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Gordon Erlebacher t and M. Yousuff Hussainit
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Abstract

Compressible stability of growing boundary layers is studied by numerically
solving the partial differential equations under a parabolizing approximation. The
resulting parabolized stability equations (PSE) account for non-parallel as well as
nonlinear effects. Evolution of disturbances in compressible flat-plate boundary
layers are studied for freestream Mach numbers ranging from 0 to 4.5. Results indi-
cate that the effect of boundary-layer growth is important for linear disturbances.
Nonlinear calculations are performed for various Mach numbers. Two-dimensional
nonlinear results using the PSE approach agree very well with those from direct nu-
merical simulations using the full Navier-Stokes equations while the required com-
putational time is less by an order of magnitude. Spatial simulations using PSE
have been carried out for both the fundamental and subharmonic type breakdown
for a Mach 1.6 boundary layer. The promising results obtained in this study show
that the PSE method is a powerful tool for studying boundary-layer instabilities
and for predicting transition over a wide range of Mach numbers.
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t This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract Nos. NASI-18605 and NASI-19480 while the authors were in residence at the Institute for Computer
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I. Introduction

The subject of compressible boundary-layer stability has attracted a great deal
of interest in the past few years due to its importance in understanding the on-
set of transition in high-speed flows and providing some theoretical background
for laminar flow control (LFC) techniques (Malik, 1990a). Most investigations of
compressible linear stability (e.g., Mack, 1969, 1984) have employed what is known
as the "quasi-parallel" approach whereby the growth of the boundary layer is ig-
nored and the linearized Navier-Stokes equations are reduced to ordinary differential
equations (ODE) by assuming a wave-like disturbance of the form

4 Y1 ~ (y)e(U+$ZWt) (1)

where x, y, and z are the streamwise, wall-normal, and spanwise coordinates, respec-
tively; a and 0 are the corresponding wave numbers, w is the disturbance frequency
and %F represents the disturbance shape function. The linear ODE's along with the
homogeneous boundary conditions constitute an eigenvalue problem of the form

a = a(w, 0) (2)

which can be solved by standard eigenvalue techniques. The imaginary part of
a gives the disturbance growth rate and a small disturbance is expected to grow
provided a, < 0. For a given flow, this eigenvalue approach can be applied "locally"
at various locations along the body in order to obtain an idea about overall growth
of disturbances and to correlate with transition location using empirical methods
such as the eN method.

The effect of non-parallel flow on boundary-layer instability has been studied
by Gaster (1974), S.ric and Nayfeh (1975), Gaponov (1981), and El-Hady (1991).
In the multiple-scales method used by the latter three authors, the disturbances
are decomposed into a slowly-varying shape function and a rapidly-oscillating wave
part. Both parts are represented as functions of a fast-scale variable (x) and a slow-
scale variable (t = ex, with e = 1/R). With these assumptions the governing PDE's
are reduced to a set of ODE's by neglecting terms of order equal to or higher than
e2 . In conjunction with the solvability condition, the analysis yields non-parallel
corrections to the eigenvalues computed by the quasi-parallel theory. Just like the
traditional linear theory, the multiple-scales approach can only be applied locally
for a given problem.

Apart from the "local" methods described above, the evolution of disturbances
in a given flowfield may also be computed numerically by solving the governing
partial differential equations (PDE's) without resorting to the eigenvalue approach.
The effect of boundary-layer growth and other history effects associated with ini-
tial conditions and variation in wall temperature, for instance, can be properly
accounted for. This was done for the G6rtler vortex problem by Hall (1983) and
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Spall and Malik (1989). Denier et al. (1991) solved the "receptivity" problem to
provide the inflow conditions for the PDE's and were able to show how G6rtler
vortex structure develops from a discrete roughness site.

The governing PDE's for the G6rtler problem are parabolic and thus the solu-
tion can be obtained by direct marching provided the initial conditions are known.
However, the governing equations for Tollmien-Schlichting (TS) and inviscid type
disturbances are elliptic and their solution cannot be obtained by simple march-
ing methods. In addition, the numerical solution of these PDE's requires proper
outflow boundary conditions which is a nontrivial task. However, we note that for
boundary-layer type flows which are of interest here, the equation set is only weakly
elliptic along the dominant flow direction. Therefore, with appropriate simplifica-
tions, one could "parabolize" these stability equations and avoid the difficulties
associated with the downstream boundary conditions.

From a physical view point, the streamwise ellipticity arises from the upstream
propagation of acoustic waves and the streamwise viscous diffusion. To render
the stability equations parabolic, one must devise a way to suppress, but without
compromising the essential physics, this upstream propagation. One way to derive
the parabolized stability equations (PSE) is to borrow ideas from the multiple-scales
approach and decompose the disturbance into a rapidly-varying wave-like part and a
slowly-varying shape function. The ellipticity is retained for the wave part while the
parabolization is applied to the shape function. The resulting PSE can be solved by
marching along the streamwise direction. The technique can be used to study both
the linear and nonlinear evolution of convective disturbances in growing boundary
layers. Global or absolute instabilities can not be studied by this approach. This
parabolizing procedure has been used recently by Bertolotti et al.(1992) for Blasius
flow.

The objective of this research is to study compressible boundary-layer stability
and transition. We employ parabolized stability equations for linear and nonlin-
ear development of disturbances in a compressible boundary layer. The nonlinear
calculations are carried all the way to the transition stage for supersonic flows. In
section II, we formulate the problem while the numerical procedure used to solve
the governing equations are given in section III. The results and conclusions are
presented in section IV and V, respectively.

II. Problem Formulation

The evolution of disturbances in compressible boundary layers is governed by
the compressible Navier-Stokes equations

+V(pV) = o
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at + (V V)V] = -Vp + V[A(V • V)] + V- [/(VV + VET )] (3)

pep[ 5F + (V V)TJ = V.(kVT) + p + ( V)P+4

where V is the velocity vector, p the density, p the pressure, T the temperature, cp
the specific heat, k the thermal conductivity, p the first coefficient of viscosity, and
A the second coefficient of viscosity. The viscous dissipation function is given as

A(V. f) 2 + L[VV + Vv T ]2.

2

The equation of state is given by the perfect gas relation

p = pRT

and the steady state solution of the basic flow can be derived by invoking the
boundary-layer assumption.

In this research, we formulate the compressible stability problem in Cartesian
coordinates for the flat-plate geometry, although the theory itself can be easily
extended to axisymmetric bodies and infinite swept-wing flows. The Cartesian
coordinates are denoted by x, y, and z to represent the streamwise, wall-normal,
and spanwise directions, respectively. All the lengths are scaled by a reference length
1, velocity by ue, density by Pe, pressure by peu2, time by I/u,, and other variables
by the corresponding boundary-layer edge values. The basic flow is perturbed by
fluctuations in the flow, i.e. the total field can be decomposed into a mean value
(boundary-layer solution) and a perturbation quantity

u=ii+u', v=i+V', w=tf,+w'

p=i+p', p=A+p', T=T+T' (4)

A=pi+A', A=A+A', k=k+k'.

Substituting Eq.(4) into the Navier-Stokes equations given by Eq. (3) and sub-
tracting from the governing equations corresponding to the steady mean flow, and
using the equation of state, we obtain the governing equations for the disturbances
as

04 __ __ __ 024 __2_ . 24
r- + A-x !LO~ + C LO + D 0 = Vz,.x---- + V.u +xy '02'-YY

S +8O224 (5). 24~ 0__+ V -- +- V Y , 20• Y , 20
.z Oyaz Oz2

where 4 contains the disturbance vector and is defined as

= (p', u', v', w', T') T .
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Matrices r, A, B, C, D, V.., V2y, V1 y, V,., V., and V,, are Jacobians of the
corresponding total flux vectors and are composed of a linear part with only mean
flow quantities (denoted by superscripts 1) and a nonlinear part which contains
perturbation quantities (denoted by superscripts n): r = r' + rn, A = A' + A",
etc. We note here that matrices r, A, B, C, D have contributions from both inviscid

and viscous terms, and thus contain terms of order one and of order 1/Ro (Ro is
the reference Reynolds number R 0 = uel/ve); while matrices Vz., V.., V.,, V,,
V.,, V.,, and V.. are solely due to viscous diffusion and are of order l/R 0 .

To facilitate our discussion on the relation between linear and nonlinear dis-
turbances, we rearrange Eq. (5) in the following form

!0€82 10 92¢t¢ 2 0€ ni02
p1 9 Ž ~ V' OOk

Ot O-x4 AO+-y 4-C-z4-DO-Vz Ox2  VrP OOy "'Oy

axaz ayz IZ2
(6)

where the left hand side contains only linear operators operating on the disturbance

vector and the right-hand-side forcing vector F" is due to nonlinear interaction and
includes all nonlinear terms associated with the disturbances. The right hand side

is given as

F" =n - r 00 A"n0 B ,0o -Cn
Ot Ox Oy Oz
Dn V 02¢ V 0 n20 n 02L

- " VO2 ,07"'- + Vy y (7)

+ V 0 + V" +2 V02
SOO Z + y-- &-z2.

In the incompressible limit, F" contains quadratic nonlinearities; while, for com-
pressible flows, cubic and higher-order nonlinearities are present. For small distur-
bances, F" can be neglected and thus Eq. (6) reduces to the linearized Navier-Stokes

equations

r-+ A+B- +C B+D4+
ON O'x TY OZ
_-V1 ý 0¢ 1 90¢ y1 02€-V a20€

SVY - .OOz (8)

-1C) -v V 1 020 0

The governing PDE's of the disturbances, Equation (6), is hyperbolic in time
for the convection terms (inviscid part). When we consider only the spatial deriva-
tives, Equation (6) is elliptic in the streamwise direction due to two reasons. First,
the streamwise viscous term V,, allows any disturbances to be diffused upstream.

Second, and more importantly, the convection term in the streamwise direction
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makes the upstream propagation of acoustic waves possible. The latter can be bet-
ter understood by considering the linearized version of the inviscid equations and
using the method of characteristics (MOC) theory. Since the inviscid part of Eq.
(8) is hyperbolic in time, the corresponding slopes of characteristic lines in the x - t
plane (which determine the direction of propagation) can be found by solving the
following eigenvalue equation

JA' - A rli = 0.

Negative eigenvalues imply the wave is propagating from downstream to upstream
and vice versa. The eigenvalues of the above equation are

Ac= i ii, , + cif - C

where c is the speed of sound. For boundaxy-layer flows of interest in this study, the
first four eigenvalues are always positive, while the last eigenvalue (fi - c) can be
either negative or positive depending upon the local Mach number (M, = a/c). For
subsonic flows, this quantity is negative throughout the whole flowfield, therefore,
the equation set (8), and thus (6), is elliptic. For supersonic flows, the ellipticity
only arises inside the subsonic layer adjacent to the wall.

Based upon the above discussion, one way to "parabolize" the PDE's given by
Eq. (6) and make the marching solution feasible is to neglect the viscous diffusion
terms along the streamwise direction and prohibit the upstream wave propagation
either by dropping the left-running characteristics (associated with the eigenvalue
i-c) (Chang and Merkle, 1989) or suppressing some part of the streamwise pressure
gradient, as it is done in the Parabolized Navier-Stokes (PNS) approach (Vigneron
et al., 1978). For the stability equations, the upstream wave propagation can be
suppressed by either dropping the characteristic equation associated with the eigen-
value ii - c or multiplying the streamwise pressure disturbance gradient Op'/9x by
a parameter Q given by

fl = M. M, < 1
1 + (3- 1)M.2' (9)

=1, M, > 1

where - is the ratio of specific heats. These parabolizing procedures are quite
effective for the PNS approach and yield solutions which compare favorably with
those obtained by the full Navier-Stokes equations provided a large portion of the
flow is supersonic and only steady state solutions are of interest (Vigneron et al.,
1978; Rubin, 1981). The advantage, of course, is the significant reduction in the
computational cost due to the marching solution.

For compressible stability problems, the disturbances are essentially unsteady
waves propagating across the whole boundary layer and the amplitudes of these
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waves reach their maxima near the critical layer located between the wall and the
boundary-layer edge. These instability waves undergo a "fast oscillation" (phase
change) as they evolve along the flow direction. Direct application of the parab-
olizing procedure used in the PNS approach for mean flow computations to our
governing stability equations would not capture the flow physics due to the sup-
pression of the wave propagation along the left-running characteristics. Therefore,
an alternative procedure must be devised.

Linear PSE

As mentioned previously, one way to "parabolize" the governing PDE's is to
first decompose the disturbances into a fast-oscillatory wave part and a slowly-
varying shape function. We keep the ellipticity for the wave part while parabolizing
the governing equation for the shape function. Following the lead of the non-parallel
linear stability theory, we assume that the disturbance vector 0 for an instability
wave with a frequency w and a spanwise wave number / (assume the wave is periodic
in both the temporal and spanwise directions) can be expressed as

O(x,y,Z,t) = IP(x,y))e f:o a()d•+i5-,,) (10)

where i is the fast-scale variable, a(i) is the corresponding streamwise wave number
and 1P is the "shape function" vector given by

%p = (0, fi, 1, tij, ")T. (11)

As compared to Eq. (1), the shape function %P is now a function of both x and y
due to the growth of the boundary layer and the wave number a is a function of x
to account for the growing boundary layer. For simplicity, we now restrict ourselves
to the linear case, i.e., only a single disturbance mode (w, 0) is considered and the
nonlinear effect will be included later on. Substituting Eq. (10) into the linear
stability equation (8), we have the following equation for the shape function

bi +bN =. +~• +VI,-• +,-, (12)
OXZ~ ZUl OX gy PVYO2

where the vectors D, A and f are defined by

D= -iwr' + D' + iaA' + iC'

da 2)V'+ + afVh + #2V;'

? = A' - 2iaV' - iOV:
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In the quasi-parallel linear theory where "normal-mode" analysis is employed,
the shape function %P is assumed to be a function of y only (d'P/dx = 0); therefore,
Equation (12) reduces to the following system of ODE's

LA = 0 (13)

where the operator L0 is given by

Lo =+ fd d
dy YYdy 2

and the elements.of matrices n, d and are evaluated by assuming parallel
mean flows (V = 0 and da/dx = 0). The above ODE's in conjunction with homoge-
neous boundary conditions then constitute an eigenvalue problem described by the
dispersion relation given in Eq. (2).

Unlike the normal-mode analysis described above, the decomposition (10) ex-
hibits some extent of non-uniqueness between the distribution of the wave part and
the shape function part. In the PSE approach, we choose a complex wave num-
ber a and construct a decomposition such that the change of shape function %P
along the streamwise direction x is of order 1/RO and the second derivative of IF
(a 2 %p/4X2 ) is negligible. With this assumption and after neglecting all terms of
O(1/1R), Equation (12) reduces to

ft ft V, a2q
-% + A + (14)4OX 9Y YY Oy2

Equation (14) describes the evolution of the shape function %P and is "nearly"
parabolic in the sense that second derivatives in x are absent and the elliptic effect
associated with the wave part is absorbed in matrices D, A and B. For instance,
the disturbance pressure gradient ap'•/ax, which is responsible for the upstream
influence, can be written as

apt ap qfZ cr(±t)dr+#z-wt)

a x ( iOq+ ± X ") e z-

The contribution of the wave part (iap3) is absorbed in the source term D'P and does
not contribute to the upstream influence of the governing equations of the shape
functions, Eq. (14). However, the pressure gradient shape function apl/ax associ-
ated with the left-running characteristic (for subsonic flows only) is still present in
the x derivative term. The existence of this term allows upstream influence in Eq.
(14). For stationary G6rtler vortex problem; a = 0 and aup/ax drops out, Eq. (14)
reduces to the parabolic equations solved by Spall and Malik (1989).

For supersonic boundary layers, a large portion portion of the flow possesses
only downstream characteristics, our numerical results have shown that with a
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properly chosen value of a (see discussion below) most of the upstream influence
is accounted for in iac3 and the elliptic effect associated with the pressure gradient
shape function, Opl/&x, is negligible. To make Eq. (14) truly parabolic and enable
a stable marching procedure for subsonic flows, we multiply 0i3/Ox by a constant
Q defined in (9) (in the incompressible limit, this is equivalent to setting 'Op/axr to
zero). While, this is formally true only in special cases (e.g. Gortler vortex problem),
the approximation yields solutions which compare very well with accurate results
from full Navier-Stokes equations (Joslin et al., 1992). This is because most of the
ellipticity is captured in the iac term.

For incompressible flows, one can use the vorticity-streamfunction formulation
for two-dimensional flows or use other formulations derived by eliminating the pres-
sure from the momentum equations, as is done by Bertolotti et al. (1992). In these
approaches, neglecting second and higher streamwise derivatives of the dependent
variables inherently suppresses some part of the streamwise pressure gradient, and
consequently prohibits the upstream propagation of information.

We now describe the strategy to update the streamwise wave number in or-
der to make the marching scheme well-posed. The evolution of shape functions is
monitored during the process of marching and a is updated by local iterations at a
given x according to the change in T. The updating procedure is described herein.
At a given location xi, we assume that the streamwise wave number is given by al
and the total disturbance in the vicinity of x, can be expressed as

,(f
¢(x,y,z,t) = I(x,y)e :1 •,dx+#z-,) (15)

The change of the shape function %P can be approximated by the following Taylor
series expansion truncated to the first order

%P(x,Y) = %P' + -i) + .

where 'P is the shape function at x = Xl. To an accuracy of O(x - xi), the above
equation can be further expressed as

4,'(x,y) = Pje' 4 0dt (16)

Substituting (16) into (15), we have the "effective" wave number in the vicinity of
X, given by

1 d' 1a = ali T dx (17)

The real part of this effective wave number represents the phase change of the
disturbance while the imaginary part depicts the growth rate, both corresponding
to the quantity %P chosen. A disturbance (%I') is unstable if the imaginary part
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is less than zero. The updating procedure of a is repeated by using (17) until the
change in a is smaller than a prescribed tolerance (typically 10-12).

Since the shape function vector %P is a function of y and contains five depen-
dent variables (A,fi, etc.), the updating procedure above is equivalent to choosing
a normalization of the disturbance vector such that d'I l/dx is zero at a particular
y location. Accordingly, the value of a computed by (17) will depend on the y
coordinate and the selected dependent variable TP1 . In this study, we have used the
shape function fi (or i for compressible flows) at various y locations or the energy
integral (E = fo1 fil(2 + 62 + tb2 )dy), which is independent of the y coordinate,
to update the wave number a and the resulting non-parallel growth rate (which
also depends on the dependent variable and y coordinate chosen to measure the
growth rate) appears to be very weakly dependent upon the normalization chosen
(see discussion in section IV).

The solution of (14) requires proper boundary conditions in the wall-normal
direction. We apply the homogeneous Dirichlet conditions

fA=v= =T=0, y=0 (18)

at the wall and in the free-stream

fi - f - tb - 0, y --+-oo; (19)

although, these can be easily replaced by other conditions such as the Rankine-
Hugoniot conditions at the shock (Chang et al., 1990) for supersonic flows. Non-
homogeneous boundary conditions can also be imposed.

Nonlinear PSE

In the linear PSE approach described above, the disturbance amplitude is as-
sumed to be infinitesimally small so that the nonlinear interaction of waves with dif-
ferent frequencies and spanwise wave numbers is neglected. When finite-amplitude
waves are present in the flow, the linear approach is no longer valid. For nonlinear
studies, we assume that the total disturbance is again periodic in time and in the
spanwise direction, thus, the total disturbance function € can be expressed by the
following Fourier series

00 00 
i rý( ~ t jz- w)( 0Z Z o (20)

m--oo n--oo

where rmn and Tmn are the Fourier components of the streamwise wave number

and shape function corresponding to the Fourier mode (mw, nfl). The frequency
w and wave number # are chosen such that the longest period and wave length
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are 2r/w and 2r/,6 in the temporal and spanwise domains, respectively. For most
stability problems of interest, it is sufficient to truncate (20) to only a finite number
of modes

= �Z� Z '/.n(x,y)e' -m0¢k)d•+n•5-mwt (21)
m=-M n=-N

where M and N are the total number of modes kept in the truncated Fourier series.
For all nonlinear results presented in this study, we apply both the temporal and
spanwise symmetry conditions whenever applicable, i.e., only one quarter of modes
(m ranging from 0 to M and n ranging from 0 to N) are computed in the marching
process.

We now substitute Eq. (21) into our nonlinear governing equation (6) and
perform harmonic balance (collect terms with the same spanwise wave number and
frequency) for both linear and nonlinear terms. The resulting governing equations
for the shape function of a single Fourier mode (m, n) become

8'I'mn 8'Pmn_
DmnImn + Amn.o__ + Bmn (22)

8Y Oy2 + Fmn/Amn

where matrices Dmn, Amn and Bmn are given by

Dmn = -imwr' + D' + iatmnA' + in#C'

(. damn. _2 + nam V1
dx n c )v + n# z'

+ n2•V20

Amn = A' - 2ikmnVz' - ini6VhX zl

Bm, = B'- iamnV',, - in#V 1YX

and the quantity Amn is

Amn =e if-01 amn~tdt

The nonlinear forcing function Fi.n is the Fourier component of the total forcing
defined by Eq. (7) and can be evaluated by the Fourier series expansion of Fn

M N

F (x,y,z,t) = E E Fmn(x'y)e(",z-m"w)" (23)
m=-M n=-N

The Fourier decomposition of Eq. (23) can be done by using the Fast Fourier
Transform (FFT) of F", which is evaluated numerically in the physical space. In
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equation (22), a parabolizing procedure similar to that used in the linear PSE has
been employed in order to obtain a marching solution.

As in the linear PSE, the determination of the wave number amn plays an
important role in maintaining numerical stability. The procedure described above
for computing a for linear disturbances can also be used for the determination of
amn. However, when all Fourier modes are nearly phase-locked (as is evident when
parametric resonance of secondary instability takes place, see e.g. Kachanov and
Levchenko (1984)), one may assume that the wave number is given as

mn :-= (mnar, -- mn)

where a, is the real part of alo and amn denotes the growth rate of the mode (m, n).
Each mode can have a different imaginary part am,, while the real part is updated
according to the phase change of the dominant fundamental mode. Additional
phase shifts in the harmonics are included in the evolution of the shape functions of
the harmonic waves; therefore, all Fourier modes are not necessarily phase-locked.
It needs to be pointed out that the "nearly" phase-locking assumption (since the
evolution of shape functions may shift the phase slightly) mentioned above is used
for convenience and is not necessary for the nonlinear analysis using PSE. In a
later section, we will provide an example of a nonlinear calculation where we let
the disturbances evolve with and without the phase-locking rule. Use of the phase-
locking rule, when applicable, saves computational cost.

The nonlinear PSE for a single Fourier mode, equation (22), is equivalent to
the linear PSE given in (14) with a frequency mw and a spanwise wave number no
with the addition of a forcing function. Since the forcing function acts as a "source
term" of the equation, the boundary conditions and solution procedure described
above for the linear PSE can be directly applied to the nonlinear system, except for
the modes with zero frequency (m = 0). These zero frequency modes are denoted
as the mean flow correction (if n = 0) or longitudinal vortex modes (if n # 0). For
these modes, as in G6rtler vortex problem, the pressure gradient 9P1/Ox drops out
making the equations fully parabolic.

The boundary conditions given in Eqs. (18) and (19) can be applied to the
longitudinal vortex mode without modification. For the mean flow correction, the
free-stream conditions are replaced by

- aboo
w00o= o00 = 00 = , y - 00 (24)

to account for the change of displacement thickness due to the correction of the
mean flow profile (it + fioo) arising from nonlinear interactions. This Neumann
condition for the normal velocity allows the mean flow given by the boundary-layer
solution to adjust itself in order to assuire mass balance.
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III Numerical Procedure

In this paper, we only consider the compressible stability of two-dimensional
boundary-layer flow past a flat plate. The mean flow solution is obtained by solv-
ing the self-similar boundary layer equations. By using the Mangler-Levy-Lees
transformation, the boundary-layer equations are transformed into a set of ordi-
nary differential equations (ODE's). A fourth-order compact scheme is employed to
solve these ODE's. Details of the numerical procedures are given in Malik (1990b)
and will not be repeated here.

Numerical solution of the parabolized stability equations (14) or (22) requires
discretization in both x and y directions. Since the boundary layer grows in the
streamwise direction, we expect that the solution for the shape functions will also
grow. To ensure sufficient resolution as the disturbances evolve downstream, dis-
cretization in the wall-normal direction must be able to account for the growth of
the boundary layer. Instead of solving equations (14) and (22) in Cartesian coor-
dinates, we transform these equations to a generalized coordinate system defined
by

(X= y) (25)

in order to facilitate numerical computations on a "growing mesh" or curved wall
geometries. After this transformation, Equation (14) becomes

-84' -84'=•02I
D'I + A -+B- + f3 - (26)

where the coefficient matrices are given by

D=D

A ,1  + v

2vtJ a7 Jj

The Jacobian of the transformation J is defined as

J = G77Y - G771.

Equation (22) can be transformed in a similar fashion.
Using transformation (25), we map the computational grid into a uniform mesh

with constant increments in ý and 77 coordinates. For most of our calculations, we
use a constant step size in x while the grid is clustered near the wall to resolve the
rapid change inside the boundary layer. For high Mach number calculations, we also
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cluster the grid near the critical layer located near the boundary-layer edge. The
stretching along the y direction is based on the local length scale I.. (l, = výi-l)
which increases with the boundary-layer growth. The same grid distribution based
on y/I1 is used for all x locations while 1, increases with x.

We use indices i and j to denote the grid index along the streamwise (z) and
wall-normal (y) directions, respectively. In the streamwise direction, we use the
second-order backward difference

OT = (3P,,j - 4ki-',j + Pi-2,j)/2Aý

for all x locations, except for the starting plane where a first-order backward differ-
ence is employed. The resulting discretized equation for the i-th streamwise plane
is then 3 (9• ~0

[D + - A- + B - V=
2Aý 5 a 2  (27)

A.•,(41F-•,j - Ti-2,j)/2Aý

In the wall-normal direction, we employ a fourth-order accurate finite-difference
scheme. The two-point fourth-order scheme by Malik et al. (1982) is also used for
normal derivatives; however, it requires that the normal mean velocity T) is non-zero
and hence is not generally applicable for all problems.

For the uniform mesh in the ý - q plane, the normal derivatives in Eq. (26)
are discretized according to the following fourth-order central difference formulae:

8a1' __ -T~ + 8IP i,j+l - 8%Pi,j- 1 +TiP,1 .. 2

877 12AY7

02 %a772-- -(-'Pi,j+2 + 16%Pi,j+l - 30%Pi,j

+ 16jj,.j- - Tij-2)/12A,2.

For the grid point next to the boundary, the above five-point scheme is replaced
with the second-order scheme

O'P
S= ('Pj+1 - ,-)/A

02,

a -= ('i,j+l - 241ij + Qi,j-l)/2Ar72 .

At the boundary, five boundary conditions are needed for five dependent variables
in %F. The no-slip and free-stream boundary conditions given in (18) and (19)
are used. In addition, we apply the discretized continuity equation as the fifth
boundary condition both at the wall and the free-stream. Substituting the above
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normal derivatives into (27) for all interior points and coupling with the boundary
conditions result in a block penta-diagonal system of equations at each x location
with a block size of 5 x 5. This block matrix can be solved by the standard LU
decomposition method.

IV. Results and Discussion

To demonstrate the capability of the PSE approach, we perform both linear
and nonlinear calculations for various Mach numbers. In the linear results, the
main focus will be on the non-parallel effect, and in the nonlinear regime, PSE
calculations are carried all the way to the early stage of transition.

In the following discussion, we define the growth rate in non-parallel boundary
layers according to Eq. (17), i.e., for any given flow variable ik ( for instance, p, fi,
etc.), the growth rate a is defined as

or = -Im(a) + Re(--). (28)
0 OX

The second term on the right hand side of the above equation is a function of y;
therefore, the growth rate in a non-parallel boundary layer depends upon the dis-
tance normal to the wall. We note here that although Eqs. (17) and (28) are derived
based on the same concept, they have different physical meanings. Briefly, Eq. (17)
is used to normalize the disturbance vector and determine the wave number a. For
each normalization, corresponding to different *I chosen in (17), the growth rate
for any given variable at any y location is to be evaluated using Eq. (28). For the
results presented herein, we compute the growth rate at the corresponding loca-
tion where the fluctuation reaches its maximum value or based on the disturbance
kinetic energy integral,

aE = -Im(a) + -•(lv'-E)
lax

where E is defined by
E = 10(fi2 +,b2 + tb2)dy

for the incompressible limit and by

E = I.(fi2 +±b2 + tb 2)dy

for general compressible flows. In supersonic wind tunnel experiments, the growth
rate is usually measured for the mass flow fluctuation. We define the mass flow
fluctuation as

(pu)' = p'ii + Au'. (29)
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Linear PSE

As mentioned in the previous section, the streamwise wave number a depends
upon the variable T, chosen and the y location where (17) is applied. To demon-
strate that the resulting non-parallel growth rate is very weakly dependent upon
various normalizations, we first perform calculations for a Mach 1.6 boundary layer
by using different dependent variables to update a. These variables include fi, t
(evaluated at various y locations as shown in the figure) and the kinetic energy inte-
gral E defined above. Figure 1 shows the resulting imaginary part of the converged
value of a for the various norms. The results reveal that a strongly depends on
the norm chosen. -The corresponding effective growth rates ,,p, o'T and aE, eval-
uated by using (28) at their maximum locations (for a'. and "T only) are shown
in Fig. 2. It shows that the total growth rates depend on how they are measured
(for instance, aT and aE are different); however, each non-parallel growth rate (e.g.
apu) appears to be independent of the normalization procedure because results from
various norms collapse into one single curve. Similarly, although not shown here,
the non-parallel wave number, evaluated by

10
S= R e(a) - Im ag( -- ),

is also weakly dependent on the normalization. The above results indicate that
although different norms result in different values of a, the total growth rate (and
wave number) by accounting for the evolution of shape function in the streamwise
direction remains the same regardless of the norms. For the results presented herein,
we use the kinetic energy integral E in (17) to update a.

To verify the numerical algorithm, the first test case studied is an incom-
pressible flow case. The incompressible results were obtained by choosing a Mach
number of 10-6 in our compressible formulation. Linear non-parallel results are
available for incompressible boundary layer flow by using local methods from many
authors(e.g., Gaster, 1974). The neutral points obtained from our PSE calcula-
tions agree very well with thlose from Gaster's (1974) non-parallel method. Figure
3 shows the computed variation of the growth rates (au, a,, and aE) with Reynolds

number (R = U/Z/ve) for a represen --'ive non-dimensional frequency (F = WR)
of 1.12 x 10-4. The growth rates from multiple-scales method are shown by symbols.
The results shown in Figure 3 reveal that the neutral curve near the upper branch is
shifted to higher Reynolds numbers due to non-parallel effect as was found by Gaster
(1974) and linear PSE results agree very well with those from the multiple-scales
approach.

The second test case was chosen to be the Mac_ 1.6 case studied by El-Hady

(1991) using the multiple-scales ap.-, -ch. Ti,_ frequency was fixed at 0.4 x 10-4

and variable transport properties were used. Calculations were performed for both
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2-D and 3-D linear disturbances with an oblique wave angle of about 500 for the
latter. The growth rate of the mass flow fluctuations (defined in Eqs. (28) and
(29)) from our PSE calculations together with the multiple-scales results are plotted
along with the growth rates obtained by quasi-parallel linear stability theory in Fig.
4. Our PSE results agree quite well with those obtained from the multiple-scales
approach. The results also indicate that for the first mode disturbance at Mach
1.6, flow non-parallelism has more effect on three-dimensional disturbances than
on two-dimensional ones. Results obtained at higher Mach numbers also show a
noticeable non-parallel effect on the first-mode instability.

We now show some results for the Mach 4.5 flat-plate flow, which is subject
to second-mode instability (Mack 1984). Calculations were performed for a dis-
turbance frequency of F = 1.2 x 10-4 with different streamwise resolutions. We
used step sizes ranging anywhere from 64 steps per wavelength to only one step
per wavelength. The results for the second-mode growth rate based upon the to-
tal kinetic energy are plotted in Figure 5. There is essentially no difference in the
growth rate results when two or more steps per wavelength are used. The reason
why only two points per wavelength could yield such accurate growth rates lies in
the fact that most of the wave information is absorbed in the complex wavenumber
a. In contrast, direct numerical simulation (DNS) of Navier-Stokes equations would
require many more points per wavelength for comparable accuracy.

To further verify our linear results, we compare non-parallel evolution of a
second mode disturbance with a frequency of 2.2 x 10-4 with DNS. In Fig. 6,
the maximum amplitudes of various flow quantities are plotted against Reynolds
numbers for both PSE and DNS. The PSE results obtained by using only 7 steps
per wave length agree very well with DNS results using 16 steps per wave length.
The PSE calculation took about 100 seconds CPU time while the DNS required
more than 40 hours on a Cray-YMP. Details of the comparison including nonlinear
disturbances and the spatial DNS algorithm are given in Pruett and Chang (1993).

Nonlinear PSE

a. Computation of a
In a previous section we mentioned that the wavenumber a for the harmonics

may be determined either by the phase-locking rule or by using Eq. (17). It is known
that the nonlinear wave interaction is dependent on the phase-difference between
various modes. Therefore, it is essential that nonlinear PSE approach must not
require phase-locking as a fundamental assumption; although, it may be used as a
convenience for problems where phase-locking happens anyway.

In order to demonstrate that phase-locking is not a basic assumption for non-
linear PSE computations, the following test has been performed. Nonlinear calcula-
tions have been done for a flat-plate boundary layer in the incompressible limit. A
two-dimensional wave with a frequency F = .86 x 10' and an initial amplitude of
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.25% at R = 400 is introduced in the boundary layer and the evolution of this wave
along with its various harmonics is monitored. Calculations were performed in two
different ways. First, the wavenumber a was computed for the fundamental wave
according to Eq. (17) and the phase-locking rule was used for all the harmonics. In
the second set of calculations, wavenumbers for the fundamental and all the harmon-
ics were computed independently by using Eq. (17). The computed results for the
amplitude of u velocity (fundamental, its four harmonics and meanflow correction)
are presented in Fig. 7(a). It can be seen that only very minor differences appear
between the two sets of calculations and these also tend to disappear as the calcu-
lations are marched away from the inflow boundary. The second set of calculations
takes about 50% more computer time due to the iterations involved in determining
a for the wave harmonics. Hence, it is expedient to use the phase-locking rule for
problems where this may be the outcome in any case.

In Fig. 7(b), the same nonlinear PSE results are compared with the spatial
incompressible DNS results for fundamental, first harmonic and the mean flow dis-
tortion modes. Both PSE and DNS start with the same initial conditions, i.e., a fun-
damental disturbance (1, 0) at R = 400 and all harmonic waves including the mean
flow distortion are generated through nonlinear interactions. The good agreement
between DNS and nonlinear PSE indicates that the parabolizing approximation in
the PSE approach does not introduce any severe error and all detailed nonlinear
features are properly captured. Details of the comparison including disturbance
profiles can be found in Joslin et al. (1992).
b. Second-Mode Instability at Mach 4.5

To verify the nonlinear PSE algorithm, we choose the nonlinear second mode
simulation at Mach 4.5 investigated by Erlebacher and Hussaini (1990) using the
temporal DNS approach. As in the temporal DNS approach, we assume that the
mean flow is parallel and study the spatial evolution of disturbances in the presence
of nonlinear interactions. The initial conditions were provided by the eigensolution
from the linear theory at R = 781 and four Fourier modes (M = 3) were kept in the
truncated series. In our PSE calculation, the disturbance is assumed to be periodic
in time and the nonlinear evolution is carried downstream in x as opposed to the
temporal DNS approach where the disturbance is periodic in x and integration is
carried in time. It was found in Erlebacher and Hussaini (1990) that due to non-
linear effect, the growth rate of the fundamental disturbance strongly depends on
y and there exists a sharp decrease in the local growth rate near the critical layer.
The growth rates based on ill0 from our PSE results are shown in Figure 8(a) for
different x locations. The growth rate is initially uniform at the starting location
(x = OA). As the disturbances are evolving downstream, r.cnlinear effects observed
in Erlebacher and Hussaini (1990) are evident in the present spatial calculations.
For comparison, their temporal DNS results are shown in Figure 8(b) at different
time levels represented as multiples of the temporal period r. Figure 9 depicts the
amplitudes of the density fluctuation of the first harmonic for both PSE calcula-
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tions and the DNS results. The DNS results in Figure 9 are re-scaled to facilitate
comparison. Qualitatively, all nonlinear features observed in DNS, including the
kink near the boundary-layer edge, are properly resolved in our PSE results.
c. Subharmonic and Fundamental Resonance at Mach 1.6

Numerical simulation of incompressible flows have shown that the rapid growth
of three-dimensional secondary disturbances is followed by breakdown to turbulence.
Secondary instability is triggered when the primary disturbances reach sufficiently
high amplitudes. To show the capability of the PSE approach in simulating transi-
tion onset, we also perform nonlinear calculations to study the secondary instability
mechanism. We carry our calculations all the way to transition for both K-type (fun-
damental) and H-type (subharmonic) breakdown. We choose Mach 1.6 flat plate
flow with a primary disturbance frequency of 0.5 x 10-. The same flow conditions
were also used by Thumm et al. (1989) in their spatial Navier-Stokes simulations
of a compressible boundary layer.

We first perform a series of calculations to determine the amplitude of the
primary disturbance which will trigger the secondary instability. The PSE calcu-
lation is initiated at a Reynolds number R of 460 where we impose a primary 2-D
wave (mode (2, 0)) obtained by a local eigenvalue calculation and two subharmonic
waves ((1, 1) and (1, -1) modes) by using the compressible secondary instability
theory (Ng and Erlebacher, 1992) and all the remaining harmonics are assumed to
have zero amplitudes. Initial amplitudes of the primary disturbances are set to be
3%, 1.1% and 0.6% at the inflow plane which corresponds to the 5%, 2% and 1%
(the maximum amplitudes near the vibrating ribbon) cases given in Thumm et al.
(1989). The initial amplitudes of the subharmonic waves are fixed at 0.019% for
all three cases. The spanwise wave number of the subharmonic mode is fixed at
13/R = 0.53 x 10-4 which corresponds to an oblique wave angle of 450. Six temporal
Fourier modes and three spanwise modes (M = 5 and N = 2) are kept in the Fourier
series. The evolution of both primary and subharmonic disturbances are shown in
Figure 10. Qualitatively, our results agree with those of Thumm et al.(1989). Any
quantitative differences are due to different initial conditions. We find that a 1.1%
initial amplitude (2% case in Thumm et al. (1989)) for the primary mode is enough
to trigger the secondary growth; however, the onset of secondary growth for this
case occurs at R = 800 where the primary wave is about to decay. We continue
the PSE calculations beyond R = 1050 for this case and find that the secondary
disturbance eventually saturates and the flow does not reach the transitional stage.

To carry the 3% case to the transition stage, we made another calculation with
more Fourier modes (M = 7 and N = 4) and the maximum velocity amplitudes of
some representative modes are given in Figure 11. Besides the fundamental mode
(2,0) and the subharmonic mode (1,1), higher harmonics in time and spanwise
domain are also excited due to nonlinear interaction. Initially, the (4, 0) mode gains
energy from self-interaction of the (2, 0) mode and the interaction of (2, 0) and (1, 1)
produces the (3, 1) mode. When the subharmonic mode grows due to the onset of
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secondary instability, its harmonic (2,2) also grows at slightly higher rate. The
streamwise vortex mode (0,2) arises due to the interaction of (1, 1) mode and its
complex conjugate (-1, 1). As all these modes continue to grow, more and more
modes are excited. The energy cascade exhibits a staggered pattern. For instance,
among the two-dimensional modes, only (2,0), (4,0), (6, 0), etc. gain energy; while
for 1# modes, only (1, 1), (3,1), (5, 1), etc. are excited. The remaining modes (e.g.
(1,0), (3,0), (0,1), (2, 1) etc.) remain unexcited throughout the calculation. The
above staggered energy cascade is typical for subharmonic secondary instability.
The secondary amplitude overtakes the primary at about R = 980 and reaches an
equilibrium state around R = 1100. At this stage, many harmonic waves reach
fairly high amplitudes as the flow heads for transition. We plot the time sequence
of spanwise vorticity contours at the peak and valley planes (corresponding to the
maximum and minimum disturbance rms amplitudes, respectively) in Figures 12(a)
and 12(b). As can be seen, the vorticity pattern doubles its wavelength for x >
2200 (x is normalized w.r.t. the boundary layer length scale 1 at the initial plane)
indicating the presence of high-amplitude subharmonic wave. It is also evident
that the vortex roll-up results in a distinct kink in the shear layer. Towards the
end of the computation, regions of intense vorticity near the wall begin to appear
indicating that flow is heading for breakdown. Figure 13 shows the streamwise
velocity contours in the x-z plane for a wall normal distance of y = 2.3, where the
TS wave reaches its maximum according to the linear solution. The flow is initially
two-dimensional and three-dimensional effect becomes important for x > 1800. For
x > 2000, a staggered contour pattern is evident. This pattern is associated with
the lambda vortex structure, a distinct characteristic of subharmonic breakdown,
as observed in many incompressible experiments (e.g. Corke and Mangano (1989)).

Nonlinear PSE calculations are also performed for the same Mach 1.6 case but
for a fundamental-type secondary resonance. The initial amplitude of the primary
wave is again 3% and that of the secondary is taken to be 0.005% to minimize
nonlinear interaction close to the starting location. The spanwise wave number is
O/R = 1.52 x 10-4 (oblique wave angle of 600 for the secondary wave) and the pri-
mary wave frequency is again 0.5 x 10-4. The initial conditions for our marching cal-
culation consist of a 2-D primary wave (mode (1, 0)), two oblique fundamental-type
secondary disturbances (mode (1, 1), (1, -1)) and the longitudinal vortex (mode
(0, 1)). The same number of Fourier modes as in the subharmonic case is used.

Nonlinear evolution of the maximum rms amplitude of u' is shown in Figure 14.
Initially, the dominant modes are (1, 0), (1, 1), (0, 1) and (2, 0) (the first harmonic of
the fundamental 2D mode). Unlike the subharmonic case, all harmonic waves (both
odd and even modes) gain energy directly from nonlinear interaction. Among them,
the (2, 1) (due to (1, 0) and (1, 1)) and (1, 2) (due to (0, 1) and (1, 1)) modes are
more noticeable. For Reynolds numbers beyond 870, the spectrum is rapidly filled
with high-amplitude disturbances and the flow is heading towards transition. As
compared to the subharmonic breakdown, transition location shifts upstream due
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to the larger growth rate of the secondary disturbance as a consequence of higher
oblique wave angle.

The time sequence of spanwise vorticity contours over a period of the primary
wave is shown in Figures 15(a) and 15(b) for the peak and valley planes, respec-
tively. In contrast to the subharmonic breakdoown, the wave length remains the
same throughout the whole computational domain. One important characteristic of
the K-type breakdown is the appearance of aligned lambda vortices. This is better
visualized in the streamwise velocity contours shown in Figure 16 for x > 1300.
Similar to that observed in incompressible simulations of Zang and Krist (1989),
regions of intense shear begin to appear near the end of the computational domain
in Figures 15(a) and 15(b). This indicates that flow has just entered the transitional
stage. It is confirmed by plotting the average wall shear in Figure 17. The com-
puted wall shear is slightly above the laminar value for most of the computational
domain. Only towards the end, wall shear significantly departs from the laminar
value indicating the onset of transition. In this way, PSE provides the prediction
of boundary-layer transition for the imposed initial conditions. The PSE wall shear
lies above the laminar value right from the beginning because of the relatively high
amplitude of the 2-D primary disturbance needed for transition in supersonic flow.
Since most amplified waves in supersonic flow are not two-dimensional, oblique
primary modes may lead to transition for lower initial amplitudes. In order to
carry the calculations further into transitional regime, more spanwise and temporal
resolution will be required. It remains to be seen how far PSE can proceed into
the transitional zone. The computational time used for the results presented in
Figures 14-17 was 15 minutes on a Cray-YMP machine. Similar results from full
compressible Navier-Stok-es equations would require 0(50) hours.

V. Conclusions

Linear and nonlinear compressible boundary-layer stability is studied by using
the PSE approach. Several issues concerning the characteristics of the paraboliza-
tion and the updating of the streamnwise wave number are also discussed. The
governing equations are solved by using second-order backward differences for the
streamwise derivatives while the wall-normal direction is discretized by a fourth-
order accurate finite- difference scheme.

Non-parallel flow effects have been studied for linear disturbances. For oblique
waves of the first mode type, the departure from the parallel results is more pro-
nounced as compared to that for the two-dimensional waves. Our linear results are
in good agreement with those from the multiple-scales approach, as well as those
from full Navier-Stokes equations.

Nonlinear PSE calculations are carried all the way to the early stage of tran-
sition for a Mach 1.6 flow. Both the subharmonic and fundamental types of break-
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down are studied by the current PSE approach. Qualitatively, these breakdown

processes are similar to the ones in incompressible boundary layers, except that

high amplitudes of the 2-D primary wave are required. The promising results of
our PSE calculations show that this new approach is a powerful tool for the study
of boundary-layer stability and transition prediction. The parabolized form of the
governing equations allow the numerical solution to be obtained in a computational
time which is orders of magnitude lower than that required for direct simulation of
Navier-Stokes equations.
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Figure 12. Time sequence of spanwise vorticity contours for the Mach 1.6 subhar-

monic breakdown (x and y are streamwise and wall-normal coordinates normalized
by the boundary-layer length scale at R = 460): (a) Peak plane, (b) Valley plane.
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20 Mach 1 .6 Subharmonic (valley plane)
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20 Mach 1.6 Fundamental (peak plane)
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Figure 15. Time sequence of spanwise vorticity contours for the Mach 1.6 funda-

mental breakdown : (a) Peak plane, (b) Valley plane.
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20 Mach 1.6 Fundamental (valley plane)
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Fig. 15 (b)
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Mach 1.6 Fundamental Breakdown
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Figure 17. Wall shear of un-perturbed (laminar) and perturbed (PSE) flows versus
Reynolds numbers for the fundamental breakdown shown in Figures 11 and 12.
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