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Abstract

The quantitative description of cell structures in light microscope images is
an important task in biological research. The inclusion of digital image
processing techniques and fluorescent markers into light microscope imag-
ing has recently made this task feasible. In this paper, we present a method
for detection of filamentary structures in cell images that have been high-
lighted with fluorescent markers. The method has three stages. First, pixels
belonging to fiber contours are extracted from the image. Then these pixels
are grouped together based on proximity by a minimal spanning tree.
Finally, the fiber contours are determined as sub-trees of the minimal span-
ning tree. Once the pixels belonging to individual fibers contours have
been determined, quantitative statistics describing the fibers in the cell can
be calculated.
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1 Introduction

In recent years, biological imaging using light microscopes has been augmented with a
powerful new tool, the computer. The traditional approach to light microscope imaging
involved a biologist setting up a microscope by hand, taking a picture of a cell, and then ana-
lyzing the picture after it was developed. These steps have been improved by a more imme-
diate approach in which the microscope is set up under computer control and the pictures are
taken by video cameras and stored as digital data in computer memory. This new method
frees the biologist from the time consuming task of setting up the microscope and allows the
experiment to be immediately reviewed by accessing the images stored in computer mem-
ory. Furthermore, storing the images in digital form allows them to be manipulated in many
ways. This manipulation could take the form of sharpening the image, extracting features
from the cell and other image processing techniques [1]. The computer has become a tool
for the biologist that partially automates the analysis of light microscope images.

For a typical biological experiment using a light microscope, the results obtained are
qualitative (e.g. there are more fibers at the center of the cell than at the edges) than quanti-
tative because getting quantitative results about cell structures is usually a tedious and labo-
rious process. However, quantitative results are more useful for scientific discovery because
they allow more precise comparison of results between experiments. An advantage of using
a computer to store and manipulate images of cells is that the computer can be programmed
to generate statistics about cell structures which can be used as quantitative results for
experiments (e.g. there are 4.5 fibers per square micrometer at position (20,20) in the cell).
The computer can perform this tedious task much faster than humans. Such automation of
measurement allows the biologist to spend more time analyzing results and less time getting
them.

Cells and cell structures are generally colorless and transparent in their natural state. The
traditional method of improving contrast in cells and highlighting cell structures is through
staining. Unfortunately, staining usually kills the cell, so dynamic processes in the cell can-
not be measured. Recently a new method for highlighting cell structures using fluorescent
markers instead of stains has been developed. Fluorescent markers have transformed light
microscope imaging because they do not kill cells and can be attached to many different cell
structures [1]. Fluorescent markers are molecules that bond to cell structure, but are not
thought to inhibit the processes of the cell. When radiated with light of a particular wave-
length the markers absorb photons and then emit photons of a different wavelength. The
emitted photons are recorded in a video image that only shows the places in the cell where
the molecules have attached. Different markers (with different emitted photon wavelengths)
attach to different elements in the cell and muitiple markers can be used at one time, so
many cell processes can be analyzed simultaneously. This lets biologists study the dynamic
interaction of cell elements.
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1.1 The Biological Problem

Actin is a protein common in muscle cells of animals which is biologically significant
because it is related to cell structure and mobility and because it interacts with other cell
structures in complex ways. Single monomers of Actin form into long chains called fibers
and sets of these fibers wrap around each other to form fiber bundles. These fibers and fiber
bundles are large enough to be imaged by a light microscope. Measuring properties of fibers
in cells like length, width, curvature, orientation, density, movement and coherence is diffi-
cult and time consuming because there are many fibers in the cell and the fibers intersect and
branch. Dynamic measurement of these properties of Actin fiber is important for under-
standing how cells move and are formed. If the process of measuring Actin fiber properties
is automated, biological research into the purpose of Actin will be accelerated. Fortunately,
there exist fluorescent markers for Actin which can be used to segment the parts of a cell
image that contain Actin from the rest of the image and facilitate the measurement of fiber
properties.

Figure 1: Image of cell with Actin fibers highlighted by fluorescent markers

1.2 Motivation of Approach

‘t'he problem at hard is to measure the properties of Actin fibers in an image of a cell
where the fibers have been highlighted with fluorescent markers. If the fibers could be mod-
eled easily and were spatially distinct from each other the probicm would be straightfor-
ward. In reality Actin appears as a network of overlapping, intersecting and branching
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fibers, so extracting individual fibers from the image is not straightforward. An effective
raethod for finding fibers in a cell and calculating their statistics will need a way of repre-
senting fibers and extracting individual fibers from the network of fibers,

Many of the statistics that convey relevant information about a fiber are based on how
the fiber changes position along its length (i.e. many of the statistics are based on the con-
tour of the fiber). For this reason, the contour of the fiber was chosen as the way to represent
fibers in the image. A contour is a list of pixels, given as (row,column) positions in the
image, that follow the course of the fiber. Because the width of fibers is fairly constant along
their length, the edge of a fiber follows the contour of the fiber. Hence, pixels in the image
that can be associated with fiber contours are found by finding strong edges in the image of
the cell. The fiber contour pixels are thus determined, but these pixels still need to be
grouped together into fibers.

As Figure 1 shows, each fiber in the cell image is separated from other fibers except at
intersection of fibers. It follows that a pixel belonging to a specific fiber will be closer to pix-
els in the same fiber than pixels belonging to other fibers Our method that groups fiber con-
tour pixels into fibers exploits this proximity of pixels to group fiber pixels together and then
deals with the problems of intersection and branching of fibers. A minimal spanning tree of
a set of points is the tree that connects these points such that the sum of the inter-point dis-
tances in the tree is a minimum. Given the close proximity of pixels belonging to the same
fiber and the greater distance between pixels from different fibers, a natural way to group the
fiber contour pixels is with a minimal spanning tree. Minimal spanning trees group points
according to a global perspective and associates things that are close together more readily
than things that are far apart.

Minimal spanning tree grouping has several advantages over other contour finding
methods. First, the grouping of the fiber contour pixels is done without requiring any
domain knowledge about the expected shape of fiber contours. Second, the minimal span-
ning tree grouping is invariant under similarity transforms (i.e., scaling, skewing, rotation,
translation). Finally, efficient algorithms for finding the minimal spanning tree of a set of
points exist and are well understood. An efficient algorithm is needed because the set of
points to be grouped can be large in image processing applications.

Once the fiber contour pixels are grouped into a minimal spanning tree, ambiguities at
intersections and branches in the tree must be resolved to determine the final set of fiber con-
tours in the image. This is done by first identifying sets of fiber contour pixels that can be
associated unambiguously within the minimal spanning tree. Three or more of these sets
meet at intersections in the tree. At each intersection, the sets that lie along roughly the same
line and are close together are matched and their pixel sets are merged. In this way the small
sets of pixels can be merged into larger sets to form complete fiber contours.

1.2.1 Previous Work

The human vision system uses clustering techniques based on minimizing inter-point
distances []. This is essentially the way that minimal spanning tree algorithms group dis-
crete sets of points into groups. Minimal spanning trees are also used to group spark profiles
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in physics spark-chamber photography [3]. Cosmologists have used minimal spanning trees
to detect filamentary structure in the universe [4].

There have been previous attempts to solve the problem of finding Actin fibers in cell
images. One technique followed the contours of the fibers in the image with a tracking rou-
tine [5]. The routine depended heavily on the domain knowledge that fibers are roughly lin-
ear, and relied on having rather good clean images of the cell. It found most well-defined
fibers but had trouble tracking fibers at intersections and under low contrast. Another possi-
ble method could use a Hough transform to find fibers in the image based on a model of the
fibers. Implementation of this would be complex because it would be difficult to find an
appropriate model for fibers and any reasonable model of fibers would have to have a large
number of parameters. Hough space has the same number of dimensions as the number of
parameters in the fiber model, so a large number of parameters would make the search for
local maxima in Hough space to find the fibers extremely time consuming.

2 Extracting Fiber Contours

An initial step in image analysis is to determine what constitutes information and what
constitutes noise in the image. In the case of finding cell fibers, the pixels that show fibers
are information and everything else is noise. The contour of a fiber (i.e., the curve that
describes how the fiber is positioned in the image) contains all of the information needed to
calculate most of the statistics of the fiber. Therefore, to achieve our goal of calculating the
statistics of the fibers, we need only determine a set of pixels in the image that describe the
contours of the fibers. All input images were 8-bit gray scale images.

2.1 Edge Detection

Actin fibers are highlighted by fluorescent dyes. This simplifies the segmentation prob-
lem because fiber intensities are greater than their surroundings. Unfortunately, simple
thresholding will not result in a representative set of fiber pixels. Cells are thicker toward the
middle than at the edges, so more dye accumulates around the center of the cell. This
implies an overall increase in intensity near its center. Picking a threshold that includes the
fibers on the perimeter of the cell results in the fibers in the middle of the cell being blurred
together. Picking a threshold that decreases the blurring of the fibers in the middle of the cell
results in the fibers on the perimeter not being detected. Therefore, selecting one threshold
for the entire image is problematic because this method does not convey all of the informa-
tion about the shape of the cell fibers.

When the image of the cell is regarded as a surface with intensity as the third dimension,
the fibers appear as long “hills” in the surface that spring from the background of the image.
Figure 2 shows this hill-like nature of fibers by showing the intensity of a single row of a
cell image. The sides of these hills can be found with an edge detector. An edge in the image
corresponds to a rapid change of intensity in a small image area. These rapid changes are
found by finding large values of the gradient of intensity because sharp edges will yield
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large gradient magnitudes. Finding the edges of the fibers can be done in all parts of the
image because the magnitude of the gradient at a point is independent of the average inten-
sity in an area around that point. Thus, the difference in average intensity between the fron-
tiers and the middie of the cell that plagued the thresholding method is not a handicap here.

Typical Cell Row
Intensity
Row 337
20000 1 ,l\ |
i
100.00 V -
Wl
0.00 \M ' Row

0.00 100.00 200.00 300.00 400.00 500.00

Figure 2: Intensity of a cell image for a typical row

Fibers have roughly the same width along thcir length, so the edges of a fiber will follow
the fiber contour. Thus, edges are an appropriate way to represent fibers when the properties
to be measured depend on how the fibers curve and where they are placed. Since the fiber
contour contains all of the desired information, edges are a compact and sufficient represen-
tation of fibers.

A Canny edge operator [6] was used to detect edges. The Canny operator is a common
edge detector that produces very clean edges (at the expense of added computation). The
Canny operator has two stages. First it convolves an image with the X and Y derivatives of a
two dimensional Gaussian. This determines the gradient at each pixel and smooths the
image which eliminates some noise. The second step is to set any pixel to zero that is not a
local maximum along the direction of the gradient at that point. This is called non-maximum
suppression. To keep the edge magnitude image in the same format as the input image, the
edge magnitudes (which are floating point numbers) are scaled to 8 bits with the maximum
edge magnitude in the image set to 255. The result is an edge image having thin edges and
good contrast. Figure 3 shows an image of edge magnitude created by a Canny edge opera-
tor with a filter size 5 on the cell image shown in Figure 2.
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Figure 3: Edge image of a cell produced by a Canny operator with a filter size of §
2.2 Edge Selection and Thinning

A set of pixels that completely describes the contour of the image fibers is desired to
ensure that the properties of all of the fibers are measured. To minimize computation this set
should be as small as possible. The Canny edge operator produces more pixels than are
needed. Some of the edge pixels come from spurious concentrations of dye in the cell which
do not correspond to Actin fibers. These edge pixels convey no information about the fibers
in the cell and are considered noise. Another set of undesirable edge pixels occurs because
the edge operator detects two edges for each fiber. One edge is sufficient to determine the
contours, so one set of edges that follow a fiber should be eliminated for all of the fibers.

2.2.1 Edge Selection

The edge operator detects two edges for each fiber along a direction perpendicular to the
fiber. The change in intensity is large at the sides of the fiber, so at both these points the mag-
nitude of the gradient will be large. This large gradient produces edges on both sides of the
fiber. One of the edges needs to be eliminated to ensure that each fiber gets counted once and
computation is minimized.

Generally, Actin fibers are straight structures with little or no curvature along their
length. They are also typically stained the darkest in the middle of the fiber. This will cause
the direction of the gradient on each side of the fiber to point perpendicular from the length
of the fiber (i.e., away from the middle of the fiber). As a result, the edge on one side of the
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fiber will have gradient directions that are roughly the same along the entire edge, and the
gradient on the other side of the fiber will have directions that are rotated roughly 180
degrees. Therefore, the edges on either side of the fiber are naturally segmented based on the
gradient direction. For a given fiber, one can keep only the edge pixels with directions in one
half plane determined by the direction of the fiber, and the others are thrown away. Hence,
one edge of the fiber is kept and the other is eliminated

It is also observed in 2D images that fibers that are close to each other in the cell lie in
roughly the same direction. Thus, the cell fibers can be partitioned into a small number of
sets according to edge direction. As with individual fibers, each partition will have two sets
of gradient directions that are 180 degrees apart. As a result, the histogram of edge direction
will be multi-moded where the number of modes is twice the number of fiber direction
groups in the cell, and for each mode in the histogram there is another mode that is 180
degrees away from it. The histogram of edge directions for the cell in Figure 2 is shown in
Figure 4. Selecting any interval of 180 degrees and eliminating any edge pixels that have
gradient directions falling in this interval will eliminate half of the edge pixels in the image.
A reasonable course is to choose endpoints that fall on two minima of the histogram (if one
endpoint is at a minimum then the other one will be), in order to decrease the chances of
picking out edge pixels from alternative sides of a fiber.

Edge Direction Histogram

Count
DirHisto.dat
40.00
20.00 —
0.00 Angle
0.00 100.00 200.00 300.00
Figure 4: Histogram of gradient directions for a typical cell

The edge pixels that remain have gradient magnitudes that can be used to select strong
edges and eliminate weak edges. Edge pixels with a small gradient magnitude are weak
edges and are unlikely to represent an image fiber because fibers are much more intense than
their background. We have worked with images in which most of the edge pixels belonging
to fibers have gradient magnitudes greater than 100 whereas edges from other cell elements
have a uniform distribution of edge magnitude. A threshold around 50 is selected such that
every remaining edge pixel with a gradient magnitude above the threshold is kept and the
others are eliminated. The surviving edge pixels are placed in a binary image and turned on
while all of the other pixels are turned off. This binary image contains the set of pixels that
follow the contour of cell fibers.
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2.2.2 Thinning

A minimal representation of fiber contour is desired. A sufficient representation would
be a 2 dimensional curve that is one pixel wide in the 8-connected sense. The edges pro-
duced by the Canny operator are clean and fairly thin, but on average are between 1 and 2
pixels wide. The edges made by the Canny operator should be thinned to minimize compu-
tation. This can be accomplished with a typical 8-connected foreground thinning algorithm
[7]. Once the binary image is thinned, pixels that have no adjacent pixels in their 3x3 neigh-
borhood are removed because these pixels are probably not associated with fibers. The
result is a reduced set of pixels that show the fiber contours. These reduced data points can
now be input to an algorithm that computes a minimal spanning tree. The set of thinned
edge pixels remaining after thresholding for the cell in Figure 2 is shown in Figure S.

Figure 5: Edge pixels selected from a representative cell image.

3 Grouping with a Minimal Spanning Tree

After applying the above methods, the remaining pixels belong mostly to fiber contours,
but are not yet grouped into fibers. In order to measure fiber properties, these pixels should
be grouped into individual fibers by calculating a minimal spanning tree (MST), which has
the desirable tendency to associate nearby pixels while linking up all of the pixels. The num-
ber of pixels is large (~5000), so, to minimize computation, an efficient minimal spanning
tree algorithm is needed. An efficient algorithm is used that exploits the planarity of the pix-
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els to create the minimal spanning tree in O(Nlog(N)) time where N is the number of image
pixels [8). This algorithm is explained next.

3.1 The Voronoi Diagram

Minimal spanning tree algorithms are typically greedy algorithms, in the sense that at
each decision point, a partially-built tree is expanded irrevocably by adding an extra edge.
Clearly, reducing the number of candidate edge extensions at each point will decrease the
run time, and possibly even the computational complexity.

It turns out that when the graph vertices are embedded on the plane, as occurs naturally
in the case of image pixels, the candidate edge extensions can be reduced drastically: one
need only consider edges from a graph known as the Delaunay Triangulation, which is a
dual of the better-known Voronoi Diagram, and which is a subgraph of the complete graph
connecting all image points. Some minimal spanning tree will be a subgraph of the
Delaunay Triangulation, so only the edges in the latter graph need to be considered.

Given a set of points S and a point p € § the Voronoi polygon of p is the part of the plane
that is closer to p than to any other point in S. The Voronoi diagram of the set of points S is
the union of Voronoi polygons f r all of the points in S. The Voronoi diagram for a set of
discrete points is shown as the set of dotted line in Figure 6.

The Voronoi diagram of a set of points can be constructed in O(Nlog(N)) time using an
algebraic computation tree model. The algorithm recursively halves S and computes the
Voronoi Diagrams of the two halves. It then merges these two Voronoi Diagrams by elimi-
nating all of the edges in each diagram that cross the chain of perpendicular bisector seg-
ments that divides the two diagrams. Each edge of the Voronoi polygon of a point p lies on
the perpendicular bisector of the segment between p and a (relatively) close neighbor. In
fact, such neighbors of p can be defined as p's nearest neighbors, and the edges linking all
the nearest neighbors constitute the Delaunay Triangulation. Hence, the nearest neighbors of
every point in S can be found in O(Nlog(N)) time

Figure 6: The Voronoi diagram for a set of discrete points (from [8]).
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Given the cartesian locations of all fiber pixels in an image, the nearest neighbors of all
the pixels are determined and then used to calculate a minimal tree that spans all the fiber
pixels. The nearest neighbors of a point in Figure 6 are the set of points connected to the
point by a solid line. We have used Fortune's implementation of his algorithm for computing
Voronoi Diagrams [9].

3.2 The Euclidean Minimal Spanning Tree Algorithm

The Delaunay Triangulation is exploited to find a minimal spanning tree that connects
all of the contour points in the image. MST algorithms tend to link nearby points, and the
closest point to a point p is one of its nearest (Delaunay) neighbors, so an efficient Euclidean
minimal spanning tree algorithm only examines the Delaunay edges of a planar graph. An
MST algorithm that is given nearest neighbor information can operate in linear time [8]. It is
based on merging minimal spanning sub-trees through nearest neighbors until only one tree
remains.

Create an empty queue of trees F.
2. For every selected edge pixel P.
1. Create a tree T from P of one point and no edges
2. stage(T):=0
3. PushTontoF
3. STAGE_NUM =1
While F contains more than one tree
1. T:=pop(F)
2.  If stage(T) = STAGE_NUM then
1. Clean up trees in F by eliminating all unselected edges except those that are
the shortest edges bridging different trees.
2. STAGE_NUM = STAGE_NUM+1
3.  E:=shortest edge connecting T to any other tree
T’:= tree in F that is connected to T by E
5. T7”= the tree created by merging T and T’ which contains all of the edges and points of
Tand T’
6. Delete T’ from F
. stage(T”) := min(stage(T),stage(T’))+1
8.  Push T” onto the back of F

This algorithm is faster than more general MST algorithms that do not exploit planarity
(10], but is more complicated and uses more memory. Vertex data structures that contain
information about position, nearest neighbors and tree membership must be created for all
pixels in the fiber contour image. E ige data structures must be created to describe all con-
nections between pixels in the planar graph. Tree data structures that list all of the vertices
and edges in the tree must be created as well. *lew trees are constantly being created from
the merging of smaller sub-trees and added to .- jueue. Old trees are deleted when they are
merged into larger trees. After every stage the queue is cleaned up which requires pruning
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many of the edges in the trees within the queue. Because the number of trees is so large,
sophisticated memory management is required to store all of the trees in memory and main-
tain the queue.

The EMST algorithm links all of the contour pixels into a tree, thus connecting separate
fiber contours together, so further processing must be done on the tree to get individual con-
tours. The MST for the selected edge pixels in Figure 5 is given in Figure 7.

Figure 7: The minimal spanning tree calculated from Figure 5.

4 Aggregation into Fibers

The overall goal is to partition the pixels into different fibers, or into no fiber at all if a
pixel is not thought to form part of a fiber. The minimal spanning tree will tend to associate
by means of an edge1 those pixels that are very close together, which is exactly the behavior
desired for finding fibers. Our task then is to partition the spanning tree into subtrees, some
of which will be considered fibers; the others will be discarded.

Because the tree spans all of the contour pixels, it also connects pixels that belong to
separate fibers: N fibers will be connected by N-1 cross-fiber edges in the tree. These edges
can be eliminated by thresholding such that long edges are deleted.

1. Here an edge refers to a connection made by the minimal spanning tree, not the edge of a fiber found by applying the edge
operator.
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However, extracting the subtrees corresponding to fibers is not straightforward for the
following reason. There is ambiguity at pixels in the tree that have degree greater than two
regarding which way a fiber from one direction should extend, if at all. Our general
approach will be to make the easy decisions first; for example, if two pixels connected by an
edge both have degree 2 (and the edge length is below threshold for deletion), then decide
that the pixels are part of the same fiber. After making these easy associations, pieces of
fibers will be built up, which can then be linked at intersections based on whether they are
similar. A representative grouping of fiber contour pixels by a MST is given in Figure 8
which shows the problem areas in extracting fibers from the minimal spanning tree.

intersections
long edges )/

short

/ branches

branching /
Figure 8: Difficulties arising from the grouping by the MST
4.1 Protofibers

In the minimal spanning tree there exist sets of pixels than are associated sequentiallv
without branches. These sets of pixels lic between leaves, intersections and branches in the
tree. Because these sets are the building blocks of the final fiber contours, they will be called
protofibers. The length of a protofiber is the number of pixels that it contains. The tree is
segmented into protofibers so that these can be merged into correct fiber contours. The
protofibers derived from the minimal spanning tree in Figure 8 are shown in Figure 9.
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Figure 9: Examples of protofibers.

4.2 Removing Undesirable Protofibers

Some of the resulting protofibers are made of one long link (i.e., two connected pi. :ls
that are far apart) in the MST that spans a gap between two dense protofibers. These protofi-
bers are created in the tree because the tree must link all of the pixels together and doing so
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causes some pixels that are far apart to be connected. These links are artifacts of the tree and
should be eliminated when looking for fiber contours. An adjustable threshold on the maxi-
mum length of a feasible link serves to remove all links longer than this threshold. Once
these links are removed the intersections and branches in the tree will be affected. If only
two protofibers remain at an intersection after removing the long links their pixels can be
associated unambiguously; the two protofibers are then merged by taking the union of their
pixels. The completion of this pruning and merging stage for the protofibers in Figure 9 is
given in Figure 10.
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Figure 10: Protofibers from Figure 9 after long links have been removed.

A very short protofiber that has a leaf at one end and an intersection with two or more
protofibers at the other end is an unlikely candidate for a fiber contour, so it should be elimi-
nated from the set of protofibers. Short branches arise because of noise in the input image
that creates spurious edges or because of very short fibers. To eliminate these short branches
the user supplies a minimum length for branches in the tree; short branches are removed
based on this threshold. One can then merge the remaining protofibers at the intersections
from which the branches were removed. These remaining protofibers are the most likely
candidates for fiber contours. The completion of this pruning and merging stage for the
protofibers in Figure 10 is given in Figure 11.
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Figure 11: Protofibers from Figure 10 after short branches have been removed.

4.3 Merging Protofibers

After pruning the set of protofibers via the previous steps, further merges of protofibers
are considered. Protofibers can be merged if they are roughly collinear and have end pixels
that are near each other. First, one fits a least-squares straight line
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ax+by+c =0 (EQ1)

to all of the pixels in each protofiber. The angle o that each protofiber makes with respect to
the horizontal image axis is calculated via the expression

o= atan(%). (EQ2)

Next, each intersection of protofibers is tested for possible merging. All of the protofi-
bers within a user defined radius of an intersection are found by searching along the protofi-
bers that make the intersection. If a neighboring protofiber is not part of the intersection it is
still considered for merging.

All pairs of protofibers (i,j) near the intersection are then matched. The match cost of a
pair is defined as:

a.—a.| 5.
i U
a o

max max

Clj) =W (EQ3)

where o, is the angle of protofiber x with respect to the horizontal, §; is the distance between
end pixels of the two protofibers, oy, is the maximum allowable angular difference between
protofibers to consider matching, ., is the maximum allowable end point distance between
protofibers to consider matching and W is a coefficient that weights the importance of angle
versus distance. W, o, and §,, are set by the user. If the angle between two protofibers is
greater than oy,,,,, or the distance between the two protofibers is greater than §,,, then the
protofibers are considered a bad match and are not merged. oy, and 8,, appear in the
denominators of the cost function in order to normalize the angular difference and the dis-
tance between protofiber to the interval [0,1]. Once these are normalized, the coefficient W
can effectively weight angle versus distance without regard to their difference in units. Once
all of the cost functions are computed at the intersection, the pair with the best cost is
merged. The position of the ends and the angle with respect to horizontal is calculated for
the new fiber and the matching and merging process at the intersection is repeated with this
new fiber. This step continues until zero or one protofibers are left or there are no allowable
matches remaining at the intersection. This matching an merging procedure is carried out
sequentially for all intersections until no more matches can be made at any intersections.
The resulting set of protofibers is almost the desired set of fiber contours.

/ merge
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Figure 12: Protofibers from Figure 11 after matching and merging.
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The contours that are too short to be useful are then discarded, which yields the final set
of fiber contours. From these pixel groupings, any desired fiber statistics can be calculated.
Figure 12 shows the final set of fibers extracted from the minimal spanning tree in Figure 8.

5 Testing

It is unclear what is a “correct” extraction of fibers, due to the inevitable ambiguity
introduced by a 2D projection of what in reality are 3D fibers. In a sense the current work is
an attempt to define what is correct. These circumstances make it problematic to evaluate
the performance of the approach. Moreover, it is very tedious to extract fibers manually, and
two biologists might well disagree on the results. For these reasons it is currently only prac-
tical to test the program on real data by qualitative inspection. However, we can use syn-
thetic data with known iibers to obtain one measure of performance.

S.1 Synthetic Data

A representative set of synthetic data for testing should show all the characteristics of
fibers in real images including the characteristics that make fibers difficult to detect. A repre-
sentative set of fibers should contain:

» Fibers with thickness great: han one pixel
» Fibers that are roughly linea

* Intersecting fibers

* Branchings into multiple fibers

* Short “noisy” fibers

We generated a representative set of synthetic fibers having all of these characteristics.
The output at various stages of the detection program are shown in Figure 13. The edge
detector and selector created and picked edges that were good approximations to the con-
tours of the individual fibers. The EMST algorithm connects all of these pixels into a tree.
Ti s tree is then broken into protofibers where the problems with the fibers can be seen.
Some of the fibers have short branches, intersections and full branches. The final stage
shows the protofibers merged into fibers. The short noisy fibers are removed and the protofi-
bers are merged correctly across intersections. The program performed well on these syn-
thetic data, and it performed similarly on other synthetic data that we tried.




page 16

Figure 13
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6 Protofibers

7 Fibers

: The stages of the fiber detection system run on a set of synthetic fibers.
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5.2 Real Data

The results of the matching and merging of protofibers for the real image in Figure 1 are
given in Figure 14. The system in general did a better job of matching protofibers when
fibers had fewer intersections and branches. Fibers with strong contrast with the background
were easier to detect and show up correctly in the final set of fibers. It seems that the system
had trouble matching fibers that had varying intensities along their length and that inter-
sected wide fibers. From our tests we expect that the system will give accurate measure-
ments of the position, curvature, density and direction of the fibers in the cell whereas it will
not be as goud at measuring length and connectivity

Figure 14: Fiber contours detected in a representative cell image
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6 Conclusions and Future Work

v Detection of Actin fibers highlighted by fluorescent markers in cell images is difficult
because the image of the fibers is a 2D projection of 3D structures which intersect and
branch throughout the cell. We have shown that the contour of a fiber can be approximated
by one edge of the fiber. The pixels making this contour can be grouped with a minimal
spanning tree, and the fiber contours can be extracted from this tree by pruning and match-
ing of protofibers at intersections. These methods were shown to work adequately on a lim-
ited set of synthetic and real data. The minimal spanning tree approach to grouping pixels is
useful because it groups pixels based on a global perspective and does not rely on uncertain
local predictions of where fibers might extend, as was done by Nedelof et al. [5].

Actin fibers are three dimensional structures, so this approach could be improved by
extending the methods to three dimensions; work on recovery of 3D Actin fibers is in
progress. Another issue to deal with is the breaking of fiber bundles into individual fibers.
The matching algorithm used to eliminate ambiguity at intersections does not consider the
break-up of fiber bundles. We expect that the current methods could be applied successfully
to detect other filamentary structures in cell images.
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