
a a ,

AFIT/GEO/ENP/93D-03

AD-A273 884

DTIC

EL-ECTE
DEC17 1993U

IMPROVED QUALITY OF RECONSTRUCTED

IMAGES THROUGH SIFTING OF DATA IN

STATISTICAL IMAGE RECONSTRUCTION

THESIS
Craig A. Stoudt
Captain, USAF

AFIT/GEO/ENP/93D-03

93-30517

Approved for public release; distribution unlimited

93 12 15115



Best
Available

Copy



lJ

AFIT/GEO/ENP/93D-03

IMPROVED QUALITY OF RECONSTRUCTED

IMAGES THROUGH SIFTING OF DATA IN

STATISTICAL IMAGE RECONSTRUCTION

THESIS

Presented to the Faculty of the Sehool of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

Craig A. Stoudt, B.S.E.E.

Captain, USAF

December 1993

Approved for public release; distribution unlimited



Preface

This thesis presents the results of an initial investigation into the feasibility of

using frame selection as a post-processing technique for Air Force adaptive optics

systems. The key result is a frame selection algorithm that can be immediately im-

plemented at Air Force space surveillance sites to improv. their mission effectiveness.

I hope that this research effort will contribute to our nation's defense by enhancing

the Air Force's space surveillance capabilities. Furthermore, I hope that this thesis

will inspire future AFIT students to pursue research in this challenging and vital

area.

I'd like to thank my faculty advisor, Captain Michael C. Roggeman, for his

assistance and encouragement throughout this project. His enthusiasm and his keen

interest in this subject area were constant sources of inspiration.

I'd also like to thank my thesis committee members, Dr. Byron M. Welsh,

and Dr. Theodore E. Luke, for their many suggestions and comments, which greatly

contributed to the quality of this thesis.

Finally, I'd like to thank my fellow AFIT students. Their irreverent sense of

humor is the part of my AFIT experience that I will cherish the most.
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Abstract

The U.S. Air Force employs adaptive optics systems to produce images of

exo-atmospheric objects. Such systems employ wavefront sensing systems and de-

formable mirrors to correct the aberrL.,ons induced by atmospheric turbulence. The

images measured by an adaptive optics system are much better than images collected

by conventional imaging systems, however, adaptive optics systems are unable to

completely compensate for the effects of atmospheric turbulence, so post-processing

techniques are employed to improve image quality. Typically, a large set of short

exposure images are collected, re-centered to compensate for random image motion,

averaged together to improve the signal to noise ratio, and then processed to form

a reconstructed image. It is known that some short exposure images will be better

than others, so some researchers have suggested that image quality can be improved

by selecting a subset of the short exposure images according to some quality crite-

rion, and then processing the average of this subset to form a single, high quality

image. This thesis investigates the statistical implications of using frame selection as

a post-processing technique to enhance images of exo-atmospheric objects measured

by Air Force adaptive optics systems. Through computer simulation, the perfor-

mance of frame selection in terms of signal to noise ratio in response to changes in

atmospheric seeing conditions, image intensity levels, and detector noise is inves-

tigated. The results demonstrate that frame selection narrows the optical system

point spread function, which reduces image blurring, and increases the accuracy of

the image estimate and decreases the variance of that estimate, resulting in an in-

crease in frequency spectrum signal to noise ratio, particularly in the mid-frequency

range. For extended objects, the technique is light level dependent: for a 1 meter

adaptive optics telescope, frame selection will yield an increase in signal to noise

ratio for objects brighter than visual magnitude +2.3.
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IMPROVED QUALITY OF RECONSTRUCTED

IMAGES THROUGH SIFTING OF DATA IN

STATISTICAL IMAGE RECONSTRUCTION

L Introduction

1.1 Motivation

Since the earliest days of the telescope, astronomers have realized that at-

mospheric turbulence imposes a severe limit on our ability to observe the universe

beyond the confines of planet Earth. As early as 1704 Isaac Newton surmised that

the magnified images he observed through his handmade telescope were severely de-

graded by what he termed "tremors" in the atmosphere [27]. For many years this

problem only concerned lonely astronomers toiling on remote mountain peaks. How-

ever, after the Soviet Union's surprise launch of the Sputnik satellite in 1957, space

surveillance became a critical component of our national defense strategy. As the

ability to launch satellites into orbit comes within the reach of many Third World

nations, our ability to quickly and accurately ascertain a potential adversary's space

order of battle becomes crucial.

The Air Force Maui Optical Station (AMOS) is one of the US Air Force's space

surveillance sites [1]. AMOS uses a 1.6 meter telescope to obtain high resolution im-

ages of space objects. This telescope uses an adaptive optics system to partially

compensate for the effects of atmospheric turbulence. However, the adaptive optics

system cannot fully correct turbulence-induced aberrations, so AMOS also uses im-

age reconstruction processing to improve image quality. The reconstruction process

produces images which have vastly better resolution than raw images, however, the

reconstruction process also introduces artifacts.
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The AMOS system collects a large set of short exposure images to "freeze"

the effects of atmospheric turbulence. The short exposure images are re-centered to

compensate for random image motion, and then the entire set is averaged to improve

the signal to noise ratio. Reconstruction processing, such as inverse filtering 1371,
or bispectrum processing [351, is then performed on the output of the averaging

process to produce a single, high quality image. The image reconstruction process

is purely statistical in nature - that is, the underlying statistical behavior of the

random process governing image formation determines the limits of performance for

the technique. Experience has shown that some short exposure images are much

better than others. The question is then: "Is there some means to select the best

members of the set - or exclude the worst members - to improve the quality of the

reconstructed image?"

1.2 Problem Statement

This thesis develops a means to automatically determine which members of a

large set of measured images are the best to use in the image reconstruction process,

and then evaluates the degree of improvement in the reconstructed images.

1.3 Approach

This thesis attacks the problem statement by investigating the statistical impli-

cations of applying a frame selection rule to a set of measured images. Specifically,

this thesis investigates how the application of a frame selection rule changes the

underlying statistics of a set of images, quantifies those changes, and then relates

those changes to overall image quality. To achieve this goal, the following research

questions are addressed:

1. Does there exist a subset of the short exposure images which yields a superior

image compared to the entire set?

2. Which selection rules can be employed to identify a suitable subset?

1-2



3. How do the statistics of a subset identified by a frame selection rule differ

from the statistics of the entire set?

4. What are the relevant optical parameters which affect the statistics of a

large set of images collected by an adaptive optics system?

5. How do changes in subset statistic relate to overall image quality?

6. Which metrics can be employed to evaluate and compare the changes in

subset statistics?

7. Is it possible to implement a frame selection rule in an operational setting?

This research effort employs computer simulation as the primary research tool

in this investigation. Michael C. Roggeman has developed and provided a software

simulation package known HYSIM [36]. The HYSIM simulation code models the

effects of atmospheric turbulencr as a series of random phase screens, and contains

models for each component of axi laptive optics imaging system. To provide a more

realistic assessment of the performance of an adaptive optics system in an operational

setting, this research effort develops a charge-coupled device (CCD) camera model

to account for the effects of detector noise. Frame selection rules are implemented in

FORTRAN and incorporated into the existing simulation code. Also, the simulation

code will be modified to calculate the statistics of the subsets identified by the frame

selection rules.

1.4 Scepe

This thesis analyzes the performance of frame selection rules employed as a

post-processing technique for an adaptive optics system. The primary parameters

are the adaptive optics system configuration, the atmospheric seeing conditions, the

specific frame selection rule employed, and the frame selection rate expressed as a

percentage of the entire set of short exposure images. As a final product, this thesis

will contrast image quality between post-processed images produced from subsets
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identified by specific frame selection rules and the image produced from the entire

set. The performance metrics to be used in this comparison will be developed in

chapter 3.

This thesis focuses on image processing techniques. Specifically, this thesis

addresses the post-processing of a large set of short exposure images collected by

an adaptive optics system similar to the one at the AMOS site. This thesis does

not address the design of such an adaptive optics system. Optical design issues -

such as the properties of optical materials - are not addressed. This thesis specifi-

cally addresses the post-processing of short exposure images. Real time processing

considerations are not addressed.

1.5 Chapter Outlines

The following is a brief synopsis of the information found in each chapter-of

the thesis.

1.5.1 Chapter 2. This chapter presents a brief overview of the problem of

atmospheric turbulence, the use of adaptive optics to compensate for the effects of

atmospheric turbulence, and the limitations of adaptive optics systems. The theory

of frame selection - a technique developed by astronomers to improve the quality of

images degraded by atmospheric turbulence - is described in detail. The concepts

presented in this chapter ,;.-rvide a framework for the methodology developed in

chapter 3.

1.5.2 Chapter S. This chapter develops a detailed methodology for con-

ducting the investigation, based on the background knowledge presented in Chapter

2. Basic terminology is defined, an approach based on computer simulation is justi-

fied, and specific performance metrics for evaluating changes i& iubset statistics are

developed.
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1.5.3 Chapter 4. This chapter presents the results five simulation experi-

ments designed to explore the implications of frame selection. The experiments and

the results are discussed in detail.

1.5.4 Chapter 5. This chapter states the conclusions based upon the

results presented in chapter 4. Chapter 5 concludes with recommendations to the

user concerning the implementation of frame selection, and recommendations for

areas of future inquiry.

1.5.5 Appendix A. This appendix describes the implementation of the

CCD camera model.

1.5.6 Appendix B. This appendix contains plots of the data collected in

the experiment.

1.6 Summary of Key Results

This investigation demonstrates that frame selection has two primary effects

on image quality. First, frame selection narrows the optical system point spread

function, which results in less image blurring. Second, frame selection increases the

accuracy of the image estimate and decreases the variance of that estimate, resulting

in an increase in frequency spectrum signal to noise ratio, particularly in the mid-

frequency range. The point spread function steadily becomes narrower as a function

of the frame selection rate, however, the signal to noise ratio reaches a peak - typically

at a selection rate of 60-75%, and then decreases. Thus, there is a trade-off between

image blurring and signal to noise ratio at low selection rates. For extended objects,

the technique is light level dependent: for a 1 meter adaptive optics telescope, frame

selection will yield an increase in signal to noise ratio for objects brighter than visual

magnitude +2.3.
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1.7 Concluaion

Atmospheric turbulence presents a major obstacle to the Air Force's space

surveillance mission. Adaptive optics systems are incapable of fully compensating

for the effects of turbulence, so additional post-processing techniques are required

to improve image quality. The next chapter presents a detailed discussion of the

problem, and a solution based on frame selection.
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I. Background

2.1 Introduction

This chapter provides the background necessary to understand the fundamental

problem of atmospheric turbulence, its effect on Air Force adaptive optics systems,

and the need for post-processing techniques to improve image quality. The theory

and history of frame selection - the post-processing technique this thesis investigates

- is presented in detail.

2.2 Atmospheric Turbulence

Atmospheric turbulence is the major source of image degradation in a ground-

based optical system. According to the "turbulent eddy" model, this degradation is

due to r.--don, inhomogeneities in the refractive index of air [131. This phenomenon

is the result of differential heating of the Earth's surface, which results in large scale

temperature inhomogeneities. Convection and turbulent wind flow break up theses

large scale inhomogeneities into smaller scale "eddies". Each turbulent eddy has

its own individual refractive index, which temporally and spatially modulates the

amplitude and phase of a propagating wavefront. Amplitude modulation results in

scintillation or the twinkling of stars. Phase modulation results in random image

motion (tilt) and phase aberration. For the case of ground-based imaging of exo-

atmospheric objects, the effects of phase modulation are generally more severe than

amplitude modulation [7].

Astronomers and others concerned with the propagation of light waves through

turbulence have developed various parameters for characterizing the severity of im-

age degradation due to turbulence. Astronomers typically use such parameters to

compare the relative seeing quality of candidate sites for new observatories. One of

the most convenient and widely used measures of seeing quality was introduced by

Fried [81 and is denoted r,. It is defined as the effective diameter of a telescope for

2-1



which the integral of the telescope's optical transfer function is equal to the ensemble

averaged atmospheric optical transfer function [33]. ro is a function of the zenith

angle of the path of propagation, the wavelength, and the effects of turbulence on

optical propagation [33]. Since the effects of turbulence on optical propagation are

random in nature, r, is also random. Typical values for ro at a good observatory

range from 5cm for moderately poor seeing to 20cm for exceptional seeing [13]. In

addition to its practical use as a measure of relative seeing quality, r0 is widely used

in expressions for the atmospheric optical transfer function to simplify the forms of

these expressions, and to aid in understanding their behavior [13].

Over the past three decades, numerous techniques for compensating the effects

of atmospheric turbulence have been proposed. These techniques can be divided

into two broad categories: pre-detection techniques where wavefront aberrations are

sensed and canceled in real time, and post-detection techniques where an estimate

of the object is recovered by processing a large number of frames of the distorted

image. The former category encompasses the field of adaptive optics [14], while the

latter encompasses techniques such as speckle imaging [19], bispectrum imaging [21],

and frame selection [331. Pre-detection and post-detection techniques are not mu-

tually exclusive: hybrid techniques where pre-detection compensation is combined

with post-detection bispectrum image processing have been reported [35]. This the-

sis represents the first investigation into the feasibility of combining pre-detection

compensation with a post-detection processing technique known as frame selection.

The following sections present a brief overview of adaptive optics systems, followed

by a detailed examination of the frame selection technique.

2.3 Adaptive Optics

Adaptive optics systems provide real-time compensation for the effects of ran-

dom phase modulation. To accomplish this, the adaptive optics system must sense,

reconstruct, and compensate for phase aberrations [14]. Wavefront sensing is accom-
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plished by sampling the incoming wavefront at intervals known as subapertures, and

then detecting the localized slope deviation of the incoming wavefront. Wavefront

reconstruction is accomplished by combining the slope deviation measurements in

such a way as to yield an estimate of the aberrations across the optical entrance

pupil. Compensation is accomplished by applying an estimate of the conjugate of

the wavefront phase aberration with a device known as a deformable mirror.

The fundamental limitations of an adaptive optics system are the accuracy of

the wavefront sensors, the finite number of wavefront sensors employed across the

wavefront surface, the finite number of degrees of freedom in the deformable mir-

ror's response, and the finite system response time [40]. Photon noise imposes a

fundamental limit on the accuracy of the wavefront sensors. At low light levels, shot

noise and measurement noise effects in the wavefront sensor impose an additional

limitation on sensor accuracy and seriously degrade the reconstruction process. The

finite number of sensors employed by an adaptive optics system also limits the accu-

racy of the wavefront measurement. The finite number of degrees of freedom in the

deformable mirror limits the device's response, which means that it cannot correct

higher-order wavefront aberrations. The rapidity of fluctuations in phase aberrations

- and control system stability requirements - demand that the reconstruction compu-

tations be performed at a rate of approximately one frame per millisecond. Because

of these limitations, residual phase errors exist in the wavefront propagating from

the deformabc _-.-rror, and these phase errors degrade the resulting image by scat-

tering a fraction of the incident power through various random angles [39]. Hence,

adaptive optics systems are incapable of fully compensating for phase aberrations,

and post-processing techniques are needed to produce high quality images.

2.4 Frame Selection

Frame selection is a processing technique where image quality is improved by

collecting a large set of short exposure images, selecting a subset of these images
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according to some quality criterion, re-centering each image in this subset to com-

pensate for the effects of random image motion, and then averaging the members of

the re-centered subset to extract an estimate of the object [33]. Research into the ef-

fects of image exposure time on resolution, and the statistics of image quality provide

the theoretical basis for the technique. To select the correct frames for processing,

the technique requires a quality metric that is accurate and easy to compute. This

section concludes with a discussion of several successful implementations of frame

selection reported in the literature.

2.4.1 Effects of Exposure Time on Image Resolution. In 1966 Fried [8]

developed expressions for the atmospheric optical transfer function for both short

and long exposure images. Fried found that in the long exposure case, random image

motion (tilt) smears the image observed in the image plane. As a result, tilt broad-

ens the point spread function and narrows the optical transfer function in the long

exposure case. However, for a sufficiently short exposure time (10 milliseconds or

less), Fried found that tilt had a negligible effect on image quality. When comparing

a series of short exposure images taken in succession, the image would appear to

randomly move about the image plane from one exposure to the next, but smear-

ing due to image shift would be negligible. Since it is a simple matter to re-center

an image, the effects of tilt can be eliminated in post-processing. However, image

degradation due to phase aberration still remains. Fried then compared the perfor-

mance of an optical system for both the short and long exposure cases in terms of

the performance metric 1Z, defined as:

= Jr (f) df (2.1)

where r is the combined optical transfer function of the atmosphere and telescope,

and f is a spatial frequency. RZ is analogous to the bandwidth of an electrical system,

and is sometimes referred to as optical resolution. For the long exposure case, 1Z
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approaches a limit determined by the diffraction limit of the aperture when the

telescope diameter D is much less than the parameter rt, and approaches a limit

identical to the diffraction-limited performance of a telescope with diameter r, when

ro is much greater than D. Therefore, atmospheric turbulence imposes a fundamental

limit on the performance of an optical system, and this limit is expressed by the

parameter r,. For the short exposure case, the peak short exposure R occurs when

the ratio of the telescope diameter D and the parameter ro is approximately 3.8, and

this peak R is approximately four times the R measured in the long exposure case.

This indicates that considerable improvement in image quality can be achieved by

collecting short exposure images. However, limiting the exposure time also limits the

total number of photo events that can be collected by the recording device. For dim

objects, this can result in a serious degradation in signal to noise ratio. This problem

can be overcome by collecting a large number of short exposure images, re-centering

them to eliminate the effects of random image motion, and then averaging these short

exposure images to produce a better estimate of the image. Finally, it is important

to remember that atmospheric turbulence - and therefore RZ - varies randomly with

respect to time. Thus, a more complete understanding of image quality requires a

statistical approach.

2.4.2 Statistics of Image Quality. In 1977 Fried [91 investigated the pos-

sibility that for short exposure images there is a finite probability that an image

will be diffraction limited because the wavefront distortion over the aperture was

negligible during the exposure. Fried defined a good image as one for which the

mean square phase distortion A2 over the aperture is 1 rad& or less. Using Monte

Carlo simulation techniques, Fried modeled the probability of getting a good short

exposure, Pr, as:

Pr 4 5.6 exp -0.1557 (( for > 3.5) (2.2)
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This result is significant because it demonstrates that the probability of capturing

a single, diffraction limited image decreases as the aperture diameter increases. For

example, a probability on the order of 10-' dictates a telescope diameter no greater

than 8ro, and a probability on the order of 106 dictates a diameter no greater than

10ro. Thus, at a site with a typical ro of 10cm, the telescope aperture must be no

greater than 80-100cm, and one would have to collect 1,000-1,000,000 short exposure

images to have a high probability of capturing a single, diffraction limited image.

The limitation on the aperture size is unacceptable when imaging dim objects, and

the requirement to collect such a large number of short exposure images imposes

severe data collection and storage requirements. Furthermore, Fried assumed that

r. was constant during the period of data collection, and this assumption is only

reasonable for a very short period of time. Therefore, the probability of capturing

a diffraction-limited image may be even more pessimistic than predicted by Fried's

result. In addition, Fried's probability expression is limited because it is only valid

for fairly large apertures, and the quality criterion is inflexible. Nevertheless, Fried's

results are important because they demonstrate that a judicious choice of aperture

size and careful selection of short exposure images can yield results which are signif-

icantly better than the typical limitation on image quality imposed by atmospheric

turbulence [9].

In 1981 Corteggiani [4] extended Fried's results and developed the following

expression:

logPr[() ,]=-0.1557 (E)2(23
log Pr T, ill = 11.014 35.35 (

ep,+ 18.907 + (

where the notation Pr [(O) ,11 denotes the probability - at a given ratio -2 - of

capturing an image with unity mean square phase distortion. Eq.(2.3) removes the

requirement that k. > 3.5. Corteggiani also developed an expression which relates
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probability of getting an image with wavefront mean square phase distortion A2 to

the probability of getting an image with unity mean square phase distortion:

Pr D, A2 = Pr D 6,1 (2.4)

According to Corteggiani's model, relaxing the quality criterion for a good exposure

image is equivalent to increasing the value of r.. Using these results, the proba-

bility of capturing a short exposure image with any arbitrary value of A 2 can be

determined.

It should be noted that neither Corteggiani's nor Fried's model takes into

account the effects of photon noise or detector shot noise. Hence, these models are

only valid for relatively bright objects where the signal to noise ratio is sufficiently

large to minimize the effects of noise. Furthermore, these models are not necessarily

valid for an adaptive optics system, since the performance of such a system is not

a simple function of the deformable mirror - the number of subapertures across the

deformable mirror also affects performance. Finally, it is important to note that A2

is not easily determined in an operational setting. Hence, it is necessary to relate

A 2 to a more readily accessible quality metric.

2.4.3 Strehl Ratio and the Marechal Approximation. One quality metric

commonly used to evaluate the performance of optical systems is the Strehl ratio [30],

S:

S = f r(f) df
f ro (f) df (2.5)

where r is the optical transfer function of the atmosphere and the telescope and

r, is the optical transfer function of the telescope in the absence of atmospheric

turbulence. S is a normalized version of Fried's quality metric 1?. Marechal [24]

derived the following approximation, which relates S to A2 :
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S 1- 1A2) (2.6)

Mahajan [221 determined that Marechal's relation approximates S with less than

10% error as long as S > 0.6 or A 2 < 0.5 rad2 . Mahajan also investigated a second

approximation:

S ; exp (A2 (2.7)

and found that this relation approximates S with less than 10% error as long as

S >- 0.3 or A 2 <•.2 rad.

It should be noted that there is an important drawback associated with using

S as a quality metric: one usually measures the image spectrum, not the optical

transfer function. The image spectrum is related to the object spectrum by the

relation:

I(f) = r(f)D (f) (2.8)

where I is the image spectrum, r is the optical transfer function, and 0 is the

object spectrum. To derive the optical transfer function from the image spectrum,

it is necessary to divide I by 0. In the case of a distant point source - such as a

star - this isn't a problem because the object spectrum of a distant point source is

a constant for all frequencies. However, for any object other than a point source,

perfect knowledge of the object spectrum is required to extract the optical transfer

function from the image spectrum, and this can only be done at those frequencies

where the object spectrum is nonzero. Despite this drawback, these approximations

- used in conjunction with Corteggiani's model - make it possible to express image

quality in terms of a statistical distribution.
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2.4.4 Improved Image Quality Through Frame Selection. In 1985 Hequet

and Coupinout [16] investigated the feasibility of improving the Strehl ratio . of an

image by collecting a large set of short exposure images, selecting a subset of images

according to a quality metric, re-centering each image in this subset to compensate

for the effects of random image motion, and then averaging the members of the re-

centered subset to extract an estimate of the object. Hequet and Coupinout used

the Strehl ratio as their quality metric. Using Eq.(2.7) and Corteggiani's model,

Hequet and Coupinout simulated the performance of frame selection as a function

of the statistical distribution of S of the set of short exposure images. Their results

indicate that the Strehl ratio S of an image can be improved by a factor of two by

selecting 10% of the re-centered short exposure images. This result is valid as long

as < • 15. Since Hequet and Coupinout's model depends only upon the ratio ;2 it

neglects the effects of photon noise and detector shot noise. Imaging wavelength is

only indirectly accounted for in this model, since ro is proportional to the § power
5

of the imaging wavelength [28]. Despite these limitations, Hequet and Coupinout's

paper is a seminal work in this field, because it provides a theoretical validation of

the concept of frame selection.

As mentioned earlier, one must know the object spectrum to compute the

Strehl ratio from the image spectrum. This is a major drawback for imaging objects

other than stars. Hence, finding a quality metric that is easy to compute and does

not require prior knowledge of the object spectrum is the key to implementing the

frame selection technique in an operational setting.

2-.4.-5 Quality Metrics for Frame Selection. O'Neill [30] provided one of the

earliest discussions of quality metrics for rating optical systems. O'Neill listed the

following factors:

(a) Relative Structural Content, T:
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T = (X, (2.9)
o2 (X,y)

(b) Correlation Quality, Q:

Q= i(, y) 0 (z, y) (2.10)

(c) Fidelity Defect, F:

F = 1- D, (2.11)

D = [o(z,y) - i(z,y)]2  (2.12)

o2 (X,y)

where (x, y) represents a spatial coordinate, i (z, y) represents the measured image,

o (x, y) is the undistorted true image, and the bar operator denotes averaging. All

three factors are related through the equation:

Q j (T + F) (2.13)

The fidelity defect metric is a normalized measure of the mean square error

between the true image and the image captured by an optical system. The mean

square error metric has been used extensively in testing optical components and in

image processing. Some researchers have noted that this metric does not correlate

well with subjective human quality assessments [23]. The reasons for this discrepancy

axe not well understood, but some researchers suggest that the mean square error

metric does not adequately mimic what the human visual system does in assessing

image quality [29].
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Like the Strehl ratio, O'Neill's quality factors are useful in simulation, but they

are of limited use in an operational setting because they require prior knowledge

of the object. In 1974 Muller and Buffington (26] proposed a set of eight quality

metrics they called "sharpness functions", the first seven of which do not require

prior knowledge of the object. They defined sharpness functions as functions which

reach a maximum value when the phase distortion of the incoming light wave is zero.

The Muller and Buffington quality metrics are, in the order they were presented:

S, i Ji2(xy) dxdy (2.14)

S2 = i(O,O) (2.15)

S3 = m m(T,y)i((x,y) dx dy (2.16)

S4 = 0JJ I dx dy (2.17)

5= JJi (,,y) dX dy (2.18)

5 -- J1i(x,y)r2 dXdy, (2.19)

r2 = T2 + Y2

S 7 = -J ln[i(x,y)]i(x,y) dx dy (2.20)
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S8 = -fJJ i (X,Y)- o(X,Y)1 2 dx dy (2.21)

S, and Ss are unnormalized versions of relative structural content T and fi-

delity defect F. S3 is an unnormalized version of correlation quality Q when m (x, y)

- known as the mask function - is equivalent to the true image. S7 is the equation

for entropy, a measure of information content [31J. Muller and Buffington provided

mathematical proofs that S1 , S3, S 4, S5 , and Ss reach maximum values for an undis-

torted image, and hypothesized that S2, S6, and S7 might do the same under typical

imaging conditions. Since S through S7 are easily computed and do not require

prior knowledge of the object, they are excellent candidates for use as quality met-

rics in the frame selection technique. The next section describes implementations

of the frame selection technique which employ Muller and Buffington's sharpness

functions as quality metrics.

2.4.6 Frame Selection Implementations. In 1987 Nieto and others [281

implemented a frame selection technique which uses Muller and Buingtons's S3

metric as the quality metric. They used the long exposure image as the mask function

m (x, y), and evaluated the improvement in image quality in terms of the full width,

half maximum (FWHM) value of the system point spread function. Using a 4m

telescope to image the binary stars 48Vir and HRS10, they demonstrated that the

FWHM can be improved by a factor of 2.18 by selecting 10% of the re-centered short

exposure images.

In 1988 Fuensalida and others [10] implemented a frame selection technique

which uses the S3 metric and the long exposure autocorrelation function as the mask

function. They processed a series of short exposure images measured with a 2.5m

telescope to produce high resolution images of the symbiotic star AG Peg. They

did not state their selection rate, nor did they make a quantitative assessment of
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the improvement in image quality, but they did report that the technique uncovered

fine, nebular structures that were not visible in the unprocessed data.

Also in 1988, Devaney and others [51 implemented a frame selection technique

which uses the S3 metric and a Gaussian function of width equal to the diffraction

limit of the telescope as the mask function. Using a 50cm telescope to image the

triple star system ADS6650, they demonstrated that the FWHM can be improved

by a factor of 1.9 by selecting 50% of the re-centered short exposure images.

The quantitative assessments of the improvement in image quality reported

by these researchers agree very well with the degree of improvement predicted by

Hequet and Coupinout. Since Muller and Buflington's quality metrics reach their

maxima when phase distortion is zero, frame selection based on the use of these

quality metrics is a promising post-processing technique for minimizing the effects

of residual phase errors in Air Force adaptive optics systems. In order to fully

assess the potential of this technique, the following limitations in our current level

of understanding must be overcome.

2.5 Limits of Current Knowledge

The performance of all previous implementations of frame selection has been

evaluated in terms of the the point spread function or the Strehl ratio. The statistical

implications of frame selection - in particular, the behavior of the signal to noise ratio

as a function of the frame selection rate - have not been addressed. This is a key

point that must be addressed, because the signal to noise ratio imposes a limit on

our ability to image dim objects. Put another way, the performance of the frame

selection technique will determine the minimum number of short exposure frames

that must be collected to extract a single, high resolution estimate of the object.

As noted previously, the performance of an adaptive optics system cannot be

characterized as a simple function of the aperture diameter. Hence, the improvement
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in the Strehl ratio predicted by Hequet and Coupinout's model is not necessarily valid

for an adaptive optics system.

The results reported in the literature describe attempts to improve the images

of single or binary star systems. The Air Force is interested in imaging objects such

as satellites, which are extended objects. The performance of the frame selection

technique for such objects has yet to be addressed.

2.6 Summary

Atmospheric turbulence imposes a fundamental limit on the performance of

any optics system. Adaptive optics systems are unable to fully compensate for the

effects of atmospheric turbulence, and this results in residual phase errors which

degrade image quality. This thesis will investigate the use of frame selection as a

post-processing technique for improving the quality of images measured by Air Force

adaptive optics systems. The next chapter develops the methodology for conducting

this investigation.
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III. Methodology

3. 1 Introduction

Chapter two provided an overview of the problem of imaging through the tur-

bulent atmosphere. The Air Force employs adaptive optics systems to compensate

for the random phase fluctuations which result from atmospheric turbulence. Ear-

lier research [40] established that adaptive optics systems cannot fully compensate

for these phase aberrations, which means that residual phase errors exist in the

wavefront leaving the deformable mirror. These residual phase errors significantly

degrade the images measured by an adaptive optics system, so additional processing

is needed to improve image quality. Astronomers have successfully employed frame

selection as a technique for minimizing the effects of atmospheric turbulence on the

performance of passive optical systems, so it is reasonable to hypothesize that frame

selection can be employed as a post-processing technique to minimize the effects of

residual phase errors in adaptive optics systems. This chapter develops a methodol-

ogy for testing this hypothesis. Section 3.2 defines the basic terminology that will be

used throughout the remainder of this investigation. Section 3.3 justifies the use of

Muller and Buflington's sharpness functions as quality metrics in the frame selection

process, and identifies the specific sharpness functions implemented in the course of

this investigation. Section 3.4 justifies the use of computer simulation in this inves-

tigation. Section 3.5 justifies the use of a statistical characterization of the imaging

process in the frequency domain as the primary means to evaluate the degree of

improvement in image quality realized through application of frame selection, and

develops a set of specific performance metrics that are used to express this charac-

terization. Section 3.6 identifies the independent variables which affect the statistics

of image formation.
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3.2 Terminology

Defining the basic terms and concepts is the first step in developing a methodol-

ogy. The following terms will be used throughout the remainder of this investigation.

Quality metric an equation or algorithm which produces a single numerical

value when it is applied to an image. The magnitude of the output of a quality

metric is directly proportional to some desired quality or attribute in the image.

Frame selection rule: a three-step procedure for identifying a subset of images

for processing. First, a specified quality metric is computed for each short exposure

image (frame) in the original set. The images are sorted from highest to lowest

according to the numerical values of the quality metric, and then those images with

the highest values are selected to form the subset.

Frame selection rate (fsr): the ratio of the number of frames M in the subset

and the number of frames N in the original set. Hence:

fsr =•, M < N (3.1)

The frame selection rate is expressed as a percentage of the number of frames in the

original set. A frame selection rate of 10% means that the subset identified by the

frame selection rule consists of those 10% of the images in the original set which

have the highest computed values for the specified quality metric.

Composite Image: the image produced by re-centering and averaging a set of

short exposure images. The image set used in the averaging process can consist of

all the short exposure images collected during an experiment, or a subset of this

collection identified by the frame selection rule.

Clearly, the subset identified by the frame selection rule is determined by the

quality metric. The next section identifies the specific quality metrics which will be

investigated in this thesis.
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3.3 Sharpness Functions as Quality Metrics

In Chapter two, the set of sharpness functions introduced by Muller and Buff-

ington [26] were discussed. These functions reach their maxima when the phase

distortion of the incoming light wave is zero. Since our objective is to minimize

the effects of residual phase errors in an adaptive optics system, it is reasonable to

propose using sharpness functions as quality metrics. This thesis investigates the

following sharpness functions:

= (x,2( fL) dx dy (3.2)

S4= Jf 8 iJ 1, 2 d (3.3)

S8 = -fJ (X, ) - o (XI 012 dz dy (3.4)

These sharpness functions were chosen because they are easy to implement and

simple to evaluate. The double integrals can be easily evaluated by using the two

dimensional trapezoid rule [6], and the partial derivatives in S4 can be evaluated

by using finite difference approximations [18]. Ss cannot be implemented in an

operational setting because it requires prior knowledge of the object. Nevertheless,

Ss was implemented to provide a standard for comparing the performance of S$

and S4. In addition, this thesis proposes and investigates a modified version of S1,

denoted Ssi.

3.3.1 A New Quality Metric. By Parseval's theorem, the integral of the

square of the image intensity can be expressed as [20]:

J i2(xy) dxdy 1 J (U, V) 12 dU dv, (3.5)
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where I represents the Fourier spectrum of the measured image. The image spectrum

is related to the object spectrum by the relationship:

I(u,v) = H(u,v) O(u,v), (3.6)

or in polar coordinates:

I(p,O) = H(p,O) O(p,0), (3.7)

where H represents the optical transfer function (OTF) of the optical system, and

o represents the object spectrum. For a diffraction-limited circular aperture unhin-

dered by atmospheric turbulence, the OTF is given by [12]:

o [COS-i (_L) _ [ ( ifYp < Po
H (p) PO P O(3.8)

0 otherwise

where p0 is known as the OTF radius or OTF cutoff frequency, and is given by the

relation:

D
Po = D, (3.9)

where D is aperture diameter, A is the imaging wavelength, and di is the distance

from the aperture to the image plane.

Clearly, frequency components present in I beyond po are manifestations of

noise. Hence, the quality metric Ss, is defined as:

SsI J 2 11 (p,O)1 2 dp dO (3.10)
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Ss, rejects high frequency components which are the result of photon noise, read

noise, and quantization errors, thereby minimizing their effects on the frame selection

process.

Now that specific quality metrics have been identified, it is necessary to devise

a strategy for evaluating the effects of frame selection on image quality.

3.4 Computer Simulation of the Problem

Computer simulation is the primary tool used to conduct this investigation.

This approach was chosen because the frame selection rule is nonlinear, which means

that a closed form expression which describes the improvement in image quality

resulting from the application of frame selection does not exist. Even if a linear model

which approximates this nonlinear process could be developed, the mathematical

form of such a model would probably be quite complicated and unwieldy because of

the many factors which affect the image formation process. Finally, it is enlightening

to note that the probability "laws" developed by Fried [9] and Corteggiani [4] are

themselves based on computer simulation.

The simulation code used in this investigation was developed by Michael C.

Roggeman [36]. The code consists of an atmospheric turbulence model, and an adap-

tive optics model which in turn consists of a wavefront sensor model, an adaptive

mirror model, and a tilt correction system model. In order to more accurately sim-

ulate the performance of an adaptive optics system in an operational setting, this

thesis developed a realistic charge-coupled device (CCD) camera model and incor-

porated it into the original simulation code. Appendix one provides a description of

the CCD camera model.

S1, S4, Ss, and Ss, were implemented as subroutines, and incorporated into

the original simulation code. To conserve computer disk space, it was necessary to

implement the frame selection rule as two separate computer runs. The first run

computes the values of the sharpness functions for each short exposure image gen-
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erated by the simulation and stores these values in a file. The second run reads

the file containing the values of the sharpness functions, sorts them from highest to

lowest, and determines the minimum acceptable value according to a frame selection

rate specified by the user. Then, the second run exactly recreates the short expo-

sure images generated by the simulation in the first computer run, and computes

the statistics of the subset formed by those images whose computed values for the

sharpness function are greater than or equal to the minimum acceptable value.

In many ways, a computer simulation is akin to a laboratory experiment, and

requires much of the same planning and forethought to ensure success. Before con-

ducting any experiment, the following issues must be addressed:

What is the objective of the experiment?

What phenomena shall be observed during the experiment?

How will the observations be quantified?

What are the independent variables affecting the phenomena?

The objective of the experiments conducted in this investigation is to determine how

a composite image formed by averaging a subset of short exposure images identified

by the frame selection rule differs from a composite image formed by averaging

the entire set of images. The frequency domain statistics of the subset identified

by a frame selection rule is the phenomena that will be observed and quantified.

This statistical approach was chosen because many of the processes which degrade

image formation - photon noise, shot noise effects in the detector, random phase

aberrations due to turbulence - are random in nature. A statistical analysis of the

frequency domain characterization of the imaging process allows us to determine

the maximum limit on image quality imposed by these random processes. The

next section explores this statistical analysis in detail. Section 3.6 will identify the

independent variables which affect the statistics of image formation.

3-6



3.5 Statistical Definitions

This thesis examines how the statistics of a subset of short exposure images

identified by the frame selection rule differ from the statistics of the entire set.

Therefore, it is necessary to define the specific statistical functions that will be

observed, quantified and recorded during the experiment.

3.5.1 Image Spectrum Signal to Noise Ratio (SNR). For a set of images

degraded by a random process, the expected single frame image spectrum Signal to

Noise Ratio SNRI is defined as:

SNR1 (u, v) E[1(u, v)]}, (3.11)

where E is the expectation operator, var is the variance operator, and I is the

image Fourier spectrum [17]. In this definition of SNR, any random fluctuation in

the image spectrum is manifested as noise. SNR1 is a measure of the precision of

image information at a particular spatial frequency.

3.5.2 Improved SNR through Averaging. A standard practice for making a

precise determination of a signal level in the presence of noise is to average together a

large number of independent measurements of the quantity to be determined [3]. In

general, averaging will improve the SNR by a factor \IN where N is the number of

measurements used in the averaging process. Hence, the SNR of a composite image

created by averaging N short exposure realizations is given by:

SNRN(u,v) = VK-SNR1 (u,v), (3.12)

where the subscript N denotes the number of short exposure images used to create

the composite image.
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3.6 SNR Performance Metrics

Both SNR1 and SNRN are positive, real, 2-dimensional functions. Since it is

rather difficult to directly compare two such functions, it is necessary to define a set

of performance metrics which permit us to make such comparisons.

3.6.1 Radially Averaged SNR. Fourier image spectra generally exhibit a

large degree of radial symmetry. Therefore, the analysis of the SNR1 and SNRN

functions can be simplified by employing the radially averaged SNR functions:

SN---1 (p) = 21r SNR, (p, 0) dO (3.13)

1 o2w
-S'N-N (p) =y- SNRN (p, 0) dO (3.14)

2Irp Jo

3.6.2 Noise Equivalent Frequency Cutoff. As noted previously, the Fourier

spectrum of an image formed by passing through a diffraction-limited circular aper-

ture reaches zero at the OTF radius. Noise, however, generally exhibits a broad

frequency spectrum that usually exceeds the OTF radius. Hence, there generally

exists a frequency where the magnitude of the noise spectrum and the magnitude of

the signal spectrum are equal. This point is known as the noise equivalent frequency

cutoff r and is defined as

i? = p ..uch that SNR1 (p) = 1.0 (3.15)

ri is measure of the highest spatial frequency where the signal is known with a

minimum acceptable degree of certainty. Thus, 7r permits us to compare the overall

signal quality of different subsets at high frequencies.
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3.6.3 SNR Gain. SNRN is a function of the number of short exposure

images used in the averaging process. Clearly, applying the selection rule will result

in the use of a smaller number of short exposure frames in the averaging process. To

compare SNRN of the entire set of N frames to SNRM of a subset consisting of M

frames, the SNR Gain function G is defined as:

G(p) = S M < N (3.16)

G permits us to compare the relative gain or loss in the composite image signal to

noise ratio that results from applying the frame selection rule. Any value above 1.0

at a particular radial frequency constitutes a gain in SNR while any value below 1.0

constitutes a loss.

3.6.4 Integrated Gain. G is still a 1-dimensional function. To compare the

relative improvement or degradation of composite image signal to noise ratio that

results from applying the frame selection rule, we desire a simpler quality metric.

If SNRM improves as the result of applying the frame selection rule, then the area

under G will be greater than the case where there is no overall improvement - or

perhaps a degradation - of SNRM. Hence, the quality metric AG is defined as:

AG- G(p) dp, (3.17)

where Po is the OTF radius. Now consider the hypothetical case where:

SNRM (p) = SYRN (p) V p :_ po (3.18)

AG then becomes:

AG = "- dp (3.19)
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If we normalize the radial frequency p such that po = 1.0, then AG = 1.0 when there

is no overall improvement in composite image signal to noise ratio. Any value for AG

above 1.0 indicates an overall improvement while any value less than one indicates

an overall degradation in SNR.

Now that the phenomena to be observed during the experiment has been iden-

tified and three qvulity metrics - 17, G, and AG - have been defined, it is necessary

to identify those iaidependent variables which affect the phenomena.

3.7 Independent Variables

Eq.(3.12) states that the signal to noise ratio of a composite image formed by

averaging a set of N short exposure images is equal to the expected single frame

SNR for the set multiplied by V/-N. If we let SNRSE denote the expected single

frame SNR for a set of short exposure images measured by an adaptive optics system

free of residual tilt error, using a charge-coupled device (CCD) camera, the SNR for

the average image would be given by:

SNRN (u, v) = VW SNRSE (u, v) (3.20)

Hence, if we had an expression for SNRSE, we could identify the relevant indepen-

dent variables. Fortunately, an expression for SNRSE has been derived [34J and has

the form:

SNRsE (u, v) = K IEsE [H (u, v)] 0 (u, v)I (3.21)
{K + K2 10(U,V)1 2 var[H(u,v)] + P 2}2

where K is the average number of photo events per integration time, ESE is the

expectation operator, 0 is the object spectrum, H is the system OTF, P is the

number of pixels employed by the CCD camera and a2 is the camera read noise
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variance. By examining Eqs.(3.20-3.21), the relevant independent variables can be

found.

3.7.1 Number of Short Ezposure Images, N, M. The number of short

exposure images that can be captured in a single data collection run is determined by

the apparent speed of the object and any rotational or translational object motion.

The faster the object moves in relation to the celestial vault, the more difficult

tracking becomes. Most astronomical objects appear stationary with respect to the

celestial vault, which means that the number of frames that can be collected may

number several tens of thousands. However, an artificial satellite may transverse

the night sky in a matter of minutes, which limits the number of frames to a few

hundred to a few thousand. Obviously, applying the frame selection rule will result

in a subset of M images which is smaller than the original set. Thus, the number

of images M in a subset used to produce a composite image will affect the SNR of

that image.

3.7.2 Average Photo events, K. The average number of photo events

per integration time recorded in a short exposure image is a function of the visual

magnitude of the object, the image exposure time, the mean imaging wavelength,

and the light gathering capacity of the optical device. Apparent visual magnitude m,,

is a system employed by astronomers to compare the relative brightness of objects

in the night sky [32]. Each step in visual magnitude corresponds to a factor 2.5

increase in apparent brightness, and smaller values indicate brighter objects. The

light gathering capacity of an optical device is governed by the area of the aperture,

minus the area of any obstructions.

Terry M. Gray of the Kirtland AFB Phillips Lab passive imaging department

has developed a computer program named VMAG which calculates the average pho-

ton flux of an image based on the visual magnitude of the object, the imaging

wavelength and the light gathering capacity of the optical device. Table 3.1 tab-
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ulates the average photo events K and apparent visual magnitude m,, for several

sky objects, based on a 1 meter aperture, an imaging wavelength of 500 nm, and a

1.8-ms integration time.

Table 3.1 Visual Magnitude and Photo events for Common Sky Objects

OBJECT m,, K
Venus -4.4 2.35 l 0
Jupiter -2.5 4.11 106
Sirius -1.5 1.59 106

Artificial Satellite (typical) -.96 1.00 106
Polaris +2.2 5.54 104

3.7.3 EsE[H (u,v)] and var[H (u,v)]. The mean and variance of the sys-

tem OTF are not independent variables, since they depend on the seeing conditions,

and the performance of the adaptive optics system. The performance of an adaptive

optics system depends on the wavefront sensor subaperture size and the deformable

mirror actuator spacing. The performance of the adaptive optics system is also a

function of the average number of photo events. Therefore, for the purposes of this

experiment, the relative seeing conditions - characterized by the parameter r0 - will

be treated as the primary independent variable relating to the mean and variance of

the system OTF.

3.7.4 Object Spectrum. The fact that the SNR is object dependent presents

a major complication in analyzing the results of the experiment. The results obtained

from the experiment are specific to the particular object used in the experiment, and

great care must be taken when attempting to apply these results to another, dissimi-

lar object. Results for star images often appear in the literature [5, 10, 28], however,

it should be remembered that the Air Force is primarily interested in imaging ex-

tended objects.
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3.7.5 CCD Camera Noise. The Gaussian additive read noise introduced

by a CCD camera is a function of the number of pixels P and the noise variance

per pixel a2. The quantity o,2 is hardware dependent; typical values for high quality,

commercially available CCD cameras are in the range of 10-15 electrons per pixel.

The total number of pixels is also a factor, therefore oversampling should be avoided

to minimize the effects of CCD noise.

3.8 Summary

This chapter defined the basic terminology used in frame selection, identified

the specific quality metrics to be investigated, and presented a mathematical defi-

nition of the phenomena - signal to noise ratio - that will be observed during the

experiment. Three performance metrics which facilitate comparisons of the signal

to noise ratio between different short exposure image sets have been developed, and

the independent variables affecting the signal to noise ratio have been identified.

Chapter four will present the results of the experiment.
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IV. Analysis Results

4.1 Introduction

This chapter explores the hypothesis that frame selection based on Muller and

Buffington's sharpness functions can be employed to enhance images produced by an

adaptive optics system. Chapter three developed a methodology for conducting this

investigation. The frame selection rule was defined as a three-step procedure where

a specified quality metric is computed for each short exposure image (frame) in the

set, the images are sorted from highest to lowest according to the numerical value

of the quality metric, and then those images with the highest values are selected

according to an arbitrary frame selection rate to form the image subset. The frame

selection rate was defined as the ratio of the number of frames selected and the total

number of frames in the set. Four quality metrics which can be employed in frame

selection were identified:

S P JJ (x,y) dxdy (4.1)

S4  ax J ay I d dy (4.2)

S - f -ff i(x,y)- o(x,y) 2 dx dy (4.3)

Ss j = fo 2r fo PI I(p,e)1 2 dp dO (4.4)

S1, S4, and Ss are sharpness functions proposed by Muller and Buffington [26]. Ss,

is a variant of S, that was developed in Chapter three. Three performance metrics

- noise equivalent frequency cutoff (17), SNR gain (G), and integrated gain (AG) -
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were developed to quantify changes in image signal to noise ratio. The following

independent variables which affect the statistics of a set of short exposure images

were identified: the number of images in the set (N), the number of images in the

subset identified by a frame selection rule (M), the average number of photo events

per image (K), the image spectrum (I), atmospheric seeing conditions (r,), and the

noise characteristics of the detector(P, a 2). To address the effect of each of these

factors on image quality, and to determine which of the four quality metrics performs

the best, five simulation experiments were performed.

Experiment one establishes a baseline for comparison by demonstrating the

performance of the quality metrics for an arbitrarily chosen set of "average" condi-

tions. The performance of the different selection rules are compared using the 17, G,

and Aa performance metrics. Experiment two duplicates the conditions of exper-

iment one, with an extended object substituted for the point source. Experiment

three investigates the performance of the different quality metrics for different see-

ing conditions. Experiment four investigates the effects of different light levels, and

experiment five investigates the effects of detector noise.

4.1.1 System Parameters. Common optical system parameters were used

for all simulations. The simulated system was a 1 meter adaptive optics telescope

with no central obstruction. The density of the wavefront sensors was ten across the

diameter of the aperture, and the actuator separation on the deformable mirror was

11cm. The imaging and wavefront sensing wavelength was 500nm. The image sets

generated by the simulation consisted of 500 frames. It should be noted that the size

of the telescope aperture and the size of the image set were dictated by limitations

in the available computational resources, rather than operational considerations.
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4.2 Esperiment One

This experiment is the initial investigation into the implications of frame se-

lection. First, the statistical implications of frame selection are examined in detail.

Then the performance of frame selection with respect to image signal to noise ratio is

examined. Finally, the performance of the four different quality metrics is compared.

This experiment establishes a baseline for comparing the results of later experiments.

4.2.1 Simulation Parameters. The object was a point source of apparent

brightness in1 equal to -1.0. The parameter r. was set to 10cm to simulate "average"

seeing conditions at a good observatory. Photon limited conditions (no CCD noise)

were simulated.

4.2•.2 Statistical Implications. As discussed in Chapter three, the expected

single frame image spectrum Signal to Noise Ratio SNR1 is given by [171:

SNR1 (u,) v IE [I (u, v)I L(45)

,var [I (u,4v)]

To gain insight into the implications of frame selection, the mean and variance of

the image spectrum I shall be examined. For this portion of the experiment, we will

limit the discussion to the performance of the Ss quality metric. The performance

of the other quality metrics will be addressed later. Figure 4.1 illustrates how the

estimate of the image spectrum changes as a function of the selection rate. Frame

selection changes the estimate of the image spectrum over 75% of the diffraction-

limited frequency range. At a 10% selection rate, there is a 50% increase in the

estimate at 35% of the diffraction limit.

To determine whether this estimate is a more accurate estimate of the true

image spectrum, the mean square error of the estimate and the true image were

computed, using the the fidelity defect metric F discussed in Chapter two:
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F= 1-D, (4.6)

D = I.(u, V)- Id(u,,l) (4.7)

7I-2(u, V)

where Id is the diffraction limited true image spectrum and I. is the estimate. F is

a convenient way to express mean square error, because its range is [-1, +11, where

+1 indicates perfect fidelity [301.

Figure 4.2 illustrates the relation between F and frame selection rate. The

estimate produced by averaging the subset identified at a 5% selection rate is 30%

better - in a mean square error sense - than the estimate obtained by averaging the

entire image set. Hence, frame selection significantly improves the accuracy of the

estimate of the image spectrum.

Since the image spectrum of a distant point source is a scaled version of the

optical transfer function (OTF), the curves in Figure 4.1 represent the average OTF,

realized over many short exposure images. As noted in Chapter three, the Strehl

ratio S is a common quality metric used to evaluate the performance of optical

systems [30]. S is given by:

S = f-r(f) df
f 7. (f) df (48)

where r is the optical transfer function of the atmosphere and the telescope and

Tr is the optical transfer function of the telescope in the absence of atmospheric

turbulence. Figure 4.3 illustrates the relation between S and frame selection rate.

A 10% selection rate yields a value of S that is 27% better than that obtained by

averaging the entire image set. The image domain counterpart of the OTF is the

point spread function (PSF). The amount of blurring that results from diffraction

is inversely proportional to the width of the PSF [111. Hence, narrowing the PSF

4-4



decreases image blurring. Figure 4.4 demonstrates that frame selection narrows the

average PSF, which translates into less image blurring.

Figure 4.5 illustrates how frame selection changes the variance of the image

spectrum. Frame selection decreases the variance over 85% of the diffraction-limited

freqlency range. At 35% of the diffraction limit, image variance is decreased by a

factor of 5.6. This translates into an increase in the precision of the estimate of the

object. Hence, frame selection results in a net increase in SNR1 over approximately

85% of the diffraction-limited frequency range. This increase is the result of an

increase in the estimate of the image spectrum and a corresponding decrease in the

variance. The next section explores the effect of these statistical changes on image

signal to noise ratio.

4.2.3 Frame Selection and Image SNR. Chapter three developed a set of

performance metrics for evaluating changes in signal to noise ratio. These perfor-

mance metrics are noise equivalent frequency cutoff rj, SNR gain G, and integrated

gain AG, and are defined as:

il = p such that SNR1 (p) = 1.0 (4.9)

G(p) = N M < N (4.10)3N N(P)

fPO
AG =0 G(p) dp (4.11)

j7 is a single frame performance metric which permits us to compare different subsets

in terms of the maximum usable frequency. G is a composite image metric which

indicates gain or loss of signal to noise ratio at different radial frequencies. AG

describes overall changes in composite image signal to noise ratio.
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Figure 4.6 illustrates the relation between -q and frame selection rate. il im-

proves from approximately 85% of the diffraction limit for the entire set to 91% at a

5% selection rate, for a net increase of 7%. Hence, frame selection changes the subset

statistics by discarding the poorer images in the original set. As the frame selection

rate increases, only the best images remain, and this translates into an increase in

the highest usable radial frequency. It is important to remember that YJ is a single

frame metric. It describes the maximum usable radial frequency of the expected

value of the image spectrum.

Figure 4.7 illustrates the changes in the signal to noise ratio of a composite

image formed by averaging a set of short exposure images. At the 60% selection

rate, AG reaches a maximum value of 1.15, then steadily decreases as the selection

rate decreases. This curve illustrates a key implication of frame selection: as the

frame selection rate decreases, the subset statistics improve as the poorer images

are discarded, however, the size of the subset decreases which means that there

is less noise reduction achieved through averaging. At higher selection rates, the

improvement in set statistics is the dominant factor affecting the composite image

signal to noise ratio. However, there is a point where additional improvement in the

subset statistics is insufficient to compensate for the loss in noise reduction due to

averaging a smaller number of images. Hence, at low selection rates the size of the

subset is the dominant factor affecting signal to noise ratio.

The integrated gain curve depicted in Figure 4.7 is very useful because it can be

used to identify the performance limit in terms of frame selection rate. Since AG is at

a maximum at the 60% selection rate, this is the selection rate where the maximum

gain in composite image signal to noise ratio can be expected. When AG is equal

to one, the area under the G corresponding to a subset of M images is equivalent

to the area under G corresponding to the original set of N images, indicating that

the average gain in signal to noise ratio for the diffraction-limited frequency range is

equivalent for both cases. Hence, there will be an overall improvement in signal to
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noise ratio for those selection rates where AG is greater than one. The point where

Aa drops to one establishes the limit of performance in terms of frame selection

rate. Figure 4.8 demonstrates this point. The gain curve at the 60% selection rate

corresponds to the point of maximum gain indicated by Figure 4.7, the 25% selection

rate corresponds to the point where AG is equal to one, and 4.he 10% selection rate

corresponds to a point where AG is below one. At the 60% selection rate, there is

an improvement in signal to noise ratio for 65% of the diffraction-limited frequency

range. The maximum pin occurs at 40% of the diffraction limit and represents a 35%

improvement in SNR. There is a 15% loss in SNR at lower frequencies and a 5% loss at

high frequencies. At the 30% selection rate, the frequency range where improvement

occurs is 30% smaller than the equivalent range at the 60% selection rate. There is

a 50% loss of SNR at lower frequencies and a 35% loss at high frequencies. At the

10% selection rate, the frequency range where improvement occurs is 55% smaller

than the equivalent range at the 60% selection rate and the loss in SNR approaches

50% at high frequencies. The steady loss in SNR at high frequencies as the frame

selection rate decreases in due to lkJs noise reduction through averaging. At high

frequencies, the effects of photon noise are dominant, hence, more frames are required

to minimize these effects.

4.2.4 Signal to Noise Ratio and Image Resolution. Figures 4.3 and 4.7

illustrate another important implication of frame selection: there is an optimal frame

selection rate beyond which the composite image signal to noise ratio degrades,

however, optical resolution as measured by the Strehl ratio continues to improve as

the selection rate decreases. Since a higher Strehl ratio corresponds to a narrower

point spread function, this means that image blurring due to diffraction decreases

as the frame selection rate de'reases. However, signal to noise ratio will degrade

beyond a certain frame selection rate, and this degradation is most pronounced at

the higher frequencies. This means that at low frame selection rates, there is a

trade-off between resolution and signal to noise ratio. At low frame selection rates,
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one can minimize the effects of blurring due to diffraction at the expense of more

pronounced noise effects at higher frequencies.

4.2.5 Quality Metric Performance. All of the results presented up to this

point were generated with the Ss quality metric. It was noted in Chapter three

that this quality metric cannot be implemented in an operational setting, because it

requires prior knowledge of the object. Tbis section analyzes the performance of the

S 1, S4, and Ss, quality metrics in relation to the results analyzed previously for S8.

Figure 4.9 illustrates the performance of the different quality metrics as measured

by q. There is very little difference in performance between the different metrics. 77

improves from approximately 85% of the diffraction limit for the entire set to 91%

at a 5% selection rate, for a net increase of 7%.

Figure 4.10 illustrates the performance of the different quality metrics as mea-

sured by AG. S8 demonstrates the best performance of the four selection rules. At

the 60% selection rate AG reaches a maximum of 1.15, and yields an overall gain in

AG for selection rates greater than 25%. Ss, and S1 produce the next best perfor-

mance, with a maximum of 1.12 occurring at the 70% selection rate, and a net gain

in AG for selection rates greater than 30%. S4 produces the poorest results, with a

maximum of 1.07 occurring at 70% selection rate, and a net gain in AG for selection

rates greater than 35%.

Figure 4.11 demonstrates how the gain curves for the 5 si metric behave as

function of frequency at the 70%, 30%, and 20% selection rates. At the 70% selection

rate, a gain in SNR occurs over 65% of the diffraction-limited frequency range. The

peak gain occurs at 40% of the diffraction limit, and represents a 30% gain in SNR.

There is a 5% loss at low frequencies, and a 2.5% loss at high frequencies. At the 30%

selection rate, the peak gain occurs at 40% of the diffraction limit, and represents

a 35% gain SNR. Over the frequency range [0.3,0.6] the gain curve for the 35%

selection rate is approximately 5% greater than the gain curve for the 70% selection
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rate, however, the overall range for which a gain is realized is 25% less. There is

a 40% loss in SNR at low frequencies, and a 25% loss at high frequencies. At the

20% selection rate, the range over which a gain is realized is 30% less than the SNR

gain range produced at the 70% selection rate. There is a 50% loss in SNR at low

frequencies, and a 30% loss at high frequencies. These results demonstrate that the

best overall improvement occurs at the 70% selection rate, which was predicted by

the AG curve.

To determine the relative performance of the four selection rules, consider the

gain curves at the 75% selection rate. These curves are depicted in Figure 4.12.

Again, S8 achieves the best performance, with a gain in SNR occurring over 70%

of the diffraction-limited frequency range. The peak gain occurs at 35% of the

diffraction limit and represents at 28% gain in SNR. Ss, achieves a net gain over

the same range as S8, but with a slightly lower peak gain occurring at 35% of the

diffraction limit. S closely resembles Ssx, but exhibits a more rapid drop-off in gain

as frequency increases. S4 exhibits the poorest performance, with a net gain over the

65% of the frequency range, and a peak gain of 20% at 42% of the diffraction limit.

Of the three quality metrics which can be implemented in an operational setting,

Ssi demonstrates the best overall performance.

4.2.6 Conclusions. The results of this section are significant because they

establish the major implications of frame selection: frame selection improves image

quality by narrowing the point spread function and improving the signal to noise

ratio, particularly in the mid-frequency range. Furthermore, this improvement in

signal to noise ratio is a function of the frame selection rate, and there generally

exists an optimal selection rate, beyond which signal to noise ratio degrades. This

degradation at low frame selection rates is due to an insufficient number of frames

in the subset to adequately reduce the effects of photon noise through the averaging

process. Hence, photon noise imposes the fundamental limit on the performance of

the frame selection rule. It is important to remember that these results have only
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been established for the case of a relatively bright point source. The Air Force is

primarily interested in imaging extended objects. The next experiment will address

this issue.
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4.3 Experiment Two

This experiment investigates the performance of frame selection with respect

to image signal to noise ratio for an extended object. The performance of the four

different quality metrics is compared.

4.3.1 Simulation Parameters. The object is a CAD rendering of a space

satellite, and is depicted in Figure 4.13. The object was assumed to be approximately

12 meters in length and orbiting at a distance of approximately 500 kilometers. The

object's apparent brightness m, is -1.0, about the same as the Hubble telescope

or the Russian Mir space station. The parameter r. was set to 10cm to simulate
"average" seeing conditions at a good observatory. Photon limited conditions (no

CCD noise) were simulated.

4.3.2 Simulation Results. Figure 4.14 compares the performance of the

frame selection rule in terms of 77 for the extended object and the point source from

experiment one. The extended object exhibits an r/that is 70% less than the point

source at the 100% selection rate, and approximately 35% less at the 5% selection

rate. However, the extended object does exhibit at 35% improvement in r/at the 5%

selection rate, as opposed to a 7% improvement for the point source.

Figure 4.15 compares the performance of the frame selection rule in terms of

the AG metric for the extended object and the point source. The extended object

exhibits a maximum AG at the 75% selection rate. This maximum is 58% less than

the maximum for the point source. Also note that the point where AG drops to 1.0

is 50% higher than that for the point source. Figures 4.14, 4.15 illustrate the effects

of the object spectrum on signal to noise ratio. Recall from Chapter three that the

expression for the short exposure signal to noise ratio for an adaptive optics system

free of residual tilt error and using a charge-coupled device (CCD) camera is given

by [34]:
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SNRsE (u, v) = K IEsE [H (u, v)] O (u, v)I (4.12)

{K +K2 I(U, V)12 var[H (us,v)] + Pca2}

where H is the system OTF and I is the object spectrum. Hence, SNRSE is a

function of the product of the average OTF, and the object spectrum. The object

spectrum dependence is due to signal dependent nature of photon noise. In the case

of a point source, the object frequency spectrum is a constant for all frequencies,

which means that the frequency characteristics of the optical transfer function is

the dominant term in the product. For the case of an extended object, the object

spectrum falls off much more rapidly than the OTF as a function of frequency, which

means that the object spectrum is the dominant factor in determining frequency

domain signal to noise ratio, especially at high frequencies. Figure 4.16 demonstrates

this relationship by comparing the radially averaged frequency spectrum of the space

object illustrated in Figure 4.13, and the average OTF estimated by averaging 100%

of the frames collected in the experiment.

Figure 4.17 illustrates the behavior of the gain curves at the 70%, 40%, and

20% selection rates. At the 70% selection rate, there is an improvement in signal to

noise ratio over 62% of the diffraction-limited frequency range. The maximum gain

occurs at 35% of the diffraction limit and represents a 20% improvement in SNR.

There is a 15% loss in SNR at lower frequencies and a 5% loss at high frequencies.

At the 40% selection rate, the frequency range where improvement occurs is 30%

smaller than the equivalent range at the 70% selection rate. There is a 40% loss of

SNR at lower frequencies and a 20% loss at high frequencies. At the 20% selection

rate, there is no appreciable gain in signal to noise ratio, and the loss at 80% of the

diffraction limit is approximately 35%. These results indicate that the 70% selection

rate is the best for maximizing signal to noise ratio.
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4.3.3 Quality Metric Performance. To determine the relative performance

of the four selection rules, consider the gain curves at the 70% selection rate. These

curves are depicted in Figure 4.18. Ss, produces the best improvement in signal

to noise ratio, with Ss producing very similar results. S4 provides the next best

performance, although the gain drops off rapidly at higher frequencies. S performs

the worst in this case.

4.3.4 Conclusions. This experiment demonstrates the effects of the object

spectrum on signal to noise ratio. Because of the signal dependent nature of photon

noise, the object spectrum has a major impact on frequency domain signal to noise

ratio. Hence, extended objects must be investigated separately from point sources.

This experiment demonstrates that frame selection can improve the signal to noise

ratio of a bright extended object, such as the Hubble telescope or the Mir space

station. Ss, performed the best in this experiment.
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Figure 4.13 Typical Space Object
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4.4 Experiment Three

This experiment investigates the frame selection technique under different see-

ing conditions. The performance of the four different quality metrics is compared.

4.4.1 Simulation Parameters. The object is the same CAD rendering of a

space satellite used in experiment two, and is depicted in Figure 4.13. The object

was assumed to be approximately 12 meters in length and orbiting at a distance

of approximately 500 kilometers. The object's apparent brightness m. is -1.0. The

parameter r. was set to 7, 10 and 13cm to simulate poor, average, and good seeing

conditions at a good observatory. Photon limited conditions (no CCD noise) were

simulated.

Figure 4.19 illustrates the effect of seeing conditions on image statistics. First,

consider -q at the 100% frame selection rate. When r. is 7cm, i is 55% less than the

case where r. is 13cm, and the value at 10cm is 17% less. However, frame selection

has a much more pronounced effect on r1 under poor conditions: at the 5% frame

selection rate, q improves by 109% for r. equal to 7cm, but only 20% for r. equal

to 13cm. This is because phase aberrations diminish as seeing conditions improve,

which means that photon noise becomes the random process which has the greatest

effect on signal to noise ratio. This point is underscored by Figure 4.20. AG drops to

one at the 35% selection rate for r0 equal to 7cm as opposed to the 60% selection rate

for r. equal to 13cm. These results demonstrate that as seeing conditions improve,

the gain in signal to noise ratio achieved by discarding the frames most distorted by

random phase aberrations is less pronounced than the gain in signal to noise ratio

achieved by reducing the effects of photon noise through averaging a large number

of frames.

Figure 4.21 illustrates the behavior of the gain curves when r, equals 7cm. At

the 80% selection rate, gain is achieved over 90% of the diffraction-limited frequency

range, with a peak gain of 15% occurring at 15% of the diffraction limit. At the 60%
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selection rate, gain is achieved over 70% of the frequency range, with a peak gain of

30% occurring at 35% of the diffraction limit. There is a 10% loss in signal to noise

ratio at low frequencies, and a 5% loss at 80% of the diffraction limit. Note that

60% is the selection rate for maximum AG. At the 40% selection rate, the range over

which gain occurs decreases to 45% of the diffraction limit, and the loss at the higher

frequencies increases to 15%. These results demonstrate that the 60% selection rate

provides the best overall improvement in signal to noise ratio.

Now consider the behavior of the gain curves when r, equals 13cm, depicted

in Figure 4.22. The 80% selection rate produces the best results, with a gain in

signal to noise ratio occurring over 60% of the diffraction-limited frequency range,

with a peak gain of 20% occurring at 20% of the diffraction limit, and a 5% loss as

higher frequencies. Note that at the 40% selection rate, the loss at the higher fre-

quencies approaches 25%, again demonstrating the effects of photon noise as subset

size decreases.

There is a tendency to misinterpret the data in Figures 4.21 and 4.22. For

example, at the 40% selection rate the loss in signal to noise ratio is more pronounced

at r0 equal to 13cm than it is at 7cm. One is tempted to conclude that the composite

image generated by averaging the 40% subset collected at 7cm is superior to the one

generated from the 40% subset collected at 13cm. This is incorrect. It is important

to note that G is a measure of relative gain that occurs as a result of applying the

frame selection rule. Recall from Figure 4.19 that the set collected at 7cm was much

worse than the one collected at 13cm. Hence the relative improvement is greater,

but the magnitude of the signal to noise ratio is lower. This point is illustrated in

Figure 4.23

4.4.2 Quality Metric Performance. Consider Figure 4.24, which depicts

the performance of the quality metrics at r, equal to 7cm, and a 60% frame selection

rate. 5s, and S8 demonstrate the best performance, with gain occurring over 60%
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of the frequency range, and a peak gain of 20% occurring at 20% of the diffraction

limit. S4 is the next best, with slightly poorer performance at low frequencies. S is

the worst, with a 10% gain at 20% of the diffraction limit.

Now consider Figure 4.25, which depicts the performance of the quality metrics

at r. equal to 13cm, and an 80% frame selection rate. Again, 5 s, and S8 demonstrate

the best performance, followed by S4 and S1.

4.4.3 Conclusions. This experiment demonstrates that the image spec-

trum signal to noise ratio is governed by two different random processes: random

phase aberrations due to atmospheric turbulence, and photon noise, which is in-

trinsic to the signal. When seeing conditions are poor, random phase aberrations

dominate the signal to noise ratio, and frame selection based on sharpness functions

can significantly improve the signal to noise ratio by discarding those frames which

have been most severely degraded by these phase abeirations. However, as seeing

conditions improve, photon noise becomes a greater factor in signal to noise ratio,

and the gain in signal to noise ratio achieved by discarding the frames most severely

degraded by random phase aberrations is less pronounced than the gain in signal

to noise ratio achieved by reducing the effects of photon noise through averaging a

large number of frames. The Ss, quality metric produced the best results.
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4.5 Ezperiment Four

This experiment investigates the effects of image brightness on the performance

of the frame selection technique. Results for both a point source and an extended

object are presented. The performance of the four different quality metrics is com-

pared.

4.5.1 Simulation Parameters. Both the extended object and a point source

were simulated. The extended object was assumed to be approximately 12 meters

in length and orbiting at a distance of approximately 500 kilometers. The apparent

brightness in both cases is +3.0, equivalent to a dim satellite (recall that in the

visual magnitude system, a larger value indicates a dimmer object). The results are

compared to the results previously obtained in experiments one and two. Photon

limited conditions (no CCD noise) were simulated.

4.5.2 Simulation Results. First, consider the case of a point source. Fig-

ure 4.26 illustrates the effects of image brightness on ri. There is very little difference

in performance. 17 decreases by 1% at the 100% selection rate, and by 2% at the 5%

frame selection rate.

Figure 4.27 illustrates the effects of image brightness on AG. Again, there is

very little difference in performance. The point where AG drops to one is 5% higher

when m, equals +3.

Next, consider the gain curves for the Ss, metric. These curves are depicted

by Figure 4.28 and are almost identical to the curves depicted in Figure 4.11. These

results indicate that point sources axe not sensitive to changes in light levels in the

range [-1, +3].

Now consider the same experiment, substituting the space object for the point

source. Figure 4.29 illustrates the effects of image brightness on q1 for the case of an

extended object. In contrast to the point source, the change in m, has a marked
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impact on il. At the 100% selection rate, 17 is 50% less, and at the 5% selection rate

17 is 52% less.

Next, consider AG. Figure 4.30 indicates that frame selection will not produce

a net gain in signal to noise ratio at m, is equal to +3. Figure 4.31 demonstrates

this conclusion. These results are very significant, because they demonstrate that

the number of photo events collected by the adaptive optics system imposes a funda-

mental limit on the performance of the frame selection technique. To establish the

performance limit for the 1 meter adaptive optics system simulated in this study,

AG was determined using the SS, selection rule and a 75% selection rate for values

of m' between -1 and +4. Figure 4.32 indicates that the frame selection technique

will produce a net gain in signal to noise ratio for an extended object when mi, is

less than +2.3. However, it must be stressed that this result is only applicable to the

adaptive optics system simulated in this experiment. Note that doubling the size of

the aperture will increase the light gathering power of the device by a factor of four,

which transiates into roughly one and a half steps in apparent magnitude.

4.5.3 Conclusions. This experiment is perhaps the most significant one

conducted in this investigation, because it demonstrates that the number of photo

events imposes a fundamental limitation on the performance of the frame selection

technique when processing images of extended objects. As the average number of

photo events decreases, the effects of photon noise become more pronounced. In

general, there is a point where photon noise - rather than random phase aberrations

- becomes the noise process which dominates the signal to noise ratio, and reducing

*the effects of photon noise requires the largest possible set of images for the averaging

process. Under these conditions, frame selection based on sharpness functions is

ineffective, since the gain in signal to noise ratio achieved by discarding those frames

which exhibit the greatest amount of phase aberration is less than the gain achieved

by z ireraging all of frames to reduce the effects of photon noise. For the adaptive
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optics system and the extended object simulated in this experiment, this point occurs

when the visual magnitude m, of the excended object is dimmer than +2.3.
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4.6 Ezperiment Five

All four previous experiments assumed photon-limited conditions. This exper-

iment investigates the effects of CCD camera read noise on image signal to noise

ratio.

4.6.1 Simulation Parameters. A 79 by 79 detector pixel grid was simu-

lated. This grid represents the minimum grid necessary to meet Nyquist sampling

requirements (see Appendix one). The pixel noise variance a 2 was set to 15 or 30

electrons per pixel, representing good and poor detection devices. The object was a

point source of brightness mrn = +3. r, was set to 10cm.

4.6.2 Simulation Results. Figure 4.33 illustrates the effects of camera read

noise on subset statistics. 17 decreases 2% when a 2 is 15, and 4% when Or2 is 30.

Figure 4.34 illustrates the integrated gain curves for the case of camera read noise.

Again, there is very little difference in performance. Figure 4.35 depicts gain curves

for the case of camera read noise with variance a 2 equal to 30. The results are almost

identical to the curves depicted in Figure 4.28.

These results indicate that CCD read noise will not limit the performance of

the frame selection technique, as long as the pixel grid size is kept to a size in line with

sampling requirements, and the detector demonstrates good noise characteristics.

4.6.3 Quality Metric Performance. Figure 4.36 depicts gain curves for the

different quality metrics for the case of camera read noise with variance a 2 equal to 30.

S8 performs the best, followed by SsI and S1 . S4 exhibited the worst performance.

4.6.4 Conclusions. CCD read noise degrades the signal to noise ratio,

but it does not interfere with the frame selection rule's ability to find the right

frames for averaging. Read noise in the range of commercially available high quality
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devices does not place a fundamental limit on the performance of the frame selection

technique.
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4.7 Summary

This chapter establishes the hypothesis that frame selection can be used to

enhance images produced by Air Force adaptive optics systems. It was shown that

frame selection has two important effects on image nuality. First, application of the

frame selection rule broadens the optical transfer function and narrows the point

spread function, which reduces image blurring. Second, frame selection changes

the statistics of a set of short exposure images by improving the image spectrum

estimate and decreasing the variance, resulting in a net gain in image spectrum

signal to noise ratio. There is generally an optimal frame selection rate - typically

60-75% - where the gain in signal to noise ratio is maximized. Beyond this point,

any additional improvement in the subset statistics is insufficient to compensate for

diminished noise reduction due to averaging a smaller number of images. Hence,

there is generally a trade-off between image sharpness due to narrowing of the point

spread function and signal to noise ratio, which means one can minimize the effects

of blurring at the expense of more pronounced noise, especially at high frequencies.

The experiments demonstrate that the signal to noise ratio of an extended object

behaves very differently from that of a point source, due to the signal dependent

nature of photon noise. It was established that photon noise imposes the fundamental

limitation on the performance of the frame selection technique. For the extended

object and the adaptive optics system simulated in the experiment, the object must

be brighter than mrn equal to +2.3 for frame selection to work. Finally, of the four

quality metrics investigated in this thesis, the Ss, metric consistently produced the

best results.
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V. Conclusions and Recommendations

5.1 Introduction

The idea for this thesis began with the observation that in a large set of short

exposure images collected by an adaptive optics system, some of the images are

much better than others. Since the average of this image set is then processed by

reconstruction techniques such as inverse filtering or bispectrum methods to produce

a single, high quality image, it was reasonable to hypothesize that image quality could

be improved by processing the average of the better images in the set. The results

of this thesis prove that this hypothesis was correct. This chapter presents a brief

summary of what was accomplished by this research effort, provides some specific

recommendations to the end user, and ends with recommendations for future research

into this area.

5.2 Conclusions

1. Frame selection significantly increases the amount of noise reduction achieved

through averaging a collection of short exposure images. The use of sharpness func-

tions as selection rules can result in a 10-15% improvement in signal to noise ratio

for modest selection rates of 60-75% of the entire set. There generally exists an

optimal selection rate where the gain in signal to noise ratio is maximized. In terms

of spatial frequency, the peak improvement in signal to noise ratio occurs at approx-

imately 40% of the diffraction-limited frequency cutoff. Applying frame selection

beyond the 60% selection rate will reduce blurring by narrowing the point spread

function, however, the cost of such improvement will be an overall loss in signal to

noise ratio. At low selection rates (10-20%), one can expect a sharper, but noisier

image.

2. The statistics of point sources and extended objects behave quite differently

when the frame selection rule is applied. It was observed that image brightness has
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a much more drastic effect on the performance of the frarn, selection technique when

applied to an extended object than it does when applied to a point source. For the

one meter telescope simulated in this investigation, the limit of performance for an

extended object was determined to be a visual magnitude of +2.3. Since the visual

magnitude of most space objects of interest to the Air Force are between -1 and +3,

this means that the technique may not improve the images of some of the dimmer

space objects. However, it should be noted that the Air Force has plans for larger

adaptive optics systems, and increasing the size of the aperture will increase the

number of photo events collected by the device. For example, doubling the size of

the aperture increases the number of photo events by a factor of four, which equates

to one and a half steps in visul magnitude. Hence, the limitation reported in this

investigation will be reduced in degree as the Air Force transitions to larger adaptive

optics devices.

3. Seeing conditions and CCD read noise affect the overall performance of the

technique, however, they are not as critical as the image brightness level.

4. The Ss1 quality metric outperformed the other quality metrics evaluated in

this investigation, and should be considered the quality metric of choice for frame

selection.

5.3 R-commendations to the User

1. The appropriate frame F-lection rate depends on the characteristics of the

entire post-processing scheme used to produce the final product, and the end user's

requirements. In the case where image averaging is used as a stand-alone post-

processing technique with no subsequent reconstruction processing, then a fairly low

(10-20%) frame selection rate will yield a sharper, but noisier image. If the end-user is

a human operator, then this is probably the best compromise, since the human visual

system is fairly tolerant of uncorrelated noise, and most people would rather look

at a sharp, rather than blurred, image. In the case where additional reconstruction
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processing is performed on the result of the averaging process, then the effects of noise

on the performance of that reconstruction technique must be taken into account. For

example, it is well known that the inverse filter amplifies noise effects [2]. Hence,

when using the Anverse filter, the best frame selection rate would be 60-75%, which

maximizes signal to noise ratio. The noise characteristics of other reconstruction

techniques - such as bispectrum processing - are not as well understood, however,

the safest approach would be to use frame selection to maximize signal to noise ratio,

and then rely on the reconstruction technique to deblurr the image.

2. The Ss1 metric performs better than the others evaluated in this investi-

gation, and should be used in the frame selection process. Although it is the most

complex in terms of computational requirements, this should not present a problem

in a post-processing environment.

5.4 Recommendations for Further Research

1. It should be noted that the issue of optimality was not addressed by this

thesis. It is not known whether or not the subsets chosen by the frame selection

rules investigated by this thesis are optimal in the sense of achieving the maximum

gain in signal to noise ratio. An effort to find an optimal frame selection rule could

prove to be quite challenging.

2. The simulation results consistently demonstrate that most of the gzin in

signal to noise ratio is in the mid-frequency range, usually from 10% to 80% of the

diffraction limit. The effects of changes in signal to noise ratio in these frequencies

on subjective human assessments of image quality is poorly understood. A psy-

chometric study of human assessment of image quality in respo:-se to changes in

frequency domain signal to noise ratio could lead to a more precise determination of

the optimum frame selectioi, rate. Such a study should also include an evaluation of

the trade-off between signal to noise r-tio and image blurring.
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3. This thesis establishes the fact that frame selection is light level dependent

for extended objects. The results demonstrate that when there is a limited number

of photo events, every frame in the set is needed to reduce the effects of photon noise.

This suggests an alternate approach: instead of discarding the poorer frames in the

set, perhaps it would be more advantageous to weight each frame according to its

quality. If the weighted sum was then averaged, this might preserve the photon noise

reduction properties of the entire set while also narrowing the point spread function.
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Appendix A. CCD Camera Model

A. 1 Introduction

A charge coupled device (CCD) is a semiconductor device that can store an

electric charge at one point, and then transfer and detect it at another point on

demand [381. One way to input a -harge into a CCD is via the absorption of photons

at the device surface. Hence, it is possible to generate an electronic data stream

representing an image by creating a two dimensional array of a large number of

CCD photo detectors to register the photon flux at many different spatial points,

and then periodically reading out the charge accumulated by each photo detector.

The individual photo detectors in such an array are called pixels. Such imaging

systems are known as CCD cameras, and they are widely used in both military

and civilian applications. CCD cameras introduce noise into the image, and the

effects of this noise must be accounted for in any realistic simulation of an auaptive

optics system. This appendix provides a detailed development of the CCD noise

model developed during this thesis and incorporated into the HYSIM simulation

package. The first section describes the determination of the optimum array size

for minimizing the amount of noise introduced into the image. The second section

determines the proper mean and variance of the noise added to each sample in the

simulation grid. The last section validates the model by comparing results from the

model with the results predicted by theoretical calculation.

A.2 Pixel Array Size

The noise associated with a CCD is the result of thermal noise, shot noise in

the signal current, and noise associated with readout from the CCD [25]. Since these

noise effects are independent with respect to each pixel in the array, they ,re usually

modeled as zero mean, Gaussian additive noise, with variance ap 2 electrons per pixel.

Since each pixel in the array is an independent noise source, it is desirable to limit
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the array to the minimum size needed to resolve a given target. This development

adopts the Rayleigh criterion of resolution: "two incoherent point sources are barely

resolved by a diffraction-limited system when the center of the Airy disk generated

by one source falls on the first zero of the Airy disk generated by the second" [12].

Hence, the minimum resolvable separation in the image plane, 6i, is given by:

1.22 A S(, D '(A.1)

where A is the imaging wavelength, si is the distance from the aperture to the image

plane, and D is the aperture diameter. Let & represent the separation of the two

point sources in the object plane. Using the thin lens magnification equation [15), 6i

and 6° are related by:

6 - 4, (A.2)

where a. is the distance from the aperture to the object plane. The minimum

separation 4. between two points in the object plane that can still be resolved in the

image plane is found by combining Eqs.(A.1, A.2), and is given by:

1.22 A s"
50 = D (A.3)

The spatial frequency v associated with this separation is given by:

D
v = 1.22Ds 0  (A.4)

According to the Nyquist sampling theorem [20], the CCD camera array must sample

at twice this spatial frequency to perfectly reconstruct the object within the Rayleigh

resolution criterion. Thus, the sampling frequency vo is given by:
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2D2 D (A.5)
1.22 A (A

and the minimum pixel size (in one dimension) is given by:

b6 = 1.22 As0  (A.6)
2 D

Let L represent the length of the object. Assuming that the object very nearly fills

the simulation sample grid, the number of pixels along one side of the CCD pixel

array, p., is given by:

2DL.

= 1.22 A \s (A.7)

Assuming a square CCD pixel array, the total number of pixels P is given by:

p = p'2 (A.8)

A.3 Sample Noise Variance

The last section determined the minimum number of pixels P which are needed

to meet Rayleigh resolution requirements. Since the mean of a sum of Gaussian

random variables is the sum of the means of the individual random variables, and

the variance is the sum of the variances [13], the mean for the entire pixel array is

zero, and the variance is given by Pap2. Note that the computational algorithms

used in the simulation dictate the size of the sample grid in the object and image

planes. In general, the number of samples l12 used by the simulation is several times

greater than P. Using the property of the variance of a sum of Gaussian random

variables mentioned previously, the variance a.2 of the additive noise to be added to

each sample in the image plane is related to op2 by:
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P j2 = 2 ,2 (A.9)

Thus, or2 is given by:

2 PO 2 (A.10)

Hence, the noise effects of a CCD camera consisting of P pixels with noise variance

O 2 can be modeled by adding zero mean Gaussian noise with variance uo2 to each

sample in the image plane.

A.4 Model Validation

This section verifies the accuracy of the model by comparing results to values

predicted by theoretical c."- ulations. As discussed in chapter three, the expected

single frame SNR for a se; % short exposure images measured by an adaptive optics

system free of residual tilt error, using a CCD camera, is given by:

SNRsE(u,v) = K IEsE [H (u,v)] O(u,v)I (A.11)
{K + K2 IO(u,v)12 var[H (u,v)] + P aP2}2

where K is the average number of photo events per integration time, ESE is the ex-

pectation operator, 0 is the object spectrum, H is the system OTF, P is the number

of pixels employed by the CCD camera and UP2 is the camera read noise variance.

First, Eq.(A.11) was used to calculate the SNR for an image formed by averaging

100 short exposure images. The target was the space object discussed in chapter

four. The object was assumed to be approximately 12m in length and orbiting at a

distance of approximately 500 kilometers. The object's apparent brightness n,, was

+3.0, and the parameter ro was set to 10cm. Using Eq.(A.7), the pixel array was
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determined to be 79 by 79. The pixel noise variance crp 2 was set to 30. ESE [H (u, v)]

and var [H (u, v)] were estimated with the OTFSIM code developed by Michael C.

Roggeman. The theoretical results determined from Eq.(A.11) were then compared

with the results obtained from the modified version of HYSIM with the CCD model.

Figure A.1 demonstrates that the results of the simulation are nearly identical to

the the theoretical results.

100

so- Theoretical

S.................. imulation

60

40-

20-

0.2 0.4 0.6 0.8
Normalized Radial Frequency

Figure A.i Comparison of Theoretical and Simulation Results, CCD Camera
Model
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Appendix B. Simulation Results

This appendix contains the gain curves for the five experiments performed in

Chapter four.

B.1 Epetiment One

Experimental parameters: point source, r. = 10cm, m,, = -1, photon limited
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0.0 0.2 0.4 0.6 0.8 1.0
Radial Frequency (normialized)

Figure B.1 Gain Curves, Experiment 1: Point source, r. 10cm, in,, =-1, Photon
limited, Selection rate =90%

1.6

.... S4
1.4 - SS1

0.88

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Radial Frequency (normalized)

Figure B.2 Gain Curves, Experiment 1: Point source, r0 = 10cm, M,, -1, Photon
limited, Selection rate = 80%

B-2



SS

- - -- S1S....... 54
1.4- SS1

1.2-

0.85

0.6

0.4 • • . • i • , I , , I , , ,

0.0 0.2 0.4 0.6 0.8 1.0
Radial Fmquency (normalized)

Figure B.3 Gain Curves, Experiment 1: Point source, r. = 10cm, m" -1, Photon
limited, Selection rate = 70%
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0.8-

0.6 -

0.41 . . . , , , • • • I , , ,0.0 0.2 0.4 0.6 0.8 1.0
Radial Frequency (normalized)

Figure B.4 Gain Curves, Experiment 1: Point source, r, = 10cm, in = -1, Photon
limited, Selection rate = 60%
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0.8 .""
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0.0 0.2 0.4 0.6 0.8 1.0
Rdiol Frmquecy (nornmalized)

Figure B.5 Gain Curves, Experiment 1: Point source, r. = 10cm, m" = -1, Photon
limited, Selection rate = 40%
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Radial Frequency (normalized)

Figure B.6 Gain Curves, Experiment 1: Point source, ro = 10cm, m" = -1, Photon
Limited, Selection rate = 20%
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Figure B.7 Gain Curves, Experiment 2: Extended object, r. = 10cm, m, = -1,
Photon limited, Selection rate = 90%

B.2 Experiment Two

Experimental parameters: extended object, ro = 10cm, m, = -1, photon lim-

ited
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Figure B.8 Gain Curves, Experiment 2: Extended object, r,, 10cm, m. 1
Photon limited, Selection rate =80%
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Figure B3.9 Gain Curves, Experiment 2: Extended object, r. 10cm., m, =-1

Photon limited, Selection rate = 70%
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Figure B.10 Gain Curves, Experiment 2: Extended object, r~, 10cm, in,= 1
Photon limited, Selection rate =60%
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Figure B.11 Gain Curves, Experiment 2: Exten~dH object, r0 , 10cm, m,,= 1
Photon limited, Selection rate = 40%,
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Figure B.12 Gain Curves, Experiment 2: Extended object, r, = 10cm, m" = -1,
Photon limited, Selection rate = 20%

B.3 Ezperiment Three

Experimental parameters: extended object, r0 = 7, 13cm, m,, = -1, photon

limited
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Figure B.13 Gain Curves, Experiment 3: Extended object, ro 7cm, m, 1
Photon limited, Selection rate =90%
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Figure B.14 Gain Curves, Experiment 3: Extended object, ro 7cm, m, 1
Photon limited, Selection rate = 80%
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Figure B.15 Gain Curves, Experiment 3: Extended object, r. 7cm, m, 1
Photon limited, Selection rate 7 0%
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Figure B.17 Gain Curves, Experiment 3: Extended object, r, = 7cm, m, 1
Photon limited, Selection rate =40%
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Figure B.18 Gain Curves, Experiment 3: Extended object, r0 = 7cm, in,,

Photon limited, Selection rate = 20%
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Figure B.19 Gain Curves, Experiment 3: Extended object, r,, =1cm, m, =-1

Photon limited, Selection rate =90%
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Figure B.20 Gain Curves, Experiment 3: Extended object, r0 , 13cm, in,,=-1

Photon limited, Selection rate -:80%
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Figure B.21 Gain Curves, Experiment 3: Extended object, r0 = 13cm, in,,= ,
Photon limited, Selection rate =70%
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Figure B.22 Gain Curves, Experiment 3: Extended object, r, = 13cm, m,,= 1
Photon limited, Selection rate = 60%
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Figure B.23 Gain Curves, Experiment 3: Extended object, r., 13cm, m, =-1

Photon limited, Selection rate =40%
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Figure B.24 Gain Curves, Experiment 3: Extended object, r,, = cm, in,,=-1

Photon limited, Selection rate = 20%
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Figure B.25 Gain Curves, Experiment 4: Point source, ro = 10cm, m,, = +3, Pho-
ton limited, Selection rate = 90%

B.4 Experiment Four

Experimental parameters: extended object, point source, ro = 10cm, m,, =

+3, photon limited
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Figure B.26 Gain Curves, Experiment 4: Point source, ro = 10cm, m, = +3, Pho-
ton limited, Selection rate 80%
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Figure B.27 Gain Curves, Experiment 4: Point source, r. = 10cm, m, = +3, Pho-
ton limited, Selection rate = 70%
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Figure B.28 Gain Curves, Experiment 4: Point source, ro = 10cm, m• - +3, Pho-
ton Umited, Selection rate -- 60%
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Figure B.29 Gain Curves, Experiment 4: Point source, ro = 10cm, m• = +3, Pho-
ton limited, Selection rate = 40%
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Figure B.30 Gain Curves, Experiment 4: Point source, r. = 10cm, m,,= +3, Pho-
ton limited, Selection rate =20%
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Figure B.31 Gain Curves, Experiment 4: Extended object, r0 = 10cm, in, +3,
Photon limited, Selection rate = 90%
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Figure B.32 Gain Curves, Experiment 4: Extended object, r0 = 10cm, in, +3,
Photon limited, Selection rate =80%
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Figure B.33 Gain Curves, Experiment 4: Extended object, r0 = 10cm, m' , =+3,

Photon limited, Selection rate = 70%
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Figure B.34 Gain Curves, Experiment 4: Extended object, r,, 10cm., in,, +3,
Photon limited, Selection rate 6 0%
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Figure B.36 Gain Curves, Experiment 4: Extended object, r, = 10cm, mr = +3,
Photon limited, Selection rate = 20%

B.5 Experiment Five

Experimental parameters: point source, r, = 10cm, mr, = +3, o,2 = 15, 30
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Figure B.37 Gain Curves, Experiment 5: Point source, ro 10cm, m, = +3, a 2=

15, Selection rate =90%
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Figure B.39 Gain Curves, Experiment 5: Point source, r. = 10cm, m" +3, a2

15, Selection rate =70%
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Figure B.40 Gain Curves, Experiment 5: Point source, r,, = 10cm, m', = +3, a2-

15, Selection rate = 60%
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Figure B.41 Gain Curves, Experiment 5: Point source, r0 = 10cm, in, +3, a 2 -

15, Selection rate =20%

1.6

.... S4
1.4- - 55

.................................. ...........

0.0 0.2 0.4 0.6 0.8 1.0
Radial Frequency (normalized)

Figure B.42 Gain Curves, Experiment 5: Point source, r,, = 10cm, in,, = +3, a 2 -

30, Selection rate = 90%
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Figure B.43 Gain Curves, Experiment 5: Point source, r0 , 10cm, in, +3, a 2

30, Selection rate =80%
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Figure B.44 Gain Curves, Experiment 5: Point source, r,, = 10cm, m1, = +3, a2

30, Selection rate = 70%
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Figure B.45 Gain Curves, Experiment 5: Point source, r0 =l1cm, m i,+3,a 2

30, Selection rate =60%
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Figure B.46 Gain Curves, Experiment 5: Point source, ro = 10cm, m" = +3, a2

30, Selection rate = 40%
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Figure B.47 Gain Curves, Experiment 5: Point source, ro = 10cm, m, = +3, a2

30, Selection rate = 20%
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