ΔD-	- A 273 877	• •		
		3E	Form Approved OMB No: 0704-0188	
Public reduit en butan gateurena ing maint lin Gavis Highway, buite ta	i unimuti anna tanin 19200 kanin (diki 1920) andi (diki	sinse including the time for revi mation. Send comments regurd stress services. Cirectorate for n get. Proprivars, Reduction Projec	invinus instructions, war nind invising data source ling this puram estimate in any other spectrum to hit mention. The studies and their ris 1215 with this of (0204-0188). Washington: DC 20503	
1. AGENCY USE ONLY (Leave bla	onk) 2. REPORT DATE October 26, 1993	3. REPORT TYPE AND DATES COVERED		
4. TITLE AND SUBTITLE Ionization of a High in the Ionosphere	Energy Neutral Beam P	ropagating	S. FUNDING NUMBERS PE 62101F PR 7601	
6. AUTHOR(S) Shu T. Lai			TA 30 WU 06	
7. PERFORMING ORGANIZATION N Phillips Lab/WSSI 29 Randolph Road Hanscom AFB, MA 01731	L-3010	CTE 6 1993	PERFORMING ORGANIZATION REPORT NUMBER PL-TR-93-2218	
). SPONSORING / MONITORING AG	SENCY NAME(S) SID DDRESS(ES	A	10. SPONSCRING - MONITORING AGENCY REPORT NUMBER	
11. SUPPLEMENTARY NOTES Reprinted from Beams High-Power Particle B	92 Proceedings of th Beams, Washington DC Ma	ne 9th Internation ay 25-29, 1992	nal Conference on	
11. SUPPLEMENTARY NOTES Reprinted from Beams High-Power Particle B 12a. DISTRIBUTION, AVAILABILITY Approved for public r	92 Proceedings of th Beams, Washington DC Ma STATEMENT celease; Distribution w	ne 9th Internation ay 25-29, 1992	nal Conference on 25. CHETRODIENTAL CODE	
11. SUPPLEMENTARY NOTES Reprinted from Beams High-Power Particle B 12a. DISTRIBUTION AVAILABILITY Approved for public r 13. ABSTRACT (Maximum 200 word By using modeled stri models, we calculate beams propagating in altitude, beam angle critical ionization v If CIV occurs as the ambient magnetic field the beam. We conclude occur.	92 Proceedings of the Beams, Washington DC Ma STATEMENT celease; Distribution of ds) pping ionization cross stripping ionization p the earth's atmosphere and beam energy are pr elocity (CIV) process neutral beam propagate d, it may be an import e that the parametric	ne 9th Internation ay 25-29, 1992 unlimited s sections and sta probability of hig e. Numerical resu resented. We also as an alternate i es through the geo cant pathway to ra conditions are un	al Conference on 2b. OF TODETCH COCK andard atmospheric densit th energy (MeV) neutral lts as functions of o consider Alfven's onization pathway. plasma across the pid ionization halting favorable for CIV to	
11. SUPPLEMENTARY NOTES Reprinted from Beams High-Power Particle B 12a. DISTRIBUTION AVAILABILITY Approved for public r 13. ABSTRACT (Maximum 200 work By using modeled stri models, we calculate beams propagating in altitude, beam angle critical ionization v If CIV occurs as the ambient magnetic field the beam. We conclude occur.	92 Proceedings of the Beams, Washington DC Ma STATEMENT release; Distribution u ds) pping ionization cross stripping ionization p the earth's atmosphere and beam energy are pr elocity (CIV) process neutral beam propagate d, it may be an import e that the parametric	he 9th Internation ay 25-29, 1992 unlimited s sections and sta probability of hig e. Numerical resu cesented. We also as an alternate i es through the geo cant pathway to ra conditions are un Critical Ionization	al Conference on Tab. DETERDITION COLO andard atmospheric densi- th energy (MeV) neutral alts as functions of consider Alfven's onization pathway. plasma across the pid ionization halting favorable for CIV to 15. NUMBER OF PAGES on 5 16. PRICE CODE	
11. SUPPLEMENTARY NOTES Reprinted from Beams High-Power Particle B 12a. DISTRIBUTION AVAILABILITY Approved for public r 13. ABSTRACT (Maximum 200 word By using modeled stri models, we calculate beams propagating in altitude, beam angle critical ionization v If CIV occurs as the ambient magnetic field the beam. We conclud occur. 4. SUBJECT TERMS Neutral Beam, Strippin Velocity, Ionosphere 7. SECURITY CLASSIFICATION OF REPORT	92 Proceedings of the Beams, Washington DC Ma STATEMENT release; Distribution u (ds) pping ionization cross stripping ionization p the earth's atmosphere and beam energy are pr elocity (CIV) process neutral beam propagate d, it may be an import e that the parametric ng, Beam Propagation, 18. SECURITY CLASSIFICATION OF THIS PAGE	ne 9th Internation ay 25-29, 1992 unlimited s sections and sta probability of hig e. Numerical resu resented. We also as an alternate i es through the geo ant pathway to ra conditions are un Critical Ionizati 19. SECURITY CLASSIFICA OF ABSTRACT	al Conference on Tab. DIFTURETOR CODE andard atmospheric densit th energy (MeV) neutral alts as functions of the consider Alfven's conization pathway. Splasma across the pid ionization halting favorable for CIV to 15. NUMBER OF PAGES on 5 16. PRICE CODE TION 20. LIMITATION OF ABSTRAC	

?

Best Available Copy

PL-TR-93-2218

- 1907 -

IONIZATION OF A HIGH ENERGY NEUTRAL BEAM

PROPAGATING IN THE IONOSPHERE

Shu T. Lai

Phillips Laboratory/WSSI, Hanscom AFB, MA 01731

Abstract

By using modeled stripping ionization cross sections and standard atmospheric density models, we calculate stripping ionization probability of high energy (MeV) neutral beams propagating in the earth's atmosphere. Numerical results as functions of altitude, beam angle and beam energy are presented. We also consider Alfvén's critical ionization velocity (CIV) process as an alternate ionization pathway. If CIV occurs as the neutral beam propagates through the geoplasma across the ambient magnetic field, it may be an important pathway to rapid ionization halting the beam. We conclude that the parametric conditions are unfavorable for CIV to occur.

I. Introduction

When a high energy (MeV) neutral beam propagates in the earth's ionosphere, the beam particles interact with the particles and fields in the ionosphere. If the beam becomes ionized as a result of the interaction, the beam may be halted since the product beam ions gyrate around the ambient magnetic field lines. The cross-sections of electron impact ionization and charge transfer are insignificant at Mev energies. We do not consider nuclear reactions because they do not occur at energies below 30 MeV. Scattering dispersion of the beam can degrade beam energy but is unrelated to ionization. The dominant ionization process for a MeV neutral beam propagating in the ionosphere is probably stripping:

$$N + A \rightarrow N^* + A + e^- \tag{1}$$

93 11 12 113

where N is a generic beam particle and M a generic atmospheric neutral particle or ion. Neutral particles are orders of magnitude more abundant than ions in the ionosphere.

II. Theoretical Model

Measurements of the cross sections σ of stripping of hydrogen H incident on various gases have been reported [1,2,3,4]. An empirical formula $\sigma(E)$ of H is given in Ref.[5]:

$$\sigma(E) - \sigma_{\sigma} \frac{(Za)^{\Omega} (E - I)^{*}}{J^{\Omega + *} + E^{\Omega + *}}$$
(2)

where $\sigma_0 = 10^{-16} \text{ cm}^2$, $\Omega = 0.75$, E is the energy (in keV) of the beam, Z, v, J, and a are parameters of the ambient species, and I the beam ionization energy (in keV).

The density I(z) of a neutral beam of energy E propagating from altitude z_o to altitude z is modeled simply as

$$I(E,z) - I(E,z_o) \exp\{-\int_{z_o}^{z} \sum_{i} [n_i(z)\sigma_i(E)] dz/\cos\theta\}$$
(3)

where θ is the angle between the beam and the vertical line ($\theta = 180^{\circ}$ when the beam propagates downwards). We take the summation, i=1 to 5, over the 5 most abundant atmospheric species O, O₂, N₂, He, and H. The survival probability P(E,z) of the beam undergoing stripping is given by

$$P(E,z) - 1 - \frac{I(E,z)}{I(E,z_{a})}$$
(4)

For atmospheric densities $n_i(z)$, we use the Stein-Walker model [6] for simplicity.

III. Results

The survival probabilities of two downward propagating neutral H beams (2 and 250 MeV) are calculated (Fig.1). The higher energy beam can survive longer until it reaches about 110 km. where it is completely ionized. The survival probability of a 2 MeV beam propagating horizontally at various altitudes through various distances (1km to 1000 km) is also shown (Fig.2).

- 1909 -

Figure 1. Survival probabilities of 2 MeV and 250 MeV neutral hydrogen beams propagating vertically downwards in the ionosphere.

Figure 2. Survival probability of a 2 MeV neutral hydrogen beam propagating horizontally in the ionosphere.

r,

IV. CIV Criteria

Alfvén's [7] critical ionization velocity (CIV) suggests that when a neutral gas and a magnetized plasma travel relative to each other with a velocity exceeding a critical velocity $V_c = \sqrt{(2e\phi/M)}$, rapid ionization occurs. M is the mass of a neutral particle and $e\phi$ the ionization energy. When an ion beam travels across the ambient magnetic field, beamplasma interaction occurs. As a result, the electrons form a plateau tail distribution. Some electrons in the tail may be energetic enough to ionize. For a review of CIV, see, for example, Ref. [8].

Carini et al [9] questioned whether CIV can occur in MeV neutral beams. If CIV occurs, it could be a rapid path to ionization halting the neutral beam.

For CIV to occur, it is necessary [10] that an electron has to ionize at least once before it leaves the interaction region. This criterion requires $\tau v > 1$ where τ is the electron transit time and v the ionization frequency. For a narrow low density beam, both τ and v are small.

It is also necessary that the contact time τ_L of a neutral beam pulse with an ambient magnetic field line should be longer than the electron energization time τ_H [11].

$$\tau_L > \tau_H \tag{(3)}$$

For a MeV H beam pulse of length 1m, $\tau_L \sim 0.1 \mu s$. Taking $\tau_H \sim 30/\omega_{LH}$ [12] where ω_{LH} is the lower hybrid frequency, one finds that in the ionosphere $\tau_H \sim 10$ ms, which exceeds τ_L .

Electromagnetic modes may be excited when the beam velocity V exceeds V_s [13].

$$V_{s} - (1 + \beta)^{1/2} V_{A} \tag{6}$$

where $\beta \sim nkT/B^2$ and V_A is the Alfvén velocity. These modes drain energy and may suppress CIV. Thus, for CIV to occur, the beam velocity criterion is

$$V_{s} > V > V_{c} \tag{7}$$

Since $\beta \sim 10^{-5}$ and $V_A(O) \sim 7x10^2$ km/s in the ionosphere, it appears that CIV is unlikely because the beam velocity $V(\sim 10^4$ km/s) exceeds $V_s(\sim 7x10^2$ km/s).

References

- [1] Toburen, L.H., Phys. Rev. A3, 216, (1973).
- [2] Gilbody H.B. and M.B. Shah, Physica Scipta, 24, 712, (1981).
- [3] Shah, M.B. and H.B. Gilbody, J. Phys. B14, 2361, (1981).
- [4] Williams, I.D., J. Geddes and H.B. Gilbody, J. Phys. B17, 1547, (1984).
- [5] Green A.E.S. and R.J. McNeal, J. Geophys. Res., 76, 133, (1971).
- [6] Stein, J.A. and J. Walker, J. Atm. Sci., 22, 11, (1965).
- [7] Alfvén, H., On the Origin of the Solar System, (Oxford University Press, Oxford, 1954).
- [8] Goertz, C.K., S. Machida, and G. Lu, Adv. Space Res., 10, No.7, 33, (1990).
- [9] Carini, P., G. Kalman, and P. Pulsifer, Neutral Beam Propagation effects in the Upper Atmosphere, AFGL-TR-85-0038, ADA-174896, Air Force Geophysics Laboratory, Hanscom AFB, MA (1985).
- [10] Brenning, N., Review of Impact Experiments on CIV, TRITA-EPP-82-I4, Royal Institute of Technology, Stockolm, Sweden, (1982).
- [11] Lai, S.T., W.J. McNeil, E. Murad, Geophys. Res. Lett., 17, No.6, 737, (1990).
- [12] Tanaka M., and K. Papadopoulos, Phys. Fluids, 26, 1697, (1983).
- [13] Papadopoulos, K., in Proc. Workshop on Alfvén's Critical Velocity Effect, G. Haerendel, ed., (Max Planck Institut für Extraterrestrische Physik, Garching, W. Germany, 1982), p.178.

Accesio	n For	<u> </u>		
NTIS DTIC Ur anno Justific	CRA&I TAB bunced ation			
By Dist: ibution /				
Availability Codes				
Dist	Avail a Spe	ind / or cial		
A-1	20			

DTEC QUALITY INSPECTED 8