preceding
estimates, can be approximated by the instantaneous rain rate for the purpose of making an error
estimate. This as.iumption may lead to an overestimate of the error for high instantaneous rain
rates, since the average rain rate over an hour period which includes a high rain rate event is
likely to be lower than the instantaneous raiv rate.

The radar rain rate time interpolation error iS wlmsnt ,,.,•,,e .,,e, =,,,e,, ow s. a-U- a-
interpolated from radar measurements separated by 15 minutes at most. A value of 0.05 R is' estimated for aw.

The errors due to area-averaging of gridded radar data and co-registration with the D-
Matrix estimates can be expressed as

2 a={'. m} -r q..' + 02. (4)

where rn is the number of time-interpolated, radar grid boxes averaged over a 625 km2 area, oP
is the error due to misregistration of SSM/I and radar measurements, and r0 d is the error

introduced by the discretization of •he D-Matrix rain rate estimates.

Typically 25 radar grid boxes are averaged per 625 kmi area. After relocation of the
SSM/I measurements according to the method described in Section 11.2.4, the total
misregistration between SSM/I and i idar measurements is approxinately 7 kin, based upon

comparisons to the World Data Base R coastlines and an estimated i - 2 km error in the radar
measurments. The validation error due to nisregistration is estimated by considering the error
incurred by estimating a 'reference" area-averaging rain rate using area-averaged rain rates at
different displacements from the reference location. Based upon this approach, a,,, for a
displacement of 7 km is C-)und to vary as a logarithmic function of the rainfall rate.
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The rounding of D-Matrix rain rate estimates to integral values leads to a constant ad

.29 ram/hr.

Utilizing the individual errors estimated above, the total vahdation error is evaluated and
plotted in Figure 11 .1. Also plotted is the validation error that would result if the geolocation
of the SSMII data was not corrected, assuming an average 25 km misregistration error for
uncorrected data. It may be noted that from the figure that a 35% to 60% reduction in the
validation error is achieved by relocating the SSM/I data using the automated procedure. The
validation error of the relocated data varies almost linearly with rainfall rate, with about a 45%
error at 24 mm/hr rain rate.

11.4 D-MATRIX ALGORITHM EVAL. ,\TION

11.4.1 Data -:n

DMSP-F8 overpasses of the United Kingdom and PAFB validation sites were separated
by season into summer, spring-fall, and winter overpasses. Collocated SSM/A and radar
measurements from nine overpasses of the United Kingdom sites and tluee overpasses of the
PAFB site during August of 1987 composed the summer validation data set. Seven United
Kingdom overpasses during September of 1987 and six overpasses of PAFB during September
and November of 1987 and March of 1988 contributed to the spring--fall validation data seL The
winter validation data set was derived from twenty-five overrasses of United Kingdom qiteq/-
during January and February of 1988.

Only radar data from the tropical warm season were available from the Darwin and
Kwajalein si :s. Data from eleven SSM/I overpa! es of Darwin and nine overpass'es of Kwajalein
were collocated with the averaged radar rain data to produce the tropical validation data set. The
Darwin overpasses occurred during February and March of 1988, while the Kwajalein overpasses
spanned the months of August - November of 1988.

The total number of collocated area-averaged radar rain rate estimates and SSM/I all-
channel scenes are listed by season in Table 11.2. Listed separately are the number of collocated
measurements over land and ocean backgrounds. Also included are the number of collocated
measurements for which the area-average radar rain rate was at least 1 mm/hr.

Despite prescreening of overpasses to identify those in which significant rain events were
observed by both the SSM/I and radar, only a small fraction of the total number of collocated
data exceeded the 1 mm/hr threshold. The skewed distribution of rain data is further illustrated
by the seasonal histograms in Figure 11.2. The histograms indicate that a large percentage of
rain events at 25 km resolution have intensities less than I num/hr. At midlati.udes, the winter
data are more highly skewed towards light precipitation than the summer and spring-fall data.
The highly skewed winter distribution results in a relatively small number of collocated winter
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Figure 11.1 - Validation error as a function of rainfall rate. Squares indicae the error standard
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25 km. The validatic 1 error for unconecte' data is indicated 1: the solid dotsi in We ,xc
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TABLE 11.2

NUMBERS OF COLLOCATED SSM/I AIL-CHANEL SCENES
,AND RADAR DERIVPD RAINFALL RATES

LAND OCEAN TOTAL

(Midlatitudes)

Summer 1"155 (85) 551 (28) 1706(113)

Spring-Fall 1794 (217) 1045 (181) 2839 (398)

, All Seasons 7016 (507) 3832 (218) 10,848 (725)

(Tropics)

W, rm Seasons: 342 (41) 1365 (180) 1707 (221)

Numbers of collocated SSM/I all-channel scenes and radar-derived rainfall rates for both
the midlatitude summer, spring-fall, and winter seasons, and for the tropical warm
season. The numbers of collocated data over land and ocean regions are also individually
tabulated. The number in parenftc is the subset of the tvtal sample for which the
radar-derived rainfak! rate was at least. 1 •im/hr.
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data over the ocL.An with rainfall rates greater than or equal to 1 ram/hr (See Table 11.2). In the
O tr•opics, the rain rate distribution is also skewed towards lighjt rain events (see Figure 11.2d).

The. skewed rain distributions have an important bearing on the statistical analyses to be
presented in the following sections.

11.4.2 Midlatitudt D-Matrix Algorithm Eror Stati

Error statistics of the D-Matrix algorithun rain rate retrievals are pretsented for the six
midlatitude climatic zones in Tables 11.3 through 11.8. To compensate for the naturally skewed
distribution of rainfall rates, the retrieval error statistics are stratified. Statistics are computed
for different subsamples of the collocated data, such that only D-Matrix estimates and radar-
derived rainfall rates exceeding specified minimum thresholds are included. As the minimum
rain rate threshold defining a subsample is incr ied from 0.0 to 0.5, 1.0, 1.5, and 2.0 rna/hr,
more emphasis is placed upon the performance of the D-Matrix algorithm at higher rainfll rates.
An increase in the minimum rainfall rate threshold is reflected in an increase in the subsample
mean rainfall rate and standard deviation (see Tables 11.3 - 11.8). The 'error" standard
deviation (aj) ý the standard deviation of the difference between the SSMII estimated rainfall rate
and the rada. "ground truth" estimate. In addition io the traditional statistical quantities, the
success ratio S, which is the ratio of the rain rate estimate "error" variance, q;', to the sum of
the varances of the validation error and 5 mrm/hr retrieval tolerance, is listed for each subsample.
An S-ratio greater than 1 indicates that the rain rate estimate falls outside the Navy specifications.
&-as av' ý ....+ "- - -, wm-. -+4 1- Okwaa. #16ftf #h~dk .jlImY~rwIkim "fkC #1Af UIhI;4'it. ;^Vi

*accuracy permitted by the data.

Scatterplots of the D-Matrix rain rate estimates versus radar-derived rainfall rates for each
of the six midlatitude clirratic zones are presented in Figure 11.3. The solid eiagonal lines
drawn on each of the plots define the ±5 mm/hr retrieval error range.

The D-Matrix error statistics can be compared to the error statistics of the best possible
linear model estimate which are included in the second secti',n of each table. The best linear
model of the - r rain rates is obtained by regressing jhe SSM/I corrected brightness
temperatures (SDR data) against the radar rainfall rates using a stepwise procedure. Regressions
are performed on the same subsamples of collocated data from which the D-Matrix error statistics
were derived. Since a lower bound of 0 mm/hr is impsed on the D-Matrix rain retrievals, the
same lower bound is imposed on the regression estimates, Each regression relationship
represents the best r ible. model of the radar rain rates which is linear in the brightness
temperature data, and therefore it defines an upper limit on the performance that can be expected
from any linear retrievai algorithm for the data sample in question.

This section will conclude with a general discussion of the D-Matrix retrie"al eror
statistics. Because the channels selected for rain retrievals over land are the same for each season
and the brightness temperature weightings are similar, the discussion will first focus on land
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i-trievals for the three specified seasons a Ad then move to a discussion of rain retrievals over the
ocean.

TABLE 11.3

STATISTICS FOR THE MIDLAT'UDE SUMbiMER LAND CLIMATIC ZONE

CASE P-. Or b 010 r S

D-Matrix:

0.05R, RL525 mm/hr 885 .535 2.31 -.086 1.50 .761 .089
0.5!R, RL:25 mm/hr 48 6.78 6.99 -1.05 5.18 .694 .735
1.05R, RLeg25 mm/hr 37 8.59 7.00 -1.64 5.87 .596 .809
1.5sR, RL525 mm/hr 31 9.74 7.05 -2.00 6.17 .564 .914
2.05R, RL<25 mm/hr 27 10.9 6.79 -2.62 6.55 .476 .834

All c&anmel regressions:

0.0<R, RL•:25 mm/hr 885 .535 2.31 .215 1.47 .784 .086
0.5 SR, RL525 mm/hr 48 6.78 6.99 .037 4.57 .756 .572
1.0:gR, RLg25 mm/hr 37 8.59 7.00 .012 5.13 .681 .618
t.5SR. RL.!25 mm/hr i1I ... d 7 M!.. .7W
Z ii~s25 mm !br 271 10.9 6.79 -.001 5.67 .551

D The number of collocated SSM/1 and radar observations in the sample (n), the mem rmdar-derived rainfall
rate (R.) and standard deviation ( 3i) of the sample, the bias (b) and eror standas- deviation (c) of the rain
rate estimate, the correlation coefficient (r) between the radar and SSM/Idewived rain ranes, and the success
ratio (S) for each case are listed above. &, orf, b, and or are given in units of rm/hr. The first five rows
are the statistics of tho D-Matrix rain rate estimats (RL) for the indicated subets of the full data sample.
The statistica are stratified because the full data uanzple is dominated by low rainfill ratm. In the second
sectioa the statistizs of linear regression fits to the same subsets of points are listeiL To maintain
consistency with the D-Matrix estimates, a lower bound of 0 mm/hr was imposed upon the i•gression
estimates.
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TABLE 11.4

STATISTICS FOR THE MIDIATITUDM SPRINOIFAIL LAND CLIMATIC ZONE

CASE a R. a, b we r S

D-Matrix: I
0.0 SR, RL525 nu/hr 1386 .549 1.50 1.56 3.99 .438 .632
0.5 iSR, RLS25 mmn/hr 205 2.56 2.62 5.82 7.68 .279 2.18
1.0SR, RL525 mmA/hr 132 3.54 2.82 5.87 8.02 .193 2.24
1.5!6R, RLS25 mm/br 99 4.12 2.85 6.39 8.35 .163 2.34

_2.0:5R. RL525 mm/hr 79 4.72 2.89 5.97 8.09 .157 2.11

All channel regresmoas-

0Or.0 , RLS25 nmn/hr 1386 .549 1.50 .043 1.20 .602 .057
0.5.R, RLS25 mm/hr 205 2.56 2.62 .007 2.31 .472 .197

S 1.0:5R, RL2.25 mm/hr 132 3.54 2.82 .000 2.55 .423 .227
1.5s;R, RLS25 mmar 99 4.12 2.85 .002 2.61 .400 .229
2.0!R, RL25 nun/hr 79 4.72 2.89 .000 2.65 .399 .226

The number of collocated SSMAI and radar obnervatiorn in the sample (n), the m radar-derived rainfall
rate (I) and standard deviatiou (rx) of the innfo, dhe bia (b) and error standad deviation (f,) of thd rain
rate estimate, the corelation coefficient (r) betweo the radar and SSM/1-derived ran rates, and the success
ratio (S) for each case e • isted abow. R., vr, b, and vo ae vem in unit of mm/hr. The fiat five rows
are th statistics of the D-Matrx ran rate eatimatas (RL) for te indicated mubsets of the fuW data sample.
The statistics are sbratified because the fu data ample is dominated by low rainf rats. In the second
section the statioics of linear regression fits to the same mbeets of points are listed. To maintain
consistency with the D-Matrix estimates, a lower bound of 0 tm/hr was impowd upon the regrsson
istimates.
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TABLE 11.5

STATISTICS FOR TIL MIDLATITUDE WINT]ER LAND CLIMATIC ZONE

CASE n it. cal b CF. rS

D-Matrix:

0.0:R, RL•c25 mm/hr 3797 .171 .462 1.90 5.22 .397 1.09
0.5•R, RLg25 mm/hr 199 1.39 .893 13.6 14.6 .037 8.29
1.0zR, RLsr25 mm/hr 110 1.90 .926 13.3 14.4 .0is 7.90
1.5:5R, RLg25 mm/hr 66 2.38 .920 12.3 13.5 .144 6.79
2.0:R, RL.g2Z mmihr 36 2.90 .973 12.4 13.6 .123 6.71

All channel regressions:F

O.0-R. RL525 4m/hr r"1 ,i'- I ."I .... ... 3 . AiW .•4Af .4.i I (20

1.09R, RL!25 mm/hr*
j 1.5zR, R..25 mm/hg'

2.0:R, RL•g25 mm/hf

*None of the channels could explain a significant portion of the variance; therefore no retression fit was
attempted.

The number of collocated SS- I and rada obsinvationw in the sample (n), the mean radar-dwived rainfall
rate (R.) and standard deviaL•n (oq) of the sample, the bias (b) mid ewor standard deviation (4r.) of the rain
rate estimate, the corrNation coefficient (r) betwme the radar and SSM/A-derived rin rati., and the sUKce"
ratio (S) for each case are hsted above. IR, as, b, and o. are give in units of mm/hr. The first five Tows
are the statistics ol the D-Matrix rain rate estimates (RL) for the indicated subse4s of the full data sample.
The statistics are stratified because the full data sample is dominated by low sun rates. In the second
sectioa the statistics of linear regression fits to the same subsets of points are listed. To maintain
consistency with the D--Matrix estimates, a lower bound of 0 mnm/hr was imposed upon the regression
estimates.
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TABLE 11.L

STATISrTICS OR TM MIDLATITUDE WINTER LAND CUIMATIC ZONB

CASE 01 R. _ _ b ¢I S

D ,Vatrix:

0.0 R, RLs25 mmfhr 379/ .171 .462 1.90 5.22 .387 1.09
0.5:5R, RL,425 mm/hr 199 1.39 .898 13.6 14.6 .037 3.29
1.0rR, RL•;25 mm/hr 110 1.90 .926 13.3 14.4 .0is 7.90
1.5!R, RL925 mm.. 66 2.38 .920 12.3 13.5 .1" 6.79
2.0:ER, RLt.25 mmhr 36 2.90 .973 12.4 13.6 .123 6.71

All channel regressions: j
0.0:!PF RL:925 mm/hr 3797 .17 .462 .009 .40Q9 465 1 X7 a

1.0:R, RL:25 mm/IrO-S~ 1-5:9R, RUý25 nmmhr*

2.0s<R, RL•25 mmAx&

*None of the channels could explain a significant porion of t .e variance; therefore no regrcssion fit was
attempted.
The number of collocuted SSM/I and raia obsenvationz in the sample (a), the mean radar-dvived raiWfall
rate (R.) and atamdard deviation (al) of the amap! , w bis (b) d eror aw deviation (a.) of the rain
rate estimate, fe cormlition coefficient (r) between the radar =id SSM/1-drived rain rates, and the success
ratio (S) for each caw are listed above. R... v,. ,, -td or. are given in units of mmnlhr. The first five rows
are the statistics of the D-Matrix rain rate estimates (RL) for the indicated subwes of the full data sample.
The statistics are stratified because the full data smple is dominated by low- rainfull rate. In the second
setion the statist os of lineaf regressiom fits to the minm subsets of points am listed. To maintain
consimency with the D-Matrix estimates, a lowvr bound of 0 mA/hr was imik ;d upon the rgrearisn

1-mate.
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TABLE 11.6

STATISTICS FOR THE MIDLAITIUjDn SUMMBR OCRAN CLIMATIC ZONE

SCASB n h. U. tS_

D-Matrix:

O.0!R, ROS;25 mm/hr 551 .293 1.31 -.094 1.26 .446 .063
0.5!R, RO:2fr nmm/r 14 6.63 2.90 -2.;31 4.27 .012 .506
1.O:R, RO:%25 mm/hr 14 6.63 2.90 -2.71 4.27 .012 .506

1.5 6k, ROS25 mm/r 12 6.56 2.91 -2.14 3.66 .149 .374

2.0•,t RO_25 mm/hr 11 6.98 2.64 -2.62 3.71 .317 .371

All chmnnel ragiasions:

0.0!R, ROr2S mm/hr 551 .293 1.31 .098 .909 .728 .033
I -1 14! e I IA I oZ 2fl I 1P it I I A2C I goo a

I.GCR, RO<25 mm/hr 14 6.63 2.90 .000 2.61 .435 .189
l.5-R, RO!25 mm/hr 12 6.56 2.91 .000 2.62 .437 .191
2.0!R, RO;25 mm/hr 11 6.98 2.64 .000 2.27 .508 .139

The number of collocated SSM/I and -adar obmsevations in te sample (n), the mean radar-derived ranf
rate (R.) and standard deviation (og) of the sample, the bias (b) and eor standard deviation (u) of the rain
rate estimtx-, the correlation oocficiant (r) between the radar and SSM/I-dmived rain rates, and the scess
ratio (S) for each ca arm listed above 1k, er, b, and o. are given in units of nm/br. The first five rows
am the statistics of the D-Matrix rain rate estimates (RO) for the indicated subsets of tdw full data sample.
th statistics are stratified because the full data smple is dominatd by low rainfall rates. I the secood

section the statistics of linear regression fit, to the sume subsets of points L-c listed. To umintain
ccusiatmcy with the D)-Matrix estimates, a lower bound of 0 mn/hr was imposed upon h regression
estimates.
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TABLU 11.7

STATISTICS FOR TWE MIDLAITr EDB SPRING/FALL OCEAN CLIMATIC ZONE

CASrl n R._ OR b _ _r

D-Matrix:

O.0.R, RO:25 mndhr 1034 .961 2.77 -.551 2.91 .160 .333
0.5 SR. RO!925 m/hlkr 72 4.66 4.98 -1.23 5.98 -.229 1.16
1.0!R, ROe25 nrn/hr 53 6.07 5.11 -2.99 6.44 -. 146 1.20
Il.f:sR, ROS!25 mm/hl 33 6.20 4.22 -2.35 5.17 -.036 .768
2.0!R, RO25 mm;hr 30 6.64 4.11 -2.77 5.37 -.054 .799

All channel refressionq- a II

0. 0R, RO:25 mm/hr 1034 I .961 2.77 .173 1.96 .711 .151
S 0.5sR, RO•s25 mm/hr 72 4.66 4.98 .006 3.74 .660 .452

S 1.0ZR, RO:25 mm/hr 53 6.07 5.11 .001 4.24 .560 .522
1.5:5R, RO0:25 mm/hr 33 6.20 4.22 .000 3.44 .591 .340
2.-0R, RO:25 mm/hr 30 6.64 4.18 -.001 3.49 .550 .337

The number of collocated SSM/I and radar observations in the sample (n), the mean radar-derivad rainfall
rate (R.) and standard deviation (ao) of the ample, the bias (b) and eror standard deviation (a.) of the rain
rate ebtimate, tle correlation coefficient (r) betwom the radar and SSM/l-dcrived mr rates, and the succesa
ratio (S) for each case are bited above. R., at, b, and ao are given i units of urm/hr. The first five rows
are the statistics of the D-Matrix rain rate estimates (RO) for the indicrited subsets of the full data sample.
The statistics are stratified because the fall data sample is dotminated by low rainfall rotes, In the second
section the ststistics of linear regression fits to the same subsets of points are listed. To maintain
consiasey with the D-Matrix estimates, a lower bound of 0 mo/hr was imrposod upon the regression
stimates.
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TABLE 11.8

STATI -ICS FOR THE MIDLATITUDE WINTER OCEAN CLJMATIC d-3Nik

CASH . b S r $

D-Matrix:

O.0sR, RO!725 inm/hr 2236 .049 .147 .. 920 .088 .034

0.5-5R, ROý525 wn/lhr* 2 1.73 .261
1.05R, RO!72.5 /hr* 2 1.73 .261
L5.'•R, RO!525 nm/hr 2 1.73 .261

2.0SR, ROC 35 uun/hr* 0

AUl chanonalegrossions:I

0.OR, RO97-5 nm/hf 2236 .049 .147 .005 .132 .441 001

0.5:5R, RO:525 nwwUh*II

1.5:rR, Ros;25 num/hr
2.0. R, RO525 mm/hr*

*Samp~o size insufficient for artalysis to be pewfhrmel.

The number of collocated SSMII and radar ohmervationx in the sample (n), the mesa
rate (,) and standard deviation (a3 ) c r the smple, the bias (b) and error standard deviation (or) of the rain
rate estimate, the correlatisa coefficient (r) between the rada- and SSM/1-derived rain rates, and the succeas
ratio (S) for each case are listed afove. R., a,, b, and u. are given in units of umm/hr. The firs five rows
are the statistics of the D-Matrix rain rate estimates (RO) for the indicated subexts of the full dara sample.
T'e statistics am• sastified because the full data sample is dominated by low rainfail rates. In th second
section the statiatics of linear irgresswon fits to the same smbsfts of points am Risted. To maintain
consistemcy with the D-Matrix estimates, a iower botnd of 0 mm/hr was imposed upon the regremsion
estimates.
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Figure 1H.3 - D-Matrix retrievals of rainfall rate versus radar-derived rainfal rate at midlatitudes
for (a) summer over land, (b) sprig-faU over land, (c) winter over land, (d) sumnmer over ocean,
(e) spring--fall over ocean, ard (f) winter over ocean. Solid lines define the ±5 mm/bx retrieval
error limits.
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The D-Matrix algorithm for the midlatitude summer land climatic zone shows the best
overall ability to estimate surface rainfall rates. Although the errors in the rain rate estimates
are somewhat greater than the specified ±5 mm/hr at high rainfall rates, the correlation between

the D-Matrix retrievals and the radar rain rates (maximum of .761) is relatively high and

comparable to correlations obtained using other microwave sensors over land. For example,
Spencer [7] found a .795 correlation between regressed Scanning Multichannel Microwave

Radiometer (SMMR) brightness temperatures and radar-derived rainfall rates in summer rainfall

over the midwest United States. The D-Matrix estimates are somewhat low-biased (- 1-2

mm/br) with respect to radar; see Figure 11.3a. The linear regression estimates based upon the

same samples of data yield slightly better estinmates, with a maximum correlation of .784 over

the entire sample of data.

The D-Matrix spring-fall land algorithm performs poorly in relation to the summer
algorithm. In genera! the D-Matrix algorithm greatly overestimates light rair rates, which leads
to positive biases of approximately 6 mm/hr and random errors of 8 mm/hr, and very low
co.relations to radar rain rates; see also Figure 11.3b. The success ratio (-2 for rainfall rates
> .5 mm/hr) indicates that the D-Matrix retrievals fall outside the Navy specifications.

Regression-based estimates of the data are superior, with lower mean errors (-2 - 3 mm/hr) and
modest but somewhat higher correlations with radar rain rates (maximum r = .602).

D-Matrix winter rain rate estimates are extremely high-biased, with very large mean
errors (-14 mm/hr) ond almost no correlation to radar. The reoressior. models are not much -

* better (see Tabie 11.5 and Figure 1i.3c).

A comparison cf D-Matrix rain imagery and brightness temperature imagery indicated that
lower land background brightness ter.mperatures during tbe fall and winter seasons may have been
interpretd as signatures of rainfall, leading to extreme positive biases in retrievals.

The midlatitude summer ocean D-Matrix algorithrm shows less skill in estimating surface
rainfall rate in comparison to the land algorithm for the same season, although the number of
collocated D-matrix estimates and rainfall rates greater than 1 mm/hr (14) is admittedly small.
The D-Matrix retrieval errors (- 4 mm/hr) are within the Navy specifications, but the correlation
between retrieved and radar rain rates is low (maximum r = .446). The D-Matrix estimates are

also low-biased on the order of 2 - 3 mm/hr for rainfall rates greater than .5 mm/hr. Regression
estimates based upon the summer ocean data also yield low -'rrelations with radar except in the
range of very low rainfall rates (Table 11.6 and Figure 11.3d).

The spring-fali D-Matrix rain rate estimates over ocean are essentially uncorrelated with
radar-derived rainfall rates (see Table 11.7 and Fig. 11.3e). Radar-derived rainfall rates are
typically underestimated, with mean errors on the order of 5 - 6 mm/hr. D-Matrix success ratios
exceed 1 fo: two of the subsamples, which indicate a perforniance outside of the pre.scribed ±5
mm/hr tolerance. Regrcssion estimates based upon the same data yield a much greater
cerrelation with radar rain rates, and e-rors are within specifications. The regress.on results

1.1-19



suggest that significant improvements can be made in the retrieval of rainfall -ates over the ocean
in the spring-fall season.

Althougi. only a small number of collocated radar rain rates greater than 1 mm/hr were
obtained during the winter season over the ocean, the plot in Figure 11.3f reveals a large positive
bias in D-Matrix retrievals. Errors are within specifications only because the mean of the rain
rate sample is extremely small (- .05 mm/hr). Stratification of the winter ocean sample by a
minimum threshold of 1 mmihr eliminates all but .wo collocated measurements. Regression
estimates based upon the entire sample of data yield low correlations with radr (Table 11.8).

17ABLE 11.9/

STATISTICS FOR THE TROPICAL WARM SEASON L.AND CLIMATIC ZONE

CASE n R b aor S

D-l4atrix:

0.0_4R, RL:525 mm-/hr 120 .916 1.19 .301 1.88 .526 .139
0.5&R, RL!:25 mm/hr 37 1.74 1.46 2.07 3.06 .400 .359
1.0:5R, RLt525 mm/hr 23 2.28 1.63 2.54 3.67 1 .186 504
i 5-: r 0..'25 mminrihr 1. _..4V q.. -.302 .739
2.0_<R. RL•r25 mm/hr 8 3.90 1.92 2.22 4.20 -.547 .6)1

All channel regressions:

0.0•R, RLg25 nm/hr 120 .916 1.19 .332 1.04 .576 .043
0.5:5R, RL:525 mm/hr 37 1.74 1.46 .214 1.13 .662 .049
1.0!-R, RL<25 mm/hr 23 2.28 1.63 ,282 1.37 .577 .070
1.5!5R, RL!:25 mm/hr 14 2.94 1.82 .245 1.43 .641 .074
2.0<R, R5,25 m * hr1

*Sample size insufficient for analysis to be performed. 1

The number of collocated SSM!¶ and radar observations in the sample (n), the mecan radar-derived rdinfall
rate (R,) and staniard deviation (oa,) of the 3ample, the bias (b) and error standard deviation (er) of the rin
rate estimate, the correlation coefficient (r) betwee the radar and SSM/'-deived rain rates, and the success
ratio (S) for each case are listed above. R, or., b, and a. awe given n units of rmlhr. The firyi five rows
are the statistics of the D Matrix rain rate estimates (RL) for the indicated uubse of tl rý full data sample.
The statistics ame stratified because the full data sample is dominated by low rainfall rais. In the econd
sectioc the statistics of linear regre3sion fits to the sune gubsets of points are listed. To maintain
consistency with the D-Matrix estimates, a lower bound of 0 nm/hr was iwmsed upon the rtgression
estimates.
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TABLE 11.10

SrATISTICS FOR THI TROPICAL WARM SEASON OCHA CLIMATIC ZONE

CASE; I a___ b 416 r S

0oA1R, RO;925 mr.&r 1361 .428 .392 .642 1.78 .630 .126
0.5 ,.R, RO.525 mm/br 241 1.73 1.42 3.17 3.56 .224 .486
1.0!R, ROM 25 mmhir 157 2.26 1.51 2.79 3.28 .1#5 .403
1.$59R, RO•;25 mm/hr 10W 2.83 1.64 2.47 3.14 .052 .359
2.0!gR, RO!25 mMhr 6 343 1.75 1.%6 2.73 .079 .262

A.l.lR, RO:I25 n hr [ 1361. .428 .892 .161 .618 .760 .015.0. ea- a R•'_ £.aa*.. rs "S. U -1•[ 11 j c. .g0- 1.9 .sT -II

S1.0<t, RO•25 m~mfr 157 2.26 1.51 .111 1.40 .429
1.5!0t, RO!25 mmlhr 100 2.83 1.64 -.097 1.48 .441 .079
2.0gR, RO;525 mrnlr 65 3.43 1.75 .309 1.69 .357 10D

The uumnber of colIocated SSM/I and radar obwmvatios in the m ,,,•l© (n), die w radar-drived rainfall

rate (J mud standwrd deaviation (a') of the saqpte, tfi bin (b) aw; aor standard deviation (tv) of the nuin
rate uai ofae, the con-iation wofficiant (r) between thn radar an lMmi-david rain rat, and the 1 o 'eM
ratio (S) for each came wre listed above. k,, q,, b, nd w. are givw is visits of ramhr. The first five Law's
are the statistics ofthe D-Matrix rain rato euimates (RO) for the indicated mboet of the full daia sample.
Thw te fistics are stratifi.edi bwse, the full data sspla is domi d hy low rnfill •ates. In the second
section tho statistcs of linew regressiou fits to the sumn subsets of points wre listed. To maintain -•_

c wy with the D-Matix esimats, a Iw bowA of 0 mm/hr was inixed upo regression
estim~s. 1



I11.4.3 'rEQ•IalD--MaS_._x Algorithm rSaitc

Statistics of the tropical algorithm rain fate estimates for land and ocean ,.nvironments are
presented in Tables 11.9 and 11.10, respectively. The statistical analyses are identical to those
performed on the nmidlatitude data. Over either land or ocean, it is evident from the tables that
although the D-Matrix algorithms may perform within specifications (S-factors all < 1), the
correlation of rain estimates with ground truth estimates is relatively low. Over either surface,
correlations are all less than .2 for radar derived rainfall rates greater than 1 mm/hr; the bias and
error standard deviation of the estimates are on the order of 2 to 3 mm/hr. These results are
reflected in the D-Matrix retrieval plots in Figure 1 1-4a and 1 1-4b. Large positive biases in the
D-Matrix estimates are noted at rainfall rates less ,han about 4 mm/hr, while there. is a trend of
negative biases at higher rainfall rates.

The linear regression estimates yield consistently higher correlations with the surface radar
data in comparison to the D-Matrix estimates. Although the da. i sample is admittedly small over
land in the tropics, the correlation coefficients of the regression estimates are close to .6, while
the error standard deviations range from 1.0 to 1.5 mm/hr. Bias in the regression estimates is
positive, but about an order of magnitude smaller than the bias in the D-Matrix estimates (-.2
to .3 mmihr). Over the ocean, the correlation coefficients of the regression estimates are
semewhai smaller than those over land (- .4 to .7), but again the error standard deviations and
bias figures are significantly reduced in comparison to those of the D-Matrix estimates. Error
standard deviations are on the order of 1.5 mm/hr, and the bias figures are all less than 1.0
mm/hr in absolute value. The regression estimates which were based upon the fhill •_nd _aned

-ataapl are ploed-versus d:, radar derived rainfall rates in Figures 11.4c and 11.4d,

respectively.

Although lower rainfail rates tend to be overestimated and higher rain. all rates tend zo be
underestimated by the regression formulae, the overall bias and scatter in the regression estimates
is significantly smaller than the bias and scatter of the D-Matrix estimates. Most of the
regression estimates fall within Lpproximately ±2 mm/hr of the radar derived rainfall rates.
These statistics and plots suggest that regression-based algorithms may be constructed which yield
rain rate estimates which are superior to the D-Matrix estimates.

11.5 ALTERNAT.'" ALGORITHMS

The plots of the D-Matrix rain rate estin, ites versus radar-derived rainfall rates in Figures
11.3 and ll. all show a common trend at low radar-derived rainfall rates, the D-Matrix
algorithm ten& to overeshmaw rainfal. mt,--, wl le at .1igh rainfall rates the D-matrix algorithm
tends to underestimate rain intensity. i.Iiicar regiession models, 'n peneral, have this feature
since scatter due to errors and nonlineaiities in the rlatiothi1 , betw ci: variables is minimized
with respect to the rmea-I value of the imlh-•,idmLnt data (i.e., in thi.. cast th, r? -an rainfall rate).

S~.! 2'
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Figure 11.4 - D-Matrix retrievals of rainfall rate versus radar-derived rainfalR rate for (a) the
t ,pical warm season ove, land, and (b) the tropical warm season over ocean. Also shown are
,he linear regression estimates of rainfall rate bvsed upon the. collocated SSM/I brightness
temperatures and radar derived rainfall rates between 0 and 25 mm/hr for (c) the tropical warm
season over land, and (d) the tropical warm seon over oceam. Solid lines define the ±5 mm/hr
retrieval error linmts.
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Figure 11.5 - Radiative transfer model computations u" the 5.5 G"z vertical polarization
brightness temnperafture upwefling fromn a t oud over 1mazt -ontaiiiing (a) only liquid
hydrometeors, and (b) both liquid and ice hydrometeors. The Ont, vertical structure. in (a) is
designed to simuflatfe- stratiform piecipitation, whereas in (b) a conivecm. 'e. cloud is modeled. The
fiontpriifl-average rainfiall rate is plotted as R kinc~iOn of the footprint-average upwelling
brightnesstempe-ature. Solid fines are isoliries of cloud fraction within the radiometer footprint,
wvhich run in the equence .25, 50, .71, at 11.0 from left to right in the Plots. rýod line-

re isoines o in,--

i o oud rcifalll rate which runs in the sequence 4, 8, 12, , 2J, ae .4 rr
from bo1tom to top in thr. pias Model computations am." provided by Kurz meraw po81
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A physical reason for the rainfall rate-depxndent bias can be understood using model
simulations of the brightness temperature upwelling from precipitating clouds. In Figure 11.5

* are plotted model simu!ations ot the 85.5 GHz vertically-polarized brigh tess temperature
"4P up.'veUing from precipitating clonds liver land. Separate simulations are performed for clouds

which fill different fractions of dhe rad, nmeter footprint. The clouds in Figure 11.5a contain only
liquid precipitation, in an attempt to simulate stratiform precipitation in which cloud updraft
speeds are relatively low. In the figure. the footprint-average rainfall rate is plotted as a function
of the footprint- average upwelling brightness temper. ture. Isolines of cloud fraction (solid) and
in-cloud rainfall rate (dashed) are also indicated. The clouds in Figure 11.5b contain both liquid
and ice precipitation sized particles in a vertical distribution consistent with the structure of
strongly convective clouds or thunderstorms. Figure 11.5 clearly indicates a nearly exponential
relationship between rainfall rate and upwelling brightness temperature. Model simulations of
upweling brightness temperatures over land at the other SSM/I channel frequencies and
polaiizations show a similar nonlinear relationship. Over ocean backgrounds, model simulations
indicate more complicated brightness temperature-rainfall rate relationships due to the generally
lower ocean emissivity and the effects of raindrop emission (see Kummerow [9]).

These simulations suggest that linear models are in most cases inadequate to describe the
relationship between brightness temperature and rain rate. kn exception was shown by Spencer
[10] to exist for convective precipitation over the ocean, where a linear combination of the
brightness temperatures in the vertically and . orizontally polarized 37 G(Hz channels of the
SMMR was found to be linearly related to area-average rainfall tate. However, in tropical
cyclones, where a mixture of convective and stratiform precipitation iq preqnnt, Olqnn [11 191 !

* demonstrated that rain retrievals using the 37 UJz data alone tended to overestimate the intensity
of lighter rainfall. Superior rain rate estimates were obtained when data from channels at the
lower SMMR frequencies (e.g. 18 GHz) were incorporated into a physical retrieval method.

In addition to the nonlinear relationship betwe ni rainfall rate and brightness temperature,
a comparison of the model curves in Figure 11.5 indicates that the type of precipitation
(stratiform or convective) also has a bearing on the microwave signature of rainfall. The lack
of ice in the stratiform cloud simulation caust: the brightness temperature to become relatively
insensitive to changes in the rainfall rate at rainfall rates greater than a few mm/hr. On the other
hand, scattering from increasing numbers of ice hydrometeors in the convective cloud causes the
brightness temperature to decrease with rain rate at higher rainfall rates. Clearly a mixture of
the two precipitation regimes could lead Wo difficulties in making rain estimates, unless
information from other channels is inc3rporated.

Two approaches are undertaken in an attempt to obtain impy wved regression models for
rainfall rate. First, the residuals in the linear regression analyses ,ire weighted to emphasize
errors at the higher rainfall rates. Weighting by an increasing function of the rainfall rate helps
to compensate for the skewed distribution of rainfall rates, which is dominated by low rain rates
(see Figure 11.2). Although the errors in regression estimates of rainfall rate in the range of low
rainfall rate tend to increase by this approach, they aie more likely to remain within the specified
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+5 mm/hr error limits because their magnitudes are initially small. Alernatively, improved rain
rate estimates are obtained at higher rainfall rav•s due to the weiglting.

The problems experienced with linear regression models can be partly overcome by
utilizing nonlinear predictors/predictands which imorn closely matcn the physical relationship
between brightness temperature ard rainfall rate. The simplest nonlinear algorithm to implement
operationally is

7

=exp a T.,) - Co (5)

where the rainfall rate is expressed as an exponential function of the seven SSM/I-measured
brightness temperatures 'Ti, with fitted constants a, and c. The coefficients ai are determined by
regressing In(R+c) against & i SSM/I brightness temperatures for different values of the constant
c. Experimentation with the sets of collocated SSM/I and radar data indicate that values of c
between 1 and 16 may be adequate for most climatic zones and seasons. The value of formula
(5) is that the nearly exponential dependence of rainfall rate on brightness temperur,,me is
established. The fitted coefficients ai allow for te variations in curvature of the brightness
temperature to rainfall rate relationship which may )e induced by varying cloud ice contents or
fractional footprint coverage.

Regressions of both R and ln(R+c) against SSM/I brightness temperature data were
peiformed in an attempt to find a general retrieval formula for rainfall rate. Re_,auiwe thO.c'libijon " of ti radars at DadiWHi wid Kwajakein was checked frequently as part of the Tropical
Rainfall Measuring Mission (TRMM) program (see Simpson, et al. [13]), only data from these
radars were utilized in the rain retrieval algorithm development. Collocated SSM/I and radar
data were separated into land and ocean samples using a bitmap, and all data within 69 km
(approximately one 19.35 GlIz footprint width) of coastlines were filtered. In addition, flooded
soil regions over land, determined by the McFarland and Neale (personal communications)
brightness temperature aiscriminant function, were filtered from the analysis. Residuals in the
regressions were weighted by a factor of R11 to compensate for the naturally skewed rainfall
distribution.

Statistics of the rainfall rate regression estimates over land and ocean are presented in
Tables 11.11 and 11.12, respectively. It may be noted from Table 11.11 that over land, either
the linear or exponential model estimates are substantially better than the D-Manix estimates.
The mean error of the linear regression estimates for rainfall rates greater than or equal to .5
mm/hr is 1.14 mm/hr, which is significantly less than the r- Matrix error standard deviation
(3.06 mm/hr). It would appear that the exponential models do not perform quite as well as the
linear regression models, based upon the statistics in Table 11.11. Correlations to the radar rain
rates are slightly lower, and error standard deviations are roughly the same. However, the
overall bias of the exponential model estimates is somewhat lower, and an application of the
exponential regression formulae tU diverse r~ii systems over the tropics and midlatitudes
indicated genetally superior performance with respect to linear ndels. The exponential models
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TABLE 11.11 r-

REGRESSION •.'ODEL STAT)STICS BASED UPON THE TROPICAL WARM

SEASON DATA OVER LAND

CASE n R,. ___ b go rS

D-Matrix:

0.0-!R, RL:525 mm/hr 120 .916 1.19 .301 1.88 .526 .139
0.5tR, RLii25 mm/hr 37 1.74 1.46 2.07 3.06 .400 .359

Linear Regression:
0.0!R, RLg25 mm/hr 120 .916 1.19 .373 1.04 .594 .043
0.5!5R, RL925 mm/hr 37 1.74 1.46 .185 1.14 .674 .050

Log regression (c= 16.0):
0.0-R, RLt25 mm/hr 120 .916 1.19 .339 1.03 .575 .042
0.5:sR, RL:525 mm/hr 37 1.74 1.46 .063 1.16 .630 .052

Log regression (c=8.0):
0.0-oR, RL!r25 mm/hr 120 .916 1.19 .304 1.02 .578 .041
0 Z• RL,.5 mmihr 1 I 1.14 1:,_ . I 6 I .6AI Aw .052

. Log regression (c-4.0):
0.0rR, RLU25 mm/hr 120 M916 1.19 .246 .996 .581 .039
0.5:R, RL:<25 mm/hr 37 1.74 1.46 -.058 1.16 .629 .052

Log regression (c-2.0):
0.0-.R, RLt25 mm/hr 120 .916 1.19 .205 .983 .586 .038
0.5!R, RL!-25 mm/hr 37 1.14 1.46 -. 112 1.16 .627 .052

The residuals in all regressions were weighted by the quare root of the minfall rate. The number of
collocated SSM/1 and radar obsrvations in the sample (n), the mam dar-derived rainfall rate (R.) and
standard deviation (ora) of the sample, the bias (b) and erro standard deviation (cr) of the rain rate estimate,
the correlation cofficiet (r) betwae the radar and SSM/1-devived rain rates, and the success ratio (S) for
each case are listed above. R.. a, b, and a. are given in units of mm/hr. The models ae categorized as
linear models, which include the D-Matrix vlgorithm, mad expoential models, in which ln(R+c) is
regressed against th S3M/I brightness tempertgures. Stati3tics are T atified by an imposed minimun on
the D-Marix (RL) and radar-derived (R) rainfall rates. A sample minimum of 0.5 mm/hr emphasizes the
eros at higher rainfall rates. To maintain comnistency with the D-Matrix estimates, a lower bound of 0
am/nhr was ioposed upon the regression estimates.
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TABLE 11. 12

REGRESSION MODEL STATISTICS BASED UPON THE TROPICAL WARM SEASON DATA OVER
OCEAN

CASE n a i t b .r S

D-Matrix:

0.0-R5, RO:925 mm/hr 1361 .429 .892 .642 1.78 .630 .126
0.5-R, RO!25 mm/hr 241 1.73 1.42 3.17 3.56 .224 .015

Linear Regression:
0. )<R, RO:25 smm/3r 1351 .428 .892 .161 .618 .761 .015
0.- -R, ROt-25 mm/hr 241 1.73 1.42 .258 1.21 .558 .056

Log xegression (c- 16.0): 1

0.C!R, ROr25 mm/hr 1361 .428 .892 .155 .602 .768 .014
0.5!5R, RO<25 mm/hr 241 1.73 f.42 .214 1.20 .559 .055

Log regression (c= 8.0): 1 -1-
0.0 .•.--, R , O ýg25 mmZhlr 1361 .428 .892 .126 .586 .772 .014
0.5R, ROs25 -mm/hr 241 1.73 1.42 .149 1.19 .557 .054.Log regression (c---4.0,1:
0.0!R, RO:25S mm/hr 1361 .428 .892 .123 .580 .775 .013
0.5!R, RO.25 mm/hr 241 1.73 1.42 .124 1,19 .551 .054

Log regression (c=2.0):
0.0•;R, RO<25 mm/hr 1361 .428 .892 .106 .572 .778 .013
0.59R, RO<25 mm/hr 241 1.73 1.42 .073 1.20 .541 .055

The residuals in all regressiorts wem weighted by the square root of the rainfall rate. Th number of
collocated SSMII and radar observations in the sample (n), the mean rmdar-derived rainfall rate (R,) and
standard deviation (arj) of the sample, the bias (b) nd error sta•dard deviation (or.) of the rain -= estimate,
A& corelation coefficient (r) between the radar and SSM/J-derived rain rates, awd the wc4 j (S) for
each case are biled above. R., ora, b, and cr. are given in units of mm/hr. The models aruz.*orized as
linear models, which include the D-Matrix algorithm, and exponential models, in which fn(R+c) is
regressed against the •SM/I brightness temperatures. Statistics are sLratified by an imposed minimum on
the D-Matrix (RO) and tsar-derived (R) rainfall rates. A sample minim.un of 0.5 wnx/hr emphasize the
errors at higher rainfal rates. To maintain consistency with the D-Matrix estimates, a lower bound of 0
mm/hr was imposed upon the reg xsion estimates.
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TABLE 11.12

REGRESSION MODEL STATISTICS BASED UPON THE TROPICAL WARM SEASON DATA OVER
OCEAN

CASE n Rali b . r S

D-Matrix:

0.0:5R, RO!g25 mm/hr 1361 .429 .892 .642 1.78 .630 .126
0.5!R, RO:925 mm/hr 241 !.73 1.42 3.17 3.56 .224 .015

Unear Regession:
0.OR, RO:25 mm/hr 1361 .428 .892 .161 .618 .761 .015
0.5:5R, RO~r25 mm/hr 241 1.73 1.42 .258 1.21 .558 .056

Log regression (c= 16.0):

0.0:!R, RO!g25mim/hr 1361 .4-78 .892 .155 .602 .768 .014
0.5-R, RO:7.25 mm/hr 241 1.7: 1.42 .214 1.20 .559 .055

0.0:R, RO~r25 mm tr 1361 .428 .892 .126 .586 .772 .014
0.5CR, RO;25 mm/br 241 1.73 1.42 .149 1.19 .557 .054

Log regression (c=4.0):
0.0t-R, RO525 mm/hr 1361 .428 .892 .123 .580 .775 .013
0.5•rR, RO-525 mm/hr 241 1.73 1.42 .124 1.19 .:551 .054

Log regression (c= 2.0):
0.0<R, RO~s25 mm/hr 1361 .428 .892 .106 .572 .778 .013
0.5:rR, RO:!25 mm/hr 241 1.73 1.42 .073 1.20 .541 .055

Tw -esiduals in all regressions were ýigoted by the square root of the rainfall rate. n,• number of
colcated SSMII and radar observa 4.ns in the sample (n), the mean radar-din ed rAinfall rat (R) and
standard deviation (o,) of the sample, the bins (b) and error standard deviation ,%) of the rain rate eatimate,
the correlation coefficient (r) between the radar and SSM/J-derived rain rates, and the mtcoess ratio (S) for
each case are listed above. R., r,, b, and r are given in units of mm/hr. Tho mwde.ls are categorized as
linear models, which include the D-Matrix a orithm, and exponential 'Models, in which In(R+e) is
regressed against the SSM/1 brightness teirperatures. Statistics arm stratified by an imposed minimnun on
the D-Matrix (RO) and radar-derived (R) rainfall rates. A sample minimum of 0.5 imJ/hr emphasizes the
errors at higher rainfall rate. To maintain consistency with the D-Matrix estimazs, a lower bound of 0
mm/hr was imposed upon the regression estimates.
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TABLE 11.13

REGUBSSION MODEL STATISTICS BASED UPON TIlE TROPICAL WAIRI SEASON DATA OVER
LAND, WrTHOUT THE 85.5 0HZ DATA

CASE n It. d b r S
D M~zix: 1 .3

0.0!R, RL:VS mm/hr 120 .916 1.19 .301 1.88 .526 .139
0.5!R, RL!2S Mm/hr 37 1.74 1.46 Z27 3.06 .400 .359

Linear Regrewmo
w/o 85a HZ do
0.0!9R, RL25 W=um/Jr 120 .916 1.19 .373 1.04 .9 .03
0.5!R, RL25 mm/hr 37 1.74 1.46 .185 1.14 .674 OSD

I I

w1o 85 0Hz data:, 0.0rR, RL:25 mm/hr 120 .916 1.19 .149 .922 .643 .034
0.5:5R, RL:925 mm/hr 37 1.74 1.46 -.062 1.13 .687 .049

The residuals in all regressima won weightad by the • •uav root of the rainfal lte. tra h number of
colocated SSMII and radar observa.ions in the sample (n), ft men rada•-drived minfl rate U( &nd
standard deviation (o,) of the sample, the bias (b) and erer sa~ndard deviation (a.) of? the rain rate estimate,
the correlation coefficimt (r) bevween dte radar nmd SSM/1-dwived rain rues, and the meccm ratio (S) for
each caw are listed above. RL,, ft, b, and or an given in unita of an/hr'. The models are categorized ao
linear mudels, whicb include tk D-Matix algorithm, and eaqwnestial model, in which tn(R+c) is
nrgressd agaipt the SSM/I brigbtbm teomieratures. Statimics ar stratied by an ium d nininmtm on
th D-Matjx (L) and radar-deri-md (A) r rat. A sawple minimum of 0.5 mm1hr emphasizes te
a•rms at higher rainfall natm. To maintain mmesistoncy with the D-Untrix estintes, a lower boumd of 0
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TABLE 11. 14

REGRE.SION MODEL STATISTICS BASED UPON THE TROPICAL WARM SEASON DATA OVER
OCEAN, WIWOUT THE 85.5 GHz DATA

CASE n R. OR b ,r S

D-Matrix:

0.0:5R, RO::25 mmi/hr 1361 .429 .892 .642 1.78 .630 .126
0.55R, RO125 mm/hr 241 1.73 1.42 3.17 3.56 .Z74 .486

Linear Regrasion
w/o P- GIz data:
O.O.;R, RO:525 mm/hr 1361 .428 .892 .206 .658 .735 .017
0.5:zR, RO925 mm/hr 241 1.73 1.42 .278 1.21 .558 .056

Log regression (c=2.0)
w/o 85 GHz data:, 0.0-a, RO:925 mm/hr 1361 .423 .892 .134 .593 .762 .014
0.5_-R, RO!25 mm/hr 241 1.73 1.42 .057 1.17 .569 .053

The residuals in all regressions were weighted by d&a square root of the rainfall rae Thow , U
collocated SSM/I and radar observatics in the sample (n), the mean madar-derived rainfall rate (Ij and
standard deviation (aa) of the sample, the bias (b) and error standard deviation (a.) of the rain rate estimate.
the correlation coefficient (r) between the radiu and SSM/I-detived rain rates, and the mwccw ratio (S) for
each case are listed above. R., ara, b, and o. are vwen in units of mm/hr. ite models awe categori2d an
linaer models, which include the D-Matrix algorithm, and exponential models, in which en(1R+c) is
regressed against the SSM/I brightness temperatres. Statistics are stratified by an impoed minimum on
the D-Matiix (RO) and radar-derived (R) ranfadl rites. A sample minimum of 0.5 mwJhr enmphaim the
errors at higher rainfall rates. To maintain consistecy with the D-Matrix estimates, a lower bound of 0
mm/hr ws inpo)d upon the regression estimates.
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worked baettr because. the 85.5 0Hz SSMI1 brightness temperature d; -a, which provide greatei
signal at lowzr rainfall rates, were .qclecied in the stepwise regression procedure. The 85.5 G1Hz. data were not -&Cle--tcd in the iinear regression over land.

Plots of the 1)-Matrix estimates and the exponential model estimatem (c= 8.0 mmfhr)
vrersus radar derived rainfall rae ame presented in Figures 11.6a and 11.6c, irespec~tively.
Although rainfall rates gieater tl~an 5 mmn/hr tend to be underestimated by the exponential model,
the majority of rain estimates air. within ±2 mm/hr of the Waar rainfall rates. The exponential
model estimates compare favorably with the D-Matxix estimates, which are generally high biased.

Linear regression estimates of rain rates over the ocean also show an improvement over
the D-Matrix estimates (Table 11.12). Errors with respect to radar rainfall rates are reduced
significantly (3.56 mm/hr to 1.21 mm/hr fo., rainfall rates ;? .5 mmlhr), and correlations
increase dramatically. A maximum correlation of .761 is achieved over the entire data sample.

Rainfall irate estimates obtained from the exponential models air, slightly more accuirate
than the linear regression estimates, and the bias in the exponential model estimates is generally
reduced. A minimum error standard deviation of 1.19 mm/hr is achieved by the exponential
mnodel with c=8.0 mm/hr for radar rainfall rates greater than. or equal to .5 mm/hr. Plots; of the
D-Matrix and exponential model (c=8.0) mm/hr) rain rate estimates versus Lhe radar derived rain
rates over ocean are presented in Figures 11.6b and 11.6d. As noted earlier in the regression
analyses over land (Figurn 1 1.6c). the ocean regression estimates tend to be low at rainfal rates
vre~itrr than S rml/hr hnt the. niiinritv nf Pqfim2terq &Hl within 4-? mmlhr nf the w-ridr r2in ritet

Lni contrast, the D-Matrix rain rate estimates are generally high biavsed aid show much greater
deviation from the radar rair rates.

Due. to the recent degradation of the SSM/'I 85.5 G~z channels on the D-MSP-F8, the
regression analyses were repeated with the 85.5 GHz brightness temperature data in both
polarizations removed. Selected statistics from these analyses for land and oce&an backgrounds
are presented in Tables 11. 13 a-rd 11. 14, respectively. One may recall that over land, the 85. 5
GHz data were not -selected in the linear regression analysis by the ste-pwise procedure; therefc-re
the statistics of the linear models in Tables 11. 11 and 11. 13 are identical.-

It is curious to note that the most accurate exponential model (c-- 1.0 mrn/hr) appears to
outperform all other models when the 85.5 G~z data are removed. This result is an artifaci of
the stepwise procedure. Since the 85.5 GHz data are generally most highly correlated with
rainfall rate, these data were selected first in the all-channel regressions; the parti~l coffelation=
of data from the remaining channels did not warrant substitution of the 85.5 GH data with data
from the lower-firequency channels. How,.sver, with the 85.5 0HYz brightness temperature data
removed, a different combination of channcls was selecitid which yielded regression estimates
with a somewhat higher correlation to the r~idar rain rates. The relatively sm-all sample of
vAlidation data over land may have conitributed to some wnbiguity in the selection of an optimal
regression model.
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Figure 11.6 - D-Maflix and regresson es•timdtes of rainfall rate versus radar ilerived rainfalJ rate
from th~e tropics. D-Matrix rain rate estimates aver lanat and ocean are plotted m (a) and (b),
repetvely. Logarithmic regression es'tirat, s over iazhd and oce.an (c=-8.O rnmlhr) are plotted
in panels (c) and (dl), respetively. The regres.,ion formulae were based upon coliocated SSM/I
brightness temperatures rind i-,cdar-derived rainfidi., rates obtained from the Darwin and Kwajal.in
validation si~es. Solid lines define the +5 mmi/l" rettieval error' limi~ts.
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Application of we regression models to SSM/I observations of diverse rain systems in the
tropics and midlatitudes revealed that the formulae which did not incorporate the 85.5 GHz data
tended to underestimate light rains over land. This is because the signa om light rainfall is -
rel. tively small in the lower-frequency SSM/I data, and this smaller signal is obscured by •
variations in surf-ace emission.

Regressions over the ocean which did not include the 85.5 GHz SSM/I brightness
temperatures yielded rain rate estimates which were about as accurate as those which included
the 85.5 GHz data (see Tables 11.12 and 11.14). Only small differences in retrieved rain
distributions were noted upon application of both formulae to SSM/I observations of several
storms. Of the regression models which did not include the 85.5 GHz data, the exponential
model with c=2.0 mm/hr produced optimal rain rate estimates over the ocean.

11.6 RECOMMENDATIONS

The regression analyses performed in the last section provided simple formulae which nmy
be utilized to improve the retrieval of rainfall rates over land and or-an w!.hin the framework
of the SSM/I operational retrieval software. It should be noted tbiat although the regression
formulae determined in Section 11.5 .were based upon tropical radar data, application of these
formulae to midlaeftude rain systems yielded rain rate estimates which were climatologihally
realistic and consistent with availab!e radar.

The statistics and independent appiieation of the regression formulae suggest that if the
85.5 GHz SSM/I ciata are available, then the exponential models with c=8.0 mm/hr provide the
best estimates of rainfall rate over land and ocean. Similar testing revealed that the exponential
models with c= 1.0 mm/hr over land and c-2.0 rrim/hr over to.ean yielded optimal results if the
85.5 GHz data were not avai.lable. These formulae would be applied if the screening logic
described below is satisfied.

The screening logic utilizes the Hughes' negative polarization test for bad data. After
passing this test, if the all-chamnel SSM/I brightness temperature scene is over land, then the
McFarland and Neale screening logic is applied. If the brightness temperature scene is over the
ocean, then a discriminant function developed by the authors is applied to eliminate false rain
signatures near coasts. Coastal pixels are not proctssed.

SUMMARY:

The following is the recommended rain retrieval algorithm, including screening joiic t,
test tbr the presence of rain.

I I I I



SCREENING LOGIC:

If the 85 GHz channels are available then

If Tav - Tgl < -2 K or
Tmww - Tr37 < -2 K or
TBjwv - TD < -2 K, then flag as indeterminate

Fse if SSM/I measurement is over land, then

If Twa, - T 19v < 4 K and
(frjqgv + Tir ,)/2 - (T1,19 + Tram)/2 !5 4 K and

Tasv- Tam < -I K and
Tlslt > 268 K

-.r

If Tv - T91,v ! 4 K and
(Trgv + Twnn)/2 - (T,,. + T-)I/2 > 4 K and
Tw~v- TBjgv < -3 K and
Tmsv - -'ucnv < -5 K and

P . AITrLJ -
W5H MX V17 . A Ahl .4~

T 3 w > 268 K, then compute rain rate over land,

Else rain rate = 0 mm/hr.

Else if SSM/A measurement is over the ocean, then

If -11.7939 - .02727 Twr,, + .09920 Twm > 0 K, then
compute rain rate ow -ocean,

.Plre rain rate = 0 mm/hr.

Eils SSM/I ma.surem;-nt is coastal; flag as indeterminate.

lVAse the 9, -fHz cha-tieI,; am not available then

ff 'Iur,,7, "'rz,.*-, - K or

T , jq.-- < -2 K, thtin flag as indet rminate

Ul-3 if SSM/I ntmisure-ment is over land, then

[1,111.-V - TDOgV • 4 K and
('',,. + Tmu-l)/2 - (Tmo~ + Tg3 j)/2 ,5 4 'k and
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Twv- T3jq, -6.4 K and 4
•i• +gv > 268 K -

or

If TE -TRIP", -5 4 K and

CMMv + T,,V)/2 - C''B19H + Tw)!2 > 4 K and
Twv- Tangy < -6.4 K and
TB-,w > 268 K, then compute rwin rate over land,

Else rain rate = 0 mm/hr.

Else if SSM/I measarement is over tie ocean, then

If -11.739 - .02727 Ts3,-v + .09920 T07H > 0 K, then
compute rain rate. over ocean,

Else rain rate = 0 mrm/hr.

Else SSM/I measureme t is cmisw; flag as indeterminate.

RECOMM•NDED ALGORITHMS:

49 If a rainfall rate over land is to be computed, then use

R = exp(3.29716 - 01290 T38v + .00877 TNsH) - 8.0 mm/hr.

If a rainfall rate over the ocean is to be computed, then use

R = exp(3.06231 - .0056036 Twv +.0029478 T. - .0018119 T-T
- .00750 Ttv. + .0097550 TB5 ,v) - !.0 mi/hr.

Alternatively, if the 85.5 GHz channel data are unusablethen over land al ly

R = exp(-17.7689 - .09612 Tap, + .15678 Till") - 1.0 mmihr,

and over the ocean use

R = exp(5.10196 - .0537; Tg7 + .A2766 Traw + .01373 T1119,) - 2.0 mm/hr.

If any of these formulae yield a rainfa-l1 rate less than zero, then set the rain rate equal to 0
rnm!hr.
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11.7 APPLICATION OF THE ALTEINATE ALGORITHIM rO TROPICAl CYCLONE
DATA

The suggested retrieval formulae presented in Section 11.6 are applied to SSMfI data from
an overpass of Hurricane Florence at 00:2 GMOW on September 10, 1988.

Hurricane 'Plorence originated in a stagnant frontal zone over the south central Gulf of
Mexico and begai . to move northward and strengthen on September 9th. A middle-tropospheric
trough to the west interacted with the vortex to stimulate strong convection over the center and
an area of midlevel subsidence and drying to the west.

Just prior to the SSMiI overpass (00:01 GMT) Florence reached its peak intensity, with
a minimum pressure of 982 v'b and maximum winds of 35 m/s. The low level center was
located just off of the M;.iý, ;ippi delta. Th7,, 6.7 micron water vapor imagery from GOES (not
show*a, indica x ao ittuix of dry air i;.to the ciriulation fiom the southwest. As a result, the
convection .3.c. by the imagery of Figure.. i.7 was weak and poorly organized, and had
been der'.iayi:g even before iandfi01.

Fore-lc&'s d•irupted corvection and steady forward motion at 6 m/s kept rainfall totals
relative'? snijall. Twenty-four hour amounts along tFhe Uack ranged from 35 to 105 mm, and
sim'l. anot • s fe!& in a se,.condary convective area over the Flor;%'a panhandle, wel! to the east
S ........... ..... Ifh-e-'--yrc-;1ion also Spawned Q toi-g,adtem, and tie rains, although not
extraordiŽzry ibr a tropical cyclone, added t, the alrea •y swollen rivers to produce the worst
floo&.,' ihi ten yw...r On the two Florida janhandle iivers. Damage in Louisiana wa': confined to
be, -h erosion and wind damage to tree- and power lines.

The 85.5 GHZ. horizontal and 19.35 G(Hz vertical channel SSM/I data, which are utilizi I
in the altemmze retrieval algerithms, are presentWd in Figure 11.7a and b, respectively. Warm
.cob.- ih;dicat- areas of hi,".d .icrowave brightness tenperature, whereas cooler colors correspond
io areas of lower brighine-s temperature. Signatures of precipitation are identified as depressions
i', the 85.5 GIP horizontally-polarized brightness temperatures (Figure 11 .7a).

Over land the signal from precipitation is much smaller in the 19.35 GHz vertically-
polarized channel. Thii s paT"y •hue to the !act that microwave scattering by raindrops is much
ww- ker at 19.35 GHz, whiie the a to)rption/re-emision signature of cain does not contrast greatly
Vith ernission by the laud background. The relatively low spatial re-solution of the 19.35 GHz-
channels also cxntnhutei to red&ced rain response. Fowevt *, since, the ocean emits at a
relatively low brightness compared to emission by rain -t 19.35 61Hz, the 19.35 vertical chainel
provides rain informiaon fbr oceanic rain retrievals. The small band of precipitation about 500
km sottheast of New 0Xleais is identifiei as a region of mci-.'., nicrowave brightness in
Y'latUon to the low c°a•.ivi.y •,'n background hi I ! i.7b.

Th,.iatk aý,; al.,itdin retriev,, -r'ifil, -aters h I loievce is presented in Figure 11.7c,
qri',.',: ,.itliir ;1" %iit 25 kr. of the cz ,st were. Woi-trý.d iweikumw th,," xadiometer measurements
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in the immediate vicinity of the coast contained signifi ant contribtiaomw rorn 'fh landf.
cce~tr backgrounds. Thie rain retrievals may be compared o the radar-derive- -ain -ies obta.ned
from the NWIS WSR-57 station at Slidell, Louisiana in l~iguire 1 1.7d. The iar rý ;nfall ra(c-s

40were corrected for range-dependent biases using a method suggested by 1B1acr `14]. ~3oth til&
retrieved and radar-derived rain rate images utilize the same color enhancement. -- rple indicatus
the 1 mm/hr rain rate threshold !evel. The color sequence from purple to red, orange, and
yellow correspornd to I mm/hr steps in the rain rate threshold. Regions whc-e the rain rate
excev'y1s 5 mm/hr are colored white. It should also be noted that the SSM/i estimates are
ao-raged rain rates over 625 km2 areas, whereas the radar-derived values are roughly 4 kin'
a%, -ges.

'-;gure 1 1-7c and d indicate a good spatial correlation between SSM/I retrieved rainfall
rates and -adar-derived rain rates within the observing range of the radar. The reli ieval.
algorithm ap-pears to overestimate rain rates just east of the Mississippi delta, while rain rates arc
minderestimna Ad in southwestern Alabama. Overall the SSM/I rain rate estimates are reasonable
in cornparis, n with the radar, if one takes into account the spatial averauging effect of the
radiomneter.

'he SSM/I raini rate estimates -rom the current alternate algorithm show a much better
co;rxespondence to the radar-derived rain rate-s. than the previous "m-idlatitude" algorithm described
-1 Volume 1. of the Final Report (see Figure 1.20ck on page 1-38). The improved performance

of the current algorithm is attributed to the superior calibration of the Darwin and Kwajalein
radars, upon whicb the algorithm is based.

. 11.8 COtNCLUSION

Evaluations of the U-Matrix retrieval algorithm indicate Inat specified accuracies for
derived rainfall1 rates a-e not being met over land at -nidlatitudes. Imnprovements in the algorithm
based upon empirical relationships to the "ground truth" data set increase the accuracy of
etrieved rainfall rates to within the. requirement for both land and ocean situtations. Application

of the Improved algorithm to tropical cyclone data yields rainfall rate -,stimates which ire in
reasonable agreement with coastal radar data.
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12.0 CLOUD AMOUNT VALID TION

12.1 CLOUD AMOUNT ALGORITHMS

The Hughes Aircraft Company developed two algorithms for estimating cloud amounts
(percent cloud coverage) from SSMAI brightness temperatures. One is applicable over land
backgrounds, the other over snow. Hughes has not been tasked to develop a cloud amouhit
esti.nation algorithm for ocean backgrounds. In the initial formulation of the cloud amount
a -orithms, it was recognized that polariza:ion characteristics at 85 GHz (i.e, vertical brightness
temperature nminus horizontal brightness temp rature) should provide much of the information.
Simulated values of 85 GHz polarization for a variety of land and snow background conditions
for clear and cloudy cases were calculated. For a given background condition, a smaller 85
GHz polarization value was associated with a cloudy atmosphere than with a clear atmosphere
[1]. It was desired to retrieve information on the cloud coverage from the SSM/I as near as
possible to the resolution of the aporoximately 45 km x 45 km area used by the Air Force
Global Weather Central's (A!NGWC) teal-Timc Nephanalysis (RTNEPH) automnated global cloud
analysis. So it was decided to base each individual estimate of cloud amount on a 3 x 3 array
of adjacent 85 GHz samples with an all-channel scene at its center. Figure 12.1 shows this array
of 85 GITz footprints. The array is framed by a 39 km (along scan) x 41 km (across scan)
rectangle. One 37 GHz footprint is also inside this rectangle. Each 85 GHz footprint is 14 km
(along scan) x 16 km (across scan) and the 37 JHz footprint is 29 km (along scan) x 36 km
(across scan). Further analysis also indicated a cloud signature in the 37 GHz brightness

*n~nar ~.c.. -n I ... A -A rn n, rn. Ar, '.nlrw nAo

In the final developmental phase of the cloud amount algorithms, for both land and snow
backgrounds, simulated 37 and 85 GHz (vertical and horizontal polarizations) brightness
temperature valu-ts for clear and overcast conditions were calculated by Hughes Aircraft
C impany [2] usin- the Air Force Geophysics Laboratory's RADTRAN atmospheric transmission
model [3). For snow backgrounds, its depth was varied between 4 and 20 cm in increments of
2 cm. Su. face ;missivity for each snow depth value was calculated using the dry snow model
of Ulaby and Stiles [4]. For land backgrounds, soil moisture was varied using values of 3, 5,
12, and 20 percent. Surface emissivity for each value of soil moisture was calculated using
Fresnel equations modified by the Choudhury et al. [5] correction factor of 0.6 to take into
account surface roughness effects.

Intex-polat, . values of 37 and 85 GHz simulated brightness temperatures were combined
for each of the two surface bacL'ground.., i.sing a random number generator to create clear fields
of view (all P±ine F" GHz footprints cL.ar - 0 percent clot-d cover), on. 85 GI1z footprint
overcast (wiy one of the nine - 11.1 percent cloud cover), etc. fltrough all nine 85 GHz
footprints overcast (100 percent cloud cover). Regre.&sion coefficients were then calculated from
the simulation resulLs (2]. For snow backgrounds, a four-step Iegressio i produced a percent
.;loud amount estimation equation that accounts for 95.9 percent of the modeled variance. An
error a'ialysis of this estimation equation determined an rms error of the estimated percent cloud
amount of 3.2 percent. While for land backgrounds, a four stet, regression produced a percent
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cloud amount estimation equation that accounts for T7.9 percent of the modeled variance. An
error analysis of this estim3tion equation determined an rms error of the estimated cloud amount
of 7.8 percent.

The final operational version of the two cloud amount algorithms developed by HIughes

Aircraft Company [6, 71 are:

CAS = co + (c,xT, ) + (c2xTr-n) + (cox-Trt) + (c~xE!T) (12.1)

where CAS is the percent cloud amount over snow; T'7v and TnH are the 37 GHz brightness
temper-tuwes - vertical and horizontal polarizations respectively; rFTs% and LET1s are the sum
of the nine 85 GHz brightness temperatures - vertical and horizontal polarizations respectively,
at an all-channel scene and its eight surrounding 85 OHz scenes. The coefficients are co
-189.5000, c, = -0.9710, c2 = 0.7400, c3 = -0.1987, c4 =- 0.3678.

CAL = cO + (cIxT 371 ) + (c>2xL"T7v) + (C3x•!TS54) (12.2)

where CAL is the percent cloud amount over land. The coefficients for the land equation are:
co = -638.9000, c, = -1.7050, c- = -0.2868, cý = 0.7457.

Note that the vertically polarized 37 0Hz brightness temperature is not used in the cloud
amount over land equation. This was the final brightness temperature in the four-step regression

, estimation accuracy [2].

It is possible for either of the two cloud amount equations to produce rest Ls that are
physically mewaingless. To account for this, an "out-of-limits' flag is included in both
algorithms. Out-of-limits is arbitrarily assigned to cloud amount estimates less than -20% and
greater than 120%.

No cloud amount estimates are made for flooded or vegetative backgrounds. A dynamic
determinatioa of one of nine possible land types is made for each SSM/I data point tagged as
having a land background [1]. Simulations indicated that the SSM/I would be unable to detect
clouds over vegetated land because the high water content provides the same ý rpe of signature
as a cloud. Flooded lanri is treatod the same as an oceanic background. Since lo SSM/I cloud
amount algorithm for water bac-1gomunds was required, these scenes are ignor ed.

12.2 VALIDATION METHODOLOGY

Manual cloud ce.@-r estin-ates were used to validate the automated SSM[I algorithm
results. The manual analyses were perforcred oi 3 nmi •rsolutiun visible (0.5 to 1.0
micrometers) a;-. infrared (IR, W, to 13 naicrometers) ima',ery data obiained floro the
Operational Linescan S vstem (OLS) sensor which is on board the- same spacecraft as the SSMII
The re.;solhtion of the ULS i considerably becttcr than that of the SSM/W. 3 herefbre, the ability

O !2-3



of the OLS to reosolve clouds within the SSM/I footprints is excellent. Since the swath width of
the OIS is twice tha. of the SSM/I and the sensors are on the same satellFte, all SSM/I clhud

* amounts will have spatialhy coincident OLS cioud aniounts. However, there will be a small
temporal diffcr:-nce because the sensors have different scan geometries. The OLS scans in a
straight line perpendicvlar to the satellite subtrack, while the SSM/I scans aft of the satellite with
a constant angle of ',5 degrees between satellite nadir and the antenna bean. For a given SSM/I
scan, the OLS scan line that contains the center point of the SSM/I scan will be obtained 137
seconds prior to :he SSM/I scan, while the OLS scan line that contains the endpoints of the
SSM/I scan will be obtained 87 seconds p-or to the SSM/I scan.

The Air Force Interactive Mteteorological Systera (AIMS) at the Geophysics Laboratory
(GL) was used as the test bed for this validation study. AIMS is a distributed system of mini-
and micro-computers that was developed to support research in remote sensing at GL.
Functional capabilitics include the ability to receive, manage, store, display and interact with
meteorological observations, radar and satellite data. Two identical image processing work
stations are available on the system. (See reference [8] for a complete description of AIMS.)
To obtain cloud truth data sets, a formalized procedure has been developed that involves
interactive display and manipulation of the imagery on an AIMS image processing work station
[9]. To assist in image interpretation, interactive image processing techniques are used to
provide geometric and radiometric enhancements to the data and to provide for multispectral
display. For example, an interactive piecewise linear stretch algorithm produces a different
contrast enhancement ovcr a number of selected brightness ranges in a monochrome (single
channel) image by modifying the response of the display over each range An inp,,t dvc, . --

"O .. A. such a3 a inouse. v graphics tablet is used to select interactively each brightness range and
control the enhancement slope.

When performing a manual cloud analysis on OLS visible and infrared data, a number
of display options are available. The most useful is a multiple image display generated by
dividing the monitor into quadrants. Each quadrant can contain a sep. krate monochrome or
multispectral OLS image, each with a different enhancement. The OLS images have not bNeI
remapped; they are displayed ini their original scan format to make use of the full resolution of
the data. The analyst selects an area-of-interest on one target image to make a cloud boundary
determination. This can often be a very small sub-region of the imnage. An iterative threshold
blanking technique requires the analyst to select an intensity level that separates the clear and
cloud regions in the are-a of-interest. Regions below the threshold level are displayed as a color
shade while the area above is displayed as a gray shade. This makers the boundary distinct while
maintaining the detail below and above the threshold. The analyst then interactively raises or
towers the threshold until the proper level is obtained. The procedure is repeated until the entire
target image has been classified. Two products are generated from this procedure, the first is
a grayshad- image that retains the origin.al image characteristics above the cloud thrzsh'ld and
is black below, and the second is a l'inary image that simply delineates the cloud bomndary from
clear background. The first is used during the interactive threshold blanving proc.ss for visaal
comparison against reference iukages. The second is used for comparison with 'SM/I algorithm
results. Software was written to dotermine automatically the points in the C cS binary cloud
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truth digital imagery data base c onrsponding to each area for which a single SSM/I cloud
* amount value is generated. Tb: . software also calculates the corresponding OLS cloud amounts ,

by -umming up the number oi cloudy OLS pixels and dividing by the total number of OLS
pixels within each SSMII cloud amount area.

12.3 CA"Z- STUDY Lf-SCR1PTIONS

Four case study scenes were selected for the cloud amount algorithm validation study.
The scenes zontain several different cloud conditiors and surface background types. For each
case, the OLS data wete first eaTth located and a binary synthetic image containing cloud truth
information was generated using the tchniques desibed in the. previous section; then the SSM/I
and OLS cloud amounts were compared.

Case I - Southern Africa: SSMII and OLS data were colecttd for tne late afternoon
DMSP pass (satellite is descending) on 14 January 1988 over the southern part of Africa.
Figure 12.2 depicts the are., of coverage. his area includes dteset, wet lands, cultivated
regions, and forests. The OLS visible (Figure 12.3) awd infrared (Figure 12.4) images show
oubstantial ,areas of cumulus clouds. The OLS inigery data were maaually analyzed using the
interactive techniques described in the previous seclion to &:otain a synthetic, binary image of
the cloud cover (Figure 12.5). This was cnmpared to the SSMII algorithm results (Figure 17.6).
These results will be discussed in detail in Section 12.4.

4-V ' -1 "en11a -- state.-: rh ne useei tne tata. !CLnumte mrj uniny~~'
on 14 January i988 ascending over the central U.S. from coastal Gulf .f Mexicot up thre igh
Minnesota and the Dakotris iato southern Cawida. The norta-era quarter of the imzge was snow
covered. The predominant cloud types were stratis ;'nd stratoclmumius. The OLS visible
imagery &ata were not usable in the manual cloud tuth analysis because of the law light level
in this scene during the early morning ,atellite crossing time.

'Case 3 - Eastetn United States: The data for this case is ".orm Phe morning DMSP pa Is
on 14 March 1988 ascending over the, eastern third of the V.S. from Florida across f)
southeast=.r siames up ove: th-i Great Lakes into ioathcrn Canada. Tie Dredominant clouds Lrc.
stratu. a-d stratocumulus which axe asaociawd with an upper !v',el atorm centered over southern
Lakz Huron. The northern part of the .xen, is snow woverem and is -qropx' c-Jy iO% of the
total area of the see--,-. The OLS visible, icaigery data were uf lVfmitc-* use in the nmanual lJond
rLith analysis because of Light leveis beirrg k.,) low for a shar) image.

,.ase 4 - North West South Arm:,nua: The &lau for this cast we•- ýOAbed fLon tdie same
',4-s as Case 3 but during ai carher time frame when d•e asccadi&% satellite was still
,be equator This scene camtafis northern Peru, IEZ:uadcr, Cel.imbft, and Cen, I
"Mhe donunant cloud fRutitr: is a mas.stve MCC. Ce-0ealc (ka. T'!Itive CoMpleA) 0

mo:- ,zuador. The main types of ixnd 3t ffi"e ••..,.. am z•iri forests aad mountains.
For this case., the ligi't levels were high enough for the OS visible data to b, wscful in the
manual cloud truth "anatysis.

12-5



.. . .. . .. .. ..-. . . . . . . . . . .. . . . . . . . . .

ILI

45 s
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Figure 12.3 OLS Visible l~nage for Case I
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Figure 1.2.5 Bijr~ary Synthetic clouuJ Cover Image Dev:ived
frow OLS visible an,: 1RI Imagery for Case 1
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12.4 CASE STUDY RI3SIJL1"S

The cloud am;,unt values calculated by the SSMI algorithms for the four case study
scents described in Sectdon 12.3 were siatistically compared to the cloud truth values ob'--ined
from Vhe manual interactive computer analysis of OLS data. The resuls are pxessented in /Lable -
112.1 i and , stratified for V.rd and snow backgrcwnds for each -2se. '"Tis i, 6one io assess the
pie;for,-nanct.e at' each of th.e two separate SSM/I cloud artrw.xt, aagsithi,.v one frr land
backgrounds and one for snow backgrounds. Recall SSI. 6 &ioad amomutun arlý not calculated
when the land background is vegetated or floo&dd. AIR-,, them r% mo lughes SSM(l cloud
amount algorithm for oceanic backgr ounds.

"table 12.i con-ins the mear, stanoird deviation about the mean, and the range

(mninimm ;aid maxi-munm) for both the $.&'NM and i.•e corresponding JLS derived cloud
amounts. N in this tabht is 'he numb or .3 SSM/T cloud ar•.•nWts in the allowed range of -20 to
120 per•rm•t. Values out.f-de this range are t'Ng•;ed as '"ou¶-o<-Mi-nits" and amr listed in the last
column c" the table. 'The root-mean-square differences (rms) and the linear correlation
coefficient (r) between the individual OS and SSM/l cloud amount values are also given. The

TABLE 12. 1

STATISTICAL COMPARISON OF SSM/L AND OLS TRUTH CLOUD AMOUNTS

Mea1 Min Max
CAsM Backgrcnmi CA u CA CA N RMS t  r Limiit

OLS 49.3 39.4 0 ;00
1 Land 4343 4 3 -.44 414

S'.• 43.5 16.5 -20 74

-1 1t 52,0 40.1 0 100
2 LAnd 226 72.7 .27 2947

M1 M -9.7 10.9 -20 55
O•-• 59.1 44.2 -0 100o

2 w j 1145 58.5 -.18 1
2 SSMI1 53.0 30.6 -16 120

OLS 38.9 43.0 0 100
3 !.and SS11 -4 1. 2 4 1053 65.5 -. 15 2038

iStO-. 1. -20 64 7 ± C 1
3 Snow 243 1-.3 .26 0

'SM,q M. q s4 I I.( U 114

, T,:.S71.3 1W{•I

4 ,(5 1100 1084 61.4 -1 138
.;hM L 7



rms value is a measure of the dunount of error between the individual SSM/I and corresponding
"truth" OLS cloud amount values. An rms value oi zero would mean that &mere is no r -ror (i.e.,

* all coresponding SSMII and O.,S cloud amounts are equal). The correlation c.fficient is a
measure of the linear relationship between a net of SSM/I and OLS cloud amotint distributions.

There are no snow covered land backgrounds for Case I (Southern iý frica). 11ir mean
OL.S and SSM/I cloud amounts awe clo.e, but the OLS standard deviation is twice i.s llage as
that of the SSMI[ and the maximum SSM/I value is considerably smaller than that of the OLS.
The large rms and negative correlation cefficicnt indicate that the SSMJI algorithm has serious
deficiencies.

There are both snow-free and snow-covered land backgrounds for Case 2 (Central United
Statews). For land backgrounds, the SSM/I mean and standard deviation awe much smaller than
the OLS values. The maximum SSM/I value is about half that of the OLS. The rms for land
backgrounds is quite large and the correlation coefficient is close to zero, indicating the two
results are uncorrelated. For snow backgrounds, the mean and standard deviations are
commarable. However, the rms value is large and r is close to zero which shows again there.
is very litde relationship between the OLS and SSM/I cloud amounts.

Case 3 (Eastern United States) like Case 2 has both snow-free and snow-covered land
backgrounds. The SSM/I mean and standard deviation are much smaller than those for the OLS
over land backiwrniinrIel nnd the maSrAVm SS•r - is --. -t-- li.. I. h .. h. n.. i (ii A__...~~~~~~ea; .. ... .. ,,,L*,+..-m .V *J.,• Lu LWU-UIMI U NbI l•I R. l OT 1 __ II _ _ A e

for land backgrounds, the rms is large and the correlation coefficient is close to zero. The
* SSMS! ad OLS mean and standard deviation are comparable for snow back-grounds, but the

minimum SSMII cloud amount is considerably larger than that of the OLS. Also, the rms value
is large and the r value is close. to zero.

There are no snow covered land backgrounds for Case 4 (North West South America).
The SSM/I mean and standard deviation values are much smaller than those for the OLS and the
maximum SSM/I value is two-thirds that of the OLS. The ms value is large Pod tb r value

0, cloe to zero.

The values of the root-mean-square differmce between he OLS and SSM/I cloud
aniounts for both land and snow backgrounds for all four cas is are hage. This indicates that
the cioud amount estimates calculated by both SSM/t algorithms are poor. Al! the values of the
lirjear correlatioa coefficiencs indicate that no significant linear relationship exists between the
SSMAI and OLS cloud amounts. For land backgrounds. the mean ,nd maximum OLS and SSMII
c.,o'd amounts show the SM/I values are consistently ,ow-:r than the OIS values. The number
of -_ases flagged as out-of-limits over land backgrounds for Cas-s 2 and - are very large. The
significancc of this is addressed in Section 12.6.



12.5 OTHER RESULTS

The frequevy distribution of SSMJI-de ;vcd ,.ioud amounL values wer. examined for
several orbits. Al; the distributions were fou-.1. w have similar c!haracteristies. Tabl 1,2.2
shows the distribution for revolution 655 which occur ed o~i 5 August 1987. The results in the
table are stratified into land and snow backgrounds ant shown are the total numbei of SSM/I
cloud amount values calculated and the percentage of the wtuui •mn6er that are witdin various
c:tegories. For both backgrounds, there are few cloud amotiat values greater than 40% awd
many cloud values tagged as "out-of-litrni ".

The 37 and 85 GHz brightness temperatures for all "out-of-limits" cases for revolution
655 were put into the SSMII cloud amount equations to deteirine the spcxific numericai values
generated by the algorithms. Table 12.3 shows the 'iotal number of land background
"out-of-limits" cases wkiou SSMII cloud amount values within various categories. It also shows
this information for snow backjrounds. For both backgroumds, all the values are negative,

TABLE 12.2

SSMII CLOUD AMOUt1 VALUES (REV. 655 - SAUG 1987)

S v.race= I N.-m4er Ct 0 Q 3Al I x %) II -
4 Type cases Limits

Land 29405353 14 0 33

Snow 3151 24 3 2 72

TABLE 12-3

OUT OF LIMITS VALUES (REV. 655 - 5 AUG 1987)

Sufface Number of < -100% -100 to -50 to -20% > 12:2%
Type: cases 50%

Land 9651 I 61 21 0

Snow 2269 C 35 65 0

S......... • ',,.'•," • •. • *x :- 1.1a •••I.•# K
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In Nz.cs.tion "1- .,,a gcM. Llt.-r of Colr.of--mi, t oud anl'lio valuc.'l over. lanld
backgrou,.I, sfox l&,ics 2 and 3 were vo . The 37 and 85 G(Tz brightness tempeiat.res for
ea44h of these tt:currences, when put into the, c•oud arrounr equation, produced a negatvecoud
aJnununt value. i- Section 12.5, there were many "out-of-liruitr'• cloud a.ir'Munt values over ,coth
lfad and snow -acLgrounds during revolution 655. Again Mc actual num., r,•ava2!nes produced
by the SSMII equations for all these "out-of-limits" ocrurrences were negati-e. Frm Fquations
12.1 and 12.2 (Gection 12.1), negative values occur when the 85 GL poir-ixatk value,;
actually observed are significantly iargcr than tho. predicted by th..- simulations. McFarland
1)0], in a Rimilex study of the SSM/I algorithm List., to determine spxific l•nd sarface ty/pes,
noted that he actual SSMiI polarization values at A9 ,d 37 GHz are ofen larger than the
simulatid values.

Based on the preflight simulations discussed in Section 12.1, the accuracy of th.he SlMiI
algorithmis were expected to be good. However, the statistical comparisons of OLS derived
"ui.th" cloud amounts to SSM/I cloud amounts for four cases containing a variety of cloud typxes
and land backgrounds (see Sectien 12.4) indicate that botdh algorithms have no skill at estmating
the conrect cloud amount.. Even if the SSMII algorithms had shown some skdll, their use would
have bI*ee limited because of the large percentage of "out-of-limiV values they generate.

The si-di correlation voefficients for all four cases indicate no relationship betwv.-n
SSMiI and OI.S cloud amount vm1hir" In xhow i.,..... .. nr4, jC -#.. :!..-. PC......S..... .. .. . ....... %I .aV '* LI,) Ulvid. .. av.tt•l ,)ll (•t)Ji

am-nount va.•es were either considerably larger or smaller than the ct-n'esponding 01S cloud
amount valvjes. For exant Je, compr the OLS cloud truth image (Figure 12.5) to ttc SS.II
cloud amount iiaage (Figure 12.6) over the l•ad areas tor Cas I (Southern Africa). In the
SSM/I image, the black tepresents "out-of-fimitsr val-ses, the dark gray repre.ents values Uf 0
to 40%, and the light gray represents values of 40 to 74%. Recaall 74% was tYe maximurn
SSM/1 value for this caw: (see Table i2. 1). The cloud coverage in the OLS cloud ' uith imnage
ranges from clear to overcavt; most of the clear to pantly cloudy auras do not match the dark
gray areas (0 to 40% cloud amounts) of the SSMIJ image; miost of the partly to mostly cioudy
areas do not match the light gray areas (40 to 74% cloud amnounts) of the SSFMA image'; and
there are no ovt=rcast aren•s in the SSM/l image.

Recall that loss of olka.riation at 85 6H-lz over land and snow backgraunds in the
presence of cloud was t-.C bvsis of the SSMII cloud a-moant algorithm. I .is ccric)uded Yrom the
preceding discussion that there is no disc.ernable cloud signature from 85 Gltz poIlaization
valoes over land and sxiow backgrourvis when no distinction is made betwecn the many differe'nt
types of .and and snow surfaces which ccur in natur.. Several fac~ov. probably contributrd to
the f6iurt:, of the technique, 'lie SSM/I cloud amyouni algorithm was based, entirely on siniulated
datz. T'is was necessa•y since no previous 5microsvsa'v, satellile sersor had rncasu•xt madiation
at frequencies as high as 1he hi GHz chamnc! on the SSM/I. All simulations coxn*tain inherenr
errors due to ax, incontple..c (odeling of the ativospl'here and the ea..Ib sorft cc. During thl.

algorith .. v......... :;cvcni sirpficati'4v.. were made. Fo-r .o..io- lbackground., ouly ;ne

'-w



type of cloud (stratus/stratocumulus), one type of temperat'ire profile (mnid-latitude winte), one
type of humidity profile (mid-latitude winter), and one type of precipitation state (rain-free) were

dft used in the simulation calculations. T'his was 11so the case for land backgrounds, where the
cloud type was stratus/stratocumulus, the te~aperature and humie-ty profiles were both
mid-latitude sumnmer, and the atmosphere was rain-free. It should be noted that the stra-
tusf stratocumulus cloud used for the land and snow background simulations were identical. The
cloud layer was between 0.5 and 2 kmn in altitude with a I juid wAter content 0. 15 g/m3. Clouds
exhibit a wide range of liquid water contents, altitudes, and thicknesses w~hich can be quite
different from the one set of values used in the simulations. A more complete set of simulations
containing a better representation of atmospheric temperature and humidity profiles, cloud
conditions, precipitation states, and lard and snow surface types could have produced more
realistic expectations.

In order to obtain a more complete quantitative understanding of the effects of different
typez of clouds over various land backgrounds on 85 GHz microwave radiation, additional
simulattd brightuess. temrperatures were, alculated from the Geophysics Laboratory's RADTRAN
atmospheric twasmission model [3]. Table 12.4 contains the simulated 85 (3Hz values (in
degrees K) for the horizontal polarization (85H) for several clolul coinditions, and land types.
In this set of simulations, the following conditions were selected ai, kept constant: land surface.
skin temperature of 290 K, rain-free, and mid-latitude summer temperature and~ humidity
profiles. Table 12.5 is sinfflar to Table 12.4, but contains the values of the difference between
the 85 0Hz brightness temperatures for the vertical and horizontal polarizations (85D13 85V

TABLE 12.4

SIMULATED 85H BRIGHTNESS TEMPERATURES (K) FOR
V/ RODS CLOUD AND LAND TYPES UNDER MID-LATIT7i)E

________SIUMMEiR ATMOSPHERIC CONDITONS

Landi/Cloud Types No cloud Stratus/stratocu Altostratus Cumulus

wet soil 251.0 267.9 27 1.3 261.6
dry soil 272.8 278.3 277.6 26i.6

light veg. 274.4 279. 1 278,1 261.6
moderate veg 284.1 283.7 280.,9 261.6

Firit focius on the first tkfee, land ty pes, listed in Tables 12.4 aid 12.5. For a given land
type, the 85H 'value is larger for any of these three clcud types, compared to the no cloud
crindition. An exception is for the cumulus condition, whcr! for dry soil and light vegetation
s~rfaces, the 85H value is smaller compared to f-at for tM.c no cloud condition. The total
',olumniar liquie~water conter~t ifl6 reases, while the 85.) values decrez ýe from. left to riglit. Three

4j.1 the five possible RAD)TRAN cloud modcls are included in these tabks. T'Pic smallest asid
largest columrnar cloud water amioutits available in the RAIYTRAN cl- -,td Am.,~r the strntus/
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TABLE 12.5

SIMULATED 85D BRIGHTNESS TEMPERATURES (K) FOR
VARIOUS CLOUD AND LAND TYPES UNDER MID-LATITUDE

SUMMER ATMOSPHERIC CONIl ,17JONS

Land/Cloud Types No cloud Stratus/stratocu Altostratus Cumulus

wet soil 21.8 10.4 6.3 0.0
dry soil 11.3 5.4 3.3 0.0

light veg. 8.1 3.8 2.4 0.0
moderate veg 0.0 0.0 0.0 0.0

stratocumulus and cumulus clouds, respectively and are incladed in these tables. For moderate
(and greater) density vegetatiorn, 85D values are zero for all cloud conditions because the
horizontal and vertical emissivi , of vegetation are equai. This indicates that at 85 GHz clouos
are not detectable over land cov,,ied with moderate or greater density vegetation. It is noted in
these two taWles that the 85H surface emissivity values increase and that the difference between
the 85V and 85H surface emissivities decrease from top to bottom. Thus for a given cloud
condition, the 851H values increase while the 85D values decrease from top to bottom. An
ciception is for the cumulus cloud condition where the 85H values are constant and the 85D

,W_.Z 1 _ 4 ICO 10IVttC WflAt TflU t2111 *I-- uc-juixcah l 31luul* complctely masking the surface.. i

Another set of RADTRAN simulations were generated for the same set of cloud
conditions and land types as those presented in Tabler 12.4 and 12.5. However, in this set of
simulations, colder and drier conditions were used - a land surface ski- temperature of 280 K
and mid-latitude winter temperature and humidity profiles. The 85H results are presented in
Table 12.6 and the 85D results are presented in Table 12.7. These results are sinimLu- to &.ose
for the mid-latitude summer profiles (Tables 12.4 arid 12.5). The main differenee for a given
cloud condition and land type is that the 85H values are smaller. id the 85D values are larger
for the winter simulation set compared to the summer. It was al.o noted when the rain-free
condition used for the two sets (summer and winter) of simulations was changed to light or
heavier inte.sity rain that all 85D values were zero for ?ny of these cloud types and surface
conditions indicating that ithe rain wompletely masks the surface.

Tables 12.4 - 12.7 ifklstrate that clouds over land backgrounds are expected to have a
distinct effect on the upwelling 85 GHz microwave radiation. However, the quantitative effect
depends on the land surface type, type of cloud (columnar liquid water), the presence or
absence of rain, and the atmospheric temperature and hur idity profiles. For a cloud amount
algorithm to be feasible, all these factors would have to be aocounted for which was not the case
in the Hughes cloud amount algorithm. Climatological temperature and humidity pro. les might
provide sufficient temperature and water vapor iý t-onrivaton. If not then perhaps radiosonde
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measured profiles could be used. 'ITe presence or absence of rain can be determitied by us ng
the SSM/I rain screening algorithm developed by the DOD SS "4(1 land parameters validation

O team. Also, this team developed land surface classification and soil moisture algorithms which
produce reliable land surface type and soil moisture information The 85 GHz-I RADTRAN
simulated values show that the ability to identify cloud types with 85 GHT SSM/L data, even
when the land surface type and atmisphenc profiles are known, does not appear to b,. likely
(except for cumulus covering the eikire footprint), especially when cloud types are mixed and/( -
only partially cover the footprints. However, the maximum and range of the 85D values ovec
the various cloud types for a given land type and temperature and moisture profile (see Tables
12.5 and 12.7) are both small compared to fl, - 85D value for the no cloud -"ondition so that the
uuiximum or average 85D value for all five possible RADTRAN cloud types would probably
be adequate for use in the development of a reasonably accurate SSM/I cloud amount algorithm.
An SSM/I cloud amount algorithm possibly is feasible over land surfaces that are homogeneous,
except for surfaces covered with moderate or greater density vegetation. The development of
a new SSMi[ cloud amoun t algorithm using the recently developed SSM/l algorithms for land
surface classification, soil moisture, and rain screening should be, explored.

TABLE 12.6

SIMULATED ,SH BRIGHTNESS TEMPERATURES (K) FOR
VARIOUS CLOUD AND LAND TYPES UNDER MID-IATTITUDE

WffqTER ATMOSPHERIC CONDITIONS

Land/Cloud Types No cloud Stratusistratocu Altostratus Cumulus171
wet soil 2i0.0 243.4 249.7 245.8
dry soil 251.0 260.5 260.6 245.8

light veg. 254.0 261.8 261.5 245.8
moderate veg 272.2 269.4 266.3 245.8

TABLE 12.7

SIDMULATED 85D BRIGHTNESS TEMPERATURES (K) FOR
VARIOUS CLOUD AND LAND TYPES UNDER MID-LATITUDE

WINTER ATMOSPHERIC CONDITIONS

Land/Cloud Types No cloud Stratus/stratocu Altostr -us Cumulus

wet soil 41.0 17.1 10.9 0.0
dry soil 21.2 8.9 5.7 0.0

light veg. 15.1 6.4 4.0 0.0
moderate veg 0.0 0.0 0.0 0.0
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It is expected for snow backgrounds that its wat-'r equivalent and type of snow surface
(dry, we,, stage of ripening, etc.), type of clkod, pres ie or Pbsence of precipitation, and the

* atmospheric :-mperaturr atid humidiiy fire will have to be ,:onsidered for the possible
development of a cloud amount algorith,. A new cloud amount algorithm for snow
backgrounds should be explored when the DOD SSMII land parameters validation team's snow
type and water eq', ivalent aJgoriirji is perfocited.

U2.7 OTHER CONSIDERATIONS

12.7.1 -C•w./ nd OL Imae

The powerful capability of AIMS to generate a false color composite multispectral image
proved to be fruitful in regards to OIS and SSM/I imagery data. There are thwne color guns
on AIMS; red, green, and blue. The intensity of each color gun is controlled by 8 bits.
Individual channels of a composite image are simultaneously directc I to oi:e of the three color
guns. In regions of the image where the response of each channel is approximately equal; the
led, greeii, and blue color intensities will be about the same and produce a shade of gray. In
other regions where the spectral response of one channel is different %han another, the image will
be a distinctive color d( iding on the relative strength of the signal at the individual
wavelengths. A useful disi .y over land backgrounds uses the OLS visible channel, IR channel,
and SSM/l horizontally polarized 85 GHz channel to drive the red, green, and blue guns,
respectively. The tesulting false color composite image (an example is shown in Figure 1.22 in
Volin'imi I af thki, - h .... -'...... . . in rshn "d 4Ak.u .r• eh.U sible
reflectivity (large red contribution) and warm IR and microwave brightness vmperatures (small
green and blue contributions); thick cirrus clouds as yellow because of deir high visible
reflectivity and cold IR brightness temperature (large red and green contributions) but warm
microwave brightness temperatures (small blue contribution); thin cirrus clouds as green because
of their cold IR brightness temperatures (large green contribution) but weak visible reflectivity
and warm nzcrocave brightness temperatures (small red and blue contributions); and strong
c ,vective cells as white because of their high visible reflectivity and cold IR and microwave
brightness temperatures (large red, green and blue contributions). Thus, combining CLS visible
and IR data with SSM/I brightness temperature data yields useful cloud type information. This
false color composite technique also works over ocean backgrounds but the color/cloud type
interpretation is not the same as for land because the ocn surface microwave, visible, and IR
signatures are different.

12.7.2 Conv..ivellL

It is noted that well dcvelop1d convective clouds have a distinct signature at 85 GHz over
land backgrorinds. The 85 GHz brightness tentwratures am very low under these conditions.
The ho wntally polarized 85 Glz brightness temperature image for Case I (Southeie Africa
Ssee Section 12.3) is shown inl Figure 1'Z.7. In this image, the brightness temperatures decrease

as gray shades go fnsm dark to light. The white areas indicate where the coldest brightness
temperatres are locb'a3. (minimum brightness tempenature in this image is 136 K), and
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Figure 12.7 Horizontally Polarized 85 GHz Brightness
Temperature Image for Cace 1
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tInparison (it this linagc to the ( )I -S v -ible (Figuire 12-.3) ind! IR (1Figure 12.4) show that th~esv
cold 85 611lz horizontally po~larizk'd brightness temperatures are within the oveicast convective

* rcIr' This cold signature of well developed conlvective clouds at( 8 i (It-his also hccn
obscrved by the atithor in several other SSN4/[ brightness temfperatuire lrinages iir vai Rus xain
;,lid .scas(U1 over several different surface backgrouinds including occains. 'l'he 85 611lt
norizontally po~larized brightncs~s tcmiperat'ire fi'-r a well developed convective clouid can be very
low. For example, a value of 95K was observed for -,n evening I)MSP pass over India on '28
Ju'ic 1987. The cold signature is, ditv to [a ,e raindrops and ice particles in the tkioper portiOnS
of wecll developed convective cl ud% which scatter the upwelling radiation emitted from the lower
portions of the clouds out of the .YSM/l's fihld oi view. This was first observed by Witheit [1l1
with a 92 G14z rad mreter flownk o: an aircraft.

12.7.3 (lo Ads ove Ocean

The ox ;an surface in ý-ne al is mnuch more homogeneous. and has inuch lower
microwavi eniissivitv and juch greater nicrrowav polar] ation thain land which indicates that
clou( (as well ia othecr atniospher* p,~mamctcis) should be more easily di ~cer-nable over acean
compared tr land in mi. rowave iliagery data. Examination of sevc-al SSM/I 37 and Gi1-4
brightness ti-mrperatair. imiages o%.c-r oce'-'iic b. *kgrounds containing various cloud types 1kwhich
were %..orified it]. coincide t ot .ýar-c ..inident visib) an I D' satellite data and synoptic data)
indicated tzi it all cloud Lgions, no matter what the ckad type (except for cirr-us), were eviden.st
As discu!SSLd above, the cloud sikPnature is -very cold at 85 0Hz for conve -tive clouds containing
large r. indrops and ice p,-rtic cs. Other clouds have a warm b ightness temperature signature

at4oh th t~lhte- tLicjJN.- dl j igare due to the low
* c1iissVity ocean s; rl.aco and rel. Lively small atmospheric attenuation in thce absence of clouds.

The. emissivity of c~ouds at I and 85 0H1z Is signi. 'cantly greater than that of the ocean surface.
In thc 85 GFhz horizontally polarizel' 71ightness tempewrature image shown in Figure 12.7, the
dark bands (warm brightness ternperature) over the t;cean in the bottom of the image are cloudy
areas as can be verifie.' by comparison with the correspo~nding 01 S visible (F-igure 12.3) and
IR (Figure 12.4) images. A .itionally. it is seen that the 85 0Hz brightness temperature
polarization values (85V - 8511) over the oceasn in cloudy regijons are much smaller than those
for clear regions.

In order to obtain a better "-rantitative understanding oi the effects of clouds over ocean
backgrounds on microwave radiatp,,n, simulated 85 GPHz bri~ntriess temperatures wert calv-Ulated
from the Geophysics Laboratory's R ADTRA N atmospheric transmission mode, 131. Caib.e 12 -
contains the sirmilated 85 GHz briohtness 1--ger-ature values (nderreesi K) for the hori.ýontal
polarizatiovr (95H1) and the differencez betvv,,ui the vertical and horizo;itad pollarizztior..-; (851)
85V' - 85H-) for several cioud types (all availaW,- cloud models in PADTRAN) with Coliditirens
of jpo rAin and light rain (5 mmi/hr at the st ace). 'q~ this set of simulations, the t-olio'ving
condiLior-.S were selected and kept constantc 85 GHz vertical aiM hcr ru njai crmissivity vaitues
typical for a calmn ocean suirface; oce-an surface tomperaturc. of 290 S; mic inid-latitude s-miiinrii
temperature and huMidity profiles. 1 hider -ain- free coaditioin.-, t'c 85P! valiut when any' of the
cIoLJd types is present is conside:rably warmer th-.m the cloud r.ec Aoiiio lso, thi 851)
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values when 1ouds are prescnt range from 0 to 14 K which is much smaller than the value for
the cloud-free condition. The total columnar cloud liquid water value increases from top to
bottom in the table. As the cloud water increases, the 851) value decreases indiC ting that the
ocean surface emission and reflection of 85 GHz radiation is more heavily attenuated by the
atmosphere. Under light rain conditions, the 85D values are all z7ero, indicating that the ocean
surface is completely masked bj the atmosphere at 85 GlIz. This is also true under moderate
and heavy rain conditions (not shown in the table).

TAL".F. 12.8

SIMULATED 85H AND 85D BRIGHTNESS TEMPERATURES (K) FOR SEVERAL
CLOUD TYPES OVER A CALM OCEA SURFACE UNDER MID-LATITUDE

_ _ _SUIMMER ATMOSPHERIC CONDITIONS

Cloud Types No Rain No Rain Light Rain Light Rain
"85H 85D 851H 85D

no cloud 238.0 29.1 -

stratus/stratocu 261.8 13.8 270.3 0I itLostrats 267.5 1. 27fl! 0

I nimbostratus 275.7 5.7 270.4 0

stratocumulus 275.6 5.2 270.4 0

cumulus 261.6 0 260.8 0

Table 12.9 shows the 85H values in degrees K calculated with RADTRAN using various
atmospheric temperature and humidity profiles under clear and cloudy (stratus/stratocumulus
cloud with no rain) conditons for calm and rough ocean surfaces. The atmospheric profiles
become colder and drier from top to bottom in the table. For a given atmospheric profile over
a calm ocean 'irface, the 85H brightness temperature is larger for cloudy than for cifear
conditions. Th_. is also true over a rough ocean surface, but the amount of brightness
temperature increase with cloud is approximately half that as for the calm surface. Also for a
given atmospheric profile and cloud condition, the 85H biightness temperature is larger over a
rough surface than a calm one. For each surface and cloud condition, the 85H brightness
temperatures decrease and the amount of increase of lbrightness temperature with cloud compared
to no cloud becomes greater as the atmosphere becomes colder and drier.
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TABLE 12.9

SIMULATED 85H BRIGHTNF.SS TEMPERATURES (K) FOR CLEAR VS. CLOUDY
UNDER VARIOUS ATMOSPHERIC CONDITIONS OVER CALM AND

ROUGH OCEAN SURFACES

Atmos. ckean (Calm Sfc.) (Rough Sib.) (Calm Sfc.) (Rough
Profiles Temps. no no stratus/ Sfc.)

cloud cloud stratocu stratusw
stratocu

tropical 300 258.2 271.7 272.8 279.6

mid-lat. 290 238.0 757.4 261.8 271.0
summer

sub-arctic 285 217.7 243.2 250.5 261.7
suimmer

I .. I..275 170,21.9.. 22.9,, 238.5wintersu-rci 275 170.4 21.09 220.9 23.
winter I I

Table 12.10 'hows the 85D values in degrees K calculated with RADTRAN for the same
conditions as those for the 85H values shown in Table 12.9. For a given atmospheric profile
over a calm ocean surface, the 85D value is smaller for cloudy th. i for clear conditions. This
is also the case over a rough ocean surface, but the amount of decrease of the 85D vaurw with
cloud is approximately half that as for the calm ocean. Also for a given atmospheic profile and
cloud condition, the 85D value is larger over a calm surface than over a rough surface. The
85D values increase for a given s;rface and cloud condition and the amount of decre, e of 85D
with cloud compared to no cloud jeromes greater as the atmosphere becomes colder; id drier.

The simulated 85 GHz RADTRAN values given in Tables 12.8 - 12.10 indicate that
clouds have a distinct effect on the upwelling 85 GIz microwave radiation at the top of the
atmosphere over oceanic backgrounds. The amount of columnar liquid water (type of cloud) has
an in'2ortant influtnee on the 85 GIz brightness temperatures. Other important factors are the
degree of roughness of the ocean surface, columnar water vapor (moisture and te nperature
profiles), and the presence or absence, of rain. Other members of the DOD SSM/I geophysical
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TABLE 12,10

SIMULATED 85D BRIGHTNESS TEMPERATURES (K) FOR CLEAR VS. CLOULDY
UNDER VARIOUS ATMOSPHERIC CONDITIONS OVER CALM AND

ROUGH OCEAN SURFACES

Atmos. Ocean (Calm Sfc.) (Rough Sfc) (Calm Sfc.) (Rough Sfc)
Profiles Temps. no no stratus/ stratus/

cloud cloud stratocu stratocu

tropical 300 20.3 12.4 10.2 6.2

mnd-lat. 29') 29.1 17.8 13.8 8.5
summer

sub-arctic 285 38.2 23.4 16.9 10.4
summer

mid-lat. 280 54.6 33.3 22.9 14.0

winter

sub-arctic 275 60.8 37.2 26.4 16.2

pmarmeter algorithm validation team have shown that these atmospheric and surface conditions
can be determined from the SSM/I data since they have developed SSMW. algorithms for ocean
backgrounds which calculate columnar cloud liquid watef and water vapcr, oeean surface wind
speed (which is related to the surface roughness), and surface rain rates. Therefore, an accurate
SSM/I cloud amount algorithm for octan backgrounds is plausit e. Recall that Hughes Aircraft
Company has not been tasked L) develop one. However, Rubinstein 112J, a member of the sea
ice validation team, recently developed an SSM/I cloud amount algorithm as a spin-off of her
work. The accuracy of this algorithm requires validation. It is important to note that cirrus
clouds are transparent at SSMII frequencies over all backgrounds and so amiy SSM/I cloud
anmount algorithm will lack cloud coverage information in areas containing only cirrus type
clouds.

12.7.4 P.__otetil SSMJI Conuib.iutins to Lhe.RTNEH CloutA Aalysis

The RTNEPH cloud analysis done at AFGWC uses conventional ground-based cloud
observations, and OIL.S IR and visible catellite data. The RThEPH produces operational global
estimates of cloud cover, altitude, and type. (See Keiss and Cox [141 for a complete description
of RTNEPH.) There is good potential to improve the RTNEPH analysis by incorporation of
new algorithms which use SSMII data by itself and also in conjunction with other typ.es of data.
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If the development and validation of new SSM/I cloud amount algorithms over some
types of land, snow, an. ocean surfaces ik successful, then these cloud amounts should be

* examined to determine if they are more accurate under certain or all situations than the
RTNEPH cloud values determined f -3m conventional observations, and IR and visible satellite
data. For instance, there are few Lorventional cloud observations over the ocean and under
certain common oceanic conditiops it is difficult to detect clouds with IR satellite data and if it
is night time then no visible satdlite data are available. An example is that often it, the ER there
is little contrast between stratocumulus clouds in the marine boundary layer and the ocean
background in the presence of the commonly occurring temperature inversion in this layer.

The extraction of cloud type iiformation available from fai5.e color composite OLS and
SS!" 71 images described in Section 12.7.1 probably could be autenated and incorporated into
the ATCNE 1 H analysis. If this can be done, then improvement to the cloud type portion of the
RTI EPH analysis would probably result.

Com~bined use of SSM/I microwave data with OLS IR data for determination of cloud
amounts over land backgrounds is promising. Savage et al. [13] have found that the expected
surface IR brightness temperature for clear conditions over vegetated land backgrounds can be
predicted from SSM/I brightness temperatures with sufficient accuracy (rms of 2.5 K) to be used
as input for a cloud analysis. The observed IR values are compared to the expected IR to
estimate cloud. Observed IR values less than Vhe expected IR indicate cloud. T ! regression
equation used to estimate an expected surface MR value for clear conditions was devioped from
• a.0 .al,,y. u of oUservu I'm values in clear areas, ,ising the NSM/1 19 and 22 GHz channels as
predictors. The two lowest frequency SSM/I channels were used since most clouds are
transparet at these frequencies. This method of comparing observed IR values to the expected
surface IR temperature to estimate cloud is comparable to the technique presently used by the
RTNEPH cloud analysis model at AFGWC. However,ti RTNEPH estimates the expected IR
temperature from surface air temperature. reports for comparison to the observed OLS IR
tenmoeratures. The technique based entirely on satellite &,ta is potentially more accurate because
there is error resulting from estimating IR background temperatures from the surface temperature
report which is a shelter air temperature (several feet above ground level). Another advantage
of the all-satellite technique is that it requires less data pt ocessing and produces more timely
results. It is also noted that the SSMiI land parameter validation team has developed algorithms
for the determination of surface skin temperatures for several land types in z.ddition to vegetated
land which should be useful for estimation of JIR backgroundi temperatures.

The all-satellite technique is expected to be, successful cver all surfaces whose microwave
emissivity is high and relatively constant. Vegetated land. as well as desert, have tht ;e
eniissivitv aracteristics. However, snow, glacial, and oceam surfaces have low emissivities
(high reflertivities). Savage et al. [13. found that 1R brightness temperatures for clear conditions
could not be accurately estimated from SSM/I obserivations ovcr snow-covered land backgrounds
because of the physical prof crties of snow. However, they found that an approach (differing
from the algorithm GL validated) based entirely on SSM1I observations for recognition of clouds
over snow showed good] promise. They resoived a set of SSM!! data which was st",tiflied into
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cloud- and clear -roups, into eagenfunctions and then formed a discriminant function. Only a
few o. the largest li.cnrminant scores of the cloudy group overlapped with a few of the smallest

Wdiscriminant scores of the clear group. Thus, the two grouns were quite well distinguished-

The SSM/I is good at snow and ice cover detection because of the strong microwave
signatures of these surfaces. Use of this tiffely and accurate information in the RTNEPH cloud
a: alysis would improve it. The RTNW•IJ satellite data processor consists of wo parts - one for
OLS visible data and one -or OLS IR data. The visible d.-ta processor is not allowed to make
a cloud amount calculation over grid pvoints where snow or ice cover is believed to be present.
This is because cloud-free snow and ice covered areas have approximately the saone brightress
as clouds. The snow-cover data base is of particular concern. It is based on surface z eports and
climatology and may not represent the true snow cover condition over maliy gr.dpoints,
especially in sparsely populated regions where the surface weather observing stations are far
apart. If snow or ice is actually present when RTNF•PI believes it not to be, then the visible
data processor will be used and RTNEPH's estimates of cloud amounts will probably be too
large. On the other hand, if snow or ice is really absent when RTNEPH believes it to be
present, then the IR satllite processor will be used and low clouds, that are easily found by the
visible processor, may be ;.iorly analyzed.

12.8 CONCLUSIONS

The present Hughes SSM/I cloud amount algorithms over land and snow backgrounds
do not work because the variability of the land and snow surface types, clouid types, and
dUatIIpioheric ternIperaette ardU iluiilulay pWCOu3, MIIu UIC p1V_,A:k;C U! cubuLc U1 UiI- WCC riot anl

taken into account. An SSM/I cloud amount algorithm possibly is feasible over land surfaces
that are homogeneous, except for surfaces covered with moderate oz greater density vegetation.
The development of a new SSM/I cloud amount algorithm using climatological temperature and
humidity profiles and the recently developed SSM/I algorithms for land surface classification,
soil moisture, and rain screening should be explored. Also, a new cloud amount algorithm for
snow backgrounds shodld be explored when the DOD SSM/I land parameters validation team's
snow type and water equivalent algorithm is perfected.

Hughes t•ircraft Company has not been tasked to develop an SSM/I cloud amount
algorithm over ocean backgrounds. Investigation to date indicates an accurate algorithm over
ocean is plausibie. In fact, an algorithm has recently been developed but requires validation.
It is important to note that cirrus clouds are transparent at SSM/I frequencies over ocean anad all
other backgrounds and so any SSM/I cloud amount algorithm will lack cloud coverage
information in areas containing only cirrus type clouds.

SSM/I data combined with other types of data and several SSM/I geophysical parameter
algorithms offer the opportunity for improvement to the Air Force's RTINEPIA operational global
cloud aialysis. Cloud amount estimates from potential S.SMI algorithms might provt U) be
more accurate in certain situations th -i these obtained from OLS data by the RTNEPI-i. The
extraction of cloud type aformation a ,ailable in color composite SSMIII il OLS (visible and
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IR) imagery piobably could be automated a-d incorporated into the RTNEPP analysis. Other
promising SSM/l contributions to the RTNI H include improvements to its sn iw and ice cover

Sdata base ard more ac.-urate and tinel-, estimation of expected IR temperatures for ck'-r
conditions over vegetated land, moist soils, desMert, and arable land.
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AM (;E(GlJ'CATION

A. I INTROID)J('I'ION

'he process of geolocating ,SM/I pixels was investigated and described in detail by Gene
A Poe and Robert W. Conway in Section 6.0, Volume I of this report and also in [1]. In brief
they found geolocation errors of the order of 20 to 33) km and discovered that approximately one
half of this error was due to the use of a scv.:n-day predictive ephemeris in data procesmng at
Fleet Numerical Oceanographic Center (FINOC' This variable error was removed when the
saiellite ephemeris, contained in the down-li Ak .,ta stream, was used in place of the predictive
ephemeris in the data processing beginming with revolution 10048 on May 31, 1989. Due to
system testing the predictive ephemeris was used for short period-is of time until revoiution 10647
July 12, 1989. Poe and Conway found indications that the remaining error of about +-/- i3 km
could be reduced to within speciication ff +1- 7 km by the use of a constant er slowly varying
and predictable adjustment to the apparent spin vxis of the SWMi/I in thr geolccation software.
This does not -ecessarily mean that the SSM/I axis is misamigned wish rcspe:t to the spac4craft,
but only that it is possible to compensate by this means for ;ome otlier error or erroms ui thr-
overall system. They concluded that indications were that spacecraft attitude biases wi:ere not
the main contributor to the remaining error.

Their initial work to determine the software adjustment to the spin axis was hampered
by the difficulty in obtaining the spacecraft ephemeris, matching it to the correspondirg SSMII
data and then recalculating the geolocation. It was nxressary to wait until the satellite ephemeris
wau iiswA, in nnra~tinnal data nroc.ssinp at FNOC. n order that a sufficiently larpe number of
cases could be examined to ensure that the residual error was indeed constant and could be
remnoved. This has now been done and a constant software correction to the apparent spin axis
has been determined which reduces the geolocation error to less than the DMSP SSM/I
geolocation accuracy specification of +/- 7 In. The procedure, data selection arid results are
described in the following sections.

A.2 PkOCEDURE

The accuracy of the SSM/I geolocation was determin',d by a visual comparison of SSMJI
85 Ghz Lorizonttally polarized brightness temperature (85H) images with superimposed World
Datz Banks II (WDB2) coastlines on a col ir monitor. Incrementd pitch, roll and yaw
2;orrectioiis were estimated by trial and error and the SSMII image geolocation repeated until the
SSM/I and WD)B2 coastline.- coincided. The WDB2 coastlines are believed to be accurate to
better than I km over 90% of all identifial -, shoreline features and introduced no significant
e.Tor in the cowaparison. The 85H has a resoution of 13 km and is sampled each 12.5 km along
scar. SuLcessive f.zans are separated by 12.5 km. Interpolation of these data using the
procedure, developed by Poe, [21 produced an additional three equally spaced samples between
each origiv'al Wpir in the scan direction and an additional three scans between success;ve scans-
a sixteen old increase in data d4ensity. The rg;o _., selected wen' 20 degree by 20 degree boxes.
This resi'lted in a pixel separation on the monitor ,f the gwoovated 85H image varying -com
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about 4.2 km at dwl equator to, about 2.8 km at high latitudes. The WDB2 coastline was one
pixel wide on the monitor. It was generally lossib~e to obtain agreement between the 85H and. WD12 coastlincs to ,oc pixel or about 3 to 4 km. The une of higher resolution on the monitor
would not have inmproved this precision significantly.

The 8511 was chosen because it has the highest spatial resolution of any of the channels
and a high brightness temperature contrast between land/water boundarics. This contrast varied
between about 50 and 100 K depending upon atmospheric conditions. Only images containing
clear sharp land/water boundaries not obscuard by heavy clouds or rain were selected. The
RMS noise output of tie 85H was generally less than 1 K as shown in Figure A. I unti! about
February 1990 when it began increasing. It increased to as much as 10 K before. failing mtirely
in February 1991. Images with RMS noise up to 5 K were used resulting in a land/bkundary
signal-to-noise of from 10 to 100. Thus it was readily possible to locate the coastline in the 85H
,tnage to one fourth of a half power beam-width or about one pixel as stated above.

10 B5 GPJr H--Pof Viewing Hot Lood

YI

3

, /

0 _ LJ. ... L . L. 1 L * L .I
0 1 0 1if 20 25 3, 35 40 43 50

Mo.tttw Aft•.- i onah

Figure A. 1 SSM/I Delta T Noise

* A-2



C

litghcs Aircraft Company measured the antenna beam positio..s rzlative to hort. sight fi_
all seven chann-la prior to launch on DMSP F-8. All channels were within 0.03 degrexs nf thc0511 except the 3711 which was displaced by 0.07 degrees. This wouid result in relative shift
of the two bearms of about 2 km at the earth's surface. The co-registrat.nn was checked by
overlaying the 85H and vach of the other channel images. They were aligned to witiin better
than 3 kin; the accuracy of the measurement.

The algorithm used to geolocate the 85H data with different pitch, roll and yaw offsets
of the spin axis is fully described in Volume I of this report and in [1]. The computations used
the satellite ephemeris position vectors stored approximately each minute in the TDR archival
tapes produced at FNOC. ThMse computations would normally not introduce significant error.
However when the satellite ephemeris was incorporated into the SSM/l processing at FNOC the
ephemeris time was truncated to irteger seconds. This error was not corrected uptil revollition
17057 on October 9, 1990. The error was minimized by adding one half second to the truncated
time res, Iting in ar error of up to one half second in the geolocation computations. Since this
is a tin rror it priwarily affects the intrack position "nd closely resembles a pitch error. A
half second timing error is equivalent to a 3.3 km posi,.on error or about a tenth of a degree
pitch error.

Consideration of the above sources of error indicates that the geolocation prnwccdre used
here, to obtain pitch, roUl and yaw corrections for a software ealignment of the apparent SSM/l
spin axis to correct geolocation errors is accurate to better than 6 km. This is consistent with
the geolocation accuracy specification of +/- 7 km.

A.3 DATA SELE-1ON

The images 1'or coast line comparison were selected to allow possible systematic
variations due to the time of year, sun angle, latitude, longitude and ascending/descending orbits
to be examined. This requires data covering a range of more than 5000 orbits. In order to use
only data processed with the satellite ephemeris only data from revolutions following liambcr
10048 were selected. The noi.,z of the 85H channel was below I K until about revolution 13500
on January 30, 1990 after which it began increasing' see Figure A. 1. Therefore it was
necessary to u.w some images with noise as large as 5 K. Data from 203 ot-its during the
period June 2, 1989, revolution 10070, to July 29, 1990, revolution 16036, were used for
coastline compa;.sons. The center latitude and lcogitude of the 20 deg-ree by 20 degree regions,
the number of ascending and descending revolutions,, the pitch, roll and yaw corrections which
elinminate the geolocation error and the Julian dates of the images are given in Tabk !1. 1. The
distribution of the data as a function of the day of year. center latitude and center longitude is
given in Figures A.2, A.3 and A.4 respectively. The sun angle for revolutions 10000 through
16000 is shown in Figure A.5.
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The pitch, roll and yaw corrections which eliminate the. geolocation error are shown a
a function of revolation number for all 203 cases in Figures A.6, A.7 and A.8 re//tively.

There is al--most no variation in the value of the roll or yaw co r~rwtion. 71e pitch eorrec:tion ••
shows a grv~ater variation th.ý - either the roll or yaw with a standard deviation of 0. 11 degrees. -
This is nots.urprising since tinting errors result in geolocafion error.% ve~ry similar to those causedI

by pitch ert-ors. A timing error of I second produces a 6.6 !or intrack geolocation error which
A*s oughly the sa-me aa a 0. 18 degree pitch error. Thus the 0. 11 degree pitch error resembles

a 0.6 second timing error. As mentioned earlier the ti-vncation of the ephemeris time for all of
the data used here results in timing errors of up to 0.5 seconds. There ii• just a hint that Cie
pitch error may be sligh~tly large-r (more. positive) at larger stun ang-des whej tzhe sesor is warmer
but no sun angle dependent commetion is neczssary or josfifiab)4ý. TIhe pitoch conrrction is ahto1A-6
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independent of latitude and iongitude and is the same for ascending and descending passes as is
shown in Figures A.9 through A. 12. Thus a constant correction is possible.

OWWOURM00 t H0 10.

Figure A.6 SSM/I Geolocation Pitch Figure A.7 SSM/i Geolocation Roll
Correction Correction
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The pitch, roll and ya'v correction to the apporent SSMII spin axis which brings the
SSMII geolocation within the specification of +/- 7 k~m is-

Pitch -- 0.21 er
Roli = -0. 10 degrees
Yaw = +0.70 degrees.

The sign of these coefflicients is according to the DMSP convention which is shown in Figure
A. 13. The geolciation sl~ft isnpo,, cd by this realignment aE a function of scan angle is shown
in Figure A. 14. in the figure the positive cross track direction is to the port side and the
positive in track direction is aft of the spacecraft. The bottom curve is the scan track with no
correct ion and the curve displaced towards the upper left is the shifted scan track resulting from
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the above correction. The j agnitude of the geolocation shift in both the cross track and in track
direction is given in Figurt: A. 15 as a fimction of scan angle. Note that the total geolocation
shift ranges from about 8 to 15 kon. The change in incidence. angle resulting from the
realignment of the spin axis as a function of scan angle is given in Figure A. 16. The
calculations i,- -. 'iiare A. 14 through A. 16 are with respect to a spherical earth. They will change
slightly in dý tail with latitude for an oblate spheroidal earth model and with the rotation of the
argumient of perigee of the slightly elliptical F-8 orbit. In order to determine the magnitude of
the incidence angle variation for an oblate spheroid model of the earth and the extremes of the
elliptical orbit, calculations were made for revolutions 15106 and 15563 for which the argument
of perigee is 90 and 0 degrees respectively. The maximum change of incidence angle during
a single scan was 0-30 degrees. The maximum incidence angle variation over the two orbits was
0.88 degrees. It ,hcould be noted that a change of 1, P. dz-grees results for these same orbits for
a zero p.;tch, roll and yaw corrcction. The- primary ciiie of the incidence -ingle variation, for

* A-



I--

_Pitch - -0.21 Roa -- 0.10 Y.aw - 0.70 --

SI• .

T / ' -
0 -

1200_ _

-OW -- Of -420 a 200 0M BOG am

Figure A. 14 SSM/I Geolocation Shift Due to Spin Axis Realignment

j _0 Pitch -- 0.21 Rod - -0.10 Yaw - 0.70

*2r"M al__to__own

--30O -40 -20 0 2 404

Figure A. 15 SSMII Geolocation Shift In md Orthogonal to Sc; i Dix-tion

A-9



this alignment correction, is tlr ariation of spacecraft altitude which ranged from 837 to 885
km over these orbits. Incidence angle variations of +/- 0.5 degrees can result in brightnessS temperature changes of +/- 1 K or more and refined environmental retrieval algorithms must
take the actual incidence angle at each scan position into account.

Pitch - -0.21 Roll ---0.10 Yaw - 0.70

0.26

0.1 O.ID1I

I n

I __ ,_ _ __I•-----

0.05-- 1.-
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Figure A. 16 SSM/I Incidence Angle Change Due to Spin Axis Realignment

It is possible to geolocate any of the archived FNOC processed F-8 SSM/I data to an
occuracy of +/- 7 km using the above spin axis correction. For those data prior to July 12,
1989 when the satellite ephemneris was not used in the FNOC processing a new ephemuis must
be generated. "lhis is possible using, for example, orbital elements from the Space Surieillance
Center (SSC) of the United States Space Command (formerly NORAD), Cheyenne Mountain,
Colorado or the Naval Space Surveillance System (NAVSPASUR), Dahigren, Virginia and their
respective orbital prediction programs. The difference in geolocation obtained by using the
sateLlite ephemeris and that using NAVSPASUR orbital elements and the PPTI- ephemeris
prediction program for revolution 10121 is given in Figure A,.17 as a function of time. The
error is at most 6 km with a standard deviation of 2.5 "n. This accuracy is not strongly
dependent upon the number of revolutions over which the ephemeris is provagated. The mean
and standard deviation of the geolocation difference between the two Remerides for nine
different comrpari *'ns is given in .7igurc A.18 as a function of the nuniber of revolutions
propagated. The mean difference of all nine comparisons is 2.3 km with a standard deviation
of 1.4 km.
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It should be noted that a yaw correction may result from a timing or other error in the
start of scan signal and need not be an alignment error ot the spin axis. The pitch and roll
corrections of -0.21 and -0.10 degrees respectively are entirely consistent with the Hughes
antenna beam alignment error specification with respect to the spacecraft of +/- 0.2 degrees in
all three axes. Therefore the above correction is consistent with the SSM/I design alignment
tolerances but dees not necessarily mean that the SSM/I axis is misaligned with respect to the
spacecraft. However it is possible, by using this correction to the apparent spin axis, to
compensate for alignment error -)r other errors .n the overall system and geolocate the SSM/I
to an absolute accuracy of +/- " km.

An example of the improvement in geolocation resulting from the use of this software
coqrection of the spin axis alignment is given in Figure A. 19. The 85H image if the southern
part of South Americ-A obtained from revolution 11155 on 17 August 1989 without the correction
is shown on the left nd with the correction on the right. The rn d areas are prit iarily lower
elevation land. Th. light and dark blue areas in the Andes are ltue to snow. The light blue
areas in the vicinity of the Falkland Islands are heavy clouds. Note the excellent agreement
between the 85H image and the WDB2 coastlines and lakes throug~iout the image. It shoulkI be
noted thai this uniform spatial fidelity can only be obtained with the three angle spin axis
correction and c innot be duplicated by a simple two dimensional translation of the image.

Accurate- geolocation is very important for the delineation and recognition of small
atmospheric and terrain features. This is especially true if successive passes over a specific
region are to be averaged for the study of slowly varying phenomena. It is also essential for
algordthm development and validation; particularly in the case of precipitation, sea ice edge and
land surface type. Now that the geolocation problem has been sotved and th. methodology for
determining the correction 'stabiished the accurate geolocation of SSM/I's on f-jture DMSP
,atellites can be readily accomplished.
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