
AFIT/GCE/ENG/93D-06

AD-A274 072

Developing Realistic Behaviors

in Adversarial Agents for Air Combat Simulation

THESIS

George S. Hiuck
Captain, United States Army

AFIT/GCE/ENG/93D-06

Approved for public release; distribution unlimited

l93-31035
93 12 22 1 4S Ou 1IIlII

Best
Available

Copy

AFIT/GCE/ENG/93D-06

Developing Realistic Behaviors

in Adversarial Agents for Air Combat Simulation

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineeraig

fACc
e-i6c n:~,

NTIS~

George S. Hluck, B.S.

Captain, United States Army F3.

S. , ... :..... ..

December, 1993 D:st
S'j i I

D=TICQUALIT my wm 'pý

Approved for public release; distribution unlimited

Preface

I would like to thank my thesis advisor, Major Gunsch for his guidance and

mentorship. His high standards and expectations for course and research work were

greatly appreciated. I would also like to thank my committee members, Dr. Hartrum

and Dr. Santos, for their time and effort.

George S. Hluck

ii

Table of Contents

Page

Preface ii

List of Figures vii

List of Tables viii

Abstract ix

I. Introduction 1-1

1.1 Background 1-1

1.2 Problem 1-2

1.3 Research Objectives 1-3

1.4 Summary of Approach 1-3

1.4.1 Phase Architecture 1-3

1.4.2 Maneuver Architecture 1-4

1.4.3 Maneuver Implementation 1-5

1.4.4 Algorithmic Planning 1-6

1.5 Assumptions 1-6

1.6 Scope 1-6

1.7 Summary 1-6

II. Literature Review 2-1

2.1 Introduction 2-1

2.2 Time-Dependent Planning 2-1

2.3 SOAR 2-2

2.4 Reactive Systems 2-2

iii

Page

2.4.1 Subsumption Architecture 2-3

2.4.2 Embedded Planners 2-3

2.4.3 Behavior Control Systems 2-5

2.4.4 Universal Plans 2-5

2.5 Rule-based Systems 2-6

2.6 Maneuver Information 2-7

2.7 Verification 2-7

2.8 Summary 2-9

III. Methodology 3-1

3.1 Introduction 3-1

3.2 Method Justification 3-1

3.3 Background 3-4

3.4 Developmeit Approach 3-5

3.4.1 Knowledge Definition 3-5

3.4.2 Knowledge Design 3-8

3.4.3 Code and Checkout 3-13

3.4.4 Knowledge Verification 3-13

3.4.5 System Evaluation 3-14

3.5 Summary 3-14

IV. Program Development 4-1

4.1 Introduction 4-1

4.2 Rule Reasoning Process 4-1

4.2.1 Phase Architecture 4-1

4.2.2 Phase Description 4-2

4.2.3 Maneuver Architecture 4-5

4.2.4 Flight Model Adjustment 4-17

iv

Page

4.2.5 Missile Maneuvers 4-18

4.2.6 Planning 4-19

4.3 Program Flow 4-21

4.3.1 Decision Cycle 4-23

4.4 Summary 4-25

V. Experimentation and Results 5-1

5.1 Introduction 5-1

5.2 Maneuver Example 5-1

5.3 Missile Engagement 5-1

5.4 Agent Engagement I 5-3

5.5 Agent Engagement II 5-4

5.6 Aberrant Behavior 5-6

5.7 Real-Time Evaluation 5-8

5.8 Orientation Rates 5-8

5.9 Summary 5-9

VI. Conclusions and Recommendations 6-1

6.1 Introduction 6-1

6.2 Research Objective Conclusions 6-1

6.3 Lessons Learned 6-3

6.4 Future Work 6-3

6.5 Summary 6-4

Appendix A. Maneuver Computations A-1

A.1 Introduction A-1

A.2 Flight Model Calculations A-1

A.3 Heading Convention A-2

A.4 Maneuver Calculations A-2

A.5 Orientation Calculation A-4

v

Page

Appendix B. Rulebase and Functions Listing B-i

B.1 Acquire B-1

B.2 Analyze B-2

B.3 Avoid B-3

B.4 Breakoff B-4

B.5 Cruise B-4

B.6 Disengage B-5

B.7 Engage B-5

B.8 Evade B-7

B.9 Fire B-8

B.10 Pursuit B-10

B.11 Search B-10

B.12 MAIN B-11

Bibliography BIB-1

Vita VITA-1

vi

List of Figures
Figure Page

3.1. PDPC object diagram 3-16

3.2. General phase design 3-17

4.1. Maneuver architecture 4-7

4.2. Sub-goal determination 4-9

4.3. Types of pursuit 4-11

4.4. Simple maneuvers 4-12

4.5. When to evade 4-16

4.6. PDPC program flow 4-21

4.7. Agent status stages 4-21

4.8. Decide on lead turn rule 4-26

4.9. Decide on lead turn point rule 4-27

4.10. Nose turn speed same rule 4-28

5.1. Lead turn execution 5-2

5.2. Multiple missile launches 5-3

5.3. Pilot and bogeyl maneuvering 5-4

5.4. Two agents maneuvering 5-5

5.5. 3-dimensional view of two agents maneuvering 5-6

5.6. 3-dimensional view of aberrant behavior 5-7

A.1. Heading convention A-2

A.2. Angle off the tail A-3

A.3. Different pursuit positioning A-4

A.4. Look angles in 3-dimensional space A-5

vii

List of Tables
Table Page

4.1. Possible phase transitions 4-6

4.2. Orientation rates adjustment 4-18

viii

AFIT/GCE/ENG/93D-06

Abstract

This thesis describes an initial effort into creating a rule-based, reactive system

for air combat simulation. This program uses the object-oriented extension of the

expert system tool known as the C Language Integrated Production System (CLIPS).

This effort rose out of the need for creating and integrating semi-autonomous forces

for the Distributed Interactive System (DIS).

This thesis describes the basic maneuvers a pilot uses in present air-to-air com-

bat. The methodology includes the design decisions, knowledge-base development,

phase architecture, and maneuver architecture development. The actual implemen-

tation of the selected architecture is described. This thesis also discusses the results

of experimental runs with two agents maneuvering against one another.

ix

Developing Realistic Behaviors

in Adversarial Agents for Air Combat Simulation

L Introduction

1. 1 Background

The Air Force is constantly searching for economic and efficient ways to train

pilots. One manner in which this may be achieved is through the use of computer

simulations to test and train pilots. The difficulty lies in implementing an effective

training system which can link together many forces from various units into one

virtual, combined-arms battlefield. Not only does the system have to incorporate a

mixture of actual units, but also create additional semi-autonomous and autonomous

(virtual) forces. The advantages of this system would enable a few pilots to train with

parent and combined-arms units without having to involve the presence of additional

personnel.

The Advanced Research Projects Agency (ARPA) is currently promoting and

funding research for a Distributed Interactive Simulation (DIS). DIS would enable a

multitude of units to train together on one virtual battlefield without having everyone

physically at one location. For example, on this battlefield a tank commander at

Fort Knox, Kentucky could look out of his hatch and see an F-16 piloted by someone

at George AFB.

There is great need for an expansion of computer-generated forces in the mil-

itary. Organizers of the 3rd Computer Generated Forces Conference briefed the

attendees on present shortcomings (14). There presently is no balanced representa-

tion of joint operations in military computer simulations. One major shortcoming is

the minimal Air Force participation in this field.

1-1

Some of the artificial intelligence (AI) personnel at the Air Force Institute of

Technology are investigating ways to implement semi-autonomous computer gener-

ated forces. We are presently attempting to expand on a former class project which

utilizes adversarial agents in an air combat simulation called MAXIM, created us-

ing the Common Lisp Object System (CLOS) (8). The simulation pits two agents

against each other in simple air-to-air combat. The simulation is primitive. The

plane agents follow simple flight paths and use simple strategies. The challenge ex-

ists to expand MAXIM to a simulation which can interface with other simulations

and realistically perform.

1.2 Problem

MAXIM, in its present form, is a simple reactive system. It avoids planning

altogether, and does not anticipate and select an entire action sequence before act-

ing. Reactive systems are normally associated with robotic systems, since robots

normally have to deal with dynamic situations. An intelligent system that operates

in a moderately complex or unpredictable environment must be reactive. In being

reactive the intelligent system must decide when to start thinking, when to stop

thinking, and when to act.

Captain Dean Hipwell and I started working together on a similar idea in

a class on knowledge-based systems. Our thesis efforts began as a class project,

and have greatly expanded since its conception. We worked together on the design

of the system and concentrated on different areas for implementation. I essentially

worked on the maneuvering, one-on-one aspect of the problem while Captain Hipwell

concentrated on the cooperative, two-on-two aspect of the problem. Captain Hipwell

was also the primary author of the flight model (13).

We believe it is feasible to create a rule-based, reactive system where agents

participate in air-to-air combat. We used an expert system tool known as the C Lan-

guage Integrated Production System (CLIPS), and eventually progressed to using an

1-2

object-oriented extension known as the CLIPS Object Oriented Language (COOL).

We call our program Pilot Decision Phases in CLIPS (PDPC). PDPC is a rule-based

reactive system where objects act as autonomous agents who can maneuver in an

air combat situation.

1.3 Research Objective,

1. Define and create a phase architecture.

"* Identify the phase transitions of a pilot while executing a mission.

"* Decide how an agent can transition between phases.

"* Decide how to correctly implement such a structure in CLIPS.

2. Define and create a maneuver architecture.

"* Examine in detail air combat maneuvers and the tactics involved in their

execution.

"* Decide how to decompose a maneuver into parameters so that a flight

model can use the parameters to fly an agent.

"* Decide how to correctly implement the architecture in CLIPS.

3. Use knowledge acquisition techniques to encode a set of maneuvers.

"* Find appropriate knowledge sources for us-, as domain experts.

"* Transfer the information by encoding the maneuvers into a rule-base.

"* Verify and validate the knowledge base.

4. Enable an agent to use an opponent's history to predict where he will fly.

5. Enable an agent to use AI techniques to plan while it has time.

1.4 Summary of Approach

1.4.1 Phase Architecture. A successful air-combat mission normally con-

sists of a sequence of phases. During each phase the pilot needs to accomplish certain

1-3

tasks before moving on to the next phase. The phase transitions are not always se-

quential; sudden environmental changes can prompt the pilot to switch to another

phase to execute an appropriate maneuver. The same approach is used in PDPC.

in PDPC. A complete sequence of phases were created where an agent's behavior in

this system is controlled by this phase architecture.

1.4.2 Maneuver Architecture. Traditionally, the information in a reactive

system flows from the environment to the object (in this case the agent) via sensing.

The information then flows back into the environment via action done by the agent.

As more complex behaviors are introduced into the system, this loop can take too

much time. I attempt to find a balance; some way to layer the appropriate behaviors

so the system can essentially react as quickly as possible. A simple architecture

would consist of two vertical layers: perception and action. The agent would receive

some input and then react to that input, if necessary.

My approach uses an architecture which consists of 3 vertical layers: percep-

tion, reactive plan selection, and action. The perception layer receives input and

feedback from the environment. It outputs a selection to the reactive plan selection

layer. This layer then outputs a sub-goal for execution to the action layer. The

action layer executes the action, and outputs feedback to the perception layer. Since

it is desirable for the architecture to approach real-time performance, anything more

complex can become computationally inhibitive.

1.4.2.1 Perception. The perception layer receives inputs from several

sources: feedback from its action, actions from opponents, and actions from cooper-

ative agents. Although I am not concentrating on the cooperative aspect, it is still

important to incorporate this input.

1.4.2.2 Reactive Plan Selection. This layer contains the maneuver

plan,. It will select an appropriate maneuver for execution. This plan is the input

1-4

for the action layer. This is also the layer where the agent, in the future, will be able

to 'plan while it can' by activating something similar to an anytime algorithm.

1.4.2.3 Action. This is where the goal is given to a flight model and a

new location is calculated for the agent. The state of the simulation is also updated

at this time.

1.4.3 Maneuver Implementation. The bottom line in airplane maneuvers

is maintaining energy, both potential and kinetic (31). An agent must maneuver to

gain an advantageous position while still maintaining energy.

My goal was to implement the following set of complex fighter maneuvers:

"* Pursuit curves

- lead

- lag

- pure

"* Lag displacement roll

"* High yo-yo

"* Low yo-yo

"* Lead turn

"* Nose-to-nose turns

The presence of cooperative agents compounds the difficulty of this implemen-

tation. A leader, when maneuvering, needs to make sure he and his wingman do

not collide. The problem multiplies while flying in a large formation. An agent can-

not blindly execute a sequence of maneuvers without checking for other cooperative

agents in the area. PDPC attempts to avoid collisions with the appropriate rules.

1-5

1.4.4 Algorithmic Planning. Although not implemented, we realized the

need for the addition of some sort of embedded planner. While not in a confrontation

an agent should be able to do minimal planning on its own. I think it is possible to

implement an appropriate algorithm to enable an agent to accomplish this. Anytime

algorithms can be implemented by interleaving computation and action. This con-

cept neatly fits into a reactive system for air-combat simulation since there are lulls

in engagements in which an agent can adjust its plan or plan for a future situation.

1.5 Assumptions

I made two major assumptions at the beginning of these research effort:

1. The developed flight model is sufficiently realistic for research use.

2. For every possible situation in air-to-air combat a maneuver exists, which, if

properly executed, results in appropriate behavior.

1.6 Scope

This research effort concentrated on the development of a phase and maneuver

architecture for a rule-based reactive system. To develop a complete system, where

the behavior of these agents is indistinguishable from those of actual pilots, is beyond

the scope of this research effort. PDPC can presently run rudimentary simulations.

The rule-base contains an appropriate amount of knowledge which enables the agents

in the system to maneuver as virtual pilots and show that potential exists for this

approach.

1.7 Summary

The completion of this thesis effort has enabled me to create a rule-based simu-

lation which enables two agents to maneuver against each other in air-to-air combat.

This effort is documented in the following chapters. Chapter II reviews the liter-

ature associated with current approaches in Al system architectures. Chapter 1II

1-6

explains the methodology used in designing PDPC, while Chapter IV explains the

implementation. Chapter V discusses the obtained results, and Chapter VI closes

with the research conclusions. Appendix A briefly discusses some of the mathemat-

ics involved. Appendix B provides a listing of the entire rule-base and associated

functions.

1-7

HI. Literature Review

2.1 Introduction

The purpose of this chapter is to review the literature associated with artificial

intelligence architectures and their planning methods. I am most concerned with

those architectures which can produce real-time performance. Real-time architec-

tures have the following characteristics (7):

"* Speed

"* Responsiveness

"* Timeliness

"* Graceful degradation.

Selecting an appropriate planning methodology will ensure that PDPC will exhibit

real-time characteristics. Three choices are possible for my planning methodology:

take things one step at a time without really trying to plan ahead, create a plan

that is likely to succeed, or combine the two extremes to find a suitable compro-

mise. There are numerous approaches presently available to implement a real-time

architecture. They extend through the entire range of planning methodologies. The

major approaches follow.

Also important is the source of knowledge used in an air-to-air simulation.

Several sources were used which accurately describe pilot decisions and maneuvers

in air-to-air combat. I use these sources as the domain experts in air-to-air combat.

2.2 Time-Dependent Planning

Time-dependent planning problems are characterized by there being a variety

of reactions to predicted events and a range of response times occurring in practice

(5). Dean and Boddy propose a theoretical framework for solving time-dependent

problems using anytime algorithms, but they have not implc.iented this approach

. z-1

for solving real-world problems. One solution is to use an algorithm whose quality

of results depends on the amount of computation time. These algorithms, known

as anytime algorithms, introduce a tradeoff between computation time and quality

of results. The most important characteristics of these algorithms are that (i) they

can be suspended and resumed with negligible overhead, (ii) they can be terminated

at any time and will return some answer, and (iii) the answers returned improve in

some well-behaved manner as a function of time (5). A particular type of anytime

algorithms, labeled interruptible, is applicable for thesis effort. Interruptible anytime

algoritbms produce a result even when interrupted unexpectedly (27). This type of

planning does not provide optimal answers, but good enough solutions.

2.3 SOAR

Presently there is a team of researchers working on an air-to-air combat sim-

ulation using the SOAR architecture. This project shows promise as SOAR is a so-

phisticated, cognitive architecture that attempts to approximate human intelligence.

As the system learns its performance improves. So far they have not developed a

knowledge base to the depth which would enable an agent to fly against another (16).

SOAR presently is not a practical architecture to use in a real-time system. How-

ever, future success is anticipated as the researchers concentrate on more complex

behaviors.

2.4 Reactive Systems

Reactive systems avoid planning altogether. Reactive systems use the observ-

able situation as a clue to which one can simply react (25). These systems collect

information and use that information to look up a plan to execute next. All the

plans are already present in the system. Knowledge about decision making is built

into the system a priori. A reaction consists of a series of reflexive behaviors, and

can display surprisingly complex behavior (1).

2-2

An interesting effort in the field of robotics is the use of reactive systems in

robots performing space exploration. NASA has developed a standard architecture

to use when designing robots for space exploration. This architecture is called the

NASA/NBS Standard Reference Model (NASREM) and is hierarchically structured

into multiple layers of decreasing complexity and horizontally partitioned into three

sections: sensory processing, world modeling, and task decomposition (3, 20). Re-

searchers have used this architecture to develop knowledge-based robotic systems for

use in industry (3).

2.4.1 Subsumption Architecture. An architecture is normally composed

of a series of vertical layers. Each layer is responsible for more complex behaviors.

The first layer obtains the input, manipulates it, and perhaps performs some action.

The manipulated information is then passed onto the next layer to support more

complex behavior. Brooks proposes a subsumption architecture which consists of a

series of horizontal layers (2). Each layer receives input at the same time and can

immediately manipulate the input for its purposes. This architecture decomposes

in terms of behavior instead of functional modules. This architecture has been

successfully implemented on a mobile robot which can navigate around obstacles in

a hallway.

There are variations of this architecture presently being worked on. There

are researchers who have integrated high-level planning activities with lower level

reactive behaviors. This approach is similar to Brooks', since behaviors are defined

as fine-grained as possible and are combined to define a behavior. This approach is

used to implement the navigational control of a real-time autonomous vehicle control

system (24). The layers of complex behaviors are labeled levels of competence. The

higher the level of competence, the more complex the behavior.

2.4.2 Embedded Planners. There have been attempts to embed a planner

within a reactive system, hoping to obtain the best of both worlds. This integrated

2-3

approach attempts to use a planning methodology appropriate to the situation. If

the approach is successful, then the disadvantages of the two combined approaches

are overcome, and the advantages retained.

Some have attempted to embed a reactive controller in a classical planner-

based architecture to enable a system to operate in a dynamic domain (26). The

architecture receives input, extracts the initial and goal state, and sends them to the

planner. The execution layer can either receive a plan from the planner or respond

reactively to the input. This work is theoretical, and has not been applied to a

real-world application.

Another approach to building a reactive system is to check if the goal is achiev-

able before constructing a plan. This method extends explanation-based learning to

enable general reactive plans to be learned from observation (11). This system can

determine if a goal is achievaLle without having to determine the actions necessary

to achieve that goal. There are three classes of problems for which an achievability

proof can be constructed: those that consist of repeated actions and a terminating

goal, those that consist of constantly changing quantities and intermediate goals,

and those that contain multiple opportunities.

Yet another architecture uses a reactive system but when forced to plan uses

explanation-based learning to add to the present set of plans. This Theo-Agent

architecture can reduce task time from several minutes to under a second once it

learns the task (22). This architecture is used by a robot agent which reacts to its

surroundings. Once it encounters an unfamiliar situation, the robot agent formulates

a stimulus-response rule which it adds to its reactive plan set. This architecture was

used to control a Hero 2000 mobile robot to search a laboratory for garbage cans.

Presently, the robot operates in a simple domain, and is not capable of complex

behavior.

Another similar view is to incorporate adaptability and anticipation into the

system. Whitehead and Ballard propose an architecture which uses a look-ahead

2-4

mechanism for anticipating better plans (33). This system is adaptable because it

estimates the value of internal states and prioritizes the rules it uses to create a plan.

They maintain that adaptability is essential to a reactive system since it is unlikely

that a designer can anticipate every situation, especially in a dynamic domain.

This adaptable reactive system (ARS) is a parallel, adaptive rule-base system.

ARS operates by constantly sensing the state of the world. It uses a bidding mech-

anism which selects a rule from a set of active rules based on an assigned priority.

A utility estimator assigns the priorities by checking the present state of the world.

ARS is able to generate new rules and replace old, less useful rules. This system is

currently being implemented and tested on simple problems such as stacking biocks.

Kaebling presents a simple architecture which at the top level is composed of

a perception and action layer. This approach is similar to Brooks' (2). Kaebling

proposes an iterative planning system. The planner works incrementally, storing its

state when other parts of the system need to do work (17). This methodology has

been implemented on a robot which executes simple tasks such as moving down a

hallway without crashing into the wall.

2.4.3 Behavior Control Systems. This architecture uses a reactive planner.

Instead of using a large number of primitive actions that are discrete, it implements

actions that are continuous. The controller reconfigures the system to use a small

amount of primitive actions in different ways instead of relying on a substantial

amount of primitive actions. The central concepts of this architecture are (9):

1. Activities form a useful abstraction for discussing and representing primitive

actions.

2. Activities can be implemented in a control system as instructions to enable,

disable, and configure a fixed set of sensing and action routines.

2.4.4 Universal Plans. The idea of a universal plan is closely tied with

reactive systems. It consists of a set of plans which say (28):

2-5

If, while achieving a goal, a particular condition occurs, then perform this action.

A universal plan contains a specific reaction for every anticipated situation. If a

system using a universal plan encounters a situation for which it has no specified

plan, it uses a default plan. A universal plan selects the action to be implemented

at execution time. The actions a universal plan can select are designed so that they

always move the current situation closer to the goal state in a cooperative world.

The difficulty lies in building the contents of the universal plan. The universal plan

structure replaces procedural indexing with sensory indexing; makes explicit the

conditions under which actions are applicable; renders notions of success and failure

irrelevant at execution time; and encourages hierarchy (28).

MAXIM was built using a simple universal plan (8). Its universal plan con-

sisted of three simple behaviors: search, attack, or evade. It switches between plans

depending on what the aircraft senses.

NASA's Extra Vehicular Activity (EVA) Retriever robot is currently being

developed to retrieve untethered tools and astronauts orn the Space Shuttle. EVAR

is essentially a free-flying robot. It uses universal planning; Schoppers describes the

synthesis of universal plans, intermixing sensing and effecting (29).

2.5 Rule-based Systems

Some researchers have attempted to create real-time systems using a rule-based

approach. Since the CLIPS language was created by NASA, it is used for their own

expert systems. Efforts are underway to create rule-based systems for the real-time

interpretation of space shuttle telemetry data (4).

The CLIPS language uses the Rete net to efficiently perform pattern-matching

with many objects and many patterns. The efficiency of the Rete net hinges on

the data flow. It depends on the state space not changing frequently to obtain its

performance advantage. In this simulation, this cannot be avoided. Researchers

have identified the real-time shortcomings of the Rete net and have recommended

2-6

and created enhancements (19). These enhancements were taken seriously since the

newest version of CLIPS has incorporated these enhancements.

CLIPS is a forward-chaining system, reasoning from data to goals. There

have been efforts to implement backward-chaining in CLIPS so that a goal-directed

approach can be used when necessary. Homeier discusses an extension of CLIPS

called ECLIPS, which is an extended CLIPS for use with goal-directed reasoning

(15). It is also possible to implement simple backward-chaining in a forward-chaining

system (12).

2.6 Maneuver Information

Shaw has written an exceptional text on air combat maneuvers (31). After

an extensive search for texts on air combat, I have found that nothing approaches

Shaw's book in terms of completeness and clarity. Most books on air combat consist

of personal histories or strategic plans. Shaw covers the basic principles of air com-

bat tactics and maneuvers from a neutral position. He clearly indicates when each

maneuver or tactic is appropriate, but remains flexible in their application.

Titan Systems conducted an analysis of pilots' decisions for the Pilot's Asso-

ciate Program (32). They interviewed pilots from the Air Force, Marines, and Navy.

The interviews consisted of mission scenarios. The pilots identified the decisions

they made during each phase of a particular mission. The researchers recorded the

data and created prioritized tables of information requirements, items, and decisions

that are made by a pilot (32). The study is quite valuable to individuals interested

in the data flow of air combat.

2.7 Verification

Nazareth has written an article that addresses the issue of rule-base verification.

He creates a general taxonomy and outlines the implications for system performance

2-7

2.8 Summary

The architectures that hold promise for a reactive simulation are found primar-

ily in the field of robotics. There researchers concentrate on architectures which can

continually monitor sensory input and execute an appropriate behavior. I selected a

fast, efficient architecture for simulation use based on one of the planning methods

reviewed. The architecture selected for this thesis effort is a rule-based, reactive

system which utilizes globally available data.

2-9

III. Methodology

3.1 Introduction

PDPC is a rule-based reactive system. Captain Hipwell and I use an object-

oriented approach in designing and implementing this program. CLIPS rules supply

the expertise for the control of the objects. The rules manipulate the objects through

associated functions and asserted facts.

Programs which simulate dynamic environments are always difficult to create.

Creating a simulation that can realistically perform in a fluid, fast-changing environ-

ment such as air-to-air combat is especially challenging. This is due to the following

reasons:

"* The environment is changing so quickly that it is impossible or not useful to

track every changing parameter. However, there are key parameters that must

be monitored for proper action selection.

"* If an agent executes the wrong action, there is no way to backtrack and execute

an alternate action. An incorrect action could be an agent's last action.

3.2 Method Justification

Artificially intelligent programs use some type of planning to execute the best

behavior for a particular situation. There are numerous approaches to planning as

discussed in the previous chapter. A traditional planning system computes several

steps of a problem-solving procedure before executing any of them. This method may

become very time consuming, requiring search through potentially large problem

spaces. In a dynamic simulation such as PDPC, much of the information required is

not available until execution time. Traditional planners also have no mechanism to

react to new situations; they might endlessly search a problem space. The central

problem with traditional planning systems may be viewed as over-commitment; the

systems have strong expectations about the behavior of the environment and make

3-1

strong assumptions about the future success of their own actions (10). A reactive

system normally does not contain an explicit planner. A reactive system quickly

assesses the situation and executes a behavior. A set of simple, reactive behaviors

can implement surprisingly complex behavior (25).

We decided on a rule-based approach to create PDPC. Using a rule-based

approach enables the encoding of knowledge into easily digestible pieces called rules.

The process was incremental, starting with a complete set of facts to define the

environment and rules to fire appropriately. Starting with only facts, rules, and

functions enabled us to trace in detail the program's data flow. This system evolved

into an object-oriented system that still uses facts and rules, with the important

players and plans implemented as objects. We essentially used a rule-based approach,

global data, and a forward-chaining inference engine to create a reactive system.

The architecture of a rule-based system such as CLIPS parallels the developed

maneuver architecture. Each rule in CLIPS is of the form situation -+ action. This

form is almost identical to the basic structure of a simple reactive system.

The initial version of PDPC described the entire world with rules and facts.

A number of facts were asserted for each agent, and the number of facts became

quite burdensome. Updating information about an agent consisted of retracting and

asserting facts. We eventually switched to an object oriented system using COOL.

The implementation of COOL reduced the number of facts dramatically because

information about an agent was now stored in the slots of an object. Some facts

were retained because they were needed for control and rule firing. We also took

advantage of the standard OOP characteristics such as inheritance and message-

passing. COOL has the ability to pattern match on object slots, so we kept our

basic rule-based structure. Switching to the newest version of COOL has reduced

memory usage and reduced execution time.

CLIPS has a number of useful features that makes it ideal for quick and ef-

ficient implementation of knowledge-based systems. CLIPS combines three major

3-2

programming paradigms. CLIPS allows the use of functional, rule-based, or object-

oriented style programming. It is also possible to use a combination of the three

paradigms. A good example is a rule that pattern-matches an object and calls a

function in a conditional element.

CLIPS provides for modularity of rule-bases. CLIPS enables a user to partition

encoded rules into modules. Rules are not visible across different modules; this

requires some rule duplication. The advantage gained by using modules far outweighs

this minor increase in code size.

CLIPS is written in C, and is available with all the source code. This enables

the user to modify the source code for his own purposes. Not only can the user

modify the source code but also write his own C functions that CLIPS can call.

CLIPS can create a stand-alone executable. A user can create a program

in C and embed a knowledge-based program created separately. The C program

can seamlessly call the embedded knowledge-based program and provide it input or

receive output.

CLIPS is written by NASA's Software Technology Branch. They continue to

upgrade the program and use it in their own systems.

We originally considered using LISP as the implementation language for our

system. LISP is a powerful language and is traditionally used in artificial intelligence

software. In developing CLIPS NASA stated the following constraints with using

LISP as a base language for an expert system (6):

e The low availability of LISP on a wide variety of conventional computers.

* The high cost of state-of-the-art LISP tools and hardware.

* The poor integration of LISP with other languages (making embedded appli-

cations difficult).

LISP implementations have overcome these disadvantages, but it was the ad-

vantages of CLIPS that convinced us to select it as an implementation language.

3-3

3.3 Background

A rule-based system is comprised of a collection of rules in the form of:

If this situation occurs, then perform this action

The left-hand side (LHS) of the rule is known as the antecedent, while the right-

hand side (RHS) of the rule is known as the consequent. If the conditions of the LHS

are satisfied, then the RHS actions are executed. These rules are a natural way to

encode knowledge for a particular domain. CLIPS consists of three basic elements:

the fact-list, knowledge-base, and inference engine. The fact-list contains the global

data. In COOL, the object slots also contain data. The knowledge-base holds all the

rules. The inference engine controls overall execution. It decides which rules should

be executed and when.

CLIPS is a forward-chaining system. Its reasoning flows forward from the

present situation to a selected action. This strategy maps an initial state to a goal

in a forward direction. This type of system is well suited for our simulation, since a

sub-goal is not established until the present state of the world is examined. If there

are many goals, reached by many different paths, then forward chaining may be

superior to backward-chaining (18). The ultimate goal of an agent in this simulation

is achievable through a sequence of sub-goals. The ultimate goal is to obtain an

advantageous position behind a target. For an agent to accomplish this goal, it must

accomplish, or fly to, each sub-goal until the ultimate goal is satisfied.

At run time CLIPS checks for facts that are asserted and pattern-matches them

with the rules. Any rule that has its LHS side satisfied is placed on the agenda. Rules

can be prioritized in CLIPS by assigning a salience. Satisfied rules are placed on the

agenda in order of decreasing salience. CLIPS then fires the rules, starting with the

first rule on the agenda. The program continues until no more rules can be placed

on the agenda. To prevent continual firing of the same rule, CLIPS uses refraction.

Refraction limits a rule to firing only once for a particular pattern-match.

3-4

I consider PDPC to be a large knowledge-based reactive system. It cannot be

considered an expert system because it does not exhibit some of the traits associated

with expert systems. It has no explanation facility nor can it improve itself by adding

knowledge to itself.

3.4 Development Approach

The basis of a linear model for expert system development was used to develop

PDPC. The linear model consists of the following phases:

"* Planning

"* Knowledge definition

"* Knowledge design

"* Code and checkout

"* Knowledge verification

"* System evaluation

During the planning stage a rudimentary work plan was established that served as

a guide for development. During this stage the feasibility of the effort was assessed.

The design portion of this model is concerned with two major tasks: knowledge

definition and knowledge design. The remaining phases of the model are discussed

in the latter chapters.

3.4.1 Knowledge Definition. The main objectives of the knowledge defi-

nition phase was to define the knowledge requirements of the system. Defining the

knowledge requirements consists of identifying and selecting the knowledge sources

and knowledge acquisition, analysis, and extraction.

Knowledge source selection and identification are important since the source

provides the baseline information for the entire system. The knowledge source acts

as the domain expert. For this system, sources were identified and selected according

3-5

to importance and availability. Knowledge source availability was considered to be

of most importance due to limited time and resources. The majority of maneuver

information was extracted from Shaw's book, Fighter Combat. Shaw's book describes

fighter maneuvers in great detail and concentrates on their employment using a

variety of tactics. Another important document was The Titan Report, a report

sponsored by Wright Laboratories to investigate what information a pilot considered

important while conducting a mission.

Once the sources were selected the knowledge acquisition process began. Knowl-

edge acquisition began with reading and studying the relevant documents. The doc-

umeits provide an extensive amount of knowledge regarding air-combat. It was nec-

essary to identify the specific knowledge that is required by PDPC. This consisted of

identifying the basic maneuvers necessary to successfully engage an a -sary, what

parameters need to be monitored, and what computations need to be calculated.

Once the specific knowledge was extracted, it was necessary to classify and

group the knowledge for inclusion into the system. A close examination of maneu-

vering revealed that there are specific maneuvers appropriate to different situations,

or phases in air-combat. This separation of maneuvers helped define the phases

designed and discussed in Section 3.4.2.

There is a considerable amount of information that a pilot has to consider

when selecting a maneuver. The Titan Report, conducted for the Pilot's Associate

Program, identified 40 key information items that a pilot must process during air

combat (32). There are several key parameters that are considered the most im-

portant and greatly influence the maneuver selection. The key parameters used for

maneuver construction are:

Target distance Tare-t distance is the three-dimensional distance between two

aircraft. This parameter is used extensively to trigger certain maneuvers and

phase transitions.

3-6

Angle off the tail (AOT) This parameter is an angle that describes the angle

between the pilot's line of sight to the enemy aircraft and heading of the enemy

aircraft. Reducing this angle is one of the primary goals in maneuvering against

an enemy.

Target heading and bearing Target heading is simply the direction the target is

flying. Target bearing is the difference between the pilot's heading and the

heading of the line of sight to the target. The position and intent of an aircraft

influences what maneuver is best used to approach it.

There are basically two types of maneuvering in air combat (31):

Angles The pilot attempts to gain a positional advantage, and then maintains or

improves the advantage until firing parameters are achieved.

Energy The pilot attempts to gain an energy advantage while not yielding a posi-

tional advantage. Potential energy in this case is defined by this equation:

E.,(ft) = H + V2/2g

where H = an altitude above some reference, V = true airspeed (ft/sec), and

g = acceleration of gravity (ft/sec2). The pilot then converts the energy to a

lethal positional advantage, without surrendering the entire energy margin.

The agents in this system attempt to gain an angular advantage on their op-

ponents. The angles fighter attempts to gain the angular advantage and thus sets

himself up for a missile shot. The energy fighter is more suitable for guns employ-

ment since in the energy fight it is usually snapshot opportunities that are acquired.

As the program becomes more complex energy maneuvers can be added and an agent

can pick between the two.

Since this program performs reactively, I had a greater influence in the ma-

neuver selection than if the program was designed to search a problem space for a

maneuver. The maneuver rules were designed so that they knew when to fire and

3-7

when not to fire. There are situations where more than one maneuver is applicable.

Simply duplicating the LHS of rules can lead to unpredictable behavior, since mul-

tiple rules will be placed on the agenda and it is difficult to control which one will

fire first. There are times when similar, multiple rules are placed on the agenda, but

their firing is controlled by the rule's salience. The higher salience rule will fire first

and assert a fact that will clobber the other, similar rules on the agenda.

3.4.2 Knowledge Design. The main objective of the knowledge design

phase was to produce a detailed design for this rule-based system.

The acquired knowledge for this system is primarily represented by rules.

Agents in the simulation are represented by objects. The objects contain slots that

hold information that describe the state of the object at that particular time. Facts

are primarily used for control. Their assertion enable the proper rules to fire at the

proper time.

Knowledge can be classified as domain-specific or general-problem-solving. If

domain-specific, it is either essential or heuristic knowledge. Essential knowledge

helps define the search space and provide criteria for determining a solution. Hcuris-

tic knowledge can improve efficiency of reasoning by informing procedures of the

best place to look for a solution.

The majority of rules in this program contain essential, domain-specific knowl-

edge. This is necessary for a reactive system. This program does not spend time

searching for a solution. If the conditions are right for a particular maneuver, then

the rule fires and the maneuver is selected. For the maneuvers, there is no sepa-

rate knowledge base. The necessary knowledge is encoded in the rules that select a

maneuver.

The agents in PDPC are designed to be autonomous. They are not explicitly

controlled by an external interface. The agents also cannot be explicitly instructed

to execute a particular behavior. Observing a particular behavior is accomplished by

3-8

adjusting the initial conditions and states of the agents. The simulation is designed

to execute from beginning to end with no interruption.

The internal structure of the program depends on modules, fact, and objects.

Logical groupings of rules are partitioned into separate constructs called modules.

These modules are used to restrict access to rule groups. Most of an agent's state

information is stored in object slots. The majority of facts in PDPC are used for

internal control. Facts used in PDPC all follow the same format:

(fact side name item item-description)

The first term in each fact is the word fact. This term prefaces each fact because

CLIPS does not allow the first position in a fact to be occupied by a variable. The

remaining terms in the fact structure are variables whose values depend on which

agent is active. The side slot is occupied by the agent's side, which is either friendly,

enemy, or neutral. The name slot contains the name of the agent. The item slot

holds the control item. An example item value is MANEUVER. The item-description

slot contains an atomic description of item. An appropriate item-description for

MANEUVER is LEAD-PURSUIT.

PDPC uses a simple class hierarchy shown in Figure 3.1. At the top of the user-

defined class hierarchy is the class PLAYER, which inherits everything from COOL's

USER class. Every user-defined class in COOL should inherit directly or indirectly

from the class USER, since this class has all the standard system message-handlers

attached to it (6). There are two subclasses of PLAYER. PLATFORM is a class

defined for moveable objects, while STATION is a class for stationary objects. The

PLATFORM class has two subclasses appropriately named MISSILE and AIRCRAFT.

Any additional flying objects would be added at this level of the class hierarchy.

There are also two additional classes that do not inherit from the PLAYER class. The

HISTORY class is used to create a circular queue to track an agent's locations. The

PLANS class is used to create and maintain any type of navigational plans, such as

a series of waypoints. The PLANS class has three sub-classes, PHASE-PLAN, ROUTE-

3-9

PLAN and MANEUVER-PLAN. PHASE-PLAN instances contain a sequence of phases,

while ROUTE-PLAN instances contain a route. MANEUVER-PLAN instances will be

used by an embedded planner for adjusting maneuver selection. Additionally, the

class ROUTE-PLAN has three sub-classes, INTERCEPT-PLAN, LANDING-PLAN, and

BINGO-PLAN.

We used descriptive names for the object slots. Numerous slots were created

to accurately track the present state of an object. Figure 3.1 lists the slots of each

object. They are mostly self-explanatory, and are used to update the state of each

object.

3.4.2.1 Phase construction. The basis of the phase construction and

architecture was initially developed during a class project for CSCE624, Knowledge

Based Systems. The structure of the phases helped to focus the knowledge acquisi-

tion effort. Each phase has a particular set of maneuvers and flight characteristics

associated with it.

The Titan Report categorized a pilot's decisions into only three phases: pre-

engagement, engagement, and disengagement/re-attack (32). However, these deci-

sions concentrated on destroying a target, not on other mission essential tasks such

as taking off, landing, etc. Our phase architecture has been designed to enable an

agent to follow a logical progression of events.

Figure 3.2 illustrates the phase design. The connected blocks indicate a typical

sequence of phases that a pilot would undergo if the mission was flawless. The

unconnected blocks clustered around the middle of the diagram indicate the possible

phase transitions that could occur, depending on the situation. In the next chapter

I discuss the implemented phase transitions.

3.4.2.2 Maneuver Base Construction. Once we decided on the type

and number of phases, work began on creating the maneuvers. Each phase normally

3-10

has some specific type of maneuvers associated with it. Most of the phases require

some type and amount of maneuvering. There are some phases, though, in which

the aircraft constantly maneuver at their maximum ability. These are the avoid,

engage and evade phases.

A systematic approach was used to create the set of maneuvers. To ensure that

each critical situation was covered by a maneuver, a 3600 plot was used to ensure that

whatever positional relationship exists between the two aircraft, there is a maneuver

that an agent can use. Another research effort using discovery-based learning in

air combat simulation uses a similar approach (21). There are two situations when

there may not be a specific maneuver. The first situation occurs when the knowledge

source listed no specific maneuver for that situation. The second situation occurs

when a particular situation was not accounted for and initial testing failed to reveal

the deficiency. For either situation a default maneuver has been added to fill the

gaps. One of the advantages of using a rule-based system is that not every situation

must be explicitly encoded. The default maneuver simply implements a pure pursuit

and allows graceful degradation in performance.

3.4.2.3 Phase and Maneuver Relationship. Each phase only requires

a subset of the total maneuvers available. The only exception is the Engage phase,

where the vast majority of maneuver rules are located and required. Pursuit phase

consists of rules that enable an aircraft to close in on a targeted aircraft. Engage

phase consists of the rules that enable an aircraft to gain an advantageous position

behind the targeted aircraft. Evade phase consists of the rules that enable an aircraft

to regain an advantageous position if it finds the enemy in its rear quarter. Avoid

phase contains the rules that enable an aircraft to avoid a missile. Fire phase has

the rules to launch a missile, and Analyze phase has the rules that enable an aircraft

to closely follow its target while a missile is tracking it.

3-11

3.4.3 Code and Checkout. The main objective here is to encode the design.

Actual implementation details are discussed in Chapter IV.

3.4.4 Knowledge Verification. The knowledge verification phase of the

linear model involves determining the correctness, completeness, and consistency of

the system. These topics are discussed in Chapter V.

3.4.4.1 Verification. Program verification requires extensive review

of the rules. Nazareth states that the explicit integration of domain knowledge with

verification mechanisms should not be done. However, he does recognize that its in-

corporation can improve error detection significantly. (23). For PDPC, verification

was completed using the integrated domain knowledge. An incremental testing strat-

egy was used to verify the correctness of the knowledge base as the knowledge base

developed. The test plan had two major phases: inter-module and intra-module test-

ing. First, the rules within a module were encoded and tested separately to ensure

that they fired. Testing was accomplished by asserting a set of initial conditions that

favor a certain maneuver. This procedure was followed as each rule was encoded and

added to the knowledge base. Once an entire module was tested, the entire module

was incorporated with those presently in the knowledge base. Inter-module testing

then began, with the assertion of initial conditions that would require phase or mod-

ule transitions. Extensive use of format statements enabled us to monitor the rule

firing. Using the Mac and PC versions of CLIPS also allowed constant monitoring

of the fact base and agenda, since those versions of CLIPS allowed simultaneous

viewing of the dialog, agenda, focus, globals, instances, and facts windows.

3.4.4.2 Validation. Any system that uses tactics in a fluid environ-

ment such as air-to-air combat can be difficult to evaluate. This is due to the rapid

flow of information and constantly changing situation. Another important consider-

ation is the subjectiveness involved in applying tactics. However, there are certain,

3-13

inviolate fundamentals in tactics that cannot be ignored. The fundamental principles

applied in each maneuver phase are as follows:

"* Pursuit. Approach the targeted aircraft as quickly as possible. Lead the tar-

geted aircraft.

"* Engage. Attempt to gain an angular advantage on the aircraft using whatever

maneuver necessary. Attempt to reach and stay within missile firing range.

"* Acquire. Once in an angular and range advantage, attempt to stay in that

position until a missile is fired.

"* Fire. Fire the missile.

"* Analyze. Wait until the missile hits or misses the aircraft. Attempt to stay at

an advantageous position, but do not try to mimic every move of an aircraft

attempting to avoid a missile.

"* Evade. If caught in a disadvantage, use whatever maneuver necessary to either

regain the advantage or lose the disadvantage.

"• Avoid. Attempt to turn within the missile's turn radius, causing the missile

to overshoot and miss.

"* Breakoff. Leave the immediate vicinity safely.

3.4.5 System Evaluation. The system evaluation phase consists of an

overall evaluation of the implemented system and a determination of whether the

system's results are correct and desired. This is discussed in Chapter V.

3.5 &mmmary

This chapter provided the methodology for the development of the design of

PDPC and knowledge base. CLIPS is a rule-based language with an internal struc-

ture similar to reactive systems. The knowledge sources used for PDPC are Shaw's

book titled Fighter Combat, and a technical report commissioned lay Wright Labs.

3-14

A simple class structure was developed where the main players in the simulation

are portrayed by objects. Maneuvers were encoded as rules and the fact list was

used for control. All the rules in PDPC are grouped in modules, with each module

implemented as one of the many phases in an air combat mission.

3-15

HLSTORY PLAYERA
AIRCRAFT

belongs-to name-o

leader-of
follower-of

PLATFORMassignment

locaion hasecondition

orietaton satemissile-load
locationtype-of
velocitynumber-of
orienationtactical-coordination

goal fmnntion

desied-irecionbearing-to-Weensive-target
PLANabcveloitydistance-to-defensive-target

abc-acelertionkill-radius
type-o abc-hrusaneuver

alic-ttimce tart-name
aittitude-raft target-status
attitude-momnent target-victim

throttlevictim-location
mass target-diresa
on-tie-ground targepnria*
fuel aa-tm

radar-mode
IR-source-staiss
Ilt-detector-status

MISSILE radio-status
radio-channel

missile-name radio-mode
type-of radio-jammer-status
number-of radio-jasnmer-detector
belongs-to jamming-source-name
target-is jammmng-source-location
status

envelope
ktill-probability
reliability

Figure 3.1 PDPC object diagram.

3-16

New Mfision Landing

Cmiwe [3Rdf7 -J Analyze

Sacmh Fire

Figure 3.2 General phase design.

3-17

IV. Program Development

4.1 Introduction

In this chapter I explain the implementation of our design choices. I thoroughly

cover the phase and maneuver architecture and explain how maneuvers and their

associated phases relate to each other.

4.2 Rule Reasoning Process

The rule reasoning process consisted of two major tasks: creating a phase and

maneuver architecture, and implementing the rules required by the architecture.

4.2.1 Phase Architecture. Each phase is partitioned into its own CLIPS

module. Most constructs can be exported or imported from other modules except

for rules. Rules in one module are not visible to other modules. CLIPS will only

attempt to pattern match the rules that are in the current module. This speeds up

the program since the inference engine does not have to pattern match all the rules.

As an agent switches phases, it uses a different set of rules. This different set of rules

is a small subset of the total number of rules in the program.

An agent can move between phases only if there is a rule enabling it to do

so. We only have phase-transition rules where required; the majority of the time

an agent can only move to a small subset of the phases from any particular phase.

Phase transition rules also present an opportunity to trigger other rules or assert

facts only one time upon entering a phase. This is particularly useful when entering

a phase that requires an instantiation or deletion of an object such as a missile. In

the modules containing maneuvers, the phase transition rules have a higher salience

than the maneuver selection rules. This ensures that the aircraft is in the proper

phase before it executes a maneuver. Not firing the phase transition rules first can

4-1

result in maneuver facts applicable in one phase remaining on the fact list while the

aircraft is actually in another phase.

At start-up CLIPS defines one module labeled MAIN. The MAIN module

contains all the utilities, flight model constructs, and class definitions. Each set of

rules for a phase are contained in a module that has the same name as the phase.

The focus of the program is controlled by using a focus control rule that checks the

phase of an agent and changes the focus of the program to that module. If there are

rules that can fire, they will. If not, focus returns to the MAIN module.

4.2.2 Phase Description. The following is a description of implemented

phases in alphabetical order. Table 4.1 briefly summarizes the phase transitions in

this program.

Acquire This is the phase where an aircraft attempts to maintain its positional

advantage over several iterations; this enables it to activate, ready, and arm the

missile and simulates the time it takes to prepare a missile for firing. During

missile preparation the target must remain within the missile envelope. If

the target flies out of the missile envelope, missile preparation ceases and the

aircraft must reacquire the target. Once the aircraft reacquires the target

missile preparation continues from where it was previously halted. Once the

missile is armed the aircraft can switch to Fire phase. If the aircraft completely

loses its advantageous position, it will switch to Engage phase and attempt to

regain an advantageous position. Switching to Engage phase resets missile

preparation, forcing the aircraft to prepare a missile from the beginning of the

sequence.

Analyze In this phase the aircraft follows the target while the missile flies toward

the target. It does not attempt to maintain the target within the a second

missile's envelope since the target by now should be violently maneuvering to

attempt to avoid the launched missile. The aircraft simply attempts to stay

4-2

within the rear hemisphere of the target in case it has to fire another missile.

If the missile detonates and destroys the target, then the aircraft can switch

to Search phase to look for another target. If the target is not destroyed, the

aircraft will switch to either Engage or Pursuit phase to attempt to gain an

advantageous position behind the target.

Avoid This phase is similar to Evade phase, except that in this phase the aircraft

is attempting to avoid a missile. An aircraft will immediately switch to Avoid

phase if an enemy missile is detected in the area, even if it is not the missile's

target. Vhile in Avoid phase the aircraft attempts to turn tighter than the

missile so that the missile will overshoot. The aircraft will stay in this phase

until the missile flies out of range or detonates. From this phase the aircraft

can then switch back to Engage phase if it has not been destroyed.

Breakoff In Breakoff phase an outnumbered aircraft attempts to fly away from

his opponents. An aircraft enters Breakoff phase when it senses that in the

immediate vicinity there are more enemy aircraft than friendly. The aircraft

then attempts to fly away from the enemy aircraft. The aircraft can then

switch to Engage or Disengage phase, depending on a situation reassessment.

Chase In this phase an aircraft begins to chase a target once it turns and retreats.

Chase phase ends when the aircraft approaches the limits of its airspace.

Cruise During Cruise phase aircraft follow a plan of waypoints. Once an aircraft

flies a certain route, it can start searching for targets, depending on its mission.

Before the start of the simulation a set of waypoint plans are created for the

aircraft to follow.

Disengage In this phase an aircraft attempts to become decisively disengaged due

to a change in the situation; i.e. is overwhelmed by superior numbers.

Engage In this phase the aircraft maneuvers to obtain a positional advantage over

its target. This is where the bulk of maneuvers are used. If the aircraft does

4-3

obtain an advantageous position, it can switch to Acquire phase and activate a

missile. If the target obtains an advantageous position, the aircraft can switch

to Evade phase and defend itself. An aircraft in this phase can also switch to

Avoid phase if it senses a missile flying toward its vicinity.

Evade In this phase the aircraft maneuvers to nullify or defeat the pursuer's ad-

vantage. The aircraft in this phase can assess the situation and select the ap-

propriate evasive maneuver. An aircraft continues to maneuver in this phase

until it loses its disadvantageous position.

Fire In this phase the aircraft fires a missile. An aircraft can enter Fire phase

when missile preparation is complete and the target is still within the missile

envelope. Once the missile is fired the aircraft switches to Analyze phase to

track the missile and the target.

Identify In this phase the aircraft attempts to identify a target and determine

whether it is friend or enemy. If the target is an enemy, it becomes the aircraft's

goal. The aircraft then switches to Pursuit phase to pursue the target.

Intercept An aircraft uses this phase to intercept a target once it has entered

friendly airspace.

Landing An aircraft uses Landing phase to return to home base. The aircraft's

goal is changed to home base and the aircraft attempts to land when it reaches

the home base.

Launch Once a mission is assigned, an aircraft can launch from its home base.

Aircraft continue in Launch phase until they are a certain distance away from

the base.

New Mission The New Mission phase assigns an aircraft a mission. Presently

the mission choices are: defense, offense, superiority, or escort. The mission

selection at this time is not comprehensive. The present mission selection

provides four fundamentally different intents for an agent.

4-4

Pursuit In this phase the aircraft speeds toward the target as quickly as possible

using lead pursuit. Once it reaches engagement range it switches to Engage

phase.

Recall In this phase an aircraft has been recalled to home base to be assigned a

new mission.

Refuel An aircraft switches to this phase when it detects it needs fuel. An aircraft

starts a mission with a predefined fuel level. Each iteration the fuel level is

decremented to simulate usage.

Retreat An aircraft uses retreat phase to determine which maneuver will allow exit

from an area. It will then return to a safe area while guarding itself against a

disadvantage.

Search In Search phase an aircraft flies in a pre-defined pattern in a pre-defined

area. While in Search phase the aircraft looks for aircraft. If an enemy aircraft

is spotted, the searching aircraft will switch to Identify phase to identify the

target. If no enemy aircraft are detected the searching aircraft continues to fly

its search pattern, and eventually return to home base.

4.2.3 Maneuver Architecture. I created a hierarchical, vertical architecture

for maneuver selection that is composed of three levels. Figure 4.1 illustrates this

architecture. The first, or top level uses globally-available data to select a maneuver.

The rules then calculate a sub-goal for the agent to fly to, depending on maneuver

selection. The goal location for an agent is the location of its target. The sub-

goal location is a location that an agent needs to fly to properly position itself

behind its target. Each maneuver rules calls a function that calculates a sub-goal for

that particular maneuver. Speed adjustment is also calculated at this time. PDPC

normally uses range from the sub-goal to adjust speed. The derived information is

then sent to the flight model which calculates new position data for the agent. The

4-5

Phase Description Possible transitions
Acquire Inside firing envelope, not locked on target Fire, Engage, Breakoff
Analyze Track missile. Note results Acquire, Search, Engage

Breakoff
Avoid Tracked by missile Engage, Evade, Search
Breakoff Leave if necessary Engage, Disengage
Chase Chase a target Cruise, Search, Pursuit

Engage, Breakoff, Refuel
Recall

Cruise Move aircraft toward assigned goal Search, Identify, Recall
Refuel, Landing

Disengage Stop engagement Retreat, Refuel, Recall
Engage Maneuver to gain advantage Acquire, Avoid, Evade

Pursuit
Evade At a positional disadvantage Avoid, Engage
Fire Locked on target. Fire missile. Analyze, Breakoff
Identify Verify friend or foe. Assign bogey as new goal Pursuit, Refuel, Cruise

Retreat, Recall
Intercept Intercept a target Chase, Pursuit
Landing Near home base. Land. New Mission
Launch Aircraft takes off Cruise
New Mission Assigned mission Launch
Pursuit Move aircraft toward bogey Engage, Evade, Avoid
Recall Return home Landing
Refuel Proceed to refuel station to refuel Cruise, Identify
Retreat Overwhelmed. Leave the area. Refuel
Search Look for targets Identify, Refuel, Recall

Cruise

Table 4.1 Possible phase transitions

4-6

design is modular in that an improved flight model can be substituted with little

effort.

PDPC presently does not keep track of its previous states. An agent in this

simulation does not remember the previous maneuver that it executed. It merely

senses the present situation and reacts accordingly. Each maneuver can be called a

reflexive response.

Feedback Environme

I I
Sub-goal calclaion and

spw selection

4Calult Mew position
sand location

Figure 4.1 Maneuver architecture.

The phases designate what rules are available for an aircraft. Each phase can

be considered a plan in itself, since each phase should consist of rules for every

conceivable situation while in that phase. Each phase also includes rules that will

enable an aircraft to switch phases when the situation is appropriate.

The difficulty in implementing the maneuvers is due to determining how to

decompose them and how to seamlessly integrate all maneuvers so that the proper

4-7

one is always selected. I originally started with the idea of creating a maneuver

by sequencing a series of basic, incremental moves such as roll right, pitch up, etc.

This method did not prove feasible. Maneuvering in 3-dimensional space requires

continuous computations of roll, pitch, and yaw. Rarely is motion in one direction

isolated from the other two. Calculating movement in one direction at a time would

require a level of granularity that is too computationally intensive. The present

implementation creates a sub-goal for an agent to fly to and uses the flight model

for orientation calculations.

The method of creating sub-goals for the agent to fly works quite well. In

air combat, relative positioning is very important. Everything a maneuvering agent

does is in response to the situation. The maneuvering agent keys off its opponent's

situation. For every maneuver implemented a point to fly to is calculated that

will yield the desired outcome of that maneuver. While executing a lead pursuit,

for example, the agent points his nose at a point ahead of its target. Figure 4.2

illustrates the sub-goal location for a lead pursuit. For this pursuit a sub-goal is

calculated that lies ahead of the target along its nose vector. The velocity of the

target is used to determine the offset along the nose vector.

In some situations, a calculated sub-goal may lie beyond the maximum turn

rate of the agent. For example, if a sub-goal is calculated that is behind the agent

some distance away, the agent will take a very long time time to reach it. It is not

important that the agent will never actually reach that sub-goal. It is important,

though, that a certain behavior is induced. In an effort to reach that sub-goal the

agent will attempt as tight of a turn as possible. That tight turn is the desired

behavior for the agent to exhibit. A few iterations later the agent may have a sub-

goal that is located in a completely different direction. It will again attempt to

reach that sub-goal by immediately turning about as hard as possible. This type

of behavior is analogous to an actual pilot flying. When maneuvering against an

opponent he is flying at the limits of his performance envelope.

4-8

Us&c Of momf -- - - - - - - -- - - - - - - - ----------

Figure 4.2 Sub-goal determination.

The speed control rules use the range to the target to either decrease, maintain,

or increase an agent's speed. A pursuing agent will attempt to maneuver into a

position where it can effectively deploy its weapon system. In PDPC this position

is defined by the minimum and maximum missile ranges. If the agent is within

that range envelope, it maintains its speed. If the agent is outside of the envelope,

the speed is increased. If the agent is inside the envelope, the speed is decreased.

The speed control rules are fundamentally simple. After a maneuver is selected a

speed control rule fires and asserts a fact that contains the amount of forward thrust

selected. To increase speed, a positive forward thrust is selected. To decrease speed,

a negative forward thrust is selected. To maintain speed, zero forward thrust is

selected.

Placing all the rules at the top level of the maneuver architecture allows an

agent to move immediately from one maneuver to another. The maneuvers are essen-

tially meshed together. In air combat most maneuvers are transient; a pilot executes

one immediately after another. The only problem with this is that as more ma-

neuvers are added, CLIPS has to pattern-match against more rules, which increases

execution time. This is noticeable when observing the execution of a sample run.

4-9

Program execution time while in a particular phase depends on the number of rules

in that phase/module. This is especially noticeable between Pursuit phase, which

contains only one maneuver, and Engage phase, which contains every maneuver

available.

It became clear after studying maneuvers that the more complex out-of-plane

maneuvers are actually composed of several simple maneuvers. Out-of-plane ma-

neuvers are those maneuvers that include using a vertical component. Almost every

out-of-plane maneuver consists of trading airspeed for altitude and then using lag,

pure, or lead pursuit to close in on the enemy. This simplifies complex maneuver

construction. A rule can be created that initially detects the conditions for a com-

plex maneuver. This rule will fire when the initial conditions are appropriate and

not fire during the latter phase of the maneuver where another rule implementing a

simple maneuver will fire to complete the maneuver.

4.2.3.1 Simple Maneuvers. Simple maneuvers are those that are

normally executed within the same plane as the pursuing agent and target. Each of

these maneuvers are independent and have no assigned sequence. Figure 4.3 depicts

the three different type of pursuit. Figure 4.4 shows when each offensive maneuver is

appropriate. The aircraft in the middle of the circle is the target. The AOT ranges

indicated by the arrows show when an aircraft can execute a particular maneuver

with that AOT.

AOT is used extensively in describing when a maneuver is appropriate for a

given situation. For clarity and convenience AOT can be divided into three cate-

gories: low, medium, or high. Low AOT ranges from 0' to 290, medium AOT ranges

from 30' to 600, and high AOT ranges from 610 to 1800 (31).

Lag pursuit An aircraft can use lag pursuit to decrease AOT while simultaneously

maintaining separation. Lag pursuit occurs when the pursuing aircraft points

its nose behind the fleeing target. Figure 4.3 illustrates where an aircraft should

4-10

--- -- --------------.-----..-- _- - . -----

Figure 4.3 Types of pursuit.

point its nose for lag pursuit. If the aircraft is in range to fire a missile, but

needs to decrease AOT, then it will use lag pursuit. The aircraft's sub-goal

location is created behind the target, scaled by the target's velocity.

Pure pursuit Pure pursuit is a pursuit option where an aircraft flies straight toward

its target. The target's location becomes the aircraft's sub-goal. Our missiles

use pure pursuit in tracking a target. I also chose this maneuver as the default

maneuver in situations where no other rule fires.

Lead pursuit Lead pursuit is used when an aircraft needs to increase closure as

quickly as possible. In lead pursuit the aircraft points its nose ahead of its

target. This maneuver could result in greater AOT. This maneuver is used by

all aircraft in Pursuit phase. The aircraft's sub-goal location is ahead of the

target, scaled by the target's velocity.

Pursuit variations To maintain a reactive structure, there are several rules im-

plemented where they check for a particular situation, but still implement a

previously discussed pursuit. These rules concern themselves with side ap-

proaches or when the aircraft are flying parallel to each other. In both cases

the aircraft would use a lag pursuit.

4-11

135dog A CT I.. de.... g~ d AOT

....... ' " -... .

0 og AOT

Figure 4.4 Simple maneuvers.

Pursuit with separation If separation exists, and the aircraft are approaching

each other, then an aircraft will attempt to maintain that separation so that

as it passes the other aircraft it will turn and attempt to get behind its target.

Lead turn A lead turn is a maneuver used by an aircraft approaching a target in

its forward quarter. The aircraft should have similar speeds, and separation

is not necessary. An aircraft attempts a lead turn to obtain a position in its

target rear hemisphere. The aircraft's sub-goal location is 45' from the target's

heading, scaled by the target's velocity.

4-12

Nose to nose turn A nose to nose turn is similar to a lead turn except that the

aircraft turn as they pass each other. The aircraft's sub-goal location is estab-

lished at a right angle from the target's heading, scaled by the velocity.

4.2.3.2 Complex Maneuvers. These maneuvers are labeled complex

because they require an out-of-plane move. They also use a sequence of maneuvers

for successful execution. A complex maneuver rule establishes the beginning of the

maneuver, and is completed by the execution of simple maneuver.

Lag displacement roll This roll is an out-of-plane maneuver. This maneuver is

used to reduce ACT and increase range, possibly to meet the minimum range

constraint for missile deployment. When the aircraft app roaches its target with

high speed and low AOT, an overshoot is possible. The aircraft climbs to reduce

airspeed and then swoops down on its target. The sub-goal is established on

the inside of the turn with an increased vertical component.

High yo-yo A high yo-yo is an out-of-plane maneuver similar to the lag displace-

ment roll. It is useful in preventing overshoot when the aircraft's AOT is

medium. If the pursuing aircraft is rapidly closing on its target and turning

in the same plane, it can climb and pull up out of the plane. The climb re-

duces the pursuing aircraft's speed component, thus reducing closure. Once

closure is reduced to zero the pursuing aircraft can switch to a type of pur-

suit to complete the maneuver. The aircraft's sub-goal is established at an

altitude difference that substitutes altitude for airspeed. The sub-goal is also

established on the inside of the target's turn.

Low yo-yo The low y-yo is also an out-of-plane maneuver that is used to increase

closure and angular advantage. It is useful in a situation where a pursuing

aircraft does not have the turn capability to pull up and fire at its target

without slowing down excessively. To prevent the excessive speed loss, the

pursuing aircraft should turn nose down toward the inside of the turn. This

4-13

allows the pursuing aircraft to position its nose ahead of the target. Once the

pursuing aircraft obtains excess lead it can then level off, climb, and intercept

the target. This maneuver is not yet implemented.

4.2-.3.3 Defensive Maneuvers. I have implemented a series of defen-

sive maneuvers that an agent can use when evading a pursuing opponent. A defensive

maneuver is selected depending on where the pursuing opponent is pointing its nose.

To determine where the opponent's nose is pointing the rules compare the opponent's

target bearing with its track crossing angle. If the target bearing is greater than the

track crossing angle, then the pursuing opponent is using lead pursuit. If the target

bearing is less than the track crossing angle, then the pursuing opponent is using lag

pursuit. If the target bearing is equal to the track crossing angle, then the pursuing

opponent is using pure pursuit. This is one area where perfect information allows

the aircraft to act correctly. In the real world, a pilot would not easily be able to

determine what kind of pursuit his opponent is using. Figure 4.5 shows when an

aircraft would transition to a defensive maneuver.

The philosophy for missile defense is quite simple, and consists of two tenets:

(i) prevent the missile from being launched at all, and (ii) failing the first, attempt to

present the shooter with the least favorable shot and endeavor to make the missile's

task as difficult as possible (31). An aircraft in PDPC selects only one type of

maneuver when it detects an incoming missile. It attempts to turn tighter than the

missile so that the missile overshoots. This is an adequate maneuver since the missile

flies much faster than an aircraft and does not have a large wing surface. Its turn

radius, then, is much larger than that of an aircraft, and cannot react as quickly to

match tne aircraft's turn.

It seems intuitive to most that if an aircraft wants to turn tighter than a

missile, it should decrease its speed, since aircraft have tighter turn radii at lower

speeds. This is true, but not appropriate for missile defense. Moving at a higher

4-14

rate of speed makes it more difficult for a pursuer to acquire. Also, in the case of

rear-quarter missiles, having a speed advantage can reduce the target range of the

missile by up to 25% (31).

Defense against lag pursuit There are two defensive maneuvers appropriate in

this situation. There are two situations to check for, a hot side or cold side

lag. A hot side lag occurs when the pursuer is on the inside of an evader's

turn. A cold side lag occurs when the pursuer is on the outside of an evader's

turn. If it is a cold side lag, then the evading aircraft needs to reverse its turn.

The sub-goal is established ahead of opponent. If it is a hot side lag, then the

evading aircraft attempts to tighten its turn. The sub-goal is established at

the opponent's location.

Defense against pure and lead pursuit In defending against a pure pursuit, the

aircraft has three options. If the aircraft is faster than its opponent, then

it turns slightly and speeds away. The sub-goal is established ahead of the

opponent. If the opponent's AOT is very small then the evading aircraft turns

harder so as eliminate a missile shot. If the evading aircraft is slower than its

opponent, then it attempts a tight turn toward the opponent. The sub-goal is

established at the opponent's location.

Defense against missile If an aircraft detects an oncoming missile then it imme-

diately attempts a tight turn. The sub-goal is established at a right angle from

the missile, so that no matter how hard the missile turns the aircraft attempts

to turn tighter.

Typically, a maneuvering agent would follow this ideal phase transition sequence:

9 An agent identifies a target, enters Pursuit phase, and uses lead pursuit to

cdose the distance to the target as quickly as possible.

* The agent, after closing to engagement distance, switches to Engage phase.

4-15

110kgAOT

90 k AOTdAOr

45 deg AOT 45 degM.

0deg AOT

Figure 4.5 When to evade.

"* In Engage phase the agent maneuvers to get within missile range and behind

its opponent. The agent switches between appropriate maneuvers.

"* Once the agent obtains a favorable position, he switches to Acquire phase,

simultaneously arming a missile. The agent employs a type of pursuit to stay

behind the target.

"* In Acquire phase the agent prepares the missile for firing. Once the missile

is ready, the agent moves to Fire phase and fires the missile. The agent then

immediately switches to Analyze phase.

4-16

* In Analyze phase the agent still maneuvers behind its opponent, waiting for

the missile to detonate.

* If the missile detonates and destroys the target, the agent will switch to Search

phase to find another target. If the missile fails to destroy the target, the agent

will fire another missile if still within firing parameters.

4.2.4 Flight Model Adjustment. During the early stages of development

the agents in this program exhibited large altitude fluctuations. "This is due to the

altitude component of an agent's sub-goal. The agents will chase each other by

diving or climbing, depending on the pitch of the target. There is a rule that adjusts

an agent's sub-goal to stay within an optimum altitude range. The optimum altitude

range is within 25,000 to 35,000 ft, where a jet fighter can best maneuver (31).

It became apparent after working with several phases that the flight model

needed expansion. An agent's behavior is defined by its phase, maneuver selection,

and flight characteristics. An agent should exhibit flight characteristics tha- accu-

rately reflect the nature of the agent's phase. This is accomplished by adjusting the

orientation rates of an agent depending on its phase. The orientation rate adjust-

ments are summarized in Table 4.2. All the adjusted rates use the Cruise rate values

as a standard rate. Adjusting the Cruise rates will proportionately adjust the rates

in the other phases.

I tailored the flight characteristics during the maneuver phases by adjusting

the flight model to call different functions depending on the aircraft's phase. The

operator rule calculates the orientation of the aircraft before calling on the ruleset

to fly it. It calculates a new roll, pitch, and yaw for an aircraft. The rates for

calculating the orientation differs depending on what the aircraft is doing. For

instance, an aircraft cruising will not have to maneuver as severely as an aircraft

avoiding a missile. The tendency is for the aircraft to fly in a more relaxed manner

when not engaged, and much more aggressively hnd violently when maneuvering.

4-17

Phase Roll Pitch Yaw
Cruise standard standard standard
Analyze 1 1 1
Avoid 3 0.1 1
Engage 3 1 1
Evade 3 1 1
Fire 1 1 1
Pursuit 1 1 1

Table 4.2 Orientation rates adjustment

The orientation limits are also adjusted according to the phase. Most of the phases

have limits of 900 for total roll, pitch, or yaw.

It is important to point out that the orientation rates are adjusted due to the

agent's behavior, and not due to the aircraft's capabilities. This means that when

an orientation rate is increased, it is analogous to a virtual pilot moving the stick in

the cockpit with more vigor.

4.2.5 Missile Maneuvers. Today's missiles can implement several different

types of pursuit. These pursuits are lead collision, lead pursuit, and pure pursuit

(31). Lead collision is the most effective and has the shortest trajectory. But it is

also the most difficult to impkl ent and uses a complex navigational system. There

are really no advantages to using lead pursuit, since it adds the complexity of lead

collision with little advantage. Pure pursuit is a simple pursuit to implement, both

in actual missiles and in this program. It has the longest trajectory, but this works

well with rear quarter missiles, since a pure pursuit trajectory always approaches the

target from the tail.

Missiles in PDPC use simple pure pursuit to track their targets. They use the

same speed control, with an increased acceleration rate and higher top speed. In

4-18

PDPC a missile's top speed is twice that of an aircraft, while acceleration is 5 times

as large.

4.2.6 Planning. The logical extension for PDPC is to add a planner, since

a planner has not been implemented. The primary goal was to create a reactive

system. There are times when PDPC will have time to choose between several

courses of action. PDPC, when faced with a choice in an air-to-air engagement, can

use the history of the opposing agent to determine the opposing agent's tendency

to maneuver in a particular fashion. PDPC should be able to choose during the

following times:

"* When an agent has an overwhelming advantage over its opponent.

"* When not decisively engaged.

"* Executing non-critical tasks.

PDPC has the ability to maintain a history of all agents. From the oppos-

ing agent's history PDPC can establish an opponent's tendencies, and use that to

its advantage. During an air engagement a pilot does not have time to formulate

complete plans, but he can use what he knows about the enemy to his advantage.

For example, if a pilot realizes that every time he is on the tail of his opponent, the

opponent turns sharply left, then next time that situation occurs the pilot can use

that information to predict that action. The pilot can then prepare himself to match

the opponent's left turn.

During maneuver selection an embedded planner could influence or suppress

the maneuvers that are reactively selected. There are three different decision types

that an embedded planner could make to aid in this maneuver selection.

"* Select the same maneuver, but with a different sub-goal calculation.

"* Select one of several applicable maneuvers.

"* Select a maneuver which normally would not be selected.

4-19

Presently there is only one way to calculate a sub-goal for a particular maneu-

ver. This limits an agent to the same approach to a target as long as that maneuver

is selected. If the agent wanted to execute a selected maneuver, yet approach the

target from a different direction, then a planner would need to create a maneuver

plan. Waypoint plans are already used in Cruise phase to provide an agent with

a route to follow. A planner could dynamically fill the slots of a pre-instantiated

maneuver plan. The agent could read this maneuver plan and follow it to approach

a target from a different direction. Simple implementation of this type of planning

would require the addition of another phase. The agent would then enter this phase

when it is required to follow a maneuver plan.

As the maneuver knowledge base increases in size and scope, a situation may

occur where several maneuvers are applicable in a situation. A planner could select

a desired maneuver by dynamically adjusting the salience of the desired maneuver.

Dynamically adjusting the salience of the desired maneuver would ensure that it

is placed on top of the agenda, and will fire first. As soon as it fires, the other

applicable maneuvers would be clobbered due to the assertion of a control fact by

the fired rule.

There may also be times when the desired maneuver is not a maneuver that

would normally be selected, yet the planner has decided that the desired maneuver

is required in a particular situation. This can also be accomplished by dynamically

adjusting the salience of the desired maneuver.

There are numerous areas where an embedded planner could add to PDPC's

capabilities. Besides maneuver selection, an embedded planner could be used to de-

termine targets, select weapons, or modify tactics. Captain Hipwell's work addresses

some of these areas with his rulesets (13).

4-20

4.3 Program Flow

The program flow is illustrated in Figure 4.6. This diagram assumes that the

simulation has already started; the agents are flying and have a mission. An agent

selects a maneuver depending on the phase it is presently in. Selecting a maneuver

automatically calculates a sub-goal and amount of forward thrust to use. The status

slot of the object class Platform is used to maintain the status of an agent. The

agent's status cycles through these stages as shown in Figure 4.7.

Figure 4.6 PDPC program flow.

moveablI decision

moved- move

Figure 4.7 Agent status stages

An agent's status is moveable when it is able to fly. Once a maneuver is selected

the agent's status changes to decision. It is changed to move once the orientation

4-21

has been calculated and the agent is ready for a new calculated location. The flight

model calculates a new location for the agent. The move-player rule, which does

most of the work, has the highest salience in the program. This ensures that it will

always fire first when placed on the agenda.

The rule calculating the new location will change an agent's status to moved.

The RHS of the rule that calculates a new location will assert a fact indicating

everybody has moved after the last agent has moved. This is accomplished by using

a COOL specific query that checks all instances' status for move. Asserting this fact

triggers the rules in the utility set.

The utility set contains the rules that handle output, decrement the iterator,

and update the histories of each agent. A fact is asserted in the beginning of the

program run indicating how many iterations the program should execute. This fact

is decremented each decision cycle. The locations of all instantiated objects are

written to an output file for review. Each instantiated object has a history object

associated with it. The history object maintains the last five locations of an agent.

This information is used to predict an agent's new location when calculating a sub-

goal for lead-type maneuvers. At this time all of the agents' status is changed to

moveable. The focus-control is also activated at this time. For each existing agent the

focus-control checks its phase, and changes the focus to that module. This enables

multiple agents to be in different phases.

At appropriate times the aircraft will check the titan ruleset for engagement

decisions. The titan ruleset, created by Captain Hipwell, consists of the following

modules:

"* Pre-engagement

"* Engagement strategy

* Intercept geometry

* Counter-action

4-22

"* Weapons employment

"* Post-engagement

The agents, while in other phases, will check a particular titan module, de-

pending on its present situation. The pre-engagement module's function is threat

assessment and commitment considerations. The engagement strategy module de-

cides on cooperative behavior between two agents while flying in formation and

approaching a target. The intercept geometry module calculates a intercept trajec-

tory for agents. The counter-action module is concerned with the employment of

chaff and flares. The weapons employment module handles missile activation and

deactivation. Finally, the post-engagement module monitors phase transitions de-

pending on the results of an engagement. For a more detailed explanation of these

modules, see Hipwell (13).

4.3.1 Decision Cycle. Program execution in PDPC consists of multiple

iterations. Each iteration PDPC executes a decision cycle where a maneuver is

selected, a sub-goal calculated, and a forward thrust calculated. Since this is a

reactive system, the decision cycle is very short. The following code excerpt contains

the rules that decide on a lead-turn maneuver.

The rule decide-on-lead-turn is shown in Figure 4.8. The left hand side of the

rule decide-on-lead-turn describes the conditions present for this rule to fire. The

first pattern is a conditional element that checks to see if another maneuver rule

has fired. This guarantees the selection of a single maneuver since if more than one

maneuver is activated and placed on the agenda, the first one that fires will clobber

the remaining rules on the agenda. The rule then pattern matches existing objects

of class AIRCRAFT for two aircraft objects that meet the field constraints. The

pursuit-possible function checks to see if if the aircraft can pursue each other. This

function returns a positive value if pursuit is possible, and a negative value if pursuit

is not possible.

4-23

The AOT is then checked for the aircraft. If it falls within the test parameters,

then the conditional element passes. For a lead turn, the AOT should fall between

7r and 7r/2. The speeds of the aircraft are then checked. For a lead turn, the speed

difference should not be very large, or the executing aircraft will overshoot its target.

Finally, the range is checked. If the range falls within the given parameters, then

the LHS is satisfied.

The RHS of the rule now executes. The status slot of the aircraft is updated

to decision. The maneuver slot is updated with the implemented maneuver. The

RHS also asserts a fact that will fire the next rule, decide-on-lead-turn-point.

The next rule, decide-on-lead-turn-point is shown in Figure 4.9. It fires when

the previous rule asserted the maneuver fact. The left hand side pattern-matches

the appropriate information and calculates a sub-goal for the aircraft to fly to. It

was difficult to determine how to calculate the sub-goal for this maneuver. Exper-

imentation resulted in a sub-goal calculation of 45 degrees off the target's heading.

The RHS of the rule updates two slots of the aircraft. The sub-goal is placed in the

goal-location slot and the desired-direction slot is updated.

The last rule, nose-turn-speed-same, is shown in Figure 4.10. This rule deter-

mines the magnitude of forward thrust of the aircraft. In this situation, the aircraft

attempts to maintain the same speed while executing this maneuver. For other ma-

neuvers there are rules that decrease or increase the speed depending on the range

from the target. Notice that this rule also fires for a nose-to-nose turn; hence the

name. The RHS asserts a speed control fact that is used by the flight model.

Once the maneuver, sub-goal, and speed are selected the flight model calculates

the orientation angles and new position of the aircraft. The utilities take care of the

overhead, and the next decision cycle starts.

4-24

4.4 Summary

In this chapter I explained the implementation details of the phase and ma-

neuver architectures. 20 different phases were implemented in PDPC. The following

maneuvers were described and implemented:

"* lag, pure, lead pursuit and variations

"* lead turn

"* nose-to-nose turn

"* lag roll

"* high yo-yo

"* avoidance and evasive maneuvers

An agent in this simulation executes these maneuvers by flying to a calculated

sub-goal. The program flow was discussed, and a sample decision cycle was stepped

through by tracing through the rules for a lead turn.

4-25

(defrule decide-on-lead-turn
(not (fact ?side ?attacker maneuver ?))
?aircraft <- (object (is-a AIRCRAFT)

(phase Engage)
(state moveable)
(side ?side)
(name-of ?attacker)
(location ?xO ?yO ?zO)
(velocity ?dxO ?dyO ?dzO)
(goal ?defender))

(object (is-a AIRCRAFT)
(name-of ?defender)
(location ?xl ?yl ?zl)
(velocity ?dxl ?dyl ?dzl))

;;approaching each other ?
(test (< 0 (pursuit-possible ?dxO ?dyO ?dzO ?dxl ?dyl ?dzl

?xO ?yO ?zO ?xl ?yl ?zl)))
(test (< 0 (pursuit-possible ?dxl ?dyl ?dzl ?dxO ?dyO ?dzO

?x1 ?y1 ?zl ?XO ?yO ?zO))

(test (>- (pi)
(angle-off-the-tail ?dxl ?dyl ?dzl

(line-of-sight ?xO ?yO ?zO ?xl ?yl ?zl))
?*engage-half-pi*))

;;speeds close ?
(test (> 4 (abs (- (speed ?dxO ?dyO ?dzO) (speed ?dxl ?dyl ?dzl)))))

;;In range ?
(test (>= (* 2 (speed (closing-velocity ?dxO ?dyO ?dzO

?dxl ?dyl ?dzl)))
(target-distance ?xO ?yO ?zO ?xl ?yl ?zl)))

(send ?aircraft put-state decision)
(send ?aircraft put-maneuver lead-turn)
(assert (fact ?side ?attacker maneuver lead-turn))
(format ?*Engage* "%s will attempt to lead-turn Wsn"
?attacker ?defender)
)

Figure 4.8 Decide on lead turn rule.

4-26

(defrule decide-on-lead-turn-point
(fact ?side ?attacker maneuver lead-turn)
?aircraft <- (object (is-a AIRCRAFT)

(phase Engage)
(side ?side)
(name-of ?attacker)
(location ?xO ?yO ?zN)
(goal ?defender))

(object (is-a AIRCRAFT)
(name-of ?defender)
(location ?xl ?yl ?zl)
(velocity ?dxl ?dyl ?dzl))

(bind $?lead-turn-points
(create-lead-turn-point ?dxl ?dyl ?dzl ?xl ?yl ?zl))

(assert (fact ?side ?attacker sub-goal
=(nth 1 $?lead-turn-points)
=(nth 2 $?lead-turn-points)
=(nth 3 $?lead-turn-points)))

(send ?aircraft put-goal-location ?xl ?yl ?zl)
(send ?aircraft put-desired-direction toward)
(format ?*Engage* "%s has a sub-goaln" ?attacker)
)

Figure 4.9 Decide on lead turn point rule.

4-27

(defrule nose-turn-speed-same
(fact ?side ?attacker maneuver nose-to-nose-turnilead-turn)
?aircraft <- (object (is-a AIRCRAFT)

(phase Engage)
(side ?side)
(name-of ?attacker)
(location ?xO ?yO ?zO)
(velocity ?dxO ?dyO ?dzO)

(abc-acceleration ?dU ?dV ?dW)
(goa. ?defender))

(object (is-a AIRCRAFT)
(name-of ?defender)
(location ?xl ?yl ?zl)
(velocity ?dxl ?dyl ?dzl))

(bind ?goal-speed (speed ?dxl ?dyl ?dzl))
(assert (fact ?side ?attacker speed same

=(speed-control ?dxO ?dyO ?dzO ?dU ?goal-speed)))
(format ?*troubleshooting* "%s matching speedn" ?attacker)
)

Figure 4.10 Nose turn speed same rule.

4-28

V. Experimentation and Results

5.1 Introduction

In this chapter I examine several plots of different scenarios that illustrate

PDPC's execution. The plots presented here will show that PDPC agents properly

behave as maneuvering aircraft. All of the plots show agents already in flight. The

agents do not start from New Mission phase, but from an appropriate phase where

they begin behaving in a particular manner. For the purposes of brevity and clarity,

I shall refer to the friendly agent as pilot and the enemy agent as bogey).

5.2 Maneuver Example

Figure 5.1 shows a scenario where pilot and bogey) are approaching each other.

Pilot is approaching from the west and bogey) is approaching from the east. They

both start off in Pursuit phase and switch to Engage phase when they reach en-

gagement range. As they approach each other, bogey) is the first to execute a lead

turn. Pilot reacts by attempting to pursue bogey1. However, bogey1 maneuvers to an

advantageous position behind pilot and switches to Acquire phase. Pilot determines

he is at a disadvantage and switches to Evade phase and speeds away from bogey).

He then attempts to turn around and re-engage bogey).

5.3 Missile Engagement

Figure 5.2 shows a scenario where the pilot is flying behind bogey). Both of

the aircraft are oriented toward the east. The pilot, who started in Engage phase,

switched to Acquire since bogeyl was within the missile envelope. Bogey1, who

determined it was at a disadvantage, switched to Evade phase. After three iterations

the pilot fired a missile and switched to Analyze phase. When bogey1 discovered a

missile in the area, it immediately switched to Avoid phase. The bogey then started

to turn as sharply as possible, trying to turn within the missile. While the missile was

5-1

Example of a Lead Turn Maneuver
1100

"bogeyl.m4" a

1050 4

Pilt n um yl to Acquire Pilot to Evade

1000 '+.*

Pilot to ngage Bogeyl starts lead turn

950

900 I I I I
1000 1050 1100 1150 1200 1250 1300 1350 1400

West - East

Figure 5.1 Lead turn execution.

tracking the pilot flew behind and maintained sight of bogeyl. The missile reached

bogeyl and detonated, but did not destroy bogeyl. The missile did not destroy bogeyl

because its kill probability is not 100%. Occasionally, a missile will not destroy an

agent when it detonates.

After the first missile exploded, the pilot switched back to Acquire since hit

was still in a favorable position. It then fired a second missile. Bogeyl immediately

saw the second missile and continued to turn sharply in an attempt to avoid the

missile. From the figure it does not appear that bogeyl is turning sharply, but it

is maneuvering at its maximum ability, which does enable it to avoid the oncoming

missile. This time bogeyl was successful in its maneuver and the missile overshot.

5-2

Missile firing

1040 "pil.dar100 ."io.rm4" 0- .-
"pilot.m3"

1020

Pilot in Engage Bogey in Avoid

1000 Missile 4 detonates

Missile 3 overshoots
980"

960

950 1000 1050 1100 1150 1200
West - East

Figure 5.2 Multiple missile launches.

The missile load of aircraft in this program is four. Notice that the missile

names indicate the number of missiles still existing. After missile 4 detonated, the

missile load of pilot was decremented by one. After missile 3 detonated, the next

missile that pilot could use would be missile 2. If pilot had a missile load of zero

remaining, then he would never be able to switch to Acquire phase.

Although the plot does not show it, the aircraft would both switch to Engage

phase after the missile firings and continue their maneuvering.

5-3

5.4 Agent Engagement I

Figure 5.3 shows a scenario where pilot begins in Engage phase behind bogeyl,

who is in Evade phase. Bogeyl immediately selects an evasive maneuver and at-

tempts to execute a tight turn. Pilot continued to pursue but could not decrease his

AOT to switch to Acquire phase for a missile shot. Pilot overshoots and attempts to

turn around for re-engagement. Bogeyl, though, obtained an advantageous position

behind pilot. It switched to Acquire phase but could not maintain the advantageous

position for the time required for missile preparation. The bogeyl even attempted a

high yo-yo, but was unsuccessful. The remainder of the plot shows the two aircraft

circling, each trying to reach an advantageous position.

Pilot and Bogeyl maneuvering
1600

"bogeyl dat" --
"pilot.d ---

1500 P

1400

, -+• • •Bogeyl tried high yo-yo

•o ~ ~~~~Bogey1 in Evade. .•+ ByOAc

z 1200 tire

1100 Pilot in rngage

1000

900 1 , , , , ,
900 1000 1100 1200 1300 1400 1500 1600

West - East

Figure 5.3 Pilot and bogeyl maneuvering.

5-4

5.5 Agent Engagement II

Figure 5.4 shows a scenario where pilot begins in Engage phase behind bogeyl,

who is in Evade phase. This scenario is similar to the previous scenario, but the

distance between the two aircraft is halved. Once the program started bogeyl imme-

diately selected an evasive maneuver. It attempted to tighten its turn to decrease

pilot's AOT. Pilot continued to pursue and switched in and out of Acquire phase

twice. After bogeyl turned and lost its disadvantageous position it switched to En-

gage phase and attempted to engage pilot. Figure 5.5 clearly shows the result of

each agent attempting to gain an advantageous position. Pilot continues to fly in

a circle to try to get behind bogeyl while bogeyl executes a zoom climb to do the

same. During this time they both execute lag, pure, and lead pursuits according to

the angles. Eventually bogeyl reaches a higher altitude and will eventually attempt

to turn around.

This plot is also interesting in the fact there is no encoded zoom-climb maneu-

ver rule. Bogeyl, while attempting to pursue pilot, continually climbed at a steep

rate to obtain an advantageous position. This continual effort kept ýogeyl at a steep

pitch, and resulted in a modified zoom-climb. This zoom-climb, essentially, was the

result of a sequence of simple pursuit maneuvers. Ideally, bogeyl could have reversed

at the top of the climb and fire down on pilot (31). However, the flight model does

not allow such a radical change in pitch.

5.6 Aberrant Behavior

Occasionally the agents in the simulation display rather aberrant behavior.

Figure 5.6 depicts an example of this anomaly. In this scenario, pilot and bogeyl are

both in Engage phase, moving at maximum velocity. The swift approach and violent

turning cause both of them to pitch down severely. Since both are flying toward

sub-goals established relative to each other, they continue to decrease their altitude.

They do not begin to level off until they are well below ground levrl. This scenario

5-5

*Plow WW 8ageyl osuvvu"1400z

1350

1300

1250

P~~kX~ in Eva"qii

12
00Wn

1100 BOI IVW

1050

10(0 '0•o ..
1000 1060 110 1150 1200 1250 1300 1360 1400

wt. - Eut

Figure 5.4 Two agents maneuvering.

illustrates why over-riding survival rules must be implemented. Maneuvering agents

fly relative to each other's position and attitude.

Refinement to the flight model should remedy this situation. Optimal alti-

tude rules do exist, but the agents' severe pitch and maximum velocity reduce the

effectiveness of that rule.

5.7 Decision Cycle Execution Time

The initial goal during the development of PDPC was for each decision cycle to

equal one second. A simple test was conducted to check how quickly PDPC executes

a decision cycle. The test was conducted on a SPARCstation 2, with no other major

processes running on the system. A function was added to the plotting function

5-6

Riot and Bogeyl maw1.uveno

600

500

400

300 - BniE

200- Wi Plt e
100 Y

01

West - East •

Figure 5.5 3-dimensional view of two agents maneuvering.

which added a time stamp each time a new location was written to a data file. The

fastest decision cycle only lasted 0.4 seconds; this occurred while the agent was in

Pursuit phase. The longest decision cycle lasted 1.9 seconds; this occurred while the

agent was in Engage phase. The execution times seem to correlate with the number

of rules in a module. Pursuit has only one maneuver, while Engage contains every

maneuver. Further statistical analysis is required to establish this correlation.

5.8 Orientation Rates

The behavior of an agent can be radically changed by adjusting its maximum

rates of orientation. This enables introduction of agents into the system with specific

characteristics. The agents, when maneuvering, always use a combination of roll,

5-7

Po and Bogeyl maneuvsan

.bog~lda

Pilot in En~ag

300

200 Bogeyl-in Enpa

100 E

0

-100 .

-200

-300-

West -Enst

Figure 5.6 3-dimensional view of aberrant behavior.

pitch and yaw to fly to a sub-goal. This program does not have the ability to ignore

one or more of the orientation components and fly to a sub-goal by adjusting only

one of the orientation rates.

Presently the orientation rates are adjusted according to the phase. It would

probably be advantageous to adjust these rates according to the phase and maneuver.

5.9 Summary

In this chapter several scenarios of two agents flying were examined. I discussed

their phase transitions and maneuver selections. It is clear that the agents are capable

of quickly selecting a maneuver and engaging an opponent.

5-8

A reactive architecture allows the agents to quickly select a maneuver according

to the situation. This simulates a pilot engaging an opponent, since in a dynamic

situation such as air combat a pilot must depend on his reflexes for survival. In

PDPC agents do not have the flexibility of selecting one of multiple maneuvers. The

maneuver knowledge-base is not large enough and there presently is no embedded

planner that can choose amongst different maneuvers.

The aberrant behavior can be tamed by encoding more sophisticated rules

which can recognize such a situation and by refining the flight model. Presently,

orientation rates are adjusted by phase. It would be beneficial to add a mechanism

where an agent could turn violently when in it is in a phase that does not normally

require it.

5-9

VI. Conclusions and Recommendations

6.1 Introduction

In this chapter I present the conclusions of my research and lessons learned.

I briefly discuss and summarize the extent of my work. I also list the areas where

future work is needed and should continue.

6.2 Research Objective Conclusions

1. Define and create a phase architecture.

Captain Hipwell and I created a phase architecture that parallels how a pilot

acts and maneuvers in air combat. The phase architecture starts from a newly

assigned mission and enables an agent to switch between phases to accomplish

his goal, and ends with the completion of a mission. It appears that a pilot's

mission requirements can be entirely captured by this phase architecture.

The architecture allows an agent to transition between phases in accordance

with the present situation. CLIPS allowed an efficient implementation of the

phase architecture by the use of modules, which provide a logical partitioning

of rules.

2. Define and create a maneuver architecture.

It is clear that for a system to approach real-time performance, it must contain

"a set of reactively defined behaviors. This reactive architecture created used

"a three level hierarchy for quick response. This is especially important in the

domain that we worked in, air combat. Maneuver selection becomes a reflexive

behavior. It must be an almost instantaneous transition from sensory input to

execution. For behaviors that are not reflexive, or are needed for the future,

a higher level planner could be added to supplement the reactive plan. Time

constraints did not allow the implementation of such a planner.

6-1

It is clear that a rule-based system is one approach out of several that are

appropriate for this research effort. CLIPS, and its object oriented extension

COOL, was an appropriate system development tool. It enabled us to quickly

encode knowledge, and to change to an object oriented approach in mid-stream.

It allows programmers who are not domain experts to accurately translate

knowledge into rules.

There is an abundance of information in the dynamic world of air combat

simulation. Maneuver selection can be successfully accomplished by evaluating

several key parameters: target distance, AOT, and target heading and bearing.

3. Use knowledge acquisition techniques to encode a set of maneuvers.

A complete set of maneuvers have been implemented in this research effort.

It is complete in that there is always a maneuver that an agent can execute.

Knowledge acquisition techniques were used to gather the domain knowledge.

Source selection and identification revealed two convenient, primary sources.

These sources were adequate for initial development of the simulation. Fur-

ther development in this simulation should utilize established human domain

experts.

The maneuvers were encoded as rules which asserted facts for control of calcu-

lations and execution. Methodical testing verified and validated the maneuver

knowledge-base.

4. Enable an agent to use an opponent's history to predict where he will fly.

HISTORY objects were instantiated for every agent in the simulation. These

tracked the last five locations of each flying agent. Using a least means squares

equation, pursuing agents in PDPC could lead a target accurately.

5. Enable an agent to use Al techniques to plan while it has time.

Hooks for added to enable an embedded planner to influence or suppress the

maneuver selection. An embedded planner could also conduct higher level

6-2

planning in a variety of areas. The titan ruleset already can make some of

these higher level decisions (13).

6.3 Lessons Learned

During the process of creating the knowledge base several lessons were learned.

The most important involves the construction of the LHS of rules. The pattern-

matching and conditional elements must be constrained so that there is no overlap

within a range of values. Rules with overlapping LHS and equal salience within a

module can cause nondeterministic behavior, which increases the difficulty of exper-

imentation and testing. Likewise, if the rules test for a range of values, and there

are gaps between those ranges, then inadvertent and abrupt interruptions during

program execution can occur.

Anyone attempting to develop a simulation that involves flight computations

should thoroughly familiarize themselves with the mathematics involved. Flight

models depend on an extensive number of calculations and matrix rotations. It is

important not to underestimate the impact and time required to create a flight model

simulator.

6.4 Future Work

The flight model is not selective in the way it flies. It uses roll, pitch, and yaw

to fly to a point. It does not have the capability to use only roll, or only pitch, or

only yaw to fly to a sub-goal. It would be beneficial to change the flight model to

fly more intelligently.

The addition of a higher-level planner would significantly increase PDPC's

abilities. Such a system essentially becomc a virtual pilot, with both reflexive and

reflective abiiities present. This would increase the survivability of an agent, since

it could plan to prevent extremely hazardous situations from unfolding, especially

when plannirg to attack a target (30).

6-3

Another area that requires future work is continued knowledge acquisition to

refine the knowledge base. With more time and resources future efforts in this area

can add more maneuvers to the knowledge base and verify their correct application.

It would be beneficial to consult human domain experts such as pilots for additional

maneuver knowledge.

6.5 Summary

This thesis effort established the groundwork for a rule-based, reactive system

where agents maneuver against each other in air-to-air combat. It has been shown

that autonomous agents can maneuver in an air-combat simulation by utilizing sub-

goals to induce a particular behavior. This is accomplished by implementing agents

as objects, encoding maneuvers as rules, and using facts to control execution. Im-

plementing agents as objects alloy i the use of object slots to store state information.

Encoding the maneuvers as rules creates a fast and efficient reactive structure. Us-

ing facts for control allows global control during the simulation. This work shows

excellent potential for expansion into a simulation where the agents' behavior can

approach that of actual pilots.

6-4

Appendix A. Maneuver Computations

A. I Introduction

This appendix explains PDPC's navigation conventions, important maneuver

functions, and orientation calculations. For a detailed explanation of PDPC's flight

computations, see Hipwell (13).

A.2 Flight Model Calculations

The flight model manipulates two coordinate systems. The earth ground co-

ordinate (EGC) system is a coordinate system relative to the ground, where the

origin is some fixed point. The ABC system is a coordinate system relative to an

agent, with the origin being the same as the agent's location. The move-player rule

performs a series of calcuiations listed here:

1. Calculates the current heading, climb angle, and roll orientation in EGC space.

2. Rotates the velocity vector onto the nose axis of the agent.

3. Changes the agent's ABC state.

4. Calculates new attitude rates.

5. Calculates new attitude angles.

6. Calculates combined thrust of external and internal forces.

7. Calculates a new acceleration.

8. Calculates a new ABC velocity.

9. Rotates the agent using new attitude angles and produces a new ABC-velocity

vector.

10. Reorients the new ABC velocity vector into EGC space.

11. Calculates new orientation angles

12. Decrements fuel.

A-1

A.3 Heading Convention

To make our computations easier, we adopted the heading convention shown

in Figure A.1. To move north is to move up the y axis and to move east is to move

along the x axis. The z axis is used for altitude. Moving up the z axis is to increase

altitude. Ground is at z = 0. This is different than normal navigational heading,

where north is at 0 degrees. Heading increases in a clockwise direction, which follows

normal navigational convention.

NORTH

90deg

180 deg 0 deg
WEST• - EAST

225 deg

SOUITH
a mxis

z axis is cosnng ow of the par

Figure A.1 Heading convention.

A.4 Maneuver Calculations

An important calculation that is made in almost every maneuver rule is cal-

culating AOT, which is found using the function angle-off-the-tail. This function's

arguments are the velocity vector of the target and the location vectors of both air-

A-2

craft. Refer to Figure A.2. The aircraft in the middle is the target. Aircraft A's

AOT is 0', which is the minimum value of AOT, while aircraft B's AOT is 180',

which is the maximum value.

d•.. " i",,

4:
Figure A.2 Angle off the tail.

A particularly useful function is pursuit-possible. Its arguments are the velocity

and location vectors of two aircraft. It returns a positive number of pursuit is

possible, and a negative number if pursuit is not possible. Figure A.3 depicts the

possible situations two aircraft can be in. In situation 1, aircraft A can pursue

aircraft B, but aircraft B cannot pursue aircraft A. In situation 2, both aircraft can

pursue each other. In situation 3, neither aircraft A nor aircraft B can pursue.

When calculating a sub-goal for lead pursuit the function compute-least-squares-

point is used. It uses the last 3 locations of an agent to fit a curve for more accurate

A-3

B

Situation 2

A

SituationI

Situation 3

Figure A.3 Different pursuit positioning.

lead-point determination. It is possible to use more locations, but that would in-

crease the complexity of the calculations, which would take more time.

A.5 Orientation Calculation

Figure A.4 shows two points in a three dimensional frame. Suppose aircraft A

is pursuing aircraft B. The aircrafts' initial orientations using PDPC conventions is

zero roll, zero pitch, and a yaw of 7r. There are three angles that are calculated that

are used to determine changes to the roll, pitch, and yaw. The angles calculated are,

in Figure A.4, a, b, and c. Angle a is the change in pitch, angle b is the change in yaw,

and angle c is the change in roll. If a particular angle is smaller than the allowable

orientation rate of the aircraft, then the orientation is changed to that angle. If a

particular angle is larger than the allowable orientation rate of the aircraft, then the

orientation is adjusted by the allowable rate.

A-4

Figure A.4 Look angles in 3-dimensional space.

The standard orientation rate in this simulation is used while an agent is

in Cruise phase. The orientation rates in the maneuver phases are calculated by

multiplying the Cruise rates with a constant. This constant was derived through

experimentation. Changing the Cruise rates will affect an agent's behavior in all the

other phases. The file basicset.col contains the orientation values and the constants

used to derive orientation rates for all the phases.

A-5

Appendix B. Rulebase and Functions Listing

This appendix lists the rules and functions by module (phase). The phases are

listed in alphabetical order, except for the MAIN constructs, which are listed last.

A complete source code listing may be obtained from:

MAJ Gregg Gunsch
AFIT/ENG (Al Lab)
2950 P St
Wright-Patterson AFB, OH 45433-7765

B. 1 Acquire

The following rules are in acquire.col.

Phase changes While in Acquire phase the agent can switch to Fire, Breakoff or

Engage.

"* leave-acquire-to-fire

"* leave-acquire-to-breakoff

"* leave-acquire-to-engage

Maneuver decision All pursuits are available in Acquire phase. Note there are no

forward quarter maneuvers.

"* decide-lag-enemy

"* decide-lag-enemy-parallel

"* decide-pure-enemy

"* decide-lead-enemy

Sub-goal calculations The appropriate sub-goal ru!es.

* decide-on-lag-point

* decide-on-pure-point

B-1

e decide-on-lead-point

Speed control The agent can decrease, match, or increase speed.

"* speed-slower

"* speed-same

"* speed-faster

Planner hook This rule will check a maneuver plan and adjust the sub-goal if

necessary.

e check-maneuver-plan

B..2 Analyze

The following rules are in analyze.col.

Phase changes From Analyze phase the agent can switch to Breakoff, Search, or

Engage.

* leave-analyze-to-breakoff

* leave-analyze-to-search

* leave-analyze-to-engage-I

* leave-analyze-to-engage-II

Maneuver decision All pursuits are available. No forward quarter maneuvers

available.

"* decide-lag-enemy

"* decide-lag-enemy-parallel

"* decide-pure-enemy

"* decide-lead-enemy

B-2

Sub-goal calculations Appropriate sub-goal rules.

"* decide-on-lag-point

"* decide-on-pure-point

"* decide-on-lead-point

Speed control The agent can decrease, maintain, or increase speed.

"* speed-slower

"* speed-same

"* speed-faster

B.3 Avoid

The following are in avoid.col.

Phase changes From Avoid phase the agent can switch to Search or Engage.

* leave-avoid-to-search

e leave-avoid-to-engage-I

* leave-avoid-to-engage-I1

Maneuver decision Only one maneuver necessary in Avoid phase.

e defend-against-missile-pursuit

Sub-goal calculations The appropriate rule for sub-goal calculation.

9 decide-on-jink-point

Speed control In Avoid we want the agent to move as quickly as possible.

9 speed-faster

B-3

Planner hook This rule will check a maneuver plan and adjust the sub-goal if

necessary.

e check-maneuver-plan

B.4 Breakoff

The following are in breakoff.col.

Phase changes From Breakoff phase the agent can switch to Engage or Disengage

phase.

* leave-breakoff-to-disengage

* leave-breakoff-to-engage

Maneuver decision Only maneuver in breakoff, and that is to leave the general

vicinity away from the enemy.

e breakoff-from-engagement

Sub-goal calculation Only one rule necessary.

* decide-on-run-point

Speed control Only one speed: fast.

* turn-and-run-faster

B.5 Cruise

The following rules are in cruise.col.

Phase changes From Cruise phase the agent can switch to Identify, Refuel, Recall,

and Landing.

* cruise-to-identify

B-4

"* cruise-to-refuel

"* cruise-to-recall

"• cruise-to-landing

Cruise behavior The following rules control how an agent flies in Cruise phase.

"* cruise-to-waypoint

"* end-cruise-phase

B.6 Disengage

The following are in disengag.col

Phase changes From Disengage phase the agent can switch to Retreat, Refuel, or

Recall phase.

"* disengage-to-retreat

"* disengage-to-refuel

"* disengage-to-recall

Individual These rules enable a follower or leader to independently disengage and

also check the titan rules.

* disengage-follower

* disengage-leader

* disengage-to-titan

9 check-disengage-criteria

B. 7 Engage

The following are in engage.col.

B-5

Phase changes From Engage phase the agent can switch to Evade, Acquire, or

Pursuit phase.

"* leave-engage-to-evade- I

"* leave-engage-to-evade-I1

"* leave-engage-to-acquire

"* leave-engage-to-pursuit

Maneuver decision The maneuver decision is made according to the present sit-

uation. Each decision cycle the situation is quickly reassessed, and a change is

made if necessary.

"* decide-lag-enemy

"* decide-lag-enemy-parallel

"* decide-pure-enemy

"* decide-lead-enemy

"* decide-lead-enemy-side

"* nose-to-nose-turn

"* decide-on-lead-turn

"* pursuit-with-separation

"* decide-on-lag-roll

"* decide-high-yo-yo

"* decide-on-default-maneuver

Sub-goal calculations Engage phase has many sub-goal rules to match the ma-

neuvers.

"* decide-on-lag-point

"* decide-on-pure-point

B-6

"* decide-on-lead-point

"* decide-on-nose-turn-point

"* decide-on-lead-turn-point

"* decide-on-sep-point

"* decide-on-lag-roll-point

"* decide-on-high-yo-point

Speed control The aircraft's speed is determined by the sub-goal distance. If it is

too close, the aircraft will slow down. If too far, the aircraft will speed up.

"* speed-slower

"* speed-same

"* speed-faster

"* turn-speed-same

Additional rules There are some additional rules implemented.

• check-for-optimal-altitude

Planner hook This rule will check a maneuver plan and adjust the sub-goal if

necessary.

* check-maneuver-plan

B.8 Evade

The following are in evade.col.

Phase changes From Evade phase the agent can switch to Engage only.

* leave-evade-to-engage-I

* leave-evade-to-engage-Il

B-7

Maneuver decision All the defensive maneuvers are implemented in Evade phase.

* defend-against-lag-pursuit- I

* defend-against-lag-pursuit- II

* defend-against-pure-pursuit-I

* defend- against-pure-pursuit- II

o defend-against-pure-pursuit-Ila

* defend-against-lead- pursuit-I

9 defend-against-lead-pursuit- II

9 defend-against-lead-pursuit- Ila

Subgoal calculations Appropriate sub-goal rules.

"* decide-on-turn-point-I

"* decide-on-turn-point-i1

"* decide-on-turn-point-IIa

"* decide-on-turn-point-III

Speed control The agent can decrease or increase speed.

* turn-and-speed-faster

* turn-and-speed-slower

B.9 Fire

The following are in fire.col.

Phase changes From Fire phase the agent can switch to Acquire, Breakoff, Engage,

or Analyze phase.

e leave-fire-to-acquire

B-8

"* leave-fire-to-breakoff

"* leave-fire-to-engage

"* leave-fire-to-analyze

Maneuver decision No forward quarter maneuvers here.

"* decide-lag-enemy

"• decide-lag-enemy-parallel

"* decide-lead-enemy

Sub-goal calculations Appropriate sub-goal rules.

"* decide-on-lag-point

"* decide-on-pure-point

"* decide-on-lead-point

Speed control The agent can decrease, maintain, or increase speed.

"* speed-slower

"* speed-same

"* speed-faster

"* turn-speed-same

Missile rules Here are the various rules for a missile. The rules check for detonation

and fuel use. The missile uses only one maneuver, pure pursuit.

e check-for-missile-destruct

• check-missile-life

e decide-missile-pure-pursuit

* missile-pure-speed

B-9

Planner hook This rule will check a maneuver plan and adjust the sub-goal if

necessary.

9 check-maneuver-plan

B.1O Pursuit

The following are in pursuit.col.

Phase changes From Pursuit phase the agent can switch to Evade or Engage phase.

"* leave-pursuit-to-evade-I

"* leave-pursuit-to-evade-II

"* leave-pursuit-to-engage

Maneuver decision Only one maneuver used in Pursuit phase.

* long-distance-lead-pursuit

Sub-goal calculation Only one sub-goal rule.

* decide-on-lead-point

Speed control Normally, the pursuing aircraft will fly at maximum speed to close

the distance to its target as quickly as possible.

* pursuit-lead-speed

B.11 Search

The following rules are in search.col.

Phase changes From Cruise phase the agent can switch to Identify, Refuel, and

Recall.

B-10

"* search-to-identify

"* search-to-refuel

"* search-iterations

Titan checks The following rules check the titan rules for information.

e search-to-titan

9 check-radar

* check-radar-mode

Search behavior The following rules control an agent's behavior in Search phase.

"* follower-search

"* CAP-station-to-patrol

B.12 MAIN

Airmath functions The following functions are used to calculate flight specific

parameters.

The following functions are in airmath.col.

9 Vector math functions

- bearing-arctangent

- calculate-angles

- altitude

- speed

- climb-rate

- counter-force

* Navigation functions

- heading

B-11

- climb-angle

- roll-angle

- target-range

- target-distance

- line-of-sight

- target-bearing

- angle-off-the-nose

- angle-off-the-tail

- target-aspect-angle

- track-crossing-angle

- separation

- colinear-p

- closing-velocity

* Flight dynamics vector functions

- EGC-to-ABC

- ABC-to-ABC

- ABC-to-EGC

- change-attitude-moments

- change-attitude-rates

- change-abc-attitude

- change-thrust

- change-abc-acceleration

- change-orientation

- change-velocity

- change-location

B-12

Maneuver functions The following functions are used by the maneuver rules to

determine certain conditions.

The following are in basicmat.col.

"* convert-positive-angle

"* limit-roll

"* create-lag-point

"* create-lead-point

"* create-jink-point

"* create-lead-turn-point

"* create-sep-point

"* create-lag-roll-point

"* create-yo-point

"* create-trail-point

"* create-echelon-point

"* create-abreast-point

"* find-least-squares-equation

"* find-least-squares-point

"* compute-least-squares-point

"* choose-a-turn

"* speed-slower

"* speed-same

"* speed-faster

"* speed-control

"* speed-match

B-13

"* find-los

"* pursuit-possible

Maneuver flight functions The following functions are used by the orientation

rule to decide on a new orientation.

The following functions are in basicset.col.

"* limit-to-90

"* calculate-yaw

"* calculate-pitch

"* calculate-roll

"* decide-on-yaw

"* decide-on-pitch

"* decide-on-roll

"* decide-on-roll-limit

"* decide-on-pitch-limit

B-14

Bibliography

1. Anderson, Tracy L. and Max Donath. "A Computational Structure for En-
,orcing Reactive Behavior in a Mobile Robot." Mobile Robots III; Proceedings
of the Meeting, Society of Photo-Optical Instrumentation Engineers 1007. 370-
382. 1988.

2. Brooks, Rodney A. "A Robust Layered Control System For A Mobile Robot,"
IEEE Journal of Robotics and Automation, 979-984 (March 1986).

3. Chrystall, K., et al. "A Robotic Planning System." Proceedings of the Sixth
CASI Conference on Astronautics. 305-313. 1990.

4. Culp, Donald R. "Interpretation of Space Shuttle Telemetry." First CLIPS
Conference ProceedingsI. 290-304. 1990.

5. Dean, Thomas and Mark Boddy. "An Analysis of Time-Dependent Planning."
Proceedings of the National Conference on Artificial Intelligence. 49-54. AAAI,
1988.

6. Department, NASA Software Technology. CLIPS 6.0 Basic Programming
Guide. National Aeronautical Space Administration, 1993.

7. Dodhiawala, Rajendra, et al. "Real-Time AI Systems: A Definition and an
Architecture." Proceedings of the International Joint Conference on Artificial
Intelligence. 256-260. Los Altos, California: Morgan Kaufmann, 1989.

8. Dyer, Douglas E. and Gregg H. Gunsch. "Enlarging the Universal Plan for
Air Combat Adversaries." Proceedings of the Third Conference on Computer
Generated Forces and Behavioral Representation. 255-261. 1993.

9. Firby, R. James. "Building Symbolic Primitives with Continuous Control Rou-
tines." Proceedings of the 1st International Conference on Aritificial Intelligence
Planning Systems. 62-69. 1992.

10. Georgeff, M.P., et al. "Reasoning and Planning in Dynamic Domains: An Ex-
periment with a Mobile Robot." Proceedings of the Workshop on Space Teler-
obotics3. 27-39. July 1987.

11. Gervasio, Melinda T. "Learning General Completable Reactive Plans." Pro-
ceedings of the National Conference on Artificial Intelligence. 1016-1021. 1990.

12. Haley, Paul. "Data-Driven Backward Chaining." Second CLIPS Conference
Proceedings. 325-331. 1991.

13. Hipwell, Dean. Developing Realistic Cooperative Behaviors for Autonomous
Agents in Air Combat Simulation. MS thesis, Air Force Institute of Technology,
1993. AFIT/GCE/ENG/93D-05.

14. Hluck, George S., "Notes from the Third Conference on Computer Generated
Forces and Behavioral Representation," March 1993.

BIB-1

15. Homeier, Peter V. and Thach C. Le. "ECLIPS: An Extended CLIPS for Back-
ward Chaining and Goal-Directed Reasoning." Second CLIPS Conference Pro-
ceedings. 273-283. 1991.

16. Jones, Randolph M., et al. "Intelligent Automated Agents for Flight Train-
ing Simulators." Proceedings of the Third Conference on Computer Generated
Forces and Behavioral Representation. 33-42. 1993.

17. Kaebling, Leslie Pack. "An Architecture for Intelligent Reactive Systems." Rea-
soning About Actions and Plans edited by M. Georgeff and A.L. Lansky, 395-
410, Morgan-Kaufmann, 1987.

18. Kreutzer, Wolfgang and Bruce McKenzie. Programming for Artificial Intelli-
gence. Addison-Wesley Publishers Ltd., 1991.

19. Le, Thach and Peter Homeier. "Portable Inference Engine: An Extended CLIPS
for Real-Time Production Systems." 2nd Annual Workshop on Space Operations
Automation and Robotics. 187-192. 1988.

20. Manouchehri, Davoud, et al. "Autonomous Robotic Systems for SEI Tasks."
Proceedings of the 28th Space Congress. 19-26. 1991.

21. Mezera, David. Using Discovery-Based Learning to Improve the Behavior of
an Autonomous Agent. MS thesis, Air Force Institute of Technology, 1993.
AFIT/GCE/ENG/93D-10.

22. Mitchell, Tom M. "Becoming increasingly Reactive." Proceedings of the Na-
tional Conference on Artificial Intelligence. 1051-1058. AAAI, 1990.

23. Nazareth, Derek L. "Issues in the verification of knowledge in rule-based sys-
tems," International Journal on Man-Machine Studies, 255-271 (March 1989).

24. Payton, David W., et al. "Plan Guided Reaction," IEEE Transactions on Sys-

tems, Man, and Cybernetics, 1370-1382 (November/December 1990).

25. Rich, Elaine and Kevin Knight. Artificial Intelligence (2nd Edition). McGraw-
Hill, Inc, 1991.

26. Rosenschein, Stanley J. and Leslie Pack Kaebling. "Integrating Planning and
Reactive Control." Proceedings of the NASA Conference on Space Telerobotics2.
359-366. Palo Alto, California: Teleos Research, June 1989.

27. Russell, Stuart J. and Shlomo Zilberstein. "Composing Real-Time Systems."
Proceedings of the International Joint Conference on Artificial Intelligence.
212-217. Los Altos, California: Morgan Kaufmann, 1991.

28. Schoppers, Marcel J. "Universal Plans for Reactive Robots in Unpredictable
Environments." Proceedings of the International Joint Conference on Artificial
Intelligence. 1039-1046. Los Altos, California: Morgan Kaufmann, 1987.

BIB-2

29. Schoppers, Marcel J. "Building Plans to Monitor and Exploit Open-Loop and
Closed-Loop Dynamics." Proceedings of the 1st International Conference on Ar-
itificial Intelligence Planning Systems. 204-213. Los Altos, California: Morgan-
Kaufman, 1992.

30. Secarea, Jr., V.V. and H.F. Krikorian. "Adaptive Multiple Target Attack Plan-
ning in Dynamically Changing Hostile Environments." Proceedings of the IEEE
National Aerospace and Electronics Conference. 1117-1123. 1990.

31. Shaw, Robert L. Fighter Combat. Naval Institute Press, 1985.

32. Systems, Titan. Pilot's Decision Definition and Analysis. Technical Report
AFWAL-TR-86-0002, Air Force Wright Aeronautical Laboratories, 1986.

33. Whitehead, Steven D. and Dana H. Ballard. "Reactive Behavior, Learning, and
Anticipation." Proceedings of the NASA Conference on Space Telerobotics5.
333-344. January 1989.

BIB-3

Vita

Captain George S. Hluck was born on 17 December, 1962 in Cleveland, Ohio.

He graduated from the United States Military Academy in 1984 with a B.S. in

Electrical Engineering. He first served with the 5th Bn, 502nd IN, Berlin Brigade as

a platoon leader, company executive officer, support platoon leader, and adjutant.

He then served at Fort Carson, CO in the 2nd Bn, 12th IN as an assistant operations

officer, adjutant, and line company commander. CPT Hluck is currently working

as a knowledge engineer in the Science & Technology Dept, Center of Strategic

Leadership, Army War College.

Permanent address: 17448 Bennett Road
North Royalton, Ohio 44133

VITA-1

REPORT DOCUMENTATION PAGE 0m No040

Pubic reoortmo burden for this coilection of intormatiOn is estimated to & eraqe 1 r r aer res-orse, incltding the tirme for reviewig instructions, searching exsting data sources,
gathering an* maintaining the data needed, and completing and reviewing the ,olliectlon of itormation Send comments regarding this burden estimate or any other aspct of this
collecton of information. ncluding suggestions for reducing this OurOen to Wasnington Heacauaners Serices. Directorate for informraton Operations and Reports. 121S Jeflerson
Davis Highray,.SutCe 1204 Arlington. VA 22202-4302, and to the Office of managementand Budge, Paperworin Reduction Pr~t'ct (0704-0 188). Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 1993 Master's Thesis
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

DEVELOPING REALISTIC BEHAVIORS IN ADVERSARIAL AGENTS
FOR AIR COMBAT SIMULATION

6. AUTHOR(S)

George S. Hluck, Captain, USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GCE/ENG/93D-06

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTR!BU TION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution Unlimited

13. ABSTRACT (Maximum 200 words)

This thesis describes an initial effort into creating a rule-based, reactive system for air combat simulation. This
program uses the object-oriented extension of the expert system tool known as the C Language Integrated
Production System (CLIPS). This effort rose out of the need for creating and integrating semi-autonomous
forces for the Distributed Interactive System (DIS).
This thesis describes the basic maneuvers a pilot uses in present air-to-air combat. The methodology includes
the design decisions, knowledge-base development, phase architecture, and maneuver architecture development.
The actual implementation of the selected architecture is described. This thesis also discusses the results of
experimental runs with two agents maneuvering against one another.

14. SUBJECT TERMS 15. NUMBER OF PAGES

ARTIFICIAL INTELLIGENCE; AIR COMBAT; SIMULATION; KNOWLEDGE- 108
BASED; CLIPS 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Prescribed by ANSI Sti Z39-18
298-102

