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Cover Picture

The cover picture shows retrieved land surface types using the SSM/I land surface typing
algorithm given in Section 9.1. The Mollweide equal-area projection is compcsed of SSM/I
measurements from 64 consecutive revolutions of the DMS? satellite over a four day period
starting September 21, 1987. The surface of the earth has been divided into 17 separate surface
categories. Each of the categories has been assigned a unique color to praduce this image. The
land surface types are as follows. Starting at the left end of the color bar, medium blue
represents the land surface type of standing water or flooded conditions. Examples of this type
can be seen in Bangladesh, Nepal, and Thailand. The dark green represents dense vegetation,
as seen in parts of Brazil and central Africa, followed by light green which is dense
agncultural/rangeland vegetation and can be seen in Argentina and the east coast of the United
States. Dry arable soil is next, shown as beige, followed by moist soil colored brown, semi-arid
surfaces tan and desert yellow. Dry arable soil can be seen in Angola, Zambia, and the northern
Great Plains of North America. Examples of maist soil can also be seen in the northern Great
Plains of North America. Semi-arid conditions exist aiong the Andes in South America and
north of the Kalahari Desert in Africa. Desert surface types are scen in the Sahara, the Arabian
Peninsula, Australia and other regions of the world. These are followed by precipitation over
vegetation shown as blue gray and seen in small regions in South Amenca and central Africa
and precipitation over soil showa as turquoise and seen, for example, in southem Africa.
Composite vegetation and water is shown as light blue and is seen in large regions of South
America and Africa, composite soil and water/wet soil surface is shown as rec and is seen in
Canada and other regions. The land surface types finish with three snow types. Diy snow is
white and i. seen in central Asia, wet snow is light gray which can also be seen in central Asia
and refrozen snow, which is medium gray, can be fcund in Greenland. The biack areas in
Greenland and Antarctica are regions where a land surface type could not be identified. The
ocean is divided into 2 categories. Dark blue waich represents open ocean and dark gray which
is sea ice. The final category is violet which designates the coastal regions.
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7.0 WATER VAPOR AND CLOUD WATER VALIDATION
7.1 INTRODUCTION

Two of the many useful geophysical parameters that the SSM/I can measure are the
amount of water vapor and the amount of cloud Liquid water between the ocean’s surface and
the top of the atmospherc. The water content of the atmosphere is very important for
meteorology, climatology, and hydrology. The evaporation of water from the ocean surface and
its condensation into clouds and precipitation is an important energy transport mechanism for
the dynamics of the atmosphere. The amount of liquid water in couds affects the incoming and
outgoing radiative fluxes. The water that eventually falls as precipitation over land comes from
the ocean.

The objectives of this investigation were to validate the initial or Hughes algorithms for
total precipitable water and cloud liquid water and, if necessary, derive a new or improved
algorithm. The Hughes algorithms (see [1]) are divided into eleven (11) climate codes per
hemisphere. Each climate code represents a set of coefficients for a particular 'atitude zone and
season. There are three distinct sets of coefficients for the retrieval of waier vapor and nine for
the retrieval of cloud liquid water over the ocean. For the retrieval of cloud liquid water over
land, there are eleven distinct sets of coefficients.

Validating the Hughes algorithm required the acquisition of surface measurements from
a variety of latitude zones and seasons. For the total water vapor validation, radiosonde data
from small island stations and the few remaining weather ships was collected. Initially a iist of
49 potentiai stations was compiled with size and !antude being the only considerations. Once
the various match-up criteria were invoked, data from only 19 stations were used. The criteria
were that the satellite observation and radiosonde must be coincident within 2 hours and 2
degrees of latitude and longitude. These radiosonde obhservations were coll=cted from National
Meteorological Center (NMC) files, integrated to obtain the total precipitable water, and
matched with (he satellite data. The period of collection of data was from June, 1987 to August,
1988.

The selection of sites for surface measurcments is important in that the launching site,
be it ship or island, must be sufficiently small so that it does not affect the radiometer measure-
ments.

Initially it was pianned that surface observations of cloud liquid water would be obtained
from upward looking radiometers and aircraft. Due to delays in the launch of the SSM/1, it was
not feasible to acquire aircrait data. Data for the cloud liquid water determinations over the
ocean were taken by NOAA/Wave Propagation Laboratory (WPL) personnel from San Nicholas
Island as part of Project FIRE and by University of Massachusetts (UMass) persornel from
Kwajaiein Island. Datz over land were taken by NOAA/WPL from the four stations that make
up the Colorado remote profiling network.
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NESDIS contracted with S. M. Systems and Rescarch Corpyuration (SMSRC) of
Landover, MD, te Jdevelop and run the necessary software to do the comparisons and the
algorithm refinement.

Since the preparation of material for Volume I of the Cal/Val Teai~ Final Report
additional analysis has been done and additional data have been acquired. The continuing
process of algorithm davelopment and refinement has led to some minor ckanges in the
cocfficients used to derive total precipitable water and completely different algorithms for cloud
liquid water. Additionally we are now expressing our results in the more commonly used kg/m?,

7.2  DATA PROCESSING

The data handling procedures described in this section were devised, encoded, and
executed by SMSRC personnel. The details are given in [2].

7.2.1 Data Handling - Total Precipitable Water
1. Radiosonde Observation (Raob) Collection

Raob reports were collected daily from the NMC ADPUPA files for 00 UTC and 12
UTC for the selected radiosonde stations. The job was submitted operaticnally beginning June
23,1987, and ending August 3, 1988. All reports found for the seiected stations were picked
up without regard to quality of data.

2. Surface Report Collection

Reports of surface conditicns from the radiosonde stations were picked up immediately
after the raob collection job finished executing. This job was submitted operationall ' from July
3, 1987, to August 3, 1988.

3. Coliection of SSM/I Data

Matches between SSM/I data and collected racb reports * ‘ere predicted using a version
of SMIOPS which runs on the NAS 9050. Based on these predictions selec.~d SSM/I revolu-
tions were requested from NRL. When data were received, the tapes are miouated on the
system. Those SDR files on tape which contained desired data were read and the daia (Uright-
ncss temperatures) were unpacked and stored in an *SSMU/T temporary file’.

4. Matching betwecn SSM/I Data and Raob Data
A match program was run which read the SSM/I temporary fiie and tae raob holding file

and found the four closest SSM/I footprints to each raob repor:.  All matches had 10 be viithin
2 hours and 2 degrees latitude and longitude of the = % stauca
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5. Calculation of Total Precipitable Water
A program, which was based on the FNOC code provided to us, read the matches from
the match file, and caiculates the total precipitable water values from the SSM/I brightness

temperatures. Values which were outside specified limits were set to 12.70. Values which
could not be calculated due to presence of rain or ice were set to 12.75.

6. Quality Control

Resulting matches were printed in a summary report. Matches which have SSM/I
retiieved or calculated values of total precipitable water which were unreasonable were investi-
gated. If necessary, these matches were removed. Raobs were screened for missing surface
pressure values.

7. Statistics

Means of raob and SSM/I i< ieved precipitable water values, the bias, and RMS errors
between them were calculated.

8. Regression

Raob - retrieval matches were used in a regression to obtain total precipitable water as
a function of brighiness temperatures.

7.2.2 Data Handling - Cloud Liguid Water

1. Observation Collection

Cloud liquid water observations were received from the various observation sites. The
data were then reformatted in*o the *SSM/I temporary file’ format.

2. Collection of SSM/I Daia

Matches between SSM/I data and cloud liquid water observations were predicted. All
SSM/I data within 2 degrees latitude and longitude of the observation sites were collected.

3. Matching between SSM/I Data and Observations

A match program was run which picked the four SSM/I retrievais which were closest to
the observation site. Then the observation which was closest in time to the SSM/I overpass was
chosen for the match.

AJITIFICEYIINN




4, Caiculation of Cloud Liquid Water

A program, based on the FNCC code, read the match file and caiculated the cloud liquid
water value using the SSM/I brightnes: temperatures.

L. Statistics

Means and RMS enrors between the observed and retrieved cloud liquid water values
were calculated.

7.3 TOTAL PRECIPITABLE WATER (WATER VAPOR)
7.3.1 Surface Data Sources

The major source of surface data for the validation of the SSM/I determinations of total
precipitable water was the international radiosonde network. The pressure, temperature, and
humidity data from the radiosondes were integrated numerically to give a value which could be
compared with SSM/I values. It was required that the radiosonde station be a smali island or
one of the remaining weather ships. Small is defined as less than 18% of the instantaneous
field-of-view (IFOV) of the 19 GHz channels. Initially a list of 49 possible stations was
prepar. J. These stations are shown in Table 7.1. Most radiosondes are launched at 0 and 12
UTC, while the SSM/T has an approximateiy 0600 LST ascending node. Of the 49 possible
stations, matches from only 19 were obtained. The stationg indicated with an acterick are the
“match-up® stations. To be considered a “match-up” it was required that the radiosonde and
satellite measurements be coincident within 2 hours and 2 degrees of latitude and longitude.

The radiosondes measure pressure, temperature, and humidity at various levels in the
atmosphere. These measurements are then transmitied worldwide to various metzorological
centers, including the U. S. National Meteorologicai Center. The raobs and selected surface
observations were combined with matching SSM/I brightness temperatures to form a data sei
which could be used to evaluate algorithms for deriving totai precipitable water over the ocean.

The total precipitable water was calculzted from the equation
U =1/2g X (¢ + q+)P - Pis1) (1)
where g = acceleration of gravity. g, = the mixing ratio of water vapor to dry air at the ith

level, and p; = pressure at the ith level. The units of U are kg/m?, thus requiring g to be
expressed in m/s?, q; in kg/kg, and p; in newtons/m’.
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TABLE 7.1
RADIOSONDE STATIONS

NAME NUMBER LAT LONG AREA IFOV
MACQUARIE IS.* 94998 -54.50 15895 B 109 4.41
MARION IS 68994 -46.88 37.87 B 388 15.71
GOUGH IS. 68906 -40.35 988 W 83 3.36
I.N. AMSTERDAM* 61996 -37.80 7753 B 62 2.51
h KERMADEC IS. 93997 29.25 17792 W 34 1.38
NORKFOLK IS. 94996 -29.05 16793 E 34 1.38
AUSTRAL IS. 91958 -21.62 133.33 W 47 1.90
EASTLR IS.* 85469 -27.17 109.43 W 117 4.74
TOTEGEGIB 91948 -23.10 134.87 W 31 1.26
COOK ISLES 91843 21.20 159.82 W 218 8.83
TRINDADE IS. 83650 -20.50 2932 W 10 .40

TUAMOTU 91944 -18.07 14095 W OK N/A
ST. HELENA 61901 -15.97 570 W 122 4.94
PAGO PAGO 91765 -14.33 170.72 W 135 5.47
COCOS IS.* 96996 -12.18 9%6.83 R 14 57
ATUONA 91925 9.82 139.02 W 200 8.10
PENRHYN 91801 9.02 158.07 W 10 .40
FUNAFUTI 91643 -8.52 179.22 B 2.80 11
ASCENSION IS. 61902 -1.97 1440 W 88 3.56
DIEGO GARCIA®* 61967 -1.35 7248 B 152 6.15
MAJURG 91367 7.03 17138 E 10 .40
KOROR 91408 7.33 13448 E 8 32
TRUK 91334 7.47 151.85 B 118 4.78
KWAJALEIN 91355 .72 1§7.72 B £ 55
YAP 91413 9.48 138.08 E 54 2.19
ISL.A SAN ANDREAS* 80001 12.58 81.70 W 20.50 .83
TARAWA 91610 13.05 17292 E 23 .93
BARBADOS* 78954 13.07 59.50 W 431 17.45
JGHNSTON IS. 91275 16.73 169.52 W 1.30 .15
SAN MAARTEN* 78866 18.05 63.12 W 85 3.44
WAKE IS. 91245 19.28 166.65 B g 32
ROBERTS FLD.* 78384 19.30 8137 W 183 7.41
MARCT'S IS. 47991 24.30 15397 B 2.60 .17
ISHIGAKUIMA® 47918 24.33 124.17 B 215 8.70
MINAMIDAITO JIMA* 47945 25.83 131.23 B 46.6 1.89
CHICHI JIMA 47971 27.08 142.18 B 24.6G 1.00
MIDWAY 91066 28.22 17737 W 15 .61

TANGO CiT 29 135 E OK N/A
KINDLEY FIELD* 78016 32.37 64.68 W 53 2.15
HACHIJA JIMA* 47678 33.12 139.78 E 69.90 2.83

ROMEO C7R 47 i7.00 W oK N/A
SHEMYA IS. 70414 52.72 174.10 E 21 .85

COCA* CcI1C 52.75 3550 W OK N/A

LIMA* CIL s7 10.00 W OK N/A
ST, PAUL 1S.* 70308 57.15 1702 W 90.60 3.67

MIKE* C™M 66 200 E OK ‘A
JAN MAYEN 01001 70.93 8.67T W 373 15.10
BIORNOYA* 01628 74.52 19.02 E 179 17.25
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in Table 7.1 the entries are the name of the station, its World Meteorological
Organization number, latitude with degrees south expressed as minus, longitude, the area in
square kilometers, and the percentage of the 19.35 GHz IFOV that the station occupies. We
were unabje to obtain exact estimates of the areas of some of the islands. We were able to
verify that they werc small in comparison to the 19 GHz footprints. The weather ships also
were assumed to be small.

7.3.2 Comparisons

7.3.2.1 Initial Algoritam

The initial algorithms for retrieving SSM/I geophysical parameters are described in [1]
and will be referred to in this section as the Hughes algorithm or more precisely the Hughes
algorithms as in reality there are several algorithms. The Hughes algorithm is divided into
eleven climate codes for each hemisphere, each of which relates to selected latitude zones and/or
seasons. This approach permits "fine tuning” the coefficients for a particular climate, h~ wever
the boundaries between the latitude zones are "hard" and the climate changes occur i.stanta-
neously. This approach can lead to unnaturally large gradients in parameters at these
boundaries. In addition to validating the algorithms for each climate code, it was felt that it was
necessary to check for the existence of these boundary gradients. Figure 7.1 shows the boundary
discontinuities between climate codes. This figure shows data for August 11, 1987 for revs 740,
741, and 742. The land mass in rev 742 is Africa and Saudi Arabia. Deep red denotes flagged
areas which are either land or areas of precipitation. Revs 740 and 741 show boundaries at 25
degrees south latitude and the equator. The equatonial boundary shown in yeilow to the south
and red to the nortb is particularly noticeable. The boundary at 25 degrees south is noticeable
as a line between lighter and darker blue, The sharp boundary near 20 degrees south is a
boundary betwesn air masses. Lesser amounts of water vapor are shown in darker blue and
increasing amounts are shown in lighter blue, yellow, and light red.

Table 7.2 shows the comparisons for the Hughes algorithms with radiosonde determi-
nations for the latitude zones and also globally. All entries in the table are kg/m? or precipitable
millimeters. The columns labeled mean show the mean value for all the retrievals and
radiosondes for that particular latitude zone. The columns labeled standard deviation (STD
DEV) are the natural variance of the sample set. This is the variance exhibited by the *otal
precipitable water in this climate zone. The column labeled rms diff is the rms difference
between ihe SSM/I retrieval and the corresponding radiosonde value. The column labeled bias
is the difference butween the mean SSM/I retrieval and the mean radiosonde retrieval. A
negative bias indicates an underestimate by the SSM/I and a positive bias indicates an
overestimate.
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TABLE 7.2
HUGHES ALGORITHM RETRIEVALS
LATITUDE | SAMPLE MEAN STD DEV RMS | BIAS
SIZE | RET | RAOB | RET | RAOB | DIFF
ZONE
60-90 N 209 87| ilLoO 4.3 4.2 32 | 23
55-60 N 37 127 | 133 | 106 8.0 3.8 | -0.6
25-55 N 59 236 [ 27.1 | 150 | 140 52 | 35
2025 N 35 453 | 3891 138 | 122 74 | 6.4
0-20 N 134 442 | 398 | 117 9.0 67 | 4.4
0-20 ° 66 53.8 | 504 | 102 9.3 63 | 3.4
2025 3 0
25-55'S 47 235 | 22| 11l 9.9 38 | 13
55-60 S 0
| 6090S 0
| GLOBAL 587 270 | 263 | 201 | 169 5.1 | 0.7

The algorithm used in the polar regions has a distinct tendency to underestimate the
amount of water vapor that is present and the algorithm used in the warim tropics shows a
tendency to overestimate the amount of water vapor that is present. These two tendencies
effectively cancel each other as the global data set shows a negligible bias. All of the rms
differences are larger than the desired + 2.0 kg/m?. Figure 7.2 is a scatter plot of the global
data set.

At least two factors are scurces of differences between tl = radiosonde and the SSM/I
derived values of total precipitable water. One is errors in the radiosonde determinations of
ternperature, pressure, and humidity. A coefficient of variance of 0.042 for US radiosondcs was
obtained in [3]. This translates into an error of 1.1 kg/m? for this sample set. The other factor
is small scale variability in water vapor. An estimate of this was obtained by comparing the four
values derived from the SSM/I with each other. The rms difference between the four samples
for each raob match-up is 1.5 kg/m?. When these two factors are taken into account the rms
difference between raobs and the Hughes algorithm becomes 4.7 kg/m?. The data presented in
Table 7.2 and shown in i‘igure 7.2 are from the trimmed data set. The trimming procedure is
discussed in Section 7.3.2.2.
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Figure 7.2 - Retrievals from the Hughes algorithm vs raobs. Units are kg/m? or precipitable
millimeters. Values are from the trimmed data set and are composited from the climate codes
that comprise the Hughes algorithm for total precipitable water.

7.3.2.2 Algorithm Improvement

Previous experience with the SMMR instruments on SEASAT and Nimbus 7 shows that
it is possible to achieve rms differences between satellite and radiosonde determinations in the
range 2.0 to 2.5 kg/m’ 31 and [4]. In addition the SMMR algorithms are global and do not int-
roduce latitudinal or seasonal discontinuities in the retrieved water vapor maps.

A global linear algorithm was determined to reduce the retrieval errors presented in Table
7.2. A statistical regression between the set of SSM/I brightness temperatures and tie
corresponding total water vapor as determined from the racbs was used. This preliminary
algorithm was presented at the July 1988 Cal/Va Team meeting. This algorithm was based on
matches that had been obtained up to that time. The data set was biased in that there was an

7-9
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over representation of arctic soundings which biased the sample toward small values of water
vapor. When additional soundings from the trepics were obtained, it was noted that the
preliminary aigorithm did net estimate large values of water vapor very well,

In working with sv'ch a large and heterogeneous data set, there are many possibilities for
errors. To climinate the erroneous data that had not been eliminated earlier, 2% of the largest
positive and 2% of the largest negative differences betwee:: raob and retrieval were eliminated
(i.e. trimmed) and the statistics were re-computed. This trimming procedure is described in [5].

Using standard regression techniques and the larger, more complete data set, an attempt
was made to develop a global, lincar algorithm. Figure 7.3 shows the best linear relationship

Nesdis L i near

RETRIEVELKG/ MA%2)

) T 7 Y
3} 20 40 60

ACTUALCKG/ Mrr2)

Figure 7.3 - Retrievals from a linear, globai algorithm developed at NESDIS vs raobs. Units
are kg/m’ or precipitable millimeters. The linear algorithm has significant non-linearities in the
retrievals. It shows a tendency to overestimate at medi:m values and underestimate at larger
values.




for the dependent data set. In Figure 7.3 there appears to be a non-linear relationship between
total precipitable water as deduced from radiosondes and that deduced from the SSM/T. The
linear algorithm overestimates waier vapor in the mid-range and underestimates latge values.
This observation plus a review of previous v-ork [6-8) led to the consideration of a non-linear
algorithm.

The square of the 22 GHz brightness temperature was introduced as 2 predictor and the
regressions were performed as before. Figure 7.4 is a scatter plot of the best four channel
non-linear algorithm. This algorithm uses 19V, 22V, 37V, and 22V squared. Thus the equation
becomes

TPW = by + b Tav + bTny + by(Tnv)’ + BTy )
The coefficients are given in Table 7.11.
Table 7.3 gives the statistics for this algorithm for both the global data set and lati*ude

zones of the Hughes algorithm. When the radiosonde precision and smail scale variability of
water vapor are taken into account, the rms difference hecomes 2.4 kg/m’.

TABLE 7.3
IMPROVED NON-LINEAR ALGORITHM
LATTIUDE | SAMPLE MEAN STD DEV RMS BIAS
ZONE SIZE RET RACB RET RAOB DIFF

60-90 N 209 11.0 11.0 3.8 4.2 2.0 0.0
55-60 N 37 i4.1 13.3 7.7 8.0 1.9 0.8
25-55 N 59 26.2 27.1 14.4 14.0 33 0.¢
20-25 N 35 41.3 38.9 11.1 12.2 3.7 2.4

0-20N 134 40.3 39.8 9.2 9.0 3.5 0.5

0208 66 48.2 50.3 8.2 9.3 4.3 -2.1
20-25 S O

25-55 S 47 22.8 22.2 19.2 9.9 2.6 0.6
55-60 S 0

60-90 S 0

GLOBAL 387 26.3 26.3 16.7 16.9 3.0 0.0

The non-linear algorithm still shows a tendency to underestimate at the highesi water
vapor values, but ove:icstimates slightly for the next two largest classes. There should be no

7-11
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Figure 7.4 - Retrievals from the NESDIS or improved aigorithm vs -aobs. Units are kg/m?
or precipitable millimeters. Values are from the trimmed data set and were derived with a
global, non-linear algorithm.

bias in the global data set as it is the dependent data set. Another encouraging fact is that the
standard deviations of the raob and predicted (reirieved) sets are : bout the same globally and in
the latitude zones. Figure 7.4 also gives a hint of the tendency to underestimate at large values
and also a hint of a tendency to overestimate at the lowest values.

Additionally, we investigated a segmented non-linear algorithm using the square of the
22V brightness temperature with a weighted average in the transition zones. The best of these
gives very slightly better results than the global algorithms, but has not been implemented due
to coding complexity.

The results presented above are for dependent data that were taken between July, 1987
and April, 1988. We continued to collect raobs until August, 1988. Thus the dat. iuken from
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May through July, 1988 constitute an independent data set. Figure 7.5 is a plot of retricved vs.
observed for the independent data set.
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Figure 7.5 - Retrievals from the non-linear : ‘gorithm for an independent data set collect=d May-
July, 1988. Statistics are in Table 7.4.

The fractional error {(rms diff/mean) x 100} of the water vapor data s >wn in Table 7.4
is 10.8% which is very comparable to the de pendent data set’s fractional ervor of 11.4%. All
eniries in Table 7.4 are in kg/m?.

In addition to the n n-linear algorithm used to } roduce the results thus far presented, two
other non-linear algorithms have been suggested [8] and [?]. The non-linear algorithm f [8]
uses variables of the form log (T, - T,}, where Ty is the brightness temperature and T, is
a threshold temperature greater than any T,. Using our dependent data set of 587 observations,
we derived coefficients for an algorithm using four logarithmic variables. The rnss difference
between predicted and observed is 2.97 kg/m?. The best four channels are 19H, 22V, 37V, and
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8SH. The 22V 1s obviously the dominant predicior and other combinations involving 22V do
almost as weil.

TABLE 7.4
INDEPENDENT DATA SET
LATTIUDE SAMPLE MEAN STD DEV RMS BIAS
ZONE S2E 1 rer | raoB | rerT | Raom | P'F

60-90 N 33 146 | 142 5.4 6.3 33 | 04 |
55-60 N 0 0 0 0 0 o | o
2555 N 19 351 | 367 | 113 | 121 52 | -16
2025 N 16 s65 | 453 | 124 | 127 | 41 | 12
0-20 N 40 456 | 464 | 71 88 | 51 | -08

0208 51 s03 | s1.9 | 70| 83| 38 |-L6
2025 § 0 0

2555 12 207 | 20 | o5 | 111 a0 | 04
55-60 S 0

60-90 S 0

GLOBAL 17 | w2 | 389 [ 161 | 7 42 | 07

7.3.3 CONCLUSIONS

Bas~d on comparisons of the SSM/I retrieved total water vapor and total water vapor
derived from radiosonde data, the Hughes algorithm does not mect the SSM/I specifications of
+ 2.0 kg/m? over the range 0 - 80 kg/m’. A global rms difference of 4.7 kg/m* war observed
with zonal rms differences ranging from 2.6 kg/m? in the Arctic to 7.2 ¥¢/m? in the tropics.
In addition due to the intrinsic hmitations of the zonal or sequential algorithm at the boundaries,
abvious erroneous discontinuities were introduced in the retrieved water vapor maps.

Initial efforts to smprove the a'zorithm entered on denivi |, a globai linear ~lgorithir. When
this formulation also proved inadequate to meet specificauons, a non-jir_ar algorith: 1 was
constructed using a quadratic term for the 22V cheunel. Ttis algorithne resulied in a large
reduction of the rms retrieval errors on a global and zonal basis and removes the discontinuitivs
at the boundaries of ‘he zonal regions. The giobal rms diflerence . were reduced to 2.4 kg/m’.
It should be noted th:at due to the tiexibility of the SSM/I softwa. 2, the non-linear algorithun used
to generate vesclts in Tavles 7.3 and 7.4 may be readily isnplemented.

A few cautionary r~ma;ks are in order. The use of a nonhues: algerithm will
undoubtedly increase the sensitivity of water veper _otrievals to cloud water amount, the
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presence of procipitation, and the preseuce of sex ice. It is very important that the proecipitation
screen given with the algorithm coefficients be used with this algorithm. It is also important that
retrievals not be attempted when ice is in the SSM/I ield-of-view.

It is recommended that radiosonde data be collected periodically to provide a quality
control on the water vapor product. This could be accomplished by the peniodic collection of
raobs from the stations used in the validation study and comparing 1etricvals.

As part of our validation effort for total precipitable water, we investigated both lineur
and non-linear algorithms. OGur results indicate that a non-lincar algorithm is required for besi
agreement between observed and derived values.

7.4 CLOUD LIQUID WATEKR

7 4.1 Surface Data Sources

The sources of d-ta for validation of the cloud liquid water content were upward looking
microwave radiometers. Measurements were made by NOAA-WPL personnel and University
of Massachusetts (UMass) personnel. The NOAA measurements were made at San Nicolas
Island as part of Project FIRE and at the four sites of the Colorado remote profiler network.
The four sites are Dunver (Stapletors Airport), Fleming, Flagler, and Platteville. The
radiometers in the Colorado network are fixed zenith viewing radiometers that operate at 20.6
and 31.65 GHz. The Stapleton airport installation also has four frequencies in the oxygen
complex for temperature profile retrievals. All of the stations have Doppler radars for wind
spoad and direction measurenienis. These sidilons are described in [i0]. The San Nioolas
measuremen's were made by a poitabie radiometer that has a steerable beam and is described
in [11]. Data from the Colorado network stations which operate in an automated continuous
mode were obtained for the periods July 15-October 15, 1987 and january 15-April 15, 1988
to provide for a range of scasons and surface conditions. The San Nicolas Island data were
taken between July 2 and July 19, 1987. The accuracy of the NOAA profiler network
d.terminations of cloud liquid water are estimated [12] to be 5.2 E-3 kg/m’.

The UMass measurements were made using an autocorrelation radiometer operating
between 20.5 and 23.5 GHz and an auxihary radiometer at 37 GHz. These measurements were
made at Kwajalein Isiand. The operation of the autocorrelation radiometer is described in [13].
The Kwajalein data were taken between March 24 and April 7, 1988.

To compensate for the different fields-of-view of the surface based radiometers and the
SSM/T the NOAA data were averaged over a two hour ncriod, one hour on either side of the
ovemass time. The UUMass data were averaged over a oue hour time period, one half hour on
eith.r side of the overpass time.
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Charactentstics of o NOAA prefiler vadiomiciers are given ir Table 7.5 All latitudas
are Notth aid <l iemgitudes are West, Th. cffertive fields-of view (EFOV) ae the 3 AR
beamw dths and the spot swces a7 In meters for a distance of | km.

E‘km. T TS te ok Lor s cu P T =31

TAPRLE 7.5

CHARACTERISTICS OF NOAA PROFILING NETWORK

NOAA PROFILER NETWORK EFOV SAMPLING
) IME
f SITE LAT [LONG { DEJREE | SPOT TIME
“ DENVER 35.8 105 25 4 M 2 MIN
' FLEMING 40.6 103 4 70M 2 MIN
I FLAGLER 39.1 103 4 70 M 2 MIN
PLATTEVILLE 40.2 105 4 0 M 2 MIN
IL SAN NICOLAS LX) 119 25 44 M 1 MIN

Characteristics of the UMass autocorrelation radiometer (CORRAD) are given in Table
7.6. The precision estimate for the CORRAD is given in [14].

TABLE 7.6 ‘i-l

CHARACTERISTICS CF CORRAD

RE BANDPASS 20.5-23.5 GHz
" TIME DELAYS 1.2 TO 6.1 NS (0.1 NS STEPS)
FREQUENCY RESOLUTION 0 MHz/100 MHz (3 dB)
RECEIVER NOISE TEMPERATURE | 2000 K
NOISE FLOOR (AT} 0 © Ki(SEC)'?
EFOV , 2 DEGRYES
FCOTPRINT @ 1 KM ISM
SAMPLING TIMRE 10 MIN
KWAJALEIN ISLAND 8.7N, 167.7 E)
PRECISION 8.0F-3 kg/m?

7.4.2 Comparisons

7.4.2.1 Initial Hughes Algorithm
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The initial Hughes algorithm [1) used to retrieve cloud liquid water was a linear, four-
channel algorithm that was generated by regression using trightness temperatures calculated
from simulated clouds and a radiative transfer model. The algorithm was divided into latitudinal
and scasonal segments called climate codes. There were eleven climate codes per hemisphere.
Over the ocean there were nine distinct sets of coefficients that used the 194, 22V, 37V, and
37H channels. Over land there was one set of coefficients per climate code which used the 19V,
19H, 37V, and 85V channels. Another set of coefficients was used to retrieve cloud water over
snow. This set of coefficients was used for all climate codes and utilized the 22V, 37H, 85V,
and 85H chaunnels.

The latitude zones were the same as those used in the water vapor algorithin. The opposite
hem:sphere is seasonally adjusted so that seasonal algorithms are used in the appropriaie season
and latitude zone.

Two special categories of reirievals were created; out-of-limits and indeterminate. All
geophysical retmevals were tested to determine whether they were within a physically possible
range of values. If they were outside the physically possible range, they were assigned an out-
cf-limits value, usualiy 1 less than the maximum number of counts allocated for that parameter.
The indeterminate classification implies that certain logical conditions are: not being met or that
the pixel under consideration may bt.. part ocean and part land (i.e., coastz1). The irdeterminate
category was assigned the maximum count value.

We feund that more than 90% of all retrieved values of cloud liquid water were either
out-of-limits or indeterminate values. This percentage was found at all test sites and before and
after the SSM/T’s shutdown during December and January 1VE7-8, Recause of this finding, we

decided to improve the algorithm.

7.4.2.2 Improved Algorithm

The approach taken to improve the cloud liquid water algorithin was similar to that
employed for the water vapor algorithm development. Su: "ace values and brightness
temperatures were matched and standard linear regression techniques were used to find the best
set of channels and ccefficients. Our retrieval equation is linear in brightness temperature and
of the form

CLW =a, + L a*Ty, i = 1,2,...7 3)

where the a;'s are coefficients and the Ty;’s are brightness temperatures. Table 7.7 gives the
explicit relationships between channel frequency and polarization and coefficient number.
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TABLE 7.7

: ALGORITHM CHANNEL AND CCEFFICIENT DESIGN/.TION
% ! CHANNEL NC COEFFICIENT SYMBOL CHANNEL

2y
a Thy 19v
19H
2V
KYA"
37TH
85v
&§SH

The land and ocean cases were separated and the land cases were further divided into

snow and no snow groups. Initial cotrelations on the entire data set, which consisted of clear

- and cloudy cases yielded very iow correlation coefficients. Next cases, where the CLW content

was < 5.0E-3 kg/m? were excluded from the data set. The channels which gave the best

correlation are 19V, 19H, 37V, and 85H. The 85V channel was excluded from the regressions
because of its increased noise. The snow data set was analyzed separately.

Using the discriminants 19K - 85H > 8K and maps of weekly srow cover to establish
the presence of snow, a set of observations was analyzed for cloud liquid waier conieni. Al
. cases where the CLW content was < S.0E-3 kg/m? were excluded. The best results of our
$ attempts to find an improved ciloud liquid water aigor.thm over land are shown in Table 7.8. It
is readily apparent from the low values of ihe correlation coefficients in Table 7.8 that the
development of a CLW algorithm for iand and snow surfaces will be very difficult at best. It
is worth noting the corrclation coefficients improve if the presence of clouds can be inferred

from other sources.

The cloud liquid water determinations over the ocean yielded better results. Initially it
was intended to ~nalyze the San Nicholas Island and Kwajalein Island data separately and then
as a combined data set. When the sizes ol the two data sets were considered (10 samples per
island), the decision was made to analyze them as a combined datz set. In addition to the
standard linear regression procedures, we performed additional independent statistical analysis
as well. In analyzing the data all possible four channel combination were considered as well as
a full six cnanne! algorithm. The six channel algorithm gives a slightly higher explained
variance or corrlation coefficient than any four channel algorithm, however the standard crror
of the estimate is greater because of the reduced number of degrees of freedom. Table 7.9 gives
the correlation ceeffici: 1t (R) and standard error of the estimate (S.E.E.) for some channel
combinations. Figure 7.6 is s plot of satellite versus surface values for the combined oceanic
data set using the best four channel algorithm. After completing our analysis of the best four
channel algorithm, the 85H channel became quite noisy. The other four channel algorithm
shown in Table 7.9 is the best algorithm excluding 85H.
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TABLE 7.8 '
. CLOUD LIQUID WA ‘ER ESULTS
RMS DIFF
NO. OBS. CORR. COEFF. MEANKG/M) |  (KG/M)
LAND
232 0.214 0.005 0.021
CLW > u.005
32 0.445 0.037 0.045
SNOW
201 0.185 0.007 0.031
CLW > 0.005
a 0.369 0.0.2 0.063
TAPLE 7.9 1
0 CLW ALGORITHM RESULTS
CHANNEL NO. SAMPLES | MEAN S.E.E. R
1,2,3,4,5,7 20 0.136 0.042 0.892
2,3,4,7 20 0.136 0.039 0.891
2,3,4,5 20 0.136 0.040 0.886
4 20 0.136 0.039 C.871

As part of our statistical analysis, it was noted that the 37V chanrel alone is 2 good
predictor of cloud liquid water. The st tistics for the 37V channel are also included in Table
1.9.

Because of the limited size of the occean data set, further statistical analysis was
performed. We used the cross-vai:dation and jackknifing techaiques to examine our results.




Retrieved vs. QObcei-ved
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Figure 7.6 - A plot of retrieved vs observed cloud liquid water for the combined San Nicolas
and Kwajalein data sets. The units are kg/m*. The San Nicolas points are shown as piuses and
the Kwajalein points are shown as diamonds. The solid line is the “perfect agreement” line.
The retrieved values are from the dependent data set.

These procedures are discussed in {15). For cross-validation we generated 2 quasi-independent
data set by using 19 of the 20 points as dependent data and predicting the 20th. This

was repeated until all 20 points had been predicted independently. We used the same four
channelis that gave the lowest rms difference for the compleiely dependent data set.

Using a procedure known as jackknifing {15], we generated another independent estimate
of the retrieved mean, standard deviation, and rms difference between the retrievals and the
ground based cloud liquid water measurements. The relationship {15] (PARMSTAR) = 20*(-
PARMAI L) - 19*(PARM),, where PARMALL is the parameter from the completely dependent
data set and PARM is the parameter when it is calculated from =~ -ata set of 19 points, was esed.
The jackknifed values presented in Table 7.10 are average. of 20 such computations of
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PARMSTAR for each parameter. Table 7.10 presents a summary of the observed and three
retrieved data sets.

-E TABLE 7.10
STATISTICAL. COMFARISONS
OBS REGR CROSS-VAL JACKKNIFE

NO OF CASES 20 20 20 20
MINIMUM 0.00 0.02 -0.04 -
MAXITMUM 0.28 0.22 0.23 -

MEAN 0.136 0.136 C.140 0.136
STD DEV 0.077 0.067 0.068 0.077
RMS DIFF -~ 0.035 | 0.048 0.040

The three retrieved data sets are quite congistent. All have a negligible bias about the
mean when compared with the observ:  datu set. The standard deviations of the retrizved values
are slightly smaller than the standard deviation of the observed value, a fact not uncommon to
regression algorithms. The rms differences are remarkably sienit.u for the three computations.
Even though the sample size ie small | there are “>vr oradictors and . © degrees of frecdom. The

improved algorithm seems to be statistically significant and “robust™.
7.4.3 Conclusions

In view of the very low correlations between brightness temperatures and cloud liquid
water content over land and snow, it is recommended that retrievals of thic parameter not be
attempted. If an independent way of determining the presen~e of clouds can be fouad, .t might
be possible to devise an algorithm that will give a usefu. estimate of the cloud fi-mid water
content.

It should be noted that C )lorado is nct an ideai site for testing cloud liquid water content
algorithms because of its altitude and generally dry conditions. The NOAA profiler network is
almost the only source of routine measurements of clo:d liquid water. It is ti*ely that the SSM/I
can detect heavier water clouds over Jand kefore the onset of actual precipitation.

Itis recommended that a quality control procedure be instituted for the cloud liquid water
product as well. Collecting significant amounts of cloud liquid water measuren: nts from surface
based systems is a major undertaking. The recommended procedure is to use either OLS data
which can be co-located with the SSM/I or GOES visible and infrared data and compare g. alita-
tively where the .SM/I algorithm places clouds and their water content versus the visible and
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IR images which should show <loud location over the ocean rather well. It should be ebvious
if the SSM/I "misses” clouds or places them in clear areas.

The initial recommendation wzs to use the six channel agorithm because it explained the
most variance. Further examination revealed that a four channel algorithm probably gave better
results, especially when ~onsidering the standard error of the estimate. Our additional analysis
also revealed that the 37V channel alone is a very good predictor of cloud liquid water. After
most of the analysis for the Cal/Val effort was completed, the noise of the 85H channel
increased significantly. As a result, we developed a CLW algorithm that does not use either 85
GHz channel.

Table 7.11 gives the actual coefficients for the channels vsed in the recommended
algorithms. We show the latest total precipitable water algorithm which is non-linear and global.
We show algorithin; for cloud liquid water. Inciuded are coefficients for a six channel
algorithin, coefficients for two four channel algorithms with and without 85H and a single
channel algorithm using only 37V. The retrieved param ‘ters will have the units of kg/m?

The resuits rreseated here have also been presented in Alishouse et al [16] and Alishouse
et al [17].

TABLE 7.11 ]
RECOMMENDED ALCORITEM COEFFICIENTS i
CHANNEL WATER | CLW CLW CLW CLW
VAPGR OCEAN OCEAN OCEAN GCCEAN
& CHANNELS W 8SH W/O 85H 37V
19V -0.148596 1.5817E-3 —— - ——
19H ——— 5.8.75E-3 6.0257E-3 8.4333E-3 ——
nV -1.829125 -5.6345E-3 -4,.8803E-3 -7.5959E-3 —_— F
22V (SQRD) 6.1938-3 —— —— — ——--
37V 0.36954 2.0037E-2 1.959SE-2 2.0131E-2 1.18122E-2
37H ——— -7.200 E4 — -5.3066E-3 ————
85V ~n—— — — —— —
S5H —_— -2.7658L-3 -3.C107E-3 ——— —
INTERCEPT 232.89493 -3.31378 -3.14559 -2.838179 -2.4527%

Precipitation Screen:

7-2%

If -11.7939 - 0.C2727* Ty + 0.09920%T gy < 0K

then compute water vapor and cloud liquid water over ocean.
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8.0 WIND SPEED VALIDATION

The SSM/I wind speed retrieval algorithm developed by Environmental Research and
Techniology, Inc. (ERT) for Hughes Aircraft is called the D-matrix algorithm and has the
following form [1]:

SW = Cﬁ+Clj'T819H.+CZj’Tm+C3j'TB37V+C‘j‘TBS'IH‘ (8.1)

Equaticn (8.1) is valid only over open ocean where the wind speed, SW, is in m/s and
referenced to a height of 19.5 m above the surface. Equation (8.1) also contains the terms Tg,
which represent the brightness temperature of frequency/polarization combination "x" and the
D-matrix coefficients, C;, where ®j” is the climate code index and varies from 1 to 11. The
eleven sets of coefficients (only S of which are distinct) used in the original D-matrix algorithm
are listed in Table 8.1. Bach of the 9 distinct cLmate codes represents a particular season and
latitude band as shown in Table 8.2.

Since microwave radiation at the SSM/I .requencies is heavily attenuated by rain in the
earth’s atmosphere which masks the wind speed signature generated by waves and foam on the
ocean surface, ERT suggested the use of a rzin-flag for the purpose of identifying conditions

COEFFICIENTS OF THE ORIGINAL HUGHES D-MATRIX ALGORITHM

Climate C, C, C, C, C.

Code
1 191.560 .4903 -.4432 -.9199 1
2 163.390 .5366 -.4548 -.7656 .2035
3 177.315 .3913 -.2818 -1.0083 .4095
4 147.760 5077 -.3547 -.7409 2333
5 127.130 .4788 -.2546 - 7162 .2030
6 163.070 .2923 -.1204 ~-1.0967 4612
7 95.994 .6106 -.3034 -.4638 0192
8 130.420 .367¢ -.1508 -.8400 .3056
9 117.50 4225 -.1899 -. 7096 2081

10 130.420 .3676 -.1580 -.8400 3056

11 117.590 4225 ~.1899 -. 7096 2081 i
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TABLE 8.2

CLIMATE CODES OF THE HUGHES D-MATRIX ALGORITHM

SEASON CLIMATE
ZONE (NC' .vHERN HEMISPHERE) ('ODE
Tropics _ // JUN-NOV 1

(020 LAT )=z "

T—— DEC-MAY 2
Low-Lat. Transition JUN NOV 3

(20-25 LAT.)

DEC-MAY 4

Mid-Latitude SEP-NOV, MAR-MAY 5

(25-55 LA'R)/ JUN-AUG 6
Aretic MAY-UC™ 8

T T———— NOV-APR 9

1IF: Thioy > 190K
OR: [Tgyrv - Teerd < 25K

unde: which less accurate w.nd speed retrievals are produced. The original rain-flag logic is
shown below.

Then possible rain exists and rain-flag == 1

IF: [Ty - Tosmd < 10K

Then heavy rain exists and rain-flag = 2

Otherwise rain-flag = 0

The accuracy specification for wind speed retrievals under conditions of no rainfall (i.e.,
rain-flag = 0) was + 2 m/s over the range 3 to 25 m/s. Accuracy was not specisied for wind




reirievals from celis flagged either 1 or 2. In fact, the original D-matrix algorithm did not
attempt to retiieve winds under rain-flag 2 condi‘ions.

8.1 NOAA BUOY SYSTEM AND CRITERIA FOR COMPARISON

Validation of the SSM/I wind speed retrievals was done using the anemometer measured
winds of open ocean buoys maintained by the National Oceanic and Atmospheric Administration
(NOAA). These buoys record an 8.5 minute average of the wind once every hour with an
accuracy of + 0.5 m/s for winds less than 10 m/s and 5% for winds greater than 10 m/s [2).

In anticipation of SSM/I antenna sidelobes, which could give rise to land contamination
of ocean brightness temperatures, only bucys further than 100 kn from land were chosen for
the validation. The 19 NOAA buoys actually used for the validation are listed in Table 8.3.

The wind speed observations taken by the ocean buoys were at heights of either S or 10
meters above the surface. These measurements were converted to equivalent winds at 19.5
meters above the surface [3] so that they could be compared directly to the SSM/I estimates
which predict winds at the 19.5 meter level. Coaverted buoy winds and D-matrix winds were
paired only when the SSM/I retrieval was located within 25 kin of the buoy positicn and the
SSM/I overpass time was within 30 minutcs of the buoy wind speed measurement. Bascd on
the work of Monaldo [4], a spatial difference of 25 km and a temporal difference of 30 minutes
between SSM/I and buoy measured wind speeds adds variances of approximately 0.5 m/s and

—— = o b b T o e o L al _

0.2 /s, respectively, o the tolal variance of tUie comparison. These variances increase the toiai
standard deviation of 2 m/s by less than 10% and therefore contribute only slightly to the overall
error. Because a 25 km spatial separation introduces little additional error to the comparison
of SSM/I and buoy winds, the SSM/I geolocation problem (see the instrument calibration section
of this report) which resulls in positioning errors of between 5 and 25 kilometers, does not
significantly affect the wind speed validation. This comparison criteria also stipulatcs that only
one SSM/T-buoy pair be selected from each SSM/I overpass. Thus the validation data set was
composed of independent comparisons.

8.2 REQUIRED NUMBER OF COMPARISONS

The accuracy specification of + 2 m/s for D-matrix wind speed retrievals can be
interpreted in at least iwo ways. One interpretation is that this is the standard deviation, in an
average sense, of the difference between all coincident buoy and SSM/I wind speed
measurements. An alternative interpretation is that the standard deviation of such comparisons
in any sub-interval of the 3-25 m/s wind speed range nust not exceed 2 m/s. The first of these
two interpretations can disguise the fact that over certain sub-inteivals of the 3-25 m/s wind
speed range, the accuracy of the D-matrix prediction may be worse than + 2 m/s. In fact, a
modeled error budget (discussed in section 8.3) predicis that the accuracy is wind speed
dependent. It is possible that sub-intervals with accuracies worse than + 2 m/s could average
with sub-intervals having accuracies betier than 4 2 m/s to give a resulting overall accuracy of
better than + 2 m/s. This is oflen true for regression-type algorithms, like the D-matrix, which
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TABLE 8.3
‘ NOAA BUOYS USED RFGR THE SSM/I WIND SPEED VALIDATION
NUMBER OF |
Bt OY LD. LATITUDE | LONGITUDE ZONE SSM/I ‘
(E) PASSES
IN 3C DAYS

51002 17.2 202.2 Tropics 31
51004 17.5 207.4 Tropics 31
51003 19.2 199.2 Tropics 32
51001 23.4 197.7 Low Lat Trans 33
42001 25.9 270.3 Mid fat 33
42002 26.0 266.5 Mid Lat 33
42003 26.0 274.1 Mid Lat 33
41006 29.3 282.6 Mid Lat 34
41002 32.2 284.7 Mid Lat 35
44004 38.5 289.4 Mid Lat 38
46006 40.8 222.4 Mid Lat 39
44011 41.1 293.4 Mid Lat 40
46002 425 229.6 Mid Lat 41
44005 42.7 231.7 Mid Lai éi
3 46005 46.1 229.0 Mid Lat 43
46004 50.9 224.1 Mid Lat 47
46003 51.9 204.1 Mid Lat 48
46001 - 56.3 211.7 Arctic 55
182.3 ic 56

tend te make especially good predictions near the overall average wind speed and predictions
of less accuracy for wind speeds which are removed from the average wind speed. For this
reason, the 3-25 m/s wind speed range of interest wa . divided into the 6 sub-infervals shown ir.
Table 8.4 and the D-matrix performance was analyzed in each sub-intervzi. Also shown in
Table 8.4 is the number of comparisons out of 1,000 for which the buoy wind speed falls within
th.e particular sub-interval range. These comparison counts are based on the global distribution
of winds given by Schroeder [5] which is shown in Figure 8.1.

It is preferable to have a sample size of 30 or more when doing statistical analysix [6}
of the data. For wind speed sub-intervais 1, 2, and 3, it appears that this sample size can be
obtained by coliecting approximately 140 comparisons. Preliminary studies showed that about
15% of the da*a are rain-flagged and since the comparisons are made only with data which is
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not rain-flagged, the sample size required
for each climate code neceded to be
increased 15% from 140 to 161. Although .
this relatively small number of comparisons D-MATRIX/BUGY WIND SPEED
could be obtained in 60 days using three COMPARISONS

buoys, other factors af” ct the totai

TABLE 8.4

required buoy ocount. Thuse include lost Comparisons
data due to periedic buoy maintenance and
the likelihood of encountering wind speeds |- Range (m/s) per 1000
distributed according to Figure 8.1. These 1 3-6 260
factors were determined from actual 2 6-1C 395
climatic summaries [7) prepared by the 3 10-14 215
National Climatic Data Cenier for the 4 14-18 50
individual data buoys. 5 18-22 25

6 22-25 1

Finally, to complete the validation
within one year we must have enough
buoys within each of the D-m~trix latitude
bands and enough SSM/I overpasses per buoy to collect the required 161 comparisons per
season. The number of SSM/I overpasses depends on the latitude (LAT) of the buoy and can
be approximaied by using equation (8.2).

. 2 4 amema

rraenn = -~ - .
MUT Overpasses in 30 Davs = 30/cns{iL.AT

~

76 A
106.2)

”
(2]
1.4
g
-

Equation (8.2) is reasonably accurate up through 60 degrees latitude, above which the error
exceeds 15%.

This aralysis established that the 19 buoys selected could more than satisfy all but the
highest wind speed validation requirements. That is, the low probability of observing winds
greater than 15 /s made it difficult to evaluate the overall performance of the D-mairix
algorithm in the range 15-25 m/s. This problem is discussed more fully in section 8.6.

8.3 FRE-LAUNCH VALIDATION MODELING -- ERROR BUDGET

The sources of random crrors associated with the comparison of SSM/I wind retrievals
and ocean buoy measurements are summarized in the following error budget.

* Extrapolation noise. (Buoy average at 2 point differs from the instantanecus
spatial average made by the SSM/T).

* SSM/T instrument noise.

Buoy ins  aent noise.




* D-matrix algorithm model noise. (inability of algorithm to model exactly the
radiative transfer processes).

he Decorrelatior noise. (Spatial and temporal separation of the SSM/I and bucy
measurenients).

* Translation noise. (Errors in transiating the buoy wind measurement to 4 height
of 19.5 m).

* Round-off noise. (Error due to rounding SSM/I winds to the nearest m/s)

The magnitude of these errors (less decorrelation noise and translation noise) is shown
in Figure 8.2 over the wind speed range of 3 to 25 m/s for the Climate Code 5 algorithm. Plots
for the other & versions of the D-matrix algorithin are very similar to the results of Climate
Code 5 and are therefore not shown. In generating the extrapolation noise curve of Figure 8.2,
the one-dimensional wind fie!d model of Pierson {8] was used as wcre effective footprint
diameters of 53, 49, and 32 km far the 19, 22, and 37 GHz SSM/I channels, respectively. The
buoy noise, which was discusced previously, is from Gilhouser {2]. The model noise was
specified by Hughes Aircraft in a report by Lo [9].

The instrument noise as specified by Haghes [1] for the 19H, 22V, 37V, and 37H is
0.41, 0.75, 0.38, and 0.39 degrees Xelvin,respectively. The round-off noise is due to the fact
that the operational D-matrix algorithm retrievals are rounded off to the nearest wholc m/s

hefnre bea___n.c recordad Ahhnnnh the round off noiae = doas not contibule mgluﬁwuuv 4o the toial

error of D-matrix retrievals, subsequent users of the data will introduce an error due to rounding
when converting from m/s to either miles/hour or knots (in the case of knots, an average error
of 0.7 knots and a maximum error of 1.5 knots will result). The average errors due to spatial
and temporal separation of SSM/I and buoy measurements are not included in the plot since they
do not contribute significantly to the total. Likewise, errors in converting the buoy wind
measurements to i height of 19.5 m are insignificant and are not shown in the piot.

8.4 VALIDATION RESULTS

Performance of the climate code 5 version of the original D-matrix algorithm is shown
by the scatter plot in Figure 8.3. The legead shown in the iower right hand comer of the scatter
plot is interpreted as follows. The bias and slope data indicates the y-axis intercept and slope
of the regression line which has been chosen to minimize the sum of the squares of the
horizontal distances from each point to the regression line. The SD is the standard deviation of
the quantity, (D-matrix winds minus buoy winds). The line labeled "CORR(R)" is the
correlation coefficient [10] between buoy winds and D-matrix winds. Finally, the line labeled
"#OBS" gives the number f observations or data points in the scatter plot. Figure 8.3 indicates
that the Climate Code 5 D-matrix wind speed retrievals are scaled and biased by (.85 and 5.7
m/s, respectively. This poor performance of the Climate Code 5 aigorithm is typica’ of the
other versions of the original D-matrix algorithm.
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To correct this problem new coefficients were generated using standard linear segression
of buoy wind speed on the coincident SSM/T brightness tempera ure measurements, Tyiou, Tanv,
Thev, and Tyyqy. Performance of the new Climate Code 5 D-matrix algerithm is shown in
Figure 8.4. The regression line associated with this scatter plot now has the desired slope of
1.0 and bias of 0.0 indicating that the scale and bias problems of the original algorithm have
been corrected. Despite the apparent good performance of the new al orithms, additional
improvements are necessary and will be discussed later in section 8.5.

Before analyzing the retrieval accuracy over various wind speed sub-intervals, it was
nocessary to re-evaluate the rain-flag criteria. Nevs rain-flag thresholds were determined using
residual plots like those shown in Figures 8.5 and 8.6 which indicate the performance of the new
I natrix algorithm as a function of the parameters used to determine rain, which are (Tyyy -
Tamy and Tyyey. Each of the data sets in the residual plots were then sub-divided into a number
of range bins and the standard deviation, SD, and average (also called bias) of the points falling
withi: each bin were calculated. The results of these calculations are shown in Figures 8.7 and
8.8. The rain-flag thres: oids were determined from these plots by locating values of the rain-
flag parameiers for which either the "SD" or "BIAS" cunes crossed some predetermined
accuracy level. For exampie, the accurscy vequirement for retrievals with rain-flag ze: is 2
m/s.

From Figures 8.7 and 8.8, one can sec that the algorithm fails to meet this specificaticn
when either (Tps7v-Trym) < 50 or Tyioy > 150. In this way, entirely new rain-flag criteria were
defined. These are summarized in Tabie 8.5, Note our recommendation o usc the four rain-
flags 0, 1, 2, and 3, insicad of the original three. It *; recommended that wind specds be
calculated under all rain-flag conditions and that th. a: uciated rain-flag be the user’s guide to
the 2ccuracy of the retrieval. Ti1s practice differs from the oneration of the original D-matrix
which retrieved winds only under rain-flag 0 and 1 conditions. Finally, it should be pointed out
tha: the term "rain-flag” is somewhat misleading since the rain-flags (except rain-flag 0) indicate
any condition (including r-in) which leads to reduced retrieval accuracy. The accuracy of the
D -matrix retrievals is, in i ict, very sensitive to rain since rain rates of less than 1 mm/hr will
trip rain-flag 1 [11] (see also the section of this zcport on the validation of the D-matrix rain-rate
algorithm).

Table 8.5 shows the new D-matnx coefficients for all 9 climate codes which were
derived using actual SSM/I data from the period 10 July 1987 through 31 March 1988. The
measured standard deviation of the difference between buoy winds and D-matrix winds for each
of the cl ate codes under rain-flag 0 conditions is shown in Table 8.6. At least in the average
sense, ail Y D-matrix algorithms appear to exceed the accuracy specification of + 2 m/s. Also
:hown in Table 8.6 is the total number of buoy/D matrix wind comparisons from each climate
code snd the percenta ‘e of these that were tagged with a rain-flag of 1 or higher. Although the
results shown . Table 8.6 arc quite goud, the D-matrix wind speed algorithm has several
limitations which are discussed in the following saction.
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'TABLE 8.5

NEW RAIN-FLAG CRITERIA AND COEFFICIENTS

Rain Flag Criteria Accuracy I
0 Masry - Taar) > To < 2 m/s l
and Tyoy < T,
1 (Tasry - Tesnd < T
or TBE?H > Tl 2 - 5 ln/S h
3 (’rm = Tm) < T;, > 10 m/s
Climate Co C, C, C, C, To T, T, T;
Code
||I i 211.2Z 1 G.5050 1 0 3703 ¢t -i 1044 00,4458 S¢ {175 25 20 .
2 202.87 | 0.1316 | -0.2455 | -: 3138 | 0.8080 { 50 |15 25 20
3 195. 8 | 0.2996 | -0.2363 | - .2266 | 05776 | 5y | 175 25 20
4 172.72 | 0.3908 | -0.3130 | -1.0296 | 0.4926 | S0 | 175 25 20
5 158.63 0.4224 | -0.2439 | -0.9839 0.3725 50 165 30 25
6 161.45 | 0.2964 | -0.1613 | -1.063" 0.4524 50 | 165 30 25
7 151.64 | 0.5994 | 0.3274 | -0.9i3. 0.2977 | 50 | 165 30 25
8 137.72 | 0.7330 | -0.4208 | -1.7533 | 0.i804 | 50 | 130 35 30
9 109.93 0.8695 | -0.4710 _~0.6008 0.1158 50 130 35 30

8.5 D-MATRIX LIMITATIONS

Wind speed residual plots were again used to study limitations of the D-matrix algorithm.
Plotting the residual as a function of buoy measured wind speed demonstrates the D-matrix
performance over sub-intervals of the 3-25 m/s range. Figure 8.9 shows the plot for Climate
Code 5 which is typicai of all & climate code versions of the D-mutrix. Dividing the region of

Figure 8.9 into a number of range bins and calculating the S ) and bias (i.e., average) of the

points faliing within each bin results in the "interpreted” residual plot shown in Figure 8.10.

This figure shows that the accuracy of the D-matrix retrievals :5 best near the global average
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TARBLE 8.6
PERFORMANCE OF REVISED D-MATRIX
ALGORITHM
Climate S.. Pcrcentage I Number of
Code /s Rain Flagged | Compacisons H
1 1.5 17 376
2 1.4 10 63
3 1.5 & 109
4 L5 9 43
5 1.8 13 1296
6 1.5 12 643
7 1.9 18 516
g 1.8 19 279
g )
A S 2 =77

wind speed of 7 m/s and becomes warse for pradictione away fiom 7 m/s. Note that the trend
ot the SI? curve agrees quite weid with the pre-launch error budget model described in figure

82. Al note from the has curve of Figure 8.10 that the high wind speed (> 15 m/s)
retrievals are biased low by more than 2 m/s.

Although the retneval accuracy is mei across the climate code boundaries, the
discontinuity of the retrieved winds across these boundaries is disturbing. ‘This is illustrated .
ine giobal chast (see Figure 8.11) of SSM/I wind speeds for the period January - February 1988.
T1he average discontinuity acrass gach latitude band boundary was also calculated using actual
SSM/I data. The resulis are summarized 1 Table 8.7.

The accuracy of the wind speed retrievals deteriorates rapidly 1n rain as was indicated
by Figure 8.7. This is not so much a problemn with the algorithm as it is a problem with the
frequencies used by the SSM/L. Microwave radiation at 19, 22 and 37 GHz is heavily aitenuated
Jy water vapor and rain in the carth’s atmosphere, effectively masking the wind speed signature
renerated by ocean, surface foam and waves. This attenuation significantly aft «cts the ability of
the SSM/T (¢ renieve accnrate winds in and around typhoons and hurricanes where rain and
hcavy clou!s are provalent. Figure 8.1¢ shews the rain-flagged arcas of typhoon Wynnic ds it
appeased on July 235, 1987 ot approximaicly 20407, According o airerift reconnaissance data
coilect i by the Air Force/Navy Joint Typhoon Warning Center, . voundary enclosing the
rain -flag 3 area corresponds roughly to the 25 m/s wind speed radius of this siorm. Visuvally

ob: erved winds {am the aneraft acar the storm center were reported to be as high as 60 m/s.
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brpuie 812 - Ran-tlageed arcas of typhoon Wynne as it passed over the Mariana
islands on June 29 1987 at 20457, ianes dehineating rain Hlagped arcas within
the storm are shown with theeir standard deviation retneval accuracies.,
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! TABLE 8.7
@ WIND 5PEED DISCCNTINUITY ACROSS THE D-MATRIX ZONAL BOUNDARIES
Ciimate v l
Cudes 1 2 2 4 5 6 7 g
i 0 0.1/1.4 0.5/0.6 -—-- .- — — ——
2 0 --- 1.2/1.8 -— — -— —_
3 4] - 1.9/1.6 | 2.0/1.5 -— -
3 0 1.4/1.2 — 0.8/2.1 —
! 5 0 — -— 0.4/1.3
l 6 0 - 0.5/1.5
, 7 0 —
L 0
9
Avcrage (m/s)/Standa.d Deviation (m/s)

0 An apparcnt SSM/T scan positior mias 1» the D-matrnix winds has been observed using the

recidual piot shown in I-igure 8.13. * pit.i, yaw and roil error of the SSM/I is believed to be

partly respousible for this phenormena. This question is discussed further in another section of

_ this report which a<dresscs the geolocation problem. When the geolocation problem is solved,
a slight adjustment of the IDX-matrix coefficients may be necessary.

In coscluding this sechon, it shouid be noted that two and possibly th e serious
limitations of the 9-version ongira! N-matrix algorithm warrant use of an alternaie algorithbm.
As wiil be shown in the next section, coth the high wind bias and zonal discuntinuity problems
can be partially solved using an aliernate D-matrix type algorithm which itilizes a singie set of
coe cients, instezd of nine, without a loss in the specified + 2 m/s ac uracy.

g6 IMPROVED ALGORITHM

A single D-motrix algorithm, valid at oll latitudes and during all season, was developed
and found to :ncet the + 7 m/s accuracy specification under rain-flag 0 conditions. This global
wind spead algorithm was developed using 909 randomly selected SSM/I buoy pairs (100 from
cach of the 9 climate codes). Out of this total, only 708 matche: " jairs (rain-flagged either O or
1} were retaned to develop the new algorithm. In Jhis way, the ¢ -+ cients for the algorithm
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were gencratzd using sonie data affected by rain (rain-flag 1 data), making the global algorithm
somewhat tolerant of rain.

‘ A weighted linear regression [10] of the buoy wind speeds on the coincident SSM/i
brightness temperatures of Tgiev, Travs Tasry, a0d Ty, Was done using the data set described
above. The reason for using Ty instead of Tg;ey Will be discussed later in this section. The
weights used in the reg. ession were set equal to one ove. the square root of the wind speed
density function (see Figure 8.1), evaluated at the particular buoy wind speed. This type of
weighting has the effect of making all wind speed ranges equally important in the creation of the
new algorithm. In contrast, the unweighted regression used previously tends to emphasize those
wind speed ranges with the greatest amount of data and de-emphasize the ranges where little data
was collected. This s precisely why the original D-matrix performed well near the global
average wind speed ot 7 m/s and performed poorly (both in terms of SD and bias) in the high
(> 15 m/s) range.

Performance of the alternais global D-matrix algorithm, under rain-free conditions, is
shown in F.zme ® 14. The data used in this figure is comprised of withhcld data taken from
all 9 of the crigir . D-matrix climate codes. In other words, the global wind speed aigorithm

vas generated using one set of data and tested on ancther indcpendent set. From Figure 8.14,
the retrieval SD is found to be 2.0 nvs which meets the + 2 m/s accuracy specification.

Although the regression line in Figure 8.14 shows slight errors in bias and slope, true
perfermance of the alterrate globai wind speed algorithm is best illustrated by the interpreted
residnzl plot chown in Fizurc 8,15, These resulis show thar much of the high wind speed bias
associated with the original D-matrix retrievals has been removed by the weighted regression

O technique. The sensitivity of ¢ & gl val wind speed algorithm to rain has not improved
significantly as revealed by Figures 8.16 and 8.17. The feasibility of special D-matrix
algorithms designed for use under rainy conditions will be addressed later in this sectiun.

It is useful to know what SSM/I channels are most important in the retrieval of wind
speeds. This aides in the constmiction of new aigorithms and indicates what retrieval accuracies
are possible shouid an SSM/I channel become inoperative. To this en {, the 708 matched pairs
of data previously described were again used to create the best globa! multichannel regression
algorithms where the number of channels varied from 1 t0 5. The results are summarized in
Table 8.8 where the SD shown indicates the relative retrieval accuracy.

It is interesting to note that the best 4-channel algoritha {thc proposed aiternate global
ajgorithm) does not use the samce four channels as the original D-matrix algorithm. " he
proposed global algorithm uses Ty, gy instead of the Ty,o, chanucl employed by the original D-
matrix algorithin. If Ty, b d been chosen instead of Ty,qy, the performance would have been
slightly worse with an SD of 2.1 m/s under rain-flag zero conditions. As in the vriginai
algorithm, the alternate global algorithm alsc wses the 4-channel D-matrix since it represents a
yood compromi e between calcuiation efficiency and retrieval accuracy.
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TABLE 8.8

COEFFICIENTS AND RELATIVE PERFORMANCE
OF THE BEST MULTICHANNEL D-MATRIX ALGORITHM

COEFFICIENTS

NO. OF

CHAN. | CON 19v 19H 2V 37v J7H S.D
1 44 .38 -0.1495 5.0
2 195.07 -1.5341 | -0.9144 2.5
3 237.57 0.2613 .- -2.0413 1.0092 23
4 147.90 1.0969 _ -0.4555 | -1.7600 0.7860 2.0
5 148.25 1.6233 0.0678 | -0.4692 | -1.6859 0.7371 2.0

Should one of the four selected channels become inoperative, a 3-channel or 4-channel
algorithm can be constructed which would perform as indicated in Table 8.9. All algorithms
coefficients in this table were generated fiom ihe same dara set used o make the gicbal

algorithm,

In an attempt to get more accurate retrievals under rain-flagged conditions, special rain
D-matrix algorithms were crcated an tested. These algorithms were constructed using a data
set containing SSM/I-buoy pairs that were rain-flagged either 1, 2 or 3. The resuits are shown
in Table 8.10. Note that the low-frequency channels (19 and 22 GHz) were identified as being
"best” for the 1 and 2-channel algorithms indicating that they are less attenuated by the rain than
are the high-frequency channels. The SD of the rain D-matrix retrievals under rain-flag 1, 2
and 3 conditions appear guite good. Hewever, the results are misieading as indicated by Figure
8.18. This figure shows that the best rain D-matrix algorithm is simply predicting a near
constant wind speed of approximately 10 m./s. The correlation coefficient associated with Figure
8.18 is 0.53, indicating that the algorithm can account for only about 25% of the -ariance in
buoy wind speeds. ‘The global D-matrix performance on the same data set is show .. in Figure
8.19. A fair number of the global D-matrix retrievals in rain are quite good. This is expected
since the algorithin was constructed using data that was ran-flagged either O or 1. Figure 8.19
also shows that the rain-flagged retrievals are typically biased high and the correlation coefficient
of 0.27 indicates that the global wind speed algorithm pesforms poorly in rain as did the special
rain D-matrix algorithms. Based on this analysis, it can be concluded that a special rain D-matrix
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TABLE 8.9

GUOBAL WIND SFEED ALGORITHMS WHic'H CAN BE USED

IF THE SSM/I LOSES A CHANNEL
ALGOR. COEFFICIENTS
19 CON 19V 1IOH 2V L 37V 374 S.D.
(3-Channel Algorithms)
1 198.66 X 0.0072 -1.5642 0.9227 2.4
2 237.58 0.2613 X -2.0413 1.0092 2.3
3 47.46 0.8133 -0.6816 X 0.2988 33
4 113.06 | 18278 | 11173 | 00819 | X 3.7
(Revised 4-Channel Algorithms)
3 165.36 X 0.7208 -0.4729 .909; 0.2983 2.1
6 213.29 1 437 -0.5328 X -2 5¢12 1.3443 2.3
7 93.68 -0.1989 1.1056 -0.7511 X -0.1703 2.5
8 124.55 0.1256 0.9607 -0.7235 £..950 X 2.3
! a
T —
l *X" = Lost Channel ]

algorithm is not required and that the global D-matrix algorithm should be used to calculate
winds under all conditions. It should be poirted out that 45 of the data points in Figure 8.18
do not appear in Figure 8.19 because the D-matrix values were above 50 m/s.

Although the D-matrix wind speed reirievals me-t specifications under rain-{ree
coaditions, it has been sugge ied that an iterati >-type algorithm might iinprove retrieval
a ccuracy. Unlike the D-matrix aigorithm, the itrrative algerithms are based or: a physical mod:?
which accurately predicts the effect thar hoth wind speed and rain have on the measured
brightness temperature. Since the rain-dependence is known, its contsibution to the total

brightness temperature can be effectively subtracted out making a more accurate wind speed
retrieval possible under rain-free and Lght rzin conditions. However, a fundamental limit on
the retrieva' accuracy of any wind speed algorithm is determined by the fact that microwave
radiation at the selected SSM/I frequencies is heavily attenuated by rain. More specifically,
microwave radiation emitted from the ccean surface, which contains i.fonnation from which
wind spe:d is inferred, must pass through the water Jaden atmosphere before being measured




TABLE 8.10

MULTICHANNEL D MATRIX WIND SPEED ALGORITHM
FOR RAIN-FLAG 1, 2, AND 3 CONDITIONS

NO. OF
CHAN. CON 19v 19 22V KYA' 37TH S.D.
i 32.98 -0.0979 3. i
2 81.87 | -0.5612 | 0.2895 3.5
3 78.0m | 0.6193 | 0.3045 0.0597 3.5
4 86.37 | -0.8860 | 0.4861 0.2471 | -0.1270 3.4
h] 79.72 | 0.8291 | 0.4685 | -0.6324 | 0.2862 | -0.1477 3.4
L

by the SSM/I. If this important s:gnal is attenuated to a level below the SSM/I instrument noise
then accurate wind speed retrievals are no longer possible. The rain rate at which accurate
SSM/1 wind speed retricvals begin to degrade, regardless of thc algorithin, seems to be about
2 mm/hr.

SSM/I wind speed retrieval accuracy in tropica! storms, typhoons and hurricanes is

umnm not nnlv hv 'ha—‘ r'.un ':ccnrw npd \unh chaep cfnmv knﬂ hy ohc :;pat'.al mS\J}u:.\uum Uf t."‘.c 1()\’

22 and 37 GHz channels (53, 49, and 32 km). Wind speed gradients in the core regions of a
storm are typically on the order of 2 m/s per kilometer and can persist over a «listance of 25 km
or more. Any SSM/I wind speed retrieval under these conditions would be a gross
underestimation of the highest winds present in the resolution cell.

In an attempt to gather additional high wind speed data for the validation, D-matrx
tetrievals were compared with aircraft reconnaissance observed wind speeds in the 15-25 m/s
range near typhoons bietty, Cary, Thelma, Vemon and Wynne. The reconnaissance flights were
made during the typhoon season of 1987 by uircraft from the Air Force/Navy Joint Typhoon
Waming Center. From this large set of data, less than 15 SSM/I-aircraft data comparisons et
the criteria of being within 25 km and within 30 minutes of one another. Since only a few of
the 15 match-ups were for winds exceeding 20 m/s, the results are considered statis.ically
insigmficint and are not shown. However, further analysis of this nature is neec xd to validate
the high -wind (> 15 m/s) periormance of the D-matrix algorithin.

8.7  CONCLUSIONS

Although wind speed retricvals from the oniginal versions of the I)-matrix algorithm did
not meet the accuracy specification of + 2 m/s, regeneration of the D-matrix cocfficicnts using
standar.d lingar regression yesulted in an alge .thm whose retrievals did meet specifications.

<
=
P
r
o
<
(=
L]
"

nii;




TABLE 8.1i

THE RECOMMENDED GLOBAL D-MATRIX ALGORITHM

SW = 147.90 + 1.0969 . Tn]' - 0.4555 . va
17600 + Tyry + 0.7860 « Tyorg

ST mwm

RAIN FLAG CRITERIA ACCURACY
0 Tm‘Tm:v") 50 < 2 m/s
AND
TE”P < 165
CR
Ty > 165
2 l Tng']v = T:n" < 37 5 ‘10 m/S
3 ;_ Yyary - Tomy < 30 > 10 /s

An improved global D-matrix algorithm witl, a single set of coefficients hias been
developed wh' ™ meets retrieval accuracy specifications but daes nof lave the zonai discontinuity
and high v ooeu bias limitztion: fourd in the original Y-version LY-matzin algorithm.
Coeffici- - ~ain-flag rriteria for the global algorithm are given in Tatle 8.:1.

- x criteriz was revisad (0 be more restrictive awd the glokal alg »ithni now
uses four .. . = U thru 3, which inGicate retrieval accuracy SIV’e of <2 /s, 2-5 m/s, 5-10
m/s and > 10 mvs, respectively  Ir light of this redefinition it is perhaps more appropriate to
use the term accuracy flag instead of rain-flag. Approximatzly 85% oi the time, all forms of
the I2-matrix algorithir con be expected to retrieve ocean surface winds with an accuracy of -
2 m/s. The romaining 15 % of the time, the ~zene will be rain-flagged and retrieval accuracies
will be worse than - 2 m/s.
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9.0 LAND PARAMETER ALGORITHM VALIDATION AND CALI™RATION
9.6.1 Data Storage ang: Software Development

The calibration and validatior: Hf algosithms to retrieve land paran.cters from the SSM/I
passive —icrowave data required the development of databases for several land areas of the
world. ror example, test areas cver trupical jungles, deserts, and agricultural azeas were
established for the development of land surface tvpe classification rules. Additional test areas
were developed in the United States where groun. truth was available from surface observations.

The Hughes Early Ortital Display System (HEQODS) software was used for the selection
£ satellite overpasses for areas and dates of interest. The SSM/I data of interest were furished
on 9 track, 6250 bpi magnetic tape from the Naval Resecarch Laboratory. Data frem the tapes
were downloaded to files on a clustered computer system consisting of a VAX-8300, a VAX-
8650, and a VAX-8800. The § or D+ta Records (SDRs) were pre-processed te strip them of
inter-record blank spaces, heaaer records, and other non-relevant information. These files,
saved ir the conical scan format for the test areas, were denoted as SCAN files. The SCAN
files for the test areas were backed up on magnetic tape. Ei vironmental Data Records (EDKs)
were processed in & similar manner. Images were created from SCAN files for visual screening
on an Internationa! Imaging System operated »s a peripheral on a VAX-750.

The SDR SCAN files, which consisted of the seven channels of microv. ave brightness
tc mperatures and the latitude-iongitude tags for each pixel, were then lcaded into a relational
daiabase, RI B. Lailiude and iongiiude, the “relation” of the RDB, was used io faciiiaie the
development of the ground truth data base coircident with the SSM/I database. With the
specification of latitude and longitude coordinates, ail SSM/I and ground truth data could be
assembled as one file.

Data sets of coincident SDRs and ground truth were extracted from the RDRB in the form
of one-half degree latitude and longitude celis. These CFLL files contained the average of all
data with a latitude-lnngitude location in the cell. Soniz CELL files we: = also created for one-
quarter degree latitude-longitude boundaries. SPOT files were created by matching the closest
SDK file of seven channels of brightness temperatures with a specified latitude and longitude.

The primary scurce of ground truth consisted of climatological data from the National
Oceanic and Atmosph ric Administraticss (NOAA) cooperative observer network. The
Summaries of the Day Elements (TD3200) from the reporting stations wer:* provided on 9 track,
6250 bpi magaetic tape from NOAA/NESDIS, Asheville, MT. These daily elements included
maximum and minimum aic wemperatures, rainfall or water equivalent of snow, daily snow
depth, and total snow accumulation. GOES sateilite imagery from the Department of
Meteorclogy at Texas A&M University was used to visuvally screen th: dara for cloud and
syncptic weather conditions.
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9.1 LAND SURFACE TYPE CLASSIFICATION SCHEME
9.1.1 Rationale for New Classification_Rule 5

The EXTLND module, described in the SSM/I User’s Guide [1], is a subset module of
the entire environmental parameter axtraction software. Surface types over land are classified
within EXTLND usitg SDR brightness temperatures so that appropriate parameter extraction
aigorithms are used. Initial analysis of EDR’s resulting from the original EXTLND algcrithms
indicatxd numerous misciassifications with respect to land surface types. One of the most
common misclassifications was the indication of rain when nc rain or ciouds were present in the
scene. This was due to a flag within the original EXTLND logic which compared the brightness
temperatures in the 37 GHz and 19 GHz channels. If the 37V brightness temperaturcs were less
than 19V brightness temperatures, a heavy rain event was classified. However, over naturally
occurring surfaces such as vegetation, bare soil, and deserts, the brightness temperatures at 37V
GHz were frequently found to be less than thosc at 19V GHz.

In addition to misclassification within the EXTLND logic, it was imperative that surface
types be differcatiated prior to the creation of calibration/validation databases. Tue reasons
were:

1. The calibration/validation project required parameter extraction algorithms over
different surface types. Some extraction algorithms are mutually exclusive, such as surface
moisture and snow parameters, but require the proper identification of those conditions. Other
surface types such as standing water, do ot require the extraction of surface parameters. In
addition, during the course of an annual cycle for an agricultural r gicn, such as winter wheat
production 2reas, a natural change in the land surface type «ccurs. Surface conditions would
begin with dry snow in the middle of the winier. The snow wou 'd urdergo morphological
changes and additional accumulation in the snow accumulation phase. With the onset of warmer
weather, the snow would enter the ripening phase, again with pronounced responses in the
microwave frequencies and polarizations. With complete snow melt, a flooded or wet soil
surface mzy occur. Spring tillage or reenup of winter grains would be associated with arable
land, with varying degrees of soil moisture. Increases in vegetation canopy density would
decrease the response to soil moisture, but theoretically should increase the accuracy of the land
surface temperature retricval. From harvest to snow accumulation, the cycle continues with bare
soil, developing canopy of the winte: wheat, frozen and unfrozen soils, and i ow accumulation.
Rains and varying atmospheric water vapor and liquid water contents occur throughout the entire
year.

2. Over land, there may be a large variability of natural :urface types within an SSM/I
footprint. These include different degrees of vegetation cover, topographic characteristics, ari¥
the preseiice of water bodies s :ch as lakes and reservoirs.  Water bodies can increase the noisc
m parameter extraction regression data sets for surface meisture and }and surface teniperature
if included. As they have a distinct detectable signature in the 835.5 GHz channels, their




classification and removal from the data sets would ultimately increase the conlidence in
parameter reirievals.

3. The surface moisture retrieval algorithm was based on an apparcnt emissivity
(I9H/37V). The degree of vegetation cover within a footprint affects the scnsitvity of this
variable with respect to moisture at the soil surface, thus requiring further categoiization,

9.1.2 Land Surface Type Classification Methodology
g.1.2.1 Cbservations

The approach used in the development of the classification rules can be considered a
combined physical/statistical method. Channel brightness temperature and polarization
differences along with statistically determined threshold values were used to form the rules. For
a particular surface type, the channel combination or polarization difference selected had a
microwave physizal basis. The basic land surface types deveioped were selected to fur~:ticn with
the land surface parameter extraction algorithms being validated in 2 paraile! effort and presented
in Sections 9.2, 9.3 and 1.4 of this report. Additional land surface classes are possible, but
would probabiy be subsets of the major classes presented herein or anomalous cases.

9.1.2.2 Methodology

The CLIPS expert system environment, created by NASA, was used to develop the land
surface type classificiwn aigoniims.  An EXDeri sysiem environment was seiected for this
purpose because it facilitated the addition, removal, or modification of rule as well as brightness
temperature and polarization difference thresholds without the necessity of recompiling the
software codc. The CLIPS shell and the rules for classification were embedded within a main
program module written in the C programming language.

The inidal set of classificaiion algorithms incorporated th : iogic and thresholds of the
original EXTLND module, described in the SSM/I Users Guicde [1]. These classification
aigorithms, and their subsequent modifications, were used to classify various land surface types.
Images of the classifications were used in conjunction with geographical and natural rewource
maps to determine the accuracy of the classificatior scheme.

Training areas were selected for the various surface types in different reg ons of the
world and the United States. For example, control areas in the Amazon and Congo jungles were
used to identify the characteristic microwave signature of dense vegetation in the SSM/I
channels. Control areas in the Sahara and Sonoran deserts were used to ideniify the desert
signatures. A summary of the main training (contvol) areas is shown in Trhle 9.1.

SDR dawa from seveal orbits over these training aris wer~ grouped according to
overpass timic, cloud condition, and season. The SDR dawe used consisted of the sever
brightness temperatures of ihe A scan concentric footprinis.  The value for the 85.5 Ge
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chaanels assign.d to the concentric footprint consisted 7 an average of the surrounding eight
85.5 GHz footpiints from A and B scans. Severai combinations of SDR FErightncss
temperatures with respect to frequency and polatization cifferences were calculated. These
combinations are shown in Table ©.2.

Basic statistics of brightness temperatures and polarization differences wers obtained for
each surface type. These basic statistics included mean, standard deviation, mode, skewness,
distribution tvpe etc. 1 set of new rules, identified th ough the statisticc' analysis, were
developed based on brightness temperatures, brightness fe nperatur: combinations, and
polarizaron differences. New rules were added tc the expert system module and tested against
independent data sets. These data sets were either for different geographical areas with similar
characteristics or for different scasons.

Arother source of ground truth information for the validation of classification rules was
the major land resource area (MLKA) classifications of the Soil Conservation Service [2]. These
classifications grouped aseas with similar characteristics with respect to topography, natural

vegetation, land use, climate, soils and water resources.

TABLE 9.1 A SUMMARY OF SOME CONTROL AREAS USED IN SURFACE TYPE
IDENTIFICATION
Control Area Surface Type { ncation Boundaries
A Denze Vegetation  Amazon Jungle NW Comer: 2°S 54°W
SE Corner: 4°S 52°W
B Densc Vegetation  Congo Juagle NW Comer: 1°S 20°E
SE Corner: 3°S 23°E
C Dense Vegetation  Amazon Jungle NW Comer: 5°S 69°W

SE Comer: 8°S 66°W

Atnazon Basin Derse Vegetation  Amazon NW Cc—er: 0°S 64°W
SE Corn..r: 10°S 50°W
MLRA #130 Dense Vegetation ~ Appalachian NW Comer: 36.3°N 83°W
SE comer: 35.3°N R2°W
Appa'achian Dense Vegetation  Appalachian NW comer: 40°N 87°¥
Forest SE corner: 33°N 80°W

Central Plains

Mixed Vegetation
& Soils

United States

NW Cormer: 5S0°N 105°W
SE Comner: 32°N 95° W

MLRA #30 Semi-And Vep. & RMojave Desert NW comner: 35.5°N 118°W
Soils California SE corner: 34.5°N 116°W
Sahara Desert Sahara, Libya NW corner: 16°N 18°E

SE corner: 14°N 11°E

WAL P AKAN W L




TABLE ,.2 COMRINATIONS OF MiCROWAYE BRIGHT 35S TEMPERA TUF B3 USED
FOR T E CHARACTERIZATION OF LAND SURFACE TYDSS

(T2V - T8V} fal (TIOV + T37V)/2 - (FI9H + TITHY/2  [b]
(TIOV + TITV)/2 (T37V - TISV) [c]
(T8SV - T3TV)  [d] (T8SH - T37TH) (e)
(T37V - T37H)  [f} (T37H - TI9H) il
(TI9V - TISH)  [i) (T85 ’ - T8SH) N

Letters in brackets { ] indicate how the combination is referred to
throughout the text.

9.1.3 Development of Classification Rules
9.1.3.1 Dense Vegetation

Liission UY @ vegcidlion Canupy consiis of cminbuilons from iie vegetavion iaver as
well as from th: underlying soil surface [3]. At the SSM/I channe! frequencies (19.35 GHz and
greater), vegetation canopies can be freated as semi-infinite mediums with respect to erission
properties. According to Ulaby et al. [3], the brightness temperawre of a wealdy scattering
media above a semi-infinite medium can be simplified to:

Ticwif.p) = (14+TL0.pYLEANA-VELON(-a5T, -+ (1-I,(0,p)T,/LIN) (1

I, = the air-soil reflectivity

L{#) = the loss factor of the vegetation canopy

a = single-scaftering albedo of vepetation

T, = physical ‘eimperature of the vegetafion layer
T, = physicai temperature of the soil surface

6 = incidence angle

p — polarization index equal to v or h

The loss factor L(#) depends on the height of the vogetation layer, the incidence angle
and the microwave frequency. For frequencies above 10 GHz, the optical thickness is large and
1(6) > > 1. Equation (1) can then be approximated by:
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Tyal@) = (1-2)T, (2

Th. ; implies that the canopy brightness temperature is independent of the incidence angle
9, and of antenna polarization if a is isotropic. This :as certainly been true for the SSM/I
frequencies in the case of very lossy canopies such as dense jungle. Brightness temperature
} olarization differences at all frequencies have been very small for pixels over the Amazon and
Congo jngles. iowever a dependence of brightness temperature with frequency has been
observed which implies that equation (2) is only a firsi-order approximation of the emission from
vegelation for the SSM/I frequencies.

Table 9.3 summarizes the main statistics for selected channel combinations over dense
vegetation control areas. These locations, selected from natural resource maps, avoided large
nvers and lakes. Figure 9.1 shows a histogram of average brightness temperature polarization
differences in the 19.35 and 37.0 GYHz frequencies for combined ascending and descending
averpass data over control areas A and B in the Amazon region. The distribution was close te
a normal distribution witk a mean polarization difference of 0.67 X (combination [b] in Tabile
9.3). Brishtness temperaiures in the 37.0 V GHz channel were on the order of 4 K lower than
in the "9 35 V GH~ .hannel while the 85.5 V GHz brightness temperatures (Ty’s) were around
2 K higher itan in the 37.0 V GHz channel.  No physical explanation was found for this "dip”
in the 37 GHz brightness terrweratures over dense vegetation.

By selecting twice the standard deviation as the upper and lower limits for the normal
disiribution of brightness temperature combinations shown in Table 9.3, 96% of all occurrences

will fall hetween thoge limite, Razed on these resulis for the thrce contro! arcas ovei densc

vegetation, the upy2r limit of average brightness temperature polarization difference in the 19.35
GYz and 37.0 GHz (combination [b]) was set at 1.9 K. The iower linit was around -0.4 K
using the same rationale. Although true negative polarization cifferences are physically
impossibie from horizontal surface: a small amount of sach cases were observed in the SSM/I
data cver dense vegetation. This could be due to random noise within the individual channels.
As the energy being emitted from dense vegetation 1s essentially depoiarized, it is possible that
the brightness temperatures in the horizontal channels can become greater than in the vertical
channels on some occasions, but still be within the acceptable variability of the instrument. A
second possible explanation involves the structure of jungle vey >tation. Microwave energy
emitied from d=nse vegetation will be isotropic. If any pradominant orientation is present in the
vegetation, the emiited energy will have polarization differeiices. For a fropical rain forest, th*
tall, \ 2;tical tree trunks could provide the predominant orientation. If this were the case, the
frame of refcrence for the torizontal and veitical polarizations would reverse. Tt = largest
component of the emitted raciation would be in a planc pevpendicular to the vertical tree trunks.
For the frame o' reference of the v rtically and horizontally polarized brightness temperatures
of the SSM/1, tite horizontally polarized brightness temperature could exceed the verticallv
polarized brightness temperature. Based on the combinations shown in Table 9.3 as well s
statistics for single channels, the rule to classify dense vegetation becomes {all thrashor.. - and
temperatures in Kelvin):
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Figure 9.1 Distribution histogram of average polarization in the 16,35 GHz and 37.0 GHz
channeis over dense vegetation.

22V - 19V < = 4.0 [a]
((19V + 37V)/2.0) - ((19H + 5TH)/2.0) <= 1.9 ]
85V - 37V >=-1.0 [l
85H - 37TH < 4.5 [e]
19V > 262 (g

Conditions {a] and {e] check for the presence of largs quantities of water on the surface
within the footprint and will be discussed later. Condition [b] is the check for low polarization
differences, the characteristic microwave signature of dense jungle vegetation. Condition [d]
is a precipitation flag and is based on the lower limit for this channel combination shown in
Table 9.3. The adjusted threshold of -1 K is suggested instead of 0 K (lower limit for the
distribution shown in Table 9.3) to ensure that only precipitating clouds are classified for the
precipitation over vegetation rule, also discussed later. Condition [g] is a check for above
freezing temperatures in the vegetation canopy (for a single-scattering albedo of (.04).




Table 9.3 also presents brightness temperature combination statistics for additional (and
indeperdent) orbits over control arca C of the Congo Jungle and a scene eacompassing a large
portion of the Amazon basin  For the latter scene, data corresponding to foolprints sensing
rivers and other non-vegetation classifications were removed from the data set.  These results
are not significantly different from those of control arex A and B. Results from the independ.cnt
data confirm that this rule properly classifies dense vegetation situations.

In the United States, the closcst vegetative covers to dense tropical jungles are found in
the hardwood forests of the Appalachian mountains. SSM/I data obtained over a small area of
the Appalachian mountains as well as the Major Land Resource Area (MLRA) #130 are also
shown in Table 9.3. The MLRA 17 csource rcgion consists of dense forests of different oak
varieties, white pine, hemlock, re. spruce, balsam fir and several species of understory
vegetation [2]. The polarization differences wers about 1 K greater than for the dense jungle,
and resulted from a lower deasity canopy.

9.1.3.2 Dense Agricultural Crops and Rangeland Vegeiation

This rule applies in situations where soil is totally or partially c¢ -ered by vegetation
within : n SSM/I footprint. Such ocerrences are common in agricultural regions with crops at
different stages of growth or canopy cover; on rangeland with grasses and shrub type vegetation
at peak grovth, or on combinations of these. This category of vegetation is still considered
dense witk sespect to si. face soil moisture retrievals. As discussed in section 9.3 of this report,
the sensitivity to surface moisture is very small for average nolarizations ir the 19 35 GHz and
37.0 GHz of less than 4 K, rendering retrievals physically impossible. Examples ot such egions
are:

1. Agnicultural areas and giasslands of the Central Plains of the U.S. and some
rangeland of the western U.S. at peak vegetation cover.

[ 18]

The "cerrado” vegetation region of central Brazil. These are savanna type areas
with extensive grassiands mixed with small trees and rhrubs.

3. T.. Savanna regions of Africa at peak vegetation cover.

The green vegetation density, which can be quantified by the Leaf Area Index (LAI), will
vary consider:bly througliout the y-ar in these regions, according to season. The peak ILAl for
an agricultural region in the Centrai Plains can occur during the months of May through August,
depending on the latituiic and type of vegetation, and if the vegetation is grow’ 1g under nht.at
precipitation or irrigation (crops). Vegetaiion densities in grasslands and savannas will also vary
according to the precipitation amount and distribution throughout the year.

Table 9.4 shows the mean and standard deviations for some of the main SSM/! channel
combinations reguired for characterizing dense agricultural and rangeland vegetation.

AT ITLCUTANN



TABLE 9.4 MEAN AND STANDARD DEVIATIONS FOR BRIGHTNESS TEMPERATURE
COMBIMATIONS OVER DENS£ CROPLAND/RANGELAND VEGETATION
COVER IN DIEFERENT AREAS OF TME WORLD

Central Plains Cerrado Region African Savannas
Combination Mean SD Mean SD Mean SD

(K) (X) (K) (X) (X} X)
MV - 19V [a) 112 124 012 1.03 249 0098

(ASV+37V) - (1I9H+37H) [b] 3.20 0.63 3.57 037 2.84 0.7
2 2

37v - 19V ic] -3.54 0.83 4.22 0.69 -4.42  0.85
85v -37v (d] 1.52 0.96 2.32  0.75 2.08 0.71
85H - 37H [e] 2.32 1.03 3.20  0.52 293 0.77

The dense agricultural and rangeland vegetation can be classified nsing the followine nule:

22V - 19V < = 4.0 [aj
1.9 < ((19V + 37V))/2.0 - (195 + 3 9)/2.0) <= 4.0 [b}
85V - 37V >=-1.0 [d]
85H - 37TH < 4.5 [e]
19V > 2¢2.0 g}

The 4 K upper thre:hold for the average polarization in e 19.35 GHz and 37.0 GHz
channels, though slightly lower than the mean plus twice the standard deviation limit for that
distribution {approximately 4.2 K}, is the polarization above which sensitivity to surface moisture
begins 1o occur (see Section 9.3).

9.1.3.3 Soil Rules

Passive microwave emission from a water surface is highly polarized, with an emissivity
of about 0.4 for the 19.35 GHz horizon:ally polarized channel. The emission from bare soil is
«is0 polarized, but to a lesser extent, with higher emissivities (typically 0.9 and above in the
horizonial channels for a dry surfacej. The influence of water in an essentially bare soil is to
depress the brightness temperatures and to increase the polarization difference. If vegetation
is present, the vegetative scattering decreases the polarization difference. Therefore, the soil
rules were developed to classify a dynamic combination of bare soil, water in or on the soil
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surface, and different degrees of vegetatior cover. The n.iural vegetation cover varies as a
function of scason and the so1 water content. The water present on the soil surface varics as
a function of the rainfall .nd thc hydrologic rcsy »nse. Tn: m 1 effect is a broad range of
brightn-ss temperatus : and  polarizat m di: ierences within this class. Trkese ranges are a
functic 1« also of frequencv dv: - to ¢ variation of the real comp nent « £ the  electric constant
with frequency. The diclectric constant of rsater .5 higher at longer wavelengths (lower
f: quencies). The dcpth of the emitting layer is also preater . the k nger wavelcngths.

An SSM/I foc print with .lecreasing vegetation cover is characterizad by average
polarization diffe ences at 19.35 GHz and 37 GH» angu , from 4 K to 19 K, with polarization
increasing as more soil 1 “radiomet ic..ily” isiblc. This range v s divided into two large sub-
groups. The arable * il classific .aon writh average polarization differences from 4 K to0 9.8 K
(using 19.35 and 7.0 GHz channels) and t':¢ semi -arid classification with average solarization
differences ranging from 9.8 to 19.” K. This was donc because most SSiV/I footprints in the
latter groun were ideatiiied fre  MLRA resions found in the western Unites States (Arizona,
Nevada, Utah, and Califoriia) in vhich a semi-arid, desert climate is predominant, and
vegetatiun is sparse.

During the development of the surface moistire .etrievai algorithms it was determined that
the two large polarization sub-g oups mentioned above needed to be furti.er broken down
according to vegetation density. This ..as due ‘0 the effect of vegetation density on the
sensitivity to surface soil moisture and the need for different retricval equations according to this

s oAl e LI L1 L et 1" [ L R [ DU SPERL S NP 4
acumuvu_y. 111> will UG 1Uuluig) CA!)IdIIlCL. LCIUW UTUCT U SIIVISL Ahr TuUlC,
9.1.3.3.1 Dry Arable Soil

The average 19.35 and 37.0 GHz brightaess temperature polarization differences arc
shown in Figure 9.2 for the Central Plains of the V" d Staies under the arable soii heading.
Statistics are shown in Table 9.5 for the summer and winter season separately. Fuotpiints
influenced by rain, snow, water or dense vegetation cov . were removed. The iarger influence
of vegetation ¢ .nng the summer season due to natural vegeiatic . and crop cover is evident by
the lower mean of combination [0]. During the winter, the soil is mostly bare which results in
s.gmficantly larger polarization differences in the 19 GHz and 37 GHz channels. The upper
wd lower limits contained in Table 9.5 for both seasons were “sed to define the range of
poiar: -ation for arable soil. Thus, the classification rul: r dry azab'e soil iu

22V - 19V <= 4.0 fa)
4.0 < ((19V + FTV)/2.0) - (( OH + 3THYLO) < = 9.8 L)
ITV- 19V > = 6.5 el
5.0 <= (85V - 37V) < 0.5 (d
8SH - 37H < 4.2 rel

Conditions [a] and [e] check for floeded conditions or 'ange water bodies and wili be
discussed later. Condition [b] classifies the srea in terms of brightness temperature polazization
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differences, condition [c) is a snow flag which will be discussed later, and condition [d] is a rain
and surface moisture flag which aiso will be discussed later.

TABLE 9.5 BRIGHTNESS TEMPERATURE COMBINATION VALUES FOR THE
CENTRAL PLAINS STATES OF THE U.S. CORRESPONDING TC THE
ARABLE SOIL CLASSIFICATICN

Box size: NW corner: S0°N 105°W  SE comner: 32°N 95°W

~+{/MMEK SEASON

Combination Mean SD Lower Upper Calendar
Limit Limit Date and

(X) &K ®  (X)  Node
19V - 22V [l -1.90 131 452 0.7

A9VE3TV) - (9H+37 6] 572 125 322 822
2 2

(1987)
37V - 19V icl 3.5  0.54 -347 -i.71  211A
. 222A
85V - 37V [d] 117 1.15 347  1.13 235A
244A
85H - 37H [e] 1.30 1.61 -192 452 253A
WINTER SEASON
2V - 19V fal -1.47 094 -335 04l -
(19V+37V) - (19H+37H) [b] 7.3% 1.27 480 6.88
2 2
(1988)
37V - 19V [ci 406 099 -€04 -2.08
B 55A
&5V - 37V [d) 217 125 467 033  59A

85H - 3TH lel -0.87 1.79 -4.45 2.7




9.1.3.3.2 Semi-Arid Rule

The semi-arid classification corresponds to areas whnere natural vegetation is sparse and
of a desertic type. A typicai example of this typec o°  vironment is MLRA region #30 [2], the
Soncran Basin and Range. Most of this area is government owned and consists of thin stands
of desert vegetation, mostly Bursage, Joshua tree, juniper, yucca, and cactus. Grasses grow
only in years with favorable moisture condiiions. The histogram of the brightness temperature
polarization difference distribution is shown in Figure 9.2. Table 9.6 contains the statistics for
the main channel combinations.

Polarization Dependence of Different
Surface Types
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Figure 9.2 Polarizatior: dcgendence in the 19.35 GHz and 37.0 GHz channels to different
surface types.

Based on the estimated upper and lower limits, the threshold values for the channel
combinations which best classify semi-arid conditions are:

22V - 19V <=4 [a]
9.8 < ((19V + 37V)/2.6) - ((19H + 37H)/2.0) < 19.7 il
85V -37v < 0.5 td]
85H - 37TH < 6.0 fei

37H - 199 < -1.8 fil

AITIICCYTAIND



TABLE 9.6 STATISTICAL ANALYSIS RESTULTS FOR SELECTED BRIGHTNESS
TEMPERATURE COMBINATIONS OVER SEMI-ARID AREAS, MLRA
REGION #30¢, BASED ON DATA FROM !9 ORBITS

Combination Mean SD Lower Upper
Limit' Limit'
X) x) (X) K
22V - 19V [a] -2.08 3.60 -9.28 35.12
,(IQV:‘FQ'Zy) - (19E+37H) [b] 13.61 2.02 9.57 17.65
P2 2
37V - 19v [c] -8.00 1.30 -10.60 -5.490
85V - 37v [d] -3.17 2.18 -1.53  1.19
85H - 37TH [e] 2.03 2.35 -2.67 6.73
37H - 19H G} -4.04 1.15 -6.34 -1.74

1Limits are 2 standard deviations fre m the mean_

Condition [a] s the check for large water bodies and flooded conditions. The lower limit
for the polarization difference (combination [b]) was 9.57 K while the upper limit for arable soil
(Table 9.5) was 9.88 K during the winter scason. An ‘atermediate value of 9.8 K was used as
the dividing threshold between the dry arable soil and s2mi-: id classes. Large negative values
can sometimes be observed in the vertical polarization channel differences ot combinations [c]
and [d]. This is the result of a surface scattering phencmena caused by smooth bare soil which
could be confused with atmospheric scattering or scattering due to snow cover. The upper limit
of combinations {d] and [e] are the thr:sholds between diy and moist soil and will be discussed
later. Condition [j] is also a moisture flag which differentiates dry soil surfaces from wet snow
surfaces.

9.1.3.3.3 Desert Rule

Deserts are characterized by very large brightness temperature polarization differences
in all channeis. The distribution histogram of average polarization differences in the 19.35 GHz
and 37 GHz channels is shown in Figure 9.2. The statistics for several orbits over the control
arca are shown in Table 9.7. Folarization differences in the 19.35 GHz channel were, in some
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cases, above 40 X, and in the unper 30s (K) for the

37.0 GHz channel.

These extreme

polarizatinn differences are calised by very smooth, sandy suifaces in the Sahara desert and the
total absence of segetation cover. The relatively high dielectric consiant of quartz, the dominant
component of desert sand, andoivutedly contributes.

TABLE 9.7 STATISTICS FOR SELECTED ERIGHINESS TEMPERATURE

COMBINATIONS OVER THE SAHARA DESERT CO! TROL AREA

Combination Mean 3D Lower Upper Calendar
Limit' Limit' Date of

K) (X) K) x) Overpass

22V - 19V (a] 315 114 543 0.87

(9V+37V) - (1SH+37H) (bl 32.24 3.46 25.48 39.32 233A

2 2
37V - 19V [} -8.49 1.22 -10.93 -6.05 328A
85Yv - 37V [dj -9.26 2.24 -13.74 -4.78 176D/178D
224D/232D
85H - 37H [e] 577 2.33 1.11  10.43 233D

'Limits are 2 standard deviations from the mean.

The classification rule is:

22V - 19V <= 2.0

((19V + 37V)72.0) - ((19H + 37H)/2.0) > = 19.7

85H-37H > -1.0
19V > 268

Condition [b] is the primary discriminator for deserts with 19.7 K being the upper limit
for the semi-desertic regions <onsidering three standard deviations from the mean (Table 9.6).
Brightness temperat:ires in the vertical polarization channels decreased with increasing
frequency, with large negative values occurring for combinations [c] and {d] ir Table 9.7.
. ese large negative values could be confused with scattering due to heavy rain or snow cover.
Fur this reason, combination [e] is used as an additional check. If 8SH - 37H is greater than
-1 K, the decrease in brightness temnerature in the vertical polarization channels is due to
surface phenomen : and not atmospheric scattering. Combination {g] also ensures a snow ree

surface,
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9.13.4 Classification of Surface Water and Soil Moisture

1 ie short wavelengths cf the SSM/I scnsor are not svited for soil moisture retrievals dus
to their small penetration depth in soils and consequently smail moisture sensing depth. In
addition, there is a considerabie loss of sensitivity to surface moisture due to vegetation cover.
However, under sparse or incompicte vegetation cover, an assessment can be made of the
quantity of water retained on the siface after a heavy rainfall event as well as moisture in the
immediate soil surface layer dewn to a few millimeters. T Section 9.3, a specific
quantification of :his surface moistuie is cenduc.2d using an Antecedent Precipitation Index
(AP]) as 1 surrogate vasiable.

The main SSM/I channels used for surface moisture retrievals are the 19.35 H GHz and
the 37.0 V GHz channcls in the form of a normalized brightness temperature TI19H/T37V.
However, the 85.5 GHz channrels have turned ocut to be excellent for identifying the presence
of water bodies within the SSM/I footprints. #s the proportion of moist soil and surface water
within an SSM/I 3 db footprint increases, the emissivity of the surface layer decreases resulting
in lower brightness temperatures. Reiative changes are first observed between the 85.5 GHz and
the 37.0 GHz < hanrels in both polarizations: the T,’s decrease in both channels but to a greater
extent at 37.0 GF .« due to the fact that both the permittivity and the dielectri: loss factor of
wate are smaller at 85.5 GHz than at 37.0 GHz [4]). 1t is important to note that these relative
changes in T,’s between the two channels are occurring because the resolution of the 85.5 GHz
channels (approximaiely 14 km) was decreased to that of the 37.0 GHz channels (approximately
33 km) as a result of the averaging scheme. In this way, both channels were sensing
approximately the same proportions of water, soil and vegetation in the concentric footprint

e

SATS.

Moist soil serfaces and foorprints containing L sger water bodies therefore are
differentiated from dry surfaces with the 85.5 V - 37.0 V and 85.5 H - 37.0 H channel
combinations. Several classification rules were develeped to identify surface moisture and
surface water bodies (t.0oded soil, moist soil surface, composite water and soil or wet soil
surface, composite water and vegetation). The classification of footprints containing water
bodies such as reservoirs, lakes etc. and their removal from the parameter retrieval algorithm
regression data sets, decreases the introduced noise and increases the retrieval accuracy of
paramete.s such as land surface temperature over soil and vegetation, assuming the same
ciassification scheme is used operationally. This is becausce the brightness temperature of a
footprint containing a water body would not be lower due to the lower physical temperature of
the soil or vegetation but as a resuit of the contaminatior: by a surface with compl-tely different
microwave emission properties.

9.1.3.4.1 Moist Soil Surface
Moist soil surfaces are differentiated frony dry arable soiis usiag a threshold value of 0.5

K for combination [d]. This value was approximately the upper limit for this combination under
dry arable soil conditions (Ta>le 9.5). In order to differcntiate moist soil suriaces from very
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wet soi} surfaces or footprints containing larger water bodies, an upper threshold value of 4.0
K is used for comhination [d? nd 4.2 K for corabination {e], 35 - 37H. The nile is:

22V - 19V == 4.0 [a]
4.0 < ((19V + 37V)/2.0) - ({19 + 3TH)/2.0) < 19.7 [b]
37V - 19V >= 6.5 ]
0.5 <= (85V-37V) < 4.0 id]
8SH - 37H < 4.2 iej

where conination [c] is a snew identifier.

The moist soil surface rule was tested along with other moisture sensing ules by
stratifying 0.25 degrees latitude/longitude grid cells accordiiig to APY,5 (based on available water
for evaporation of 15 mmy values between O and 10 mm and greater than 10 mm as well as the
number of days since the iast precipitation event in each of those classes. These vanables arc
defined and explained in the methodology of Section 9.3 eof this report. Table 9.8 summarizes
the results.

As expected, 9C.5 % of the dry soil classifications (DS) had API,, values of less than 10
mm in those grid cells with an average of 2.7 mm. Om the other hand 9.5 % of the dry soil
classifications had API,s values greater thar: 16 mm with an average value of 16.8 mm. Most
of these cases were probably due to localized precipitation events that did not entirely wet the

el onefanns af tho lavan QQAL /T Fantmring
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Moist soil surface classifi ations (MS) occurrec for AP, values less than 1) mm, 83 %
of the time with an average v: ue of 3.2 mm. The remaining 17 % of the values above 10 m.
had an averuge A™I; vall: of 16.4 mm.

These results are simiiar t¢ the dry soil classification rule, indicating that spatial
distribution of moisture is obviously a factor. In addition, this rule will also sometimes classify
footprints which contain small bodies o water such as small lakes and reservoirs as moist soil.

9.1.3.4.2 ¢ ‘'umposite Seil and Water or Wet Soil

The development of this rule becam.e necessary to iuentify footprints with locally flooded
soil, lakes, large rtvors, anc other surface waters. These land footprints with water as a
component of the land surtace would have a :assive microwave si nature that is a combination
of land and water. Because water has a n  ch lower emissivity and a much higher polarization
difference than ther land surfaces, the resu.ting brightness temperatures would be very difficult
to interpret in terms of physical surface temperature. This rule was developed to exclude
footprints with a water component in  : signature Irom the calibration/validation regression
database, thus increasu 3 the accuracy vt the algorithms.




everal dozen cases were examined over the course of our calibration/validation effort.
Comparisons wer~ conducted between brightness temperatures from fooipiints on the border of
Jarge lakes or which contained small water bodies, witk non-contaminated surrounding
footprints. Surface physical tem~eratures were compared ax weil when available.  Possible
SSM/1 footprint geolocation errors were also taken into consideration in this analysis. Both
85.5 GHz channels were sensitive to the presence of water in the footprint, especially the 85.5
H channel. The 85.5 H - 37.0 H T, difference is a small positive O negative number for a
mixed soil and vegetation scene {Tables 9.3, 9.4 and 9.5). With a ce.tain proportion of water,
the emissivity is lowered in boih channels, but to a greater extent at 37.0 H GHz due to the
higher dielectric constant of water at 37.0 GHz. A thrashold value of 4.2 K was determined for
this cnannel ¢ mbination. QOver deserts, valu. . greater than 4.2 K have been commonly
observed (Table 9.7). Therefore the 85.5 V - 37.0 V combination is checked as well to prevent
misclassification.

22V - 19V <= 4.0 [a]
6.4 <= (19V + 37V>/2.0 - (19H + 37TH}/2.0 ]
J7V-19V > = -6.5 [c]
85V - 37V > = 0.5 [d]
SSH - 37H > = 4.2 [e]

Combination [a] is the check for tlooded surfaces. Condition [b] identifies large
polarization differences due to water in the 3 di footprint. To differentiate between large

polarization differerices Gue io water and those associated with barren deserts, condition [d] is
appiled.

Footprints classified by this ruie, were tested against ground truth APLs values gridded
at 0.25 degree latitudc/longitude cells for the central plains area of the U.S. during 1987. Fifiy
orbits were includec in the analysis. The results are also st.own in Table 9.8. and indicate that
footprints with high API, vaiues are also classificd by this rule. The results were more evenly
distributed with 58 % of the grid cells having APl values less than 10 mm (average of 4.0 mm)
and 42 % having values greater than 10 mm (average of 21.3 mm}. Itis prot abie that most of
the gnd cells with moisture values less than 10 mm were a result of containination by ‘water
bodics while for API,s values greater than 10 mm, most of the classifications resulted from a
wet soil surface.

Foctprints with a wet soi! surface have a similar microwave signaturc to dry soil
footprints contaminated | v laige water bodies. - This presents a problem for the use of the
surface moisture retrieval algorithms which should te & piic * to retrieve moisture when the
APL, is high bui not to the !atter case. The soluticn is to maintain previous surface
classifications over a geographic iocation in a dynamic database and use additional logic to
ditferentiate between these cases. In Section 9.3 of this repori, a dynamic 1atabase scheme is
proposed to work in conjunction with the surface moisture classification ruics above.




TABLE 9.8 STRATIFICATICON OF CULASSIFIED 0.25 DEGREE GRID CELLS
ACCORDING TO SiIRFACE MOISURE VALYES (APL,) AND NUMBER
o OF DAYS SINCE LAST PRECIPITATION EVENT

fIPITCLVIAND

Classification APL, < 1Qu. APl,; > {0 mm
Rule Number of ¢ay~  ..ce lust pricipitation eveni

1 2 3 4 5 > S 1 2 3 4 5 >S5
NS 251 248 313 392 297 8 68 8 55 32 1
APl 4.1 4.2 40 33 2.7 1.1 18.1 18.8 15.0 13.¢ 1Z2.4 11
MS NO: 287 313 367 373 302 997 138 "4 115 77 45 20
APl: 4.7 4.6 45 44 35 1.2 18.6 .,.0 161 148 134 17.6
WS NO: 462 342 317 286 180 625 707 429 266 130 38 14
APl 5.4 53 5.1 44 4.1 i4 4 20,6 18 17.2 17.3 16.6

1328 73 376 236 128 36 18

WV NO: 549 430 403 299 27!
3.7 1.1 25.1 22.3 195 19.6 19.3 22.2

APl 53 53 46 4.1

DS = Dry Arable Soil
MS == Moist Soil Surface
WS = Wet Soii Suriace or composiie s0ii and warer
0 V V = Vegetation witn wet soil background or composite vegetation and water
MO: Numboer of occurences

9.1.3.4.3 Composite Dense Vegetation and Water

This rule classifies footprints with mixed dense vegctation and we:er. It is siruiar to the
composite soil 2nd waier rule, but with different threshold values. Dense vegetation has a stroag
un_olarized signature with usuaily warm bnightness teinperatures. On the other hand, water has
a low emissivity, thus colder brightness temperatures, and a highly onlerized signature.
Depending on the proportions of water and vegetation as well as the density of the vegetation,
the average poiarization in the 15.35 GHz anu 37.0 GHz channels (combination [b]) will vary.
By observing numerous cases the upper threshold value of 6.4 K was determined, allowing for
greater polarizations induced by water in the footprint scenes.  The rule is:

2V - 19V <= 4.0 (a]
((19V + 37V)/2.0) - ((19¥ + 37H)/2.0) < 6.4 [b]
8SV - 37V > = -1.0 [d]
8SH - 3TH >= 4.5 (e}

37V > 257 [h]




The threshold value for combinatien [e] was bas: 1 on observations of v- getation/nver
footprinis in the Amazon jungle and is approximatcly the upper limit obtained for this
combination over the dense vegetation contiol arcas (Tabie 9.3). Combination [d] is the
precipitation flag and condition {h] i1s a snow flag.

'This rule was als + tested along with the other moisture sensing rules in Table 9.8,
Results indicate that 69 % of the grid cells were classified as such, having an API, value of less
than 10 mm (average 3.3 mm). The remaining 31 % of the grid cells resulted in an average
APl value of 22.9 mm, indicating that the rule is also sensing vegetation with a wet soil
background.

9.1.3.4.4 Flooded Soil

Large amounts of water on the soil surface due to a heavy precipitation event, flooding
due to heavy rain or melting snow or the presence of large natura! lakes and reservoirs, will
iower the brightness temperatures at all frequencies due to the high permittivity of water.
Brightness temperatures at 22.235 V GHz will be greater than at 19.35 V GHz because the
microwave emissivity of water increases with frequency and both channels have approximately
the same 3 db footprint size. In addition, the 22.235 GHz channel is sensitive to watcr vapor.
A threshold value of 4 K was determined for the difference between the 22.235 V Gt ¢ and the
19.35 V GHz brightness temperatures based on observations of large lakes and reservoirs and
areas flooded by large precipitation events. This condition {a] is checked within all classification
rules. If the surface is classified as flooded, no paramcter retrieval algorithms are applied.

9.1.3.5 Classification of Precipitation | vents
9.1.3.5.1 Rain Over Vegetation Rule

Precipitating or convective type clouds within an SSM/I footprint over vegetation will
have a drastic effeci on the 85.5 GHz brightness temperatures. (louds containing large water
droplets and/or ice will scatter radiation at smaller wavelengths resulting in lower brightness
temperatures at 85.5 GHz than at the smaller frequency (longer wavelength) channels. This is
especially true over warm, dense tropical vegetation.

Numerous storms were identified through SSM/I data and confirmed by visual analysis
of GOES imagery and/or by checking }OAA precipitation charts over the United States. The
microwave signature of a iarge thunderstorm over the Amazon jungle is shown in Tabie 9.9.
The brightness temperature combination data for clear conditions on calendar days 180 and 231
were similar to the expected microw ve signature over dense vegetation shown in Table 9.3.
The polarization difference {combir...ion [b]) was higher because footprints which had other
classifications, i.e footprints containing surface water, but which fell within the selected area,
were included.




TABLE 7.9 EFFECT OF LARGE PRECIPITATING STORM CLOUDS OVER DENSE
VEGETATION ON SELECTED BRIGHTNESS TEMPERATURE
COMBINATIONS

Amazon Jungle, South America. Box boundaries:
NW comer: 6.5°S 59°W SW comer: 8°S §57°W

CDI180 Asc. CD222 Asc. CD231 Asc.
Combination Mean SD Mean SD Mean D
X) X) (K) (K) (X) K)

(19V+37V) - (1SH+37H) Ib) 1.17 1.02 126 087 1.46 0.96
2 2

37V - 19V [c] 371 069 870 5.81 -393 0.76
85V - 37V [ 582 1.17 -1539 1840 3.87 1.02
8SH - 37H i} §02 1.68  -17.33 20.15 465 1.46

With the presence of storm clouds on day 222, the temperatures in the 85.5 GHz
channels were depressed below the brightness temperatutes in the 37.0 GHz channel. The
hydrometeors were also sufficient in size and quantity to scatter microwave radiation at the
longer wavelengths of the 37.0 GHz channels, as indicated by the decrease in the mean value
of the 37.0 V GHz - 19.35 V GHz brightness temperature difference (combination [c¢]). The
non-yniform nature of the precipitation within the selected area can be seen by the very large
increase in the standard deviation for combinations [c], [d] and [e]. This can be visualized in
Figure 9.3 where the 85.5 V GHz - 37.0 V GHz distribution histogram is plotted for the selected
arca, for the overpasses with and without precipitation. For vegetated surfaces, a threshold
value of -1 K was determined for combination {d] as a precipitation flag. This value is
approximately 2.5 standard deviations from the mean value over dense vegetation areas with
no precipitation shown in Tables 9.3 and 9.4. The rule is:

22V - 19V <= 4.0 [a]
{19V + 37VY2.0) - ((19H + 37TH)/2.0) <= 4.0 b1
85V -37V < -1.0 [dl
19V > 268.0 (g]
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Dense Vegetation — Amaczon Jungle

0.1t
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Realarive Fragquenzy of QOccurence

Figure 9.3 Effect of heavy precipitation on the 85V - 37V brightness temperature
difference over dense vegeiation,

9.1.3.5.2 Rain Over Soil Rule

The detection of precipitation over soil is similar to the detection of precipitation over
vegetation. S.attering by hydrometeors in the atmospl.ere decreases the brightness temperatures
in the 85.5 GHz channels more than in the other SSM/I frequencies. However, the background
microwave emission by soil is polarized and the relative brightness temperature differences
among frequencies are different. Several storms were identified using SSM/I data over the
United States test regions. The storms were checked against National Weather Service radar
charts, when available, to confirm the locations of thundersiorm cells and uccurrence of
precipitation. An example is shown in Table 9.10 for a squall line occurring over Oklahoma
and Texas on Day 228, 1987. Combination values for Day 227 are typical average signatures
for pooled footprints containing mostly densc rangeland and zgricultural vegetation and dry
arabile soil classifications (Tabies 9.4 and 9.5). The thunderstorm acti+ 1y on Day 228 vesulted
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s considerable scattenng in the B5.S GHz channels (combinatons [d} and [e]) and some
scattening 1n the 37.0 GHz channel (combination [c]).

A3311C2V¥INUN

. Threshold values for flagging precipitaion with combinations [¢], [d] and [e] were
detcrmined based on the lower limits for these combinaticiis afier pooling the data shown n
Table 9.5 (dry arable soil) and the study of numerous confirmed precipitation cells over the
central plains of the U.S.. The tule is:

22V - 19V <= 40 a)
((19V+ 37V)/2.0) - (19H + 37H)/2.0) > 4.0 [b]
3TV - 19V < -3.0 icl
85V - 37V < -5.0 [d)
85H - 3TH < 4.1 [e]
19V > 268.0 [g]

Combination [g] is a snow tlag, to differentiate the signature caused by hydrometeors,
from scattering caused by snow which also depresses the brightress temperaturcs of the shorter
wavelength (higher frequeacy) SSM/I channels.

TABLE 9.10 EFFECT OF A SQUALL LINE ON BRIGHTNESS TEMPERATURE
COMBINATION VALUES OVER MOSTLY ARABLE SOIL FOOTPRINTS TN
THE CENTRAL PLAINS OF THE UNITEI® STATES

G Ceiiiial plains of Uniiad Sidics. Arproximaie box size:

NW comer: 37°N 102°W SE comrer: 32°N 95°W

D228 Desc. CD227 Desc.
With Precipitation No Precipitation
Combination tMcean SD Mean SD
(K» x) (K) (X)
(19V+37V} - (19H+37H 1b] 6.28  2.05 545  1.43
2 2
37V - 19y [c] -9.39 4.74 392 099
85V - 37V (d) 2871 13.69 070 099 !
85H - 37TH [e} -21.06 15.03 249 0.86

S




9.1.3.6 Classification of Snow Covered Surfaces

Microwave emissions from snow covered su:faces depend on several factors. These
include: (1) the underlying surface type, (2) the moisture content of the underlying soil and if
the water is frozen or in liquid form, (3) the depth of the snowpack, {4) the density of the
snowpack, (5) the shape and size of t.:e snow crystals and, (6) the liquid water content of the
snowpack. Thus, the classification of snow is complicated as the microwave signature from a
snowpack with constant depth can vary with snow morphology, snow ripeness and cycles of
melting and re-freezing under spring weather conditions. Therefore, the interpretation of
microwave signatures from a snow covered surface at any point in time would benefit from the
history of previous weather and snowpack conditions.

The characterization of snow signatures and their relationships with parameters such as
snow wetness, snow depth and water equivalent has been studied by many authers such as [§],
[6], and [7]. Other research concerning snow microwave propertics has also been described by

[41.

Specific research on snow classification has been done by Kunzi et al. [8] in the
development of snow extent, snow depth and water equivalent algorithms for SSMR. Schanda
et al. [9] proposed a snow classification scheme based on several years of observations which
included classes such as winter snow, wet spring snow and dry, refrozen spring snow.
McFarland et al. [10] investigated snowpack propetiies using SMMR brighiness temperatures
and were able to detect dry snow accumulation, and snow melting and refreezing processes.

5.1.3.6.1 Dry Snow

The normal dry snow microwave signature is the depression of brightness temperatures
in the 37.0 GHz channels with respect to the 19.35 GHz channels due o volume scaitering. At
37.0 GHz, scattering is the main component of the total extinction loss of the mediuin [4].

Channel combination data for footprints containing dry snow over the northern plains of
the U.S. during a few days in Febrvary, 1988 are sh.wn in Table 9.11. Thc ground truth snow
depth values were obtained from the NOAA cooperative network of weather stations in the
central plains states of the U.S. Average daily snow depth values and correspanding SSM/I
brightness temperature data were gridded to 0.25 degree latitude/longitude cells for analysis.
The developed rule for dry snow can be written as:

22V - 19V <= 40 (3]
((19V + 37TVY/2.0) - (19H + 37H)/2.0 > 4.0 {b]
37V - 19V < -6.5 il
19V - 194 > = 5.0 [i]

225 < 37V « = 257.0 [h)




Conditions [c], [i] and {h], together differentiate snow from coid bare soil situations as
well as large precipitating thunderstorm clouds. The threshold for combination [c] is
approximately the lower limit for this brightness temperature difference over dry arable soil with
no snow. When snow is present, brightuess temperatures in the 19.35 GHz channels aiso
decrease, partly due to scattering and partly due to the decreased physical .mperature of the
snow and underlying soil.

Resuits in Table 9.11 also show the greater variability in brightness temperatures
(reflected by the larger standard deviations) caused by the spatial distribution of snow at different
depths.

TABLE 9.11 SELECTED BRIGHTNESS TEMPERATURE COMBINATIONS OVER DRY
SNOW IN THE CENTRAL PLAINS OF THE UNITED STATES

Approximate box size:
NW corer: 49°N 105°W SE comer: 45°N 100°W

Combination SNOW NQC SNOW Calendar
Mean SD Mean SD Date of

) x> (X) K Overpass
1

22V - 19V a] 26 1.0 0os 106
{19V +37V) - (19H+37H) [b] 12.02 233  10.09 1.41 SIA
2 2 TRA
37V - 19V [c] 1155 410 224 121
85V - 37V [d] 836 S5.92 -0.86 1.34 55D
(1988)
85H - 37H [e] 448 S.T2 1.42  1.37

9.1.3.6.2 Wet Snow and Refrozen Snow

The ¢ 1ssification of wet snow or melted snow containing water in liquid form as w 11
as refrozen suowpacks requires the vse of tne dynamic database scheme, as their microwave
signature could be confused with other surfaces. A small amount of liquid water (volumetric
water content of 0.01) will increase the volume absorption coefficient of the medium 10 a value
greater than the ccattering coefficient, thus reducing the scattering albedo to a very small value
(4). For Figher volumetric water contents, scattering is practically non-existent and the
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snowpack begins to behave like a blackbody radiator. Such conditions are normally encountered
in the spring, when the snowpack undergoes successive cycles of thawing and refreezing.
During the day, when temperatures are above the freezing point, the top layers of the snowpack
will partially melt, increasing the volumetric water content of the snow. As a result, the
microwave brightness temperatures at 37.0 H GHz will increase with respect to the Ty, at 19.35
H Gilz. This is shown in Figure 9.4 for a 10 day sequence of SSM/I data over north-centrai
Nebraska during February, 1988. The last snowfall over that region occurred on Day 50-51
with 50 to 75 mm of new snow being 1eported by the weather stations in the area. Average
snow depths changed throughout the period from 254 mm on da: 51, to 55 mm on day 59
(Figure 9.5). Maximum and ainimum air tempcratures are also shown in Figure 9.4,
corresponding to descrnding and ascending overpasses respectively. The first available SSM/I
data after the snowiuil is for the ascenaing overpass on day 51. The T, difference of
approximately 20 K between the 19.35 H and 37.0 H GHz channels as well as the Jow
brightness temperatures in both channels are an indication of dry snow and were classified as
such with the dry snow rule. The signature for the ascending overpass on day 53 is similar to
that of day 51 with slightly cooler temperatures. On both days, the minimum air temperature,
which probably occurred a few hours prior to the overpass, was below the fizrzing point.

The descending overpass on day 53, showed 2 marked increase in the 37.0 H GHz
brightness temperature to within 1 K of the 19.35 H GHz channel as a result of a wet snow
surface layer. Thawing at the snow surface occurred during the day due to warm air
temperatures (the maximum arr temperature was 7° CC). Data from the ascending cverpass on
day 55 shows a drastic decrease in Lrightness temperatures in both horizonta'ty polarized
channels. The minimrm temperature reached approximaicly -14 °C, sufficieni io re-freeze any
liquid water in the snowpack. The thawing and refreezing procc .: increases the size and
changes the shape of the ice crystals, which tend to become spherical as the snowpack ripens
and undergoes several of these cycles. The increase in particle size will increase the scattering
albedo and decrease the polarization dependence causing additional scattering at longer
wavelengths and lowering the T,’s.

Figure 9.6 shows brightness temperatures in the horizontal and vertical polarizations for
the 19.35 and 37.0 GHz channels for the same period. Brightness temperatures for the
ascending overpass on day 55 were lower than those of day 53 for both frequencies and
polarizations while the polarization difference was smaller, indicating a refrozen snow surface
layer. Subsequent overpasses beginning with the descending overpass on day 56 indicate a cycle
of thawing during the day with re-freezing overnight. During this pericd, the variability in the
19.35 H - 37.0 H GHz T, difference for the descending over: astcs was probably due to
different volumetric water content in the snowpack. In additicn, the snow depth continuously
decreased throughout the period (Figure 9.5), with the snowpack depth oa day 59 being less than
half its depth on day 53.

These variable micrc wave snow signatures are difficult 1y accurately interpret with stand
alone independent rules. A dynamic database scheme should be implemented, if accuracy is
desired, in order to differentiate diy snov ' from re-frozen snow ard wet snow signatures as the
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snow depth retrieval algorithm should only apply te dry snow conditions. A dynamic databasc
scheme would check for the accumulation of snow during the winter period as well as the onset
of the thawing and re-freezing processes, and allow for the consideration of the previous history
of the snowpack in the classification logic.

The following additioral snow classificatio: rules attempt o classify some of the
changing snowpack conditicns without the use of a dynamic database. It must be noted that due
to the variability in snow microwave signatures, the rules are not perfectly accurate. Footprints
which contain a mixture of snow with different degrees of liquid water content, wet soil and
vegetation result in complex microwave signatures that cannot be inierpreted by stand alone
rules, requiring the knowledge of previous history for accurate classifications.

Based on the analysis of several time series of SSM/I data along with snow cover ground
truth data as shown in Figures 9.4, 9.5 and 9.6, the wet snow rule can be written as:




9

22V - "9V <= 4.0 la)
((19V  37V)/2.0) - ({19H + 37H)/2.0) > 9.8 ()
65 <=3TV-19V <= 0.8 [c]
85V - 37V < 0.5 (d]
-1.8 <= 3TH - 19H < = 6.5 i
253 < 37V < = 268 [h]

where condition [b] ensures that a high polanization exists due to the presence of liquid water,
condition [c] sets the range of scattering in the 37V caused by snow or a snow/soil mixture. It
differentiates the wet snow pack from cold semi-arid surfaces. Condition {d] is the flag used
to differentiate between dry and moist soil, condition [j] identifies the liquid water in the
snowpack and condition [h] allows a range of brightness temperatures within which wet
snowpacks usually occuir, based on observations of SSM/I data. The rule is complex as a result
of the complexity of tic surface being classified. Cold semi-arid surfaces with moisture in the
top layer, could be confused with wet snowpacks. Also, frozen ground signatures can add to
the misciassifications.

Re-frozen snowpacks have a distinct signature from dry and wet snow. Brightness
temperatures decrease with increasing frequency in both polarization channels, and additional
scattering at 37.0 GHz and 85.5 GHz results in very low brightness temperatures. Thus:

22V - 19V <= 4.0 fa]
{19V + 37V)/2.0) - ((19H + 37TH)/2.0) > 4 [b]
37V - 19V < 6.5 [c]
1TV <= 225 Y

19V < 37V < &85V
I9H < 37H < 85H

9.1.3.6.3 Snew Over Lake Ice and Composite Snow Over Soi! and Lake Ice
Some additional inferesting microwave signatures involving snow include snow over ice
in freshwater lakes during the winter and footprints which contain a mixture of snow over ice

and surrounding soil surfaces.

Snow over lake ice can be identified by:

22V - 19V <=6 [2]
((19V + 37V)/2.0) - (19H + 3TH)/2.0) > 4 b}
37Vv-19V >=0 fc]
37V < 250 {h]

85V - 37V < 37V - 19V

and a snow-soil-lake ice mixture is detected by:
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22V - 19V <= 4 [3]

{19V + 37V)/2.0) - ((1SH + 37H)/2.0) > 4 |
37V-19Vv < O [c]
37V < 250 [b)

85V - 37V > =37V - 19V
85H - 37H >= 37H - I9H

The abeve rules address anomalous cases with complex signatures and were based cn
observaticns of microwave brightness temperatures over lakes in Canada during winter. They
need to be further tested with SSM/I data collected over lakes in other parts of the world.

9.1.3.6.4 Snow and Dense Vegetation

This is a fairly common naturally eccurring surface ~i many mountain ranges in the
temperate zones have evergreen forests and snow cover during the winter. The microwave
signature is characierized by a small polarization difference due to the dense vegetation but with
lower brightness temperatures as frequency increases due to surface scattering. The rule
attempts t0 classify these cases, thus decreasing tne number of "rain over vegetation"
misclassifications which would result otherwise. The nule is:

22V - 19V <= 4.0 2]
((19V + 37V)/2.0) - ((I1SH + 37TH)/2.0 <= 4.0 (b]
37V - 19V < -4.0 [l
19V <= 264 g]

In the winter, under dry snow cover conditions, brightness temperatures in the 19.35 V
are vsually well below 268 X. However in the spring, the snov-pack at higher elevations under
trees is usually the last to melt and contributes to surface scattering in the footprint scene.
Physical surface temperatures are much higher and the overall effect is a higher brightness
temperature in the 19.35 V GHz channel. Snow cover and vegetation can stil! occur with 19.35
V brightness te ipcratures greater than 268 K, as 1t is alsc theoretically possible for heavy
rainfall to occu' over a cool vegetated surface, resulting in si-::lar microwave signatures. Most
of the time it is possible to differentiate between both surfaces as scattering in the 85.5 GHz
channels is greater for atrnospheric phenomena such as thus derstorm clouds while for snow
covered surfaces, the scattering occurs in both the 37.0 GHz and 85.5 GHz channels.

9.13.6.5 Snow Edge

No particular classification rule was developed to detect snow edge due to lack of precise
ground truth data. However under the present scheme, footprints weuld be classified as dry or
wat snow, refrozen snow, inoist soil or dry soil. Thus, the position of the snow edge would be
determined geographically by the classification of congruen. iootprints ¢ 3 one of these surface
types. However, as menationed above, microwave signatures from footprinis that contain a
mixture of snow at different liquid water contents, along with wet soil and/or vegetation are
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complex and difficult to classify with stand alone rules. In many instances, thcse situations
occur at the edge of the snowpack and will result in an indeterminate classification (a default
classification when no other classification rule applies). The use of additional satellite instrument
datasets, such as visible data from the OLS or AVHRR under clear concitions would be useful

in identifying the exact position ot i:1¢c snowpack edge and serve as "ground truth* for the SSM/X
data.

9.1.4 Summary and Conclasions

A list of the developed classification rules is shown in Tabie 9.12. All temperature
threshold values are in degrees Kelvin, based on SDR brightness temperatures. Unless otherwise
stated, ail conditions within a rule must be true for the rule to apply.

It must be noted that no surface type classification scheme based solely on microwave
brightness temperatures will be perfectly accurate. Over land, the large SSM/I footprints
integrate emissions from highly heterogeneous surfaces wit. different microwave properties
(soils, vegetation, water). Thus, the rules will classify a given footprint according to the surface
type which is most prevalent within it. However misclassifications can still occur, as composite

microwave signatures from a mixture of surfaces with different microw 1ve cmission properties
can be misleading. Misclassifications could possibly occur between:

(1) heavy rainfall over cold, wet snil and snow covered soil

(2) SnoYWY and d ne ANt G e Ao

ovel Lool deénse vegeiaiion
(3) wet sntow with cold wet soil surface

v4) cold wet semi-arid surface and ripe snow covered soil surface.

(5) snow edge or snow-soil mixtu. s classified as indeterminate

The rules presented in Table 9.12 were designed to be used in combination with the
developed coveriand parameter retrievai algorithms defined in sections 9.2, 9.3 and 9.4. Due to
the complex mixtire of surfaces which can naturally occur, there will .2 instances of
indeterminate ¢ lassifications. It is expected that these wili be kept to a minimum, not affecting
the retrieval of the parameters. Additional rules to deal with these anomalous cases could be
developed in th: future if necessary.

A listing of the parameter retrieval alg <ithms which apply to each surface type
classification rule are shown in Table 9.13.
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TABL S 9.12 SUMMARY OF SURFACE TYPE CLASSIFICATION RULES USING THE
SEVEN CHANNELS OF THE SSM/I

BRIGHTNESS TEMPERATURE COMBINATION THRESHGIL.D YALUES

LAND SURF. (a] o] il [d] [e] (2] [h] 1]
TYPE X) (X) (X) (K) (K) (K) (K) (XK)
‘looded Cond. > 4
Dense Veg. <4 <19 > -1 < 45 > 262
Dense Agric./ > 19
Range Veg. <4 < 4 > -1 < 45 > 262
Dry Arable > 4 < LS
Sail <4 <98 >-65 >-5 < 4.2
Moist Soil > 4 > 0.5
<4 <197 >-65 < 4 < 4.2
Semi-Arnd > 9.8
Surface <4 < 19.7 < 05 < 6 < -1.8
Desert <2 > 19.7 > -1 > 268
Precipitation < 4 < 4 < -1 > 26K
Over Veg.
Precipitation <4 >4 < -3 < -5 < -4.1 > 268
Over Soil
Comp.Veg. <4 < 6.4 > -1 > 4.5 > 257
and Water
Comp. Sil& <4 >64 >-65 > 05 > 4.2
Water/W _t Soil
Dry Snow! <4 > 4 < -6.5 > 225
VAY)
wet Snow <4 >98 < -08 < 05 <.268 > -1.8
> -6.5 > 280 < 6.5
Refrozen Snow” < 4 >4 < -6.5 < 225
fal] 22V - 19V [bo] (ISV+37V)/2 - (I9H+37H)/2  [c] 37V - 19V
idi 85V -37v [e] 8&5H - 3TH [fi 37V - 37H
[g] 19V [(hy 37V ] 374 - 19H

Additional conditions: ' 19V - 19H > 5§

219V > 37V > 85V, 19H > 37H > 85H

—————— e o
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TABLE 9.13 CLASSIFICATION RULES AND APPLICABLE ALGORITHMS

HRRIE R RSN I ML

Surface Type Algorithm

Flooded conditiong (7) No EDR

Dense vegetation 1) Surface {emperature over vegetation (STV)

Densc agriculture crops 3) Surface temperature over land (STL)

and range vegetation

Dry arable soil ()] Surface temperature over desert (STD)

Moist soil (18) Surface temperature over moist soil
(STML), Surface moisture (SM)

Semi-arid surface (15) STD

Desert (10) STD

Precipitation over vegetation (4)  Precipitation over land (RL)

Precipitation over soil & RL

Composite vegetation and water  (2) STV

Composite soil and water/wet soil (6) STML, SM

Dry snow (14) Snow depth (SD)
Wet Snow (199 No EDR
Re-frozen snow (13) No EDR
Indeterminate Classification (0) Nc EDR

§1‘V, STL, STD, STML, SM, RI,, and SD denote retricval afgorithm codes. Numbers in
parenthesis are the proposed EDR surface type codes.




9.1.5 Alicmative Rulcs

In mid March 1988, after the SSM/T was turned back on, an increase in the noise level
of the 85.5 GHz vertical polarization channel was observed. This chaanel continued to
deteriorate until the data was rendered uscless by the middle «f that year. Later, similar
problems with the 85.5 GHz horizontal polarization channel occurred.

The failure of both channels posed a problem for the use of some retrieval aigorithms,
including the land surface type classification scheme which depends or these brightness
temperatures for the accurate classificatior of water in the footprint scenes as well as
pre tipitation events over land. To address t. : unavailability of data from these channels, two
altemative schemes were developed: (1) classification rules to be used when only the 85.3 V
GHz is not available anrd (2) rules to be used when both 85.5 GHz channels are unusable.

9.1.5.1. Rules for the Loss of the 85.5 V GHz Channel

The methodology used in the development of these rules was the same as described in
section 9.1.2, The difference being that the 85.5 V GHz was not included in the analysis.
Channel brightness temperature differences and combinations in the original rules which were
based on the 85.5 V GHz channel were substitated, for most part, by combinations using the
85.5 H GHz channel. An analysis of the changes to the original riles is conducted in the
following Sections.
3.1.5.1.1 Dense Vegenation, Dense Agricultural and Raigeland Vegenation, Composite

Dense Vegetation and Water, Rain Over Vegetation

In the original scheme, the 85.5 V - 37.0 V channel combination is used as an indicator
of rainfall for the above listed rules. The modified rules are based on the 85.5 H - 37.0 H
combination instead. Microwave radiation in the 85.5 H GHz channel will be scattered by
hydrometeors in the atmosphere in a similar manner as the 85.5 V Ghz chanuel, due to its sinall
wavelength. Based on the analysis of numerous storms and, considering a lower limit for this
combination of approximately three standard deviations from the mean in the case of no
precipitation (Table 9.3), a threshold value of -0.8 K was determined for the flagging of rainfall
over vegetation. Therefore, if the combination 85.5 H - 37.0 H < -0.8, rainfall .s present
within the footprint. Table 9.14 summarizes the new rules.

9.1.5.1.2 Dry Arable Soil, Semi-Arid Cenditions, Desert, Composite Soil and Water or Wet
Soii, Moist Soil

The 85.5 V - 37.0 V combinzation was used in th :se ruie., both as an indicator of rainfall
and for the detection of surface moisture along wit. the 85.5 H - 37.0 H . The latter
combination can be used on its own or both purposes with different brightness temperature
threshold values. The classification res:  will be less accurate {more misclassifications} but
overall, the rules perform satisfactorily.




To differentiate between dry arable soil and moist soil, the 85.5 H - 37.0 H combination
must "ave a valuc less than 3 K, but greater than 4.1 K| the latter being the threshold value,
below which rain is pres t within the footprint scene. For moist soil, the 85.3 H - 37.0H is
greater than 3 K but less than 4.3 K, while for wet soil or composite soil and water 85.5 H -
J7.0H > 4.3 K. A summary of the rules is shown in Table 9 14.

9.1.5.1.3 iooded Conditions, Snow Rules
These rules are unaffected by the loss of the 85.5 V GHz channel.
9.1.5.2 Rules for the Loss of Both 85.5 GHz Channels

With the unavailability of both #:5.5 GHz channels, the classification of surface moisture
is practically impossible with any acceptable degree of accuracy. To detect moisture on the
surface due to precipitation it will be necessary to maintain a running average of the 19.35
H/37.0 V normalized brightness temper. ture and observe significant decreases in the value of
this parameter due to moisture, as described in Section 9.3. Composite water and soil or
vegetation scenes are harder to detect with just the lower frequency channels. Precipitation can
be detected with the 37.0 V - 19.35 V channe! > »mbination, however, due to the lesser
sensitivity to small hydrometeors of the longer wa.  ngths at 37.0 GHz, the classification of
rainfail is less accuratc. Thurdersiorm events with large water and/ov ice droplets will be
classified, but smaller cvents with finer precipitation might not be detected without the 85.5 GHz
channels.

The resulting rules to be used without the 85.5 V GHz channel are shown in Table 9.14
and the rules to be used if both of the 85.5 GHz channels are missing are shown in Table 9.15.
The ap, “opnate retrieval algorithms to be used when all channeis are present or when the 85.5
V GHz cihannel is missing are given in Table 9.13. When both 5.5 GHz channels are missing
the retrieval algorithms to be used are given in Table 9.15. The dry arable seil rule will be
called arable soil as it will include surfaces that a ¢ moist or that contain water bodies. Thus,
algorithm paramcters such as land surface temperature retrieved over such areas could be less
accurate.

Snow detection is limited to dry snow as the 85.5 GHez channels are required to
categorize other snow surfaces such as wet snow or re-frozen snow.
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TABLE 9.14 TAND SURFACE TYPL CLASSIFICATION RULES TO BE USED WHEN
85.5 V GHz CHANNEL IS MISSING

T BRIGHTNIST TEMPERATURE COMBINATION THRESHOUD VALUES
LAND SURF. (a] [b] [c] (d] le] (gl (h] il
TYPE ®K ®© ® ® ©®© ® ® K
Tlooded Cond.” >4 - N
Deise Veg. < 4 < 1.9 < 45 > 262
> -08
Dense Agric./ > 19 > -0.8
Range Veg. <4 < 4 < 45 > 262
Dry Arable > 4 > 4.1
Soil <4 <98 >-6.5 < 3
Moist Seil > 4 >3
< 4 < 197 > -6.5 < 4.3
Semi-Arid > 9.8 > 4.1
Surface <4 < 19.7 < 6 < -1.8
Desert <?2 > 19.7 > -1 > 268
Precipitation < 4 <4 < 08 = 268
Over Veg.
Precipitation < 4 > 4 < -3 < 4.1 > 268
Over Soil
Comp. Veg. < 4 < 5.4 > 4.5 > 257
and Water
Comp. Sol & < 4 >64 > -6.5 > 4.3
Water/Wet So1l
Dry Srow’ <4 >4 < -6.5 > 225
< 257
Wet Snow < 4 >98 <08 <268 > -1.8
> -6.5 > 253 < 6.5
Refigzen Snow? < 4 > 4 < -6.5 < 225

{a] 22V 219V (bl (19V+37V)2 - (IBH+37H)/2  ([c] 37V - 19V
(d} 85V -37V [e] 85H - 37H [f] 37V - 37H
g} 19V ih] 37V ] 37H - 19H
Additional conditions. ' 19V - I9H >=5 Z 194 > 37H > 85H
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TABLE 315 LAND 5URFACE CLASSIFICATION RUIES TO BE USED WHEN POTH
8%.5 GHz CHANNELS ARE MISSING

BRIGH NESS TEMPERATURE COGMBINATTION THTKESIYOLD VALULES

LAND SURF. [a] [bj [c] id) it Ig] fh] L}
TYPE X) x) X) (K) (X3 (K) (X) )
Flooded Cond. > 4 - T
Dense Vey. < 4 <19 > 64 > 262
Dense Agric./ < 4 < 4 > 64 > 262
Range Veg. > 1.9
Arable Soii! < 4 <98 > 658
> 4
Semi-Arid < 4 < 19.7 < -1.8
Surface > 93
Desert <2 > 197 > 268
Precipitation < 4 < 4 < b4 > 268
Over Veg.
Precipitztion < 4 > 4 < -6.4 > 268
Dry Siow’ <4 > 4 < -5.5 > 225
< 257
) 22V - 19V o] (ISV+3TV)/2 - +371) c] VIV- -
[d} 85V -37V |le] 85H - 37H 1 .7v -37TH
[e] 19V [h) 37v i1 37H - 19H

Arable soi!l type includes the types dry arable soil, moist seil, and composite scil and
water/wet soil.
?Additional conditions: 19V - I9H > =§

TITETYIANN

il




TABLE 9.16 CLASSIFICATION RULES AND APFLICABLE ALGORITHMS TO BE USED
WHEN THE 85.5 GIiz CHANNELS ARE MISSING

Surface Type Algorithm

Flooded conditions €)) No EDR

Dense vegetation (1) Surface temperature over vegetation (STV)

Dense agriculture crops 3) Surface temperature over land (STL)

and range vegetation

Arable soil’ (9)  Surface tempe ‘ure all types (STA)
Surface moisture {(HM)

Semi-arid surface (15) Surface temperature over desert (STD)

Desert (10) STD

Precipitation over vegetation (4)  Precipitation over land (RL)

Precipitation over soil (8) RL

Dry snow (14) Snow depth (SD)

Indeterminate Ciassification 0) No EDR

STV, STL, STA, SM, STD, RL, and SD denote retrieval algorithm cedes. Numbers in

parenthesis are the proposed EDR surface type codes.

'Arable soil ty e includes the types dry arable soil, maist soil, and compasite soil and
water/wet scil. The Al! Types land surface temperaturc algorithm 1is to be used.
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9.2 LAND SURFACE TEMPERATURE ALGORITHMS

9.2.1 Algorithm Development Ratignale

The retrieval of surface temperature over land has been an ¢mission in the development
of applications of passive microwave radiometry. Microwave radiemeters on satellites have been
designed to retrieve the atmospheric temperature profile and sea surface temperature. The
radiometers for atmespheric profiles have several channels on the flank of an absorption band,
such as the S0 to 60 GHz oxygen absorption ban¢. In order to retrieve an atmospheric
temperature profile, the temperature of the lowest atmospheric layer is needed. Sources of this
temperature can be either surface temperature reperts or a channel in a window adjacent to the
absorption peak. While considerable research has been conducted in atmospheric temperature
microwave sounders [1], the specificaticn of the surface temperature field over land has not been
a product of this research. A major cumplicating factor has been the variability of the land
surface in the field of view of the radiometers. Water in any form in the atmosphere, on the
land surface, or in soil (without significant vegetative cover) changes the emissicn, absorption,
and scattering of the emitted radiation. These problems are goneraily viewed in terms of
standardizing or normalizing the background temperature so that the water, in its various forms,
may be quantified.

The potential exists for retrieval of land surface temperatures without @ priori knowledge
of the emissivity, absorption, or scattering. The temperatures of densely vegetated or dry land
surfaces, each with a high emissivity, should be easily retrievable from vertically or horizontally
polarized brightness temperatures. Lambert and McFarland [2] found excellent correlations
between the Nimbus-7 Scanning Multichannel Mictowave Radiometer (SMMR) in the 18 and
37 GHz vertical and herizontal channels, and air .emperature for dry range and prairie areas in
the northern Great Plains. The observed air temperatures were mesured at screen height, 1.2
m, wnd reported as daily maximums and minimums in the NOAA climatological data.
Incorporation of the 22 GHz vertical channel should aid in the correction for atmospheric water
vapor absorption of the emitted radiation. The horizontally polarized brightness temperature at
either 19 or 37 GHz should similarly correct for effects of surface or soil water on the
emissivity. Land surface temperature retrieval from passive microwave m: ; not be possible or
meaningful in the presence of snow, ice, or water.

The original Hughes Aircraft Company (HAC) algorithm for the retrieval of iand surface
ter iperature had three forms. Temperature over cloudy land (I'LC) was not investigated due to
an inability to discriminate extensive cloud cover in the land surface classification module.
Previous experience (3] indicates that temnperature over snow (STS) and cioudy snow (TSC)
would be extremely difficult, at best, to retrieve. The passive microwave radiation from a snow
pack is a combination of attenuated radiation emitted from the underlying soil, the reflected sky
radiation from the snow surface, and the radiation emitted from the suow. This radiation is
strongly influenced by the cry: talline structure of the snow, which changes slowly thro: gh hoar
crystal development and rapidly tirough freezing and thawing cycles. Although snow is




regarded as a blackbody radiator, it does not function as a biack body at the incidence angles
of the SSM/I.

For surfaces with a high emissivily (dense vegetation, frozen soil, and placial), the
original HAC algorithm was:

ST=C,*19V, (¢))
where:
ST = surface temperature (K)
C, = 1.09 fc - vegetation
1.07 for frozen and glacial, and
19V = 19.35 GHz verticaily polarized brightness temperature.

These values for C, are the inverse of the modelled emissivities for these surfaces. The
influences of the atmosphere on the emitted radiation were not considered in this algorithm.
For surface temperature over arable land (agricultural and range land), desert, and srow, the
original algorithm was:

ST = Co + C,*37V - G;*22V - C,;*19H + C,*85H. @

Here C, = -36.4 and C, = the coefficients for the channels, as indicated. The physical
explanation for this algorithm can be discerned by rewriting the equation as:

ST = Ay + A*3TV + A*(3TV-22V) + A*(3TV-19H) + A,*85H. 3)

In this form, the 37V channel is the primary channel to retrieve the land surface temperature.
Three corrections were made to this estimate. The brightness temperature difference between
37V and 22V is a measure of the atmospheric water vapor which attenuates the emitted
radiation. As the difference increases, the amount of the correction must also increase. The
polarization difference between the 37 and 19 GHz brightness temperatures is a function of the
water present in the land surface scene. As before, the greater the channel-polarization
difference, the more the correction is required. The 85H correction is small, between 15 and
20 K, and is a function of the attenuation by atmospheric water. The actual correction for
atmospheric water is less, but in this form of the equation, the constant is included in the overall
regression constant (C,). Rearrangement of these terms produces:

ST = C, + (A, +A.+A)*37V - A*22V - A;*19H + A,*85H )

Here A, = the inverse of the emissivity of the dry scene in the 37V channel, A, = 0.127, the
value of C,, A; = 0.459, the vaiue of C,, and A, = 0.0636, the value of C,. If the inverse of
the emissivity is set at 1.024, the sum of the coefficients is equal to C,, which is 1.610. If the
contribution uf the 85H channel were neglected, the inverse of the emissivity should be increased
to 1.07.
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The purpose of this investigation was to validate the basic rationale of the algorithms
based on multiple linear regiession, to seiect the optimal channels for various categories of land
surface types, and to calibrate the coefficients of the regression.

9.2.2 Methodology

The managecment of SSM/I and climatological data has been discussed in Section 9.0.1.
Files of SSM/! brightness temperatures and air temperatures (24 hour minimum, maximum and
temperatuic at time of observation) were created for the Western Desert and Central Plains test
areas. Air temperatures at screen height (1.2 m) were used for the calibration and validation
of the cocfficients, as opposed to estimates of ti : temperature of the emitting layer. Air
temperature at screen height is the standard for incorporation of temperature into numerical
meteorological and agricultural meteorological models. Under cloudy or high humidity
conditions, the surface and screen temperatures should be very close. For clear, d conditions
the deviations between the surface and screen temperatures will be the greatest, especally if the
radiating surface is characterized by a high emissivity and a low density. These conditions
promote strong radiational inversions in the early morning hours and superadiabatic lapse rates
near the surface in the early afternoon hours. A coefficient of determination of 0.94 for 974
pairs of screen temperatures and the radiometric temperature of the earth surface from thermal
infrared or microwave sounder measurements from NOAA 6 has been reported [4] with a
standard deviation usually less than 2.0 K during the summer mcnths, but in the 3 to 4 K range

' Yy ~—tlea
in the winter months.

Temperatures from the climatological n« :work were used, as opposed to hLourly
temperatures from first oerder weather stations, in order to achieve the required density of surface
temperature gbservations. The operation of climatological stations requires volunteer cbservers
to record temperatures and other climatolcsical elements eacl. day. The temperatures are the
maximunt and minimun: during the past 24 ..ours and the temperature at the time of observation.
The time of observation is cither during the early moming or the late aftemnoon, normally ai the
convenience of the observer. Federal stations (National Weather Service and Flight Service)
record the climatological elements at midnight, local time. Consequently, the termperatures
recorded for a given day may have occurred the previous day. The actual time of the satellite
overpass was about 0615 !ocal standard time, which corresponds fairly closely with the early
morning observing time for the temperatures, The late afternron observing times are generally
in the 1700 to 1900 time 1ange, ordinarily .everal hours after the time of the occurrence cf the
maximum temperatures. /An attemt was r ade using curve fitting techniques to estima : the
screen air terperzture at the time of the satellitc overpass (near 170 local standard time). A
combination of sine and exponential terms incorporating the { mes ot sunrise, sunset, and normal
occurrence of the air maxima and minima were used to determine the 1800 temperature. A
large variance was noted * ‘hen the estimate was compared with the temiperature: it an observation
time of 1800. A decision was made to confine the data set for algorithm developient to the
ascending, or early morning, overpass.




The meais and standard deviations of the differences between the reported minimum
temperature and the temperature at time of observation was calculated for about 600
climatological stations in the Central Plains for days 231, 234, 235, and 240, 1987. The
comparisons are presented in Table 9.17. For climatological stations with 0500 and 0600
observing times, the reported 24 hour minimum temperature did not agree with the temperature
at observation time. This is probably due to an occurrence of the minimum temperature on the
previous moming. For this reason, stations with 0500 and 0600 reporting times were excluded
from the ground truth data set. For stadons with 0700 and 0800 r:porting times, the average
differences were generally in the 2 to 4 C range, with standard deviations of 2.6 10 3.4 C. In
general, the minimum temperatures that constituted the ground truth were about 2 C less than
the air temperatures at the sateilite overpass time. The ground truth temperatures ranged from
1.1 10 26.7 C during the test period. Additional information on the variance within the ground
truth is in Miller [5].

TABLE 9.17 COMPARISON OF REPORTED MINIMUM TEMPERATURES WITH
TEMPERAI URES AT TIME OF OBSERVATION FOR CENTRAL PLAINS
TLEST AREA, DAYS 231, 234, 235, AND 240

Means (C) of Differences, Temperature at Time of

Observation and 24 Hour Minimum Temperature
Time of Calendar Day
observailon 231 234 233 240
0500 19.5 12.5 12.2 16.5
0600 6.2 35 47 4.8
0700 2.7 1.7 2.1 2.1
0800 4.2 3.3 . 3.3 3.5

Standard Deviations (C) of Jifferences Temperature at Time of
Observation_and 24 Hour Minimum_Temperature

Time of Caiendar Day

observation 231 234 235 249

0500 4.95 9.62 4.63 7.74
0500 5.02 6.15 5.48 6.89
0700 2.97 2.67 2.95 7.69

0800 3.40 3.35 3.13 3.24
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A multiple linear regression analysis was performed for each surface type identified in
the land classification modwle (EXTLND). Iiigally, all seven channels were used in the
regressicn.  The best four coannels were ident fied, based on ithe cozfficient of determination
(R} and the root mean square error (RMSE). Similar categories of surface type were
aggregated, primarily to prevent gradients in the temperature field across surface classifications
[6]. Pixels classified as rain, flooded, and snow were excluded from the regression analyses.
No stratification was made for cloudiness, due to an inability to classify different cloud types
and amounts in the land classification module. The algorithms that were identified were then
tested against independent data for both the Central Plains and the Western Desert test areas.
The surface temperature files from the Climatological Data contained t.mperatures trom single
stations.

9.2.2.1 Multiple Linear Regression With Brightness Temperatures

Four major assumptions are inherent in mul iple linear regression analysis. The basic
assumption is that the regression model is linear. The other assumptions are that the values of
the dependent variable (the retrieved variables, or EDRs, in the SSM/I analyses) are independent
of each other anc ire normally distributed and that the variance of the independent variable is
the same for all +afues of the independent variables. Violation of any of these four as,uriptions
leads to problen s with the . aalysis [7].

In the land surface temperature investigations, the basic form of the D-matrix algorithm
was linear. The validity of this assumption was examined by plotting the predicied values
against the observed values of lana surface temperature and curvilinearity was not apparent. The
reiationships between the surface temperature and the brightness temperatures were also expected
to be linear from a theoretical basis, primarily for single channel regression models. The data
were autoc rrelated both spatially and temporally within a specific time frame and a test area
and the regression cquations were tested against independent data for other locations and
seasons, so the implications of autocorrelatic 1 are not expected to be significant.

Multicoilinearity is a problem when two or more of the in. ependent variables are hignly
correlated with each other. In this event, the regression model will not be able to separate out
the effect of each brightness temperature on the surface temperature. In the presence of
pronounced multicollinearity, the estimates of the coefficients will have large st ndard errors and
will tend t« be unreliable. Multicollinearity is present when a high coefficient of determination
is accompanied by statisticaliy insignificant est mates of the regression coefficients ["). This
degre-: of multicollinearity in the D-matrix approach is evident from the correlation matrix of
SSM/I brightness temperatures for the test arez and penod as shown in Table 9.i8. Every
channel was highly correlated with every other channel. The highest correlation coeffis ient was
0.99 between {9V and 37V, the channels least influenced by atmosphere (after rain and standing
water pixels were removed from the analysis). The lowest chaanel to chonnel comrelation was
0.84 between 85V and both 19H and 37H, the channels least sensitive and most sensitive to
surface moisture, respectively The 85V i also the most sensitive to clouds. The correlation
between the horizonal and vertical components at a given freq: ency, or the within channe:
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correlation, was very high for the 19, 37, and 85 GRz channels. In data not presented, the
within channel correiation ir: vegetated terrain was highest for the 85 GHz channels.

A3IT1ICQYIAND

TAaBLE 9.18 CORRELATION MATRIX OF SSNi/" BRIGHTNESS TEMPERATURES FOR
LAND SURFACE TYPES USED IN . HE LAND SURFACE TE! PERATURE
RETRIEVAL

— . . q—_ry n—ro—"

SSM/I CHANNEL

19V 19H 22v 37V 37H 8V 85H

19v 1.00 096 098 099 095 091 093
19H 1.00 093 094 098 0.84 0.90
22v i.0¢ 098 093 095 0.96
37v 1.00 096 093 0.94
J7’H 1.00 0.84 0.91
85v 1.00 0.97
85H 1.00

A recominended procedure when muliicollineariiy is present is to drop the correiated
vasiables from the equation, depending on the test of significance of the regression coeffii ient
v and the judgement of the resecarcher {7]. If a highly correlated variable is dropped from the
sression equation, the coefficient of determination will not change. This was apparent in the
utiple linear regressicn analyses, as will be shown in the discussion.

Another recomimer.ded approach to remove the effects of muilticollinearity is to change
the form of the independaut variables. Normalization or differencing techniques may be
emp ved. A principal component analysis was performed to account for the effects of
mult.collinearity of the SSM/I brightness te.nperatures. Principal components is a muitivaniate
ai. s technique used to describe relationships between independent variables. A set of linear
transformations is used to create a new set of mdependent variables that are jointly uncorrelated
[8). The first principal component has the largest variance of any linear functicn of the original
brightness temperatures. The second coinponent has the second largest variance, and so forth.

Principal component (or factor) analysis was used tc determine the most significant
physscal factors that relate the SSM/I brightness temperatu es to the land surface temperature.
The principal compon.nts were determined for each Jand surface category of th: aggregated set
and used as independent variables in . linear regression analysis. The importance of each
cocfficient was determined baser n the r2:uc of the probability level (p) and the t statistic. The




p value is a two-tailed significance probability that the cecefficient (and correlation) 1s zero. A
low value of p indicates a high probability that the correlation is significant.

Idea ly, the vanance of the independent variable is not a function of the values of the
indepcndent variables - a condition known as homoscedasicity. If the variances are not equal,
then heteroscedasticity will be a problem. This condition was 1.0t rigorously tested in the SSM/]
data ssts, but is not believed to be a problem. A visual examination of the scatter plots of
predicted versus observed land surface temperatures did not reveal any pronounced change in
variance distribution as a function of the vaiue of the observed land surface temperature. A
simple mean and standard deviation analysis of the SSM/1 brightaess temperatures in the analysis
also did not indicate a problem with heteroscedasticity. Because the principal components are
standardized and uncorrelated, the coefficient estimates have standard errors, thus avoiding
heteroscedasticity. The standard deviations of the brightness temperatures were of the same
order of magnitude as the land surface temperatures, as shown in Table 9.19. The standard
deviations were slightly higher in the horizontal channels, as expected from intluences of surface
moisture. The standard deviations of the SSM/I brightness temperatures were also higher in the
lower frequencies, as expected from the decreased influence of scattering at the lower
frequencies.

In the linear regression analysis, the C, statistic was used to determine the optimum
muitiple linear regression models for each surface type aggregate. The C, is a measure cf the
total squared error for 2 model with n independent variables {8]. The C, provides a measure
of the error variance plus the bias introduced by failing to include significant variables in a
model. Thc smallest value of the C, staiistic indicates the optimum model, but the subsets that
show a wide divergence between the C, values are indicative of useful subset sizes. The C,
values are in Miller {5].

TABLE 9.19 MEAN AND STANDARD DEVIATION OF THE SSM/1 BRIGHTNESS
TEMPERATURES FOR LAND SURFACE TYPES USED IN THE LAND
SURFACE TEMPERATURE RETRIEVAL

Variable Mean(K) Std.Dev(K)  Range(K)

Y 275.6 7.47 258.0-290.6
ISH 269.0 8.06 243.3-286.0

2V 275.5 6.52 260.2-289.2
37v 272.7 6.82 257.5-286.7
37H 267.6 7.56 240.1-284.5
85V 275.9 5.56 265.5-288.4
85H 272.9 6.13 255.0-286.0

TEMP 285.9 5.09 272.2-299.9




9.2 3 Results gnd Discussion

Two sets of resuvits will be presented; with and without the 85 GHz channels as a
consccuence of the degradation of the 85 GHz channels on the SSM/I on DMSP F-8. The
primary data set used for the analysis was from days 231, 234, 235, and 240 in August, 1987
when the 85 GHz channels were not as yet degraded. Consequently, two sets of alrorithms aiz
developed. In the event that the loss of the 85 GHz channels degrades the capability
discriminate between land surface types, four categories are used: agricultural/range, dry soil,
moi: soil, dense vegetation, and all categories. The number of data points in each category for
the “Western Desert and Central Plains test areas is shown in Table 9.20).

TABLE 9.20 NUMBER OF DATA POINTS, BY CATEGORY, FOR PRINCIPAL
COMPONENT AND MULTIPLE LINEAR REGRESSION ANALYSIS OF
LAND SURFACE TEMPERATURE

Surface Type Western Desert Central Plgaing Total
Dense agric./range 317 122 439
All moist soils 955 900 1855
Aii dry soiis 399 107 306
Dense vegetation 133 6 139
All types 1804 1135 2939
2.2.3.1 Algorithms Without the 85 GHz Channels

The results of the regression analysis of principal components for all land surface types
in the Western Desert and Central Plaiis test areas are contained in Table 9.21. The
independent variable was land surface temperature, as inferred by screen temperature, at time
of overpass. The five eigenvalues which sum to 5.0 correspond to the five SSM/I channels used
in this investigation. A set of eigenvaiues of relatively small and equal magnitude indicates th. t
the multicollinearity is small, which is not the case with the SSM/I brightness temperatures. The
cumulative sum of the variance explained is 1.00. The first factor explains nearly 90 percent
of the variance and the second factor explains eight percent. The p level is very low for all five
factors, as expected due to the intercorrelations.
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TABLE 9.21 PRINCIPAL COMPONENTS ANALYSIS FOR ALL LAND SURFACE TYPES
. FOR 19, 22, AND 37 GHz CHANNELS, WESTERN DESE’T AND CENTRAL
PLAINS TEST AREAS

Factor
1 2 3 4 3
Eigenvalue 4.47 0.40 0.08 8 0.0319 0.0115
Cumulative  0.894 0.974 0.991 0.998 1.000
t statistic 46.24 -48.54 -8.05 15.04 -6.07
p level 0.1 0.0001 0.0001 0.0001 0.0001

The significarice or factor loading o each channel within each factor is shown in Tabie
9.22. These correlations within a factor he!,  with the physical explanation of the factor. Factor
1 represents radiative emission. Although all correlations are high (over 0.92), the 19V and 37V
GHz chanpels have the highest correlations. This is expected because vertically polarized
radiation is affected less by surface moisture and reflections from hare, drv soil than horizontally
polarized radiation.

TABLE 9.22 CORRELATION COEFFICIENTS OF THE PRINCIPAL COMPONENTS FOR
ALL LLAND SURFACE TYPES FOR 19, 22, AND 37 GHz CHANNELS,
WESTERN DESERT AND CENTRAL PLAINS TEST AREAS

Channel Factor

1 2 3 4 b
19y 0.9¢¢6 0.215 0.091 -0.100 0.055
ISH 0.920 0.346 0.181 0.003 -0.040
22V 0.943 -0.363 0.034 0.133 0.004
LYAY 0.974 -0.148 -0.144 -0.058 -0.067
TH 0.923 0.347 -0.157 0.07 ' 0.048

Factor 2 is a polarization difference term, as indicated by the opposite signs ot the
correlations in the vertical and horizontal polarization channels. Two sources of polarization
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difference in radiation emitted frem land surfaces are surface mosture and reflection from
smooth, dry strfaces such as deserts.  As surface moeistuce wic. “ases, the emissivity decreases
due to a higher diclectric constant. This effect is frequency dependent, with a greater effect at
the low frequencies. The konizonially polanized brightness temperatures will decrease more than
the vertically polarized brightness temperatures. The nct effect of increased soil muisture is to
decrease the brightness temperatires and to increase the pelanzation differences.  This is
consistent with the principal component analysis with land susface temperature as the dependent
vanable.

A second source of polarization difference 15 sky and cloud rett ction fronu bare, div
soils. Deserts are identified by the large polarization differences, which reached 30 C at 19
GHz for deserts in Africa and Norih America. As the land surface becomes roagher and miore
vegetated, the polarization difference decreases due to decreased reflection. A principal
components analysis for the Central Plains data set, without the bare dry soil influence, is
preserited in Tables 9.23 and 9.24. The value of the eigenvalue decrsased from (.40 to 0.1}
when the Western Desert was excluded from the data set. The correlations of factor 2 with all
channels also are lower; attributed to the decreased influence of strong polarizaiion differences
from bare, dry soils.

Factor three is characterized by positive, but low, correlations with the 19 and 22 GHz
channels and ncgative correlations for the 37 GHz channels. Factors 4 and 5 are characterized
by very low corvelations with all chanuels.

~
wAs  tanre

appear to have a major influence on land surface temperature retricval from the SSM/I
brightness temperatures. The percent variance explained by faciors 3, 4, and 5 is very low when
compared to the variance explained by the emission and poiarization difference factors. This
indicates that -egression coefficients to correct for these influences for land surface temperati re
retricval may not be statistically siganificant.

The effecis of atmospheric waver vapor and cloed and precipitation particles do not

TABLE 9.23 PRINCIPAL COMPONENTS ANALYSIS FOR ALL. LAND SURFACE TYPES
FOR 19, 22, AND 37 GHz CHANNELS, CENTRAL PLAINS TEST AREA

~ Factor
1 P 3 4 b
Eigenvalue 4.83 0.11 0.03 0.02 0.005
Cumulative  0.967 6.989 0.995 0.999 1.000
t statistic 51.96 -20.53 12.25 12.99 1.06

p level 0.000: 0.06001 0.0001 0.0001 0.0001

o}

NITFICCYINGS




TABLE 9.24 CORRELATION COEFTICIENTS OF THE PRINCIFAL COMPONENTS FOR
ALL LAND SURFACE TYPES FGR 19, 22, AN 37 GHz CHANNELS,
CENTRAL PLAINS TEST AREA

Channei Factor

i - J 4 3
19V 0.993 -0.076 2.001 -0.085 -0.040
19H 0.977 0.081 0.016 0.028 0.024
2V 0.979 0.175 0.075 0.0 -0.00S
v 0.ag2 -0.100 -0.093 -0.024 0.044
I7H 4.979 0.172 -0.089 0.059 -0.022

The principal comporent analysis for the agricultural/range land surface type is shown
in Tables 9.25 and 9.26. Emission, the first factor, accounts for 98.7 percent of the variance
and all channels are very highiy comvelated with this factor {over (.98). Because the
agricultural/range land surface type was characterized by low polarization difference, the
physical interpretation Of the second factor will change. The 19 GHz channels are pesitively
correiated and the other channeis are negatively correiated with thig factor,

A principal componenis analysis of the Ceniral Plairs data set shows only the emission
facter to be significant at the 0.05 level, as shown in Tablcs 9.27 and 9.28. The correlatio:
are over 0.99 for all channels. This suggests that a single channe! aigocithm could be used for
land surface temperzture for this land serface category.

TABLE 9.25 PRINCIPAL COMPONENTS ANALYSIS FCR AGRICULTURAL/RANGE
LAND SURFACE TYPES FOR 19, 22, AND 37 GHz CHANNELS. WESTERN
DESERT AND CENTRAL PLAINS TEST AREAS

Factor
1 2 3 4 h)
Eigenvalue 4.88 0.054 0.044 0.014 0.010
Cumulative  0.975 ¢ ug6 0.995 0.998 1.000
t ctatistic 27.80 -8.18 .19 -2.05 2.20

p level 0.0001 0.0001 0.8464 0.0407 0.02%4
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TABLE 9.26 CORRELATION COEFFICIENTS OF THE PRINCIPAL COMPONENTS FOR
AGRICULTURAL/RANGE LLAND SURFACE TYPES FOR 19, 22, AND 37
GHz CHANNELS, WESTERN DESERT AND CENTRAL PLAINS TEST

AREAS
Channel Factor
1 2 3 4 b}

19v 0.993 0.062 0.033 -0.074 .058
19H 0.983 0.174 0.012 0.046 0.031

2V 0.982 0.110 0.151 0.029 0.007
v 0.992 -0.961 -0.075 0.052 0.067
37H 0.988 -0.066 -6.120 0.053 -0.046

ot

TABLF. 9.27 PRINCIPAL COMPONENTS ANALYSIS FOR AGRICULTURAL/RANGE
LAND SURFACE TYPES FOR 19, 22, AND 37 GHz CHANNELS, CENTRAL
PLAINS TEST AREA

| Factor
2 3 4 h]
Eigenvalue  4.94 ¢.028 0.022 0.008 0.00s
Cumuiative  0.987 0.993 0.997 0.999 1.000
t statistic 22.36 -1.84 1.91 -1.59 1.03

p level 0.0001 0.0681 0.0584 0.1145 0.3039




TABLE G.28 CORRELATION CCEFFICIENTS OF THE PRINCIPAL COMPONENTS FOR
0 AGRICULTURAL/RANGIE LAND SURFACE TYPES FOR 19, 22, AND 37
GHz CHANNELS, CENTRAL PLAINS TEST AREA

Channel Factor

1 2 3 4 3
19v 0.997 0.05¢ 0.009 0.041 -0.048
19H 0.992 0.121 0.001 G.034 G 025
2V 0.991 -0.053 0.125 0.002 0.704
KYA"S 0.996 -0.044 -0.055 -0.0590 G.037
37TH 2.994 0.075 -0.061 0.055 <..017

The principai component analysis for the moist soils land surface type is presented in
Tabtes 9.25 and i.30. As expected, the emission term was factor 1 and the polarization
difference term was factor 2. These terms together accounted for 97.5 percent of the variance.
All factors were significant, however. This is perhaps a result of correlations between land
surface types and atmospheric conditions. For example, when the land surface is moist, the
atmosphertc waier vapor and cioud water content may rave more of an effect on microwave

0 emission than when the surface is dry.

TABLE 9.29 PRINCIPALL. COMPONENTS ANALYSIS FOR MOIST SOILS L\ND
SURFACE TYPES FOR 19, 22, AND 37 GHz CHANNELS, WESTERN
DESERT AND CENTRAL PLAINS TEST AREAS

Factor
1 2 3 4 b}
Eigenvalue  4.59 0.283 0.085 0.028 0.010
Cumulative 0.919 0.975 0.992 0.998 1.000
t statistic 44.00 -32.05 -2.00 13.31 -5.52
p level ¢.0001 0.0001 0.0027 0.0001 0.0001

0 9-52




TABLE 9.30 CORRELATION CCEFFICIENTS CF THE PRINCIPAL COMPONENTS FOR
MOIST SOILS LAND SURFACLC TYPES FOR 19, 22, AND 27 GHz
CHANNELS, WESTIL RN DESERT AND CENTRAL PLAINS TEST AREAS

Channel Factor

1 2 3 4 3
19V 0.974 -0.185 0.073 -0.092 0.055
19H 0.942 0.273 0.191 0.000 -0.034
22V 0.959 -0.254 0.028 0.125 0.00
37V 0.979 -0.124 0.134 -0.055 0.065
37H 0.937 0.307 0.157 0.025 0.041

The principal components and correlations for the dry soils land surface type are
presented in Tables 9.31 and 9.32 Four factors were significant, including emission and
polarization difference, but the. first three factors accounted for 98.9 percent of the variance.
The emission and polarization difference factors were apparent. Factor 3, characterized by
positive correlations between the factor and the 19 and 22 GHz channels and negative
correlations with the 37 GHz channels, was also present.

TABLE 9.31 PRINCIPALL. COMPONENTS ANALYSIS FOR DRY SOILS LAND
SURFACE TYPES FOR 19, 22, AND 37 GHz CHANNELS, WESTERN
DESERT AND CENTRAIL PLAINS TEST AREAS

Factor
1 2 3 4 b
Eigenvalue  4.39 9.402 0.155 0.041 0.015
Cumulative  0.877 0.958 0.989 0.997 1.000
t statistic 12.32 -2.76 3.36 2.75 -1.73
p level 0.000% 0.0068 0.0011 0.0071 0.0859
9-53

AFIISCFIND




TABLE 2.32 CORRELATION COEFFITIENTS OF THE PRINCIPAL COMPONENTS FOR
DRY SOILS LAND SURFACE TYPES FOR 19, 2° AND 37 G.lz
CHANNELS, WESTFRN DESERT AND CENTRAL. PL/ IS TEST AREAS

Channel Factor

1 2 3 4 3
19v 0.954 -0.243 0.122 -0.110 0.061
19H 0.920 0.3¢3 0.244 -0.004 -0.054
22V 0.933 0.327 0.028 0.146 -0.006
3TV 0.962 -0.084 -0.240 -0.071 -0.065
37TH 0.913 0.372 -0.149 0.044 0.064

The dense vegetation principal component analysis and the correlations with the factors
arc shown in Tables 9.33 and 9.34. Thr.e factors were significant at the 0.05 level. As with
the agricultural/range land surface type, the dense vegetzation category i3 characterized by a very
low polarization differencc. Consequently, polarization difterence did not emerge as an obvious
factor in the analysis. Factor 2 was characterized by negative, but smali correlation coefficients
with the 19 and 37 GHz channcls and a higher, positive correlaiion wiih the 22V channei. Tne
cocfficient of determination, however, was very low. Theoretically, a single channel, vertical
polarization, should be sufficient to retrieve the emitting layer temperature. With the best single
channel, the 22V, the coefficient was only 0.21. With all five channeis, the coefficient of
determination increased to 0.29. Addition of the 85 GHz channels in the regression did not

TABLE 9.33 PRINCIPAL COMPONENTS ANALYSIS .FOR DENSE VEGETATION LAND
SURFACE TYPES FOR 19, 22, AND 37 GHz CHANNELS, WESTERN
PESERT AND CENTRAL PLAINS TEST AREAS

Factor
1 2 3 4 2
Eigenvalue 4.65 0.156 0.097 0.053 0.639
Cunmulative  $.931 0.962 0.982 1.992 1.000
t statistic 5.92 2.71 0.14 -3.25 9.67

p level 0.00061 0.6075 0.0829 0.0014 0.5059




TABLE 9.34 CORRELATION COEFFICIENTS OF THE PRINCIPAL, COMPONENTS FOR
DENSE VEGETATION ILLAND SURFACE TYPES FOR 19, 22, AND 37 GHz
CHANNELS, WEST RN DESERT AND CENTRAL PLAINS TEST AREAS

Channel Faztor

1 2 3 4 h]
19V 0.967 -0.038 0.212 £).125 0.035
19H 0.966 -0.180 0.072 6.169 -0.007
22V 0.939 0.339 0.608 0.061 0.014
37v 0.981 -0.030 -0.098 -0.660 -0.155
37H 0.970 -0.080 0.192 0.041 0.116

impr: ve the performance statistics. The poor performance of the retric val algorithms is most
likely due to the non-representative ground truth. Virtually all of the dense vegetation land
surface types were in the mountainous areas of the Western Desert test area. The temperatures
of the emitting surfaces, the coniferous tree canopies in the mountains, are not represented by
the nearest climatological staton. These stationg tend to he in lower elevati s along river
valieys.

Factor analysis and regressien of the principal components indicated that a four channel
linear regression model should include 19V, 19H, 22V, and 37H. The recommended four
channel land surface temperature retrieval algorithm, without the 85 GHz channels, based on the
C, statistic for each of the land surface types is given in Table 9.35. It is interesting to noie that
22V was the single channel with the highest correlation with the surface temperature ground
truth. In the factor analysis, 22V did not have the highest correlations with the individual
factors.

As discussed previously, the estimated variance in the ground truth in the Western Desert
was about twice that of the Central Plains. Consequently, the aigorithm development is based
on the Central Plains data set, with the addition of the dense vegetation land surface type from
the Western Desert. The performance statistics of the recommended algorithm are given in
Table 9.36. The coefficients of determination range from 0.64 for dry soil to 0.81 for
agricuitural/range land surface types. The root mean square errors are around 2.5 C.

90.2.3.2 Algorithms With the 85 GHz Channels

The results of the regression analysis of principal componenis for all land surface types
for the Western Desert and the Central 1 :ins ts contained in Table 9.37. The factors will aot
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TABLE 9.35 RECOMMENDED LLAND SURFACE TEMPERATURE RETRIEVAL
ALGORITHMS WITHOUT THE 85 GHz CHANNELS

Temp (K) = C; + C,*T19V + C,*TI9H + C;*T22V + C*T37H

Surface

Type Co < G G Ca
Dense veg. (STVY) 32.4 0.31 -0.26 0.82 0.04
Ag/range (STV.) 32.4 0.31 -0.26 0.82 0.04
Moist soils (STML)* 89.6 -0.47 0.01 1.49 0.32
Dry soils (§TD) 76.7 -0.39 0.3t 1.24 -0.42
All types (STA) 83.7 -0.49 -0.02 1.58 -0.34

! Included in case future dry/moist soils differentiation is developed.

TARTIT O 26 DOECDUTMNDRALA RN NI DOV I’I’\l:n ¥ Akn\ QI’ DLEAMNK TRADEDATIIDR
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RETRIEVAL & _GORITEMS «VITHOUT THE 85 GHz CHANNELS

Surface Type RMSE () R,

Dense vegetation 3.03 0.27
Agricultural/range 2.61 1
Moist soils 2.32 09
Dry soils 2.43 URZ:
All types 2.45 177

correspond identically (o the factors witho.  the 85 GH: ~hannels, due to the natuie of principal
com~onents analysis.  However, the dominant ractirs will continue to have physical
explanations. The magnitude of the eigenvalues and the cumulative variance explained by each
factor indicaies that there is relatively little variance explained by the third through sevenih
factors (less than two perceat). The p level, however, emawns very low for all factors, as
expected from the intercorrelations of the channels.




TABLE 9.27 PRINCIPAL COMPONENTS ANALYSIS FOR ALL LAND SURFACE TYPES
FOR 19, 22, 37, AND 85 GHz CHANNELS, WESTERN DESERT AND
CENTRAL PLAINS TEST AREAS

Factor
1 2 K] 4 3
tigenvalue  6.07 (.48 6.32 0.07 0.03
Cumulative (.867 0.936 ¢.982 0.992 0.997
t statistic 59.59 -61.16 7.37 7.55 4.96
p level 0.0001 0.0001 0.0001 0.0001 0.0001

Factor 1 kas a high positive correlation with ail channels, as shown in Table 9.38, and
is therefore interpreted as the emission factor. The cirrelations are the highest for the 19V,
22V, and 37V channels, as expected from physical considerations.

TABLE 9.38 CORRELATION COEFFICIENTS OF THE PRINCIPAL COMPONENTS FOR
ALL LAND SURFACE TYPES FOR 19, 22, 37, AND 85 GHz CHANNELS,
WESTERN DESERT AND CENTRAL PLAINS TEST AREAS

Channel Factor
1 2 3 4 3

19v 0.948 -0.008 -0.289 Q.000 -0.04%
19H 0.892 0.411 -0.072 0.166 -0.029
2V 0.946 -0.225 -0.191 0.038 0.128
K FAY 0.977 -0.091 0.096 -0.144 -0.060
37H 0.913 0.372 0.079 0.134 0.033
35V 0.928 -0.022 0.361 0.008 0.077
85H 0.914 -0.318 0.227 0.069 6.059

The correlations between factor 2 and the 19 and 37 GHz channels indicate that factor
2 is due primarily to polarization difference. The 85 GHz chanrels are less polarized than the
other channels as a result of increased surface and atmospheric scattering and a lower response
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to surface moisture. Factor 3 may represent a cloud factor, due to the relatively higher positive
cosrelations with the 85 GHz charnels.

‘ Principal component and correlation analyses for the Central Plains are contained in
Figures 9.39 and 9.40 and show more variance expiained by factor 1 and a higher correlation
of all charnels with factor 1. As with the analysis without the 85 GHz channels, when the
analysis is performed on the Central Plains data set, there is less of an influence of the strongly

TABLE 9.39 PRINCIPAL COMPONENTS ANALYSIS FOR ALL I.AND SURFACE TYPES
FOR 19, 22, 37 AND 85 GHz CHANNELS, CENTRAL PLAINS TEST AREA

Factor
1 2 3 4 b
Eigenvalue  6.62 0.25 0.03 0.02 0.01
Cumulative  .946 0.981 0.986 0. )88 0.989
t statistic 65.55 37.95 11.16 -3.13 3.71
p level 0.0001 0.0001 0.0001 0.0018 0.0002

TABLE 9.40 CORKELATION COEFFICIENTS OF THE PRINCIPAL COMPONENTS FOR
. ALL LAND SURFACE TYPES FOR 19, 22, 37, AND 85 GHz CHANNELS,
CENTRAL PLAINS TEST AREA

Channel Factor
1 2 3 4 3

19V 0.987 -0.068 0.007 0.035 -0.037
19H 0.961 -0.237 0.118 0.031 0.001
22V ¢.987 0.069 0.057 -0.096 0.012
37v 0.989 0.025 -0.093 0.023 -0.001
37H 0.965 0.227 -0.085 -0.02. 0.034
85v 0.948 0.311 0.025 0.051 0.044
85H 0.970 G.'83 0.00° 0.020 -0.050

polarized ¢mission from dry soils. Consequently, factor 2 appears (o shift from polarization
difference uue to dry soils and surface mioisture {o an overall moisture term. This could include
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surface moisture, cloud watei, and atmospheric water vapor. Facters 3 th-ough 7, aithough
significant, account for less than two percent of the variance. The very low correlations of the
SSM/I channels with these factors renders physiczl interpretation more poecaricus. The
interpretation of the physical raticnale {or =2ch of the factors in the principal component analysis
is similar to that of the analysis without the 85 GHz channel. The additional data is contained
in Miller [5].

Table 9.41 contaias a comparison of the performnanice of the land surface retrieval
algorithms with and without the 85 GHz channels. In general, the incorporation of the 85 GHz
channels improved the algorithm performance. The improvement in r00t mean square error was
about ..5 C, with a corresponding increase in coefficient of determinaticn of G.1. The principal

TABLE 9.41 COMPARISCHN OF STATISTICS FROM PRINCIPAIL. COMPONENT
ANALYSIS FOR SELECTED LAND SURFACE TYPES AND TEST AREAS
WITH AND WITHOUT INCLUSION OF THE 85 GHz CHANNELS

EMSE (€} R,
Ferthout With Without W .th
&8 GHz 85 GHz 85 GHz 85 GHz
All surfaces
wD 3.7 3.17 0.54 0.72
C?P 2.42 2.03 0.77 0.70
All 3.a7 3.18 .62 0.72
Agric./range
WD 2.82 0.50
cp 2.37 0.85
All 3.00 2.77 0.65 0.71
Moist soils
WD 3.87 3.45 0.64 0.71
CpP 2.36 1.80 0.80 .88
All 3.53 2.9 0.63 0.74
Dry soils
VD 3.9. 380 0.54 0.55
CPp 2.44 2.47 0.64 .64
All 3.47 0.53

Dense veg. ation
WD 292 2.93 0.32 0.33
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component statistics will not be in exact agreement with the statistics of the muitiple linear
regression, but will be sufficiently similar for a conclusion. The 85 GHz channels improve the
accuracy of the land surface temperature retrieval algorithm. If the 85 GHz channels are not
Q available for accurate classification of land surface type, an aggregation of all surface types leads
to an RMSE of about 3.7 C. Scatter plots of the land surface temperature calculated with tiie
recommended algorithm with the minimum air temperature show a linear dependence [6].

Optimum model selection based on the C, statistic for al! land surface types is shown in
Table 9.42. The 85V is the single channel model with the highest coefficient of determination

TABLE 9.42 MULTIPLE LINEAR REGRESSION MODEL FOR ALL CHANNELS FOR
RETRIEVAL OF LAND SURFACE TEMPERATURE FOR ALL LAND

SURFACE TYPES
Channels in Regression Model C, R
22V 1213. 0.666
85H 978. 0.700
85V 380. 0.784
85V 19V 181. 0.813
8sv A7V i38. 0.815
° 35V 3 116. 0.822
85V 19V 22V 89.1 0.827
85V 3TH 22V 0.5 0.829
85V 37V 22V 58.3 0.831
85V 37V 22V 19H 28.6 0.835
85V 37H 22V 19V 17.0 0.837
85V 37H 22V 37V i5.7 0.837
85V 37H 22V 37V 85H 13.9 0.838
85V 37H 22V 19V 19H 8.1 0.839
8V  3TH 22V 3TV 19V 7.2 0.839
85V 37H 22V 19V I1SH 8SH 8.9 0.839
85V A7H 22V 37V 19V 8SH 8.4 0.839
85V 37H 22V 37V 19V 19H 6.9 0.839

28V 3TH 22V 37V 19V ISH  85H 8.0 0.83%




and lowest value of the C, statistic, in contrast to the 22V of the analysis without the 85 GHz
channels. The coefficients of determination indicate that only twe or three terms in the
regression equation are sufficient to produce essentially the same value as the full sever term
model. This is due to the multicollinearity of the channels.

A larger ground truth data set was assembled, but the arcas and dates remained the same
as previously, to compare algorithm performance with and without the 85 GHz channels.
Additional data from days 50, 51, 53, 56, 57, and 5%, 1988 were included as an independent
data set. A multiple linear regression analysis on the Central Plains and Wesiern Desert data
for days 231, 234, 235, and 240, 1987 was conducted for all land surface types except snow,
rain, and standing water. The coefficients of determination ranged from .15 for dense
vegetation to 0.86 for vegetation with some water present. The RMSE’s ranged from 1.87 C
for vegetation with some wat-r present to 3.58 € for dense vegetation. The lower statistics for
the dense vegetation may be more of a function of the variarice between the surface temperature
observations and the temperature of the emitting canopy than of the site to site or day to day
variance of the brightness temperatures. The same land surface type categories were constructed
as previously. A multiple hnear regression analysis was performed for each category with the
Central Plains data set. The channels that are optimai, based on the C, statistic and the
statistical significance of the regression, are preseated in Table 9.43 for the Central Plains data
set only. The 85V and 37V channels are dominant, fotlowed by the 22V and 19V channels.
However the 85V, 37V, 22V, and 19H channels wece selected for a four channel retrieval
algorithm. The coefficients of determination showed esseatially no change from the optimal
channcls. Thc recommended fuw channel iard surface retrievai aigonthm, with the 85 GHz
channels, for each of the land surface types is given in Table 9.44. The performance statistics
are given in Table 9.4S5.

TABLE 9 43 OPTIMUM MODELS FOR LAND SURFACE TEMPERATURE RETRIEVAL
FROM THE 19, 22, 37, AND 85 GHz CHANNELS, BASED ON THE C(;)
STATISTIC, CENTRAL PLAINS TEST AREA

RI
Land surface type C,  Channels R? alich,
Agricultyral/range  0.90 85V 37H C.812 0.817
Moist sals 623 85V 37v 22V 37H 19V 19H 0.851 0.85!
Dry soils 3.55 22v 85V 37H 0.622 0.634

All types 5.55 85V 37TH 22V 19V ISH 0.7¢3 0.791
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TABLE 9.44 RECOMMENDED LAND SURFACE TEMPEFRATURE RETRIEVAL
ALGORITHMS WITH THE 85 GHz CHANNELS

Temp (K = Cp + C,*TI9H + C*T22V + C,*T37V + C,*TESV

Surface

Tps (6 G C. [ Cs
Dense ves. (STV) 24.94 -1.2784 0.8800 0.5933 0.7299
Ag/range (STL) 6.97 -0.6266 0.2716 0.1297 1.4820
Moist soils (STML} 23.i6 -0.1873 0.5221 0.6271 1.2320
Dry soils (STD) 72.63 -0.4598 0.5984 -0.8828 0.2623
All types (STA) 26.46 -0.3133 0.7327 -0.4459 0.9540

! Can be used if above four types cannct be differentiated.

TLENTA W IMATLE F A RETAIET AT TAaTIOIAL S ST TIULTYTT.

a o) ¥ ARMTIR MIFYFLTY 4 /ATD rTWWTe FTaryrs 4 FEYT T we
D PEKFOKNMANUD UL KECAAMIMMEINIZLA? ANV DURECALUL 1EMEPFEK v

:
RETRIEVAL ALGO JTHMS WITH THE 85 GHz CHANNELS

|
|

]
>

e
3]
L)
Iy

o

S_irface Type N RMSE (C) R,
Dense Veg. 68 . 3.45 0.21
Aglrange 237 2.69 0.7
oist soils 1230 2.78 0.76
Dry soils 229 3.60 0.46
All types 1764 3.14 0.71

9.2.4 Recommendations

1. Algorithms should be implemented, with or without the 85 Ghz channels, for land
surface & mperature retrieval.

2. Dense vege:ation will have the same coefficients as agricultural and range lands for
the algorithms to be used whes: the 85 GHze. channeis are not available.

®
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3. If the iand sinface classification is degraded due to tiie loss of the 85 Ghz ch: nels,
an all surface types land surface iemperature retrieval algorithm should be implemcs e

4. Algorithms should be deferred for surface temperatures for cloudy land, snow, cloudy
snow, and glacial.

Additional research should include digital thermai infrared surface temperatures under
clear, rclatively dry sky conditions as the ground truth. The logical source of this irformation
is from the Operational Line Scanner (OLS) on the DMSP satellite. The major difficulty to date
with the use of OLS thermal data as ground iruth for the SSM/! surface temperature retrieval
is the difficulty in assigning a latituie and longitude for each OLS pixel (the operational uses of
the OLS data are based on visual interpretation of the images) and nierging this information with
the SSM/I information. The use of OLS data under near-ideal conditions will facilitate the
calibration of algorithms for surface conditions of dense vegetation and forest areas, mountainous
areas, and areas with a low density of surface weather stations. Particularly with areas ot dense
vegetation and forests, the thermal infrared channel will provide a source of ground truth that
is revresentative of the emitting surface. The variance of the ground truth may also be
determined for all land surface types and locations. The algorithms developed are intended for
us¢ on both ascending and descending passes with the knowledge that a bias wil! be inherent
with the descending pass {late aftcrnoon) retrieval. This bias can be determined with the use of
OLS thermal infrared data.

An udditional recommendaiion is to use SSM/I land surface temperature data in the

retrievai of aimospheric profiies with other sensors on the DMSP sateiiite series.
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4.2 SURFACE MOISTURE ALGORITHMS
9.3.1  Algonthm Development Rationale and Background

Free water in pores of sotl suitace layers will lower the emissivity of those layers due
to the increase in the soil permiitivity. The results of several field experiments have generally
shown a linear relationship between normalized brnightness fomperature anc soil moisture
expressed either on a gravimetric or percent of field capacity basis [1], (2], [3]. Wang et al.
[31 also showed a hincar relationship between normalized brightness temperatures and the
volumetric water content in tiic top 10 cm layer of soils at different frequencices (1.4, 5 and 10.7
GHz). The linear variation of biightness temperatures at a particular wavelength with the
volumetric moisture content of the soil will be approximately ihe same for most soil texture
types.

Emitted microwave brightiicss temperatures have also becn correlated to estimates of
surface moisture such as the antecedent precipitation index (API) [4), [S], [6). High correlations
were found at several frequencies including ¥7 GHz and 37 GHz. Recent studies by Choudhury
et al. [7] and Owe et al. {8] have also used the AP! as a measure of soil surface wetness and
incorporated soil evaporation in the estimation of the recession coefficient.

Several physical factors affect the sensing of soil moisture at different microwave
frequencies. At short wavelengths, most of the brightness temperature contributions from 3 soil
are emitted by a shallow layer at the soil surface. For a wet soil, this moisture sensing depth
is on the order of ten percent of the wavelength. This would represent an emitting layer of only
a couple of miilimeters at the 15.35 GHZ {1.55 ci) channcl of the SSM/L.  Soil surtace
roughness and texture also affect the measured brightness temperatures by decreasing the
sens tivity to scil moisture. This was shown to be the case by Wang et al. [3] and Newton and
Rouse [9] for several microwave frequencies.

Vegetation cover will also decrease the seasitivity to soil moisture due to self cmission
as well as scattering and de-polarization of microwave radiation emitted by the soil. Several
studies have indicated thav ionger wavelengths can better penetrate vegetation cover and therefore
are better suited for soil moisture sensing. Vegetation effects on microwave sensitivity to soil
moisture have been studied and discussed by Wang et al. [10], Burke and Schmugge [11], Theis
and Blanchard {12] and Ulaby et al. [13].

The short wavelengths of the SSM/I will result in a small soi! penetration depth a. well
as a reduced sensitivity to surface moisture if any vegetation is present above thie soil surface.
in addition, the large SSM/I footprint sizes will lead to the introduction of noise due to surface
type variability as well as the random nature of precipitation occurrences and spatial pattemns at
ti:at scale. For these reasons, the correlation of SSM/I variables based on brightness
temperatures with an antecedent precipitation index was deemed the best approach for moisture
retrievals at the soil surface.
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9.3.2 Methedology

9321 Passive Microwave Data

SSM/I overpasses over the Central Plains and Western areas of the United States were
sclected ated on the potential presence of surface moisture. This was determined by locating
storm systems with significant precipitation on daily and weekly weather maps publisiied by
NOAA. Only large frontal systems were selected .s small convective storms can be a source
of error due to the spatial resolution of the sensor and the relatively sparse distribution of
weather stations at that scale. The SSM/I data were ordered to cover a time period ranging from
1 or 2 days before the storm te several days after it. In this way, it was possible to detect
abrupt changes ia surface moisture on the day of the storm and the subsequent dry-down period.
SDR brightness temperatures over the area of interest were downlcaded to disk using software
suppiied by NRL for the VAX VMS operating system. The data were then submitted to a set
of programs developed at Texas A%M University which removed header racords and prepa: d
the data for the surface-type classitication =xpert system program [14]. The classification scheme
as described in section 9.1 determined the major surface types, i.e., water, snow, and dry and
wet soil su. faces as well as vegetation densities based on average polarizations in the 19.35 GHz
and 37.0 GHz channels. Classified footprints were gridded to 0.25 degree latitude/longitude
cells which contained the seven brightness temperatures and a surface type classification code.
Because the distance between concentric A-scan footprints of the SSM/I is on the order of §.25
degrees at mid-latitudes, most of the time only one footprint was placed in each
latitude/longitude {.25 grid cell.

9.3.2.2 Ground Truth Data

Climatic data used as "ground truth” in this study covered a period from July to Ocicber
1987 and January to December 1988 and comsisted of daily maximum and minmun
temperatures and precipitation amounts from the cooperative network of weather stations
operated by NOAA. The data tap: 5 were ordered from NOAA and were downloaded to disk
using a YAX mainframe computer with special software developed for this purpose. The
climatic variables for each weather station were gridded to 0.25 degree latitude/longitude cells
for the entire USA and for each calendar day of the year. If more than one weather station were
present in a particular grid cell, the values for each climatic variable were averaged.

Daily antecedent precipitation index {API) valves were calculated for each
latitude/longitude cell based on the available temperature and precipitation data. The API was
caiculated as:

APL, = (APL, + P)*K (1)

wh ~ K is the recession coefficient, P is the effective precipitation, and ; and ., represert the
cu. t and preceding days respectively.
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Two methods of estimating the recession coefficient (K) were used: (1) a method
proposed by Wilke and McFarland [6] where the K facior was allowed to vary between a
minimum of 0.70 in the summer and a2 maximum of 0.92 in the winter to account for seasonal
changes in evaporation potential, and (2), a X factor described by Choudhury et al. {7]:

K; = exp(-E/W,_) @

where E is the svaporation on day i and W, is the maximum depth of soil water available for
evaporation.

As stated oy Choudhury et al. [7], the magnitude of W, is uncertain because »f the small
sampling depth at microwave frequencies. They concluded based on a sensitivity analys:s that
the correlations between brightness temperature and AP! consistently increased as W, is
decreased. Due to the small moisture sensing depth at 19.35 GHz and the empirical nature of
the above mentioned equation, five recession ccefficients were computed for values of W,, equal
to 5, 7.5, 10, 15, and 20 mm which resulied in five API values with notation APY;, APL,, AP];,
APlL,, and API;. The nofation API, was used for the API estimated using the recession
coefficient proposed by Wilke and McFarland {6). Because the API value for a given day ata
given grid cell locaticn depends on the API of the previous day, missing records in weather data
fiies were checked and reported in the output file as number of days since last missing record.
If for a given grid cell location on a given day, the precipitation data were available but no
temperature data were reported, an estimate of the maximum and minimum temperatures for that
grid cell was obtained by averaging data from surrounding cells. This was acceptable because
temiperature is a fairly spatially conscrvative variablic across similar elevations. For these cases,
a flag was set in the cutput file in order to aliow further screening of those data if their
reliability was questioned during the analysis. An additional variable calculated for cach grid
cell was the number of days since the last rainfall event. In this way its sigrificance in the
algorithm development could be evaluated.

The potential evaporation or evapotranspiration was computed using the Hargreaves
equation [15]. This equation was selected because it required input data which were readily
available such as the day of the year, the latitude, and daily minimum and maximum
temperatures. The Hargreaves equation is in good agreement with the Penman equation in
relatively dry climates with roe or moderate wind. The H:argreaves equaiion can be written as:

ETP = 0.0023 Ra (TC + 17.8) TD®® 3)

‘where ETP is the potential evapotranspiration for grass in mm/day, Ra is the extraterrestrial
solar radiation in mm/day, TC is given by (Tmax + Tmin)/2 (Average Daily Temperature), TD
is given by (Tmax - Tmin), Tmax is the maximum daily tempcrature, and ‘Tmin is the minimum
daily :emperature.
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The extraterrestrial radiation can be expressed as a function of the latitude and the day
of the year:

Ra=2167.32 ES [0 sin(Lat)sin(DEC) +cos(Lat) cos (DEC) sin (OM) ]

(4)
596-0.55TC

whei>:
Lat = latitude of the location in radians,
DEC = 0.40876 cos(0.0172142 (] + 192)),
J = day of year,
ES = 1.00028 + 0.03269 cos(0.0172142 (J + 192)),
OM = Arc.cos (-tan(lat) tan(DEC)).

The laiitude of the lower right hand comer of each grid cell was used as the latitude
vaiue in this equation. Other ground truth data used consisted of the Major Resource Regions
and Ma,or Land Resource: Areas of the United States (MLLRA) by the Soil Conse) vation Service
[16]). This land classification scheme groups areas -ith similar soils, natural vegetation, climate,

and topography and arsigns a codz number to each area. Thesc code nunibers were also gridded
to 0.25 degree cells.

9.3.2.3 Regression Data File Preparation

Gridded classified SSM/I files were merged with gridded API files for the appropriate
dates and overpasses with a computer program, resulting in output i ‘es which contained primary
data for statistical regression. The implied assumptions with the form of the API equaticn used
{Equation 1) were that no evapotranspiration occurred during the night and that the precipitation
events occurred between 12 am and 6 pm. Therefore, the morning overpass gridded SSM/I files
were merged with the gridded API file for the previous day while afternoon overpasses were
merged with API files for the same day. If no API data were available for a particular 0.25
degree cell, data from that cell were omitted in the output daily regression file. The mer;ed
daily regression files contained the latitude/longitude location of each grid cell, the
corresponding seven measured brightness temperatures, the classified surface type code, the
surface temperature, the precipitation amount for the day, the number of days since the last
rainfall event for that location, the MLRA region code, missing data flags and 6 estimated API
values. All gridded daily files were then transfesred from the VAX to a microcemputer via
KERMIT for further preparation.

A computer progr.-m was written for the PC to read these files and search for locations
witl high API values in order to confirm on independent weather maps that storms actually had
occurred. A second computer p.ogram screened the regression fi ¢s wish the purpose of building
time series for a given MLRA region (MLRA region files) which included data prior to the
storm as well as for the dry-down period after the storm. In this procedure, grid cells with at
Jeast one high AlT value were detected and tagged during the successive reading of ail taput
files. The average polarizatior n the 19 GHz and 37 Giz channel: was caiculated for dry

G-68




surface conditions just prior to the storm in order to further categorize vegetation cover densit:
for the tagged grid cells. During a second reading of the input files, time series for grid cells
with at least one high A?T value were created and the data placed in different MILRA sub-region
output files according to vegetation of the dry cell. A maximum of six possible output files
(MLRA sub-region files) were created for each MLRA region according to vegetation cover
density for the period of analysis. The six initiil classes corresponded to average polarizations
in the 19.35 GHz and 37.0 GHz of: (6) less than 4 K, (5) between 4 and 6 K, (4) between 6 and
8 K, (3) between 8 and 10 K, (2) between 10 and 12 KX and, (1) greater than 12 K.

9.3.2.4 Data Analysis

The regression analysis was conducted on MLRA sub-region files grouped according to
vegetation density class. The ground truth variables consisted of the 6 API values while the
SSM/I variables consisted of several forms of normalized brightness temperatures and apparent
emissivities. Apparent emissivities were obtained for each channel by dividing the brightness
temperatures b the surface physical temperature. As simultaneous OLS surface temperature
data were not available, the measured air temperature at the time of the overpass was »:s»d. Air
temperatures can be fairly good substitutes under stable climatic conditions. For ascending
overpasses, the minimum air temperature was used as it usualily occurs close to 6 ai: in a semi-
arid environment. For descending overpasses, the temperature at 6 pm was predicted using a
sinusoidal curve adjustment based on maximum and minimurmn temperature for t! ¢ day [17].

For best operational use, the surface moisture algorithms ideallv should be based soleiy
on SSM/I brightness temperatures without requiring any additional ground information. Because
both vertically 2nd horizontally polarized brightness temperatures are influenced by the physical
soil and vegetation temperatures in the saine way, but vary in magnitude with moisture (at the
53° incidence angle of the SSM/I), normalized brightness temperature ratios consisting of
horizontal channels divided by the vertical channels were tested as well. As it will be seen later
in the analysis section, the TI9H GHz channel was found to be the most sensitive to surface
moisture. The following SSM/I variables were tested :

1) Tl9h

2) TI% / Tl.hyl
3T/ Tis
4) Tl‘;‘h / T37v

5) Tigw / [0.5*(Ty5, + T3]
As previously mentioned in section 9.3.1, most of the correlations between microwave
emission versus surface moisture have been explained by linear relationships. This was

examined in the dafa analysis by using the following models:

X = B, + B, API

-2

AIT21CCcVINYD




where:

API = Antecedent Precifitation Index (APL., API,, ..., or APLy),
X = brightness temperature, apparent emissivity,

or normalized temperature ratio,
By, 8, = regression coefficienis.

The second model tested was a logarithmic transformatiosi of the API values versus the
radiometric data:

X = By + 81 In JAP])

The third model correlated the SSM/1 variables with estimated reflectivity coefficients
cbtained by transforming API values using & simple radiative transfer model:

X=Bo+81r-m

The radiative transfer equation was defined 1a section 9.1 and the assumptions involved
are described by Utaby et al. [18]. In this procedure, volumetric £1il moisture values were
estimated from API values using 8, = C,.. APL. The value of the C,,, coefficient was
determined by looking at its effect on the goodness of the fit of the linear model. The soil
dielectric constant can be estimated from the volumetric soil moisture content using an empirical

P-2-X—33-3-3 V-39 4 103} QL o4 2R ~ -9

g =1(2+aS +aC) + b, +bS +b0C)6, + (¢, + ¢S +¢,0) 82 (5

where:
0, = volumetric soil moisture coatent,
S = sand content in %,
C = clay content in %,
a,b,c = empirical coefficients.

Hallikainen et al. {15] provide values for the empirical coefiicients to determine ihe real
and imaginary part of the dielectric consiant for frequencies between 1.4 GHz and 18 GHz.
Thev showed that as the frequency increases, the soil dielectric const.int versus soil moisture
relationship is less sensitive to soil texture. At 18 GHz the influence is minimum. For this
study, the empirical dielectric behavior at 18 GHz was assumed to be applicable to the 19.35
GHz which was the SSM/] frequency selected for the soil moisture algorithm development.

The real and imaginary parts of the dielectric constant were then used 0 cstimaie the
spcular reflectivity cocfficient aher the trigonometric transformation of the following equations
[13]:

Iv{eph) =

_._.._2_._..




] ——
_ | c,cosel-‘/e,—smzo‘ 0

r#@,v) =
o v’ Ie,cosﬂl---,jt:r-sin?ﬁl

AJIYITLCYTIANIN

Finally, the specular reflectivity was then used to ~stimate the soil surface refiectivity
coefficient (). The use of this regression model for surface moisture prediction however
would require an iterative method to solve for API from I, because the equation is implicit
for unknown soil moisture.

The regression analysis was conducted on a VAX using the SAS statistical package and
on a imicrocomputer u: ing a simple regression program written in Turbo Pascal 5.0. The latter
program was tailored to handle the above mentiored models, allowing for the selection of
different SSM/I and ground truth variables. Figure 9.7 represents a general flow-chart of the
data analysis methodology.

9.3.3 Sclection of the SSM/F Channels Most Sensitive to Surfacs Moisture
9.3.3.1 SSM/I Channel Selection

Many studies in passive microwave remote sensing have shown a decrease in sensitivity
to surface moisture as wavelengths decrease, due to smaller penetration depths. To test this fact,
‘ stepwise regression using the logarithmic model was conducted with SAS on 21 MLRA sub-
region files for the 1987 data set. Regressions of apparent emissivities (SSM/I brightness
temperatures divided by the surface physical temperature) versus API were carried out and in
all cases, the channel resulting in the highest correlation was the 19.35 GHz horiz ntal
polarization. The decrease in correlation was quite drastic when other channels with shorter
wavelengths were used in the regression. Based on this analysis and due to the larger available
penetration depth nnd sensitivity at the 53° incidence angle, the 19.35 H channel was considered

best suited for surface moisture retrievals.

9.3.3.2 Vegetation Cover Effects

Vegetation overlying the soil surface will deciease the sensitvity of moisture detection
at the short wavclengths of the SSM/L. At high vegetation densities, ret: ievals of surface
moisture are physically impossible. To illustrate this fact, several time series of SSM/I
signatures, API values, and precipitation values were ploticd for single iatiizde/longitude cells
in regions with different vegetation covers. ‘The SSM/I variables or signatures represented in
the following graphs consist of the apparent emissivity for the 19.35 GHz horizontal channel
(el9H = TI9H/Ts) and the normalized temperature ratio 19.35 H GHz divided by the 19.35 V
GHz channel (T191U/T19V). The API values were obfained using Equation 1 and 2 witha W
of 10 mm.
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In Figure 9.8, for an agi:cultural area in West Texas, the normalized teriperature
(TISH/T19VY) at the beginning of the seascn was relatively low, gradually incrersing and
peaking around day 220. The increase in normalized temperatuse as the season progressed was
a result of a decrease in polarization caused by increased vegetation density. Precipitation everts
resulting in considerable surface moisture caused an at-rupt lowering of the SSM/I variab®s due
to a decrease in soil emissivity. The storm on day 141 resulted in & much greater micre vave
response than the larger event arcund day 190. This could have occurred due to 2 combanation
of two factors: a denser vegetation coves on day 190 and/or a localized storm ‘which did not
thoroughly wet the entire footprint. Figure 9.5 shov s a similar pattern with peak vegetation
occurring around day 180. A well vegetated fooiprint from a location further east is stown in
Figure 9.10. The normalized temperature had a value closer tv one indicating small
polanzauons and the sensitivity to surface moistu.e resulting from precipitation was lower. In
all the series examined, the apparent :missivity carried more unexplained variability than the
normalized temperature.

To further study vegetation effects on surface moisture retrievals, an analysis was also
conducted on the MLRA sub-region files for the central plains of the United States for the year
1988. In this way, differénces due to vegetation types and seasonal effects could be considered.
Table 9.46 shows the resuliing vegetation density classifications of the sub-region files for the
three scasons analyzed. A change in veg tation density over the time period studied (from
spring to fall) occurred for most of the areas under investigation. For cropland areas in thc
central plzins, spring time is characterized by relatively bare soils followed by a rapid increase
in vegetation density at the end of sp. ing, to full cover Guring summer and low vegetation cover

aftor harmraet in 1atoe ciimmar ne inll Annﬁ-ulfﬂﬂn l ﬂ-\n Aanten ﬂ‘ﬂ‘f]l‘ ealian ¢l A matirenl
Gitive ML VWOl 25 QU OUMIALIINE WUa Acaas. It FR R E VR 1 IR HH T ot T S reuds Mo uy nawurai

precipitation with the exception of the south easiern plain regions (West Texas, Oklahoma, East
Cclorado, and Nebraska) which have a significart zrea under irrigation. Other major vegetation
types consist of rangeland, and pasture. Natural vegetation is mostly comprised of short,
medium, or tall grasses with peak vegetation density occurring in late spring and early summer
depending on the Iatituda. "hanges in vegc.ation density for this type of land cover are not as
extreme as the case of cropland regions. The area covereo in this study ranged from a Jatitude
of 30 to 49 degrees north latitude, which inplied a spectrum of vegetative calendars according
to location and elevation.

The MERA sub-region files were clipped to contain data for a period of not mor:: than
25 days in a particular season and included data from the dry surface prior to the storm, the
passage of the storwr and increase in surface moisture, and the subsequent recession period as
the surface dried. For most data scts shown in Table 9.46, the average polarization over dry
soil was i.ghest in the spring, lowest in the suminer, and showed an intermediate value in the
fall. Polarizations in spring and fall were similar for cropland areas, with a decrease of several
Kelvins in the summer. Some regions did not show any significant changes across seasons and
were either 1) semi-arid regions or lakes if the average polarization was large, or 2) dense
natural vegetation if the average polarization was low. Vegetation density had a major 1.1tluence
on the seaisitivity to suitace moisture.  Figure 9.11 shows distinct difitrences between “he throe
scasons for MLRA 106 (INebraska and Kansas Loess-Drift Hills) in the Central Feedd $§ ains and
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S'nature Response to Surface Moisture
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TABLE 9.46 AMALYZED TIIPPED MI'RA ™

SUB-REGION FILES WITH VEGETATION
DENSIYY CLASS AND THE AVERAGE POLARIZATION PRIC™ TO THE
STORM

MLRA Season Vegetation Averge Polarization Oer e
Density Class Dry Soil Prior to the Storm (X)

LT} SUMMER 3 8.8 B

" " b} 4.6

558 SPRING 3 9.0 --'

" FALL 2 - -

v " 3 3.3 -

56 SPRING 2 10.6 B

) " 3 9.7 c

" FALL 2 10.7 B

" " 3 8.2 . .

o 11] 4 6.2

57 FALL S 5.6 N

67 SPRING 3 8.5 '

" ] 4 6.5

L] L] 5 5-4 - . ..

69 SPRING 5 5.9 s

70 SPRING 4 7.6

71 SPRING 3 8.0

» " 5 4 0 o .

" TALL § 3.2

72 SPRING 4 6.6

Y SUMMER 3 8.9

N " 4 6.4

) " 5 4.5

" FALL 4 6.8

73 SPRING 5 4.4

75 SUMMER 5 5.6

77 SPRING 2 10.1

" v 4 6.9

- FALL 3 8.1

y " 4 7.7

78 SPRING 4 79

" FALL 4 6.3

" " 5 4.9

80A SPRING 4 7.1

31 FALL 4 6.5

! " 5 5.5

" " 3 8.7 :

" FALL 3 8.3 ﬁ

102B SPRING 4 6.4 .

" - 4 6.0 g

) ) 5 6.8 E

106 SPRING 3 9.5 9

" " 4 8.0

" FALL 3 3.3 :

107 SPRING 3 8.4




Livestock Region. Comn and wheat arc the main crops in the area. The average polarization
in the 19 and 37 GHz channels over dry grid cells was 8.2 K for spring, 4.6 X for summer, and
7.0K for fall. The greater sensitivity to soil moisture in the spring resulted in lower normalized
3 temperatures as API values increased. Figure 9.12 correspoi.is to ML.RA 103 (Ceniral Towa
and Minnescta Till Prairies), a com and soybean region with overall denser vegetaton in the .
summer and fall seasons. The average polarization over dry grid cells was 7.5 K in the spring, N
4.5 K in the summer, and 5.4 K in the fall.
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SSM/T Signature Response to Surface
Moisture for MLRA 103
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Figure 9.12 The influence of vegetation cover on thc ensitivity to surface wnoisture for the
MLRA 103 region.

Analysis of the TISH/T37V versus API relationship for the MLRA sub-region files lead
io the following conclusions:

1) The strongest correlation between TI9H/T37V and API occurred in the Northern b
Great Plains Spring Wheat Region (MLRA 54. 55B, 56), in the Central Cireat “‘lains Winter
Wheat and Range Region (MLRA 70, 71, 73, 77, 78), and in the Cential Feed Grains and o
Livestock Region (MLRA 102A, 102B, 106). The calculated polarization difference over dry ‘3,
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soil for those regions was usually relatively higk in spring (7-10 K), low in summer (4-6 X), and
kigh again in fall (6-10 K).

2) The Desertic Basins, Plains, and Mountains (MLRA 42) located in New Mexico and
‘Texas had high polarizations over dry soils suggesting low vegetation densitics. However,
precipitation over that area was mainly due to local conveciive storm systerns. At the SSM/I
resolution scale, the correlation between TI9H/T27V and API was low even over footprints with
low density vegetation.

3) Observations in the Western Great Plains Range and Irrigated Region (MLRA 65,
67, 69, 70) resulted in usually good correlations. The Nebraska Sand Hills (MLRA 65) in the
spring had high average polarization over dry soil. However, high API values weren't always
associated with jow TI9H/T37V raties. Most of the soils in that region are deep and sandy
which result in fast drainage and low moisture retention. A large part of this area is also under
utigation (spxinkler and sub-irrigation).

4) The screening program classified the MLRA 119 region (which is about 76 percent
forested) as high density vegetation {class 6) for the spring, summer, and fall seasons.
UObservations over tire did not show any significant decrease in brightness temperatures for
large API values.

Three main veRewiion JSonsily Classes wwie scleied fiom ihe originai six using
regression analysis on the data of Table 9.46 and moisture vetrieval equations would be
developed. These classes and their regpective threshold valves were:

1) Low density vegetation: for avg. yol. diff. > § K
23 Medinm density vegetation: 6 K < avg. pol. diff. <= 8K
2y Mednn high density veg.: 4 K < avg. pol. diff. <= 6K

where avp. pol. diff. is defined by: (19% + 37V)/2 - (19H + 37H)/2.

A fourth class {dense vegetation) would encampass average polarizations of less than
@ L. However, 2 moisture retrieval equation was not developed for this class due to very small
seasitivities,

The clipped MLLRA sub-region files were randomly grouped into the three zbove
rientionegd classes according to average polarization prior to the storm. Two independent Jata

sets were created for each class: one for algorithm development and one fcr verification.

2 53.4 Algorithm Developnient

The analysis was conducted on MLRA sub-region files stratified according to *egetation
density ang generated by the screening program described in 9.3.2. The objectives and generai
proceduse of algorithm development were to:
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) Test the use of different SSM/I1 variables for model development and select the most
sensitive te surface moiswire.

2) Sclect the most appropriate API values according to moisture sensing depth.
3) Select the statistical model and test against independent data.
4) Develop and test the surface moisture refrieval algonithm logic.

9.3.4.1 Selection of the Best SSM/I Variable For Algorithm Development

Microwave brightness temperatures are influenced by the physical temperature of e
emitting surface; therefore, the apparent emissivity (brightess temperature divided by the
physical temperature) should be a more accurate indicator of surface moisture becausc it removes
some variability in the observations due to changes in the surface physical temperature. For this
reason, the apparent emissivity along with normalized 19.35 H GHz brightness temperatures
using the 19.35 GHz and 27.0 GHz vertical polarization channels were compared in order .0
select the most significant SSM/I variable for algorithm developmeat.

Tabie 9.47 shows the correlation coefficients obtained for the linear model between the
different SSM/I variables tested and the API,. The best correlation was obtained for the
normalized brightness temperature TISH/T37V. Physically, this can be explained by the fact
that the 37 GHz channel is cioser to the skin temperature due to its smaller penetration depth.
The 3{."?3-"'3!‘! emicsivity usino air temnerature (210U yesnitad in the warst correlation for most

. P ILJ llb Wt s ‘l\il“h\. - \\ -~ ‘.’ B WP AP L VNS ‘I.ulv YO WL o vv.-.wuuv.. s IIIU:-'\
cases. Unfortunately, surface skin temperatures were not available for this research so air
temperatures recorded by the weather station network were used instead. This introduced some

additional unexplained variance to the data.

TABLE 9.47 CORRELATION COEFFICIENTS OBTAINED FOR THE LINEAR MODEL
BETWEEN SSM/I VARIABLES AND API,; FOR DIFFER NT VEGETATION

CLASSES
Vegeation Correlation Cocthicient
Density TI19H el9H TIOH/TI9V TIHY/T37V 2 * TISH/
Class (T37V+TI9V)
1 .76.22 .6545 07451 -0.774%5 -0.7668
1 -0.7467 -0.6532 -0.7507 0.7726  -0.7667
2 -0.6825 -0.5291 -0.6644 -0.6921 -0.6857
2 -0.5903 -0.4784 -0.6742 -0.6932 -0.6914
3 -0.6058 -0.4060 -0.6984 -0.7074 .7162
3 -0.6381 -0.5260 -0.6402 0.6912  -0.6756
Models: DTIOH= a ¥+ b AFI, ¢eI9H=a ¥ b AP[,
3 TIOH/TI9V = a + b API, 4) TI9H/T37V = a + b AF)
S) Z*TI9H/(T1I9V+T37V) = a + b API,.

——— e —
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The relationship between API and normalized bri shiness temperature was non linear for
large API values. Therefore, AP, values greater than 70 mm were not included in this analysis.

9.34.2 Selection nf the API Ground Truth Values

The linear model was used to determine the best correlation between API and the
normalized brightness temperaturs (TI9H/T19V). As described in section 9.3.2, each file
prepared for statistical analysis conts ned a set of 6 API values, five of which were computed
using a rcoession coefficient estimated from local potential evapotranspiration with a soil water
depth available for evaporation (W,) of 5, 7.5, 10, 15, and 20 mm (designated as AP]; to APL;,
respectively). Correlation coefficients obtained through this analysis are shown in Table 9.48,
The best conrelation among the three vegetation density classes resulied from the APL (W, =
15 mm). Except for one case, the APL, resulted in poorer correiation coefficients than the API
values derived from dzily ¢vepotranspiration.

TABLE 9.48 CORRELATION COEFFICIENTS FOR DIFFERENT API ESTIMATES

USING THE LINEAR MODEL
Vegetation i Correlation Coefficient
Density AP, AL AP, AP, API, AP,
Class

- T
i 0.7391 0.7629 D.7745 -3.7835 -0.7769 0.7019
1 -0.7430 £0.7637 -0.7726 -0.7746 -0.7603 0.6753
2 0.6790 -0.6925 -0.6921 -0.6785 0.65713 0.6855
2 0.5797 -0.6682 -0.6952 -0.6943 -0.6774 -0.7048
3 -0.6808 -0.6983 -0.7074 0.7137 -0.7058 0.6348
3 0.5i37 0.6389 -0.69i 0.7263 -0.7282 0.6046
Model- TTSH/T37V =a + b ADT.

Vegeiation $ensity Class:

CLASS I: (Ti19VY + T37Vv)/2 - (TI9H + TZ7H)/2 > 8K
CLASS 2: 6 K < (TI9V + TITV)/2 - (Ti9H + T37H;/2

<
CLAYS 3 4K < (TI9V + T37V)/2 - (TI9H + T3TH)/2 <

=8 K
=6K

9.3.4.3 Mod«t Se’ tion

The relationsiip between volumetric moisture contcat and u.ormalized temperature is
wwit-linear according o the Radiative Transfer Model (RTM). Such a trend was observed in the
daia for Isrge APE vaiues when normalized temperatures (T19H/T19V) were plotted against API
for foraprings groupss by MLRA class (Figure 3.13). It appeared from the observation and
regrassion anaiyss of several such cases that the relationship became non-linear for APL values
eveadst thay 70 o,
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Ti9V/T37V vs APH for
MIRA 78 in the Fall Season
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Figure 9.13 Normalized temperature versu: API relationship showing the decrease in
sensitivity to surface moisture for large API values.

The third model tested, which used zn ectimated scil surface reflectivity coefficient
based on the API and the RTM, resulted in a better correlation for those data sets with very
iarge API values, due to linearization o: the data. However, that model was deemed impractical
to be used for the final surface moisture retrieval equations because the surface refiectivily
coefficient is implicit for API when the normalized temperature is known. 1n addition, and an
abnorwmially low normalized temperature could iead to very large and unrealistic API estimates.

The linear model was determined to be the most appropriate and simple for algorithm
develcpment providing that vegetation density was tzken into consideration. Therefore,
observations with APJ, values greater than 70 mm were not inciuded in the analysis so that the
linear model would apply.

Curve fiting was conducted on the three regression data sets representing thz three
vegetation densities. The norrialized temperature (T1SH/T37V) was expressed as a linear
coinbination of APL,. Table 9.49 shows the slope and intercept as well as the regression
coefficients obtained. The resuiting regression equations zre plotted together in Figure 9.14.
The absolute value of the slope was directly propertional to the average polarization m the 19.35
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GHz and 37.0 GHz channels prior to the storm and thus inversely proportional to the vegetation
density. The intercept (T19H/T37V for API, = 0) increased as the vegetation density increased
due to the decrease in polarization. As expected, the standard error of estimaie for the API
increased as the vepeiation density increased.

TABLE 9.49 REGRESSION COEFFICIENTS FOR THREE VEGETATION DENSITIES
Vegetation Denst Slope Intercept R Standard brroc EBst,
& Ciass v Norm. Temp. AP (mm)
Low Density 4).001481 0.976> G.7835 0L.OI67 8.8
Medium Density 0.000873  (.9%35 {.6785 0.0151 11.7
Meo High De-sity  -0.000580 0.9402 -0.7137 0.0098 12.0
Model: "TI9E/TI7V =a + b APL,.

Normalized Temperature vs. APl
for 3 Veg :tation Density Classes
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Figure 9.14 Normalized Temperatur¢ versus AP, regaession lines for thiee vegelation
densities.




The maodef scatter plots and corresponding residual plots ‘or each vegetation density class
can be seen in Figures 9.15 through 9.2t.. The residual piots indicate that the relationship
between T19H/T19V and API can be assumed linear for API, values less than 70 mm. The
TI9H/T'19V residuals were larger for observations over low density vegetation {maximum of
0.05) and medium density vegetation. T'or relztively high denrsity vegetation, the residuals were
less than 0.03. This is in agreement with passive microwave theory as the variability in
noimalized temperature should be smaller for observations over vegetated areas. ‘The largest
residuals found in the data sets always corresponded to an overestimation of TIOH/T37V for
small API values. In other words, relatively small API vaiues were sometimes associated with
low normalized temperature values. This can be explained by the fact that small precipitation
depths uniformly spread over a SSM/I footprint area just pricr to the satellite overpass could
result in a low normalized temperature. Contamination by water bodies -iot detected by the
classification schen : wuld also produce the sume effect.

Gther sources of noise resulied from the methodology used in estimating the API and
merging those gridded files with the SSM/I gridded files. The assumption that precipitation
events occurred between 12 am and 6 pm might net have held for ll cases. If rainfall occurred
at night (after 6 uvm), the morning SSM/I overpass would record iow brightness temperatures
but the computed API values would have included the re =ssion coefficient for the previous day.
In addition, some weather stations report on an evening schedule (5 or 6 pm) and a precipitation
event occurning after 6 pm would he considered the next day. These two facts could lead to
observations in the data where abnormally low normaiized temperatures were associated with
API values of zero. The alternative however, would have been 1o group the morning SSM/I
averpasses with API values based on precipitaticn of the same day. This would have lead to
high APl values associated to high normalized temperatures for pr-oipitation occurnng after
6 am. These cases would have been more common, producing numwious ieverage points in the
data which we 1ld have artificially reduced the slope of the regression line. The heterogeneity
of precipitation over a2 30 km grid cell even for the large frontal systems used ‘n this analysis
resulted in some observations with high API values being paired with normalize 1 temperatures
higher than expected. Such problems are unavoidable at the spatial resolution o * the SSM/L.

©.3.4.4 Modei Testing

The regression eguations for exch veretation density class were tested with independent
cata sets described in section 9.3.2. These equation: are shown in Table 9.50 in their
¢, rzional form, as inversions of the equations devell jed in Table 9.49. If API values
predicte: by the regression equations were negative, they were set to zero, and if they were
larger than 70 mm, i 2y were set to 70 mm. Figures 9.21 to 9.23 show plots of the predicted
API versus actual "ground truth API" values. The corrzlation between predicied API and actual
“ground truth™ APl was satisfactory for the three vegetation density classes. The best
correlation occurred for the low density vegetation class (R = 0.7636).
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Scatter Plot and Regression Line
0 Low Density Vegetation (Class 1)
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Figure 9.15 S.atter plot and regression line for the low density vegetation class (R = -
0.7835).
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Scatter Plot and Regression Line
. Med*um Density Vegetation (Class 2)
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Figure 9.17 Scatter plot and regression line for the medium deasity vegetation (R = -
0.6785).
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Figure 3.18 Residual plot for the med-um density vegetation class.
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Scatter Plot and Regression Line
Medium High Density Vegetation
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Figure $.19 Scatter plot znd regression line for the medium high density vegetation class
R = -0.7137).
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Figure 9.20 Residual pic for the medium high density vegetation class.
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TARBLE 9.50 RECOMMENDED SURFAC £ MOISTURYE RETRIEVAL ALGO

THREE VEGETATION DENSITY CLASSES

Vzgetation Density Class Bl Al TEST

Lcw Densi  Vegetation §15.22 659.3. b} > 88X
Medium Density Vegetation -1145.48 1126.58 6 <[b] <8K
Med High Density Vegetation -1724.14 17u1.24 4<[b]l s6K

API = Al + Bl TISH/TATV  [b] lﬂ_it_}ﬂ - 1211{_31&

Surface Moisture Retrieval
Low Densit:- Vegetation
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o
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Pigure .21 Plat of prodicied varsus actual APL surfore moistwre vaiues for the
independent data set (R = 0.76¥86).
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Surface Moisture Retrieval
Medium Density Vegetation
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Figure 9.22 Predicted versus z stual API, values for the independent data
set (R = 0.6871).

Surface Moisture Retrieval
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Figure 9.23 P1dicted versus actual APL, values fe. t aodep » ‘ent dats
set (R = 0.7276).




9.3.4.5 Surface Moisture Prediction Algorithm

The normalized temperature ratio does not vary considerably from day te day over dry
soil conditions. In regions with similar climatic conditions to the Central Plains of the 17.S., it
will slowly increase and decrease over the growing season following the growth and sercscence
of natural vegetation or the seasonal variations in agricultural vegetation densities. However,
if the vegetation 1S not too dense, a precipitation event will cause a sharp decrease in the ratio
which will gradually, over a period of tirne, return to its value prior to the event, assuming that
the vegetation density has not changed considerably during the period.

Thus, for the best use of the developed modeis, we recommend that the algorithm be
implemented in the dynamic database framework described in the land surface type classification
section of this report (seciion 9.1). This implies calculating and storing a running average of
certain SSM/I variables for grid cell locations of interest, which are updated at each availahle
overpass of the instrument.

The following steps are reconunended for the use of the algorithm:

1) Compute a running average of TI9H/T37V and of the average polarization in the 19
and 37 GHz channels for each overpass and grid cells in the area of interest. The average
polarization is used as a vegetation density index while the T19H/T37V normalize¢ temperature
is the indicator of surface moisture. The running averages would include brightness
temperatures for the five last overpasses.

2) Before including the SSM/I variables from the latest overpass in the running averages,
compare TI9H/T37V to its running average. If TIGH/T37V is not significantly different and
the surface type classification code does not indicate moisture, the soil is considered dry. Ifa
significant reduction in TIOH/T37V has occurred and the surface type classification code
indicated moisture, the surface is considered moist or wet.

3) If the soil surface is determined to be dry, include the latest values for the SSM/1
variables in the running averages.

4) If the soil is classified as moist, the latest vaiues for the SSM/I variabies shouid 1.0t
be tncluded in the running averages. The value presently in the database for the average
polarization in the 19 GHz and 37 GHz channels is used to select the appropriate surface
moisture retrieval equations for that vegetation density class.

5) For subsequent overpasses, estimate surface moistus  using the selected equation until
the predicted API reaches zero or until the TI9H/T37Y normalized temperature is close to the
running average value prior to the storm.

The aigorithm was applied to many grid cells vepresenting different MILRA vegions in
the central plains over the snow-free period in 1988. Examples are shown in 1-igures 9.24 and
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surface Moisture Retrieval Algorithm
(MILRA 55B, lat: 45.3, Long: 98.3)

50 100 150 200 250 300
Day of Year
~8— Predicted API —— Ground Truth API

Figure ¢.24 Application of the surface moisture retrieval algorithm to &
grid cell in the Central Rlack Glaciated Plains Region in North Dakota
during the snow-free period in 1988.

Surface Moxstune Retrieval Algorithm
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Figure 9.25 Application of the surface moisture retrieval algorithm to a
grid cell in the Rolling Till Prairie Region of Eastern South Dakota,
during the snow-free period of 1988.
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9.25 for two different MLRA regions. The algorithm rasonably predicted surface moisture for
both large and small precipitation events.

1.3.5 Obscrvations and Recomin- ndatic ns

The developed surface moisture retrieval algoritims are satisfaciory considering the
physical limitations of the SSM/1 instrument for this purpose. The short wavelengths of the
SSM/T channels only permit very small soil moisture sensing depths.  Vegetation is an
additional complication which . auses further decreases in moisture sersitivity. The large
footprint size at 19 GHz introduces unavoidable noise due to the spaaal variability in surface
types as well as the random nature of precipitation and consequently soil moisture af that sczle.
Therefore, the:e algorithms are a comprowmise, retrieving suriace moistare with the API
surrogate whilc taking into consideration vegetation dens.ty effects. Surface type variability
effects are partiaily removed in the classification schenie as the retrieval equations only apply
to certain surface types i.e. moist soil and arable soil. Under flooded conditions, the API will
usually be greater than 70 mm rendering accurate retrievals almost impossible due to the non-
Linear nature of the response.

The most accurate operationai use of thesc algorithms will require the maintenance of
running averages for the appropriate SSM/I variables within a dynamic database continuously
updated with each overpass as described in section 9.3.4.5. The running average of SSM/I
variables are necessary for establishing the vegetation cover density and selecting the appropriate
iciriGval eaguaiion,

If the use of the dynamic database is not possible, the retrieval equations can be vsed
over certain surface type classifications providing the predictions are limiied to zero for the
lower limit and 70 mm for the upper limit. It should be understood that the: errors in surface
moisture retrievals could be greater than the standard errors described in the anslysis section.
The applicable surface type classifications would be noist soils and wet soils. The equations
would not be applicable to the other surface tyj es.

Theoretcatly, velumetric soil moisture: t¢ a certain depth can be estimated froim a time
series of soil surface temperature and moisture, both retrievable with the SSM/I. This would
require the knowledge of certain soil physical choracteristics such as water holding c»pacity,
infiltration and hydraulic conductivity. At the spatial resoiution of the :"Si/1/1 hc wever, any such
modelling aitempt wouid be questionable. As an alternative, a gross value of soil moisture for
a grid ¢l locaiion could be estimated during a limited period after a storm t ; assuming an
average value for the soii water holding capacity of tic gnid ccll and distributing the retrieved
surface mot ture down 1o a certain deptir of the soil profile. The average value of soil water
holding capacity would b= stored in the database as well.
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9.4 SNOW PARAMETER ALGORITHMS

9.4.1 Algorithm Development Rationalc

Passive microwave radiometry has significant promise for ihie remole sensing of
snowpack properties. Snow particles behave as volume scatterers of the wmdiation emitte’ {rim
the underlying surface {1], [2]). The scaftering is a stong function of wavelength. At
wavelengths less than 1 cm, Mie scatienng by individual snow particles such as crestals and
grains is pronounced (3]. The longer wavelengths, such as tise 1 66 cm (18 GHz) of the
Nimbus 7 SMMR and the 1.55 cm (19 Gilz) of ihe SSM/L, are scuitered less by a typical
snowpack. Consequently, radiation at these wavelengihs emitted from a snow covered surface
will be a fanction of the state of the surface beneath the snowpack. Frozen ground has a high
emissivi'y, greater than 0.9, du= to the low puemi@ivity of we §4). Moist soil with 1 ¢ waler
present has an emissivity a~ low a2 0.70 =t thesz wavelengths due to the high permittivity of
liquid water [5]. The physical iempersture of a dry snowpack s not a major infliene Jue to
the low contribuzion of emisied radiation from e snow [65. In reslity, the passive microwave
radiation received fiom a snowpack s & function of the frequency distribution of snow crystal
and grain s1zes. This frequency distrivution is highly correialed with snow depth and with snow
water content for typical snow densities.

Frozen ground prior to a snowfall event will have fairly similar brightness ten seratures,
with low polarization differences, at the SSM/I frequencies. Vcgetation and roughnes. >lements
w'll decreaz= the polarization differences, while bare ar.d moist soil will increase the solariz-tion
diffcrences. The primary effect . § 2 new, dry snowfall wi'l be o depiess e brightness
temperatures in the shorter wavelesgths (higher frcquenciesi. If the snow crystals are very
sma'l, *hie 85 GHz channels will show 2 marked dro> in brigntaess temperature  Procon ced
decreases i1, .he 37 GHz channels are more typica of » new snow. The polarization differences
will also increase dramatically. For new. dry snow of the order of ‘ens of centimetes depth,
the Srightness temperatures ir the longer waveiengths are essennally unchanged from these prior
10 the spowfali.

The crystalline structure of a new saowpack Initially is influenced by snow c.  stal size,
/ness, temperature. 2~d wind. The crysialline structure wili change on a day to day basis as
result of thermal gracients in the snowpack aad the: ciergy balance of the snow surface layves.
A ne effect of both processes - hear crystal formatinn in the lower Jayer of the snowpack {7],
(8] and largur grain sizes and layer formation from thaw and freeze cycies - is to progressively
increas : the .nean crystal size. This will produce a further decreas2 in bnightness temperatures
at 37 GHz (see, for exampie, {9]). Large crystals will decrease the radiation at the 22 and 19
GHz frequencies, as will be showa.

Snow edge 1s relatively ~asy to detect with passive microwave. The radiat m from the
underlying surface is scattercd mmere ©. 0.81 om thar at 1.55 o1 1.66 cm. The polanization
difference increases markediy at 0.8! cm. Grody [10], Kunzi, et al. |11], and McFarland, e
al. |9]) used comparisons of 0.81 cm with 1.66 cir brighiness temperanires nr polarization
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difference at 0.81 cm to detect snow edge or discriminate snow covered areas from areas without
snow with SMMR data. The threshold was of the order of 2 ¢cm snow depth, although others
have noted a threshold of § cm [12].

Investigativns on determination of snow depth or snow water equivalent have focused on
the 37 GHz channels [9], [11], [12], :13]). [Foster, et al. [3] reporied coefficients of
dotermination approaching 0.9 at the 0.81 cm wavelerath (37 GHz) of the Nimbus 6 ESMR.
These correlations were obtained with the vertically polarized brightness temperatures for one
degree latitude-longitude ceils in North Dakota and Montana. Chang [14] used the difference
betweer: the 1.66 (18 GHz) and 0 81 cm horizontally polarized brightness temperatures of
SMMR to retrieve snow denths over several large open land areas in Canada, the U. S. Great
Plains, and ceniral Russia. Correlation coefficients of (.85 were obtained. Gloersen, et al. {!2]
retrieved snow water equivalent as a linear function of the brightness temperature difference
between the 1.60 and 0.81 horizontally polarized brightness temperatures from SMMR.
Goodison, et al. [15] found excellent correlations between snow depth and the 37V channel of
an airborne radiometer, with the ground truth from airborne gamma and surface snow surveys.
The coefficicnt of Jcterminatior; was 0.86 and the slope of the linear rzgres ion line was 1.83
mm/K,

Kunzi, et al. [11] noted that microwave signature of a snowpack was independent of

epth for dry snow depths greater than SO0 cm. McFarland, et al. [9], in their study ot snow

depths in the northern Great Plains, found the upper threshold to be somewhat lower, around

40 cm. This upper threshold apparcntly marks the depth where a'' emitted radiation from the

UIKICI]V!I!!! 'mnarr DS mm'rm o anmrnpn D"ﬂ!’ ll\? SOt nmt e w!\nvp ﬂ\e "Lm!'.\eld H\o

radiation js a function of the crystal morphology in the pack and reflected radiation from the
crystals and internal layers.

Ideally, the brightness temperatures before the first snowfall would be incorporated into
the algorithm to retricve the snow depth or water equivalent {5). The decrease in mnicrowave
emission due to snow would be a result of the scattering. The aigorithms that combine the 37
GHz channels with lowe. frequency channels represeat an attemp o incorporate the pre-saow
passive microwave signature into the algorithm. This procedure would be especially useful with
varving vegetation, soil, and soil moistwre within a region. This procedure is not feasible in the
D-matrix aigorithm approach, however. Incorperation of a longer wavelength (lower frequency)
in the snow depth or water equivalent algorithm could pr vide ~"vmati a on the state of the
grouna Jarderlying the snowpack [14].

Ary liquid water in the snowpack increases the microwave brightness temperatures [13,
[14]. A chang: of one perceni in liquid water results in 2 change of 70 X in the 0.81 cm
horizontal polarization brightness temperature [4].

McFariand, et al. [9] scpasated the snow season into two phascs; the accumulation phase
and .ie ripening and meliing phase. Schanda, et al. [16] had essenti:'ly the sam:= classification
scheme wirk: winter snow {nc melting metzamorphism), wet spring snow (wi'h z layer of wet
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snow crystals at the surfzce), and dry. refrozen spring snow. The brightness temperaiures and
the poiarization differences do not have the same patterns after the onsei of crystal
mnetamorphism produced by mzlting. Daytime meiting produces marked increases in brightness
temperature [9], (17). Nightime refreezing after a daytime melt does not return the brightaess
temperatures to pre-melt values. McFarland, et zl. [9] noted a gradual inciease in the nightume
!.rightness temperatures from the onset of the ripening and melting phase to fuli peness and
m ting. The obvious implication is that an algorithm to retrieve the snowpack parameters has
to 1nitially discriminate between these phases or classes. Different algorithms are needed: one
to determine snow depth or water equivalent before the melt phase and anotner to determine the
stage of ripening.

9.4.2 Methodology

The data sets of SSM/I brightness :emperatu. ¢s and linmatological data were assembied
as 0.25 or 0.5 degree grid files previously described. Ta- climatological data consisted of
saowfal! in the preceding 24 hours, total snow depth, and water equivalent Gf ke new snow.
Daily air maximum and minimum temperatures were alse av.ilable.

Several scparate data sets were analyzed. The full Jata set consisted of the SSM/!
brightress temperatures from day 343, 1989 to day 60, 1990 for the Central Plains test arsas for
quarter degree grid boxes. The cases analyzed inciuded those overpasses, both ascending and
descendiing, when the test area was largely covered by the overpass. The SSM/I data set
consisted of 344a, 3444, 346d, 353d, 363d, 007a, 008a, 024a, 047a, 049a, 0502, 055a. 056a,
ascending or d for descending. Only those grid boxes with a climatoiogical reporting station
were included in the analysis  Additional data sets were processed from February 1988,

2.4.3 Results and Discussion

The snow depths and the microwave brightness temperatures are highly correlated, as
shown in Figures 9.26 thruugh 9.29. Figure 9.26 shows the reported snow depths and Figures
9.27, 9.28, and 9.29 the SSM/I bright.ess temperatures at 19V, 37V, and 85V GHz respectivery
over the Central Plains for day 51, 1988, ascending pass. Figure 9.30 shows the mirimum
surface air temperature for this same day. A visual correlation of ihe snuw depth with the
brightness temperatures appears to show excellent agreement. However, when multiple linear
regression was performed, the hegt R souared was in the vicinity of 0.2C wiih an RMSE of 11
cm. The snow depths for this case generally maich the observed depressions in the SSM/]
channels, but the Iocalized nature of the heavier amounts may be a source of variance. A
geolocation correction was not applied to the SSM/! data.

The full data set was analyzed spatially and temporally for two separate sections of the
Central Plains, as shown in Figure 9.31. 'The castern arca was defined by 41 to 47 degrees
north latitude and 88 to 96 degreces west longitude. This area covers lowa, Minnesota, and the
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Pigure 9.26 Accumulated snow Figqure 9.27 SSM/I brightness
depth for the Central Plains on temperatures at 19V over the
day 51, 1988. Central Plaine on day 51, 1388.

TBSVS1

Figure 9.28 SSMfI brightnass Figure 9.29 SSM/I brightness
temperatures at 317V over the temperatures at 385V ovexr the
Central Plains on day 51, 1988. Central Plalas on day $1. 1958.
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Ffigure 9.30 Observed surface Fiqgure 9.31 The test area for
ninimum ajir temperature ior the the analysis of snow.

Central Plains for day 51,

1988.

western half of Wisconsin. The westemn area was defined by 41 to 47 degrees north latitude and
0 to 104 degroes wesi longiiude. This area 'ncludes Morth Dakota, Souih Dakoia, and the
northern two-thirds of Nebraska. Spatial data sets were organized in a spread sheet by 4 y, with
all seven brightness temperatures, the major lan rescurce area [18], the classificatioo by the
EXTLND surface type classification modu'e, an the climatological data. The first step in the
analysis was to calculate the correlation coeffici nt matrix for all variables, Thic correlaiion
analysis included several derived variables from . ie brightness temperatures, such as channel
and polanization differences. Separate correlations were calculated for various categories of
snow depth, major land resouice area, and location.

The snow season for the winter of 1989 in the test area was characterized by a few major
snowfalls that melted/sublimed significantly in the several week periods between the snowfalls.
The snow cover reported in the Weekly Weather and Crop Bulletin showed very little snow on
Janvary 16, 1982 "nd again on February 12, 1990,

Figures 9.32 and 9.33 show the correlation coefficients between the 19V and 37V
brightness temperatures ang snow depth for days between 344, 198¢ and day 58, 1990. Ali grid
cells with snow depths greater than 0 mm and less than 400 mm were used in the correlation
analysis. No stratification was done for land surface type znd no poinis were removed based
on obvicus nutlier lecations, such as the Black Hills of South Dakcta. 5 sral patterns are
readily apparent. The 37V channel has the kigher correlation cocfficient than tf @ 19V channel,
but the 19V channel shows a marked response to snow deptl. {actuaily grain size characteristics
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Figure 8.32 Correlation coeff- Figure 9.33 Correlation cceff-
icients between snow depth and icients between snow depth and
37V brightness temperatures, 37V brightness temperatures,
western test area. eastern test area.

within the snowpack). This indicates that the 19V channel will not necessarily provide
information from the surface beneath the snowpack. The 19V channel wiil provide information
on the aging of the snowpack and the development of larger crystals in response to surface
thawing and refreezing and to hoar crystal formation in response to thermal gradients.

Another pattern ic that the correlation coefficients are highly erratic with conditions of
light and decreasing snow amounts. Correlation coefficients that remained fairly stable from day
to day did not occur until late February. For days (17, 050, 055, 056, 057, and 058 which
were all ascending overpasses, correlation coefficient. were calculated between snow depth in
mm and the 37V brightness temperature in K for all grid cells with the land surface category of
snow present (EXTI.ND). These correlation coefficients ranged from -0.50 to -C.84. The
correiation coefficients were higher for the eastern test area, although the regression coefficients
were similar. Selected scatter plots anc des-—riptive statistics are presented in Figures 9.34
through 9.37. The 85V charnnel is considered unreliable in these data sets due to the high
standard deviations and the means less than those of the 8SH channel. In Figures 9.34 and 9.3%
for the western test area, the maximum snow depths in the data set were less than 400 mm and
the relationships between snow depth and the 37V brightness temperature were tairly linear. In
contrast, note the relationship between snow depths greater than about 400 mm and the 37V
brightness temperatures in Figures 9.36 and 9.37 for the castern ¢ st area  As noted in previous

invectigations, the passive microwave response is significantly decreased with snow depths
greater than about 400 mm.

As shown by the statistics in Tables 9.51 through 9.24, which correspond to Figures 9.34
through 9.37, the correlation coefficients w re high for l channels, which is expected due to
tie high intercorreiations between the channels (excluding the 85V). The 37V channl was
consistenlly a better predictor of snow depth, which is consisient with several other
investigations. Several combinations of channels were also examined. These wcluded the

.01

313160V IINN




TATTERGRFM
126 cases; r=-.706; p=.000
(MD pairuise deleted)

t37v
260 5~
230
240 |-
230 ¢~
Z2C -
: —= rearession
.0 12:.87 238. 66 3c0.73 482,60
aword

Figure ©¢.34 37V 5Hz brightness temperature and reported snow
depth for the western test area, day 47, 1990, ascending pass.
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Figure 9.3% 37V GHz brightness temperature and repcrted snow
depth for che western test area, day 53, 1990, ascending pass.
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Figure 9.37 37V GHz brightness temperature and reported snow
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TABLE 2.51 RELEVANT STATISTICS BETWEEN SSM/i1 BRIGHTNESS
TEMPERATURES AND REPORTED SKOW DEPTH FOR THE WESTERN
TEST AREA, DAY 47, 1990. ASCENDING PASS

et e e o e e ot i - Y e i 8 e o <k R e it e e e e e e e ——— +
m i csg/pc: i lescriptiv. statistics in dbl precision
| basic Nur.mber of Cases = 126
; atats 2 (MD pairwvise deleted)
Fomm e T e S Fom e ——— Fm T T N — +
H ' N Min ! Max ! Mean ! Std.Err)| Std.Dev.]
S Fom b —————— o ———— + —— +
lat 1126 41.)000 47.G6G000 44.5349 .156786 1.75992!
lon ;126 96.0000 ;104.0000 99.74%92 .215347 2.41726
tl9v 126 [246.4200 :261.9000 ;254.0%59% «325702 3.65599
£1%h (126 §225.5000 1252.0000 (239.40735 .621787 6.97954
t22v (126 1242.9000 1261.0000 §251.4. 1 .373291 4.19018
£37v :126 ;220.6000 ;255.2000 ;242.3556 .733083 8.22884
t37k ;126 ;204.8000 {249.0000 [231.5802 .914381} 10.2639¢C
t85v ;126 ;104.5000 ;335.9000 ;209.5564 [3.724459; 41.80635
t85h {126 ;172.3000 ;277.5000 §223.0738 ;1.588973] 17.83€17
surft 126 14.0000 14.0000 14.0000 . 000000 .0C000
mira {126 £3.2000 ;106.0000 65.6389 11.470974; 16.%1164
snwd (126 .0000 {482.6000C 86.2460 8.4468391 94.81554!
BIGL 126 .0000 50.80% 6.0175 ;1.2055838; 13.53z213);
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fmm o ————— o ———— e —— e ———— +
cas/pc: Ccrrelations r{x,y)
basic Number of Cases = 126
pstats {¥D pairwise deleted)
R S S b — e Formim e — fmm—— s fommm———— +
! std.mode | lat | lon | tiov | tigh ! t22v | t3i7v |}
b e ———— +- - + - P e b ———— +
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t22v ~.7946 .1559 .9780 .9387 1.0000 .9058
0 t37v -.6969 2714 .8796 -9124 .9058 1.0000
£37 -.6618 .3610 ) . 8637 ~937% . 8825 .9799
£8hv .1127 -1565 ~.0305 -.0615 -.0372 .0198
t85h -.3936 .25602 .5342 . 6043 .5432 -86585
surft - - - - — ~—
tlra i -.3210 -.4363 -2417 .2119 .2569 3058
snwd ~5189 -.3768 -.5183 ~.5937 -.5509 -. 7054
shOW ~3040 -.1293 I -.2870 -.2729 ~.2594 -.1763
$omm————— S Form——— e e e e b ———— o ———— e +
T P 1t 8 £ e 2 e e 1k e e e e +
i cas/pc: Correletions r(x,y)
basic N. of CASES = 126
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P ——— L et SR - - + ——————e— +- -+
! ttd.mode | £37h | t8Sv | t85h | surft ! mlra | snwd |
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lon ] .3610 .1565 .2602 - - 4383 -.3768
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t19h .937% -.06815 -6043 - .211%9 ~.5927
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¥i7h I 1.0000 -.0081 .6982 -— .2376 -.707
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TABLE 9.52 RELEVANT STATISTICS BETWEEN SSM/I BRIGHTNESS
TEMPERATURES AND REPORTED SNOW DEPTH FOR THE WESTERN
TEST AREA, DAY 58, 1990, ASCENDING PASS

e e o s e 4 e e e 2t e e 2t e > o s e - vt s +
css/pc: | Descriptive statietica in dbl precieion i
oaeic ! Nunmber of Cases = 73 I
stato l {MD pairwiuc deletad, H

e e T b —————— toem i ——— o m————— Fmo i m——— Fmem e +

! I N Min Max ! Mean | std.Brr| Std Dev.i

D e — et ——— Frme e pom——— +-- “He e m————— +

lac 72 41.0000 47.0000 45.437C .133368 ;1.31038 |

lon 73 96.0000 (104.90000 99.2110 .264342 ;2.25854
t1%v . 247.1000 }265.70C00 ]254.1069 -554792 {4.74015
t19n v 1225.9000 1253.4000 (236.8781 .887327 |7.58132
ta2ev 73 1242.9000 {263.3000 }251.6438 .613062 ;5.23800
t37v 73 (212.5000 1258.7000 }238.9534 }1.395477 ;11.92296
t37h 73 1201.3000 ;251.4000 [227.3671 '1.573632 :13.44512
t8Sv 73 ,143.3000 [299.2000 (211.6479 14.293872 !36.68686
t85h 73 §170.5000 1273.1000 ;220.4137 ;2.842392 (24.28541
surft 73 14.0000 14.0000 14.0000 .000000 . 00000
mlra 73 53.2000 1106.0NC0 64.4945 [2.236502 }1%.10868
snwd 73 .00C0 }330.2000 96.7288 19.600029 {82.02268
snow 73 . 00060 63.5000 10.7904 ;1.787244 ;15.:7022

R et T e b ——— et Y —————— R s 4

o e e em P e ——————— J— 0 e 2 o e o~ e e o e e Y - T 2 e ~——

| css/pc: Ccrrelations r(x,y)
basic Number of Cases = 73

! stats (MD pairwise delete’)

o — e ——— tm—————— P ——— P m——— e ———— + ———t- ———

| std.mode | lat | len | %19v | €19h ;| t22v |} £37v |

e — e — R el o ————— S it TR + -+ ———

lat | 1.06000 .3627 ! -.2450 | -.3137 | -.2645 | -.3265
lon <3627 1.¢000 «6542 .S059 .6252 .4815
t19v -.2450 .6542 1.0000 .9583 .9780 -R796

d tigon -.3127 .503% .595382  1.G630 .5548 .8721

t22v -.2645 6252 .9780 9%18 1.0000 .9216
t37% —+ 3265 .4815 .8796 .3721 .9216 1.0000
t37h -.3546 .4291 -8954 .9229 -9290 -9848
t85v <1123 .1713 .0858 .0900 .1065 .1228
t85Sh -.2033 -.3745 . €451 . 6589 .5578 .7865
surft - - - - - -

mlirs -.5898 ~-.5641 ~-.G668 .0764 -.0058 .1982
snwd .3503 -.3523 ~.6445 -.6413 ~.6503 -.5948
snow . 2005 -.1106 ~.1865 -.1752 ~.1708 -.0530

tmm—————— ——e——————— S - += —— e ——— Fom +

o ——— B s e e e 8 A e o i S e S T S B s P i ki i . S A e s e . +
cas/pc: | Correlations r(x,y;
basic 1 Number of Cases = 73
utats l {MD pairwise deleted)

b ——— P e —— - == e e e —— +

{ std.mods | ti7h | t85v : td85h { surft ! mira | snwd |

- ———— to——em o m——— R e i ————— e ———— b ————— +

lat -.3546 ; .1123 -.2033 - -.5898 -3503
lon .4291 -1713 .3745 - -.5681 ! -.3523
t19v .8954 0658 .6452 - -.0668 | -- 6445
tish .9229 .0900 .6589 e .0764 -.6413
t22v .9290 .1065 -.6578 ——— -.0056 -.6503
t37v .5848 .1228 .786% - ~-1982 —-.6948
t37h 1.0000 .1202 . 7850 - .2220 -.675%5
t8sv <1202 1.0000 -.0280 - -.0966 -=-.0077
t8sSh . 7850 ~.Nn280 1.0000 - .2088 -.5684
suxrft -- - — - - -
mlra -2220 166 -2088 - 1.0000 -.1044
nwd ~-.6755 -077 -.5684 - -.1044 1.00%0
H snow -.0968 -.0239 -.0195 - i 2103 .2677
Fr e —— R Fo i o ——— R T m— TSR +

_n
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TABLE 9.53

RELEVANT STATISTICS BETWEEN SSM/I BRIGHTNESS
TEMPERATURES AND REPORTED SNOW DEPTH FOR THE EASTERM
TEST AREA, DAY 50, 1990, . SCENDING PASS

e ——————— A e e e e e o 2 et e e e e +
i cas/pc: i Descriptive statistice in dbl precision i
| basic | Nunmber of Cases ~ 131 i
i state i (MD pairwise daluted) i
o ——— Formanem o ————— ———4 + e ——— +
| I N Min Max ! Mean ! sid. Err; Std.Dev. !
o ———— temmm e — e ———— et trm——————— et +
i lat 131 41.0000 47.0000 143.7519 .16533 1.8923 i
1 lon 131 90.90000 96.0C00 [92.6664 ~-15851 1.8143
t1%v 131 ;238.8000 [260.7000 ;253.8063 .51849 5.9344
t19n 131 [221.7000 [2%1.1000 :239.9221 .69832 7.9927
t22v 131 (235.5000 ;259.1000 (251.1534 .57253 6.5529
t37v 131 (209.7000 ;253.0009 [239.2802 :1.17546 [13.4995
t37h 131 [198.5000 {246.7000 ;229.3076 ;1.24080 ;14.2016
t85v 131 1117.7000 ;303.4000 ,202.4687 ;3.53691 ;40.4818
t85h 131 }173.4000 ;290.2000 ;218.:198 11.48938 117.0468
surft 131 14.0000 14.0000 14.06000 .G0000 .0000
mlra 131 t—99.0000 107.0000 |—66.5916 6.36067{72.8012
1 snwa i 131 | .0000 {685.8000 I187.S916 '13.68397|156.6202
H snow ,; 131 | .0000 | 88.9000 ; 9.2863 | 1.49697; 17.1336
B —————— e —— s e e e fom e ——— +
——— P e e e e e ——_———————— +
i ce8s/pc: i Corselations r©(x,y)
basgic 1 Number of Cases = 131
I stats 1 (MD paitwise deleted)
r—tmmm— e ————t - ———— +-= —— ———t e ———— +
H etd mode | lat I lon l t19v | t19h | t22v | t37v |}
o ———— Fmmm————— o —— —— tom—————— e Lt + o +
i lat 1.0000 .24.9 -.8964 ~.8428 -.8974 -.8318
i lon .2429 1.00C) ~.1739 ~-.3031 ~.1808 -.2383
i ti%v | ~.8964 ~.1739 1.00C0 .9313 .9855 .90€2
H Cish —.8420 -.3031 « 3313 1.0000 9481 .9452
' t22v -.8974 -.1808 .9855 .9481 1.0000 .9372
i £37v ~.8318 -.2383 .9082 .9451 9372 1.0000
! t37h -.7994 ~.3102 .8686% .9577 .9012 .9851
: t85v 644 -.2065 .0029 .0278 -,0095 .5063
i t83h ~-.5691 -.2205 -.5954 .7271 . 8265 .7731
aurfe - - - - - ~
' mira | .1116 | .7143 | .0021 | -.0675 | .0287 | .o1s1
snwd .8054 -2609 -.8145 ~-.8212 -.8196 -.8301
anow -.1985 —~.2361 .2774 .3907 .2844 .3269
o —— —— e ———— +e— +— -4 + - +
e ——— e e - - ———t
casfpe: Correlations rix,y)
basic Numbexr of Cages = i3]
stats (MD pairwiss delefed)
g e I e o ———— e o —
! std.mode | t37h I t85v | t85h | surft ! mira |} snwd |
4= - ———+t + - e ———— T +
lat -.7994 .0044 -.5691 - 1116 .8054
lon -.3102 -.2065 -.2205 -— .7143 .2609
t19v .5685 .0029 .5954 - .0021 -.8145
ti9n .2577 .0278 .7271 - -.0675 -.8212
t22v .9012 -.0095 -62€5 - .0287 -.8196
t3%v .5851 .0063 -7731 - .0161 ~.8301
t37nh 1.0000 .0160 .8092 - -.0449 -.8245
t85v .0160 1.G000 .0228 - -.2140 .0562
t85h .8092 .0228 1.0000 = ~-.0026 -.6537
surft - —— - —- —-— -
mlra ~.0449 -.2140 -.0036 - 1.0000 .0947
snwd ~.8245 .N562 -.6537 - -.0247 1.00090




TABLE 9.54

RELEVANT STATISTICS BETWEEN SSM/I BRIGHTNESS
TEMPERATURES AND REPORTED SNOW DEPTH FOR THE EASTERN
TEST AREA, DAY 58, 1990, ASCENDING PASS

Fmm e e e e e e e +
! casfpc: i Descriptxve statiatics in dbl precision :
i besic | Nunmber of Cases = 130
i stats i (MD pairwise deleted) 1
et B o Ty SR e ———— Fmem e Fom e - +
! ' N Min I May ! Mran | Std.Brr}] Std.Dev.}
o ———— —— s R e e -+ +
i lat 130 41 .0000 47.0000 43.€331 .16737 | 1.9083
len 130 {90.0000 96.0000 92.4831 .15089 1.7204
t1Gv 130 239.8000 {258.6000 {250.0223 .37437 4.2753
t15%k | 130 ;217.1000 1243.6000 ;234.2392 .57502 6.5563
“2v | 130 1235.20G0 1258.0000 ,;246.8938 «47530 5.4193
v 13C ;200.1000 ;248.7000 ;231.8923 ;1.04472 ;11.9116
47h 130 ;186.2000 [240.3000 222.2762 !1.13770 ;12.9718
t85v 130 74.5000 1302.3000 ,208.4746 ,3.75692 [42.8355
tS5h 130 140,.3000 32790.9000 1203.1923 [2.00235 [22.83023
| surft 130 14.0000 14.00060 14.0000 .00000 -.0000
mlra 130 ;~-99.0000 ;107.0000 [-74.8892 ;5.68800 ;64.8532 i
snwd 130 .0000 !774.7000 ;152.888% 15-33124|174 8030i
snow 130 .0000 [(184.1000 7.568¢ 1. 94649 22.1934,
e 4+ + A S e S SR H
T e ———————— ————— —_— -+
css/pc: Correlations r(x,y) i
basgic Number of Cases = 130 |
statn (MD pairwise deleted) H
o ———— T SR b ————— o ——— Fom e Fom +
! std.mode | lat lon | ti%v | t19h ! t22v H t37v!
b + —+ ———te—— -+ e atiated e ———— +
' lat il.OOOO i .1066 i -.9082 i -.7156 i -.8786 i -.6995 i
H loi 4 .30G5 1.0C0C .Gi5w .1520 ~G0S7T PR -GN
t19v ;—.9082 .0194 1.0000 .8701 .9724 .8483 |
ti% -.7156 --.1620 .8701 1.0000 .8915 .9015
t22v |-.B786 .0097 .3724 .8915 1.0000 .8994
t37v ;| -.6995 ) ~.0413 | .8483 -901S% .8994 1.0000 |
£37h !-.6393 [-.0967 { .8090 .9258 .8653 .9880
t8Sv [~.00667 .0469 ,0441 .0462 .0719 .0450
t8§h ~.3198 .0074 .4823 .6262 .5358 . 7338
surf -- - - - —e -
mlra .0337 .6871 -1146 ~-.0028 .1245 -1001
snwd .7985% .0784 -.8433 -.6930 ~. 8192 ~-.7259
snow . 3009 .1036 -.2414 -.1834 -.2229 -.13%3 |
e o ——— +- +~ —f e ———— +
N p— e _— +
! cee/pc: Correlations r(x,y) i
i basic Number of Cases = 130 i
; state (MD pairwise deleted) H
e e b e m e o e s e e s e e e e e e e o T U SRS +
! std. mode ! +37h | t8sv } t85h | surft | mlra | snwd |
+ + —— ——te -4 + ——tm e ——— +
i lat | -.6393 | ~.0667 } ~.3198 - .0437 ! .7985
! lon | ~-.0967 .0469 .0074 - 6871 .0784
: t19v .8090 .0441 .4823 _— .1146 | -.8436
g ti9h .9258 .0462 .6262 - -.0028 | ~.6590
t22v .8653 .071¢9 .5358 —-— . 1245 -.8192
ti7v .9880 .0450 .7335 - -1001 —-.725%
t317h 1.0000 .0416 .71%78 —— L0531 -~ SRIG
£85v 04186 1.0000 .0087 —- -.0281 -.048¢6
tB85h .1578 .0087 1.0009 - .1073 -.3911
surft - - - - -- -
mlra .0%10 -.0281 -12073 - 1.0000 -.013%
snwd -.6870 -.0486 -.3911 i - { =.013S i 1.0000
gnow ; -.1280 L0792 L0273} - I .1567 | .3407
b e [ P e A e e o Fommn e — P Fe————— +
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polarization difference in the 37 GHz channels and the difference between the 19V and 37V
channels. The 37 GHz polarization difference was a poor predictor, with correlation coefficients
for all data sets less than 0.50. The correlation cocfficients between the 19V and 37V channel
difference term and snow depth were generally in the range 0.55 to 0.75, which were about 0.15
iower than those of the 37V channel. On the few occasions when the correlation coefficients
were higher, the interchannel correlation coefficient was also high. This indicated that no new
information was available from the 19V channel. Based on these complete analyses, with
analyses of partial data sets from February, 1989, the conclusion is that the use of a single
channel, the 37V brightness temperature, provides the highest correlation coefficient of anv
SSM/I channel or channel combination.

The results for the 37V regr:ssion with snow depth for all grid cells were:

Test Area n Intercept Slope
East 614 246.8 -0.0488
Westi 609 248.4 -0.0625

The regression equation for this combined data set is:
37V = 247.6 - O557*SD (mm
K) 0. 08579 ( )
9.4.4 Recommendations

It was not possible to construct an algorithm which is suiced for automatic determination
of snow depth or snow water equivalent under all snow conditions. The interpretation of the
algonthm predictions should be condected, with previous data, other sources of data, and a
knowledge of the areas of concer.i. However if the snowpack is known to be ary, that is
classified as dry snow by the surface type identifier (see Section 9.1), the snow depth may be
exti icted with a high degree of accuracy with a single channel aigorithm based on the 37V GHz
brigttness temperature. The snow dopth (SD) algorithm, in millimeters, is the inverse of the
regression equation determined in Section 9.4.3 and is given in Table 9.55.

TABLE 955  RECOMMENDED SNOW DEFTH RETRIEVAL ALGORITHM FOR
DRY SNOW

SD = 444.5 - L795*T37V (%)
1795
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10.0 SEA ICE VALIDATION

10.1 INTRODUCTION

The validation of the Special Sensor Microwave/Imager (SSM/1) for sea-ice parameters
was carried out by the Atmospheric Environment Service (AES), Environment Canada on lata
collected from June 1987 to September 1988. The objective of the validation project was to
determine the accuracy of the Hughes Aircraft Company (HAC) sea ice algorithm® and the
AES/YORK algorithin for wotal sea-ice concentration, ice age (i.c., first year or multi-year ice),
ice type fractions, and the location of the ice edge. The aim was to see if these retricved
parameters cot 'd be predicted within the specifications given in Table 10.1 and, if retrieval
parz neters fail (¢ meet the specifications, to determine, if possible, corrections needed to bring
the parameters within specifications. A description of the HAC and AES/York algorithms is
presented in Appendix 10A.

The performance was to be assessed for &'l seasons and in different seographic areas. In
this project, four seasons were iden‘ified; ice formatior (freeze-up), wintr, initial melt, and
advanced melt. The difietence between the two stages of melt is the presence of snow cover
during initial melt.

The validation also included the operational demonstration of the HAC and AES/YORK
algorithms for ice reconnaissance and forecasting, which was carried out at the ~ES Ice Branch
in Ottawa and at the U.S. Navy/NOAA Joint Ice Center in Washington, D.C.

The validation of the two algcrithms for the three ice parameters involved the comparison
of map products produced by the algorithms with airborne radar imagery flown over the same
area as close in time as pussible to the sateilite overpass. This was no trivial! task, because the
radar imagrry had to be cbtained from AES ice reconnaissance aircraft which have op.rational
constraints . 1 the timing snd location of flights. Therefore, the number of successful events, that
is, where airborne radar imag=ry is collected within six hours of an SSM/I orbit and over a large
enough area to match the SSM/I orbit, was only a fraction of the total plarned events.
Neverth:less, a sufficient number of events and numbers of validated SSM/! footprints were
available to perform a statistical comparison for total ice concentration and ice edge location.
There were insufficient ice fraction samples available to undertake any statistical analysis; only
some trends in the data can be reported. Altogether 1.6 million se km were validaied for total
ice concentration, and more than 6000 km were validated for ice edge position.

The sea ice validation ogram required that the overall accuracy of the ice parameters
{regardless of geographic location, toial ice concentration, or season) be determined. This

——— ———

"Hughes Aircraft Company develope i the sea ice algorithm and associated ground software
uscd at FNOC and AFGWC to process the SSTA/T data.
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ohjective was achieved in this pro‘ect by pooling all the data together as a combined areas data

set.

TABLE 10.1
ICE AND WIND PARAMETER REQUIREMENTS FOR SSM/I VALIDA'LiON
Parameter Geometr.c Ra.ige of Valuss Quantization Validation
Resolution (km) Levels Criteria _
(a) HAC Algor:thm
Icg
Concentration 25 0 to 106% 5 1+10%
Age 50 first-year 1yr none
multi-year >1yr none
Edpe location 25 present/absent N/A +12.5 km
Ocean
Surface Wind
Speed 25 3t025 1 +2 m/s
(b) AES/YORK Algorithm i
ks F
Concentration 25 0to 100% 7 +10%
‘ Age 25 Fractions of
0-100% first-year 1 yr +10%
old ice > lyr +10%
Edge location 25 present/absent N/A +12.5 km
Ocgan
Surface Wind
Speed 25 3-40 ws i +2 mv/s

Because ice prcperties, ice ¢« nce. trations and combinations of ice types differ t :tween
geographic areas and times of year, the performance of tic algorithms were examined as a
function of these parameters. Yassive microwave sensors are censitive to the mouat of free
wa °r content in the overlying snow, a parameter that varies with season.

The validation prnject also examined algorithm performance cver interva's of ice
conceatration as well as f r different geographic areas and seasons. The statistical criteria for
whether or not an algorithia me: the originally defined criteria were more rigorously defired as
follows:




1. The algorithm is judged successful if the average difference i tetal ice
concentration was within 3+12% (HAC algorithm) or --10% (AES/YORF
algorithm) as well as at the 95% confidence interval.

2. The algorithm 1= marginal if the average difference in tota: ice concentration was
within +12% (+10%), buc was -eater than +12% (+10%) at the 95%
confidence interval.

3. The algorithm failed if the average difference in total ice concentration was
greater than +12% (+10%).

The same critena were used to judge the algorithm performance for ice edge location, with a
limit of +12.5 km. Evaluation was not performed for ice fraction because of insufficient data.

The validation team felt that it was important .0 study the perforrance of each algorithm
over intervals of ice concentrations as well as combining all the data. Sea-ice concentrations
occur at 0-10% and 90-100% in many areas for lengthy periods of the year; however, during
periods of break-up, movement and formation, ice concentrations vary widely and can change
quickly. {t is impc-tant to know how well the algorii ms perform at intermediate concentrations,
and to determine if the performance is consistent or varies as a function of concentration
interval. The interv | szlected was 10%, which is the same division used by AES Ice Brancn in
reporting 1ce conditions.

‘The validation was carricd out in two geographic regions, the Canadian Arcuc and ihe
Gulf of St. Lawrence where corroborating airborne radar data were availabie. In the Arctic,
most of the validated SSM/I footprints were in the Beaufort Sea. A small percentage of the total
sample (< 10%) was in Northern Baffin Bay, Amundsen Gulf and M’Clure Strait. The Arctic
data se: for total ice concentration comprises slightly more than 80% of the validaticn samples
where a sample is a validated SSM/I footprint. The validation resulis for these areas are
discussed in detail below.

The performance of the two algorithms was estimated by performing statistical analysis
of the data set. The s:atistics used include determining an average difference of all the samples
combined. This provides an indication of algorithm performance in the real world, but it can be
biased by the distributior. of samples over the range of concentration. To overcome this sampling
bias, a uniform samp!'ng of the Arctic data set was undertaken. The resuiting statistics, e.g.
mean difference, standard deviation aad 95% confidznce interval betwceern the algorithm and the
radar total ice concentrations provides the eoverall estirnate of accuracy.

The sampling for total ice concentration was biased towards the 0-10% and 90-100%
concentration bins which made up a large proportion of the samples. Part of the problem was
that the airborne radar imagery covered areas and time of year where an almost compleie icz
cover was present, e.g., Beaufort Sea in the fall and winter, or where the aircraft flew along or
adjacent to the ice edge such that one of the two radar swaths imaged mostiy open water

10-3

AT 3ITCCUTANAN




conditions. Figure 10.1 illusirates the distribution of samples for the SSM/1 algorithm for all
arcas and scasons combined. Over 2/3 of ihe samples were either at 0-10% or 90-100% ice
concentratior. intervals. The bias was removed using two techniques:
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Figure 10.1 - Distribution of total ice concentration samples, HAC algorithm.
i. Examining tic mean differences over 10% ice concentration intervals.
2. Extracting equal numbers of samples over the range of concentrations to produce

statistics and distributions similar to those for the entire sample population.

10.2 TOTAL ICE CONCENTRATION RESULTS
10.2.1 Canadian Arctic

Using the acceptance criteria, the results of the two algorithins for ail data pooled and
by season are presented in Table 10.2.
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TABLE 10 2
TOTAIL ICE CONCEN™ RA’I'I_-}N EVALUATION CRITERIA FOR ARCTIC
Algorithm I'ooled Ice Winter Initial Melt Advanced
Formation Melt
HAC Failed Failed Successful Successful Failed
i AES/YORK | Successful Marginal Succes: al Successful Marginal

The results are for samples where there was less than 3 h between the radar irnagery and
SSM/I overpass. The average difference and standard deviation in concentration between
algorithm and radar-tased estimates for the SSM/I and AES/YORK algorithms are pr=sented in
Figures 10.2 and 10.3.
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Figure 10.2 - Mean difference and standard
deviation HAC vs radar for
concentration, Arctic, pooled.
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Figure 10.3 - Mean difference and standard
deviation AES/YORK vs radar for total ice
concentraiion, Arctic, pooled.

-otal ice

Both algorithms underpredict ioital ice concentration the entire

concentration range.

across

Both algonthms work best at low ice concentrations, less than or equal to 20%
for HAC, less than or equal to 30% for AES/YORK.

The AES/YORK algorithm perform: beiter at h.gh concentrations {(90-100%)
where the average diffcrence is underpredicted by less than 10%.

Both algorithms significantly underpredict in the middle range of ice
concentrations. Both exhibit a characteris ¢ "curve™ where the underprediction
increases with increasing ice concentration until it reackes a maximum at 70 to
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TABLE 10.2
TOTAL l(:l_? C{',‘N.(_,'ENTRATM,)N LEVALUATION CRITERIA FOR ARC_T!C -
Algorithm Fooled lce Winter Initi2l Melt Advanced
Formation Meli
HAC Failed Failed Successful Successtul aileg
AES/YORK | Successful Marginal Successful Successful Marginal

The results are for samples where thete was less than 3 h between the radar imagery #nd
SSM/I overpass. T e average difference and standard deviation in concentraton between
algorithm and radar-tased es.imates for the SSM/I and AES/YORK algorithins are presented in
Figures 10.2 and 10.3.

g

I E—— e
;. l [ s I
s I L I

[ 'y = S
Mocaured Concentration (-) ctfn: {=)

Figure 10.2 - Mean difference and standard
deviation HAC vs radar for total ice
concentration, Arctic, pooled.

Figure 10.3 - Mean difierence and standar!
devigtion AES/YORK vs radar for t dal ice
concentration, Arctic, pooled.

o Both algorithms enderpredict 1otal ice coacentration across the entire
concentration range.
o Both algonthms work best at low ice concentrations, less than or oqual to 26%

for HAC', less than or equal to 30% for AES/YORK.

o The AES/YORK algorithm performs better at high concentrations (90-100%)
where the average diffcrence is undcipredicted by less than 10%.

o Both algorithms significantly urderpredict in the middle range of ice
concentrations. Both exhibit a characteristic "curve” where the underprediction
increases with increasing ic > concentration until it reaches a maximum at 70 o
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90% concentrations for HAC, 50% for AES/YORK. Both algonitkins inipi.ve for
the 90-100% intcrval, but HAC still urderpredicts by over 2U%. The improved
pertormance for 90-100% 1s still not ax good as for the lower coucentrations.

i0.2.1 Jee Formation
For the ice formation phase the resuts reveal that:

o Bowe algorithms perform siccessfully within the criteria for the 0-10% ice
concentration bin but both underpredict for the higher intervals.

& For concentrations 20-30% a:.d above (inciuding 90-100%), the HAC algorithm
underpredicts well below the 2% acceptance criteria.

o The AES/YORK algorithm shows the same trend, but begins to underpredict by
mote tha: 10% at the 40-50% concentration bin. There is improvement at Y40~
10U%, similar to the pooled da:a results.

C The underpiediction is due to the presence of new ice and the refrec -ing of ol
ice freshwater meltponds.

10.2.2 Winter
o For the winter ice phase the results show that:

o Over 90% of the samples are in the 90-100% concentration bin, reflecting the
typical ice conditions for the Arctic at this time cf year.

o Both algerithms perform well i cold conditions and at high ice concenirations.
Their performznce in winter is better than any other season.
o There were insufficient samples a: lower ice concentrations to fully test the
accuracy of the ¢ gorithms.
10.2.2 Initial Melt

For the initial melt phase the results indicate that:

0 Between 65 and 70% of the samples were at ice concentratons less than or equal
tc 10%. This sampling is not typical of ice conditicns in the Arctic at this time
of year. The data set was limited by the lack of radar coverage of the area
because the AES aircraft does not cover the area operationally at this Hime.




No inference can be made about the accuracy of the algorithias at higher ice
concentrations. More samples arc needed at the higher ice concentrations to
confirm algorithm performan. ¢.

10.2.4 Advanced Melt

9]

There were sufficient samples over the range of concentration to defermine
averall algorithin s.crformance as wel! as t tween ice concentration bins.

o Both algorithms underpredict total ice concentration for all the concentration bins.

0 ‘vhe HAC predicts best for concentrations less than 20%. For all concentration
bins above 10-20%, including the 90-100% tin, it significantly underpredicts ice
concentration. This is probably the result of high water coverage on the ice at this
time of year [1].

o The AES/YORK algorithm shows a similar trend to HAC, except tiat the
underprediction is less (by at least 10%) for 21l concentration bins.

10.2.5 Gulf of St. Lawrence Regi nal Rusults

The number of samgles is considerably less than in the Arctic. Samples were available
for ouly two scasons, 1ce formation and winter. The evaluation criteria applied to the two
algor s for this area is summarized in tabie 10.3.

o More than S0% of the samples are in the 90-100% concentratior: interval. The
acceplance criteria can only be applied to this bin because of insufficient data in
the other bins.

0 At high concenrations the HAC algorithm in particular has difficulty predicting
the presence of ncw and thin ice types.

TABLE 10.3 F
TOTAL ICE CONCENTRATION EVALUATION CRITERIA
FOR GVLF OF ST. LAWRENCE
Algorithm Fooled Ice Formation Winter
HAC Faitog Failed Failed
AES/YORM Successful Mar; .nal Marginal
107
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o figures 10.4 and 10.5 present mean difference and standard deviation by
concentration interval. The variability of the data rcflects the low number of
samples. The following observations may be made:
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Figure 10.4 - Mean difference and standard Figure 10.5 - Mean difference and standard
deviation HAC vs radar for total ice ceviation AES/YORK vs radar for total ice
concentration, Gulf of St Lawrence, pooled. concentration, Gulf of St Lawrence, pooled.

10.2.2.1 Ice Formatior: and Winter
For the ice formation and wirter phases the results indicate that:

G Tie evaiuarion criteria results are greatly influciced by the high proportuon of

new and thin ice types which the algorithms appear lo have difficulty predicting.

3

©  The first-year ice in the Guif is not as thick as that in the Arctic in the winter
m:onths and, there is a higher percentage of new and thin ice in the matnix. These
factors contabute to the differences in algorithm performance for the Culf.

10.2.2  Uniform 3ampling

'To remove the bias of the total ice concentration pooled data set for the disproportionate
number of samples in the 0-10% and 90-100% -oncentration intervals (where both algorithms
perform better), an equai number of samples fri.n each 10% interval was analyzed statistically.
"The resulting distributions of uniform sampling for the HAC and the AES/YORK algorithms are
presented in Figures 10.6 and 10.7, respectively. Note that

O Both algorithms show degraded pertormance, with increased mean differences and
higher standard deviations.

O The trend in the differences over the mid-range of concentrations is similar to the
compiete data set (Figures 10.2 to 10.5). The distributions confirm: the tendency

o 10-8




for the algorithms to underpredict total ice concentration particularly in the middle
corcentration ranges.

o  Using the evaluation criteria for total concentration on the uniform sampling of
the pooled data set, both algorithms failed.

Conconirotion (Rfermace ()

J
§ * ﬁ‘QAq»Li\n

4 zw"d&c&u:.m“: &) wo Weasured Consentrotion () &
Figure 10.6 - Mean differenc= and standard Figure 10.7 - Mean difference and standard
deviation HAC vs radar for total ice deviation, AES/YORK vs radar for total ice
concentration, Arctic, uniform sampling. concentration, Arciic, uniform sampling.

1.3  ICE EDGE LOCATION RESULTS

Validation of ice edge was only possible for relatively simple ice edges. Sections of the
ice edge that were convoluted, consisted of plumes or embayments, or were otherwise complex
could not be validated because there was no consistent way to make measurements between the
radar and the algorithm ice edge locations. This difficulty reduced the number of samples
available for subsexquent statistical analysis.

During the ice formation and winter seasons ice odge comparisons were further
complicated by the presence and formation of new ice. Ice edge measurements were madc only
where no ambiguity existed in interpreting new or thin ice in the radar imagery. However, the
time between the radar coverage and the SSM/I overpass was critical because the two sensors
may detect different distributions of the edge simply because of new ice growth. These factors
reduced the leagth of ice edge available for comparison of the radar and SSM/I.

Almost 90% of ice edge measurements were made for the Beaufort Sez data. The
distribution of ice edge displacements for the combined areas provide a representative and
consistent measure of algorithm perforinance.

The distribution of ice edge measurements for the HAC algorithm (Figure 10.8) shows
a tendency to underpredi.: the ice edge location. The samples an skewed inio the i s with a
mean difference between -11 and -20 km (bin no. -1).
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Figure 10.8 - Distribution of ice edge differences, HAC vs radar

displacements indicating ice edge locations within the ice.

for all areas combined.

fa i fa N> %7 d

‘Theice ccb" u;aymnlult Tesilts for the AES/YORK a.lgorlmm arge pmted mn Flgm
10.9. More tuan 90% of the samples fall within +20 km of the ice edge as derived from
airborne radar imagery. The samples are uniformly distributed about the ice edge iocation, with
positive displacements representing edge locations beyond the ice edge and negative

Tables 10.4 and 10.5 summarize the evaluation criteria for ice edge location for the two
aigorithms for the Arctic and Guif of St. Lawrence respectively.

ICE EDGE EVALUATION CRITERIA FOR CANADIAN ARCTIC

TABLE 10.4

Algorithm Poolex. Ice Formation |  Initial Melt | Advanced Melt |
HAC Failed Marginal Failed Failed
AES/YORK Successful Successful Successful Marginal
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Figure 10.9 - Nistributio. of ice edge differences, AES/YORK vs radar
for all areas combined.

TABLE 10.5

! ICE EDGE EVALUATION CRITERIAL FOR GULF OF ST. LAWR! NCE
Algorithm Pocled ice Formation
HAC M:rginal Marginal
AES/YORK Marginal Marginal

10.4 ICE FRACTION RESULTS

The validation of ice fraction was not possible because of the low number of samples.
Consequently no statistical analysis was undertaken. Of the total sample population, only 10%
were at high old ice concentrations (81-100%) because of the scarcity of coincident airborne
radar coverage for such areas.

The HAC algorithm does not produce an old ice concentration; it reports old ice if the
concentration is above 35%. Therefore the v.didation of the HAC algorithm for ice fraction was
really a question of whether or not it reliably reports old ice when its fraction is above 35%.
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The only trends apparent were that for the AES/YORK algorithm, it was underestimating
the o!d ice fraction for the limited number of samples available, and for old ice cencentrations
above 80%, the :IAC algorithm flagged old ice in about half of the samples.

10.5 ADDITIONAL RESULTS

There were additional shortcomings with the HAC algorithm which are not apparent in
the statistical results concerning adverse weather conditions and the ice edge contour. There were
areas occasionally shown by the algorithm as ice covered where no ice should be present. An
example in the Labrador Sea, is shewn on the left in Figure 10.10, whexe ice along the coast
was extended by the HAC algorithm into an apparent ice cover all the way to the west
Greenland coast. The problem could be eliminated by a suitable weather filter algorithm, as is
incorporated in the AES/YORK aigorithm, and illustrated on the right in Figure 10.10.

The appropriateness of the 30% HAC ice edge contour as the one to define ice edge is
questioned because of high ice concentrations observed along it. The ice edge (or 0% ice
concentration contour} as determined on the radar imagery corresponded to a HAC algorithm
ice concentration of between 25 and S0%, with an average of 35% ice concentration, depending
on the ice types present. The 30% HAC algorithm ice contour was observed to correspond to
an average ice concentration of £5%. In comparison, the AES/YORK algorithm at the 0% radar
ice concentration contour correspondad to an ice concentration of between 0 and 25%, with an
average ice concentration of 16%, depending on ice type and the 10% AES/YORK algorithm

icr edge corresponded t0 an average ice concentration of 25%,

The HAC algorithm was designed to flag the presence of old ice only when
concentrations reached 35% or -uore of the total ice concentration. Because it only flags, but
does not determine the icc fraction concentration, its usefulness is reduced for operational
purposes. The AES/YORK algorithm is designed to provide open water, fitst-year, and old ice
fractions. Tt also allows retrieval of the ocean surface wind speeds, cloud cover, precipitation,
and water vapor for ice-free an as.

10.6 CONCLUSIONS/RECOMMENDATIONS

o The AES/YORK afgorithm is recommended for operational use. It is superior to
the HAC algorithm for total ice concentration estimates and ice edge location for
e geographic areas and seasons validated in this project. AES/YORK also
produces more specific estimates of old ice concentration.

it is recommended that a tailored or reduced version of the A£S/YORK algorithm be
implemented for operation~1 use. See Appendix A for a description of the co nplete AES/YORK
algorithm. This tailorin, is neccssary for two major reasons. First, the AFS/YORK was
constructed to reirieve not only the basic SSM/I parameter of sea ice concentration and identify
first-year and multi-year ice types but 2iso additional parameters such as the fractions of first-
year, multi v ar, and thin ice within ths SSM/I footprint as well as ccean susface wind speed
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and vertical columins of wate vapor and liquid cloud water. Second, the computer resources
requived to implement the cemplete AES/YORK algorithm are significantly greater than the
proposed tailored version. The error in the retneved sea ice concentration using the tailored
AES/YORK algorithm is essentially that associated with the complete algorithm and as discussed
carher is typically less than 10-12%.

10.6.1 Recommended Sea Ice Algorithm

rigure 10.11 presents a flow chart of the reduced version of the AES/YORK sea ice
algorithm. Specific equations 1d decision tests employed in the algorithm are presented in
Table 10.6 and the ocean regions whare sca ice 1S possible and the algorithm should be
implemented are given in Table 10.7. The initial test identified in the flow chart, Test 1, checks
for the reasonableness of the 19V, 19H, 37V, and 37H SDRs and polarization differences 19V-
19H, 37V-37H. If any of the inequalities in Test 1 of Table 10.6 are true, no sea ice
concentration or ice type identification is retrieved. If none of thesc inequalities are true, the
SDRs are reasonable for open occan or sea ice and total sea ice concentration, TOTICE, is
computed either for wirter/fall conditions or summer/spring conditions. Equation A in Table
(3.6 is used to compute TOTICE and employs only the 16V and 37V SDRs. Depending on the
valuc of TOTICE and several subsequent threshcid tests, new values of TOTICE may be com-
puted. As shown in Figure 10.11, a threshold TC .s selected depending on the condition of
winter/fall or summer/spring. TC is essentially an atmospheric offset threshold used later. The
next step in the algorithm is to ¢::mpute a discriminate D which is an estimaie of the total ice
concentration independent of Equation A and is expressed by Equation C in Table 10.6. Test
2 which follows the computation of D 1s a consisiency check between TOTICE and D. It
TOTICE and D are both less than ..r equal to 0.7, additional testing is necessary to dctermine
the influence of clouds and/or ocean roughnress. These tests are identified as tests, 3, 4, and §
in the flow diagram. [f TOTICE is greater than 0.7 or in the event the output of these tests
results in TOTICE being less than or equal 0 0.5 and D greater than 0.15 (test §), then the
effects of cloud and ocean roughness are unimportant and the aigorithm recomputes TOTICE
using only the 37V¥ and 37H channels withi Equation D of Table 10.6. This is done to take
advantage of the higher resoluiion of the 37 GHz data and provides greater accuracy in
determining sea ice edge. (The highest resolution 85 Giiz channels are currently not employed
In sea ice conceniration retrievals. Under ciear skies and calm ocean surface, the 85 GHz data
offers the potential for determining sea ice edge 0 +6 km). In the event clouds or ocean
roughness is important, the previcus value of TOTICE is used. Test 6 is followed by out-of-
bounds checking of TOTICE and if TOTICE is less than 0.25 no ice type identification is made.
If TOTICE 1s greater than or equal to (.25, the ice type identifier TBI is computed with
Cquation E.  If TBI is less than 238, the fraction of ice is predominately multi-year ice.
Otherwise the fraction is predominately first-year.
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Figure 10.11 - Recommended sea ice algorithin flow char
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TABLE 10.6

. EQUATIONS AND TESTS USED IN RECOMMENDED SEA ICE ALGORITHM
EQUATIONS
A. TOTICE = CWE(l) * Te;ny + CWEQ) * Tyyy + CWE()
B. TOTICE = CSS(1) * Tgyyy + CSS(2) * T-ppv + CSS()
C. D = 1.0-0.0513 * (T - Taisv)
D. TOTICE = (Tg— + 0.5 * Tary -265.0) * 0.01
E. TBI = [Tew -TC - (1.0 - TOTICE) * 189}/ TOTICE
F. TC = 14.0
G TC =68
h WCUT = 6.0
i WCUT = 8.5

. WINTER/FALL COEFFICIENTS SUMMER/SPRING COEFFICIENTS

CWE(1) = -0.013656219 CSS(1) = -0.015231617
CWF(2) = 0.024412842 CSS(2) = 0.025911011
CWF(3) = -1.677645 CSS(3) = -1.656920
1ESTS

1. Tpey < 151.0 OR

Tgew < 92.0 OR
Taerr < 171.0 OR
T < 125.0 OR
\rslw - Tnggu) & 800 OR
(TBJ?V - Tml) = 800 OR
Tpiom > Taey OR
Toom > Tigy

TOTICE < 0.7AND D < 0.7

D S 0.3 AND [Tm * 1-5 - TBI’V] > 120-0
Tosv S 215.0

D S 0.. 15 OR frwm - 2 * Tm’ly + 270.0] x}. WCUT
TCTICE < 0.5 ANDD > 0.15

Al
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TABLE 10.7

o REGIONS WHERE SEA ICE MAY EXIST AND THE RECOMMENDED
ALGORITHM SHOULD BE IMPLEMENTEL:

$3:3160¥YIIN

1. Southern Hemisphere: All ocean regions less than S0S latitude.
2. Northern Hemisphere: All ocean regions above 65N latit le.
A. Alaska Area: longitude 165-200E and latitude 50-90N
B. Gulf of St. Lawrence and Hudson Bay: longitude 24i)-315E and latitude 42-90N
C. Sea of Japan and Sea of Okhotsk: longitude 130-155E and latitude 40-SON
D. Baltic and North Sea: longitude 5-30E and latitude 53-20N
E

. Kamchatka Peninsula: longitude 155-165E and latitude 45- 90N

m

Iceland: longitude 330-350E and latitude 60-90N
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. H. White Sea: longitude 30-50E and latitude 63-S0N
I. Yellow Sea: longitude 115-130E and latitude 37-90N
J. Kodiak Island: longitude 200-210E and latitude 55-90N

K. Gulf of Alaska: longitude 210-240E and latitude 58-90N

10.7 REFERENCES

[11  D. A. Etkin and R. O. Ramseier, *Validation of a Passive Mi- rowave “ea Ice Data Sct
for Hudson Bay," First Circumpolar Symposium on Re:iiote Sensing of Arctic
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TABLE 10.7

e REGIONS WHERE SEA ICE MAY EXIST AND THE RECOMMENDED
ALGORITHM 3HOULD BE IMPLEMENTELD

HERERERS RRLAL

1. Southern Hemisphere: All ocean regions less than SOS latitude.
2. Northern Hemisphere: All ocean regions above 65N latitude.
A. Alaska Area: longitude 165-200E and latitude 50-30N
Gulf of St. Lawrence and Hudson Bay: longitude 240-315:1 and latitude 42-90N
Sea of Japan and Sea of Okhotsk: longitude 130-155E and latitude 40-90N
. Baltic and North Sea: longitude 5-30E and latitude 53-90N

Kamchatka Peninsula: longitude 155-.65E and latitude 45- 90N

mm g N W

Iceland: longitude 330-350E and latitude 60-90N

G. Greenland: longitde 315-330F and latitude 55-90N
‘ H. White Sea: longitude 30-50E and latitude 63-90N

I. Yellow Sea: iongitude 115-130E and latitude 37-90N

1. Kodiak Island: longitude 200-210E and latitude 55-%0N

K. Gulf of Alaska: longitude 210-240E and latitude 58-90N
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Icc Forecasting Tivision of AES ice Branch (Ottawa, Ontario, Canada)

Atmospheric Environment Service (Canadian Department of the Environment)

algorithm developed by AES and PhD Associates | c.

algorithm developed by AES and York University

airborne imaging mi ‘owave radiometer

ephemeris data tapes

Fleet Numeric Oceanographic Center (Monterey, Caiifornia, J.S.A.)
Ice Centre, Environment Canada (Ottawa, Ontario, Canada)
Institute of Space and Terrestrial Science, York University

Joint (NOAA/NAVY) Ice Center (Washington, D.C., U.S.A.)

U.S. National Oceanic and Atmospheric Administration

U.S. Naval Polar Oceanographic Center (Washington D.C., U.S.A.)
Naval Research Laboratory (Washington, D.C  ".§.A.)

synthetic aperture radar
side-looking airborne radar
special sensor microwave/imager

scan. ‘ng multichannel microwave radiometer




APPENDIX 10A
10A.0 DESCRIPTION OF HAC AND COMPLETE AES/YORK SEA ICE ALGORYTHMS

10A.1 BACKGROUND

The sea ice algorithm used vy the U.S. Navy for the SSM/I was developed during the
1970s by Environmental Research and Technology Inc. under a subcontract from Hughes
Aircraft Corporation, and was tesied during the NIMBUS satellitc series of scanning
multichaanel microwave radiometers (SMMR). The HAC algorithm was tested extensively from
1982 to 1987 by the I._ Rescarch and Development Davision of Ice Branch, Atincspheric

Environment Service (AES) which is part of the Canadian Department of the Environment, for

both research and operational purposes. To improve the retrieval of ice information in all
weather conditions ard to optimize the use of SMMR channels another aigorithm was developed
(produced under contract to AES by PhD Associates Inc.). Known as the AES/PhD vession, it
also underwent research and operational testing from 1984 to 1987.

By the time of the SSM/I launch in Junc 1987, an updated version of the AES/PhD
algorithm was introduced by AES and the Microwave Group at the Institute of Space and
Terrestriai Science (ISTS), York University, wrach is now known as the AES/YORK algorithm.
This algorithm has been evaluated with the HAC aigorithm in this validation program. The
AES/YORK algorithm incorporates weather and sea state comrections to aid in the retrizval of
ice tyra (fraction) ice concentration, and icc cdigc position foi operalional ice reconnaissance.
The Canadian validation program was based on the criteria listed in Table 10.1, and the more
stringent Canadian criteria for resolution reguirement of ice age and total ice concentraticn were

applied to the AES/YORK algorithin while the U.S. criteria were applied to the HAC algernithm.

The Canadian validation program also involved an operational demonstration and
evaluation projec t in which both the AES Ice Branch, Ice Forecasting Division (ACIF), and the
U.S. Navy/NOAA Joint Ice Center participated. Both ice centres were given near real-time ice
charts using the AES/YORK ice algorithm by pulling near real time SSM/I data from the Fleet
Numeric Oceanographic Center (FNOXC) in Monterey, Califcrnia. This was made possible
through support from the Naval Research Laboratory (NRL).

Because the AES/YORK ice algorithm uses weather a 4 sea state corrections to enhance
the retrieved ice parameters, a number of usefui side products were obtained for the ice-free
ocean area, such as wind speed, areas of precipitation, atmospheric water vapor, and cloud
amount. Six Canadian weather centres participated in an operational demonstration and
evaluation of these parameters from 20 January to 31 March 1988. The results of this exercise,
which were very promising, have been published in a report by Raiaseter et al. [1]
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10A.2 THEORY

In the microwave region, the radiation intensity received by a radiometer is proportional
i0 whe absolute temperature of the medium. This apparent temperature is referred to as brightness
temperature, T,. The attenuation of the siurface-emitted radiation and the transinittance of the
atmosphere are both related to the optical thickness of the atmosphere (c).

In the absence of scattering, the brightness temperature: sensed by a satellite radiometer
can be represented by [2]:

Ty(2.8) = T (z6) = ¢ TeT,+(1-&)Ty ] m

where Ty = brightness temperature,
z = satellite location height,

J = incidence angle,
e = effective surface emissivity,
c = toial opacity of the atmosphere along the line of sight,
Ts = surface temperature.
The quantities Ty, and Ty, are proportional to the upward and downward emission from the .
atmosphere, respectively, plus attenuated sky tackground radiation; and can be caleulated from:
_fs I»
T, = [[Ta)e)e k secBdz’ @
< :
. L $(T" Jmactity’ secOdy 3)

T, =T, .2+ ]:T[z')g(z’)c

where
c(z) = | ¢ g(z)sechdz,
g(z) = total opacity at height z, representing the sum of the contributions from water
vapor, oxygen, and liquid water droplets in cloud.

As the mixing ratio of oxygen is essentially constant and the absorption coefficient is very
weakly temperature dependent, they contribute to a constant offset in the 1 to 40 GHz rcgion.
The absorption caused by non-procipitating water droplets in the atmosphere has a linear
dependence on the amount of liquid warer and a quadraiic variation with frequency [3].
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The intensity of the atmospheric radiation can be calculated using results from Swift et
al., [4]. For the frequencies used in the algorithms validated some typical values for the opacity
coefficient and the atmospheric contribution to the cbserved brightness temperature are presente:d
in Table 10A.1

TABLE 10A.1

TYPICAL VALUES FOR THE OPACITY COEFFICIENT (C AND THT
ATMOSPHERIC CONTRIBUTION (T,;) TO THE OBSERVED BRIGHTNLSS

TEMPERATURE
Y ocation Typical Values at 19 GHz Typical values at 37 GHz
c TpiCTy c Tp;CTay
Polar Regions 0.025 6.7 ; 0.049 13.0
Midlatitudes ) 0.050 12.5 [ 0.100 25.0

The emissivity of different targets is a consequence of their dielectric properties. As
water is a polar molecule, it has a very large dielectric constant at microwave frequencies which
results in a large reflectivity (low emissivity) for a liquid water surface such as the ocean. Most
solid surfaces have emissivities in the range 0.80 to 0.95, so thers is a significant contrast
befw 'en iiquid water surfaces, such as izkeg rivers, and the ooeanz, and solid eurfaces such as
land and sea-ice. The low emissivity of the open ocean makes it a o0od background for viewing
the intervening atmosphere.

The higher salinity of first-year ice causes it to be optically opaque and, therefore, its
microwave signature is almost frequency independent. The virtually de-salinated near surface
jorticn of old ice makes it optically thin, i.e., radiation emanates from a thicker layer of old ice.
A significant part of the radiation from old ice is suppressed by volume scattering within the ice
because of air pockets formed during summer melt and brine drainage. The brightness
temperature signature of old ice is, therefore, generally lower than that of first-year ice. As the
sensitivity to volume scattering is inversely related to the wavelength of the radia‘ion, at higher
frequencies one would observe larger variability in the brightness temperature ¢ old ice.

The upwelling brightness temperature of a scene containing open ocean and various
amounts of sea-ice is a function of the ice concentration, ice emissivity (.e., icc type), the
physical temperature of the components, and the amount of water vapor and liquid water in the
intervening atmosphere. Assuming that the ice cover within the field of view is 2 mixture of old
ice and first-year ice, the brightness temperature sensed on the i-th channel of the radiometer
can be expressed as:

10A3
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T, = e {Fle,T,+(1-¢,)T,,] +Mle,T, +(1-8 )Ty, +(1-IC)e T, +( -¢ )Tl + T,,

“)
where
ci = total atmospheric opacity,
IC = total ice cover fracton,
F = fraction of first-y« ice,
M = fraction of old ice,
€ 6g, Ew; = Surface emissivities of fust-year ice, old ice, and sea water,
Tp, Ty, Tw = swiface temperatures of first-year ice, old ice, and open ocean,
Ty, = incident sky temperature at the surface caused by atmospheric downward
emission,
Ta = contribution from atmospheric upward emission.

From =quation 4 it follows that by considering the difference of Ty (from vertical
channe:) and Ty (from horizonta! channel) for 37 GHz, one minimizes the contribution from
the atmosphere:

Tov-Tan =€ {Fdee(TrTeo) + Mdes(Tae- Too) + (1-ICHe(Twrw)) )

where del’ = €pvepy
de; = exv-6ran
dew = ewv-ewn.

This equation was used in developing the HAC algorithm.

An algorithm that calculates ice concentrations by solving equation S5 for IC, ie.,
assuining that a possible solution can be of the form:

IC=A*DT,+B ©)

where coefficients A and B are calculated from equatira S, afler making reasonable assumptions
about the physical temperatures of the varicus componenis and selecting appmpriabe a nosphen'c
parameters. It can be demonstrated that DTy=Ty,~Tyy decreases with the increase in optical
opacity (! ecause of larger amounts of water vapor and cloud cover) aid the increase in
emissivities of open ocean (because of surface roughness), which implies that an algorithm of
the type described ahove will yield erronieous ice concentration cetrievals, particularly in weather
where kigh levels of water vapor in the atmospherc, cloud cover, and wind-roug! cned seas are
experienced. To improve on the ic . information retrieval reliability for all weather conditions,
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a dua! frequency, dual polarization (19, 37 GHz) algorithm was developed and is described in
Section 10A.3.

10A.3 HAC ALGORITHM

The HAC algorithm was derived by using equation 5. Th - iollowing assumptions were
used to be able to evaluate IC from equation 6: the surface teiaperatures TR=T,,=T,=T,,
dep=de,,=de,. Using simple algebra, the coefficients A and 3 can be caiculated from the
following:

A=c/[(Ty Tro)(der-dew)] D
B=dey/(dey-dep ®

Climatological mean values of atmospheric water vapor, liquid water, ice surface temperature,
and emissivities were used as inputs to evaluate parameters A and B for different climatic zones
[5).

Determination of ice type is achieved by computing the effective average ice brightness
temperature within the footprint and comparing it with a preselected value, Tc (e.g., brightness
temperature of a sample of 35% old ice ar. 1 65% first-year ice cover). The equation for the
ralculation of effective hrightness temperature, T, uging the component from the 37 GHz
rertical channel (Tgarv,), 1S as follows:

Ty =[Co + C*Taem]*C +C, )

The coefficients C,, C,, and C, are calculated using climatology. If Tx > T, the sea-ice fraction
within the observed area is flagged as first-year ice. For Tx<T. the ice cover fraction is
identified as old ice.

Weather correction criteria were imposed on sea-ice concentration retrieval after it was
cbserved that false ice information was obtained because of the influence of wind and
atmosphere. The correcticn procedure uses cut-off values for the 19 GHz horizontar component,

Taasmys» And Tpazy, -Taurm. The ice concentrations are calculated only if the following conditions
are met-

IC > 10%

If these conditions are not met, the footprint is declared to be ice free. Figures 10A.1 to 10A.4
illustrate the results of such weather corrections (1o, personal communication, {987).
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The HAC algorithm was first tested on SMMR data. During the evaluation it became
obvious that although the retrieval of total ice concentration was within the specifications for
ideal weather conditions, areas of rough scas and overcast sky were identified incorrectly as ice-
covered ocean.

Prior to launch, a simple procedure for removing some of the weather effects on the ice
retrieval was added to the algorithm, but as shown in Figures 10A.1 and 10A.2, the problem
was not solved for severe weather conditions. In addition, the accuracy of the ice edge location
was degraded by introducing a lower limit (10%) on the calculated ice concentrations. Using
only the 37 GHz charnel provides the highest available resolution, however, i could lead to
errors in total ice concentration estimate and ice type fiagging when the icc surface is wet or




under a heavy snow cover. At the onset of snow melt one would also observe large differences
in retrieved ice concentrations, depending on the time of the observation.

10A.4 AES/YORK ALGORITHM

Equation 4 written for the 19 and 37 GHz channels can be solved for F and M, with
seasonai/regional values for ¢ (optical opacity and T, (atmospheric component). Sampie areas
in the Arctic and the east coast of Canada were selected for establishing passive microwave
signatures of first-year ice, old ice, and caim open ocean.

Fquaton 4 can be rewritten for each channel (1-4) ir the following manner:

Ty = AB,*F +C, *M+ D, * W)+TOl (10)
T = AB,*F +C, *M+ D, * W)+T02 an
Tas = Ay(B5*F +C; *M+ D, * W)+T03 (12)
Tae = ABSF +C, *M+ D, * W)+TO04 (13)

where F, M, and W are fractions of first-year ice, old ice, and open ocean, respectively. A,,
A,, A;, Ay, and TO1 1o TO4 are atmospheric correction parameters for each channel. A,, A,,
and A, can be expressed in terms of A, using frequency dependence of atmospheric abs- ption
coeiticienis {31, B;, C,. and I3, represeni sengitivity coefficients to the presence of van, _3 1cc
types and open ocean. All these parameters were described in detail in ’hD Associates Ltd.,
{6]. The set of equations 10 to 13 cun be solved for A,, F, M, and W. Prior to the caiculations
of ice concentration and ice type identification, the input brightness temperatures (at 37 GHz
and 19 GHz for both polarizations) are subjected to a multi-step testing procedure. The results
of this testing determine whether the sensed radiation was emitted from an ice-covered area or
from open ocean, as shown in the flow chart given in Figure 10A.5.

The first test decision was made using the contrast between the brightness temperatures
of open ocean under heavy cloud cover and ice cover rz liance. A discriminating function (D)
of 19 and 37 GHz vertical componenis was generated. Critical vaiues for D were derived by
simulating brightness temperatures for open ocean with heavy cloud cover and ice cover near
the ice edge. Four ranges of critical values were selected to ropresent a cross section cf
atmospheric conditions. D,q,; represents a criti.al value for discriminating the ice edge arca
from the open ocean with a surface roughness caused by wind speeds greater than 10 m/s. Dy,
is used for differentiating the ice edge from partiaily overcast sky and wind-rcughenad open
ocean surface. D, is a criteria for distinguishing ice. cover greater thaa 35% conceairation.
The open ocean, with fully overcast sky, will always result in L < Dy, x. When D > 1, the
ice concentration will be more than 90% and old ice is mresent in the field of view.
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The data poin’s for which D < D,,.x and D > Dyg,, are given a second test. This test
was designed to distinguish low ice concentration areas from open ocean with low winds and low
to moderate cloud cover. This filter component (labelled R) relies on the contrast in sensitivities
of the vertical and horizonta! components of the 37 GHz channel to the presence of sea-ice.

The third step in the filtering algorithm was set up for the analysis of data points with
a Tyay, greater than that for open ocean, but less than that for a S0% ice-covered value.

The measured brightness tcmperatures at 19 and 37 GHz are assumed to originate from
a partially ice-covered area and partially from open ocean roughened by wind. The possible ice
concentrations and wind speed in the ice-{ree segment within the field of view are calculated
using 37 GHz (vertical and horizontal components) and 19 GHz brightness temperatures. Only
data points for which calculated ice concentrations are greater than §% are sent to the data pool
for ice chart plotting.

The fourth step is used on data points with Dy, > D > Dygg, Mut with R values the
same as for a rough ocean surface. Assuming that the field of view is an ice-free area, possible
surface winrd speed and atmospheric contribution to the observed 19 and 37 GHz are caiculated.
Comparisoa is then made between the atmospheric information from 37 GHz with the amount
estimated for 19 GHz. If the ratic is outside the range (determined from theoretical simulations),
the data points are assigned to be from the ice-covered areas.

To implemicat the algonihm correctiy, the fiitening components of the algonihim had io
be tested. Figures 10A.6 to 10A.8 illustrate the testing of the various components of the iiltering
procedure in comparison with the HAC algorithm.
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After the filtering procedure is completed, ice concentration and ice fractions are

calculated using equations 10 to 13, for data points with D > Dy,«. For data points with D <

. D,.ax> 37 GHz channels are used for the calculations of the ice concentrations, therefore using
the best resolution in the proximity of an ice edge. The ice type fractions are checked for
consistency with the brightness temperatures observed on all four channels used in the algorithm.
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11.0 PRECIPITATION VALIDATION

11.1 INTRODUCTION

This section surmarnizes the resuits of the SSM/I rainfall rate retrieval algorithm
validatior. effort, which has been completed for the midlatitude and tropical climate zones. The
validation is presented, followed by an evaluation of the operational D-Matrix rainfall rate
retrieval algorithm based upon available ground t1th, This section concludes with recomimenda-
tions for the improvement of the existing retrieval algorithm, and an exa—ple application of an
alternate algorithm to tropical cyclone data.

11.2 VALIDATION PLAN
11.2.1 Navy Specifications

The validation plan was specifically designed to evaluate the performance of the Hughes
“D-Matrix” algorithm for obtaining rainfall rates from SSM/I brightness temperature data. The
SSM/I specifications called for an algorithm which would enable the retrieval of cainfali rates
from the observations of the DMSP-F8 with 5 mm/hr accuracy over the range 0 - 25 mm/hr at
25 km spatial resolution.

11.2.2 Method

Raingages provide the most accurate standard for point estimates of surface rainfall.
However, because of the high spatial variability of precipitation intensity and the requirement
to validate 25 km space-scale estimates over ocean as well as land areas, arca-averaged radar
rain estimates were utilized as the primary source of validation data in this study.

In order to maximize the correlaiion between the radar rain rate estimates and surface
rainfail amounts, ouly low antenna elevation angle (a < 1°) plan-position indicator (PPI) scans
were used.  Also since the radar beam height increases with range, no radar measurements
beyond a range of 220 kin were considered. Ground clutter and obvious radar artifacts were
also screened. The remaining bin reflectivities were converted to rainfall rate using a standard
relationship between the reflectivity factor Z and the rainfall rate R (Z = 200 R'%) and then
interpolated to a 5 km cartesian grid. In this report R is in units of mm/hr.

Typically three radar PPI sweeps bracketing the DMSP-F8 overpass time were processed.
All gridded rainfall rates falling within a 625 km? circular area of a given SSM/I all-channel
brightness temperature scene were time-interpolated te the SSM/1 measurement time. The time-
interpolated, gridded rain rates were subsequently area-averaged and then stored along with the
corresponding seven sensor data record (SDR) brighmess temperatures.  In addition, the time-
interpolated rainfall rates at 5 ki resolution were recorded to allow for improved calibration.
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Since individual radar-derived rainfall rate estimates can have a high uncertainty,
simultaneous raingage measurements were also recorded for the purpose of calibration. Wilson
and Brandes |1] demonstrated that errors in radar storin-total estimates of rainfall rate could be
reduced from 63% to 24% using calibrating raingages.

11.2.3 Data Sourccs

SSM/I sensor data records (SDR) and environmental data records (EDR}) coinciding with
radar measurements of precipitation were obtained from the Naval Research Laboratory (NRL)
archive.

Surface truth for nidlatitude validations was cbtained from seven radar sites in the United
Kingdom operational network and the Patrick Air Force Base (PAFB) redar at Cape Canaveral,
Florida (see Table 11.1 for specifications). Each of these radars provided significant coverage
of both land and ocean areas, and were operating almost continuously since the launch of the
DMSP-F8.

The United Kingdomn data were obtained from archives maintained by the British
Meteorological Office (BMO), and the PAFB data were retrieved from laser disk recordings
compiled by personnel at the Severe Storms Laboratory at NASA/Goddard Space Flight Center.

Raingage obscrvations fruan thiree o five iSlCmEieding raingages are reconded operationgliy

- SRS -

for five of the seven United Xingdom sites. If sufficient raingage hourly totals are recorded in
the same time frame as a given radar sweep, then a real-time correction is applied to the radar
data using the scheme described by Collier, et al. [2]. Hourly raingage totals and corresponding
hourlv-integrated radar totals were provided along with the radar data on BMO archive tapes.

Hourly raingage data from National Weather Service (NWS) gages in the vicinity of the
PAFB radar site were obtaines from National Climatic Data Ceater archives at Asheville, North
Carolina. Twenty-one raingages in the NWS network provided hourly rainfali rate totals within
a 200 km radius of the PAEB site.

Radars gperating continuously at Darwin, Australia and Kwajalein, Marshall Islands were
utilized to validate rain rate retrieval algerithms at tropical latitudes. Located on the northwest
coast of Australia, the Darwin radar provides reflectivity data both over the continent and over
the Indian Gcean. The Kwaialein radar yields rain rate data exclusively over the Pacific Ocean.
Networks of raingages were maintained in the vicinity of both radars to check the calibration of
the rainrate estimates; however, no real-time correction was applied to the data from either site.

11.2.4 Satellite/Radar Data Geolocation

Since rainfall is highly variable in both space and time, accurate geolocation of both the
satellite and radar data was essential to the validation effort.




VALIDATION RADAR SITES AND NUMBER OF CALTBRATING RAINGAGES

TABLE 11.1

Radar Site Specifications Latitude Longitude Number
of gages

Midlatitudes)
Patrick Air Force Base S cm, C-band, 28.255N 80.606W 21
Cape Canaveral, Florida | 1.1° beamwidth
Camborme, England, 10 cm, S-band, 50.218N 5.327W 3
Umted Kingdom 2° beamwidth
Upaven, England, 10 cm, S-band, 51.299N 1.781W 3
United Kirgdom 2° beamwidth
Clee Hill, England, 5.6 crr, C-band, 52.297N 2.59TW 3
United Kingdom 1° beamwidth
Hameldon, England 5.6 cm, C-band, 53.756N 2.281W 5
United Kingdom 1° beamwidth H
Chenies, England 5.6 cm, C-band 51.688N 0.053wW ]
United Kingdom 1° beamwidth
Shannon, Ireland, 10 cm, S-band 52. 791N 6.936W 0
United Kingdom 2° beamwidth
Castor Bay, 5.6 cm, C-band 54.503N 6.341W 0
North Ireiand, 1° beamwidth
Unitzd Kingdom
(Tropics)
Darwin, Northem 5.3 cm, C-band, 12.457S 130.925E 26
Terntory Australia 1.7° beamwadth
Kwajalei.. "7 ¢m, S-band 8.72N 167.73E 9
Marshall Isiands . 2° beamwidth

11-3
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Errors as great as 37) km were observed in the position of land-ocean boundaries in the
DMSP-F8 SSM/I imagery. Since precipitation fields can vary greatly on a spaiial scale of 10
km or less, correlations between brightness temperature features in the SSM/I image: y and radar
echoes were degraded in many situations. Through a cocperative effort between scientists at
University of Wisconsin, University of Massachusetts (UMASS), and the Naval Research
Laboratory (NRL), a method was developed to automatically relocate the SSM/I data.

The method consisted of an optimization routine which searched for corrections in the
spacecraft pitch and yaw angles that maximized the correfation between discontinuities in the 85.5
GHz horizontally-polarized SSM/I brightness temperature imagery and the known location of
coastal boundaries as specified in the World Data Base II (WDB II) coastline map. The
transformation between pitch and yaw perturbations and perturbations in the earth coordinates
of SSM/I measurements was provided by Mark Goodberlet of UMASS. The World Data Base
I coastline map was provided by Gene Poe and Pete Conway of NRL.

A digital edge detector was applied to the 85.5 GHz horizontally-polarized brightness
temperature data in original scan format to locate coastal discontinuities in the imagery. If the
edge detector identified a brightness temperature discontinuity bet veen adjacent footprints of at
least 30 K in the United Kingdom or Kwajalein imagery, or a discontinuity of 15 K in the Florida
or Darwin imagery, then the location of the discontinuity was recorded on a 4 kin resolution grid
using a standard map projection. The World Data Base II coastlines were referred to the sas ¢
grid. A smaller edge detscior threshold was utilized at tropical and subtropical latitudes o
account for the smaller land/ccean contrast at those latitudes. Swath data from Alaska or th:
U.S.S.R. was used to reclocate Fiwajaleiin daia from the seme orbit, due to the pauciiy of iare
land masses in the vicinity of Kwajalein Island.

A simplex algorithm was inveked to iteratively search for the spacecraft pitch and yaw
perturbations which maximized the number of grid-point "matches” berween the edge-detected
coastline and the World Data 3ase II coastline over a 2000 km section of the SSM/I swath
centered on the region of in “rest. The effect of adding a roll perturbation to the optimization
scheme did not significantly impreve image registration.

Upon review of 10 to 20 relocated SSM/I images, the automated procedure appeared to
locate the satellite data to within about 6 km of the World Data Base II coastline. The WDB 11
coastlire is reported to be accurate to within 3 km.

The validation radar data were earth-located using the recorded range of the radar bin and
the elevation and azimuth angle of the radar antenna. The range of ths radar bin along the
earth’s surface and the bin altitude were computed using the standard formulae presented in
Battan [3]. Given the earth range of the bin, the azimuth of the radar antenna, and the known
iatitude and longitude of the radar site, the earth location of *he radar bin was determined using
the geodetic formulac of Sodano [4]. ‘The wr cerminty in th.. earth iocation of any radar bin is
estimated to be on the order of 1-2 km.




11.2.5 Radar Calibration

With the exception of the Shannon and Castor Bay radars, for which no raingage cdata
were available, an atiempt was made to calibratc the midlatitude radar-derived precipitation
intensities using coincident hourly raingage recordings. Approximately 50% of all the Unitad
Kingdom radar data corresponding to DMSP-F8 overpasses had been pre-calibrated using the
scheme described in Collier, et al. [2]. Their scheme relies upon a time-series analysis of radar-
to-gage ratios, determination of radar “bright-bands”, and adjustments for orographically-forced
precipitation. Rainfall rate : obtained from the uncalibrated United Kingdom radars, which had
been assessed using Z = 200 R'¢ (Marshall and Palmer [5]), were left unaitered.

For the remaining DMSP-F8 overpas: times, there were generally insufficient raingage
data to perform a radar calibration, unless gage data covering a period of one day or more were
incorporated into the analysis. Despite the relatively large number of raingages recording in the
vicinity of the PAFB radar site, there were again insufficient data to perform instantaneous radar
calibrations for most I"MSP-F8 overpass times. The inadequacy of the gage networks for
instantaneous calibrations is due to the high space- and time-variability of precipitation.

The radar data available from Darwin and Kwajalein were insufficient for performing
rai;gage calitrations. The Marshall and Palmer [5] relationship was utilized to interpret the
reflectivity data from these radars.

all-channel scere were time-interpolated to the SSM/I measurement time and subsequently area-
averaged to yield a ground truth rainfall rate product.

11.3  VALIDATION ERROR

The total validatien error can be divided into two general categories: (1) errors in the
gridded radar estimates of rainfall rate (at 5 km resolution), and (2) errors arising from
atmospheric variability linked to discrepancies in the space and time collocation of the 625 kn?
area-average rainfall rates and the SSM/I all-channel measurements.

These error categories can be further subdivided into contributing error sources. It will
be assumed in this analysis that raingages provide an accurate standard for surface rain totals over
a period of one hour. If it is alse assumed that the errors from contributing sources are
uncorrelated, then the error variance of a gridded and time-interpolated radar rainfall rate with
respect to a gage estimate can be expressed as

Ogins == O + 00, 0}

where o,, is the error of an instantanceus gridded radar rain rate, and o, is the error arising from
time-interpolation of the gridded radar measurement to the SSM/f measurement time .
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In practice it is only feasible to estimate the error of hourly-integrated radar rain rates
with respect to gage totals over the same period. In the British Meteorological Office radar
calibration scheme, rain rates from approximately 12 radar sweeps are averaged to obtain an
hourly total. The error variance of hourly-integrated radar rain rates may be approximated by

o’ = {og'/n} + ol @)

Here, n is the number of radar sweeps utilized in the hourly integration and o; is the error
introduced by integrating a finite number of sweeps to form an hourly total. Combining Egs.
(1) and (2):

Ogite = N{0” - ¢} + 0} 3)

A value for g, of six tenths of the rac.r-derived rainfall rate (i.e. 0.6 R, where  the rain
rate) was taken from a study by Wilson and Brandes [1]. Harrold, et al. [6] showsd wat o, was
on the order of 0.1 R. It is assumed that R, which is based on hourly averages in the preceding
estimates, can be approximated by the instantaneous rain rate for the purpose of making an ezror
estimate. This assumption may lead to an cverestimate of the error for high instantaneous rain
rates, since the average rain rate over an hour period which includes a high rain rate event is
likely to be lower than the instantaneous rair rate.

The radar rain rate time interpolation error it almost negligihle since the dala aie
inierpolaied from radar measurements separated by 15 minuies at most. A value of 0.05 R is
estimated for o,,.

The errors due to area-averaging of gridded radar data and co-registration with the D-
Matrix estimates can be expressed as

O = {CgieciM} -~ 0} + 0. @)

where m is the number of time-interpolated, radar grid boxes averaged over a 625 kin? area, o,
is the error due to misregistration of SSM/I and radar measurements, and ¢, is the error
introduced by the discretization of the D-Matrix rain rate estimates.

Typically 25 radar grid boxes are averaged per 625 kin® area. After relocation of the
SSM/I measurements according to the method described in Section 11.2.4, the total
misregistration between SSM/I and 1:dar measurcments is approximately 7 km, based upon
comparisons to the World Data Base II coastlines and an estimated 1 - 2 km error in the radar
measurements. The validation error due to misregistration is estimated by considering the error
incurred by estimating a “reference” area-averaging rain rate using area-averaged rain raies at
different displacements from the reference location. RBased upon this approach, o, for a
dispiacement of 7 km i3 fund to vary as a logarithmic function of the rainfali rate.




The rounding of D-Matrix rain rate estimates to integral values leads to a constant 9, =
.29 mm/hr.

Utilizing the individual errors estimated above, the total valiJation error is evaluated and
plotted in Figure 11.1. Also plotted is the validation error that would result if the geolocation
of the SSM/I data was not corrected, assuriing an average 25 km misregistration error for
uncorrected data. It may be noted that from the figure that a 35% to 60% reduction in the
validation error is achieved by relocating the SSM/I data using the automated procedure. The

validation error of the relocated data varies almost linearly with rainfall rate, with about a 45%
error at 24 mm/hr rain rate.

11.4 D-MATRIX ALGORITHM EVALLU ATION

11.4.1 Data Samples

DMSP-F8 overpasses of the United Kingdom and PAFB validation sites were separated
by season into summer, spring-fall, and winter overpasses. Collocated SSM/I and radar
measurements from nine overpasses of the United Kingdom sites and three overpasses of the
PAFB site during August of 1987 composed the summer validation data set. Seven United
Kingdom overpasses during September of 1987 and six overpasses of PAFB during September
and November of 1987 and March of 1988 contributed to the spring-fall validation data set. The
winter validation data set was derived from twenty-five overpasses of United Kingdom sites
duning january and February of i988.

Only radar data from the tropical warm season were available from the Darwin and
Kwajalein si ss. Data from eleven SSM/I overpar es of Darwin and nine overpasses of Kwajalein
were collocaed with the averaged radar rain data to produce the tropical validation data set. The
Darwin overpasses occurred during February and March of 1988, while the Kwajalein overpasses
spanned the months of August - November of 1988.

The total number of collocated area-averaged radar rain rate estimates and SSM/T all-
channel scenes are listed by season in Table 11.2, Listed separately are the number of collocated
measutements over land and ocean backgrounds. Also included are the number of collocated
measurements for which the area-average radar rain rate was at least 1 mm/hr,

Despite prescreening of overpasses to identify those in which sigrificant rain evenis were
observed by both the SSM/T and radar, only a smail fraction of the total number of collocated
data exceeded the 1 mm/hr threshold. The skewed distribution of rain data is further illustrated
by the seasonal histograms in Figure 11.2. The histograms indicate that a large percentage of
rain events at 25 km resoiution have intensities less than 1 mm/hr. At midlati.udes, the winter
data are more highly skewed towards light precipitation than the summer and spring-fall data.
The highly skewed winter distribution results in a reiatively small number of collocated winter
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VALIDATION ERROR [MM/HR]

L

0 i .’;0 25
RAINFALL RATE [MM/HR]

Figure 11.1 - Validation error as a functien of rainfall rate. Squares indicate the error standard
deviation for an averagec SSM/I-radar wmeasurement misregistration of 7 k..  An average
misregistration error of 7 km is expected afier it + gevlocatior. ;aethod desi - ibed in Section
11.2.4 is applied to the SSM/I measurements. If the geolocation of SSM/i 1-vasuiements is not
corrected, then the average misregistration 0! SSM/I and radar mea urencul - pp uar rately
25 km. The validatic * error for uncorrerter data is indicated b the solid dots m the ¥zurc.

11-8




TABLE 11.2

NUMBERS OF COLLOCATED SSM/I ALL~-CHANNEL SCENES
nND RADAR DERIVEDL RAINFALL RATES

LAND OCEAN TOTAL _I

(Midiatitudes)

Summer 1i55 (85) 551 (28) 1706 (113)
Spring-Fall 1794 217) 1045 (181) 2839 (398)
Winter aGs7 (205) 2235 (9) §303 (214
All Seasons 7016 (507) 3832 (218) 10,848 (725)
{Iropics)

W: rm Seasons: 342 {41) 1365 {180) 1707 (221)

o

Numbers of coilocated SSM/I all-channel] scenes ar.d radar-derived rainfall rates for both
thc midlatitude summer, spring-fall, and winter seasons, and for the tropical warm
scason. The numbers of collocated data over land and ocean regions are also individually
tabulated. The number in parentheses is the sutset of the total sample for which the
radar-derived rainfa’ rate was at least 1 vam/hr.
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Figure 11.2 - Number of collocated SSM/I all-channel scenes and area-average radar
measurements versus radar-derived rainfall rate for (a) the midlatitude summer climate zone, (b)
the midlatitude spring-fail climate zone, (c) the midiatitude winter climatic zone, and (d) the
tropical warm climatic zone. Data over land an: ocean are included in the histograms. The
number of data in the first rain rate interval is given in parentheses.
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data over the ocuan with rainfall rates greater than or equal to 1 mm/hr (See Tabie 11.2). In the
trepics, the rain rate distribution is also skewed towards light rain eveats (see Figure 11.2d).

The skewed rain distributions have an important bearing on the statistical analyses to be
presented in the following sections.

11.4.2 Midlatitude D-Matrix Algorithm Error Statistics

Exror statistics of the D-Matrix algorithin rain rate retrievals are presented for the six
midlatitude climatic zones in Tables 11.3 through 11.8. To compensate for the naturally skewed
distibution of rainfall rates, the retrieval error statistics are stratified. Statistics are computed
for different subsamples of the collocated data, such that only D-Matrix estimates and radar-
derived rainfall rates exceeding specified minimum thresholds are included. As the minimum
rain rate threshold defining a subsample is incre: wed from 0.0 to 0.5, 1.0, 1.5, and 2.0 mm/hz,
more emphasis is placed upon the performance of the D-Matrix algorithm at higher rainfall rates.
An increase in the minimum rainfall rate threshold is reflected in an increase in the subsample
mean rainfail rate and standard deviation (see Tables 11.3 - 11.8). The “error” standard
deviation (¢ ‘s the standard deviation of the difference between the SSM/] estimated rainfall rate
and the rada. "ground truth® estiinate. In addition o the traditional statistical quantities, the
success ratio S, which is the ratio of the rain rate estimate "error” variance, ¢.°, to the sum of
the variances of the validation ersor and 5 min/hr retrieval tolerance, is listed for cach subsample.
An S-ratio greater than 1 indicates that the rain rate estimate falls outside the Navy specifications.

An C on

An S ratic less than or egual to 1 implias that the alsorithm performance ig within the validation

accuracy permitted by the data.

Scatterplots of the D-Matrix rain rate estimates versus radar-derived rainfall rates for cach
of the six midlatitude climatic zones are presented in Figurc 11.3. The solid <iagonal lines
drawn on each of the plots define the +§ mm/hr retrieval error range.

The D-Matrix error statistics can be compared to the error statistics of the best possible
linear model estimate which are included in the second secti~n of each table. The best linear
model of the rr r rain rates i3 obtained by regressing he SSM/I corrected brightness
temperatures (SDR data) against the radar rainfall rates using a stepwise procedure. Regressions
are performed on the same subsamples of collocated data from which the D-Matrix error statistics
were derived. Since a lower bound of 0 mm/hr is impnosed on the D-Matrix rain retrievals, the
same lower bound is impesed on the regression estimates, Each regression relationship
represeats the best [ ible model of the radar rain rates which is linear in the brightness
temperature data, and therefore it defines an upper limit on the performance that can be expected
from any linear retrievai algorithm for the data sample in question.

This section will conclude with a general discussion of the D-Matrix retrieval ervor
statistics. Because the channels selected for rain retrievals over land are the same for each season
and the brightness temperature weightings are similar, the discussion will first focus on land
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1etrievals for the three specified seasons a ‘d then move to a discussion of rain retrievals over the

ocean.
TABLE 11.3
STATISTICS FOR THE MIDLATITUDE SUMMER LAND CLIMATIC ZONE
CASE n R, o b I, r S

D-Matrix:
0.0<R, RL=25 ma/hr 885 535 2.31 -.086 1.50 .761 .08%
0.5<R, RL <25 mm/hr 18 6.78 6.99 -1.05 5.18 694 735
1.0sR, RL<25 mm/hr 37 8.59 7.00 -1.64 5.87 596 .809
1.5<R, RL<25 mm/hr 31 9.74 7.05 -2.00 6.17 .564 814
2.0<R, RL<25 mm/hr 21| 109 6.79 262 6.55 476 834
All channel regressions:
0.0<R, RL<25 mm/hr 885 S35 1 231 235 1.47 .784 .086
0.5sR, RL<25 mm/br 48 6.78 6.99 037 4.57 156 572
1.0<R, RL<25 mm/hr 37 8.59 7.c0 02| 513 681 618
1.5<R, RL<Z5 mm/br 3 Q.74 7.08 001 572 585 700§
2.0<R, RLs25 ma/br 27| 109 6.79 -001 | 5.67 ss1 | e |

The number of collocated SSM/I and radar observations in the samplo (n), the mean madur-derived rainfall

a rate (R) and standard deviation {(0p) of the sample, the bias (b) and error standard devistion (o) of the ain
rate estimute, the correlation coefficient (r) between the radar and SSM/I-derived min rates, and the success
ratio (S) for euch case are listed above. R, @,, b, and o, 2r8 given in vaits of mm/hr. The first five rows
are the statistics of the D-Matrix rain rate cstimatss (RL) for the indicsted subsets of the full dats sample.
The statistice are stratified because the full data saruple is dominated by low minfall retes. In the second
section the statistics of linear regression fits to the same subsets of points are listed. To muintain
consistency with the D-Matrix estimates, a lower bound of 0 mm/hr was imposed upon the regression
estimates.




TARLE 11.4

STATISTICS POR THE MIDLATITUDR SPRING/FALL LAND CLIMATIC ZONE

CASE o R. O b o, r s
D-Matrix:
0.0<R, RL <25 mm/hr 1386 .549 1.50 1.56 3.99 438 .632
0.5<R, RL<25 mm/hr . 208 2.56 2.62 5.8 7.68 279 2.18
1.0<R, RL <25 wamv/hr 132 3.54 2.82 5.87 8.02 .193 2.24
1.5<R, RL<2S tsnm/br 9 4.12 2.85 6.39 8.35 .163 2.34
2.0<R, RL<25 mnm/hr 79 4.72 2.89 5.9 8.09 157 2.11
All channel regressions:
0.0<R, RLS2S mmhr | 1386 549 | 150 031 120 602 057 |
0.5xR, RL<25 mm/hr 205 2.56 2.62 007 2.31 AT2 .197
1.0<R, RL<25 mm/hr 132 3.54 2.82 .000 2.5¢ 423 227
1.5<R, R1L. <25 mw/hr 99 412 2.85 002 2.61 400 22¢
2.0<K, RL<25 mwmhr 79 4.72 2.89 000 2.65 2399 226

The number of collocated SSM/I and radar observations in the sample (n), the mean radar-derived rainfall
ste (R) and standard deviation (0) of the sample, the bias (b) and error standard deviation (o) of the rain
rafe estimate, the correlation coefficient (r) batween the radsr and SSM/I-derived rain rates, and the success
natio (8) for cach case are listed sbove. R, 3, b, sod g, aze givea in units of zam/br. The first five rows
are the statistics of the D-Matrix rain rate estimates (RL} for the indicated subsets of the full data sample.
The siatistics are stratified becanse the full data sample is dominated by low rainfail rates. In the second
section the statietics of linear regression fits (o the same subeets of points are listed. To maintain
coasistency with the D-Matrix estimates, a lower bound of O mm/hr was imposed upon the regression
cstimates.
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TABLE 11.3

STAYISTICS FOR TH: MIDLATITUDE WINTFR LAND CLIMATIC ZONE

CASB n R. Oy b g, r S
D-Matrix:
0.0<R, RL <25 mm/hr 3797 171 462 1.9 5.22 .387 1.09
0.5« R, RL <25 mm/he 199 1.39 .898 13.6 14.6 037 8.29
1.0<R, RL <25 om/hr 110 1.90 926 13.3 14.4 D18 7.9
1.5gR, RL <25 mm/hr 66 2.38 .920 i2.3 13.5 144 6.79
2.0sR, RL <25 mm/hy 36 2.90 973 12.4 13.6 .123 6.71
All channe] regressions:
0.0<R, RL <25 mm/kr 3797 1 4c2 0G5 Y ) .403 o7 8
G55 R, KL <25 mm/hr*
1.0<R, RL <25 mm/hr*
1.5 R, RL<25 mm/hr*
2.05R, RL <25 mm/hr*

*None of the channels could expluin a significant portion of the variance; therefore no regression fit was
atternpted.

The number of collocated SS° T and rader observations in the sample (n), the mesn sadar-devived rrinfall
rate (R,) and standard deviaton (03) of the sample, the biss (b) and error standard devistion (¢,) of the rain
rate estimate, the correlstion coefficient (r) between the radas suéd SSM/I-derivod rain rates, and tho success
ratio (S) for esch case are listed above. R, 0y, b, and ¢, are given in unitz of mm/hr. The frst five ows
are the statistics of the D-Matrix rain rate estimates (RL) for the indicated subsecis of the full data sample.
‘The statistics are stratified because the full data sample is dominated by low rainfall rates. In the second
section the siatistics of linear regression fits to the ssme subsets of points are listed. To masintaia
consistency with the D-Malrix estimates, 2 Jower bound of ¢ mum/hr was imposed upon the regression
estimates.
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TABLE 11.5

STATISTICS FOR THE MIDLATTTUDE WINTER LAND CLIMATIC ZONE

CASE n R. o b o, r S
D- Matrix:
0.0<R, RL<.1S5 mm/hr 3757 By 462 1.90 5.22 .87 1.09
D.5<R, RL <25 mm/hr 199 1.39 .898 13.6 14.6 .037 8.29
1.0<R, RL<2F mm/br 110 1.90 .926 13.3 14.4 018 7.90
1.5<R, RL<25 mm: 66 2.38 920 12,35 13.5 .144 6.79
2.0=R, RL<29 mmhr 36 2.90 973 12.4 13.6 .123 6.71
All chennel regressions:
0.0<F RL<2S mm/kr 3797 17 462 .005 409 _A8S o7 3

0.532K, RL= 25 mm/hr*
1.0<R, RL<25 mm/hr*
LSRR, RL<25S mm/hr*
2.0<R, RL=<25 mm/hr*

*None of the channcls could explain a significant portion of t .6 variance; therefore no regression fit was

attempted.

Tbe number of collocsted 5SM/I and radar observations in the sample (n), the mean radar-davived mirfall
rate (R,) and standard doviation (0p) of ths samp! , the bias (b) and error slandard devisticn (0 of the rain
rate estimate, the correlation coefficient (r) between the radar and SSM/I-derived rain rates, and the success
ratio (S) for each caso are listed above. R, 0y, -, # «d o, are given in unite of mm/br. The first five rows
are the statistics of the D-Matrix rain rate estimates (RL) for the indicated subrets of the full dats sample.
The statistics are stratified because the full data sample is dominated by low rainfall rates. In the second

section the siatist o8 of linear regression fits to the game subsets of points are listed. To maintsin

consisicncy with the D-Matrix estimates, o lower bound of O mun/hr was impx sed upon the regresrina

estimates.
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TABLE 11.6

STATISTICS FOR THE MIDLATITUDE SUMMER GCEAN CLIMATIC ZONRE

CASB D R. o b a, 4 S
D-Matrnix:
0.0<sR, RO525 mm/hr 551 .293 1.31 -.094 1.26 446 .063
0.5<R, RO<S2C mm/he 14 6.63 2.90 -2.71 4.7 012 .506
1.0sR, ROs25 mm/hr 14 6.63 2.90 -2.71 4.21 .012 .506
1.5<R, ROs2S maw/hr 12 6.56 291 -2.14 3.66 .149 374
2.05R, ROS2S mm/hr 11 6.98 2.64 -2.62 n 317 a1
All channe! rogressious:
0.0<R, RO<25 mm/hr 551 .293 1.31 .098 .909 .728 .033
§0S<K, RO<2S mmihr 14 6.53 2.92 000 2.61 435 .189
1.0<R, RO<25 tnm/hr 14 6.63 2.90 .000 2.61 435 .189
1.5 <R, ROS2S mm/hr 12 6.56 2.91 .000 2.62 437 191
2.0=<R, RO<25 mm/hr il 6.98 2.64 .000 2.27 .508 .13%

The number of coliccated SSM/I and zadar obeesvations in the saraple (n), the mean radar-derived rainfall

rate (R,) sand standard deviation (0p) of the sample, the bias (b) and esror standard deviation (0,) of the rsin
rate estimate, the comulation cnafficieat (r) between the radar and SSM/I-desived min rates, and the success
ratio (S) for each case gre listed sbove. R, 0y, b, aud o, are given in units of mm/hr. The first five rows

arc the statistica of the D-Matrix rain rate estirzates (RO) for the indicated subsets of the full data ssmple.
Tle statistics are stratified because the full dats sample is dominated by low rainfall rates. In the second

section the statistics of linear regression fits to the same subsets of points a.e listed. To maintain
consistency with the D-Matrix estimates, a lower bound of 0 mm/hr was impoeed upoa the regression

estimates.
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TABLBE 11.7

STATISTICS FOR THE MIDLATITUDRE SPRING/FALL OCEAN CLIMATIC ZONE

CAST n R, L b a, r s
D-Matrix:
0.0<R, RO<25 mn/hr 1034 .961 2.17 -.551 2.91 .160 .333
¢ 0.5<R. RO<25 mmhr 2| 4.6 4.98 -1.23 5.98 -229 1.16
1.0<R, RO<2S nm/hr 53 6.07 s.11 -2.99 6.44 -.146 .20
1.5<R, RO<2S manvhr 33 6.20 4.23 2.3 5.17 -.036 .768
2.0<R, RO<25 mm/r 30 6.64 4.18 2.17 537 -.054 .799

All channel regressions:

0.0<R, RO<25 mm/hr 1034 961 2.77 173 1.96 11 151

_ 0.5sR, RO<25 mm/hr 72 4.66 4.98 .006 3.74 660 452
& 1.05R, RO<25 mmvhr 53 6.07 5.11 .001 4.24 560 522
1.55R, RO<25 mm/hr 33 6.20 4.22 000 | 3.44 581 .340

2.05R, RO<25 mm/br 30 6.64 4.18 -.001 3.49 550 337

The number of collocated SSM/I and radar observations in the sample (n), the mean radar-derived reinfall
rate (R,) and standard deviation (0,) of the sample, the bias (b) and error standasd deviation (o,) of tho rain
rate estimate, the correlation coefficient (r) between the adar and SSM/i-derived min rates, and the success
ratio (S) for each case are listed above. R,, 03, b, and o, are given in units of mm/hr. The first five rows
are the statistics of the D-Matrix rain rate estimates (RO} for the indicated subsets of the full date sample.
The statistics are stratified because the full data sample is dominated by low rainfall iates. In the second
seclion the statistics of linear regression fits to the sams subsets of points wre listed. To maintain
consistency with the D-Matrix cstimates, & lower bound of 0 mm/hr was imposed upon the regression
estimates.
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TABLE 11.8

STATT: _ICS FOR THE MIDLATITUDE WINTER OCEAN CLIMATIC .. ONL

CASH a R. 0g b o, T s I
D-Matrix:
0.0<R, RO<25 mm’hr 2236 .049 147 055 920 .088 .034
0.5<R, RO<25 mvhr* 2 1.73 261
1.0<R, RO<25 mw/hr* 2 1.73 .261
1.5<R, RO<25 mm/hr* 2 1.73 .261
2.0=<R, RO <25 mm/hr* 0 '
All channel regressions:
0.0<R, RO<25 mm/hr 2236 049 .147 .005 2132 441 .001
0.5<R, RO<25 mm/hr*
. N 1L.USR, RO<?S mm/he®
o 1.5<R, RO<25 mm/hs*
2.0<R, RO<25 mm/hr*

*Sample size insufficient for analysis to be parformed.

The nuaber of collocated SSM/I and radar oheervationn in the sample (n), the mean BV il
tuie (R,) and siandard deviation (o) < [ the sample, !hebns(b)andmorlhnduddmhm(a_)ofthnmn
nte cstimate, the correlation ccefficient (r) botwoen the mdar and SSM/T-derived rain rates, and the success
ratio (S) for each case arv listed ahove. R, 0y, b, and o, are given ia urits of mm/hr. Tho first five rows
aro the statistics of the D-Matrix rsin rate estimates (RO) for the indicaied subscts of the full dam sample.
‘The statistics are st atified because the full data sample is dominated by low minfall rates. In the socond
section the statistics of lincsr regression fits to the same subscts of points are fisted. To msintein
consistency with the D-Matrix estimsics, a lower bound of 0 mm/lr was imposed upoa the regression
estimates.
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Figure 11.3 - D-Matrix retrievals of rainfaill rate versus radar-derived rainfall rate at midlatitudes
for (a) summer over land, (b) spring-fall over land, (c) winter over land, {d) summer over ocean,
(¢) spring-fall over ocean, ard (f) winter over ocean. Solid lines define the +5 mm/hr retrieval
error limits.




The D-Matrix algorithm for the midlatitude summer iand climatic zone shows the best
overal! ability to estimate surface rainfall rates. Although the errors in the rain rate estimates
are somewhat greater than the specified 15 rm/hr at high rainfall rates, the correlation between
the D-Matrix retrievals and the radar rain rates (maximum of .761) is relatively high and
comparable to correlations obtained using other microwave sensors over land. For example,
Spencer [7] found a .795 correlation between regressed Scanning Multichannel Microwave
Radiometer (SMMR) brightness temperatures and radar-derived rainfall rates in summer rainfall
over the midwest United States. The D-Matrix estimates are somewhat low-biased (~1-2
mm/hr} with respect to radar; seec Figure 11.3a. The linear regression estimates based upon the
same samples of data yield slightly better estimates, with a maximum correlation of 784 over
the entire sample of data.

The D-Matrix spring-fall land algorithm performs poorly in relation o the summer
algorithm. In genera’' the D-Matrix algorithm greatly overestimates light rair rates, which leads
to positive biases of approximately 6 mm/hr and random errors of 8 mm/hr, and very low
correlations to radar rain rates; see also Figure 11.3b. The success ratio { ~2 for rainfall rates
> .5 mm/hr) indicates that the D-Matrix retrievais fall outside the Navy specifications.
Regression-based estimates of the data are superior, with lower mean errors (~ 2 - 3 mm/hr) and
modest but somewhat higher correlations with radar rain rates (maximum 1 = .602).

D-Matrix winter rain rate estimates are extremely high-biased, with very large mean
errors ( ~ 14 mm/hr) and almos! no correlation to radar. The regressiorn madels are not much
petier (see Tabie 1i.5 and Figure ii.3c). .

A comparison of D-Matrix rain imagery and brightness temperature imagery indicated that
lower land backgrour.d brightness teraperatures during the fall and winter seasons may have been
interpreted as signatures of rainfall, leading to extreme positive biases in retrievals.

The midlatitude summer ocean D-Matrix algerithm shows less skill in estimating surface
rainfall rate in comparison to the land algorithm for the same season, although the number of
collocated D-matrix estimates and rainfall rates greater than | mm/hr (14) is admittedly small.
The D-Matrix retrieval errors (~4 mm/hr) are within the Navy specifications, but the correlation
between retrieved and radar rain rates is low {maximum r = .446). The D-Matrix estimates are
also low-biased on the order of 2 - 3 mm/hr for rainfall rates greater than .5 mm/hr. Regression
estimates based upon the summer ocean data also yield low ~orrelations with radar except in the
range. of very low rainfall rates (Table 11.6 and Figure 11.3d}.

The spring-fali D-Mairix rain raie estimates over ocean are essentiaily uncorrelated with
radar-derived rzinfall rates (see Table 11.7 and Fig. 11.3e). Radar-derived rainfall rates are
typically underestimated, with mean errors on the erder of 5 - 6 mm/hr. D-Matrix success ratios
exceed 1 for two of the subsamples, which indicate a performance outside of the prescribed 15
mm/hr tolerance. Regression estirates based upon the same data yield a much greater
coirelation with radar rain rawes, 2nd errors are within specifications.  The regression results
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suggest that significant improvements can be made in the retrieval of rainfall -ates over the ocean
in the spring-fall season.

Althougt. only a small number of collocated radar rain rates greater than 1 mm/hr were
obtained during the winter season over the ocean, the plot in Figure 11.3f reveals a large positive
bias in D-Matrix retrievals. Errors are within specifications only because the mean of the rain
rate sample is extremely small (-~ .05 mm/hr). Stratification of the winter ocean sample by a
minimum threshold of 1 mm/hr eliminates all but .wo collocated measurements. Regression
estimates based upon the entire sample of data vield low correlations with radar (Table 11.8).

TABLE 11.9

STATISTICS FOR THE TROPICAL WARM SEASON LAND CLIMATIC ZONE

CASE n R, Og b g, r S
D-Matrix:
0.0<R, RL <25 mm/hr 120 916 1.19 .301 1.88 .526 .139
0.5<R, RL <25 mm/hr 37 1.74 1.46 2.07 3.06 .400 .359
1.0<R, RL <25 mm/br .23 2.28 1.63 2.54 3.67 .186 504
1.5=R, Ri.=2Z5 mm/br 14 2.94 1.82 3.20 4.32 -.302 739
2.0=R, RL<25 mum/hr 8 3% 1.92 2.22 4.20 -.547 W61

0.0<R, RL 225 mm/hr 120 916 1.19 .332 1.04 .576 .043

I 0.5<R, RL=<25 mm/hr 37 1.74 1.46 .214 1.13 .662 .046
1.0<R, RL<25 mm/hr 23 2.28 1.63 282 1.37 577 070

1.5<R, RL<25 mm/hr 14 2.94 1.82 .245 1.43

2.0=R, RL <25 mm/hr*

.641 074

*Sample size insufhicient for analysis to be performed.

The number of collocated SSM/I and rudar observations in the sample (n), the mean radar-derived rainfall
rate (R,) and stendard deviation (0,) of the ssmple, the bias (b) and error standard deviation (a.) of the rain
rate estimate, the correletion coefficient (r) between the radar and SSM/T-derived rain rates, and the success
ratio (8) for each case are listed sbove. R,, 0, b, and o, are given n units of mn/hr. The first five rows
are the statistics of the D-Matrix rain rate estimates (RL) for the indicated gubsets of ¢/ » full data sample.
The statistics are stratified because the full data sample is dominated by low rainfali raics. In the second
sectior the statistics of linear regression fits to the sume subsets of points are listed. To maintain
consistency with the D-Matrix estimsates, a lower bound of O mwm/hr was imcposed upon the regression
estimates.

!
All channel regressions: ]
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TABLE 11.10 '

STATISTICS FOR THZ TROPICAL WARM SFASON OCEAN CLIMATIC ZONE
CASIZ n L ax b g, r S

D-pdatixe
¥ 005k, RO=2S m/br 1361 428 .392 642 1.78 .630 .126
§ 0.53R, RO<2S mun/br | 241 ) B &) 1.42 anm 3.56 224 .486
¥ 1.05R, RO%25 mmihe 157 2.26 1.51 2.7% 3.28 185 403
{ 1.5=R, RO<25 ouv/hs 1065 2.93 1.64 .47 3.14 052 .359
E 2.0<R, RO<25 mm/kr 63 343 1.78 1.36 2.73 079 252

All casnuel iegressions:

2.0<R, RO<25 mm/br 1361 428 892 161 .618 .760 .015 .
R OSSR, RO<2S mo/hr 241 1,73 1.42 98¢ 1.0 .407 110 -

0 1.0<R, RO<25 mm/hr 157 2.26 1.52 111 1.40 .429 073 '
1.5<R, RO<25 mm/hr 100 2.83 1.64 -.087 1.48 441 .679
2.0<R, RO<2S sam/br &5 3.43 1.73 309 1.69 .357 .100

rate (R,) snd stancard deviation {g,) of the suraple, tho bisa (b) anc. efror standard devistion (a,) of the rain
ate estivaate, the comelation coefficiznt (1) between the rader and S5M/F-derivad rain rates, and the su cess
ratio (S) for each case are listed above. R, 0,, b, and 0, are given in anits of mo/hr. The first five 1ovs
are the statistics of the D-Matrix rain rato estinates (RO) for the indicated subeets of the full daia sample.
The statistics are stratified because the full data sampls is dominated bry low rainfall :ates. In the second
section the statistice of linesr regression fits 2o the same subsets of poinis are listed. To maintain
consistency with the D-Matiix estimates, 8 lower bourd of 0 mm/hr was imposed upon the regreasion

‘The aumber of collocated SSM/I and mdsr obscrvations in the sumple (n), the imean radar-derived rxinfall
estimaies. 5
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11.4.3 Tropical D-Matrix Algorithm Egror Statistics

Statistics of the tropical algorithm rain rate estimates for land and ocean unvironments are
presented in Tables 11.9 and 11.10, respectively. The statistical analyses are identical to those
performed on the midlatitude data. Over either land or ocean, it is evident from the tabies that
although the D-Matrix algorithms may perform within specifications (S-factors all <1), the
correlation of rain estimates with ground truth estimates is relatively low. Over either surface,
correlations are all less than .2 for radar derived rainfall rates greater than 1 mm/hr; the bias and
error standard deviation of the estimates are on the order of 2 to 3 mnv/hr. These results are
reflected in the D-Matrix retrieval piots in Figure 11-4a and 11-4b. Large positive biases in the
D-Matrix estimates are noted at rainfall rates less .han about 4 mm/hr, while there is a trend of
negative biases at higher rainfail rates.

The linear regression estimates yield consistently higher correlations with the surface radar
data in comparison to the D-Matrix estimates. Aithough the da. 1 sample is admittedly small over
land in the tropics, the correlation coefficients of the regression estimates are close to .6, while
the error standard deviations range from 1.0 to 1.5 mm/hr. Bias in the regression estimates is
positive, but about an order of magnitude smaller than the bias in the D-Matrix estimates (~ .2
to .3 mm/hr). Over the ocean, the correlation coefficients of the regression estimates are
scmewhai smaller than those over land (~ .4 to .7), but again the ervor standard deviations and
bias figures are significantly reduced in comparison to those of the D-Matrix estimates. Error
standard deviations are on the order of 1.5 mm/hr, and the bias figures are all less than 1.0
mmv/hr in absolute value. The regression estimates which were based upon the full land and
ocean Jata sampics are plotied versus Jdie radar derived rainfaii rates in Figures 11.4c and 11.4d,
respectively.

Although lower rairfail rates tend to be overestimated and higher rair .2l rates tend o be
underestimated by the regression formulae, the overall bias and scatter in the regression estimates
is significantly smalier than the bias and scatter of the D-Matrix estimates. Most of the
regression estimates fall within approximaiely +2 mm/hr of the radar derived rainfali rates.
These statistics and piots suggest that regression-based algorithms may be constructed which yield
rain rate estimates which are superior to the D-Matrix estimates.

il.5 ALTERNAT.. ALGORITHMS

The plots of the D-Matrix rain rate estin: ites versus radar-derived rainfall rates in Figures
11.3 and 11.¢ all show a common trend 2t low radar-derived rainfall rates, the D-Matrix
algorithm tend. to overeshimaiw: rainfal! mte, wlile at high rainfall rates the D-matrix algorithm
tends to underestimate rain intensity. ‘iscar regression modeis, ‘n peneral, have this feature
since scatter due to errors and nonlinearities in the relationship betw e variables is minimized
with respect to the mean value of the independent data (i.e., in this case the p-an rainfall rate).
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Figure 11.5 - Radiative transfer model computations o” tie 5.5 GHz vertical polarization
brightiess temperature upwelling from a cloud over lam! ~ontaining (a) only liquid
hydrometeors, and (b) both liquid and ice hydrometeors. The clow ° vertical structure in (a) is
designed to simulate stratiform precipitation, whereas in (b) a convecy. ve cloud is modeied. The
feotprint-average rainfall raie is plotted as a function of the footprint-average upwelling
brightness tempe -ature. Solid lines are isolines of cloud fraction within the radiometer footprint,
which run in the “equence .25, .50, .75, 2 | 1.0 from left to right in the piots.  »x ed lines
are isolines of in-cloud rrinfal! rate which runs in the sequence 4, 8 12, 5, 2J, af 4 mu;
from bottom © top in the p. 1 Model computations are provided by Kus men-w [8!
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A physical reason for ihe rainfall rate-dependent bias can be understood using modes
simulations of the brightness temperature upwelling from precipitating clouds. In Figure 11.5
are plotted model simu'ations of the 85.5 GHz vertically-polarized brigh iess temperature
up velling from precipitating clonds over land. Separate simulations are performed for clouds
which fili different fractions of ihe rad. ymeter footprint. The clouds in Figure 11.52a contain only
liquid precipitation, in an attempt to simulate stratiform precipitation in which cloud updraft
speeds are relatively low. In the figure, the footprint-average rainfall rate is plotted as a function
of the footprint-average upwelling brightness temper:ture. Isolines of cloud fraction (solid) and
in-cloud rainfall rat2 (dashed) are alsc indicated. The clouds in Figure 11.5b contain both hquid
and ice precipitation sized particies in a vertical distribution consistent with the structure of
strongly convective clouds or thunderstorms. Figure 11.5 clearly indicates a nearly exponential
relationship between rainfall rate and upwelling brightness temperature. Model simulations of
upwelling brightness temperatures over land at the other SSM/I channel frequencies and
polarizations show a similar nonlinear relationship. Over ocean backgrounds, model simulations
indicate more complicated brightness temperature-rainfail rate relationships due to the generally
lower ocean emissivity and the effects of raindrop emission {see Kummerow [9]).

These simulations suggest that linear models are in most cases iradequate to describe the
relationship between brightness temperature and rain rate. An exception was shown by Spencer
{10] to exist for convective precipitation over the ocean, where a linear combination of the
brightness temperatures in the vertically and .iorizontaliy polarized 37 GHz channels of the
SMMR was found to be linearly related to area-average rainfall tate. However, in tropical
cyclones, where a mixture of convective and stratiform precipitation i¢ present, Oleon [11 121
demonsirated that rain retrievais using the 37 GHz data alone tended to overestimate the intensity
of lighter rainfall. Superior rain rate estimates were obtained when data from channels at the
lower SMMR frequencies (e.g. 18 GHz) were incorporated into a physical retrieval method.

In additicn to the ronlinear reiationship betwe n rainfall rate and brightness temperature,
a comparison of the model curves in Figure 11.5 indicates that the type of precipitation
(stratiform or convective) also has a bearing on the microwave signature of rainfall. The lack
of ice in the stratiform cloud simulation cause : the brightness temperature to becorne relatively
insensitive to chariges in the rainfall rate at rainfall rates greater than a few mm/hr. On the other
hand, scattering from increasing numbers of ice hydrometeors in the convective cloud causes the
brightness temperature to decrease with rain rate at higher rainfall rates. Clearly a mixture of
the two precipitation regimes could lead o difficulties in making rain estimates, unless
information from other channels is incorporated.

Two approaches are undertaken in an attempt to obtain impr sved regression models for
rainfall rate. First, the residuals in the linear regression anaiyses are weighted to emphasize
errors at the higher rainfall rates. Weighting by an increasing function of the rainfali rate helps
to compensate for the skewed distribution of rainfail rates, which is dominated by low rain rates
(see Figure 11.2). Although the errors in regression estimates of rainfall rate in the range of low
rainfall rate tend to increase by this approach, they are more ‘likely 1o remain within the specified
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+5 mm/hr error limits because their magnitudes are initially small. Aliematively, improved rain
rate estimates are obtained at higher rainfail rat=s due to the weigl:ting.

The problems experienced with linear regression models can be partly overcome by
utilizing nonlinear predictors/predictands which more closely matce the physical relationship
between brightness temperature and rainfail ratc. The simplest nonlinear algorithm to implement
operationally is

7

R =2xp (a;}; a;Ty) - C. (5)

where the rainfall rate is expressed as an exponential function of the seven SSM/I-measured
brightness temperatures Ty, with fitted constants a; and c. The coefficients a; are determined by
regressing In(R+c¢) against th~ SSM/I brightness temperatures for different values of the constant
c. Experimentation with the sets of coliocated SSM/I and radar data indicate that values of ¢
between 1 and 16 may be adequate for most climatic zones and seasons. The value of formula
(5) is that the nearly exponential dependence of rainfall rate on brightness temperature is
established. The fitted coefficients a, allow for te variations in curvature of the brightness
temperature to rainfali rate relationship which may se induced by varying cloud ice contents or
fractional footprint coverage.

Regressions of both R and In(R+c) against SSM/I brightness temperature data were
peiformed in an atiempt to find a general retrdeval formula for rainfall rate. Recauge the
calibration of the radars at Darwin and Kwajalein was checked frequently as part of the Tropical
Rainfall Measuring Mission (TRMM) program (see Simpson, et al. [13]), only data from these
radars were utilized in the rain retrieval algorithm development. Collocated SSM/T and radar
data were separated into land and ocean samples using a bitmap, and all data within 69 km
(approximately one 19.35 GHz footprint width) of coastlines were filtered. In addition, flooded
soil regions over land, - determined by the McFarland and Neale (personal communications)
brightness temperature aisciminant function, were filtered from the analysis. Residuals in the

regressions were weighted by a factor of R?% to compensate for the naturally skewed rainfali
distribution.

Statistics of the rainfall rate regression estimates over iand and ocean are presented in
Tables 11.11 and 11,12, respectivelv. It may be noted from Table 11.11 that over land, either
the linear or exponential model estimates are substantially better thaa the D-Marmrix estimates.
The mean error of the linear vegression estimates for rainfall rates greater than or equal to .5
mm/hr is 1.14 mm/hr, which is significantly less than the I’ -Matrix error standard deviation
(3.06 min/hr). It would appear that the exponential models do not perform quite as well as the
linear regression mnodels, based upon the statistics in Table 11.11. Corrclations to the radar rain
rates are slightly lower, and error standard deviations are roughly the same. However, the
overall bias of the exponential model estimates is somewhat lower, and an application of the
exponential regression formulae t diverse rzin systems over the tropics and midlatitudes
indicated generally superior performance with respect to linear medels. The exponential models
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. TABLE 11.11 I
REGRESSION M ODEL STATISTICS BASED UPON THE TROPICAL WARM
SEASON DATA OVER LAND

| CASE n R, . b o, r s
D-Matrix: |
0.0<R, RL<25 mm/hr 120 916 1.19 .301 1.88 526 .139 J
0.5 <R, RL <25 mm/hr 37 1.74 1.46 2.07 3.06 400 .359
Linear Regression:
0.0<K, RL<25 mm/hr 120 916 119 373 1.04 .594 .043
0.5<R, RL <25 mm/hr 37 1.74 1.46 .185 114 .674 .050
Log rogression (c=16.0):
0.0s5R, RL<25 mw/hr 120 916 1.19 339 1.03 575 .042
0.5<R, RL<25 mm/hr 37 1.74 1.46 .063 1.16 .630 .052
Log regression (c=8.0):
0.0<R, RL<25 mm/hr 120 916 1.19 2304 1.02 .578 .041
0.3 s K. KL< Z5 mm/ihr 37 174 1.46 D16 1.18 ) 082

‘ Log regression (c=4.0):

0.0<R, RL.<25 mm/hr 120 916 1.19 .24¢ 996 581 .039
0.5<R, RL<25 mm/hr 37 1.74 1.46 -.058 1.16 .629 .052
Log regression {c=2.0):
0.0<R, RL<25 mm/hr 120 915 1.19 205 983 586 .038
0.5<R, RL<25 mm/hr 37 1.74 1.46 -112 1.16 627 .052

I Tho residuals in all regressions were weighted by tho square root of the rainfall mte. The number of
coilocated SSM/I and radar obeervations in the sample (n), the mean radar-derived rainfall rate (R,) and
standard deviation (g,) of the sample, the bins (b) and error standard deviation (g, of the rain rate sstimate,
the correlation cocificient (r) between the radar and SSM/I-derived rain rates, and the success ratio (S) for
esch cese are listed shove. R, 03, b, and g, are given in units of mm/hr. ‘The models are categorized as
linear models, which include the D-Matrix slgorithm, aud exponsatial models, in which fo(R +c) is

regressed against the: SSM/I brightness temperatures. Statistics are : ‘ratified by &x imposed minixnum on
the D-Matrix (RL) snd radur-derived (R) rainfall rates. A sample misimum of 0.5 mm/hr emphasizes the
ervors st higher rainfail rates. To maintain consistency with the D-Matrix estimutes, & lower bound of 0
mm/br was impaosed upos the regression estimates.




TABLE 11.12
REGRESSION MODEL STATISTICS BASED UPON THE TROPICAL WARM SEASON DATA OVER
OCEAN
CASE n R- ag b % 1 4 S

D-Matrix:
0.0<R, RO<2S mm/hr 1361 428 .892 .642 1.78 630 126
0.5<R, RO<2S mm/br 241 1.73 1.42 3.17 3.56 224 .015
Linear Regression:
0.)<R, RO<25 son/hr 13351 428 .892 .161 518 .761 018
0.. <R, RO<25 mm/hr 241 1.73 1.42 .258 1.21 558 .056
Log cegression (c=16.0):
0.<R, RO<25 mm/hr 1361 428 .892 .155 .602 .768 .014
0.5 <R, RO<25 mm/hr 241 1.73 i.42 214 1.20 559 .058
Log regression (c=8.0):
0.0<R, ROX2S5 pwwn/ir 1361 428 .892 126 .586 Ny .0i4
0.5 <R, RO<25 -nm/hr 241 1.73 1.42 .149 .19 .557 054
Log regression {c=4.0):
0.0<R, ROS25 mm/hr 1351 428 .892 123 .580 778 .013
0.5<R, RO<25 mm/hr 241 1.73 1.42 124 1.19 .351 054
Log regressioa (c=2.0):
0.0<R, RO<25 mm/hr 1361 .428 .892 .106 572 778 013
0.5<R, RO<25 mm/br 241 1.73 1.42 .073 1.20 541 055

The residuals in all regressions were weighted by the squars root of the rainfail rate. The pumber of

collocated SSM/I and radar observations in the sample (n), the mean radar-derived rainfail rate (R,) and
standard deviation (o,) of the sample, the bias (b) and ervor standard devistion {¢,) of the rain r»*= estimate,

ihe correlation coefficient (r) between the racar and SSM/I-derived rein rates, and the suc

) (S) for

each case are listed above. R, 0, b, and ¢, are given in upits of mm/hr. The wodels ars vewyjorized as
linear mode!s, which include the D-Matrix algorithm, end expopentisl models, in which fn(R+c) is
regressed against the SSM/I brightness temperatuses.  Statistics are siratified by an imposed miinimum on
the D-Matrix (RO) and radar-derived (R) rainfall nates. A sample minimum of 0.5 mo/br emphasizes the
errors at higher rainfall rates. To meintain consistency with the D-Matrix estimates, a lower bound of 0
mm/hr was imposed upon the reg sssion estimetes.
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TABLE 11.12

REGRESSION MODEL STATISTICS BASED UPON THE TROPICAL WARM SEASCN DATA OVEK

OCEAN
CASEB n R, Op b o, T S
D-Matrix:
0.0<R, RO<25 mm/hr 1361 .428 .892 642 1.78 .630 126
0.5<R, RO <25 mm/kr 241 %73 1.42 317 3.56 224 015
Linear Regression:
0.0<R, RO<25 mm/hr 1361 428 .892 .161 618 .761 .015
0.5<R, RO<25 mm/hr 241 1.73 1.42 .258 1.21 .558 .056
Log regression (c=16.0):
0.0<R, RO<25 ouw/hr 1361 478 .892 155 .602 .768 .014
0.5<R, RO<25 mm/hr 241 1.7, 1.42 214 1.20 .559 .058
¥ Lo comemivn {c=8.00: ; i
0.0<R, ROZS2S mm 1361 428 .892 126 .586 m .014
0.5<R, RO=<25 mavhr 241 1.73 1.42 .149 1.19 .557 .054
@ Log regression (c=4.0}:
0.0<R, RO<25 mm/hr 1361 428 892 .123 .580 775 013
0.5<R, RO<25 mmw/hr 241 1.73 1.42 124 1.19 3351 .054
Log regression (c=2.0):
0.0<R, RO<25 mm/hr 1361 428 .892 .106 572 778 013
0.5<R, RO=25 mm/bkr 241 1.73 1.42 .073 1.20 541 0585

The -esiduals in all regressions were + gdted by the square root of the rainfail rats. Th> pumber of

coil cated SSM/I and radar observs .05 in the sample (n), the wean radar-des «d ruinfall rate (R,) and
stzndard deviation (¢y) of the sample, the biss (b) and error stardard deviation {,) of the min rate estimate,
the correlution coefficient (r) betweea the redar and SSM/I-derived rain rates, and the success ratio (S) for
each case are listed above. R, 0, b, and ¢ are given in unite of mm/hr. The models are categorized as
linear models, which include the D-Matrix s -orithm, and exponential models, in which {o(R+c) is
regressed against the SSM/I brightness tesnperatusres. Statistics are stratified by an imposed minimwn on
the D-Matrix (RO) and radar-derived (R) ratufall rites. A smuple minimum of 0.5 mu/lr emphasizes the
orrors at higher rainfall rates. To mwintain consistency with the D-Matrix estimaiss, a lower bound of 0
mm/hr was imposed upon the regression estimates.
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TABLE 11.13
REGKESSION MODEL STATISTICS BASED UPON THE TROPICAL WARM SEASON DATA OVER
LAND, WITHOUT THE 85.5 GHz DATA

. CASE

B

R.

Oz

b

9,

| D-Matrix:

| 0.0<R, RL <25 mm/br
0.5<R, RL.<25 csm/hr

120
37

Linear Regression
| w/o 85 GHz dsta:
0.0=R, RL <25 wxm/hr
§ 0.5<R, RL<25 mm/hr

I SNPOGIC Y SR R
LA IGRIGESION (U=1.VU)

w/o 85 GHz data:
° 0.0<R, RL <25 mo/kr 120 916 1.19 149 922 - .643 034
0.5<R, RL<25 mm/br 37 1.74 1.46 -.062 1.13 .687 .049

The residuals in all regressions were weightad by the square root of the rainfall mte. Ths munber of
collocated SSM/I and radar cheervations it the sample (n), the mean radsr-derived vainfalf rete (R,) snd
standard deviation (0y) of the sample, the biss (b) and exror standard deviation {0,) oi the sain rate estimate,
the correlation coefficiant (r) between the radar and SSM/I-derived rain rates, and the success ratio (S) for
each case sre listed sbove. R, op, b, and o, are given ir units of mm/hr. The models are categorized as
linear models, which include the D-Matiix algorithm, and exponential models, in which fa{R+c) is
regressed against tho SSM/I brightnese teanperatures.  Statistics ars stratified by aa impoeed niinimum on
the D-Matrix (RL) and radar-derived (R) rainfell rates. A samplo minimum of 0.5 mm/hw emphasizes the
errors at higher rainfail rates. To mintain comsistency with the D-Matrix estimates, a iower bound of 0
mum/hr was insposed upon the rogression estimates.
Sy
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TABLE 11.14

REGREZSION MODEL STATISTICS BASED UPON THE TROPICAL WARM SEASON DATA OVER
OCEAN, WITHOUT THE 85.5 GHz DATA

CASE n Ra oy b g, r S
D-Metnx:
0.0sR, RO<25 mmv/hr 1361 .428 .892 642 1.78 630 .126
0.5<R, RO%25 mm/hr 241 1.73 1.42 3.17 3.56 24 ARE

Lincar Regression
w/o £5 GHz data:
0.0sKR, RO<25 mm/hr 1361 428 .892 206 .658 T35 017
0.5<R, RO<2S mm/hr 241 1.73 1.42 278 1.21 558 .056

Log regressioa {c=2.0)
w/o 85 GHz data:

0.0<R, RO<25 mm/hr 1361 .428 .892 -134 .593 .762
0.5 <R, RO<25 mm/hy 241 1.73 1.42 057 1.17 569

The residuals in all regressions were weighted by the squsre root of the rainfall rade. mm;m
collocated SSM/T and radar obscrvations in the sample (n), the mean radar-derived raiafall rats (R) and
staudard deviation (o) of the sample, the bias (b) and exror standard deviation {c,) of the rain rate estimate,
the correlation coefficient (r) between the radsr and SSM/I-derived rain rates, and the success ratio (S) for
each case are listed above. R, ox, b, and ¢, are given in units of ram/hr. The models are catsgorized as
lineer models, which include the D-Matrix algorithm, snd exponential models, in which fn(R+c) is
regressed sgainst the SSM/I brightness temperatures. Statistics are stratified by an imposed miniem on
the D-Maivix (RO) and radar-derived (R) rzinfall rates. A sample minimum of 0.5 mm/hr emnphasizes the
errors at higher rainfall rates. To maintain consistercy with the D-Matrix esttimates, a lower bouad of 0
mm/hr wes imposed upon the regression estinates.




worked bettcr because the 85.5 GHz SSM/I brightness temperature d: a, which provide greates
signal at lowz=r rainfall rates, were selecied in the stepwise regression procedure. The 85.5 GHz
data were not sclected in the tinear repression over land.

Plots of the D-Matrix estimates and the exponential model estimates (c=8.0 mm/hr)
versus radatr cGerived rainfzll rate arc presented in Figures 11.6a and 11.6¢c, respectively.
Although rainfall rates gieater tisan § mm/hr tend to be underestimated by the exponeitial model,
the majority of rain estimates a1e within +2 mm/hr of the radar rainfall rates. The exnonential
model estimates compare favorably with the D-Matrix estimates, which are generally high biased .

Linear regression estimates of rain rates over the ocean also show an improvement over
the D-Matrix estimates (Table 11.12). Errors with respect to radar rainfall rates are reduced
significantly (3.56 mm/hr to 1.21 mm/hr fe: rainfall rates = .5 mm/hrj, and correlations
mncrease dramatically. A maximum correlation of .761 is achieved over the entire data sample.

Rainfali rate estimates obtained from the exponential models are slightly more accurate

than the linear regression estimates, and the bias in the exponentia! model estimates is generally

reduced. A minimum error standard deviation of 1.19 mm/hr is achieved by the exponential
model with ¢=8.0 mm/hr for radar rainfall rates greater thar or equal to .5 mm/hr. Flots of the
D-Matrix and exponential model (c=8.0 mm/hr) rain rate estimates versus the radar derived rain
rates over ocean are presented in Figures 11.6b and 11.6d. As noted earlier ia the regression
analyses over land (Figur 11.6¢), the ocean regression estimates tend to be low at rainfall rates
greater than § mm/hr, hnt the majarity of egtimates fall within +£2 mm/hr of the radar rain mates.
In contrast, the D-Matrix rain rate estimates are generally high buased aid show much greater
deviation from the radar rair rates.

Due to the recent degradation of the SSM/T 85.5 GHz channels on the IDMSP-F8, the
regression analyses were repeated with the 85.5 GHz brightness temperature data in both
polarizations removed. Selected statistics from these analyses for land and ccean backgrounds
arc presented in Tables 11.13 and 11.14, respectively. One may recall that over land, the 85.5
GHz data were not selected in the linear regression analysis by the stepwise procedure; therefore
the statistics of the linear models in Tables 11.11 and 11.13 are identical.

It is curious to note that the most accurate exponential model {c-=1.0 ms/hr) appears {c
outperform all other models when the 85.5 GHz data are removed. This result is an artifacy of
the stepwise procedure. Since the 85.5 GHz data are generally most highly correlated with
rainfall rate, these data were selected first in the all-channel regressions; the partial correlations
of data froin the remaining chanaels did not warrant substitution of the $5.5 GH data with data
from the lower-frequency channels. However, with the 85.5 GHz brightness temperature data
removed, a different combination of channels was seleci2d which yielded regression estimates
with a somewhat higher correlation to the radar rain rates. The relatively smail sample of
validation data over land may have cortributed to some ambiguity in the selection of an optimal
regression model.
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Figure 11.6 - D-Matrix and regression estimutes of rainfal! rate versus radar-derived rainfall rate
from the tropics. D-Matrix rain rate estimates over land and ocean are plotied in (a) and (b),
respectively. Logarithmic regression estimat s over iand and ocean (¢==8.0 ram/hr) are plotted
in panels {c) and (d), respectively. The regression formuize were based vpon collocated SSM/I
brightness temperatures and vadar-derived rainfall rates obfained from the Darwin and Kwajal~in
validation sit2s. Solid lines define the 45 mm/hr retrieval error bmits.
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Application of wic regression mode!s to SSM/I observations of diverse rain systems in the
tropics and wnidlatitudes revealec that the formulae which did not incorporate the 85.5 GHz data
tended to underestimate light rains over land. This is because the signa  om light rainfall is
rel tively small in the lower-frequency SSM/I data, and this smaller signal is obscured by
variations in surface emission.

Regressions over the ocean which did not include the 35.5 GHz SSM/I brightness
temperatures yielded rain rate estimates which were about as accurate as those which included
the 85.5 GHz data (see Tables 11.12 and 11.14). Only small differences in retrieved rain
distributions were noted upon application of both formulae to SSM/I observations of several
storms. Of the regression models which did not include the 85.5 GHz data, the exponential
model with ¢=2.0 mm/hr produced optimal rain rate estimates over the ocean.

11.6 RECOMMENDATIONS

The regression analyses performed in the last section provided simple formulae which may
be utilized to improve the retricval of rainfall rates over land and or:an within the framework
of the SSM/I operational retrieval software. It should be noted tiiat although the regression
formulae determined in Section 11.5 were based upon tropical radar data, application of these
formulae to midlatitude rain systems yielded rain rate estimates which were climatologi-ally
realistic and consistent with available ragar.

The statistics and independent appiication of the regression formulae suggest that if the
85.5 GHz SSM/I aata are available, then the exponential models with ¢=8.0 mm/hr provide the
best estimates of rainfall rate over land and ocean. Similar testing revealed that the exponentiai
models with c==1.0 mm/hr over land and c=2.0 mm/hr over ocean yielded optimal resuits if the
85.5 GHz data were not available. These formulae would be applied if the screening logic
described below is satisfied.

The screening logic utilizes the Hughes’ negative polarization test for bad caia. After
passing this test, if the all-channel SSM/I brightness temperature scene is over land, then the
McFarland and Neale screening logic is applied. If the brightress temperature scene is over the
ocean, then a discriminant function developed by the authors is applied to eliminate falsc rain
signatures near coasts. Coastal pixels are not processed.

SUMMARY:

The following is the recommended rain retrieval algorithm, including screening logic o
test for the presence of rain.
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SCREENING LOGIC:
a 1f the 85 GHz channels are available then
Inggjv - TBSSH < 2Xor
me'Tmm < 2Kor
Taiov - Teoa < -2 K, then flag as indeterminate

Else if SSM/I measurement is over land, then

Ifva-TBlw S 4Kand
(Taiov + Ty M2 - (Tyou + Term)/2 < 4 K and
me“ Tm < ’1 K and
Teiov = 268 K

") ¢
lmev - TB]’V S 4 K and
(Taiov + Tior)/2 - (Tajon + Tpar)/2 > 4 K and

Tm-TBIW < -3Kaﬁd
’r,,,,v Ty < -5 K and

4 A1 Y ._.2
wH‘am < A1 A Ak

Tgisv > 268 K, then compute rain rate over land,
'& Else rain rate = O mm/hr.
Else if SSM/T measurement is over the ccean, then

If‘ll.7939 = .02727 Tm‘, + .09920 Tm > 0 K, then
compute rain rate ove - ocean,

Flse rain rate = O mm/hr.
Fise 5SM/I measuremiat is coastal; flag as indeterminate.
V.se the 85 3Hz charnel: are not available then

lf rm \@7" <~ “l. K OT
Ty, v« Vg < -2 K, then flag as indet rminate

Blse if SSM/T macasurement 1s over land. then

(Cuse F Tagy W2 - (Typoy + Ty M2 5 4 Jand
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1‘mn" Tnjpy <’ '6.4 K aﬂd

Pt 'I‘Biw > 268 E
@
or
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If Topzv - Thier = 4 Kand
(Torov + Tanw)/2 - (Layen + Teem)/2 > 4 K and
va' Tnlgv < ‘6.4‘ K and
Ty > 268 K, then compute rein rate over land,
Eise rain rate = { mm/hr.
Else if SSM/I measuremernt s over the ocean, then

If -11.7939 - 027727 Tazay + 09920 Tgary > O K, then
compute rain rate over ocean,

Else rain rate = § mm/hr.
Else SSM/I measureme 't is coasial; flag as indeterminate.
RECOMMENDED ALGORITHMS:
a If a rainfail raic over jand is to be computed, then use
R = exp(3.29716 - 01290 Tyesy + 00877 Tyuysiy) - 8.0 mm/hr.
if a rainfall rate over the ocean is to be computed, then use

R = exp(3.06231 - .0056036 Toysy +.0023478 Tpusy - 0018119 Tappy
- 00750 Toops + 0097550 Tpeev) - 5.0 mm/hr.

Alternatively, if the 85.5 GHz channel data are unusable, then over land a; ly
R = exp("17.’i6849 - .09612 TBJ'IV + .15678 TB]W) - 1.0 mmihf.
ang over the ocean use

R = exp(5.10196 - .0537: Tapy + 02766 Tyym + 01373 Tyyen) - 2.6 mm/hr.

If any of these formulae yield a rainfall rate less than zero, then set the rain rate egual to O
man/hr.




11.7 APPLICATION OF THE ALTERNATE ALGORITHM [ TROPICAT CYCLONE
DATA

The suggested retrieval formulae presented in Section 11.6 are applied to SSM/I data from
an overpass of Hurricane Florence at 00:2 GMT on September 10, 1988.

Hurricane ¥lerence originated in a stagnant frontal zone over the south central Gulf of
Mexico and bega.. i¢ move northward and strengthen on September 5th. A middle-tropospheric
trough to the west interacted with the vortex to stimulate strong convection over the center and
an arca of midlevel subsidence and drying to the west.

Just prior to the SSM/I overpass (00:01 GMT) Floreace reached its peak intensity, with
a minimum pressure of 982 o and maximum winds of 35 m/s. The low level center was
located just off of the Mississippi delta. The 6.7 micron water vapor imagery from GOES (not
showry, indica «d an fufiux of dry air isto the circulation from the southwest. As a result, the
convection indicaled by the imagery of Figure 1i.7 was weak and poorly organized, and had
been decaying even before fandiall,

Floreacs’s disrupted corvection and stcady forward motion at 6 m/s kept rainfall totals
relative’y small. Twenty-four hour amounts along the teack ranged from 35 to 103 mm, and
similiar amov ‘s fe!l in a secondary convective area over the Floriia panhandle, well to the east
of the center. The seeondary circulation also spawned @ tomadoes, and the rains, aithough not
extraordingry for a tropival cycione, added i the alrea .y swollen rivers to producc the worst
floods in ten year~ on the two Florida panhandle rivers. Damage in Louisiana wase zonfined to
be: =i erosion and wind damage (o trees and power lines.

The 85.5 GHz rorizontal and 19.35 GHz vertical channel SSM/I data, which are utiliz: |
in the alternaie retrieval algerithms, are presenied in Figure 11.7a and b, 1espectively. Warm
coturs indicaly areas of high wicriswave brightness ten.perature, whereas cooler colors correspond
i0 areas Of lower brighuness temperature. Signatures of precipitation are identified as depressions
in the 85.5 GHz horizontally-polarized brightness temperatures (Figure 11.7a).

Over land the signal from precipitation is much smaller in the 13.35 GHz vertically-
poianzed channel. This s par v due o the fact that microwave scattering by raindrops is much
weaker at 192.35 GHz, while the absorpton/re-emission signature of rain does not contrast greatly
with emission by the land background. ‘The relaiively low spatial resolution of the 19.35 GHz
channels alse contnbutes to reduced rain response. Howsve:r, since the ocean emits at a
reiatively low brightness compared to emission by rain st 19.35 GHz, the 18.35 vertical channel
provides rain inforimaiion for oceanic rain retrievals. The small band of precipitation about 500
kmi southeast of Mew Oricans is identified as a region of aeressaed microwave brightness in
izlation to the low ciissivity cocan background ia Figere 14,70,

The alteraste ipodthm etrieva! « Trainfall wies b Flivence is presented in Figure 11.7c,
atrievals withic 24 ont 25 ke of the ¢ st were filterad because the radiometer measurements’
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in the immediate vicinity of the coast contained signifi ant contribution. voem  oth land & d
cceen backgrounds. The rain retrievals may be compared o the radar-derive: ain -‘es ¢bta-ned
from the NWS WSR-57 station at Slidell, Louisiana in Vigure 11.7d. The  1ar 2 infall raies
were corrected for range-dependent biases using a2 method suggested by Blacr “14]. 3oth tis>
retrieved and radar-derived rain rate images utilize the same color enhancement. .-..rple indicates
the 1 mm/hr rain rate threshold level. The color sequence from purple to red, orange, and
yellow correspord to 1 mm/hr steps in the rain rate threshold. Regions whe-e the rain rate
exceeds 5 mm/hr are coiored white. It should also be noted that the SSM/i estimates are
averaged rain rates over 625 km? areas, whereas the radar-derived values are roughly 4 km’
av  ages.

igure 11-7¢ and d indicate a good spatial correlation between SSM/I retrieved cainfali
rates and radar-derived rain rates within the observing range of the radar. The reuieval
algorithm a,~pears to overestimate rain rates just east of the Mississippi delta, while rain rates are
underestima »d in southwestern Alabama. Overall the SSM/I rain rate estimates are reasonable
11 comparise o with the radar, if one takes into account the spatial averaging effect of the
radiometer.

‘he SSM/IT rain rate estimates rom the current alternate algorithm show a much better
currespondence to the radar-derived rain rates than the previous "midlatitude” algorithm described
in Volume ! of the Firal Report (see Figure 1.20¢ on page 1-38). The improved performance
of the current algorithm is attributed to the superior calibration of the Darwin and Kwajalein
radars, upon which the algonthm is based.

11.8 COMCLUSICN

Evaluations of the D-Matrix retrieval algonthm indicate inat specified accuracies for
derived rainfall rates z-¢ not being met over land at midiatitudes. Improvements in the algorithm
based upon empirical relationships to the "ground truth” data set increase the accuracy of
cetrieved rainfall rates to within the requirement for both land and ocean situations. Application
of the improved algorithm to tropical cyclone data yields rainfall rate :stimates which e in
reascnable agreement with coastal radar data.
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12.0 CLOUD AMOUNT VALID “TION
12.1 CLOUD AMOUNT ALGORITHMS

The Hughes Aircraft Company developed two algorithms for estimating cloud amounts
(percent cloud coverage) from SSM/I brightness temperatures. One is applicable over land
backgrounds, the other over snow. Hughes has not been tasked to develop a cloud amount
esti-nation algorithm for ocean backgrounds. In the initial formulation of the cloud amount
a rorithms, it was recognized that polarization characteristics at 85 GHz (i.e, vertical brightness
temperature niinus horizontal brightness tempn rature) should provide much of the information.
Simulated values of 85 GHz polarization for a variety of land and snow background conditions
for clear and cloudy cases wese calculated. For a given background condition, a smaller 85
GHz polarization value was associated with a cloudy atmosphere than with a clear atmosphere
[1]. It was desired to retrieve information on the cloud coverage from the SSM/I as near as
possible to the resolution of the aporoximately 45 km x 45 km area used by the Air Force
Global Weather Ceniral’s (AfrGWC; 2eal-Timc Nephanalysis (RTNEPH) auto:nated global cloud
analysis. So it was decided to base each individual estimate of clond amount on a 3 x 3 amay
of adjacent 85 GHz samplés with an all-channel scene at its center. Figure 12.1 shows this array
of 85 GF'z footprints. The array is framed by a 39 km (zlong scan) x 41 km (across scan)
rectangle. Cne 37 GHz footprint is also inside this rectangle. Each 85 GHz footprint is 14 km
(along scan) x 16 km (across scan) and the 37 Hz footprint is 29 km (along scan) x 36 km
(across scan). Further analysis also indicated a cloud signature in the 37 GHz brightness

tomnarnturan fare Innd and cnanr savaead hasb-arainAde
WAL AVAGLALAAD AUF A8 (AU DAIVIY WU T WA GAS Vvl Vwiiuio.

In the final developmental phase of the cloud amount aigorithms, for both land and snow
backgrounds, simulated 37 and 85 GHz (vertical and horizontal polarizations) brightness
temperature valuss for clear and overcast conditions were calculated by IHughes Aircraft
C ympany [2] using the Air Force Geophysics Laboratory’s RADTRAN atmospheric transmission
mode! [3]. For snow backgrounds, its depih was varied between 4 and 20 cm in increments of
2 cm. Su face cmissivity for each snow depth value was calculated using the dry snow madel
of Ulaby and Stiles [4]. For land backgrounds, soil moisture was va:ied using values of 3, 3,
12, and 20 percent. Surface emissivity for each value of soil moisture was calculated using
Fresnel equations imodified by the Choudhury et ai. [5] correction factor of 0.6 to take into
account surface roughness effects.

Interpolat. . values of 37 and §5 GHz simulated brizhmess vemperatures were combined
for each of the two surface bac':ground:, sing a random number generator to create clear fields
of view (all nine £5 GHz footprints clear - 0 percent clond cover), on. 85 Gliz footynnt
overcast (any one of the nine - 11.1 perceat cloud cover), etc. through all nine 85 GHz
footprints overcast {100 percent cloud cover). Regression coefficients were then calculated from
the simulation results [2]. For snow backgiounds, a four-step regressioa produced a percent
vloud amount ¢stimation equation that accounts for 95.9 percent of the modeled varnance. An
ervor aualysis of this estimation equation determined an rms errov of the estimated percent cloud
amount of 3.2 percent. While for land backgrounds, a four step segression produced a percent
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Figure 12,3 Area for Which a 3in 12 S5M/1 Percent
Cloud Amount Valuve i, Calculated



cloud amount estirnation equation that accounts for 77.9 percent of the modeled variance. An
error analysis of this estimation equation determined an rms error of the estimated cloud amount
of 7.8 percent.

Tte final operational version of the two cloud amount algcerithms developed by lughes
Aircraft Company [6, 7] are:

CAS = ¢; + (¢, xTin) + (€XTyp) + (6XXTaey) + (0 XETy5) (12.1)

where CAS is the percent cloud amount over snow; Ty and Typ, are the 37 GHz brightness
temperxtuixs - vertical and horizontal polarizaiions respectively; ET,s, and ETggy are the sum
of the nine 85 GHz brightness temperatures - vertical and horizontal polarizations respectively,
at an ali-channel scene and its eight surrounding 85 GHz scenes. The coefficients arc ¢, =
-189.5000, ¢, = -0.9710, ¢, = 0.7400, c; = -0.1987, ¢, = 0.3678.

CAL = ¢y + {cxTyp) + (xETyy) + (CaxETy5n) (12.2)

where CAL is the percent cloud amount over land. The coefficients for the land equation are:
co = -638.9000, ¢, = -1.7050, c, = 0.2868, ¢, = 0.7457.

Note that the vertically polarized 37 GHz brightaess temperature is not used in the cloud
amount over land equation. This was the final brightness temperature in the four-step regression
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estimation accuracy [2].

It is possible for either of the iwo cloud amount equations to produce rest is that are
physically meaningless. To account for this, an "out-of-limits* flag is included in both
algorithms. QOut-of-limits is arbitrarily assigned to cloud amount estimates less than -20% and
greater than 120%.

No cloud amount estimates are made for flooded or vegetative backgrounds. A dynamic
determination of one of nine possible land types is made for each SSM/Y data point tagged as
having 2 land background [1]. Simulations indicaied that the SSM/I would be unable to detect
ciouds over vegetated land because the kigh water content provides the same . rpe of signature
as a cloud. Flooded !an.i is treated the same as an oceanic background. Since 10 SSM/I cloud
amount algorithm for water backgrounds was required, these scenes are igno-ed.

12.2  VALIDATION METHODCLOGY

Manual cloud cover estin-ates were used to validate the automated SSM/I algesithm
resulis.  The manual analyses were perforimed oa 3 nmi essclution visible (0.5 to 1.0
micrometers) a infrared (IR, 10 to 13 micromeiers) imajery data obtained from the
Operational Linescan System (OLS) sensor which :s on board the same spacecraft as the SSM/I.
Tha resolution of the GLS 1 considerably beticr than that of the SSM/L. T herefore, the ability
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of the OLS to esolve <louds within the SSM/I footprints is excellent.  Since the swath width of
the OLS is twice that of the SSM/I and the sensors are on the same satellite, ali SSM/I cleud
amounts will have spatialiy coincident OLS cioud amounts. However, there wiil be a small
temporal differonce because the sensors have different scan grometries. The OLS scans in a
straight line perpendicular to the satellite subtrack, while the SSM/I scans aft of the satellite with
a constasit angle of 45 degrees between satellite nadir and the antenna beam. For a given SSM/1
scan, the OLS scan hne that contains the center poini of the SSM/I scan will be obtained 137
seconds prior to the SSM/I scan, while the OLS scan line that contains the endpoints of the
SSM/1 scan will be obtained 87 seconds prior to the SSM/I scan.

The Air Force Interactive Meteorological Systert (AIMS) at the Geophysics Laboratory
(GL) was used as the tust bed for this validation study. AIMS is a distributed systewn of mini-
and micro-computers that was developed to support research in remote sensing at GL.
Functional capabilities include the ability to receive, manage, store, display and interact with
meteorological observations, radar and satellite data. Two identical image processing work
stations are available on the systzm. (See reference [8] for a complete description of AIMS,)
To obtain cloud truth data sets, a formalized procedure has been developed that involves
interactive display and manipulation of the imagery on an AIMS image processing work staticit
[9]. To assist in unage interpretation, interactive image processing techniques are used to
provide geometric and radiometric enhancements to the data and to provide for multispectral
display. For example, an interactive piecewise linear stretch algorithm produces a different
conirast enhancement ovzr a number of selected brightness ranges in a monochreme (single
channe:) image by modifying the response of the display over each mange. An input device oa
AINAS such as a mouse or graphics iabiet is used to select interactively eack brightness range and
control the enhancement slope.

When perfonning a manual cloud analysis on OLS visible and infrared data, a number
of display options are available. The most useful is a multivle image display generated by
dividing the mornitor into quadrants. Each quadrant can contain a scp wrate monochrome or
multispectral OLS image, cach with a different enhancement. The OLS images have not been
remapped, they are displayed in their original scan format to make use of the full resolution of
the data. The analyst selec's an area-of-interest on one target image to make a cloud boundary
determination. This can often be a very sinall sub-region of the image. An iterative threshold
blanking technique requires the analyst to select an intensity level that separates the clear and
cloud regions in the area of-interest. Regions below the threshold level are displayed as a color
shade while the area above is displayed as a gray shade. This makes the boundary distinct while
mainmining the detail below and above the threshold. The analyst then interactively raises or
iowers the threshold until the proper level is obtained. The procedure is repeated until the entire
target image has been classified. Two Jroducts are generated from this procedure, the first is
a grayshad : image that retains the original image characteristics above the cloud threshold and
is black below, and the second is a Linary image that simply delineates the cloud boundary from
clear background. The first is used during the interactive threshold blanking procr.ss for visual
comparison against reference ir::ages. The second is used for companson with SSM/I algorithm
results.  Software was written to determine automatically the points in the (LS binary cloud




truth digital imagery daia base comresponding te each area for which a single SSM/I cloud
amount vzlue is generated. Th' . software also calculates the corrvsponding OLS cloud amounts
by zumming vp the number o1 cloudy LS pixels and dividing by the otal number of OLS
pixels within each SSM/I cloud amount area.

12.3 CATZE STUDY LESCRIPTIONS

Four case study scenes were selected fer the cloud amount aigorithm validation study.
The scenes contain several different cloud conditions and surface background types. For each
case, the OLS data were first earth located and a binary synthetic image containing cloud truth
information was generated using the techniques described in the previous sectior:; then the SSM/I
and OLS cloud amouats were compared.

Case 1 - Southern Africa: SSM/I and OLS data were collectad for e late afternoon
DMSP pass (satellite is descending) on 14 January 1988 over the southern part of Africa.
Figure 12.2 depicts the are. of coverzge.  his area includes desert, wet lands, cultivated
regions, and Iorests. The OLS visible (Figure 12.3) ard infrared (Figure 12.4) images show
substantial areas of cumulus clouds. The OLS imagery data were manuallv anzlyzed using the
interactive technigues described in the previcus section tn zbtain a synthetic, hinary image of
the cloud cover (Figure 12.5). This was ¢cnmpared to the SSM/I uigorithm results (Figure 12.9).
These results will be discussed in detail in Secticn 12.4.

Case 2 - Central Urited Staigs: This scene nged the data {rman tae morning ISP pass
on 14 January 1988 ascending over the central U.S. from coastai Guif »>f Mexico up thro igh
Minnresota and the Dakotus iato southem Canada, The noctierm quarter of the imzge was snow
covered. The predominant cloud types were stratus #rnd stratocumn'us. The OLS visibie
imagery data were not usable in the manual cloud t-uth analysis because of the low light level
in this scene during the early morning :atellite crossing time.

Case 3 - Eastern United Siates: The 4ata for this case is froin the moming DMSP pa s
on 14 March 1988 ascending over the eastern third of the (7.S. from Florida across ti
southeast:rn siales up over the Oreat Lakes into southern Canada. The oredominant ciouds arc
stratus and stratocumulus which are associated with an upper l=vel storm centered over southern
Lake Huron. The northern part of the scenc 18 snow covered and is approaimatedy i0% of the
iotal area of the sce>. The OLS visibie inagery daia were of Fmited use in the manval cloud
outh apalysis because of light levels bewng teo low for a sharp image.

+ase 4 - North West South Amurica: The dat for this case wene 0093iied {rom: the samic
ass as Case 3 but during a1 carher dime frame vhen the ascerding saiellite was still
be equator  This scene contaiis northern Pemu, Eouador, Columbia, and Cenr 1
' The donunani cloud feature: 18 & massive MOU (Mesneale Con e tive Coniplex) o
mos . ~uador. The marn types of tand surfuce haskprounds are raa forests and mountains.
Por this case, the ligit levels were tugh enough for the OLE visible data to be wseful in the
manual cload truth wnalysis.
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12.4 CASE STUDY RESULTS

The cloud amonnt values calculated by the SSM/T algorithms for the four case study
scenes described in Secdon 17.3 were siatistically compared ic the cloud truth values obained
from the manual interactive computer analysis of OLS dats. The resuits are presented in {able
12.1 and -~ stratified for i and snow backgronnds for ach case. This is done 1w assess the
performancs: of cach of tee iwo separate SSM/I cloud amount algorithrus: one for land
backgrounds and one fer snow backgrounds. Recall SSM: £ cioud amaumts are not cajculaled
when the land background is vegutated or floodsd. Also, there 1z no Hughes SSM/I cloud
amsount ajgorithm for oceanic hackgrounds.

Table 12.1 containg the wnean, standird deviation About the mean, and the range
(minintum and maximum) for both the SEM/L and e corresponding LS denved cloud
amouvats. N in this tahle is the numbzs of SSM/T cloud arsouants in the allowed range of -20 to
120 percent.  Values outside this range are tagped as “out-of-limits” and are listed in the last
column ¢ the table. The root-mecan-square differences (rms) and the linear correlation
coefficient (r) between the individual GLS and SSM/I cloud amount values are alsc given. The
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TABLE 12.1

A

STATISTICAL COMPARISON OF SSM/I AND CLS TRUTH CL.OUD AMOUNTS

[ ) 8
Mean Min | Max Qut-of- |
Cuse Background CA o CA CA N RMS r Limit;  §
oLS 893 { 394 | o | i00 1
1 Land 4343 | 453 | 44 414
s 435 165) 20| 74
oLs 520 4011 o} 10
2 Land 26 | 127 | 27} 2047
SSM/1 971 109] 20| 55
g
OLS se1 | 442 o | 100
2 Snow - 145 | 585 | -.18 1
SSMA s30 | 306 16 120
oLS 320 { 430| o | 100
3 tand 1053 | 65.5 | -15 | 2038
1 SSM/T 741 1201 20 | 64
OLs w3} 2! e | 100 ]
3 Snow 23 | 183] .26 0
SSMA sat b orzo) 40 e
oS 71.2 ]E sl o | 0
4 o 1084 ) 614 | 17 g 138
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rms value is a measure of the amount of error between the individual SSM/I and corresponding
“truth” OLS cloud amount values. An rms value 01 zero would mean that there is no c-ror (i.e.,
all correspending SSM/I and OLS cloud amounts are equal). The correlation confiicient is a
measure of the linear relationship between a set of SSM/I and OLS cloud amouat diswributions.

There are no snow covered land backgrounds for Case 1 (Southern # frica). The mean
OL.§ and SSM/I cloud amounts are close, but the OLS standard deviation is twice 3 lage as
that of the SSM/I and the maximum SSM/! value is considerably smaller than that of the OLS.
The large rms and negative correlation coefficient indicate that the SSM/] algorithm has serious
deficiencies.

There are both snow-free and snow-covered land hackgrounds for Case 2 (Central United
Siates). For land backgrounds, the SSM/] mean and standard deviation ase mwuch smaller than
the OLS values. The maximum SSM/Y value is about half that of the OLS. The rms for land
backgrounds is quite large and the correlation coefficient is close to zero, indicating the two
results are uncorrelated. For snow backgrounds, the mean and standard deviations are
comparable. However, the rms value is large and r is close to zero which shows again there
i3 very litle relationship between the OLS and SSM/I cloud amounts.

Case 3 (Eastern United States) like Case 2 has both snow-free and snow-covered land
backgrounds. The SSM/I mean and standard deviation are much smaller than those for the OLS
over land hackgrounds and the maximuem SSAM/T valuc is aboul two-turds whai of the OLS, Also
for land backgrounds, the rms is large and the correlation coefficient is close to zero. The
SSM/I aad OLS mean and standard deviation are comparable for sinow bac: grounds, but the
minimum SSM/I cloud amount is considerably Jarger than that of the OLS. Also, the rms value
is large and the r value is close to zero.

There are no snow covered Iand backgrounds for Case 4 (Nozth West South America).
The SSM/I mean and standard deviation values are much stnaller than those for the OLS and the
maxinium SSM/I value ts two-thirds that of the OLS. The rms value is large and the 7 vaiue
¢ ¢lose to zero.

The values of the root-mean-square difference between he OLS and SSM/I cloud
amcunts for both land and snow backgrounds for all four cas:s are large. This indicates that
the cioud amount estimates calculated by both SSM/1 algorithins are joor. All the values of the
linear correlation coefficients indicate tha¢ no significant linear relationship cxisis between the
SSM/1 and OLS cloud amounts. For land backgrounds, the mean wnd maximum OLS and SSM/1
cloud amounts show the SS5M/T values are consistently fow.t than the OLS values. The number
of cases flagged as out-of-limits over land backgrounds for Caszs 2 and " are very large. The
significance of this 1s addressed in Section 12.6.




12.5 OTHER RESULTS

The frequen-y distribution of SSM/I-der‘ved ioud amoun: values were examined for
several orhits. Al the distributions were fouiw 0 have similar characteristics. Tabk: 2.2
shows the distribution for revolution 655 which occurred gis 5 August 1937. The results in the
table are stratified into land and snow backgrounds and shown are the total number of SSM/I
cloud amount values calculated and the percentage of the toiai sumber that are within various
ctegories. For both backgrounds, there are few cloud amount values preater than 40% and
many cloud values tagged as "out-of-Linii °.

HY3ITCEYTIVN

The 37 and 85 GHz brighiness iemperatures for all "oui-of-limits” cases for revoluiion
655 were put into the SSM/I cloud amount equations to deierniine the specific numericai values
generated by the algorithms. Table 12.3 shows the iotal number of land background
"out-of-limits” cases wit:: SSM/1 cloud amount values within various categories. It also shows
this information for snow backgrounds. For both backgrounds, all the values are negative.
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TABLE 12.2
SSM/I CLOUDR AMOUNT VALUES (REV. 635 - 5 AUG 1987)
_ Surface Number of Q- 30% 40 - % X0 - i00% Ow-oi- &
& Type: cases Limts § M
Land 29403 53 14 0 B _ | B
Snow 3151 _ 24 - 3 2 T2
TABLE 12.3
OUT OF LIMITS VALUES (REV. 655 - 5 AUG 1987)
Surface Number of < -100% -100 to -50 to -20% > 122%
Type: cases -50%
Land 9551 61 11 28
-
Snow 2269 0 15 65 0 ,.,..E
J 211




2.6 DRSCUSSION

In Soctien 174, a pucad npudbwor of “our-of-ianis® cloud amount values over land
backgrou. ds for Ceacs 2 and 3 were uo <. The 37 and 8S GHr brightness temperatures for
cach of these socumences, when put into the cloud amount equation, produced a negative «loud
amount value. a1 Soction 12,5, there were many “out-of-liris” cloun anesunt values over um“)
tand and snow hackgrounds durmg revojution 6535. Azam the actual num. rical valnes produced
try the SSMi T equations for all these "out-of-limits” occurrences were negative. From Equations
12.1 and 12.2 (Yection 12.1), negative values occur when the 85 GNHv polarizavon values
actually observed are significantly iarger than tho: predicted by th= simulations. McFarland
{10}, in 2 sumiler study of the SSM/1 algorithm ust : io determine syecifie land surface types,
noted that he actual SSM/T polarization values at 1% i 37 GHz cwe ofien arges than the
simulated valoes.

Based on the preflight simujations discussed m Section 12.1, the acceracy of the SSMJ/T
alpuritiims were expected fo be good. However, the statistica! comparisons ¢f OLS derived
“iruth” cloud amounts to SSM/I cloud amounts for four cases containing a variety of cloud types
and land backgrounds (see Secticn 12.4) indicate that both algorithms have no skill at estmating
the correct cloud amount. . Even if the SSM/I algorithms had shown some skill, their use would
have been Jimited because of the large percentage of "out-of-limiis” values they generaie.

The siali correlation :oefricients for all four cases indicate no relationship bpetwiven
SSM/I and OIS cloud amannt valnes. In ather words mos! sf the u.dividist SSM/T cioud
amount yaiues were either considerably larger or smaller than the \,on't:spundnq, QLS cloud
amonnt values. For exam e, compare the OLS cloud truth image (Figure 12.3) w the SSM/I
cloud amount image (Figure 12. 6) over the laind areas for Case { {Southem Afiica). In the
SSM/1 image, the black epresents "out-of-imits” values, the dark gray represents values of O
to 40%, and the light gray represents values of 40 to 74%. Recadl 74% was the maximuwm
SSM/1 value for this case (see Table i2.1). The cloud coverage in the OLS cloud! rath tnage
ranges from clear to overcas:; most of the clear v partly cloudy areas do not match the dark
gray areas (0 to 407% cloud amounis) of the SSM/T image; most of the partly ic mostly cioudy
areas o not match the light gray areas (40 to 74% cloud amounts) of the SSM/I imaee; and
there are no overcast are2s in the SSM/I image.

Recall that loss of polarization at 8% Gdz over land and snow backgrounds in the
presence of cloud was the Gasis of the SSM/T cloud amount algorithm. Tt is concluded from the
preceding discussion that there is no discernable cloud signature from 85 GHrz polarization
values over land and ssow backgroun:is when no distinction is made betweei the many difterent
types of .and and snow surfaces which occur in nature, Several facor. probably contributed o
the faiiure of the iechnique. The SSM cloud amount algorith:n way based entirely on sinmulated
daia. This was necessay since ro previous microwave satellite sensor bad measured vadiation
at frequeucies as high as the b% Gz chaneel on the SSM/T. All simuiations contain inherent
errors due [0 an incomplele modeling of the atmosphere and the earth sorface.  During the
algorithm <ovidepaent, soveral simplifications were made.  For suow backgrounds, Guiy (VTy




type of cloud (stratus/stratocumulus), one type of temperature profile (mid-iatitude winter), one
type of humidity profile (mid-latitude winter), and one type of precipitation state (rain-free) were
used in the simulation calculations. This was ‘1so the case for land hackgrounds, where the
cioud type was stratus/stratocumulus, the te.aperature and humidity profiles were both
mid-latitude summer, and the atmosphere was rain-free. It should be noted that the stra-
tus/stratecumulus cloud used for the Iand and snow background simulations were identical. The
cloud layer was between 0.5 and 2 kin in altitude with 21 juid water content 0.15 g/mr’. Clouds
exhibit a wide range of liquid water contents, altitudes, and thicknesses which can be quite
different from the one set of valucs used in the simulations. A more compiete set of simulations
containing a better representation of atmospheric temperature and humidity profiles, cloud
conditions, precipitation states, and land and snew surface types could have produced more
realistic expectations.

In order to obtain a more complete quantitative understanding of the effects of different
type= of clouds over various land backgrounds on 85 GHz microwave radiation, additiona!
simulated brightness temperatures were : alculated from the Geophysics Laboratory’s RADTRAN
atmospheric transmission model [3). Table 12.4 contains the simulated 85 GHz values (in
degrees K) for the herizontal polarization (85H) for several clond conditions and land types.
In this set of simulations, the following conditions were selected an - kept constant: land surface
skin temperature of 290 X, rain-free, and mid-latitude summer temperature and humidity
profiies, Table 12.5 is similar to Table 12.4, but contains the values of the difference between

the 85 GHz brightness temperatures for the vertical and horizontal polarizations (85D = 85V
- 854

i TABLE 12.4
SIMULATED 85H BRIGHTNESS TEMPERATUKRES (K) FOR
V¢ RICUS CLOUD AND LAND TYPES UNDER MID-LATITUDE
SUMMER ATMOSPHERIC CONDITIONS

Land/Cloud Types No cloud Stzatus/stratocu Altostratus Cumulus
wet soil 251.0 267.9 2713 261.6
dry soid 272.8 278.3 271.6 26i.6
light veg. 274.4 279.1 278.1 261.6
I moderate veg 284 1 283.7 280.9 261.6

First focus on the first three fand types listed in Tables 12.4 and 12.5. For a given land
type, the 85H wvalue is larger for any of these three cloud types compared to the ac cloud
condition. An exception is for the cumulus condition, wher: for dry soil and light vegetation
surfaces, the 85H value is smalier compared to tat for the no cloud condition. The total
olumnar liquic water conter:t ine reases while the 85.) values decrez e from ieft to right. Three
uf the five possible RADTRAN cloud modcis are included in these tables. The smallest and
jargest columnar cloud water ameounts available in the RADTRARN cl wud mosch, are the stratus/
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TABLE 12.5

SIMULATED 85D BRIGHTNESS TEMPERATURES (X) FOR
VARIOUS CLOUD AND LAND TYPES UNDER MID-LATITUDE
SUMMER ATMOSPHERIC CONDTIONS

Land/Cloud Types No cloud Stratus/stratocu Altostratus Cumulus
wet soil 21.8 10.4 6.3 C.J
dry soil 11.3 54 33 0.0
light veg. 8.1 3.8 2.4 0.0
moderate veg 0.0 0.0 0.0 0.9 |

stratocumulus and cumulus clouds, respectively and are included in these tables. For moderate
(and greater) density vegetation, 85D values are zero for all cloud conditions because the
horizontal and vertical emissivi‘ * of vegetation are equai. This indicates that at 85 GHz clouas
are not detectable over land covered with moderate or greaier density vegetation. It is noted in
these two tasles that the 85H surface emissivity values increase and that the difference between
the 85V and 85H surface emissivities decrease from top to bottom. Thus for a given cloud
condition, the 8SH values increase while the 85D values decrease from top to bottom. An
exception is for the cumulus cloud condition where the 85H values are constant and the 85D
valuss are all zero @0 aiier what the iand rype which indicates that the camulss cloud is

completely masking the surface.

Another set of RADTRAN simulations were generated for the same set of cloud
conditions and land types as those preseated in Tabler 12.4 and 12.5. However, in this set of
simulations, colder and drier conditions were used - a land surface ski» temperature of 280 K
and mid-latitude winter temperature and humidity profiles. The &85H results are presented in
Table 12.6 and the 85D resulis are presented in Tabie 12.7. These rcsults are similar fo those
for the mid-latitude summer profiles (Tables 12.4 and 12.5). The main difference for a given
cloud condition and land type is that the 8SH values are smaller . nd the 85D values are larger
for the winter simulation set compared to the summer. It was aiso ucted when the rain-free
condition used for the two seis (summer and winter) of simulations was changed to light or
keavier intensity rain that all 85D values wers zero for 2ny of these cloud types and surface
conditions indicating that the rain completely masks the surface.

Tables 12.4 - 12.7 illustraie that clouds over land backgrounds are expected to have a
distinct effect on the upwelling 85 GHz microwave radiation. However, the quantitative effect
depends on the land surface type, type of cloid (columnar liquid water), the presence or
ahsence of rain, and the atmospheric temperature and hur idity profiles. ¥For a cloud amount
algorithm to be feasibie, all these factors would have to be accounted for which was not the case
in the Hughes cloud aznount algerithm. Climatological temperature and humidity pro. les might
provide sufficient temperature and water vapor itforution. If not then perkaps radiosonde
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measured profiles could be used. ‘The prescnce or absence of rain can be determined by us ng
the SSM/I rain screening algorithm developed by the DOD SS /1 land parameters validation
team. Also, this team developed land surface classitication and soil moisture algorithms which
produce reliable Jand surface type and soil moisture information. "The 85 GHz RADTRAN
simulated values show that the ability to identify cloud types with 85 GHz SSM/I data, even
when the land surface type and atmospheric profiles are known, does not appear to b likely
(except for cumulus covering the exnire footprint), especially when cloud types are mixed and/c -
only partially cover the footprints. However, the maximum and range of the 85D values over
the various cloud types for a given land type and temperature and moisture profile (see Tabies
12.5 and 12.7) are both small compared to ti. * 85D value for the no cloud ~ondition so that ihe
rmaximum or average 85D value for all five possibtle RADTRAN cloud types would probably
be adequate for use in the development of a reasonably accurate SSM/I cloud amount algorithm.
An SSM/I cioud amount algorithm possibly is feasible over land surfaces that are homogeneous,
except for surfaces covered with moderate or greater density vegetation. The development of
a new SSM/T cioud amount algorithm using the recently developed SSM/1 algorithms for land
surface classification, soil moisture, and rain screening should be expiored.

TABLE 12.6

SIMULATED &SH BRIGHTNESS TEMPERATURES (K) FOR
VARIOUS CLOUD AND LAND TYPES UNDER MID-LATITUDE
WINTER ATMOSPHERIC CONDITIONS

SIMULATED 85D BRIGHTNESS TEMPERATURES (K) FOR
YARIOUS CLOUD AND LAND TYPES UNDER MID-LATITUDE

WINTER ATMOSPHERIC CONDITIONS

Land/Cloud Types No cloud Stratus/stratocu Altostratus Cumulus
wet soil 2i10.0 243.4 249.7 245.8
dry soil 251.0 260.5 260.6 245.8
light veg. 254.0 261.8 261.5 245.8
moderate veg 272.2 269.4 266.3 245.8
TABLE 12.7

|
|
|

Land/Cloud Types No cloud Stratus/stratocu Altostr. us Cumulus
wet soil 41.Q 17.1 10.9 0.0
dry soil 21.2 8.9 5.7 0.6
light veg. 15.1 6.4 4.0
moderate veg 0.0 0.6 0.0
s oo . =g
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It is expected for snow backgrcunds that its wat~r equivalent and type of snow surface
(dry, we!, stage of ripening, ctc.j, type of cluud, presc ice or absence of precipitation, and the
atmospheric cimperatuse and humidny rre will have to be considered for the possible
development of a cloud amount algorith.. . A new c¢loud amount algorithm for snow
backgrounds should be explored when the DOD SSM/I land parameters validation team’s snow
typc and water eqrivalent algoritnm is perfecied.

i2.7 OTHER CONSIDERATIONS
12.7.1 Coinpositc SSM/] and OLS Imagery

The powerful capability of AIMS to generate a false color composite multispectral image
proved to be fruitful in regards to OLS and SSM/I imagery data. There are thice color guns
on AIMS; red, green, and blue. The intensity of each color gun is controlied by 8 bits.
Individual channeis of 2 composite image are simultancously directc | to oi.e of the three color
guns. In regions of the image whete the response of each channel is approximately equal; the
red, greea, and Diue color intensities will be abeut the same and produce a shade of gray. In
other regions where the spectral response of one channel 1s different than another, the image will
be a distinctive color d¢ iding on the relative strength of the signal at the individual
wavelengths. A useful dis; .y over land backgrounds uses the OLS visible channel, IR channel,
and SSM/X horizontally polarized 8 GHz channel to drive the red, green, and blue guns,
respectively. The cesulting false color composite image (an example is shown in Figure 1.22 in
Valume I of this renort) chows low albtude water ciouds in rexi Decause of their high visible
reflectivity (large red contribution) and warm IR and microwave brightness »mperatures (small
green and blue contributions); thick cirrus clouds as yellow because of :heir high visible
reflectivity and cold IR brightness temperatures (large red and green contributions) but warm
microwave brightness temperatures (smail blue contribution); thin cirrus clouds as green because
of their cold IR brightness temperatures (large green contribution) but weak visible reflectivity
and warm micro.vave brightness temperatures (small red and blue contributions); and strong
¢ .vective cells as whitc because of their high visible reflectivity and cold IR and microwave
brightness temperatures (large red, green and blue contributions). Thus, combining CLS visible
and IR data with SSM/I brighiness temperature data yields useful cloud type information. This
false color composite technique also works over ocean backgrounds but the color/cloud type
interpretation is not the same as for land because the ocean surface microwave, vigible, and IR
signatures are different.

12.7.2 Convective Clouds

it is noted that well developad convective clounds have a distinct signature at 85 GHz over
land backgronunds. The 85 GHz brightness temperatures are very low under these conditions.
The ho rontally polarized 85 GHz brightness temperature image for Case 1 (Scuthern Africa
- see Secvon 12.3) is shown in Figure 1.2.7. In this image, the brightness temperatures decrease
as gray shades go frum dark to light. The whilte areas indicate where the coldest brightness
temperatures are locaisx’ {minimum brightness temperature in this image is 136 X), and
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Figure 12.7 Horizontally Polarized 85 GHz Brightness
Temperature Image for Cace 1




contparison ot this image to the OLS vsible (Figure 12.3) and IR (Figure 12.4) show that these
cold 85 GHz horizontally polarized brightness temperatures are within the overcast convective
regiens. This cold signature of well developed convective clouds at 85 GHz has also been
observed by the author in several other SSM/[ brightness temperature tmages ir vintous locations
and scasons over several different surface backgrounds including occans. ‘The 85 GHz
norizontally polarized brightness temperature for a well developed convective cloud can be very
low. For example, a value of 95K was observed for an evening DMSP pass over India on 28
June 1987. The cold signature is dne to la- ¢ raindrops and ice paiticles in the wnper portions
of well developed convective ¢l uds which scatter the upwelling radiation emitted from the lower
portions of the clouds cut of the SSM/Us field o: view. This was tirst observed by Wilheit [11]
with a 92 GHz rad ‘meter flown o: an aircraft.

12.7.3 Clo ds ove Ocean

The occan surtface in ene al is much more homogeneous, and has mucih lower
microwave emissivity and 5 uch greater microwav  polan -ation than «and which indicates that
clouc  (as well & oticr atmospher” @ pavamciers) should be more easily di «cernable over ocean
compared tc land in mic rowave noagery data. Examinagion of seve-al SSM/I 37 and  GHzx
brightness tumpceratar. images over ocemnic b, kgrounds containing various cloud types (which
were varified it coincide 't or car-c.ancident visib) an § Ik satellue data and synoptic daia)
indicated th it ail cloud  .cgions, no matter what the cleud type (except for cirrus), were eviden®,
As discusscd above, the cloud sienature is very cold at 85 GHz for onve “tive clouds containing
large 1..indrops and ice partic os.  Other clouds have a warm b ightness temperature signaturc

at both 37 4 185 G° compared to the cold brightness tcmiperatuic signaiure due 1o the iow
cmissivity ocean s: riece and rel. uvely small aimospheric attenuation in the absence of clouds.
The emissivity of ciouds at 7 and 85 GHz is signu «cantly greater than that of the ocean surface.
In the 85 GEz horizontally polarized  rightness temperature image shown in Figure 12,7, the
dark bands {warm brightness tcmpersture) over the ¢oean in the botiom of the imnage are cloudy
areas as can be verifie.” by comparison with the corresponding O1 S visible (Figure 12.3) and
IR {Figure 12.4) images. A ‘utionally, it is seen that the 85 GHz brightness temperature

ianization values (85V - 8511) over the occan in cloudy reyions are much smaller than those
for clear regions.

In order to obiain a better -siantitative understanding ot the effects of clouds over ocean
backgrounds on microwave radiaten, simuiated 85 GHz brigntness temperatures were calculated
from the Geophysics Laboratory's RADTRAN atmospheric transmission modei [3]. rable 12.3
contains the simulated 85 GHz brightness ~oerature values (in degrecs Kj for the horizontal
polarizatior: (35H) and the difference betweiit the vertical and horizontal polarizitiors (85D =
RSV - 85Hj for several cloud types (all availal-* : cloud models in RADTRAN) with conditicns
of no rain and light rain (5 mm/hr at the su .ace). 'n this set of simulauens, the foliowing
conduiors were selected and kept constant: 85 GHz veriical and hc rizonial emiysivity vaiues
typical for a calm ocean surface; ocean surface temperature of 29C X; an¢ mid-latitude sammer
temperature and humidity profiles. Under fain-tree conditions, the 85t valaes when any of the
cloud types i1s present 1s considerably warmer than the cloud iree condiuon.  Also, the 85D
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values when ~louds are presciat range from 0 to 14 K which is much smaller than the value for
the cloud-free condition. The total columnar cloud liquid water value increases from top to
bottem in the table. As the cloud water increases, the 85D value decreases indic iting that the
ocean surface emission and reflection of 85 GHz radiation is more heavily attenuated by the
atmosphere. Under light rain conditions, the 85D values are all zero, indicating that the ocean
surface is completely masked bv the atmosphere at 85 GHz. This is also true under moderate
and heavy rain conditions (not shown in the table).

TAL".FE 12.8

SIMULATED 85H AND 85D BRIGHTNESS TEMPERATURES (X) FOR SEVERAL
CLOUD TYPES OVER A CALM OCEAN SURFACE UNDER MID-LATITUDE
SUMMER ATMOSPHERIC CONDITIONS

Cloud Types No Rain No Razin Light Rain Light Rain
8SH 85D &8H &sD
no cloud 238.0 29.1 - ~-
l stratus/stratocu 261.8 13.8 270.3 o
{ alto stratus - 2678 RS 2701 0
nimbostratus 275.7 5.7 270.4 0
stratocumulus 275.6 52 270.4 0
cumulus 261.6 mo 260.8 0 |

Table 12.9 shows the 85H values in degrees K calculated with RADTRAN using various
atmospheric temperature and humidity profiles under ciear and cloudy (stratus/stratocumulus
cloud with no rain) condidons for calm and rough ocean surfaces. The atmospheric profiles
become colder and drier from top to bottom in the table. For a given atmospheric profile over
a calm ocean “urface, the 85H brightness temperaturc is larger for cloudy than for cisar
conditions. Th., is also true over a rough ocean surface, but the amount of brightness
temperature increase with cloud is approximately half that as for the calm surface. Also for a
given atmospheric profile and cloud condition, the 85H biightress temperature is larger over a
rough surface than a calm one. For each surface and cloud condition, the 85H brightness
temperatures decrease and the amount of increase of krightness temperature with cloud compared
to no cloud becomes greater as the atmosphere becomes colder and drier.
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TABLE 12.9

SIMULATED 85H BRIGHTNESS TEMPERATURES (K) FOR CLEAR VS. CLOUDY
UNDER VARIOUS ATMOSPHERIC CONDITIGNS OVER CALM AND

ROUGH OCEAN SURFACES
Atmos. Ocean {(Calm Sfc.) | (Rough Sfc.) | (Cam Sfc.) (Rough
Profiles Temps. Do ro stratus/ Sfe.)
cloud cloud stratocu stratus/
stratocu
tropical 300 258.2 271.7 272.8 279.6
mid-lat. 290 238.0 757.4 261.8 271.0
summer ’
sub-arctic 285 217.7 243.2 250.5 261.7
summer
b mid-lae 290 185.7 323.2 233.2 248.4
winter
0 sub-arctic 275 170.4 210.9 220.9 238.5
winter

Table 12.10 zhows the 85D values in degrees K calculated with RADTRAN for the same
conditions as those for the 85H values shown in Table 12.9. For a given atmospheric profile
over a calm ocean suiface, the 85D value is smaller for cloudy thz 1 for clear conditions. This
is also the case over a rough ocean surface, but the amount of decrease of the 85D valus with
cloud is approximately half that as for the calm ocean. Also for a given atmosphe.ic profile and
cloud condition, the 85D value is larger uver a caim surface than over a rough surface. The
85D values increase for a given surface and cloud condition and the amount of decre. e of 85D
with cloud compared to no cloud secomes greater as the atmosphere becomes colder : ad drier.

The simulated 85 GHz RADTRAN values given in Tables 12.8 - 12.10 indicate that
clouds have a distinct effect on the upwelling 85 GHz microwave radiation at the top of the
atiosphere over oceanic backgrounds. The amount of columnar liquid water (type of cloud) has
an important influence on the 85 GHz brightness temperatures. Other important factors are the
degree of rougimess of the ocean surface, columnar water vapor (moisture and te nperature
profiles), and the presence or absence of rain. Other members of the DCD SSM/1 geophysical




TABLE 12.10

SIMULATED 85D BRIGHTNESS TEMPERATURES (K) FOR CLEAR VS. CLGUDY
UNDER VARIOUS ATMOSPHERIC CONDITIONS OVER CALM AND

ROUGH OCEAN SURFACES
Atmos. Ocean (Calm Sic.) | (Rough Sfc) | (Calm Sfc.) | (Rough Sfc)
Profiles Temps. no noc stratus/ stratus/
cloud cloud stratocu stratocu
tropical 300 20.3 12.4 16.2 6.2
mid-lat. 299 29.1 17.8 13.8 8.5
sumnmer
sub-arctic 285 38.2 23.4 16.9 10.4
summer
mid-lat. 280 54.6 33.3 229 14.0
winter
sub-arctic 275 60.8 37.2 26.4 16.2
: winter !

parameter algorithm validation teamn have shown that these atmospheric and surface cenditions
can be determined from the SSM/I data since they have developed SSM/T algorithms for ocean
backgrounds which calculate columnar cloud liquid water and water vapcer, ocean surface wind
speed (which is reiated to the surface roughness), and surface rain rates. Therefore, an accurate
SSM/1 cloud amount algorithm for ocean backgrounds is plausit e. Recall that Hughes Aircraft
Company has not been tasked o develop one. However, Rubinstein 12}, a member of the sea
ice validation team, recently deveioped an SSM/I cloud amount algorithm as & spin-off of her
work. The accuracy of this algorithm requires validation. It is important to note that cirrus
clouds are transparent at SSM/I frequencies over all backgrounds and so any SSM/I cloud
amount algorithm will lack cloud coverage information in areas contatning only cirrus type
clouds.

12.7.4 Potential SSM/I Contributions to the RTNEPH Cloud Analysis

The RTNEPH cloud analysis done at AFGWC uses conveational ground-based cloud
observations, and CLS IR and visible satellite data. The RTNEPH produces operational global
estimates of cloud cover, altitude, and type. (See Keiss and Cox [14] for a complete description
of RTNEPH.) There is good potential to improve the RTNEPH analysis by incorporation of
new algorithms which use SSM/I data by itself and also in conjunction with other typzs of data.
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If the development and validation of new SSM/I cloud amount algorithms over some
types of land, snow, an i ocean surfaces is successful, then these cloud amounts should be
examined to determine if they are morc accurate under certain or all situations than the
RTNEPH cloud values determined ¢ ym conventional observations, and IR and visible satellite
data. For instance, there are few conventional cloud cbservations over the ocean and under
certain common oceanic condidions it is difficult to detect clouds with IR satellite data and if it
is night time then no visibie satellite data are available. An example is that often ir. the IR there
is little contrast between stratocumulus clouds in the marine boundary layer and the ocean
background in the presence of the commonly occurring temperature inversion in this iayer.

The extraction of cloud type iaformation available from faise color composite OLS and
SS* /T images described in Section 12.7.1 probably could be autc.nated and incorporated into
the K TNE™H analysis. If this can be done, then improvement to the cloud type portion of the
RT NEPH analysis would probably resuli.

Cornabined use of SSM/I microwave data with OLS IR data for determination of cloud
amounts over land backgrounds is promising. Savage et al. {13] have found that the expected
surface IR brightness temperaturé for clear conditions over vegetated land backgrounds can be
predicted from SSM/I brighiness temperatures with sufficient accuracy {rms of 2.5 K) to be used
as input for a cloud analysis. The vbserved IR values are compared to the expected IR to
estimate cloud. Observed IR values less than the expected IR indicate cloud. T = regression
equation used to estimate an expected surface IR value for clear conditions was dev2loped from
an analysis of observed IR vaiues in ciear areas, using the SSM/I 1Y and 22 GHz channels as
predictors. The twe lowest frequency SSM/I channels were used since most clouds are
transparent at these frequencies. This method of comparing observed IR values tn the expected
surface IR temperature to estimate cloud is comparable to the technique presently used by the
RTNEPH cloud analysis model at AFGWC. However,ti RTNEPH estimates the expected IR
temperature from surface air temperature reports for cumparison to the observed OLS IR
temperatures. The technique based entirely on satellite dota is potentially more accurate because
there is error resulting from estimating IR background temperatures from the surface temperature
report which is a shelter air temperaiure {several feet above ground level). Another advantage
of the all-satellitc technique is that it requires less data processing and produces more timely
results. Tt is also noted that the SSM/I land parameter validztion team has developed algorithms
for the determination of surface skin temperatures for severa: land types in 2ddition to vegetated
land which should be useful for estimation of TR backgroun<! temperatures.

The all-satellite technique is expected to be successful cver all surfaces whose microwave
emissivity is high and relatively constant. Vegetated iand, as well as desert, have these
emissivity + aracteristics. However, snow, glacial, and ocean surfaces have low emissivitics
(high reflectivities). Savage et al. [13] found that IR brightness temperatures for clear conditions
could not be accurately estimated from SSM/I obs2ivations over snow-covered iand backgrounds
becausc of the physical properties of snow. However, they found that an approach (differing
from the algorithm GL validated) based entirely on SSM/I obscrvations for recognition of clouds
over snow showed good promise. They resoived a set of SSM/I data which was stratified into
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cloud* and clear -roups, into eigenfunctions and then formed a discriminant function. Only a
few 0: the largest discnminant scores of the cloudy group overlapped with a few of the smallest
discrimnant scores of the clear group. Thus, the two grouns were quite well distinguished.

The SSM/I is good at snow and ice cover detection because of the strong microwave
signatures of these surfaces. Use of this timely and accurate information in the RTNEPH cloud
a: alysis would improve it. The RTNE®I! satellite Jata processor consists of wo parts - one for
OLS visible data and one .or OLS IR data. The visible duta processor is not allowed to make
a cloud amouat calculation over grid y:cints where snow or ice cover is believed to be present.
This is because cloud-free snow and ice covered areas have approximately the same brightress
as clouds. The snow-cover data base is of particular concern. It is based on surface :eports and
climatology and may not represent the true snow cover condition over many gridpoints,
especially in sparsely populated regions where the surface weather cbserving stations are far
apart. If snow or ice is actually present when RTNEP'I belicves it not to be, then the visible
cata processor will be used and RTNEPH's estimates of cliud amounts will probably be too
large. On the other hand, if snow or ice is really absent when RTNEFH believes it to be
present, then the IR satcllite processor will be used and low ciouds, that are easily found by the
visible processor, may be svorly analyzed.

12.8 CONCLUSIONS

The present Hughes SSM/I cloud amount algorithms over land and sno'v backgrounds
do not work because the variability of the land and suow surface types, cloud types, and
atmosphenic iemperature and huinidity profiles, and the prcserice or absence of fain weic not all
taken intc account. An SEM/I cloud amount algorithm possibly is feasible over land surfaces
that are homogencous, except for surfaces covered with moderate o1 greater deasity vegetation.
The development of a new SSM/I cloud amount algorithm using climatological temperature and
humidity profiles and the recently developed SSM/I algorithms for land surface classification,
soii moisture, and rain screening should be explored. Alsc, a new cloud amount algorithm for
snow backgrounds shouald be explored when the DOD SSM/T land parameters validation team’s
snow type and water equivalent algorithm is perfected.

Hughes aircraft Company has not been tasked to develop an SSM/I cloud amount
algorithm over ocean backgrounds. Investigation to date indicates an accurate algorithm over
ocean is plausibie. In fact, an algorithm has recently been developed but requires validation.
It is important to note that cirrus clouds are transparent at SSM/I frequencies over ocean and all
other backgrounds and so any SSM/I cloud amount algorithm will lack cloud coverage
information in areas containing only cirrus type clouds.

SSM/I data combined with other types of data and several SSM/I geophysical parameter
algorithms offer the opportunity for improvement to the Air Force’s RTIVEPE operational global
cloud analysis. Cleud amount estimates from potential SSM/T algorithms might prov< to be
more accurate in certain situations th: 2 those obtained from OLS data by the RTNEFPH. The
extraction of cloud type aformation z sailable in color composiie SSM/T wrd OLS (visible and
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IR) imagery probably could be auiomated a~d inccrporated into the RTNEPF analysis. Other
promising, SSM/I contributions to the RTNi H include improvements to its sn »w and ice cover
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data base and more ac.urate and timel' estimation of expected IR temperatures for cler
conditions over vegetated land, moist soils, desert, and arable land.
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AV GUOLOCATION
A.l  INTRODUCTION

The process of geolocating SSM/I pixels was investigated and described in detail by Gene
A Poc and Robert W. Conway in Section 6.0, Volume 1 of this report and also in [1]. In brief
they found geolocation errors of the order of 20 to 33 km and discovered that approximately onc
half of this error was due to the use of a2 sev-n-day predictive eghemeris in data processing at
Flect Numerical Oceanographic Center (FNOC® Tius variable error was removed when the
saiellitc ephemeris, contained in the down-link «..ta stream, was used in place of the predictive
ephemeris in the data processing beginning with revelution 10048 on May 31, 1989. Due to
system testing the predictive ephemeris was used for short piericis of time until revoiution 10647
July 12, 1989. Poe and Conway found indications that the remaining esror of about +/- i3 km
could be reduced to within specisication of +/- 7 kim by the usc of a constant ¢r slowly varying
and predictable adjustment to the apparcat spm 2xis of the S3M/I in the geolocation software.
This does not -.ecessarily mean that the SSM/I axis is misaingned with respect to the spacecraft,
but only that it is possible to compensate by this means for some other errar or ertors i the
overall system. They concluded that indications were that spacectaR attituce biases were not
the main contributor to the remaining error.

Their inmtial work to determine the software adjustment to the spin axis was hampered
by the difficulty in obtaining the spacecraft ephemeris, matching it to the correspondirg SSM/I
data and then recalculating the geolocation. It was nacessary to wait until the satellite ephemeris
waz used in operational data processing at FNOC . order that a sufficiently large avmber of
cascs could be examined to ensure that the residual error was indeed constant and could be
re-noved. This has now been done and a constant software correction to the apparent spin axis
has been determined which reduces the geolocation error to less than the DMSP SSM/1
geolocation accuracy specification of +/- 7 kin. The procedure, data selection and results are
described in the foliowing sections.

A.2 PKROCEDURE

The accuracy of the SSM/I geolocation was determinad by a visual companson of SSM/I
85 Ghz Lorizontally polarized brightness temperature (85H) images wiik supenmposed World
Dat: Banks II (WDB2) coastlines on a colr monitor. Incremental pitch, roll and yaw
worrections were estimated by trial and ervor and the SSM/I image geolocation repeated until the
SSM/E and WDBZ coastline; coincided. The WDB2 ceastlines are believed to be accurate to
better than I km over 90% of all identifial "= shoreline features and introduced no significant
e.tor 1n the coutparison. The 85H has a reso.ution of 13 km and is sampled each 12.5 km along
scar. Suwessive fcans are separated by 12.5 km. Interpolatict of these data using the
procedure developed by Poe {2} produced an additional three equally spaced samples between
each origiral pair in the scan direction and an additional three scans between successive scans;
a sixteen (old increase in data deasity. The regio .s selected werr: 20 degree by 20 degrec boxes.
This resvlted in a pixel separation on the monitor nf the geciocated 85H image varying from
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about 4.2 km at 1 equator to about 2.8 km at high latitudes. The WDB?2 coastlinc was onc
pixel wide on the monitor. 1t was generally pussibie to obtain agreement between the 85SH and
WDB2 coastlincs to ne pixel or about 3 to 4 km. The use of higher resolution en the monitor
would not have improved this precision significantiy.

The 85H was chosen because it has the highest spatial resolution of any of the channcls
and a high brightness temperature contrast between land/water boundaries. This contrast varied
between about 50 and 100 K depending upon atmospheric conditicns. Orly images containing
clear sharp land/water boundaries not obscurcd by heavy clouds or rain were selected. The
RMS noise output of the 85H was generally less than 1 K as shown in Figure A.1 unti! about
February 1990 when it began increasing. It increased to as much as 10 K before failing :ntirely
in February 1991. Images with RMS noise up to S K were used resuiting in a land/boundary
signal-to-noise of from 10 to 100. Thus it was readily possible to locate the coastline in the 85H
«mage to one fourth of a half power beam-width or about one pixel as stated above.
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Hughes Aircraft Company measured the antenna beam positio.s rolative to bore sight for
all seven channels prior to launch on DMSP F-8. Al channels were within 0.03 degrees of the
85H except the 37H which was displaced by 0.07 degrees. This would result in relative shaft
ot the two heams of about 2 km at the earth’s surface. The co-registrat.on was checked by
overlaying the 85H and each of the other channel images. They were aligned to witliin better
than 3 km; the accuracy of the measurement.

The algonthm used to geolocatc the 85H data with different pitch, roll and yaw of:sets
of the spin axis is fully described in Volume 1 of this report and in [1]). The computations used
the satellitc ephemeris position vectors stored approximately each minute in the TDR archival
tapes produced at FNOC. Th:zse computations would normally not introduce significant error.
However when the satellite ephemeris was incorporated into the SSM/I processing at FNOC the
ephemeris time was truncated to integer seconds. This error was not corrected urtil revolution
17057 on October 9, 1990. The error was minimized by adding one half second to the truncated
time res' 'ting in ar error of up to one half second in the geolocation computations. Since ihis
is a tin rror it prinarily affects the intrack position ~ad closely resembles a pitch error. A
half second timing error is equivalent to a 3.3 km posiuon error or about a tenth of a degree
pitch error.

Consideration of the above sources of error indicates that the geolocation pmecedire used
here to obtain pitch, roll and yaw corrections for a software vealignment of the apparent SSM/1
spin axis to correct geolocation errors is accurate to better than 6 kms. This is consisteni with
the geolocation accvracy specification of +/- 7 km.

A.3  DATA SELECTION

The images for coast line comparison were selected to allow possible systematic
variations due to the time of year, sun angle, Jatitude, longitude and ascending/descending orbits
to be exarmned. This requires data covering a range of more than S000 orbits. In order to use
only data processed with the satellite ephemeris only data from revolutions following number
10048 were selected. The noise of the 85H chznnel was below 1 K until about revelution 13500
on January 30, 1990 after which it began increasing; see Figure A.1. Therefore it was
necessary to use some images with noise as Jarge us 5 K. Data from 203 ortits during the
period June 2, 1989, revolution 10070, to July 29, 1990, revolution 16036, were used for
coastline compas.sons. The center latitude and Iongiiude of the 20 degree by 20 degree regions,
the number of ascending and descending revolutions, the pitch, roll and vaw corrections which
elinvinate the geolocation error and the Julian dates of the images are given in Tabk A.l1. The
distribution of the data as a function of the day of year. center latitude and center longitude is

given in Figures A.2, A.3 and A.4 respectively. The sun angle for revolutions 10000 through
16000 is shown in Figure A.S.
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A.4 RESULTS

The pitch, roll and yaw corrections which eliminate the geolocation error are shown as
a function of revolution number for all 203 cases in Figures A.6, A.7 and A.8 respectively.
There is almost no variation in the value of the roll or yaw correction. The piich correction
shows a greater variation tha~ either the roll or yaw with 2 standard deviation of 0.11 degrees.
This is not surprising since tinuing errors result in geolocaticn errors very similar to those caused
by pitch ervors. A timing error of 1 second produces a 6.6 km intvack geolocation error which
is roughly the szame as a .18 degree pitch esror. Thus the (.11 degree pitch error resembles
a 0.6 second timing error. As mentioned earlier the twuncation of the ¢phemeris kme for all of
the data used here results in timing errors of up t6 0.5 seconds. There 13 just & hint that the
pitch error may be slightly larger (more pmmve) at larger sun angles when the sensor 1s warmer
but no sun angle dependent cotrection s necessary or justifiabie. The pitch correction is also
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independent of latilade and iongitude and is the same for ascending and descending passes as is
shown in Figures A.9 through A.12. Thus a constant correction is possible.
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Figure A.9 SSM/I Geolocation Pitch
Correction as a Function of Latitude

Figure A.8 SSM.I Geolocation yaw
Correction

The pitch, roll and yaw correction: to the apperent SSM/I spin axis which brings the
SSM/I genlocation within the specification of +/- 7 km 1is:

Puch = .21 degrees
rRoli = -0.10 degrees
Yaw = +0.70 degrees.

The sign of these coeflicients is according to the DMSP conveation which 18 shown in Figure
A.13. The geolucation shsift impo: od by this realignmeat as a function of scan angle is shown
in Figure A.14. In the figure the positive cross track directios is to the port side and the
positive in track direction is aft of the spacecra®. The bottom curve is the scan track with no
correct.on and the curve displaced towards the upper left is the shifted scan track resulting from
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the above correction. The 1 agnitude of the geolocation shift in both the cross track and in track
dirpction is given in Figure A.15 as a function of scan angle. Note that the total geolocation
shift ranges from about 8 to 15 bm. The change in incidence angle resulting from the
realignment of the spin axis as a function of scan angle is given in Figure A.16. The
calculations i+ Vigure A.14 through A.16 are with respect to a spherical earth. They will change
slightly in ¢. tail with latitude for an oblate spheroidal earth model and with the rotation of the
argwinent of periges of the slightly elliptical P-8 orbit. In order to determine the magnitude of
the incidence angle variation for an oblate spheroid model of the earth and the extremes of the
elliptical orbit, calculations were made for revolutions 15106 and 15563 for which the argument
of perigee is 90 and 0 degrees respectively. The maximuwm change of incidence angle during
a single scan was (.30 degrees. The maximur incidence angle variation over the two orbits was
0.88 degrees. It .sheuld be noted that a change of © 72 dzgrees results for these same orbits for
a zero pitch, roll and yaw corrcctioni. The primary canse of the incidence -ingle variation, for
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this alignment correction, is thx ariation of spacecraft altitude which ranged from 837 to 885
km over these orbits. Incidence angle variations of +/- 0.5 degrees can resuit in brightness
temperature changes of +/- 1 K or more and refined environmental retrieval algorithms must
take the actual incidence angle at each scan position into account.

Pitch = —~0.21 Roll @ —0.10 Yaow = 0.70C
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a3 / — T ] "\—¥\ -
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~ |
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% N
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. .

Scon Angle (deg)

Figure A.16 SSM/I Incidence Angie Change Due to Spin Axis Realignment

It is possible to geolocate any of the archived FNOC processed F-8 SSM/I data to an
cecuracy of +/- 7 km using the above spin axis correction. For those data prior to July 12,
1989 when the satellite ephemeris was not used in the FNOC processing a new ephenieris must
be generated. This is possible using, for example, orbital elements from the Space Surveillance
Center (SSC) of the United States Space Command (formerly NORAD), Cheyenne Mountain,
Colorado or the Naval Space Surveillance System (NAVSPASUR}, Dahlgren, Virginia and their
resnective orbital prediction programs. The difference in geolocation obtained by using the
sateilite ephemeris and that using NAVSPASUR orbital elements and the PPT7 ephemeris
prediction program for revolution 10121 is given in Figure A.17 as a function of time. The
error i3 at most 6 km with a standard deviation of 2.5 km. This accuracy is not strongly
dependent upon the number of revolutions over which the ephemeris is propagated. The mean
and standard deviation of the geolocation difference beiween the two  iemerides for nine
different compari: s is given in -Jigure A.18 as a function of the nunher of revolutions
propagated. The mean difference of all nine comparisons is 2.% km with a standard deviation
of 1.4 km.
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It should be noted that a yaw correction may result from a timing or other error in the
start of scan signal and need not be an alignment error ot the spin axis. The pitch and roll
corrections of -0.21 and -0.10 degrees respectively are entirely consistent with the Hughes
antenna beam alignment error specification with respect te the spacecraft of +/- 0.2 degrees in
all three axes. Therefore the above correction is consistent with the SSM/T design alignment
tolerances but dces not necessarily mean that the SSM/T axis is misaligned with respect to the
spacecraft. However it is possible, by using this correction to the apparent spin axis, to
compensate for alignment error -r other errors n the everail system and geoiocaie the SSM/I
to an absolute accuracy of +/- " km.

An example of the improvement in geolocation resulting from the use of this software
correction of the spin axis alignment is given in Figure A.19. The 85H image of the southemn
part of South Americ obtained from revolution 11155 on 17 August 1989 without the costeciion
is shown on the left .nd with the correction on the right. The r: d areas are pritiarily lower
elevation land. The light and dark blue areas in the Andes are lve to snow. The light blue
areas in the vicinity of the Falkland Islands are heavy clouds. Note the excellent agreement
between the 85H image and the WDB2 coastlines and lakes thiroug.iout the image. It choula be
noted thai this uniform spatial fidelity can only be obtained with the three angle spin axis
correction and ¢ :nnot be duplicated by a simpile two dimiensional translation »f the image.

Accurate geolocation is very important for the delineation and recognition of smail
atmospheric and terrain features. This is especially true if successive passes over a specific
region are to be averaged for the study of slowly varying phenomena. It is also essential for
algor thm development and validation; particularly in the case of precipitation, sea ice edge and
land surface type. Now that the geolocation problem has been soived and th . methodology for
determining the correction -stablished the accurate geplocaiion of SSM/I's on {uture DMSP
satellites can be readily accomplished.
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