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PASSING THROUGH RESONANCE: THE EXCITATION AND

DISSIPATION OF THE LUNAR FREE LIBRATION IN LONGITUDE

DONALD H. ECKHARDT
Geophysics Directorate, Phillips Laboratory

Hanscom AFB, MA 01731, USA

AbstracLThe acceleration of the mean lunar longitude has a small effect on the periods of most terms
in a Fourier expansion of the longitude. There are several planetary perturbation terms that have small
amplitudes, but whose periods are close to the resonantperiod of the lunar libration in longitude. Some
of these terms are moving toward resonance, some are moving away from Yesonance, and the periods
of those terms that do not include the Delaunay variables in their arguments are not moving. Because
of its acceleration of longitude, the Moon is receding from the Earth, so the magnitude of the restoring
torque that the Earth exerts on the rotating Moon is gradually attenuating; thus resonance itself is
moving, but at a much slower rate than the periods of the accelerating planetary perturbations. There
are five planetary perturbation terms from the ELP-2000 Ephemeris (with amplitudes of 0".00001 or
greater) that have passed through resonance in the past two million years. One of them is of special
interest because it appears to be the excitation source of a supposed free libration in longitude that
has been detected by the lunar laser ranging experiment. The amplitude of the term is only 0".00021
but it could be the source of the ,- 1" amplitude free libration term if the viscoelastic properties of
the Moon are similar to those of the Earth.

Key words: Lunar librations, lunar dissipation, lunar Q, free librations

1. The Rigidity of the Moon

The velocity of a seismic shear wave is

V / = / (1)I

where p is the rigidity and a is the density of the medium. The structure of the
lunar interior is rather homogeneous. Over the depth range 60-1100 kin, the shear
wave velocity varies little from v, = 4.3 km/s in the model (designated GDT) of
Goins, Dainty and Toksoz [19811; v, is about five per cent higher over the same
depth range in the model (designated N) of Nakamura [19831. Let M be the mass
of the Moon, R its radius, C I its minimum moment of inertia, C3-4 its maximum
moment of inertia, and C22 the moment of inertia about the third principal axis.
Because /3 = [C33 - C 11 ]/C 22 = 0.000631 and C 33 /MR 2 = 0.392 [Williams,
1977], all the moments of inertia are close to that of a homogeneous sphere, so
the lunar density (a = 3340 kg m- 3) is fairly uniform. Thus, the lunar rigidity,
calculated using (1), does not vary much from it = 62 x 109 Pa (GDT model) or
y = 68 x 109 Pa (N model). (The lunar rigidity is somewhere between that of cast
iron, p = 40 x 109 Pa, and steel, p = 80 x 109 Pa.)

For an incompressible non-dissipative homogeneous spherical Moon, its second
degree potential-disturbance Love number (omitting the subscript in k2) is k =
3/[2 + 19p/agR] [Love, pp. 249-259, 1927; Jeffreys, p. 299, 19761, where g is the
acceleration of gravity at the lunar surface. Using agR = 9.5 x 109 Pa, the Love
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308 DONALD iK F.CKARDT

number determined from seismic data is k = 0.024 (GDT model) or k = 0.022
(N model). Cheng and Toksoz [ 19781 used numerical integrations to calculate the
Love number for two compressible Moon models in which the elastic properties
are functions of depth. The differences between their estimates, k = 0.029 and
k = 0.034, and those from the GDT and N models are principally due their use of
earlier shear velocities which are appreciably lower than the more accurate GDT
and N velocities.

The Moon deforms elastically, causing the inclination of its equator to the
ecliptic to increase by H = k x 74" [Eckh,0adt, 19811. From analyses of lunar laser
ranging data, Williams, Newhall and Dickey [1987, estimate that k = 0.027 ±
0.006; that is, the deformation causes the inclination to increase by 2" resulting
in a - 17 m sin F term (F is the argument of latitude) in the latitude libration.
Other libration parameters (e.g., i and C 33 /MR 2 ) contribute to the sin F term
in the latitude libration, but they contribute to other terms in different ways, so a
thorough analysis allows the deformation term to be discriminated.

To take into account anelastic dissipation in the Moon, the Love number is
replaced in the frequency domain by a complex Love number, k( 1 - i/Q), where
Q > 1. The term (1 - i/Q) - exp(-i/Q) is actually a phase shifting operator that
changes a periodic term of the form exp(iwt) to exp[i(wt - I/Q )]. The imaginary
part of the Love numbei is negative because a deformation lags its inducing forces.
The magnitude of the ratio of the real part to the imaginary part of k( 1 - i/Q)
is Q, where I/Q is the specific dissipation function [Munk and MacDonald, pp.
21-22, 19601 which is frequency dependent. Because 191/tlgR > 2, the following
approximation is valid for the Moon

191tk ,t 3ogR. (2)

Because Q2 > 1, (2) remains valid if k is replaced by k( I - i/Q) and it is replaced
by pt(1 + i/Q). The imaginary part of the rigidity is positive because the stress
leads the strain [Ben-Menahem and Singh, pp. 856-859, 1981]. A value for k will

W) subsequently be required in order to estimate Q; taking into account the various
%O estimates discussed above, this paper adopts the value k - 0.025.

2. Equations Describing the Libration in Longitude of a Deformable Moon

In a selenocentric coordinate system, let ri = rui locate the Earth's center of mass,
a distance r from the origin, and let pi = ptvi locate a point within the Moon, a
distance p from the origin. The lunar gravitational potential at ri is

V = (G/r)j[j dM + Z(J/r)-j(p/R)'Pn,(ujtv)dA.'fSv m/)[oon = oon
n=2

where G is the gravitational constant, Pn is the Legendre function of degree n, and
the integrals are over the mass of the Moon. Through degree n = 2, the potential

93-27948
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is

V=GM/r + (G/r3)~ [2t) Moon]dM + j nPzdI.

Using the moment of inertia tensor,

C= J (Pk 2 6,j - pipj)dM,
Moon

where hij is the Kronecker delta, the truncated potential is reformulated as

V = GMIr - (G/2r3 )(3ujC~ju, - Ci).

The potential and moments of inertia of an anelastic Moon are deformed by forces
derived from its centrifugal potential, W1, and from the second-degree Earth-
induced tidal potential, TV2. The lunar potential at the Earth is perturbed by

W = k(1 - i/Q)(R/r)5(Wi + W42)

where

2 2
WI= •(eCi2 kwjrk) = -- r~o~ - 6ij2 k 2 )r3 ,

and

W2 = (Gm/2r 3 )ri(3uiuj - bij)rj,

where wi is the lunar angular rotation rate, m. is the mass of the Earth, and Eijk is
the alternating tensor. Then

6V = -(G/2r 3')(3uiiCiju•j - t5Ckkbij) + k(l - i/Q)R5wk2 /3r 3

where the perturbation of the moment of inertia tensor is

6Cij = (1 - i/Q)K[wiwj - 3(Gm/a 3)(a/r)3uu1j]

- (1 - i/Q)K[wiwj - 3n 2(a/r)3uiuj] (3)

S(1 - i/Q)K(wiwj - 3n 2'uiuj),

a is the mean Earth-Moon distance,
=kR513 = k(M R2 )(RIt)3  (4)

I / =(M/m)(3n2 )

and n is the mean rate of lunar motion.
For a small lunar rotation, 6 p0k, the Earth's direction cosines change by ui=

EijkUj4(Pk, SO iUi/O9(k = EijklUj. The torque exerted on the Moon is

Nk = m9(V + 6V)/apk = (3Gm/r 3),i(Cij + hCij ),FLk'il. (5)
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In an inertial frame, the time derivative of the angular momentum, L, + L,=
(Cj + bCij)wj, is equal to the torque, so

d(Li + bLi)/dt = Li + •t i, + Eijkwj(Lk + bLk) = Ni, (6)

where the dot derivative is with respect to time in the lunar coordinate system
which is chosen to be the same as the principal axes of Cij. Setting (5) equal to (6)
with .WiC = 0 gives the basic Euler dynamical equations for the rotation of a rigid
Moon.

If the Love number is real, the centrifugal potential deforms the Moon as an
oblate spheroid whose shortest axis is the instantaneous rotation axis, so I1V does
not affect the rotation rate through the RHS of (6), only its direction. Also if the
Love number is real, the tidal potential deforms the Moon as a prolate spheroid
with its longest axis in the instantaneous direction of the Earth, so there can be
no torque due to W2. The real part of the Love number only has an effect on the
lunar rotation rate through the change in the Moon's moment of inertia, and that is
almost entirely due to the centrifugal potential. The mean lunar rotation rate n (the
same as its mean rate of motion) is much larger than its perturbation r, the libration
in longitude, so the real part of the Love number affects the Moon's librations
principally through a "frozen in" deformation in its moment of inertia tensor which
is a permanent part of Cij. The impact of the real part of the Love number on
the rotation rate is essentially nil; only the imaginary part contributes significantly
to perturbations from the Euler dynamical equations. This can be demonstrated
mathematically by combining (3), (4), (5) and (6).

For examining the libration in longitude r (about the 3-axis), use the approxi-
mations [0]U

W•i = [ ,Ui = ['],

w3 =++ & U 2 S-T,

where the 1-axis is in the mean Earth direction (or nearly so [Eckhardt, 19731) and
s is comprised of the equation of the center and all inequalities in longitude. With
"If (C22 - C11)/C 33 = 0.000228 and, approximately, wo2 = 3yn 2, the bottom
row of the Euler equation becomes approximately

S= W02(8- T). (7)

Excitation and dissipation require hysteresis, so only the imaginary periodic terms
of the moment of inertia perturbation,

3n2 -3n 2u 2  021
bCij = (I - i/Q)K -3n 2 U2 -3n2 U2 2 0

0 0 L03



LUNAR FREE LIBRATION IN LONGITUDE 311

are significant. Therefore, to the first order in s, T- and r-, the significant portion of
bCij is

0 -3n 2 (s r)

b•ij = -i(K/Q) -3n2(S_ T-) 0 0].

0 0 2TI-

Dropping second order terms, the variable perturbation in the lunar angular mo-
mentum is

bLi = Cijwj = -2i(K/Q)n 2 " [0]
and its rate of change is

bLi = bOijwj = -2i(K/Q)n24 0]

Then [0
5Cijuj = 3i(K/Q)n 2 s -r

and

EkliltlbCijUj = 3i(K/Q)n ]

The perturbation of the torque exerted on the deformed Moon by the Earth is then[0
, iN = m -ijkuj['0(bV)/duk] = 9i(K/Q)n4  I 0 T1

The perturbation of (7) accounting for the deformable Moon model is

(1 - 2iZ',/3)f = (1 + i )Wo2 (s - T) (8)

where K = ýk/Q and,; = (R/a)3(MR 2 /C 33) 7'-(M/M) = 0.0841. Take k =
0.025 and suppose that Q > 20 so that K < 10-4. Because 2-Y < 3, the 2 i-yt/3
term is dropped, and (8) becomes

"f = W0
2 (1 + iK)(S - 7). (9)

The period of resonance, 27r/wo, derived by detailed semi-analytic theories has a
small uncertainty. Estimates based on the LURE 2 constants [Williams, 1977] are,
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in sidereal months, 38.651 [Eckhardt, 19811, 38.654 [Moons, 1982] , and 38.658
[Migus, 1980]. These estimates are adjusted for the JPL constants of Williams,
Newhall and Dickey [1987]. The increase in -y is (227.951 - 227.370) x 10-6 =

0.581 X 10-6 which decreases each estimate by 0.049, but using the technique of
Williams et al. [ 1973], the changes in the harmonic coefficients C31 and C 33 work
out to be the same as decreasing -y by 0.592 x 10-6 and the adjustments almost
cancel each other. The net result is that each estimate increases by only 0.001; this
reflects the fact that the lunar laser ranging experiment is more sensitive to the
period of T resonance than to the related solution parameters.

3. Analytic Solutions of the Libration Equaiions

Let the longitude source terms be

s = Zsk lkCXp(iwkt)

where each Hk is a complex coefficient. Then the solutio - (9) is
(I + iK).sk-: sk

7 7k I + + -(+ WO)2 Z I (10)

The i? term has negligible effect on the steady state solution given by (10) because
currently none of the sk source terms has a frequency close enough to resonance.
If, however, the argument of some source term includes an acceleration term,

sk = Hkexp[i(Wkt + Ckt 2 )], (11)

the dissipation term :-.iay be important, especially near resonance. Perturbing this
process is the fact that because wo is proportional to n, it is a linear function of
time (because of the acceleration of the mean longitude of the Moon).

Suppose that there is a term of the form (11) that carried T through resonance
in the recent past (using a geological sense of time so that a million years or so
ago was recent) at t = 0 so that wk(O) = wo(O). Change the time variable to the
dimensionless variable r/where//= wo(0) so that r/goes through 2r radians every
38.65 sidereal months, and use the prime (') to denote the derivative with respect
to q. The argument of Sk in (11) is then expressed in the form

1 lckt12 =I+1
Wk(O)t + I Ckt 2 = wo(O)t + 2 2k q kY2,

2 2 2

in which case

Ak = Ck/WO (0).

In the Fourier expansion of the longitude of the Moon, many of the planetary source
terms near resonance have accelerations with approximately the same magnitude
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as the acceleration of the mean longitude of the Moon [Williams, Newhall and

Dickey, 1992],

i = (-26.0 ± 1.0)"/cy

or

n/n = -0.150 x 10- 9/y.

These are the only planczta4 y terms of any significance for this study. Thus, with
wo(O) = 2.17/y,

4Aki ,t 26".Ocy-f2 /Wo2(0) = 2.67 x 10- 9 . (12)

Let the resonance angular rate as a function of ?7 be represented by v(77); with this
choice, v(0) = 1. Also define Ao = v'. Because v is proportional to n,

it dlnn(t) dIn v(q/)

n dt dq (

and, therefore,

Ao = -0.150 x 10- 9y-'/wo(O) = -0.069 x 10-9. (13)

Then, on dropping the negligible q2 term,
(t) W0

2 (O)n 2 (t) 00 +0( 1 )

2 n2() - 2()[ 2 (o) t] -W 2(o)(l + 2Aoy).

Change the independent variable of (9) from t to i;,

<rk + (I + 2Aoi;)(l + iK)rk = (1 + 2Aoi;)(l + iK)Hkexp[i(1 + Aki; 2/2)].(14)

Next substitute

rk(27) = Gk(r7)exp(ir7) (15)

into (14), where Gk(?7) is a function that varies slowly compared with exp(ii;) so
that [[(r) I << Iý,((i)[. Then, on neglecting ý" and all terms quadratic in K, Ao, Hk,

k + (r./2 - iAo17)Gk = -i(Hk/2)exp(iAkq 2 /2). (16)

Using the integrating factor exp[(K77 - iAor2)/2], the solution to (16) at r;= h is

h+ iAOh2l f~h ri(Ak -Ao)712+ Kqd (7
Gk(h) -i Hkexp[ 2 i exp[i d. (17)2 2-00 2

From (12) and (13), it is clear that Ak dominates the Ak - Ao term. The integral for
Ao > Ak (A•, obviously being negative) is

h exp[ i(A0 - Ak),q2 + =q]dr/ exp[-i(K/Pk) 2/8]] exp(-w 2 )di; (18)S~2 c
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where

w = w(7) = (1 + i)p0/2 -(I - i)K/( 4pk) (19)

and

Pk = IAo - Ak 1/2. (20)

(The absolute value is used in this definition so that it will apply as well when Ak
is positive.) Substituting (1 - i)pN- dw = dq,

exp(-w2)dq _ PA: ](h exp(-w 2 )dw - 2 v'-[l +erf[w(h)]], (21)
0 Pk f P

where erf[w(h)] is the error function with the complex argument w(h).
The phase of Hk is the phase of sk precisely at t = 0. There is no way of

knowing the phase of HAk, so there is no way of knowing the phase of Tk near
resonance. Only the magnitude of Tk can be calculated as a function of I Hk 1, Pk, K

and h; combining (15), (17), (18) and (21), it is

Ik(h)l = Vr/2[IHkl/(2pk)] exp(-Kh/2)ll + erf[w(h)]I. (22)

The integral (18) for Ak < A0 is the complex conjugate of the integral for Ak > A0 ,
so (22) is valid for all values of A0 - Ak except, of course, for (the non-existent)
Ak = A0 which represents being parked at resonance.

If 2pk 2 h >> K,

w(h) -- (1 + i)pkh/2 (23)

and

I - /-rF[I + erf[w(h)]] z _prk [[I + 2C(pkh/\/I-)] -i1 + 2S(pkh/VI)]],
2Pk 2P

where C(pkh/ý/-r) and S(pkh/\/-W) are the Fresnel integrals. Then

IHl'h Kh / 1  2Pkh•1 [1 2sPkh 2. (24)
k(h)l \/+r[-)]exp(- [+ + + 2S( (2)]

For Pkh >h V/r, C(pkh/v/-r) • S(pkh/v'•) zz 1/2, so (24) becomes

ITrk(h)l z ir-7/2[IIA:/Pk]exp(-rh/2). (25)
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4. The Accelerating Arguments

Let at = n'/n = 0.0748 currently where n' is the mean rate of solar motion.
Numerical integrations of the orbits of the Solar System planets demonstrate that
their mean motions have inappreciable accelerations over millions of years [Quinn,
Tremaine and Duncan, 1991], so n' = 0 and rh/m = -n/n. Using the in power
series for the mean motions of the lunar node Q and perigee j; [Brouwer and
Clemence, pp. 322-323, 1961], their accelerations are then related to h by

(1.5m 2 - 0.84375m 3 - 8.531252rn4 - 23.91845m 5'
-48.6504m 6 - 79.016m 7 )n = 0.0077h

and

1(-.5.1m2 - 21.03125w 3 - 127.218752m 4 - 648.17625 m5

-3130.5256w 6 - 15118.887w 7 - 80282.32m8

-42578.3m 9 )h = -0.0236h.

The accelerations of all components of the planetary perturbation arguments arc
essentially zero except for the Delaunay variables D, I and F which have the
accelerations, respectively, h, h - W = 1.0236n, and it - iý = 0.9923h; in units
of 71, they are ii/woo2(0), 1.0236h/wo 2(O), and 0.9923h/W0

2(0) where h/w02(0) =
-2.67 x 10-9. For a Fourier term in the planetary longitude perturbation of the
Moon to be of interest, its period must be near resonance and, with its argument
expressed as an increasing function of time, the sum of the integer coefficients
of D, 1 and F in the argument must be equal to (or greater than) I if the term's
period is greater than the resonant period or the sum must be equal to (or less
than) -1 if its period is less than the resonant period. The effect of the slowly
changing resonance (the A0 term) can be overlooked in this winnowing compared
with the uncertainty in the period of resonance, a value that is theory and parameter
dependent. Source terms from the Chapront and Chapront-Touzd [ 19831 ELP-2000
lunar ephemeris that meet these criteria are given in Table I. V, T and Al represent
the mean longitudes of Venus, Earth and Mars.

The nominal period of resonance is chosen as 38.652 sidereal months [Eckhardt,
19811; adjustments for the resonant periods of Migus [19801 and Moons [19821
will be considered later. Because of their amplitudes and closeness to resonance
(one above and the other below), the last two terms in Table I are of principal
interest. The other three are insignificant and will be neglected. For the subscripts
designating these terms, use 1 for 16331 and 2 for 16018.

Term 16331 is closest to resonance and, by far, the most important of all
terms that have "recently" passed through resonance. Its acccxeration is (2 -
1.0236)i1/woo2(0), so

A, = 0.9764 x (-2.67 x 10-9) -- 2.61 x 10-9,

4;i
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TABLE I
Planetary perturbations in longitude for terms that have "recently" passed through resonance
and whose periods differ from the resonance period by less than one per cent. These terms
were selected from the ELP-2000 lunar ephemeris of Chapront and Chapront-Touz6 [1983 1.
The sequence numers are those of ELP-2000

Sequence 1H41 Argument Period
Number (Arc-Seconds) (Excluding Phase) (Sidereal Months)

17353 0.00011 -39V + 39T + 2D 39.080
16766 0.00003 -24V + 30T - 4M + 2D - 1 39.039
16979 0.00001 -26V + 29T + 4M + 2D - 1 38.765
16331 0.00021 -21V + 23T + 2D - 1 38.666
16018 0.00066 19V - 18T- D + I- F 38.258

and the A0 term just marginally contributes to making [see (13) and (20))

pI 2 = 2.54 x 10-9.

Then, because the dimensionless angular rate at resonance is unity,

I + p1
2h = 38.666/38.652 = I + 0.000362

and

h = 143000.

Resonance occurred (2.8912/27r)h = 66000 years ago. At that time, its libration
amplitude was half of

-irl/2Hil/pi =

and, assuming that (25) affords a close enough approximation, its amplitude is now

Iri(h)l ýz 5".2exp(-71000K). (26)

The more precise equation (22) will be applied later. Following the same calcula-

tions for Term 16018 gives

Ir2(h)I • 16".1 exp(-1.9 x 106ti). (27)

From the ratio (26)/(27),

I-r(h)I/1T2(h)l > I for K > 0.62 x 10-6. (28)

From the analysis of a six year span of lunar laser ranging data, Calame [19771

estimated the free libration in longitude to have a 1".8 amplitude. She did not,
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0.000015 b.000025 0.00003 0.0 0035 0.0(4 0.000045

Fig. 1. Plots of 1 n I at the current epoch as functions of K. For the Eckhardt, Moons and M igus
resonances, the solutions to I1- I = I are indicated at K = 23.2 x 10-6, K = 34.6 x 10-6,
and K = 40.1 x 10-6.

however, allow for the planetary terms in lunar longitude. Except for r7(h) and
r2(h), the neglected terms (principally ELP-2000 Term 6649 which has amplitude
0".85, argument 3T - 51M and period 39.138 sidereal months [Eckhardt, 19821)
account for only about half of her 1 ".8 estimate. Suppose that the approximately
1 ".0 residual is due to rT (Ih) or r2( h). If it were entirely due to r1 ( h) then, by (26),

S= 23 x 10-6, (29)

and if it were entirely due to r2(h) then, by (27), K = 1.5 x 10-6; but, by (28),
jrj(h)I > 1r2(h)I if K = 1.5 X 10-6, So (.9) provides the single estimate of the
dissipation parameter for the Eckhardt [ 1981 ] resonance and 1".0 residual. This is
only an approximate solution and modifications are also required for the Moons
119821 and Migus [19801 resonances. Moreover the I".0 residual is only a nominal
value. A plot of Iri(143000)I [Eckhardt], I1-(112000)1 [Moons], and r1(71000)I
[Migus] as functions of K by the general solution (22) is presented in Figure 1. The
solutions to IT-(h)l = I are indicated at

K = 23.3 x 10-6 [Eckhardt], (30)

S = 34.6 x 10-6 [Moons1 ,

and

K = 40.1 X 10-6 [Migus].
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-(C1)

Fig. 2. The solution to (25) for ELP-2000 Term 16331 from 132000 years ago until
the present. Resonance according to the adopted model occurred 66000 years ago. The
coordinate units are arc-seconds. There exists no free libration with an amplitude as large
as 5" as shown in this solution, so the effect of dissipation must be included to get a
plausible model.

All' ,h Moons' resonance is closer to Eckhardt's than Migus', her solution is
closer to Migus' than Eckhardt's at the current epoch. To understand how this can
be, and to gain insight into the nature of the solutions, the solution paths in the
complex plane are examined.

5. The Solution Paths

If n = 0 and A0 = 0, Equation (16) becomes

= -i(Ilk/2)exp(iAkYl 2 /2). (31)

Because 1j = Hk1/21, GO(/) follows a path in the complex plane at a constant
r-ate with respect to yj. The direction of the path is given by the the sum of the phase
of -iHk and the argument of the exponential term. Suppose that Ak < 0; then for
yi < 0, the path is clockwise, and for q > 0, the path is counter-clockwise. The
angular rate is proportional to q2 so, for q/ < 0, the rotation rate decreases, and
for qj > 0, the rotation rate increases. The net result if -iHk is real and positive
is that the solution follows the Comu spiral [Born and Wolf, pp. 430-433, 1970]
depicted in Figure 2. (The rotations are in the opposite directions for Ak > 0 and
the orientation of the spiral depends on the phase of -ilk.)

If K = 0 and Hk = 0, Equation (16) becomes

k= iA0zjq* . (32)

In this case, Gk = I&I exp(iAo7r2/2) follows a circular path in the complex plane

with an angular rate proportional to I Ao0lI. The path is counter-clockwise for A0 < 0,
and it is clockwise for A0 > 0. A combination of(31) and (32) results in a Cornu
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Fig. 3. The solution to (20) for ELP-2000 Term 16331 with the same units and over the same
time span as Figure 2. The model is modified by including a dissipation term. The current
I" amplitude of rT (143000) shown in this plot would be perceived as a free libration.

spiral with the same dimensions as as (31); the only effect of (32) is to rotate the
Comu spiral without changing its dimensions. For the current problem, (32) is only
of marginal interest.

If A0 = 0 and Ak = 0, Equation (16) becomes

G. = -(K/2)Gk, (33)

so Gk(77) follows an exponential decay path in the complex plane that is a straight
line directed toward the origin. In the general solution of (16), Gk(r)) both spirals
as in (31) and decays as in (33). Well before passing through resonance, when
Pk07 <« -1 , Gk(77) moves in a tight spiral around the origin and the decay term
has little effect. As pk r becomes small and Gk(17) moves through the region of the
resonance inflection point, (31) dominates (33). Eventually, when pkr»> 1, Gk(r/)
moves in an increasingly tight spiral around a focus that decays toward the origin,
so (33) dominates (31). The general solution to (16) is given by (22) which can
conveniently be evaluated and plotted using Mathematica [Wolfram, 19881. A plot
of the the r(r/) solution path according to (22) (retaining the relative phase from
the error function) is shown in Figure 3. The dissipation parameter used is given
by (30).

For the shorter time intervals and higher dissipations that are demanded by the
Moons and Migus resonances to attain a 1".0 amplitude for Tr(h), their solution
curves, shown in Figure 4, are markedly different. The two curves in Figure 4 -re
currently headed in opposite directions. These directions are relatively insensitl ve
to either K used. As time increases, the Ir I in the top plot is decreasing and the
ITrI in the bottom plot is increasing. Thus the entire curve for the Moons solution
(I I 1".0 at K = 34.6 x 10-6) is moving downward with time whereas the entire

I
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Fig. 4. The solutions to (20) for ELP-2000 Term 16331 using the Moons (top) and Migus
(bottom) resonances and k given by (35.2) and (35.3). The span of the top plot is 104000
years, and that of the bottom plot is 66000 years.

curve for the Migus solution (I1 I = 1".0 at r. = 40.1 x 10-6) is moving upward
with time. They only happen to be close to each other at the present.

Figure 5 is a plot of the libration amplitude It, ( h) I as a function of the dissipation
parameter r and the resonance period in sidereal months. One can see from this plot
that the Figure 1 solution for the Eckhardt resonance (38.652 sidereal months) falls
in a trough; the solution for the Moons resonance (38.655 sidereal months) runs
along a ridge; and the solution for the Migus resonance (38.659 sidereal months)
falls in a trough. A change of resonance of only 0.001 sidereal months moves a
solution from a ridge to a trough. The resonance period is not known well enough
to decide whether the solution runs along a ridge, in a trough, or somewhere in
between.
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Fig. 6. Plots of ITI (h)l as a function of the resonance period (in sidereal months) for Q
running from 30 to 100.
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The steady state solution (10) for T2(h) has an amplitude of 0".032. If approx-
imation (25) is used to estimate 1T2(h)I, the result is zero, independent of K. If,
however, (22) is used, the amplitude is 0".032, again independent of K. The failure
of the approximation arises from the elimination of the relatively very small term
(1 - i)r/(4 Pk) in replacing (19) by (23). Because the argument of the error func-

tion is not precisely 7r/4 and w(h) is very large, the error function has a very large
real part that counters the very small exp(-nh/2) attenuation term. What actually
happens is that Wk(r1) revolves about the origin, as indicated by the solution path of
(31), and the revolution rate is just the right amount to offset wo to L,,2. The revolu-
tion velocity is slightly perturbed by a centripetal velocity (not acceleration) that,
in effect, changes the solution phase just as the neglected iK term would change
the solution phase in (10). The steady state solution is appropriate for ELP-2000
Term 16018, so the only term for the libration in longitude that should be modified
to allow for having passed through resonance is the one due to ELP-2000 Term
16331. The steady state libration solution for this term should be replaced with a
residual free libration term with unknown amplitude and phase.

6. The Q of the Moon

Seismological and astronomical techniques have been used to derive estimates of
the potential-disturbance 1 ,e numbers and rigidities (or, to be more precise, their
real parts) for the Earth an, he Moon. The estimates are mutually consistent. This
consistency unravels when it comes to estimating the imaginary parts of k and it.

The principal effect of ![k] in the theory of the libration of the Moon is that
the node of the lunar equator on the ecliptic advances for positive Za[k]. Let ,(Q
be the offset in the node; then Tlh2 = ![k] x 208" [Eckhardt, 19811. Using (30),
ýa[k] = -K/ý = -0.25 x 10-3, so, by the nominal solution, Iffl decreases by
0".052 leading to a -45 cm cos F term in the latitude libration. Also, Q = k /K =

100 according to the nominal solution (l".0 residual free libration and Eckhardt
resonance), but if the Moons or Migus resonance is used instead, then Q z 55.
Estimates of Q within the plausible range of resonances and for different residuals
can be effected by using Figure 6 which is a plot of Iri(h)J as a function of the
resonance period for Q = 30,40,50,...,100. For low Q, as at Q = 30, r1(h)
oscillates about the steady state solution (10). As an example, one can see from this
figure that with a resonance of 38.658 sidereal months and Q = 40, the residual
is ir1(h)I = 1".15, and with the same resonance and Q = 30, the residual is
Irl(h)I = 0".80. (The amplitude in the Eckhardt [1982] table is 0".274.) Thus a Q
as low as 40, and perhaps even 30, may not be inconsistent with the observed free
libration.

Williams, Newhall and Dickey [19871 estimate Q for a monthly period to be
approximately 30; in effect, they detected and isolated a 1.5 m cos F term in the
latitude libration. Seismic estimates of the lunar rigidity Q are depth dependent,
varying from about 3000 in the region between 60 and 400 km depth to 1000 or
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less for depths exceeding 1100 km [Goins, Dainty and Toksoz, 19811. The broad
range of lunar Q estimates is not unlike the range of Q estimates for the Earth.
Seismic rigidity (shear wave) Q's are depth dependent, varying from about 100
at the top of the mantle to about 2000 at the base of the mantle [Stacey, pp. 300-
307, 19771. Estimates of Q from polar motion data range between 30 and 600
[Munk and MacDonald, pp. 167-174, 1960; Stacey, p. 67, 1977]. The Earth has
a liquid core and a more pronounced stratification than the Moon, so it is a more
complicated body. It is, however, much easier to make Q-sensitive measurements
of the Earth than of the Moon. That the seismic Q's of the Moon are much larger
than its rotational Q's is not an inconsistency; rocks have different viscoelastic
properties at -, 1 Hz than at one month or three years. The rotational Q's are
roughly bracketed somewhere between 30 and 100; to some geophysicists, that's
pinpoint precision.

7. Conclusion

The planetary perturbation term ELP-2000 Sequence Number 16331 [Chapront and
Chapront-Touz6, 1983] modulates the lunar longitude with an amplitude of only
0".0021 but, because it passed through resonance 33 to 66 thousand years ago, it is
the source of a - 1" lunar libration term that has been considered a free libration.
In the sense that this libration term's phase is a free parameter unrelated to other
parameters of lunar motion, this is true; but in the sense that the term's amplitude
is not a free parameter but, in fact, a sensitive indicator of lunar dissipation at the
38.65 sidereal month resonant period and its excitation source is known, regarding
the term as a free libration is misleading by accepted standards. The definition of
a free libration is hereby broadened to include this term.

Three libration theories differ in their resonance periods for the libration in
longitude by less than 0.02% but the amplitude of the free libration in longitude is
very sensitive to which theory is used; and, of course, it is sensitive to the imaginary
part of the potential-disturbance Love number at resonance. The Moon is a fairly
uniform body, and its rigidity and density are well constrained and so, therefore,
is the real part of the Lov,- number. The Q of the lunar rigidity is the dissipation
parameter that, with a choice of resonance, can be estimated from the free libration
amplitude. Allowing for uncertainties in the amplitude and resonance, the Moon's
Q still falls within a region that is entir 'y reasonable by geophysical standards.

Since an astronomic excitation source for the free libration in longitude has
been found, there is less justification to posit a source within the Moon, e.g., a
turbulent fluid core that interacts with the mantle [Yoder, 1981]. Thus, the case for
a fluid lunar core is weakened.
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