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Preface

This research is an investigation into the rovibrational spectrum of diatomic bromine.

The last reported high resolution spectroscopy done on the X to B absorption spectrum

of this molecule was accomplished over 20 years ago and was done with grating

instruments. This effort allowed an experiment to be set up from scratch using current

state of the art technology. The prime data gathering instrument, a Fourier Transform

Spectrometer, had been received by the department less than 2 months prior to the

commencement of this research. I found this work to be gratifying because I was

allowed to build this experiment up from nothing and was able to see a plan come

together before my eyes. I also found it challenging because so much theory had to

be not only learned, but understood.

I would like to thank Major Glen P. Perram, my advisor, for giving me the opportunity

to break in his new piece of lab equipment. His support, encouragement, and forever

open door policy was greatly appreciated. Also, Dr. Won Roh provided help on theory

when it was needed. Thanks also go to Captain Rob Johnson who was my resident

Fortran expert when things were bleak in the cold, sterile room upstairs. Finally, I owe

a great big hug to my wife. Her patience with me this past summer during the long

days and even longer nights was truly amazing. She's always there to remind of where

life's priorities need to be.

Robert E. Franklin
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Abstract

High resolution Fourier Transform Absorption Spectroscopy has been conducted for

the B I-(O +) < Xlz,+ system of 79Br2. A total of 64 vibrational levels, including v" =

0-3 and v' = 10-33, have been observed and assigned. Rotational levels as high as

J=76 were observed. A global fitting routine has been developed to fit the rotational

spectra to the Dunham Expansion. Using Bv and D, for both the X and the B state,

rotational transitions were calculated to within 0.02 cm1 . The expansions of these terms

required five coefficients for the B state and three coefficients for the X state. Attempts

to fit the vibrational spectrum to an equation in terms of (v+1/2) were only accurate to

within 0.03 cm1 when five molecular coefficients were used on the upper level and

three were used on the ground state. However, direct calculation of the vibrational

energy levels was able to fit all vibrational bandheads to less than 0.02 cm-1.

Recommendations are made for attempting a global fit over many more vibrational

bands.

vii



High Resolution Fourier Transform Absorption

Spectrum of 79Br 2 B3 HI(Ou÷) = XI27÷

I. Introduction

Overview

In recent years, much effort has been spent in the Air Force on the development of

kilowatt-class lasers operating at infrared wavelengths in the anticipation they could be

used for electro-optic countermeasures. One of the ways of transferring energy into

the laser medium is through electronic to vibrational energy transfer mechanisms. A

candidate system involves the photolysis of bromine. The present research seeks to

extend the spectroscopic data base for the B3H(ou+) <- X ,, + electron transition of 79Br 2.

To do these studies most effectively, there must be a good base of knowledge about

bromine from which to start. By far, the most extensive work to date on bromine is the

high resolution work using grating instruments performed by Barrow, et al [1] and the

complementary work performed by Coxon [3]. These studies yielded spectroscopic

data over the range 0 < v"_< 10 in the Br2 X1Xg* ground state and nearly all the bound

vibrational levels of the Br 2 B3 -(0u) excited state. The work done by Barrow in 1974

currently provides the best recorded set of spectroscopic constants available. This
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thesis reports on Fourier Transform Spectroscopy performed to refine the molecular

coefficients repor4..--1 Dy Barrow. Data will be gathered and ways of analyzing this data

will be developed.

Background

Bromine absorbs energy very readily in the visible to near IR wavelengths. The

absorption continuum begins at 510.8 nm and thus we should expect to see strong

transitions at wavelengths above this value [8]. At room temperature, spectrum should

be readily obtainable up to about 625 nrm. This is the rough value of where the long

wavelength end of absorption out of the v"=3 level stops. Higher ground state levels

than this will generally not have enough population in them to exhibit strong absorption

characteristics for short absorption paths. The rotational energy level spacing is very

small and will make the spectrum observed very dense in structure. The advent of

today's digital processing technology makes this dense structure manageable. The

peaks can be isolated and analyzed very readily.

Problem Statement

Recently, a large amount of work has been done at the Air Force Institute of

Technology (AFIT) on the energy transfer kinetics of bromine. For these studies to be

done effectively, the potential energy curves of bromine must be known. As the current

best available comprehensive work done on this molecule was accomplished using

grating instruments, it is the goal of this research to further, and hopefully improve, the
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knowledge on the B and X states of bromine. This thesis effort consists of obtaining

high resolution spectrum of 79Br 2 and developing the means to analyze it properly.

Summary of Current Knowledge

The first reported high resolution work done on 79Br 2 was accomplished by Horsley

and Barrow [8]. This work consisted of identifying approximately 800 rotational lines of

the spectrum between 510 and 610 nm. These lines were assigned to 10 different

vibrational bands. From these observations, Horsley and Barrow were able to derive

some of the rotational and vibrational constants. In their paper, they make no mention

of how accurately they can reproduce the data. For this reason, and also for the fact

that better coefficients are now available, the constants derived by Horsley and Barrow

will not be reported.

Coxon j3] furthered the knowledge of the X and the B state by heating a sample of

bromine and observing transitions on the long wavelength end of this system. This had

the effect of significantly increasing the population in ground state vibrational levels

with v" > 4. In this study, the first accurate data for the vibrational levels 1 < v' < 9 and

4 < v" < 10 was observed. Using these transitions, Coxon was able to come up with

improved coefficients for the ground state.

With this prior knowledge as a starting point, Barrow, et al, was able to greatly

increase the data available on the B-X system [1]. Using a high resolution grating

instrument, they were able to catalog 88 bands of the 79Br2 B-X system including levels
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with 0 < V" < 10 and I < v < 55. Constants for the B state were determined both by

direct fit and term value methods, but they were constrained to the values of BV" and

DV" already determined by Coxon. Barrow discovered that the results of direct fitting

methods are preferable to term value methods.

Using the data he acquired on the 79Br 2 B-X system, Barrow was unable to fit the

data to a single Dunham expansion. The entire ground state could be fit effectively, but

at high vibration levels in the B state, the Gv term could not be represented by simple

polynomials. However, Barrow was able to derive constants for the B state that fit an

arbitrarily choser " ,a of v' < 8. One of his observations was that double precision

arithmetic would probably reduce the errors in his calculations.

To overcome the problem with being unable to fit the rotational and vibrational

constants to simple polynomials, Barrow chose another method to report his data. He

simply listed the values obtained for BV, Dv and the vibration level origins directly.

According to his study, all rotation transitions observed could be calculated to within

0.02 cm1 . Barrow does not mention the range of J values that were observed. One

extract from the paper indicates that the range on J probably only went out to about 50.

The coefficients derived by Barrow can be seen in Table 1.1.

Scope

The objective of this thesis research will be to first obtain high resolution absorptio

spectra of the 79Br2 B3n(0u ) <- xlz,+ system. A Bomen Fourier Transformi

4



Table 1.1 Molecular Constants (cm"1) for the X and B states of 79Br2 [Barrow]

T. 15902.47

We 167.60660
W.z. 1.63608
weyo -9.3687

B state
102Be 5.95890
1Oý a. 4.89095
10ioe -6.63690

108 D. 3.01300

je 325.32130
o)OZo 1.07742
0Ye -2.29798

X state
102 Be 8.21070
10 a. 3.18730
l O. y-1.04500

1W De 2.09200

Spectrometer will be used to accomplish this task. Then, an attempt will be made to fit

to fit this data to a single set of spectroscopic constants The results of this effort will

then be compared to the work of Barrow, and if necessary, the previous coefficients will

be refined.
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Summary

This completes the introductory portion of this thesis. Chapter II will describe the

basic theory needed in describing the energy levels within a diatomic molecule with an

explanation of the Dunham expansion. Chapter III is used to give a brief overview on

Fourier Transform Spectroscopy since this is the way the data will be acquired.

Chapters IV and V will concentrate on the experimental apparatus and procedures

used to collect data. Chapter VI contains the results obtained in this research, while

Chapter VII will present any conclusiorn reached from this work as well as provides

recommendations for future study.
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II. Theory

Diatomic Molecules

A diatomic molecule is composed of two atoms. These atoms may or may not be of

the same isotope (i.e. 79Br8'Br, 79Br 2, HCI). The nuclei of these two atoms are located

within the electronic charge cloud which, when combined with the internuclear

repulsion, gives a potential denoted by V(r), where r is the internuclear separation [5].

This entire system is free to move about in three dimensional space, with six degrees of

freedom (1 vibrational, 2 rotational, 3 translational). One useful way to break this

energy into a usable form is to say that the energy of the electrons and the two nuclei

are separable. In other words,

Eto Eeiec + En.d (2.1)

where Etot is the total energy of the molecule, E.,.c is the energy associated with a

particular electronic state, and E..c, is the energy associated with the nuclei. This

equation can be rewritten as

Etol = Eei + Eint +Eirans (2.2)

In this case, E~,, is the internal (rotational, vibrational) energy of the molecule and is

separable from E,, the energy associated with the translation of the molecule through

free space.

7



Dunham Expansion

Now that we understand how the energy is partitioned, we need to find an equation

for this energy that adequately represents the energy of any specific state the molecule

might be in. For the case of the diatomic molecule, this energy can be adequately

represented by an equation known as the Dunham expansion of the energy. This

equation has the form

E=T +Gv -FF(J) (2.3)

where Te is the energy associated with the electronic state of the molecule, G, is the

energy from its vibrational nature, and Fv is the energy associated with rotation. In

particular,

G(v) = coe(V + Y) - coeZe(V + Y)2 + OYey(V + 2)3+... (2.4)

and

F(J) = BvJ(J + 1)- Dj 2 (j + 1)2 + HvJ 3 (j+ 1)3+... (2.5)

where,

Bv-=Be -ae (V+ )+re(v 2)2 +Se(v+-) 3 +... (2.6)

v e - fe(V• 2) + ?le(V+ + 1 52)2 (2.7)

Hv =He -e(V+12)+... (2.8)

The next several pages in this section will deal with the relevance of the terms in the

Dunham expansion.
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Electronic Energy

By far, the term with the largest amount of energy in the Dunham expansion is the

electronic energy term. For bromine, this energy is on the order of 16000 cmI while

vibrational energy is around 300 cmI1. Fig. 2.1 is a graph of the potential energy

curves associated with bromine. The value of T. corresponds to the minimum of each

potential well. The energy associated with vibration and rotation is additive above this

point.

-B ITTr(1)B

20-

- 31A 2
Y5 2p ,+2 p312

020

3-i

P+ P

15-

34 I I+

3123/

Figure 2.1 Potential ener•: .!r-,,ys of the X and B states of bromine
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There are two separate extremes for a diatomic molecule in regards to internuclear

separation. These extremes correspond to separations of infinity and near zero. The

first case is most easily understood. Basically, there are two separate bromine atoms.

Bromine belongs to the class of atoms known as the halogens. All these atoms have

an outer electron shell with configuration p5 . Accordingly, the first two atomic terms for

these elements are 2P 1 2 and 2Pr. By Hund's rules, the 2P 3r term is the lower energy

state, and in particular for the halogens, it corresponds to the ground state. A halogen

designated by 2 P 1 2 is in its first excited state. By looking at Fig. 2.1 (next page), we

can see that if the X state curve were extended to dissociation, its product would be two

ground state bromine atoms. Also, the state labeled 1rI(lu) would have the same

dissociation products. However, the B state dissociates into one ground siate and one

excited state bromine atom.

The other extreme of the diatomic molecule is for very small internuclear separation.

In this case, the wavefunctions of the two atoms overlap and they cannot be considered

separately. Depending on the symmetry, the molecule will assume either a bound or

repulsive posture. A bound state is one where there is a localized minimum of the

potential energy curve. This shows that there is some point about which there can be

oscillatory behavior. In Fig. 2.1, this situation exists for both the X and B states. The

difference in these two state exists in the separated atom limit, where the symmetry

properties of the B state will allow for one excited state atom while the X state will not.

10



Fig. 2.1 also shows another energy curve crossing through the B state. This state

will produce two ground state atoms at its dissociation limit. It does not have a

localized minimum and is known as a repulsive state. The behavior of a molecule in

this state is very different than the oscillatory behavior of a bound state. There is a

minimum distance for the internuclear separation. But once the molecule oscillates

back away from this minimum, there is no maximum. Thus, the molecule will simply

drift apart and dissociate. Probably the most interesting aspect of this state is that part

of it is collocated (same energy for a particular separation) with the B state. This

allows for interaction between the two states. It is possible for a molecule in the B state

to transform its properties to those of the repulsive 1H(1) state. The mechanism for

this transformation is unimportant. An initially bound molecule will now be in a

repulsive state and head toward dissociation. The net result is to remove population

from the B state through non-radiative means. This process happens at B state

vibration levels greater than 5.

Rotational Energy - Rigid Rotor

The diatomic molecule has freedom to rotate about its center of mass. The energy

associated with rotation along the axis joining the two molecules is negligible and can

be ignored. The rotation through an axis perpendicular to this first axis is twofold

degenerate and can be equated to the energy of a rigid rotator.

In the simplest form of this rotation, the diatomic molecule can be equated to a

dumbbell. The two atoms can be considered to be point-like and connected to either

11



end of a weightless rigid rod. The effect of this first assumption is negligible as the

mass of an atom is practically concentrated at its nucleus which has a diameter on the

order of 10-12, while internuclear separation is on the order of 10-8 [5]. The effect of the

assumption of the rigid rod is small, but measurable. This will be accounted for later,

but for now it is a good first approximation.

The kinetic energy associated with the rotation of this dumbbell is

H=1/2 1CO2  (2.9)

where 1 is the moment of inertia and o) is angular velocity. This energy can be used to

solve the Schr6dinger equation in spherical coordinates. For the case of the rigid

rot.,;, the potential energy term is zero. The final result of this equation is that the

energy levels of the rotor are found to be

E = (W/2 )J(J + 1), J = 0,1,2,... (2.10)

where h is Planck's constant and J is the rotational quantum number. The form of the

equation above shows the energy of the rotor increases quadratically with J in discrete

energy steps. More importantly, this term also has the same functional form of the first

term in the rotational expansion part of the Dunham Equation (Eq 2.5). The coefficient

above can be equated to

Bv = h12/2I (2.11)

12



Vibrational Energy - Harmonic Oscillator

A first approximation of the vibrational energy of the diatomic molecule is to assume

the molecule behaves as a nonrotating harmoiic oscillator. In other words, the

restoring force between the two atoms goes as

F =- k/c (2.12)

where k is the stretching force constant of the bond and x is the displacement of the

system from equilibrium [5]. The potential energy related to this force is given by

dV(x) F )
=-F(x) = kx (2.13)

Therefore

V(x) 2(2.14)

This potential energy can then be used in the Schrodinger equation to solve for the

energy values of the system. This solution is

E(v) = (v + Y2)hvo (2.15)

where v is the vibrational quantum number and can assume integer values starting at

zero. Again, it needs to be noted that the form of this equation is seen in the Dunham

expansion. It corresponds to the first term in the vibrational energy expansion (Eq 2.4).

The energy obtained by this treatment differs from the classical oscillator in two major

forms. First, the energy is quantized. Second is the inclusion of the 1/2 term. This

13



tells us that even for the lowest energy level, the energy is still not zero. This goes in

keeping with the precepts of the uncertainty principle.

Morse Potential

These two approximations do not fully represent the energy of the molecule for

several reasons. For starters, the rotational and vibrational energies are not separable.

As a matter of fact, they are very much interrelated. The idea of a rigid rotor is in direct

contradiction to the concept of an oscillator. Whereas the motion of the oscillator has

an effect on the rotational motion, the rotation of the molecule has an effect on the

vibration. But more importantly, the potential energy functions used are inappropriate.

The harmonic oscillator potential does not allow for the molecule to dissociate at large

internuclear separations. A more appropriate potential would allow for this

dissociation.

The functional form on the potential must be modified. Figure 2.2 (next page)

represents the V(r) potential for a typical diatomic molecule. In this case, r is the

internuclear separation of the two molecules. At large separations, the interactions

between the two atoms is negligible, and the total energy is that of the two separated

atoms. This energy can be arbitrarily taken to be the reference level V(00) = 0. As the

two atoms are brought together from large separation, there is initially an attractive

force between electrons on one atom and the nucleus on the other, and vice versa.

This is the part of the curve below the reference line. If the atoms are brought still

14



V(r) 0 I r

Figure 2.2 Typical potential function for a stable diatomic molecule [5:134]

closer together, the electron clouds begin to interpenetrate and the mutual repulsion

starts to increase. Also, at these very smalinternuclear separations, nuclear-nuclear

repulsion becomes important. It can also be seen that there is a minimum in the

potential at some specific point in the curve. This point is known as the equilibrium

point, r,.

One way of modeling this potential analytically is with a functional form developed

by P.M. Morse in 1932. Mathematically, this potential is represented by the equation

V(r) = D[1 - exp(-a(r -r,))] (2.16)

where a is a measure of the curvature of the function, and D is the depth of the

15



potential well. This is not the only function that will qualitatively describe the

interactions of atoms in a diatomic molecule. There are other functional forms. But it

does meet the minimum requirements. Namely, the potential has a minimum at re and

its first derivative is zero at this point, it asymptotically approaches a constant value at

infinity, and as r -+ 0 the potential goes to infinity. This last condition is necessary

because it describes the impossibility of the two nuclei being located on top of each

other.

Before we can use this potential in the Schrodinger equation, we must first find the

true equations of motion of the system. When we do this, a very interesting

observation is made. Two of the three equations are identical to those arrived at in the

rigid rotor approximation. Thus, we can assume there to be a form of the rigid rotor

energy in the final solution. When this energy is coupled back into the radial equation,

we get the following spherical equation of motion:
I d r 2dR •2y J(J +1

+d d (2- Ru (2.17)
r 2 dr dr h 2 [E- V(r)] r 2

It is this equation that provides the true benefit of the Morse function. When it is

substituted into the above equation, it allows for a direct solution of the vibrational part

of the motion, and for a series solution to the rotational motion. This solution, to terms

in second order in v and J, has the form [5:7011

E(v,J) = h[COe(v+ 2)-(oeze(v± A) 2 + BeJ(J+ 1)

- DeJ 2 (J + 1)2 - ae(v + A)J(J + 1)] (2.18)
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If the right side of Eq. 2.17 is divided by h, it very closely recreates the Dunham

expansion, mentioned earlier in this paper. The difference arises from the fact that the

Dunham equations carries more perturbation terms on the vibrational energy. If terms

to higher order in J had been carried, then the rotational energy would have matched

exactly. Thus, we now need to come up with an explanation for the third, fourth and fifth

terms in the above solution. We will skip the second term momentarily and explain it in

the next section. The fourth term arises from the centrifugal stretching of the molecule

and is proportional to j4. Thus, we can see that this distortion term is more pronounced

for higher rotational levels. The final term links the average moment of inertia with the

rotational energy.

Vibrational Energy - Anharmonic Oscillator

The corrections to the vibrational energy occur because the molecule does not

behave like a harmonic oscillator. If this was the case, the potential would be

characterized by the parabola in Fig. 2.3. This potential, and consequently the

restoring force would increase indefinitely with increasing separation from the

equilibrium position. Obviously, as was previously discussed in the development of the

Morse potential, this is not the case. The true potential is represented by the solid line

curve in Fig. 2.3. At small displacements from equilibrium, this curve can be

represented very closely by a parabola. This is why the harmonic oscillator model

works so very well for small vibrations of the molecule [6].
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1.0 r* 2.0 3.0 4.0

Figure 2.3 Comparison of typical ground state potential function
with ordinary and cubic parabola approximations [6:91]

One of the easiest ways to make a first approximation to this potential curve is to

add higher order terms to the form of the potential for the oscillator. For example, let

V(X)= Y2 k2X2 -x3+... (2.19)

For this situation, the coefficient on the cubic term is much smaller than the coefficient

on the quadratic term. This approximation can be seen by the dotted line in Fig. 2.3.

Granted, this approximation does not match the whole of the actual potential energy

curve, but it is a much better representation for small values of displacement. If terms

to the fourth power and higher are added, the fit even more accurately represents the

oscillator is now known as an anharmonic oscillator. The potential described by
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[Eq. 2.18] gives the following eigen values when it is used in the wave equation

Ev = hcwoe(v + Y2) - hc oeZe(V + A) 2 + hcw ye(v + A) 3 + (2.20)

or, the term values are given by

G(v) = w0e(V+2) ..e~e(.V+j)2+(eYe(V+k)s+... (2.21)

where v is the vibrational quantum number. For this solution, the coefficient on the first

term is much larger than that on the quadratic term, which is much larger than that on

the cubic term. For the form of the potential given in [Eq. 2.18], when g is positive, 0).X

is positive.

Eq 2.20 Tells something very interesting about the vibrational energy spacing in an

anharmonic oscillator. Due to the quadratic and higher terms in the energy equation,

the energy levels are no longer equally separated as they are in the case of a harmonic

oscillator. Their separation decreases slowly with increasing v. The size of the

quadratic coefficient in the energy equation helps determine how rapidly this decrease

takes place. In that light, the o),X, term gives a rough value for the degree of

anharmonicity of the diatomic molecule. It also tells us how rapidly the molecule is

prone to dissociation.

Optical Selection Rules

Now that the energy levels within a diatomic molecule have been represented

mathematically, it is time to take a quick look at the energy transitions that will be
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observed in this experiment. The transitions of interest are those between the X and

the B state. Due to the position of these two energy curves (see Fig. 2.1), these

transitions will correspond to photons in the 10000 - 20000 cm1 range.

As far as the vibration terms go, there are no restrictions on the change that can

take place with the vibrational quantum number. Thus, v can assume any number

within its range for the electronic state it is in.

This is not the case for the change in the rotational quantum number, J. Here we

have a requirement that the change in J must be +/- 1. Thus, there are only two

transitions that can take place for each rotational energy level for any specific

vibrational level.

For ease in keeping track of these transitions, a set of terminology has been set up

to help keep track of the energy levels we are dealing with, as well as being able to

more effectively track the rotational transitions. The first bit of terminology the use of

prime and double prime notation. A quantum number with a prime on it (v') is a

quantum number associated with the higher energy level of the two states involved in a

transition. A double prime (v") indicates the lower energy state. For the purposes of

this experiment a single prime indicates the B state, while double prime is the ground

state.

As mentioned earlier, the value of J can only change by +/- 1. Thus, transitions out
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of a specific J" must go to an upper level where J' = J" + 1, or J" - 1. When the

transition is to J" + 1, this is known as an R branch transition. Mathematically, the

energy difference of this transition can be represented by the equation

R(J) = vo + B,'J'(J'+ 1)- D' J'2 (Jf+l) 2

- [Bv" ' "P (J""+/1)- Dv"IJI Y (.p,+1)2] (2.22)

where vo is the location of the vibration band origin and contains all the information

about the difference between the respective T, and G, terms. By making the

substitution J' = J" + 1, this equation becomes

R(f') = vo + Bv'(J"+l)(J"+2)- D,'(J"+1)2(J"'+2)2

- [By" J"(J"+J) - Dv" J"'2 (j.,+l)2] (2.23)

By using these same procedures, the P branch can be represented by the equation

P(JP') = vo + Bv,'J"(J"-I) - Dv'J''2 (,i,_1-)2

-[B," J"(Y"+l)- v D %"r12 (v,,+l)21 (2.24)

Summary

Thus, in this chapter, we have accounted for all the terms in the Dunham expansion.

We have also shown how to use the energy levels predicted by this model to come up

with two series of rotational lines for each vibrational band. Finally, we have described

some of the terminology to be used in spectroscopy.
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III. Fourier Transform Spectrometer

Theory of Operation

The main data gathering tool in this research effort was a Bomen DA-8 Fourier

Transform Spectrometer (FTS). Fig. 3.1 is a schematic diagram of the basic

Michelson interferometer. This is the designed utilized by the Bomen DA-8.

The best place to start is with the light source. A source is ch •n so as to match

the spectral region of interest. Glowbars are a good source for the near infrared, while

quartz lamps work well in the visible regions [2]. The light from the source is collimated

SG

rl.c

Figure 3.1 Basic Michelson interferometer. A: source. B: chopper.
C: Collimator D: Beamsplitter. E: Movable Mirror. F: Compensator.

G: Fixed Mirror H: Focusing Mirror /: Spectral Filters. J: Detector. [2:18]
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and passed to a beamsplitter where it is amplitude divided. One part of the beam is

passed through a compensator plate and then reflected off a fixed mirror. From here, it

is passed back through the plate, reflected off the beam splitter and passed to a

focusing mirror. The other part of the beam is reflected off the beamsplitter and

towards a mirror on a translatable mount. This mirror reflects the light so that it passes

back through the beamsplitter and onto the focusing mirror. The purpose of the

compensator plate is to help keep the optical paths of the two arms at approximately

the same length. This is necessary because the majority of the radiation reflected to

the movable mirror comes from the second surface of the beamsplitter the light

encounters, not the first. The role of the focusing mirror is to pass the recombined light

to an intensity sensitive detector.

Varying degrees of spectral interference are created by an optical path difference in

the two arms of the interferometer. Since the light must travel to and from each of the

mirrors at the end of the arms, the optical path difference is equal to two times the

mirror displacement from the neutral position. This optical path difference can be to

either side of the neutral position, as the interference pattern is the same in both

directions.

Each wavelength of light produces its own unique interference pattern as the

position of the movable mirror is varied. If the light source was monochromatic, the

signal seen by the detector would be a simple sinusoid as a function of mirror position.

The frequency of this sine wave would be unique to the wavelength. Since a broad
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spectrum light source is used in the FTS, there are virtually an infinite number of

wavelengths of light that are all exhibiting the above mentioned behavior. When these

different wavelengths are combined back at the focusing mirror and sent to the

detector, they create an interference pattern. This pattern, the sum of the fluxes of

each individual wavelength from the light source, is called an interferogram. Fourier

analysis of this pattern allows the interferogram to be broken into its components.

Each component corresponds to a different wavelength [2]. So, now all the

wavelengths reaching the detector are known so long as they fall within the dynamic

range of the detector.

For the purpose of this experiment, after the light is recombined and before it is

passed to the detector, it is first passed through an absorption cell containing the

bromine. Photons with the proper energy to cause a transition from one energy level to

the next are absorbed and the rest are allowed to pass through. Thus, the

interferogram is now modified from what it looked like originally. The intensity at some

wavelengths has been reduced. When the Fourier transform of this modified

interferogram is taken, the previous broad spectrum of the light will now have

minimums where photons have been absorbed. These account for the reduced number

of photons of these energies reaching the detector. When this spectrum is inverted,

these minimums become maximums, and they correspond to the energy transitions of

interest.
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IV. Experimental Apparatus

Introduction

This chapter describes the experimental apparatus used in this research effort. The

major subsystems include the Bomen Fourier Transform Spectrometer, the absorption

cell and a 486-DX50 personal computer.

Bomen Fourier Transform Spectrometer

A Bomen DA-8 Fourier Transform Spectrometer (FTS) was used for data collection.

This FTS has 50 cm of translation available on its upper mirror and allows for

resolutions as small as 0.02 cm-1 . The absorption cell is placed internal to the FTS in a

built in sample chamber. A quartz lamp is used for illumination due to its broad

spectrum in the visible wavelengths. This beam is passed through a quartz beam

splitter, recombined, shined through the absorption cell and then directed into a

Cincinnati Electronics silicone avalanche detector. This detector has an operating

range of 9000-22000 cm-1. A combination of long pass and a short pass filters are

placed between the port where the light enters the sample chamber and the silicone

detector. This effectively acts as a band pass filter for the input to the detector.
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Absorption Cell

The absorption cell is a 35 cm long Pyrex tube that is 5 cm in diameter. An Oriel

#45603 two inch glass window is placed on both ends of the tube. This window was

picked due to its high transmission in the 350-800 nm range. There are three outlet

ports on the glass tube. Two of them have valves fitted in them and the third is a

straight glass tube. This design allows the cell to be used either as a straight

absorption cell (as in this experiment), or would allow metered amounts of a substance

to be admitted while still having a port available for either pressure or temperature

measurements.The absorption cell was filled 90% atm enriched 7•Br2 that was obtained

from Icon.

Data Analysis

A Beta version of Bomen's PC-D8 software was used to run the FTS. The most

important attributes this software allows the user to select on the FTS are the

wavelength region of interest, the resolution desired, and the number of scans on the

FTS. Furthermore, once the FTS was finished acquiring data from a particular run, this

software was able to calculate the Fourier transform of the signal received. This

information was then stored in a file to be accessed by GRAMS 386, a data analysis

package from Galactic Industries Corporation.
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V. Experimental Procedures

Experimental Procedure

The purpose of this section is to explain the methods used to collect data for this

experiment.

Preparation of the Sample Cell

As mentioned earlier, the absorption cell was a 35 cm long Pyrex tube with glass

windows on either end. These windows were attached to the tube with Torr Seal. This

product was preferred over the other epoxies available in the lab because it appeared

to be the only epoxy not to be absorbing the bromine. Once the windows were

attached to the tube, the epoxy was allowed to dry overnight and then the cell was

attached to a vacuum. The absorption cell was evacuated to less than 3 mTorr, and

the vacuum pump was left to pull on the cell for approximately seventy-two hours. The

purpose here was twofold. The first was to see whether or not a good seal was

actually present on the cell. The second was to help speed up the outgassing process

of both the cell and the epoxy.

Once the outgassing of the epoxy was finished, the leak rate of the cell was

checked. The leak rate was found to be less than 0.5 mTorr/minute. This was deemed

an acceptable rate so as not to create significant pressure broadening of the spectrum

once bromine was put in the cell.
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In order to put the bromine into the cell, the cell was connected to a vacuum system

on one of its valve ports and to a source of isotropically enriched bromine on the other.

The vacuum was turned on, and the internal pressure of the cell was pulled down to

approximately 3 mTorr. The valve to the vacuum was then closed, and the valve to the

bromine was opened. The system was allowed to come to equilibrium, and then the

valves to both the absorption cell and the bromine source were closed. This process

allowed 60 Torr (vapor pressure) of bromine to be admitted to the absorption cell. This

high vapor pressure of bromine is why the small leak rate on the cell was deemed to be

insignificant to causing pressure broadening.

Collection of Data

The same process was used to collect all the data in this experiment. It will only be

explained once here. The only difference in the data runs were the number of scans

that were made on the FTS, the resolution that was selected, and the filters that were

placed in the sample chamber.

There were several bits of data that had to be input to the FTS prior to each data

run. The first was the number of scans of the mirror. There is no hard and fast rule for

this decision. One must perform enough scans to get valid data from the area of

interest, but this must be weighed with the amount of time necessary to complete the

scans. For the purposes of this experiment, all data runs were accomplished with 128

scans of the mirror, while all background runs were done with 64.
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The next important piece of data to input was the resolution desired from the data

run. This number was variable from 4.0 cm-1 to 0.02 cm1. Low resolution runs to

locate the bandheads were done at 2.0 cm1 resolution while high resolution runs to find

the rotational transitions were done at 0.02 cm"1 . The background samples for the high

resolution runs were accomplished at 1.0 cm1 . This number for background resolution

was selected because an analysis of one of the background runs revealed there was

no repeatable structure present in its spectrogram. The purpose of the background run

was merely to smooth out the artifacts of numerical filtering and variable detector

response of the actual data runs (more on this later).

The last parameter to be set on the FTS was the wavelength region of interest.

Ideally, the whole wavelength region could have been calculated for each data run.

Due to the limits of the processor in the FTS, this was not always possible. For

resolution runs above 2.0 cm1 , the entire region of interest from 13500 to 20000 cm1

could be calculated on one data run. However, at resolutions smaller than this, it was

no longer possible. For example, when the FTS was put to its maximum resolution of

0.02 cm1 , the largest piece of spectrum that could be calculatea was 325 cm-1 wide. It

needs to be pointed out that this was a numerical constraint and not a physical one.

The whole wavelength region was still passing into the detector and an interferogram of

the whole region was still present. The processor was merely incapable of calculating

a larger area at this resolution.

29



This leads to the next consideration. As mentioned earlier, a combination of long

and short pass filters were placed in the sample chamber. The purpose here was to

help improve the detector efficiency. If there was only a limited area of interest in the

spectrum for each data run, it made no sense to have unwanted photons impinging on

the detector. These photons would merely degrade the detector's operation without

adding anything to spectrum being analyzed. To minimize this problem, filters were

selected so as to bracket the region of interest. For example, if the area analyzed was

from 17050 cm 1(587 nm) to 17350 cm1 (576 nm), a 550 nm long pass filter and a 600

nm short pass filter were put into the chamber. This had the benefit of greatly

improving the signal over the selected area of interest.

Data was now collected on the FTS. Runs at 2.0 cm1 resolution could be collected

in approximately 2 minutes, while a 128 scan run at 0.02 cm1 required just under 8

hours. Immediately after each data run was completed, a background run was

accomplished. This was done with the filters in the exact same position as for the data

run. The purpose here was to ensure no error was being introduced by moving the

filters. Also, the light beam was passed through two windows identical to the windows

on the absorption cell. Again, this was to simulate the light path as closely as possible

to the absorption cell with no gas in it. A background run required approximately 6

minutes when done at 1.0 cm1 resolution and 64 scans.

As can be seen in Fig. 5.1, the response of the detector is not constant over the

region of interest. As a mater of fact, it is not even linear. For this reason, it was
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necessary to correct the spectrum for this responsivity. This was the purpose of the

background run. Since the background run was taken so as to replicate the absorption

cell with no bromine present, it can be assumed that the deviation of the spectrum

during a data run from the corresponding spectra of a background run was due strictly

S/

//

Wavenumber

Figure 5.1 Graph of the detecior response over the spectral range (cm-1) of interest.
The large spike in the graph comes from the HeNe laser used in calibration of the FTS.

to the presence of bromine in the cell. A sample of an uncorrected bromine data run

can be seen in Fig. 5.2 (next page). This sample looks like Fig. 5.3 (next page) when

the background correction was applied. There is a function built into the GRAMS

software that automatically scales the data within a single run to the correct proportions.

These spectrums were obtained from GRAMS 386. This program will take the Fourier

transform calculated by the FTS and plot it out as function of wavelength

31



I-I

E

G)

Wavenumber

Figure 5.2 Graph of data run with no background correction
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Figure 5.3 Trace showing same data
from Fig. 5.2 with background correction
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intensity.

Peak Picking

As can be easily seen in Fig. 5.3, the spectrum of bromine is very dense. As a

matter of fact, at this stage it is hard to tell whether or not this is actually spectrum or

just noise. Fig. 5.4 helps provide the answer to this question. This figure is a 25 cm1

piece of the spectrum from Fig. 5.3 In this figure, the beginnings of periodic structure

are just beginning to become discernible.

' Wavenumber

Figure 5.4 25 cmn1 wide piece of raw data
that shows beginnings of rotational structure

Peak picking and the wavnumber assignment were accomplished using GRAMS

386. One of the less intense structures within the given spectrum that still appeared to
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represent a rotational transition was first isolated on the computer screen. An example

of a representative structure is indicated by the arrow in the Fig 5.4. This peak was

designated as the baseline from which GRAMS would automatically select all the

remaining transitions within the spectrum currently displayed. The benefit here was

that only one peak needed to be designated manually, while all the remaining peaks on

that data run were found by the computer. Considering there were usually over 1500

peaks in any given 300 cm1 chunk, this was an enormous benefit. The wavelengths of

all these peaks were then exported to a text file which was downloaded from the

computer.

Calibration of the FTS

In order to determine if the FTS was calculating accurate values for the transitions,

an iodine cell was used to calibrate the system. This cell was scanned at 0.02 cm-1

resolution over the range 16400 to 19300 cm1 . The transitions observed on these

scans were then compared to known spectroscopic data on iodine [4]. Fig. 5.5 shows

a plot of the observed wavenumber of the transition versus the difference in its actual

value. As can be easily seen, there is a systematic deviation of observed values

versus actual values. A linear regression drawn through this data shows the majority of

the points to be located within 0.01 cm1 of the line. Due to this, a linear correction to

the data was deemed an appropriate solution to the problem.
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Figure 5.5 Calibration plot for the FTS

Assignment of the Spectrum

The basic premise for assigning the spectrum was that the work done by Barrow, et

al, was correct. Using this as a starting point, the assignment of the rotational

transitions was tedious, but straightforward. The alternation in the intensities of the

transitions helped to distinguish one band from the next. This occurred when there

were overlapping transitions from two different bands. By having a general idea as to
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the intensity of the transition, it was possible to discard a peak as belonging to another

vibrational band even when the wavelength of the transition corresponded to what was

predicted.

The major deviation that was seen from Barrow's work was in the high rotational

numbers (J>50). In all bands observed, there was a systematic trend for these

rotational transitions to occur at progressively longer and longer wavelengths. The

magnitude of greatest deviation in each band varied from 0.03 to 0.20 cm1 . The cause

for this will be discussed in Chapter VII.
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V1. RESULTS

Introduction

This chapter presents the results obtained in this experimental effort. The ultimate

goal is a set of molecular constants that fully quantify the data. Three different

methods of obtaining the constants from the data will be discussed. The prima facie

method (Term Value approach) that appears to provide a global fit will be examined

first. It will be shown why this is an inferior method to using a method of direct fit to

each vibrational band. Then, a global least squares fit to all the rotational lines will be

used to obtain the rotational constants. Finally, a fit will be attempted on the vibrational

terms.

Mathematical Representation

As pointed out in the theory section, the rotational energy is represented by the

equation

F, = BJ(J + 1)- DJ 2(J + 1)2 + HJ 3 (J + 1)3 +... (6.1)

As this is an infinite series, the question must be asked as to how many terms need to

be carried to adequately represent the data. This is an important question as the

values obtained for BV and, more particularly, for DV, will depend on the model used.

The goal of this research is to mathematically represent the data to within the

resolution of the instrumentation used. Only as many terms as are necessary to

achieve this goal will be included.
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Term Value Approach

This approach gets its name from the method it employs. A set of terms are first

calculated from the actual data. These terms are then used to find the rotational

coefficients. The procedure for this is outlined in the following paragraphs.

This method uses the concept of differences between selected rotational transitions.

As can be recalled from earlier in this paper, there are two different sets of rotational

transitions that take place between two vibrational levels. These are the R and P

branches. By taking the correct differences between these two branches, either the

upper or lower state coefficients can be isolated. This works as follows. First, recall

that an R branch transition is defined by the equation

R(J") =v + B,'(.1'+l)(J'+2) - Dv' (.1"+J)2(J' 1+2)2

- [B," 1Y 1V '+ ) _ D",," p,2 (.,+1])2] (6.2)

while a P branch is defined by

P(J") = vo + B,'J'(J-1)- D'J''2 (i-_1)2

- [Br" J'(J'+1) - DV" "2 (J'+1)2] (6.3)

Again, J is the rotational quantum number on the lower state. These equations

assume a two term expansion sufficiently represents the data. They define the energy,

or in effect tell us the wavenumber, associated with the appropriate transition. If one

were to take a difference between the proper rotational transitions, an expression for

either the upper or lower state constants is achieved.
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For example, one difference that is of benefit is

R(J) - P(J) = 2B, '-4D,,'

+(4Bv'-12D,')J- 12D,'J 2 -8D,'J 3  (6.4)

where J is the rotational quantum number of the lower level. The dcube prime

convention on J will be dropped for the remainder of this paper for the purpose of ease

in viewing the equations. All Js will correspond to the lower state unless stated

otherwise. As can be seen in Eq. 6.4, this difference is defined only in terms of

constants of the upper vibrational state. The lower state constants have been

removed. Similarly, another difference can be taken so there is an equation only in

terms of the constants of the lower level. This difference is

R(J- I) -P(J + 1) = 2B,,"-4D,,"

+(4B,,"-12D,")J- 12Dv" J 2 -8D,," J3  (6.5)

As mentioned earlier in this paper, there were 120-150 rotational transitions seen

for each vibrational band. Generally speaking, half of these were P branch and the

other half were R branch. Thus, there were 60-75 differences that could have been

substituted into each one of the previous two equations for any particular vibrational

band. To solve for the constants, we merely have to find the best fit to our over

determined system. The method employed was to find the least squares fit to the

system of equations at hand. This was accomplished using both Tablecurve and

Mathematica. If this fit was done for both Eq. 6.4 and Eq. 6.5 using the transitions

within one vibrational band, a single set of constants could be found to describe the

upper and lower states of that particular band. For example, if the rotational
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transitions associated with v" = 1 to v' = 13 are used in this analysis, values will be

obtained for BV and Dv for both these vibrational levels. These val-ues are seen in

Table 6.1 As this fit is done on a single vibrational transition, we would expect there to

be a good correlation between the observed and the calculated values for rotational

Table 6.1 Table showing the term value calculated values

of B and D for both a single band fit and a global fit

102 B, (cm",) 108 Dv (cm1 )

Single Band Global Single Band Global
V=13 5.1607 5.1621 4.8904 5.1347

1 8.1587 8.1623 1.6888 2.0755

std dev < 0.0020 std dev < 0.40

transitions within that band. Indeed, this is the case for the single band fit. An example

of this correlation is demonstrated by Fig. 6.1 which is a graph of the difference

between the observed and the calculated values as a function of the lower rotational

quantum number for the rotational transitions within the v"=1 to v'=13 band. The

significance of this graph is that the closer the points are to zero, the more accurately

the mathematical model is representing the data. Granted, this graph is shifted off of

zero, but this is easily explainable. Barrow's value for the vibrational bandhead has

been used for the calculations. This is because the term value method does not

provide, this information. All values relating to T. and G, have been removed in the

difference equations. However, one can tell by looking at the graph of the differences,

that there is relatively no trend for the data to move any farther away from zero than it

already is. The fact that the zero reference line is not going through the data tells us
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Figure 6.1 Graph of difference in observed value for rotational transition from
calculated term value [v(observed) - v(calc)] for single band fit plotted against

lower state rotational quantum number J" for v" = I to v'= 13 band

the assumption about the location of the vibration levels is in error. Thus, in this

analysis of the rotational transitions, we have found out some information about the

vibrational energies.

Now, back to the subject of the term value approach. As the last graph showed, it

is possible to obtained a very accurate description of rotational constants for a single

vibrational band. But the true test of any model is to see whether or not it depicts all

the data, not just some small part of it. In the ideal world, the constants obtained for

each vibrational level would be the same each time an experiment is run. Also, the
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constants associated with any particular level should be the same no matter which level

it is transitioning to. In other words, The B and D coefficient for the v" = 1 level should

have the same value for transitions to any v level. After all, it is the exact same initial

state. Unfortunately, this is not the case. Due to the imperfect nature of our data

collection, there is some uncertainty in the actual position of the transitional lines.

The best way to deal with this situation when using the term value approach is to

attempt a global fit to all the data available about a particular vibrational level. In other

words, if the rotational constants of v" = 1 are desired, then every vibrational band

involving this level should be used. In this experiment, transitions were seen from v = 1

in the ground state to v = 10 to 32 in the B state. Thus, there were 23 sets of values

that could be used to obtain the R(J-1) - P(J+I) difference. All of these values were

then put into Mathematica and a least squares fit was done to this data. The results of

this calculation are also displayed in Table 1. Since the original vibrational band of

interest also included V' = 13, the four different transitions to this band that were

observed (v" = 0-3) were used to find a set of R(J) - P(J) differences. The global fit of

this data is also displayed in Table 6.1.

As already mentioned, the true test of a model is the accuracy to which it represents

the data. As can be easily seen in Fig. 6.2 (on the next page), the global fit numbers

are a poor representation at best. Again, this is a graph of the difference of the

observed data with respect to the calculated values plotted against the lower state

rotational quantum number. At low to moderate J, the model is not too bad. But at high
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J it falls off terribly. Recall that in the rotational energy equation there is a J to the

fourth dependence of the rotational distortion term. This is the highest order term in the

selected representation. Thus, it is reasonable to conclude there is either some error

in the value calculated for DV, or an Hv term is needed.
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Figure 6.2 Graph of difference in observed value for rotational transition from
calculated term value [vqobserved) - v(calc)] for global fit plotted against lower

state rotational quantum number J" for v"=1 to v'=13 band

This is just one example from the data analyzed. Other bands showed the same

trend in the higher rotational quantum numbers. Obviousiy, if the results obtained from

this method are unable to reproduce the data to within the resolution of the

instrumentation, further refinement of the coefficients is warranted. We have gone as
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far as we can with this particular method and have achieved unacceptable results.

Thus, a different way of analyzing the data was investigated. Also, it is important to

note, the term value approach has provided us with no information on the location of

the band origin. This is information that can be easily found in the next method

discussed.

Direct Approach

There is another way of looking at each vibrational band that will provide additional

information about the energy within the molecule. This approach is called the direct

method. This name is derived from the fact that a direct fit using the actual observed

values of the wavenumbers will be accomplished on each vibrational band, band by

band.

The task at hand is to be able to adequately represent the data in a single equation.

By returning to the equations representing the R and P branch transitions, we see they

are of different forms. It is possible to fit either the R or P branch data to its appropriate

equation to obtain the rotational constants, but this has the drawback of effectively

ignoring half the data available. To fit all the data about a particular band to a single

equation, we must first come up with the functional form of that equation.

To understand how this will be accomplished, we need to first take a closer look at

the two relevant equations. Recall that in an R branch transition, J' = J"- 1, and in a P

branch, J' = J' + 1. Schematically, this can be represented by Fig. 6.3. The lowest
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value of the rotational quantum number (J) for the upper and lower states is zero.

Thus, as Fig. 6.3 shows, the smallest value of J" in the R branch is zero, while in the P

branch it is 1. Furthermore, as the figure shows, these transitions both progress

outward from some specific origin. This is where we qra able to obtain the equation

necessary to analyze the data.
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Figure 6.3 Energy /eve/ diagram of the fine structure of a Rotation- Vibration band.
The a line is the normal R and P numbering, while the b line is the m equation

numbering [5:112]
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We will employ a change of variable technique to modify both the R and P branch

equations. For the R branch, let m = J + 1, and for the P branch let m = -J. It can then

be easily verified that both branches can be represented by the equation

v= v0 +(Bv'+Bv")m+(Bv'-Bv'-Dv'+D )M 2

-2(Dn'±Dv")M 3 -(Dv'-Dv ")M' (6.6)

where v is the wavelength of the transition, and v0 is the sum of all the vibrational and

electronic energy terms. Thus, we now have a single series of lines for which there is a

missing line at m = 0 (see Fig. 6.3). This missing line, which corresponds to v = v0, is

called the zero line. It corresponds to the forbidden transition between the upper and

lower J = 0 levels. But more importantly, it is also called the band origin. Thus, where

the term value approach did not allow us to calculate the vibrational energy of the

bandhead, it has fallen out as a natural consequence of the direct aPproach.

Now that there is a new equation to use, it is time to apply it to the data at hand.

For example purposes, we will go back to the same v" = 1 to v' = 13 transition we

discussed in the term value approach. When the direct fit is applied to this band, the

coefficients contained in Table 6.2 are obtained. Upon comparison with the term value

approach, we see there is close agreement on the coefficients obtained for the single

band fit. The second value in the table comes from averaging the coefficients obtained

for each time either the v" =1 or v' = 13 level was used in a direct fit. Here we see good

agreement with the global term value approach on the BV term, but there is a fair bit of

disagreement on the rotational distortion term. Fig. 6.4 and Fig. 6.5 are comparisons
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Table 6.2 Table showing the B and D values calculated for the

v"= 1 to v'= 13 band by using the direct method on a single band

and by averaging all like coefficientsto obtain a single value

102 BV (cm") 108 D, (cm1)

Single Band Average Single Band Average
V = 13 5.1610 5.1623 4.8321 5.0221
v" = 1 8.1597 8.1627 1.8335 2.1808

std dev < 0.0016 std dev < 0.40

of how each set of these parameters fit the data. Once again, these graphs are plots of

the residuals of the observed wavelengths with respect to their predicted values plotted

against the lower state rotational quantum number.
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Figure 6.4 Differences in Direct fit on the v"=1 to v'=13 band
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Figure 6.5 Differences in the v"=I to v'=13 band using the

direct method on all bands and averaging the Coefficients

The single band direct fit is able to recreate the data very efficiently. Also, this time

the data is centered about zero. This is because the direct fit was able to provide the

location of the band origin. It is interesting to note that the differences observed in this

graph are for the most part located within +/- 0.01 cm1 of the zero reference line. Due

to the fact the resolution on the spectrometer was 0.02 cm1 we can feel confident the

direct approach applied to a single band is indeed an accurate portrayal of the data.

But again, we run into a problem trying to accurately represent all the transitions

that were observed. The fit to the data using the averaged values is poor compared to

the direct fit of a single band. This trend was apparent in all vibrational bands. Thus,

we are once again forced to conclude that there is a problem in our solution. This

problem could come from one of two directions. Either an Hv term is necessary, or
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there is some inherent problem with the method we are trying to employ. The former

hypothesis is easily tested. The result was that an Hv term did not improve the fit of

the data. Thus, we are forced to improve our methods of trying to fit an equation to the

data.

Global Least Squares Fit

Part of the problem with the previous two methods is that all the coefficients are

interrelated. It is not possible to remove the effects that one band has on all the other

bands when trying to find the best parameters to fit the data. Thus, as in the

representative band discussed already, the best coefficient for v'=13 is different

depending on what initial state we are starting from. Ideally, this should not be case,

but as mentioned earlier, we have imperfect methods for obtaining our data, and it is

now our task to come up with a way to deal with this situation.

The method that was employed to overcome the handicaps of the term value and

direct fit methods was to attempt a global least squares fit to the data. The

methodology behind this is simple and straightforward.

First, a best guess set of values for all the By's, Ds's and band origins were

collected. These values were the average values that were obtained from the direct

method applied to all the data. The assumption is made that none of the values are

such that they represent the best fit to the data at hand. The purpose here is to come

up with a set of coefficients that represent a better fit to the data. But, first the question
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must be asked as to what represents a better fit. It was decided that a better fit was

one that minimized the sum of the squared errors from the observed values.

A squared error for a single transition is defined as follows:

(Diff)2 = (LVobserved - V predicted )2 (6.7)

where v(predicted) is the wavelength of the transition predicted from the assumed

coefficients. This difference was calculated for each and every transition observed

(over 7000). These difference were summed together to give a single value. Since the

assumption is made that the initial rotational constants are not ideal, there must be

some set of number for which tnis sum can be made a minimum. This will happen

because as the best fit numbers are found, the predicted values will match closer and

closer with the observed values. As these two values converge, there difference gets

smaller and smaller. Thus, there is less and less to add to the sum, and we eventually

find the Least Squared Error.

To find these best fit coefficients, the sum of the squared errors (SSE) was first

calculated. Then, exactly one coefficient was varied by a small amount, and the SSE

was recalculated. If the new SSE was bigger, the assumption was made that the

coefficient was being changed in the wrong direction. This particular parameter was

then changed in the other direction, and the SSE was recalculated. This process of

changing the designated coefficient was continued as long as the SSE continued to

decrease. Once this was no longer possible, it was assumed the coefficient was at its

current best fit value. The whole process of varying a parameter was then started all
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over again on a new coefficient. This was continued until all coefficients had been

examined.

After varying all coefficients one time, it is assumed the first coefficients to be

varied probably needed further refinement. After all, numerous parameters had been

changed since they were optimized. Thus, the whole process of varying each

parameter was started over. This loop was continued as long as there was significant

reduction in the value for the SSE. The computer program written to accomplish this

task required three loops through this process to optimize the coefficients.

In order to better appreciate the effectiveness of this computer program, the

standard error (STE) was calculated. For the purposes of this paper, STE is defined by

the equation

STE = SSE (6.8)

where SSE is as defined previously and N is the number of data points (7749 transitions

for this experiment). Thus, standard error gives an approximate order of magnitude of

each calculated value from its observed value. The initial value for SSE while using the

averaged coefficients was 0.0198 cm1 . After three loops through the computer

program this value had dropped to 0.0077 cm 1 . Thus, a better fit has been

acromplished. Tables 6.3 and 6.4 contain a comparison of the rotational coefficients

obtained using the least squared error approach with the coefficients obtained by

Barrow.
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Table 6.3 Summary of the Rotational Constants (cm"1) for the X',Eg+ state of 79Br2

('9 Barrow's values for D are calculated from RKR procedures

X1Tzg* 102By 108DV(a)

v AFIT Barrow AFIT Barrow
0 8.1946 8.1947 2.1213 2.097
1 8.1626 8.1627 2.1813 2.108
2 8.1305 8.1304 2.2619 2.116
3 8.0972 8.0979 2.0869 2.135

Table 6.4 Summary of the Rotational constants

(cm-1) for the B 3H(Ou+) state 79Br2

B3rj(0 U) 10 2BV 108Dv

v AFIT Barrow AFIT Barrow
10 5.3674 5.3687 4.4341 4.40
11 5.3021 5.3039 4.8216 5.00
12 5.2344 5.2363 5.0933 5.20
13 5.1636 5.1644 5.1066 5.10
14 5.0925 5.0927 5.6597
15 5.0180 5.0181 5.9398
16 4.9407 4.9399 6.0445 5.50
17 4.8619 4.8626 6.4441 6.24
18 4.7813 4.7801 7.0000 6.49
19 4.6970 4.6979 7.1279 7.36
20 4.6109 4.6122 7.6625 7.74
21 4.5246 4.5230 8.7204 8.09
22 4.4329 4.4338 8.9753 8.98
23 4.3401 4.3404 9.6072 9.26
24 4.2438 4.2426 10.0580 9.63
25 4.1451 4.1453 10.5060 9.89
26 4.0470 4.0451 11.5610 10.96
27 3.9461 3.9444 12.6240 12.29
28 3.8405 3.8392 12.9260 12.30
29 3.7361 3.7338 14.2000 13.56
30 3.6293 3.6283 15.4110 15.08
31 3.5170 3.5184 15.6300 15.59
32 3.4069 3.4065 17.0330 16.81
33 3.2965 3.2944 18.8710 18.12
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For the most part, these values are in close agreement with values reported by

Barrow. The largest deviations tend to be in the values arrived at for Dv. This is true

for both the X and the B state. As a quick comparison to show that these global fit

numbers are indeed recreating the data, we will revisit the v"=l to v'=13 band that has

been used as an example earlier in this chapter. When the rotational coefficients listea

above are put in the Dunham expansion and the residuals of the v"=l to v'=13

rotational transitions are plotted as a function of the lower state rotational quantum

number, the result is seen in Fig. 6.6.
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Figure 6.6 Plot of the residuals of the v"= I to v'= 13

band when global fit rotational coefficients are used

This figure shows a marked improvement over the other two attempts at a global fit.

Virtually all residuals are located in a band that is only 0.02 cm-1 wide. Considering this

is the resolution of the spectrometer used, attempts at a tighter fit would be pointless.
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Other bands observed had the same tendency for small residuals. Thus, we can now

assume that for the data taken in this experiment, a two term expansion of the

rotational part of the Dunham expansion is adequate to represent the data.

As far as the actual values that were obtained, all of them except one trend very

nicely with what is predicted by theory. All the Bv terms are decreasing as the vibration

level increases. As this term is related to the actual rotation of the molecule, this is

expected. At higher vibration levels, the average moment of inertia of the system is

larger, and this will tend to decrease the rotational energy. But, the increasing

vibrations of the molecule have an opposite effect on the distortion terms. All of them,

except for the v"=4 Dv term, are increasing as the vibrational level increases. We

would expect this term to get larger As the vibration of the molecule increases, the

average separation of the nuclei is greater. Thus, since this term is subtracted from the

rotational energy, we would expect there to be a larger correction to the rotational

energy because of the increased average moment of inertia. Thus, the one anomalous

value of Dv is probably in error. After examining the data, a reason for this could not be

found.

Rotational Expansion

As was mentioned in the theory section of this paper, the rotational coefficients are

coupled to the vibration level of the molecule. This is because of the non-rigid rotor

process within the motion of the system. What that means at this point is that we are

still not finished with the rotational coefficients. B, and DV can each be represented as
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a polynomial expansion in (v + 1/2). If we can find the correct coefficients on these

expansions, then we can represent the rotational terms of all vibration levels

mathematically.

To accomplish this is a relatively simple process. A least squares fit was

accomplished on both BV and DV for each electronic state. The goal of this fitting

process was to find the number of terms necessary to accurately represent the data.

Due to the fact diatomic bromine has an anharmonic potential, no expansions with less

than three term were considered. Also, since there were only four levels observed in

the X state, it would have been pointless to consider more terms than this for its

expansion. The following paragraphs will present a discussion of how the appropriate

number of terms was derived.

For starters, the final solution to the question being asked was that three terms were

necessary for the Bv expansions and four terms for DV in the X state and five terms

were necessary for both expansions in the B state. Using these coefficients, the final

STE was 0.0086 cm1 . This compares very favorably with the value of 0.0077 cm1 .

arrived at by using just the rotational terms. Also, the largest residual calculated with

these coefficients was approximately 0.05 cm1 . This value appears to be a little large

for comfort. As this value showed up several times while different numbers of

coefficients were tested, it is assumed this particular measurement was probably in

error. As far as the X state goes, the Dv term was the easiest to determine the number

of coefficients necessary. As previously stated, the v"=3 term did not trend as
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expected. Accordingly, it was necessary to use four terms in the expansion to

completely specify the system. Thus, reproduction of the exact Dv terms was assured.

There were only two choices regarding the number of terms for the X state BV

Either use three or four terms. The choice here made little difference on the solution.

When four terms were used, the value of the STE only decreased to 0.0083 cm1 . The

maximum residual was still approximately 0.05 cm1. The decision to use the three

term expansion was prompted by the standard deviation of the coefficients from the

least squares fit. For the four term fit, the deviation on the fourth coefficient was larger

than the coefficient itself. Because this term could not be determined with any certainty

and because the change in the STE was minuscule, the three term fit was accepted.

As for the B state, the same analysis was used. There was a marked improvement

in the STE when the Bv expansion went from four to five terms. With four terms, the

STE jumped all the way to 0.02 cm-1 and the maximum residual increased to 0.08 cm1 .

The standard deviations were of approximately the same order of magnitude with

respect to their corresponding coefficient. As for the Dv expansion, there was not a

clear best choice. As the number of terms was varied, the first term in the expansion

varied wildly. Thus, it was basically a gut feel that made the decision to use five terms.

To illustrate this point is the fact that the standard deviations in this expansion were all

of the same order of magnitude as the actual coefficients.

The final solution is seen in Table 6.5. For ease in writing the coefficients, they will

be labeled with a lower case number to designate to which expansion they belong.
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Also, they will be given a number to correspond to what power of (v+1/2) they are

coupled to. Remember, the sign on the second term is negative.

Table 6.5 Rotational Molecular Constants (cm-1 )

for the 79-79 isotope of Diatomic Bromine

B3H-(0,U+) xlE g*

bl 5.97638 +/- 0.02 E-02 8.21020 +/- 0.00 E-02
b2 5.42374 +1- 0.45 E-04 3.11300 +1- 0.05 E-04,
b3 1.47381 +1- 0.33 E-07 -3.25000 +/- 1.22 E-06
b4 -4.05763 +/- 1.04 E-07
b5 5.12229 +/-1.18 E-09

d 1 6.07526 +1- 6.14 E-08 2.18534 +-0.00 E -08
d2 5.74659 +/- 1.26 E-09 2.25292 +1- 0.00 E -09
d3 5.53281 +1- 6.61 E-07 2.17450 +1- 0.00 E -09
d4 -1.62072 +1- 2.93 E-1 1 -4.60333 +1- 0.00 E -10
d5 2.42843 +/-3.32 E-13

Vibrational Bandhead analysis

Now that we know the coefficients to adequately represent the rotational spectrum,

it is time to turn to the locations of the vibrational bandheads. As a brief reminder, let's

first look at the equation that expresses these locations. It is

= (6.9)

where v. is the band origin, and for the case of the ground state electronic energy, Te"

= 0.0. As in the case of the equations used to expand the rotational coefficients, the
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values for Gv are also polynomials expanded in terms of ( v + 1/2 ). Our goal, is to

come up with the coefficients that will allow these polynomial expansions to fully

represent the data.

The data that is to be represented is contained in Table 6.6. This table contains the

Table 6.6 Summary of vibrational Molecular constants (cm-1)

as derived in this study and as reported by Barrow.
Present Work Barrow

T(v,J=0) T(v,J=0)
V

10 17308.670 17308.65
11 17436.870 17436.89
12 17561.160 17561.14
13 17681.500 17681.50
14 17797.838 17797.88
15 17910.135 17910.18
16 18018.355 18018.37
17 18122.480 18122.45
18 18222.480 18222.46
19 18318.344 18318.33
20 18410.078 18410.07
21 18497.673 18497.66
22 18581.150 18581.13
23 18660.530 18660.52
24 18735.866 18735.86
25 18807.190 18807.20
26 18874.560 18874.56
27 18938.057 18938.04
28 18997.747 18997.73
29 19053.722 19053.71
30 19106.080 19106.05
31 19154.920 19154.90
32 19200.337 19200.32
33 19242.460 19242.44

V,
0 0.000 0.00
1 323.148 323.16
2 644.121 644.14
3 962.907 962,94
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values of T(v,J=0), which is the vibrational term value relative to the X state (v"=0,J=0).

For the ground state, G(v)=T(v,J=0)+ 162.39 cm"1, and for the excited state G(v) =

T(v,J=0) - 15470.08 cm1. These values will reproduce all band origins to within +/-

0.01 cm1. These values are compare with those of Barrow's work derived in a similar

manner.

To find the coefficients of the expansion, it is possible to first use a term value

approach to isolate either the upper or lower state coefficients. But, as can be recalled

from earlier in this section, this method does not always produce the best fit

parameters. Suffice it to say that this method was attempted on the vibrational

bandheads and it met with unacceptable results. As was already pointed out, one way

of dealing with a situation like this is to try a global least squares fit on the dat3 With

minor modifications, the computer program written to analyze the rotational results

could be used for the vibrational analysis. It was unknown how many terms were

needed in each expansion to adequately model the data. After some trial and error on

the computer program, it was possible to reproduce all vibrational band origins to within

0.03 cm' by using five terms on the expansion of the excited state and three terms in

the expansion of the ground state. The use of these coefficients degraded the

accuracy of the model somewhat. The STE was 0.0159 cm1 when these coefficients

were used. An attempt at a fourth term in the X state expansion gave results no better

than those previously mentioned. In contrast, fewer terms on the excited state

expansion reduced the accuracy of the model even further, while trying to add a sixth

term made the model go unstable (i.e. the terms experienced a large variation from
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previous value). The terms that were derived are listed in Table 6.7. The convention

on these terms is similar to the convention used in Table 6.5. This time, the common

term is listed as a lower case g.

Table 6.7 Electronic and Vibrational Constants (cm-1)

to fit the vibrational levels v"=O-3 with v'=10-33

B3FI(Ou) XYg÷

T 15748.886 0
gI 165.05772 325.32668
g2 1.35975 1.09042
g3 -2.27005 E -02 2.52659 E -04
g4 2.19041 E -04
g5 1.60489 E-06

It needs to be pointed out that just as in Barrow's previous work, this effort was

unable to reproduce the vibration band origins to within 0.02 cm1 for the B state levels

greater than ten. One possible explanation for this deals with the crossing of the

repulsive 1 f- state. At vibration levels greater than four in the excited state, An

interaction begins between the bound and repulsive states. Thus, the anharmonic

nature of the bound state is disturbed. The model being used in these calculations

does not take this into effect. Thus, it is reasonable to assume that these interactions

are part of the reason the model is not working properly.
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VII. Discussions and Recommendations for Future Work

Introduction

This final section discusses the results achieved and suggest possible future efforts

that could be made in this area. As the results of the different fit models have already

been presented, it will not be given again here. Instead, this discussion will focus on

the meaning of what's been observed.

Discussion

The original aim of this work was to derive a set of molecular constants that when

substituted back into the Dunham Equation would fully represent the data. This goal

was at least partially successful. The rotational analysis provided a better fit to the

data than was previously seen in the work by Barrow. A good example of this can be

seen in Figs. 7.1 and 7.2. These figure are plots of the residuals of the v"=2 to v'=18

absorption band using first Barrow's coefficients, and then the best fit numbers

obtained in this research.

In the graph plotted with Barrow's data, the high rotational numbers have a trend

away from a straight line. The trend is growing more pronounced as J gets larger. This

trend was evident in all vibrational bands observed. Generally speaking, the move

away from a zero reference line began around J"=50 in all bands. The cause of this

could come from one of two areas. Either the data is in error, or the model used by
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Barrow was inappropriate for high J. Since the same general behavior was seen in all

bands, this leads to the conclusion that refinement of the rotational coefficients is

warranted. The cause of the inferior fit is probably due to the earlier work seeing fewer

rotational transitions than was seen in this work. One other potential problem area

arises because Barrow's B state rotational coefficients, derived in a direct fit process,

were calculated based off constrained values of the ground state rotational coefficients.

By constraining these two terms, he effectively limited the ability of his model to reach a

minimum error.

The residuals when the data from this effort was used are all tightly clumped about

zero. This is an indication that the correct model is being used on the data as

observed. The plot in Fig 7.2 was done using the term value for the vibrational bands

and not the Dunham Expansion calculation. For this band, it would have made no

difference. This was one of the vibrational bands fit to less than 0.01 cm1 of its

observed value. If it had been one the bands that could not be matched as closely, the

spread of the data would not have changed, just its position the plot, indicating a

systematic error.

Another observation of the plot with Barrow's coefficients is that the residuals do not

start out near zero. This was another trend that was seen in most of the vibrational

bands. Since the residuals stay constant all the way out to J' = 50, the conclusion

must be reached that there is some discrepancy between the actual location of the

vibrational bandhead and its location as predicted Barrow's work. By using the results
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of the direct approach on each specific band, more accurate values of the vibration

bandhead locations have been found.

As was pointed out in Chapter V1, the most accurate way to locate the vibrational

bandheads is by direct use of the different vibration levels origins. The vibrational

expansion induces error into the equation. This occurs because the imperfect nature of

the polynomial fitting process is more pronounced for calculating these bandheads.

The question should be raised as to whether or not the fitting routine used on the

vibration levels was actually performing correctly. This routine was applied to Barrow's

data over the ranges he said he could achieve a good fit. All the coefficients derived

agreed with Barrow's to less than 0.001 cm1 . The question might be raised as to

whether Barrow's coefficients, or the ones achieved in this research are actually more

correct. When the coefficients from this research were extrapolated back to the v"=O to

v'=O bandhead, there was almost an 8.0 cm1 deviation as compared to the data

collected by Barrow. The only conclusion that can be reached here is that vibrational

levels less than v' = 10 need to be observed in order to attempt an accurate fit.

In summary, it can be concluded from this research that refinement of the rotational

coefficients is warranted. A superior fit of rotational transitions has been achieved.

Presently, there is not enough data available make any conclusion about the

vibrational levels or energy spacing.
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Recommendations

Several tasks can be accomplished to provide better molecular constants for the

B 3 (0ou) to X ' 9 + system of 'Br'Br. First, several test runs should be done to validate

the results achieved here. After this, absorption out of more of the ground state

vibration levels and to more of the B state levels should be observed. Currently, a 1.5

meter absorption cell has been built to the same specifications as the 25 cm cell used

in this research. In the ground state of bromine, each successive vibration level

contains approximately one fifth as many particle as the previous level. Since this new

cell is six times as long, it will allow access to at least one, and possibly two more

ground state vibration levels. This assumption is made because bandheads for both

v" = 4,5 were identified but not accurately located.

Another way to increase the population in the ground state levels is by heating the

sample. The Boltzmann distribution of the energy level populations as a function of

temperature show that when the sample is heated to approximately 400K, there is now

sufficient population in the vibrational levels to accurately observe two to three

additional levels for the 1.5 m cell. This would take the observable ground state

vibrational levels to somewhere between six and eight. If the cell can handle an

additional 100 K, then vibration levels up to v"=10 are achievable. These temperature

values compare favorably to the work done by Coxon [3] who was able to observe v=8

at 520 K when using a 55 cm cell. Accessing these levels provides another benefit.

Due to the Franck-Condon principle, these higher v" levels are necessary to observe
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transitions to the lower v levels. These efforts would provide the data necessary to

attempt a global fit on the data using a much larger database.
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