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A previous paper by the authors [FH93] noted that there was a strong tendency to
obtain near-repeated knots in their algorithm for least squares approximation of scat-
tered data by multiquadric functions. In this paper we observe that this leads naturally
to the inclusion of derivatives of the multiquadric basis function in the approximation,
and give an algorithm for accomplishing this. A comparison of the results obtained
with this algorithm and the previous one is made. While the multiple knot algorithm
usually has the advantage in terms of accuracy and computational stability, there are
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1 Introduction

This paper continues an investigation into the use of multiquadric functions to approximate
scattered data. An initial report on our efforts appears in [FH93], where we reported that
a phenomenon that seemed particularly interesting was the tendency of the optimization
process to result in near-repeated knots. The implication is that the method was attempting
to build a directional derivative of the basis function into the approximation. This paper
documents our experiences with an algorithm that detects the occurrence of near-repeated
knots, and when they occur, replaces basis functions corresponding to near-repeated knots
with a single multiquadric basis function plus appropriate derivatives of the multiquadric
basis function, at the pertinent knot.

While it is useful to have the previous paper at hand, for completeness we will briefly
review the background necessary to make this report somewhat self-contained. We restrict
our discussion to functions of two independent variables, the methods are easily extendible
to arbitrary dimensions, and we expect that many of the conclusions will carry over.

The scattered data approximation problem is easily described and occurs frequently in
many branches of science. The problem occurs in any discipline where measurements are
taken at irregularly spaced values of two or more independent variables, and is especially
prevalent in environmental sciences. We will suppose that triples of data,(x,, yj, zj), j =
1,.-. , N are given, assumed to be measurements (perhaps with error) of an underlying

function z = f(x, y). The function f is to be approximated by a function F(x, y) from the
given data. A recent survey of such methods is given in [FN911.

Multiquadric functions were introduced for interpolation of scattered data by Hardy
[HA71]; also see [HA90] for a historical survey and many references. The method is one
of a class of methods known now as "radial basis function methods" that includes other
attractive schemes such as thin plate splines [HD72, DU76, and others]. The basic idea
of such methods is quite simple, and we describe it in some generality; for purposes of
being definite it is pertinent to note that for the multiquadric method the radial function
is h(d) = Vf(d2 + r2 ). In general, suppose a function of one variable, h(d), where d denotes
distance, is given.

For interpolation (that is, exact matching of the given data), a basis function, B,(x, y) =

h(d,) is associated with each data point. Here dj = VF((X - X )2 + (y - yj) 2), the distance
from (x, y) to (xi, yj). Thus each basis function is a translate of the radial function, h. The
approximation is a linear combination of the basis functions, along with some polynomial
terms that may be necessary in some cases, or may be used to assure that the approximation
method has polynomial precision. Thus,

N M

F(x, y) = . a3Bj(z, y) + Ej biqj(x, y) (1)
j- j--=1

where {qj} is a set of M polynomials forming a basis for polynomials of degree < m. The co-
efficients a, and bj are determined by the linear system of equations prescribing interpolation
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of the data, and exactness for polynomials of degree < m:

N M

j=1 j=l 2
N (2)

Sajqi(xi, yj) = 0, i = 1,...,M.
j=1

For multiquadric basis functions, this system of equations is known to have a unique solution
for distinct (xi, yj) data (see, for example, [MI86]); while m may be taken as zero (no
polynomial terms), Micchelli's results show the multiquadric basis function is positive definite
of order one, and thus a constant term should be included. We have done so in all our work. If
higher degree polynomial precision is desired, inclusion of those terms imposes no particular
burden.

While interpolation theory is important and indicates something about the suitability
of the class of functions for approximation purposes, our emphasis here is on least squares
approximation. This implies using fewer basis functions than there are data points. In
analogy with univariate cubic splines, it is convenient to refer to the points at which the
radial basis functions are centered as "knots", as was done in [MF92], and we do so here.
If a set of knot points, (Uk, vk),k = 1,--.,K, with K < N have been specified, then the
problem of fitting a multiquadric function by least squares is similar to that of solving
the system of equations corresponding to those above in the least squares sense. We give
the details. Now, let Bk(x, y) denote the radial basis function associated with the point
(uk, vk), Bk(X, y) = r/((x - uk) 2 + (y - vk) 2 + r 2). The system of equations, specialized for
our case, is now of the form

K

E akBk(Xi,yi) + c = zi, i = 1,...,N

K (3)

Eak =0.

There is a question of how to treat the last equation, which guarantees precision for con-
stants. In [MF92] the corresponding constraint equations were imposed exactly, rather than
approximately, because of physical considerations. While there is not the corresponding
physical situation here, we have also imposed the last equation as a constraint. This con-
straint can be used to reduce the size of the system by solving for aK in terms of the other
ak and substituting into the first set of equations.

If the knot points are a subset of the data points, then the system of equations (by
virtue of containing, as a subset, interpolation equations) has full rank, and thus guarantees
a unique solution of the least squares problem. When the knot locations may differ from the
data points, the problem of whether the coefficient matrix is of full rank or not is unknown to
us, although we feel certain that the matrix is of full rank when the knot points are distinct,
and have encountered no situations that indicate otherwise.

The impetus behind our original investigation was to obtain surface approximations that
would be efficient in subsequent applications. That is, we consider it to be acceptable to
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expend considerable computational resources to obtain the approximation in a preprocessing
step. Once obtained, the approximation can be evaluated efficiently, so it would be feasible
to use it numerous times in an application program.

In the previous paper [FH93] we found that there was a tendency of the algorithm to
converge on solutions where the knot points were often close to each other, or near-repeated.
This occurred both in clusters of two and three knots. At that time, no attempt was made to
made to investigate this behavior further. The outstanding result of that reference was the
finding that allowing the knots (and r value) to be determined as part of the minimization
process yielded approximations that were much more efficient than those obtained either by
determining the knots a priori or adaptively (we outlined a greedy algorithm for sequentially
determining knot locations that worked well). While we found that using variable r values
also yielded good improvement, we do not pursue that idea here.

Because the greedy algorithm we developed previously was generally used as the starting
point for the work reported here, we give a brief outline of it.

a) Obtain the least squares fit by a constant ',,.ction, the average of the data values. The
two data points having maximum positive and maximum negative error are taken to
be the first two knots, (Ui,vi) and (u2, v2). The knot counter K is set to 2.

b) The least squares multiquadric fit with K knots is obtained, and the residuals are
computed.

c) The maximum absolute value of the residuals is found and the location of this residual,
subject to the minimum knot separation value, is taken to be the next knot location
(UK, VK). At this point the algorithm proceeds to step b unless the maximum number
of knot locations to be computed has been reached.

As previously, we have used a QRP' decomposition of the coefficient matrix to solve the
least squares problem for given knots and r value. This provides a stable and efficient means
for solution of the problem with an indication if a matrix of less than full rank is encountered.

In order to test the algorithms we have used a number of data sets. Several of these are
based on previously published and widely available (x, y) data sets and parent functions. We
have also used a few less readily available data sets that we are willing to share with anyone
interested in obtaining them. Table 1 gives a summary of most of the data sets.

As mentioned in the opening paragraph, the primary purpose of this paper is to discuss
some further results we have obtained in allowing the coalescence of knots. A discussion of
the algorithm we used is given in Section 2. Results of calculations obtained using several
data sets and comparison with the previous method where only simple (but possibly near-
repeated) knots are allowed, is given in Section 3. Section 4 summarizes our experiences.
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n.m This refers to point set n and function m from [FR82], for n =1, 2, and 3, and
m = 1,.-.,6. n = I is 25 points, n = 2is 33 points, n = 3is 100 points. n = 4
refers to the 200 point data set used in [MF92]. m=1 is the humps and dip function,
M = 2 is the cliff, m = 3 is the saddle, m = 4 is the gentle hili, m = 5 is the steep hill,
and m = 6 is the sWhere. In addition, m = 7 refers to the curved valley function from
[N178].

GT This refers to the thinned glacier data consisting of 678 points, with certain contour
lines removed, from [MF92].

GL This refers to the thinned glacier data consisting of 873 points.

HF This is the data set from [MF92] generated to have point density approximately pro-
portional to curvature, consisting of 500 points.

Table 1: Data Sets Used Extensively in Tests

2 Derivatives of Multiquadric Basis Functions and
Multiple Knots

Once again we have used Matlab 1 and LEASTSQ (a Levinburg-Marquardt method) to solve
the nonlinear minimization problem

N K

min _[z - E akBk(xi, Yi) - C]2 (4)
i=1 k=1

where the minimization is taken over all (Uk, Vk), r, the ak, and c (with the last equation of
(3) imposed as a constraint) as an equivalent two step minimization. Thus, for each given
knot configuration and r value, the least squares solution of (3) is computed as a step toward
(4). This results in the solution of a simpler, but equivalent problem since 2K parameters
are eliminated from (4) by imposing the condition that the values of the aj and c be always
taken as obtained from the least squares solution of (3). Hence, our final process is more
properly written as

N N
mmin mrin [z, - E akBk(x,, y,) - C]2  (5)

i=1 k=1

where the inner minimization is over the aj and c (least squares solution of (3)), and the
outer minimization is over the knot locations and the value of the parameter r. The global
minimum of each of the two problems are clearly the same. Eq. (5) is the more restrictive,
but any minimum of (4) is a local minimum of (5), else a better solution is attainable for (4).

1MathWorks, 24 Prime Park Way, Natick. MA 01760
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This does not imply that the iterative methods employed to solve (5) would work equally
well, nor find the same local minima, when applied to (4).

When two knots approach each other, the system (3) becomes ill- conditioned, and the
coefficients for the two knots tend to become large and of opposite sign. This reminds one of
derivatives, in this case a directional derivative. Because the two coefficients are not of the
same magnitude, the appropriate replacement basis functions seem to be one of the basis
functions, and a directional derivative of the basis function. In practice, the directional
derivative is represented as a linear combination of the partial derivatives with respect to x
and to y. To prove this is the proper change requires showing that the coefficients grow at no
greater a rate than the reciprocal of the distance between the knots. The work of Narcowich
and Ward [NW91I] shows that the norm of the inverse of the multiquadric interpolation matrix
grows no more rapidly than linear with the reciprocal of the minimum distance between data
points. It seems likely a similar result holds for the norm of the pseudoinverse of the system
matrix for (3). We have verified this computationally for some cases.

The contribution of the two terms corresponding to the coalescent knots (say the jth
and the kth) are of the form ajBj(x,y) + akBk(x,y). The six parameters, aj, ak, U., vi,
uk, and vk, in those terms are replaced by the five parameters in the terms ajBj(x,y) +
bj(Bj(x,y)). + cj(Bj(x,y)),. In the previous expression the subscripts x and y refer to
partial differentiation. We will refer to such a knot as a double knot.

Now, as it turns out, the coalescence of two knots, while the most prevalent, was by no
means the only situation we encountered. The coalescence of three knots (or, once two knots
have coalesced, the approach of a third knot to the location of a double knot) then results in
the occurrence of a second derivative, a directional derivative of a directional derivative (the
directions not necessarily being the same). In practice the replacement of the basis functions
for the ith, jth, and kth knots is by the linear combination ajB3 + bj(Bj). + c3 (Bi), +
dj(B3 ).. + e3(Bj).v + f3 (Bj)y,. While we have instances of near-coalescence of four knots,
our present code does not attempt to handle such cases properly.

The algorithm is required to change basis functions when it appears that knots are
coalescing. We have used a simple idea that seems to be effective. We iterate the solution of
(5) in stages having increasingly stringent convergence tolerances. As each tolerance level is
met, a check for near-repeated knots is made, "near" being a changing tolerance consistent
with the tolerance for the optimization. When pairs of knots are found within the tolerance,
the new basis is generated, and the optimization process continued. When no new repeated
knots are obtained, the tolerance is decreased by a factor of two. We have observed that the
inclusion of the derivative terms, vice the basis functions at near- repeated knots, generally
yields essentially the same approximation, as it should, for both double and triple knots. The
sequence of tolerance levels we used is: 0.02, 0.01, 0.005 for problems posed on the [0, 1]2

square.

3 Approximations with Repeated Knots
The results of our investigation concern the ability of the algorithm to obtain good ap-

proximations in comparison with the algorithm permitting only simple (but perhaps near-

5



repeated) knots, the degree of dependence on the initial guess for three different datasets
(two in some detail), and a comparison of condition numbers of the coefficient matrices for
the simple and multiple knot problems.

dset r, rm rms' rmsm grins, grmsm knots, knotsm

3.1 0.0976 0.1588 0.0081 0.0059 0.0115 0.0107 2nd,lnt ld,lt,lnt
3.2 7e-6 0.0002 0.0074 0.0073 0.0186 0.2477 3nd,lnt 3d,lt,lnq
3.3 0.3116 0.2502 0.0014 0.0008 0.0016 0.0011 1at it
3.4 0.2885 0.3118 0.0005 0.0005 0.0006 0.0005 2nd 3d
3.5 0.3720 0.3886 0.0008 0.0007 0.0010 0.0010 3nd 2d
3.6 2.3280 2.3044 0.0005 0.0005 0.0007 0.0007
3.7 0.0990 0.3304 0.0403 0.0279 0.0733 0.0324 4nd 4d

4.1 0.0958 0.1588 0.0070 0.0017 0.0071 0.0024 lnt it
4.2 2e-5 2e-5 0.0035 0.0035 0.0083 0.0082 4nd 3d,lnd
4.3 0.2577 0.2513 0.0002 0.0002 0.0002 0.0002 4nd ld,lnd
4.4 0.4163 0.4625 7e-6 6e-6 7e-6 6e-6 Ind 3d
4.5 0.3234 0.3151 0.0002 0.0003 0.0002 0.0003 4nd 2nd
4.6 0.5668 0.5680 5e-5 4e-5 5e-5 4e-5 5nd 2d,2nt,2nd
4.7 0.1111 0.1134 0.0115 0.0114 0.0202 0.0287 3nd,lnt 5d,lt

Table 2: Comparison of Results: Near-Repeated Knots vs. Multiple Knots

We first describe the layout of the Table 2, which gives a comparison of the results of
the simple knot and multiple knot algorithms for fourteen datasets. The results are for the
surface fits obtained by starting from the initial guess obtained by the greedy algorithm
[FH93], with r= 0.3,and closeness tolerance, ctol=0.1. The 3.n datasets were fit using twelve
knot locations, while the 4.n datasets were fit using twenty knot locations. The columns
of the table contain, in pairs, the values of r, the rms errors for the data points, the rms
errors on a 21x21 grid, and information about the near-repeated or multiple knots obtained.
The subscripts 8 and rn denote the simple knot and multiple knot algorithms, respectively.
The terms 2d and It, for example, refer to 2 double knots, and 1 triple knot. Likewise, lnd
refers to 1 near-double knot. In some cases two double knots may have been obtained, with
another simple knot nearby one of the double knots - such a case might be denoted by 2d,
lnt.

For a given dataset, the values of r obtained are mostly comparable, with larger values
generally being obtained by the multiple knot algorithm. In the instances where the value
of r is not larger, the values are essentially the same, the exception being dataset 3.3. The
cases showing the most difficulty are the cases 3.2 and 4.2 (the cliff function), which has a
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tendency toward small values of the parameter r. The effects of this tendency are discussed
in a later paragraph.

The rms errors are mostly comparable, with the errors obtained by the multiple knot
algorithm generally smaller, with some ties, and one instance where the errors are bigger.
This occurs for dataset 4.5, but the errors for both approximations are quite small for this
case.

The rms errors on the grid (grins) generally follow the same pattern, with one major
exception. On the dataset 3.2, the errors for the grid are quite large. Closer inspection of
this particular case reveals there is one grid point (near the triple, almost quadruple, knot)
where the surface is badly ill-behaved. Coefficients of the first derivative terms are on the
order of 5 to 20, while the coefficients of the two multiquadric basis functions are reasonably
large, on the order of 10'. However, the value of r is very small in this case, about 1.5e-4,
thus the derivatives of the basis functions very rapidly approach the value one in one of the
coordinate directions (the value is about 0.99 at a distance of 0.001 from the knot). Hence,
very rapid changes in the value of the function occur. While otherwise similar situations
occur in other cases, the key difference here is the small value of r that occurs.

In order to discover whether the initial guess was contributing to the problem, or whether
the tendency toward a small r value and multiple knots was driven by the data, we ran a
number initial guesses for the datas t 3.2. The initial conditions were obtained from the
greedy algorithm with various values of r and closeness tolerance (ctol). The results of the
computations are summarized in Table 3. The table gives the parameter ctol, the initial
value of r, the final value of r, the rms errors at the data points and on the grid, and the
number, multiplicity, and approximate location of the multiple knots. From this we see that
while there is a tendency toward multiple knots, no particular locations are tended toward,
although it seems natural that repeated knots invariably occur near the diagonal. The fact
that the surface is a function of one variable (that is, y-x) with rapid changes occurring
near the diagonal may account for this circumstance. The fact that the data is not regular
may account for a large number of comparable local minima. One case is of particular note:
The case in the second line involves three triple and one double knot, however two of the
triple knots are close together, yielding a near-repeated knot of multiplicity six. This could
be expected to lead to poor behavior of the surface. Closer inspection revealed that, even
though the coefficients are rather large (order 10"), the surface is well behaved and yielded
one of the better approximations among this group. This good behavior is undoubtedly
enhanced by the fact that the r value is large for this surface. In the three cases where
the r value is smaller than 10- the resulting surface is poorly behaved near a multiple or
near-multiple knot, this being reflected by the larger grms0 values shown.

We ran a number of different initial guesses for case 3.1 to determine both the robustness
of the optimization routine and to confirm the tendency of the method to converge on
multiple knots from a variety of initial guesses. Nine different initial guesses were made,
six resulting from the greedy algorithm with different closeness tolerances and r values, and
three with random initial knot locations. As is seen in Table 4, the results for the various
initial guesses are strikingly similar: except for two cases the r values are all close to 0.16, all
but one result in a triple or near-triple knot near the dip at about (.45,.78), and all but one
have comparable accuracies for rmso and grms,. The one odd case had the starting value
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of 0.01 for r. A wide-ranging difference is that different double and near-double knots may
occur for the various runs. Unlike dataset 3.2, this case appears to be quite stable.

ctol r r, rmso grins0  multiple knots

0.1 0.3 0.0002 0.0073 0.2496 t@(.09,.14), 3dM(.38,.38, (.60,.60), (.89,.88))
0.25 0.1 0.0239 0.0060 0.0085 3t@(.31,.36), (.76,.79), (.77,.78), ld@(.12,.13)
0.1, 0.1 0.0247 0.0071 0.0111 2d@(.38,.40), (.67,.66)
0.2 0.1 0.0247 0.0071 0.0113 3d@(.14,.14),(.44,.44), (.68,.67)
0.25 0.01 0.0739 0.0054 0.0095 4d@(.13,.11),(.37,.39), (.69,.65), (.92,.91)
0.1 0.01 5e-5 0.0071 0.0259 d@(.69,.69), 2nd@(.14,.12), (.33,.40)
0.2 0.01 0.0001 0.0071 0.0114 d©(.44,.44)
0.0 0.01 5e-5 0.0071 0.0260 d@(.69,.69), 2nd©(.14,.11), (.33,.40)

Table 3: Results with Different Initial Guesses for Case 3.2

ctol r sk r, rmso grmss multiple knots

0.0 0.3 g 0.1598 0.0067 0.0113 tO(.43,.76), 2nd@(.86,.23), (.83,.42)
0.1 0.3 g 0.1588 0.0059 0.0107 t@(.43,.75), d@(.78,.43), d is nt
0.2 0.3 g 0.1712 0.0063 0.0107 t@(.44,.74), d@(.15,.26)

0.25 0.3 g 0.2013 0.0075 0.0107 t@(.43,.79), d@(.20,.33)
0.1 0.1 g 0.1450 0.0066 0.0111 t@(.43,.77)
0.1 0.01 g 0.0737 0.0118 0.0157 d@(.72,.36)

- 0.3 r 0.1454 3.0066 0.0112 t@(.43,.77)
- 0.3 r 0.1566 0.0061 0.0077 t@(.42,.75)
- 0.3 r 0.1600 0.0067 0.0113 t@(.43,.76), 2nd@(.83,.43), (.86,.23)
- 0.3 r 0.1527 0.0067 0.0111 nt@(.44,.75)

Table 4: Results with Different Initial Guesses for Case 3.1

We also ran some different initiat conditions on dataset 3.7. The results in this case seem
to indicate complications somewhere between the datasets 3.1 and 3.2. Dataset 3.7 has a
tendency toward many multiple knots, perhar because it has a more complex behavior of
the surface than any of the other datasets.

8



The occurrence of near-multiple knots, as we noted previously, must have a unfavorable
effect on the condition number of the coefficient matrix, and in order to investigate this we
computed the condition number of the coefficient matrices for the fourteen cases of Table 2.
A plot of the of the minimum separation distance divided by the r value vs. the condition
number of the coefficient matrix is shown in Figure 1. There are 13, points for each of the
simple knot and multiple knot algorithms. The first fourteen points correspond to the data
in Table 2, in the order given, while the fifteenth is for the thinned glacier dataset, GL,
using 25 knots. For the latter data the underlying function is unknown. The simple knot
algorithm found 9 near-double knots. The multiple knot algorithm found four double knots
and three triple knots.

The points in Figure I for the simple knot algorithm have been labeled with their number.
Because of the clustering of many of the points for the multiple knot algorithm, only those
with condition number great than 10' have been labeled.

What can be observed is that the condition numbers for the multiple knot algorithm are
generally one to two orders of magnitude smaller than those for the simple knot algorithm.
There are exceptions to this, most notably the datasets 3.1, 3.2, 3.7, and 4.5, where the be-
havior is reversed, and 3.6 for which the r value is relatively large in both cases, contributing
to s" ize of the condition number.

Finally, for one of the parent surfaces, we include a plot of the underlying surface being
approximated, along with the surfaces obtained from the simple knot algorithm and the
multiple knot algorithm. The dataset is 3.7, the surface shown in Figure 2a being sampled
at 100 points. Figures 2b and 2c, respectively, show the surface reconstructed using the
simple knot and multiple knot algorithms with twelve knot points. In this case it is clear
that the multiple knot algorithm has achieved a better fit.

4 Conclusion and Ideas for Further Work

We have formulated an algorithm to allow coalescence of near-repeated knots into multiple
knots, bringing into the approximation the appropriate derivatives of the basis function in
place of the basis functions for the nearby knots. As a general rule, this results in both
better approximttions, and more stable computations, although individual examples do not
conform to this ideal. Our computations convince us that the occurrence of multiple knots
is a natural phenomenon, and that algorithms for the problem need to account for the
possibility.

The tendency toward repeated knots leads to one possible idea for further exploration.
This would be to begin initially with some (or all) knots being double knots to take advantage
of the apparently greater fitting power of the multiquadric plus its directional derivative. We
have not yet had the opportunity to pursue this idea. While the advantage of starting with
multiple knots seems clear, the disadvantage is that coalescence of these knots skips odd-
multiplicity knots, especially triple knots, which occur regularly in our computations.

We have observed the tendency toward repeated knots with the LEASTSQ algorithm
and another (FMINS - see [WO85]) in the previc:s paper and feel the repeated knots are
not occurring as an artifact of the optimization process. Nonetheless, an algorithm that took
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advantage of the particular problem being solved could be more efficient and possibly avoid
some of the local minima being found by the general minimization routines.
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Figure Captions

Figure 1: Minimum separation distance relative to r value vs. condition number for thirty
problems. The o's denote simple knot cases, numbered from 1-15, the first 14 being as
ordered in Table 2. Number 15 is the thinned glacier data, GL, with 25 knots. The x's
denote the multiple knot cases - only those with condition number greater than 10' are
labeled due to space considerations.

Figure 2: a) The parent surface from which the data was obtained. b) The surface obtained
with 12 knots using the simple knot algorithm. c) The surface obtained with 12 knots using
the multiple knot algorithm.
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