
AD-A273 863
AFIT/ENC/GCS/93D-1f I111 Ni

DTIC
E.LE. C1T

DS 1,- 1993

A

AIR POLLUTION TRANSPORT

MODELING

THESIS
David Michael Paal

Captain, USAF

AFIT/ENC/GCS/93D-1

93-30503

Approved for public release; distribution unlimited

k ?a
4)) f;*

AFIT/ENC/GCS/93D-1

AIR POLLUTION TRANSPORT

MODELING

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the Accesion Fort
NTIS CRA&I[-

Requirements for the Degree of DTIC Tfi,

Master of Science (Computer Systems) Jut,' , .

B y-- -----------

Di t

David Michael Paal, B.A.

Captain, USAF Dist i i'ai

December 1993

Approved for public release; distribution unlimited

Acknowledgements

I would like to thank the following people for their help in making this thesis

effort a success: First, special thanks to Dr. Dennis Quinn, my thesis advisor, for

his guidance, patience, and support over the last year and a half. His knowledge and

guidance were immeasurably helpful in this thesis effort. I would also like to thank

Major David Coulliette, a committee member, for his help and advice in the area of

numerical methods. Discussions held with him on various other subjects were also

very encouraging. My thanks to Dr. Henry Potoczny, a committee member, for his

reviews of the thesis.

Finally, and most importantly, my most sincere and heartfelt thanks to Teresa

Lesiak, my fiancee, for her love, and support during the last ',ear. Her encouragement

has given me the confidence to pursue this degree with all my effort.

David Michael Paal

ii

Table of Contents

Page

Acknowledgements ii

List of Figures vi

List of Tables vii

Abstract viii

I. Introduction 1-1

1.1 Background 1-1

1.2 Problem 1-1

1.3 Summary of Current Knowledge 1-2

1.4 Scope 1-2

1.5 Approach 1-3

1.6 Materials and Equipment 1-3

1.7 Summary of Thesis 1-4

II. Literature Review 2-1

2.1 Introduction 2-1

2.2 Trajectory plume model 2-2

2.3 Lagrangian plume model 2-2

2.4 Numerical and approximate solutions 2-3

2.4.1 Plume rise model solution method 2-3

2.4.2 Advection equation solution methods 2-3

2.4.3 Diffusion equation solution methods 2-4

2.4.4 Advection-Diffusion solution methods..... 2-4

iii

Page

2.5 Limits of air pollution modeling 2-5

2.6 Conclusion 2-5

III. Methodology 3-1

3.1 Introduction 3-1

3.2 Description of Gaussian plume models 3-1

3.2.1 The SCREEN model 3-1

3.2.2 The AFTOX model 3-2

3.2.3 The GAUSPLUM model from this research. 3-4

3.3 Description of example problems 3-6

3.4 Mathematical models 3-7

3.4.1 The advection equation: 3-7

3.4.2 The 1-D advection-diffusion equation: 3-10

3.4.3 The 2-D advection-diffusion equation- 3-11

3.4.4 The 3-D advection-diffusion equation: 3-13

3.4.5 Steady state equation 3-16

3.5 Conclusion 3-17

IV. Results 4-1

4.1 Introduction 4-1

4.2 Comparison of Gaussian models 4-1

4.3 Results and comparison of exact solutions 4-4

4.3.1 Advection equation 4-6

4.3.2 1-D advection-diffusion equation 4-8

4.3.3 2-D advection-diffusion equation 4-11

4.3.4 3-D advection-diffusion equation 4-15

4.3.5 Steady state equation 4-20

4.4 Conclusion 4-23

iv

Page

V. Conclusion and Recommendations 5-1

5.1 Conclusion 5-1

5.2 Recommendations 5-1

Appendix A. GAUSPLUM Ada Code A-i

Appendix B. Numerical solutions Ada code B-1

B.1 Advection Equation Ada Code B-2

B.2 I-D Advection-Diffusion Equation Ada Code B-8

B.3 2-D Advection-Diffusion Equation Ada Code B-15

B.4 3-D Advection-Diffusion Equation Ada Code B-23

B.5 Steady-State Equation Ada Code B-35

Appendix C. 1-D diffusion and 3-D steady state equations C-1

C.1 The Diffusion Equation: C-1

C.2 3-D Steady State Equation C-2

Bibliography BIB-1

Vita VITA-1

List of Figures
Figure Page

4.1. Partial output of SCREEN program for problem 2 4-4

4.2. Partial output of AFTOX program for problem 2 4-5

4.3. Lax-Friedrichs solution of advection equation 4-6

4.4. Leapfrog solution of advection equation 4-7

4.5. Lax-Friedrichs solution with A = 1.6 4-8

4.6. Test case 6 4-10

4.7. Test case 10 4-10

4.8. 2-D test case 5 4-13

4.9. 2-D maximum concentration 4-14

4.10. 2-D test case 12 4-14

4.11. 2-D oscillating solution 4-15

4.12. 3-D test case 3 and exact solution 4-17

4.13. 3-D case 2,3,4 and exact solution 4-17

4.14. 3-D case 1 with source term 4-19

4.15. 3-D case 2 with source term 4-19

4.16. 3-D case 3 with source term 4-20

4.17. Steady state case 1 4-21

4.18. Steady state case 3 4-22

4.19. Steady state case 4 4-22

4.20. Steady state comparison 4-23

vi

List of Tables
Table Page

4A1. Comparison of concentrations at given point 4-2

4.2. Comparison of maximum concentration calculations 4-2

4.3. 1-D advection-diffusion test data 4-9

4.4. 2-D advection-diffusion test data 4-11

4.5. 3-D without source term 4-16

4.6. 3-D with source term 4-18

4.7. 2-D steady state data 4-21

vii

AFIT/ENC/GCS/93D- 1

Abstract

This research effort addresses modeling of the transportation of air pollution in

the atmosphere and the numerical analysis of the partial differential equations used

in such modeling. Three Gaussian models are examined and compared using example

problems. Several finite difference schemes are developed to solve the partial differ-

ential equations used in air pollution transport modeling. This study examines three

Gaussian models: SCREEN, AFTOX, and the program GAUSPLUM. The model

GAUSPLUM is developed in this study and uses the Ada programming language

and the analytic solution to the advection-diffusion equation. Numerical analysis

of several of the partial differential equations (PDE) used in air pollution modeling

is also examined. The equations are generally parabolic or hyperbolic PDE's. The

following are examined in this research: the advection equation; the one-, two-, and

three-dimensional advection-diffusion equations; and the two-dimensional steady-

state equation.

viii

AIR POLLUTION TRANSPORT

MODELING

L Introduction

1.1 Background

During the last decade there has been an increasing public interest and concern

about environmental issues, in particular, air pollution. Zannetti (29) stated some of

the issues of interest: 1) the "greenhouse" effect, which could cause an increase in the

earth's average temperature due to increasing concentrations of carbon dioxide in the

atmosphere; 2) the possible depletion of the ozone layer, a natural screen of harmful

solar radiation, by certain pollutant species emitted by anthrGpogenic activities; 3)

indoor air pollution, such as asbestos and radon gas; 4) nuclear disasters, especially

after the Chernobyl disaster; 5) atmospheric visibility and its impairment by air

pollutants; and 6) risk assessment, especially in the prevention of accidental releases

of toxic pollutants. One of the simplest air pollution transport models is a plume

model (more specifically, a Gaussian plume model). Many air pollution plume models

have been developed to determine the concentrations of pollutants in the air and the

overall quality of the atmosphere. These plume models are mostly "specific" in

nature; that is they were developed with a specific pollutant, source of pollutant, or

change of concentration in mind.

1.2 Problem

Plume models have been used extensively in determining and predicting changes

in concentrations of air pollutants. Most models use analytical solutions to the par-

tial differential equations used in pollution modeling in their calculations. This study

1-1

will analyze the following Gaussian plume models: SCREEN (10), AFTOX (19), and

GAUSPLUM (the progra. developed in this research), all of which use analytical

solutions in the~r ca,- 'lations. This study will also calculate numerical solutions of

the advection, steady state, and advection-diffusion equations using finite difference

methods in an attempt to get solutions in cases of low wind speed which the Gaussian

plu.ae model does not handle.

1.3 Summary of Current Knowledge

Since the middle 1980s, researchers have addressed the cause and effect re-

lationships derived from air pollution models in general (20). The results of this

research has sparked interest in studying cause and effect relationships in plume

modeling and specifically in urban areas. Much work has been done on plume rise

and diffusion models, (14, 15, 21) and on modeling pollution in an urban environ-

ment (9, 8). There have also been studies conducted which evaluated and verified

mathematical models, and these studies will be further discussed in Chapter 11.

1.4 Scope

It is not the intent of this study to completely explain all plume models or all

air pollution transport models. Such an explanation would be beyond the scope of

this thesis. The thesis is limited to the study of some specific plume models. The

scope of this research is limited to the following:

"* The development of a basic pollutant transport model using the Ada program-

ming language.

"* A description of the mathematical aspects of air pollution transport models.

"* An analysis and comparison of the numerical results of the models.

"* Conclusion reached from the results, and any recommendations made for future

research.

1-2

1.5 Approach

The basic approach taken in this research follows:

1. This study describes the general mathematical formula, the Gaussian plume

equation, used in plume models.

2. The research examines the specific differences among the models and how the

geneial model was modified as a result of such differences. Most of the differ-

ences are due to where the model is intended to be used, and how conservative

the user wants to be. Location, terrain, climate, and type of source are also

criteria specific to each model.

3. Example problems will then be applied to the models and a comparison of the

results will be conducted.

4. The research will evaluate several finite difference 9ehemes and apply them to

solving the advection equation, the one-, two-, and three-dimensional advec-

tion-diffusion equations, and the two-dimensional steady state equation.

1.6 Materials and Equipment

The SCREEN model used in this research was obtained from the United States

Department of Commerce, National Technical Information Service, Computer Prod-

ucts Division in Springfield, Virginia via the United States Environmental Protec-

tion Agency's Support Center for Regulatory Air Models Bulletin Board System

(SCRAM-BBS) with the Bulletin Board number (919) 541-5742. AFTOX was ob-

tained from faculty in the physics department at the Air Force Institute of Technology

(AFIT).

The computer facilities at AFIT are sufficient to run the software models used

in this research. No other computer equipment or support is needed.

1-3

1.7 Summary of Thesis

The organization of this thesis follows:

Chapter II gives an overview of current literature concerning plume models,

and numerical solutions to advection and diffusion equations.

Chapter III discusses the overall methodology of this -esearch in plume mod-

eling including the numerical methods used to find solutions to the advection and

diffusion equations.

Chapter IV shows the results of the research and discusses the comparisons

made.

Chapter V discusses the conclusions derived from this research and recommen-

dations for .atute research.

Appendix A contains the Ada source code for the basic plume model, GAUS-

PLUM, developed in this research.

Appendix B contains the Ada source code for the advection and advection-

diffusion equations.

Appendix C describes the one-dimensional diffusion equation, and the three-

dimensional steady state equation.

1-4

II. Literature Review

2.1 Introduction

This literature review examines current research in the areas of pollution mod-

eling and methods of finding numerical solutions of the advection and diffusion equa-

tions. Equatikn (2.1) shows the three dimensional advection-diffusion equation on

which most models are based.

ac _ c a 2c " 2c a2c(21
-+fz--k-+ky +k,(2.1),9 9X ',9X 2 + 9 by2 + 9Z2--

Various approaches to air pollution plume modeling are described in the lit-

erature (14, 7). This review addresses the Gaussian and Lagrangian plume models.

The Gaussian plume model is the most common air pollution model used because

of its relative ease of use with easily measurable meteorological parameters (29).

One use of the Gaussian plume equation is found in the trajectory plume model.

Okamoto's research of trajectory plume modeling (22), and Schohl's research of La-

grangian plume modeling (24) is addressed in this literature review. A variety of

numerical and approximate solutions to plume modeling are also described in the

literature (13, 17, 16, 23). This literature review will also look at some numerical

methods and some of the limits of pollution modeling.

Two terms that need further definition are stability condition and stability

class:

A stability condition is a constraint that is put on variables in a solution

method. When the value of the variables are in the range of the constraint then

small changes in the variables produces small changes in the results and the method

is said to be stable (3).

A stability class is a parameter used to represent the atmospheric conditions

(ranging from extremely unstable to extremely stable, A to G). It is determined

2-1

using the standard deviation of the horizontal wind direction fluctuation and the

wind speed at 10 meters in meters per second. See Turner's workbook (27) or Table

3 in the AFTOX User's Guide (19) for classifications.

Stability condition and stability class are common terms used in the analysis

of air pollution transport modeling.

2.2 Trajectory plume model

Among the different models used for calculating pollutant concentrations, a

Gaussian plume model is the most common. The Gaussian plume model is based

on a formula that describes the three-dimensional pollutant concentration generated

by a point source under stationary meteorological and emission conditions (22, 27).

Its calculation error becomes a serious problem under weak, variable-direction wind

conditions. It is for this reason that Okamoto's (22) research of a trajectory plume

model or a plume segment model was conducted. This model treats time varying

transport conditions and changes in wind direction and speeds. In the segmented

plume approach, the plume is broken up into independent elements (plume segments

or sections) whose initial features and time dynamics are a function of emission

conditions and local meteorological conditions encountered by the plume segment

(29:165-7). Segments are sections of a Gaussian plume. Therefore, the concentra-

tion of air pollution for each segment can be calculated using the Gaussian plume

model. The trajectory plume model then adds segments together to get concentra-

tion distributions over the entire plume.

2.3 Lagrangian plume model

Another model which uses segmented plumes to calculate concentrations of air

pollutants is the Lagrangian box model. The Lagrangian box model breaks the plume

into boxes (segments), each of which follows the average wind flow. Because the boxes

move with the average wind flow, the Lagrangian box model provides concentration

2-2

outputs along trajectories and consequently comparisons with concentrations at fixed

grid points of traditional finite difference or finite element solutions are difficult (29).

Schohl (24) discusses an interpolation method to use in a Lagrangian scheme:

"Lagrangian schemes for numerical approximation of concentration a-
mounts are capable of providing satisfactory accuracy with minimal com-
putational effort. The overall accuracy of these schemes is dependent on
the interpolation method used to obtain the approximation." (24)

Schohl's (24) research shows that the cubic-spline interpolation method is one which

provides better than average accuracy to the Lagrangian model. For more informa-

tion on cubic spline interpolation see references (3:126-7) and (28). This interpolation

provides a fourth order approximation with minimal computational effort.

2.4 Numerical and approximate solutions

2.4.1 Plume rise model solution method. Krishnamurthy (18) states that

little seems to have been published which gives useful guidelines concerning the

accuracy of approximations used in air pollution transport models. In fact, he says

"In general, the application of plume models requires numerical solu-
tions of the governing conservation equations which are highly non-linear.
Rather than obtain such "exact" solutions it is easier to use various ap-
proximations to them. Sometimes, however, the accuracy of such ap-
proximations relative to the exact solution is quite uncertain." (18:2083)

Krishnamurthy's research calculates numerical solutions using the plume rise model

of Hoult, Fay, and Forney (15). Various asymptotic approximations are assessed over

a wide range of parameters. Mass, momentum, energy, turbulence, temperature,

and wind speed and direction are the parameters used in these approximations.

Comparisons of the numerical and approximate solutions are made and shown to

agree over a fairly wide range of the parameters.

2.4.2 Advection equation solution methods. Many methods are described

in the literature which numerically solve partial differential equations. In partic-

2-3

ular, Chock, in "A Comparison of Numerical Methods for Solving the Advection

Equation-I, II, and III"(4, 5, 6) compares several algorithms and variations of each

which are used for solving the two-dimensional advection equation which is

ac ac V ct + + =+0a(2.2)

where c is the concentration, and u and v are the x and y components of the wind

speed.

The methods are compared in terms of accuracy, speed, and storage require-

ments. Recommendations are made in the articles as to how useful the methods

would be for air quality modeling.

2.4.3 Diffusion equation solution methods. There are also many techniques

in the literature for solving t, Atmospheric diffusion equation

Oc 02c 02c _ 2 cS= k. -92C + kv a2c + k, -92C (2.3)

where in equation (2.3) c is the concentration of the pollutant in question and

k•, ky, and k, are the x, y, and z diffusivity terms respectively. McRae, Goodin, and

Seinfeld look at several techniques for solving both the advection equation (2.2) and

t :diffusion equation (2.3) in their one-dimensional form in "Numerical Solution of

the Atmospheric Diffusion Equation for Chemically Reacting Flows" (21).

2.4.4 Advection-Diffusion solution methods. The one-dimensional advec-

tion-diffusion equation, or as Strikwerda (26:129-31) calls it, the convection- diffusion

equation, is

Oc Oc 02ca---t + i - = k 2-- (2.4)
at ax ýX2

2

2-4

where c is the concentration, U is the advection coefficient and k. is the diffusivity

coefficient. Strikwerda looks at this equation two ways; one way using a substitution

of y = x - it with w(t, y) = c(t, y + Ut), and the other way using the forward-time

central space finite difference method (see Section 3.4.2 for this method).

2.5 Limits of air pollution modeling

Numerical and approximate solutions may agree over a wide range of parame-

ters, but the limits of meteorological modeling can lead to uncertainty in atmospheric

parameters such as turbulence, wind and temperature. This can lead to uncertainty

in the models that use these parameters. The Gaussian plume model doesn't per-

form well when the wind is weak, and an uncertainty in the wind parameter can

add to this poor performance. Benarie (1) states that "turbulence is a meteorolog-

ical quantity that can only be approximated and then only in the most ideal cir-

cumstances". Meteorological conditions are inherently variable and this variability

causes an uncertainty in the accuracy of meteorological parameters. Plume models

which incorporate these parameters inherit this uncertainty. Therefore, numerical

and approximate solutions of air pollution models are dependent on the limits of

meteorological modeling used to calculate the parameters for pollution models.

2.6 Conclusion

Trajectory plurnme i-, leling and Lagrangian plume modeling both use segmen-

tation of pollution plumes in their calculation of pollutant concentrations. The

trajectory model uses the Gaussiani plume equation to calculate the concentra-

tion in each segment. The Lagrangian model uses interpolation methods for cal-

culations between segments. Many methods for solving advection, diffusion, and

advection-diffusion equations used in these models are found in the literature includ-

ing, the plume rise model, several advection equai,],.n solution methods in Chock's

research, techniques to solve both oi -,-. knensional advection and diffusion equations

2-5

in McRae's research, and methods used by Strikwerda to solve the one-dimensional

advection-diffusion equation. However, the accuracy of these numerical and approx-

imate solutions are dependent on the parameters used in the models. Much more

research is needed in the areas of numerical and approximate solutions and the de-

termination of the parameters used in pollution models. This thesis will use finite

difference methods to solve these equations.

2-6

III. Methodology

3.1 Introduction

The purpose of this study is to examine air pollution transport models and the

partial differential equations used in air pollution modeling. This research examines

the following models: SCREEN (10), AFTOX (19), the program GAUSPLUM de-

veloped in this study, and numerical schemes used to solve the advection, diffusion,

two-dimensional steady state, and one, two and three dimensional advection-diffusion

equations.

The programming language, a brief description of the capabilities, and the

mathematical equations used in SCREEN, AFTOX, and GAUSPLUM are discussed.

The two primary capabilities used in this research include finding the concentration

of a pollutant at a given location, and finding the location and value of the maximum

concentration. A comparison of these capabilities in each model is done using six

example problems taken from the Workbook of Atmospheric Dispersion Estimates

(27). These problems are described in detail below.

The Lax-Friedrichs and leapfrog finite difference methods will be used on the

one-dimensional advection equation. The forward-time central-space finite difference

method will be used on the advection-diffusion equations.

3.2 Description of Gaussian plume models

This section describes the SCREEN and AFTOX models, and the GAUSPLUM

model developed in this research.

3.2.1 The SCREEN model. SCREEN is written in FORTRAN program-

ming language. SCREEN estimates pollutant concentration from continuous sources

using a Gaussian plume model that incorporates source-related factors, such as emis-

sion rate, stack gas temperature, stack height, stack inside diameter, and stack gas

3-1

exit velocity, and meteorological factors, such as ambient temperature, wind speed

and direction. The Gaussian model equations are described in Turner's workbook

(27).

The basic equation, for determining ground-level concentrations under the cen-

terline of the plume, used in the SCREEN model (10) is:

c = [q/(27ru~aya.)j .(exp[-!((z, - hý)/oz)I]

+ exp[-!((z, + he)/0z)2)

+ ENv=, [exp[-½((z• - h, - 2Nzi)/la,) 21

"+ exp[-!((zr + h, - 2Nzi)/u•)2 (

"+ exp[- ((z - he + 2Nzi)/az) 21

"+ exp[-!((z, + he + 2Nz,)/uz) 2]])

where

c = concentration (g/m 3)

q = emission rate (g/s)
- = 3.14159
u. = stack height wind speed (m/s)
orv = lateral dispersion parameter (m)
a, = vertical dispersion parameter (m)
z =receptor height above ground (m)
he plume centerline height (m)
zi = mixing height (m)
k = summation limit for multiple reflections of plume
off of the ground and elevated inversion, usually < 4

This equation accounts for the multiple eddy reflections from both the ground

and the stable layer (zn) and was suggested by Bierly and Hewson (2). The derivation

of equation (3.1) is discussed in Section 3.2.3.

3.2.2 The AFTOX model. AFTOX is a program written in the Basic pro-

gramming language. The two parts of the USAF Toxic Chemical Dispersion Model

3-2

(AFTOX) used in this research are the calculation of the toxic chemical concentration

at a specific location arna the strength and location of the maximum concentration.

Refer to AFGL-TR-88-0009 (19) for further uses of the model. AFTOX uses the

Gaussian puff equation, and the Gaussian plume equation in its calculations. These

equations assume a Gaussian distribution of concentration and conservation of the

pollutant during transport and diffusion.

The AFTOX model uses three basic models, the Gaussian puff equation (see

eq.3.2), the Gaussian puff equation when an inversion is present (see eq.3.3), and the

Gaussian plume model (see eq.3.4).

The Gaussian puff model is

c(x,y, z,t- i) = [q(i)/((27r)3/I2o.oyoz)]

-exp[- 1((x - u(t - i)) r-A (3.2)
.exp[-(y.y l,•)212]

• (exp[-!((z - H)/I,) 2I + exp[-!((z + H)/o,)2])

where

c is concentration in the puff at (x,y,z) at (t - 1)
q is total mass of the puff
u is wind speed at 10m
c. is downwind dispersion parameter
ay is lateral dispersion parameter
a, is vertical dispersion parameter
t is total elapsed time of pollution emission
1 is time of puff emission
(t - i) is elapsed time since puff emission
H is height of the source.

3-3

The Gaussian puff model with an inversion has the addition of the following

expression to the last two terms of equation (3.2)

EN(exp[--((z- n - 2NL)/az) 2 ±+exp[-!((z + H - 2NL)/uz)(]+2 2)2] (3.3)
exp[-!((z - H + 2NL)/az)2] + exp[-!((z + H + 2NL)/oa) 2]).

where L is the mixing layer height and N is the number of reflections caused by the

inversion. This equation is similar to equation (3.1) used in the SCREEN model.

The Gaussian plume model used in AFTOX is

q 1 1 z-H 2 1 z+H.2

C*=uq .exp- -(-)2] (exp[- ()2] +exp[---(z) I). (3.4)21ru.,o, U 2 a, ~ 2 a,

The derivation of equations (3.2), (3.3), and (3.4) is discussed in Section 3.2.3.

3.2.3 The GAUSPLUM model from this research. GAUSPLUM is written

in the Ada programming language. It uses the Gaussian plume equation with the

Pasquill-Gifford ay and a, described by Zannetti (29:149-50).

The basic Gaussian plume equation used in GAUSPLUM is:

q 1 y_ 2 1 heZr)2]

2a exp[l- () Iexp[-((3.5)

where c is the concentration at r = (xr, Yr, zr) due to emissions from the source

at (x.,, Y31 z); q is the emission rate; o,, and a, are the horizontal and vertical,

respectively, dispersion parameters; ii is the horizontal wind speed; and h, is the

effective emission height. The coordinate system in this model has the x-axis in the

U direction.

Equations (3.1), (3.2), (3.3), (3.4), and (3.5) can be derived from the three-

dimensional advection-diffusion equation which is

3-4

ct + ftc, = k~c. + kycy + kzc2z. (3.6)

In equation (3.6), at steady state, ct = 0 so the equation reduces to

u~cx = k~c. + kvcyy + kzczz. (3.7)

For many air pollution transport problems, the kxcx.T term is negligable compared

to the fic, (25:542-543). Then equation (3.7) reduces to

fic, = kvc. + kzcz. (3.8)

If ii, ky, and k, are constant and the source is a point source, an exact closed

form solution of equation (3.8) can be obtained using Fourier transform techniques

(25:556). This solution is

q 2 2

C(x Y, Z) r(kk)/ exp[- -•- + z)I (3.9)

See Seinfeld page 543 and 556 for details. If (ay)/(2x) and (ay)/(2x) are both con-

stant, then letting k. = (auTh)/(2x) k, = (afi)/(2x) and substituting into equation

(3.9) gives

c- q exp2(Y-)- 2 ()2]. (3.10)
27rayui.i 2 ory 2 o*z

Equation (3.10) is the same as equations (3.1), (3.2), (3.3), (3.4), and (3.5) except

they include a term, H or h•, in the z term to account for the height of the source.

Equation (3.1) also includes a term for when an inversion is present in the atmosphere

and assumes y = 0 so there is no y term in the equation. It is these equations which

can be derived from the three-dimensional advection-diffusion equation that are used

in the SCREEN, AFTOX, and GAUSPLUM models to solve the following problems.

3-5

3.3 Description of example problems

This section describes the problems taken from Turners workbook used to

compare the three models.

"* Problem 1 from the workbook shows a ground-level calculation directly down-

wind at a distance of 3000 meters. The ground-level source emits 3 g/sec of

oxides of nitrogen with no effective rise. It is an overcast night with a 7 rn/sec

wind speed. This indicates a stability class D.

"* Problem 2 from the workbook calculates a concentration 500 meters directly

downwind from a source with an effective height of 60 meters. It is an overcast

winter morning at 0800. The source emits an estimated 80 g/sec of sulfur

dioxide iato a wind of 6 m/sec. The stability class is still D.

"* Problem 3 has the same conditions as problem 2 at the same distance downwind

but at a distance of 50 meters from the x-axis. The SCREEN program only

calculates concentrations directly downwind from the source so it does not

apply to this problem.

"* Problem 4 has a source emitting 151 y/sec at an effective height of 150 meters.

This problem asks for the distance and the value of the maximum ground-level

concentration on a sunny summer afternoon with a 10 meter wind speed of 4

m/sec from the northeast. This is a class-B stability.

"* Problem 5 has the same conditions as problem 4 except it is on an overcast

day. The stability class becomes D for this problem.

* Problem 11 in the workbook has the same conditions as problem 4 except it

asks for the distance and value of the maximum concentration on the plume

centerline on a clear night with a wind speed of 4 m/sec. This give stability

class E.

3-6

These problems will be used to compare SCREEN, AFTOX, and GAUSPLUM

wh."e finite difference schemes will be used to solve the following mathematical mod-

els and compare the solutions to exact analytical solutions.

3.4 Mathematical models

This section describes the mathematical finite difference schemes examined in

this research. The advection equation, the one, two and three dimensional advection-

diffusion equations, and the two and three dimensional steady-state equations are

described here.

3.4.1 The advection equation: The advection equation (see eq. 3.11), also

known as the one-way wave equation, is a hyperbolic partial differential equation.

This subsection describes the simple advection equation and the numerical methods

used to solve it in this research. The advection equation is

ac ac
t x(3.11)

also written as ct + fic1 = 0, where the subscript denotes differentiation, i.e., ct =

dc/dt, and i! is the average wind speed.

Two finite difference schemes are used on the following initial boundary value

problem:

ct+c ,=0 on-2<x<3,0<t (3.12)

with initial data S1-Ixi ifIxl<1 (313

co(X) if (3.13)
0 Ixf _!1

The boundary condition at time t is

3-7

c(x,t) = 0 (3.14)

when x = -2, or x = 3.

The finite difference schemes to be used on the above initial-boundary value

problem are the Lax-Friedrichs scheme (3.15) and the leapfrog scheme (3.16) as found

in Strikwerda (26:13-4). The notation cn is the same as c(t,, xm) or in other words

it is the value of c at the grid point (t,, Xm).

-(c +1 + c _1) Cn+ - c"- = 0 (3.15)

cnn+1 n-1 C n

2m _ mc, + icm+12 _I 0 (3.16)
2zAt 2ZAx

where i! = 1 for this problem, At is the time incrementer, Ax is the space incre-

menter, m and n are integer grid counters for x and t respectively. Solving the

schemes for c, 1 gives a linear combination of c at levels n and n - 1. The Lax-

Friedrichs scheme (3.15) can be written as

Cn+ 1 -- (Cmc+1 + C- n-1) - 2 m.+j - C2n-I) (3.17)

where A = At/Azx. Likewise, the leapfrog scheme (3.16) can be written as

n+ -i ,(~mlc

C+ =Cm - A(c'+ 1 - c- 1) (3.18)

again with A = At/Ax, and ii = 1.

The stability condition for the Lax-Friedrichs method is 0A < 1, or since ii = 1

in this case, A < 1. It is found by replacing cn,, with gneimo in equation(3.17) and

solving ior g which yields

3-8

9 = (e'0 + &ie)12 - i(e" - eie)/2 (3.19)

where i = (-1)1/2. The quantity g is called the amplification factor. This is equiva-

lent to

g = cos 0 - ifiA sin 0. (3.20)

The stability condition IgI < 1 comes from Theorem 2.2.1 in Strikwerda (26:42).

Note that 1gl2 is

Igl2 = cos 2 0 + i12A2 sin 2 0. (3.21)

Therefore, IgI -• 1 if iftAl < 1. Thus the stability condition 0is < 1 since both ii and

A are positive in this case.

If i! = 1, and A = 0.8 the stability condition is satisfied for both schemes.

Consistency occurs when the local truncation error vanishes as Ax - 0 and At -+ 0

(28:606). The local truncation error is the difference between the solution of the

difference equation at a point, and the solution of the differential equation at the

same point. By substituting Taylor series expansions into the Lax-Friedrichs and

leapfrog schemes it can be shown that both schemes are consistent (26:21-23). Both

conditions, stability and consistency, must be met for the scheme to be convergent.

Both the Lax-Friedrichs scheme and the leapfrog scheme are, therefore, convergent

for A = 0.8 since both stability and consistency conditions are met. Figures (4.3)

and (4.4) in Section 4.3.1 show that both schemes are convergent for A = 0.8.

When A = 1.6 is used for the Lax-Friedrichs method it is not convergent. This

is because the stability condition is not met. However, as Ax --+ 0 and At --- 0

the solution of the scheme does approach the solution of the advection equation, as

long as k-lh2 0 0, so the scheme is consistent (see Strikwerda, example 1.4.2, page

3-9

21.)(26:21). The results of using these finite difference schemes will be discussed in

Section 4.3.1.

3.4.2 The I-D advection-diffusion equation: The one-dimensional advec-

tion-diffusion equation (3.22) is also known as the one-dimensional convection-diffu-

sion equation,

ct + fic. = k~c.. (3.22)

where k. is a positive number and we assume that ii is also positive. The forward-

time central-space scheme used to solve equation (3.22) is

-+ c =k c++1 - n =ck.+C- -1 (3.23)At 2Ax x

which is equivalent to

c+ý1 - (1 - 2k.i)cn + k.s(1 - a)cm+l + k.,(1 + a)c_ 1 (3.24)

where y = At/Ax2 and a = fiAx/2k,. The finite difference scheme is used on the

following initial-boundary value problem:

ct + itc, = kxcxx on - 2 < x < 3, 0 < t (3.25)

with initial data

co(X){ 1-IxI iflxl<l (3.26)
0 if lxI Ž 1.

The boundary condition at time t is

c(x,t) = 0 (3.27)

3-10

when x = -2, or x = 3.

The stability condition for this method is k~p < 1/2. The stability analysis

is similar to that done on the advection equation above, i.e. by replacing cn with

g9 nei" in equation (3.23) and solving for g gives

=1-4kT sin2 0 - i0ii sin 0. (3.28)

Using the condition IgI < 1 from Theorem 2.2.1 and Theorem 2.2.3 and Corollary

2.2.2 in Strikwerda (26), which shows that the first derivative term can be ignored,

gives 4k,,p sin2 ½0 < 2 and so ka,p < 1/2. Thus this method is conditionally stable.

The results of using this finite difference scheme to solve equation (3.22) will be

presented in Section 4.3.2.

3.4.3 The 2-D advection-diffusion equation: The two-dimensional advec-

tion-diffusion equation (see eq. 3.29) includes diffusion in both the downwind (x-

axis) and crosswind (y-axis) directions. Advection is assumed to be negligable in the

crosswind direction since the wind direction is in the x-axis direction. Therefore, the

only advection term is ic,,.

ct + itcx = k~e•: + kucuY (3.29)

where i! is the wind speed (positive constant), and k. = k, are constant in this

research and are the x-axis and y-axis diffusivity terms respectively. The forward-

time central-space finite difference scheme used to solve equation (3.29) is

m,,, -m,,,p + c,,+,, m-,_,p = (k/ZAx 2)(cn+i,p - 2 + cM_,,)
At 2Ax P+C IP

+ A (c,p+, - 2cn,p + c,,p_,) (3.30)

3-11

which is equivalent to

c n+l jA(n C,

+ kxa(c.n+l,p - 2c:,p + cn_-,P)

+ k fi(c,,P+I - 2c:,P + cn,Pl) (3.31)

where cn,p = C(Xm,IyPtn) = c(mAx,pAy,nAt), A = At/Ax, a = At/AX2 and

S= At/Ay2.

The finite difference scheme is used on the following initial- boundary value

problem:

ct+fic,= kcx + k•c on -2<x_<3, - 2 <y<2, 0<t (3.32)

with initial data

1-Rif 0< x <1co~xy) =- -(3.33)
) 0 otherwise

where R = sqrt(x 2 + y2). The boundary condition at time t is

c(x,y,t) = 0 (3.34)

when x = -2, or x = 3, xr y = ±2.

The stability condition for this method is k.Tp _< 1/4. The stability analysis is

similar to that done on the one- dimensional equation above, i.e. by replacing c,•

with gnei"m in equation (3.30) and solving for g gives

g = 1 - 4kpsin2 1!0 - 4k~p sin 2 12 Asin0 (3.35)

2 2

3-12

or since k, = kv

g=I-8k..s sin 2 0 - ifA sin 0. (3.36)

Using the condition Igj < 1 from Theorem 2.2.1, Theorem 2.2.3 and Corollary 2.2.2

in Strikwerda (26), which shows that the first derivative term can be ignored, gives

8kxs sin 2 10 < 2 so ku _< 1/4. Thus this method is conditionally stable. The results

of using this finite difference scheme to solve equation (3.29) will be presented in

Section 4.3.3.

3.4.4 The 3-D advection-diffusion equation: The three-dimensional advec-

tion-diffusion equation (3.37) includes diffusion in the downwind (x-axis). crosswind

(y-axis) and vertical (z-axis' directions. Advection is assumed to be negligable in the

crosswind and vertical directions since the wind direction is in the x-axis direction.

So again, the only advection term is ftc.,

ct + ii- c.= kxcx + kcyy "+ kzczz (3.37)

where ii is the wind speed (positive constant), and k. = ky = kz are constant in this

research and are the x-axis, y-axis and z-axis diffusivity terms respectively. In this

research two variations of three-dimensional equation are examined. One variation

uses a forward-time central-space finite difference scheme to solve equation (3.37)

with the condition at t = 0

c(x,y,z,O)=80 for x=y=z=0 (3.38)

where 80 was chosen from example problem 2 described above. The boundary con-

dition at time t is

3-13

c(xT, Y, z, t) =- 0 (3.39)

when x = ±10 or y = ±10, or z = ±10. The forward-time central-space finite

difference scheme used to solve equation (3.37) is

____________ COi+l,,,k __i-JA2

A t , 2LA x - (k Z/1A X 2)(ei+I,k J k + %...1,j,k)

"+ (kyVIAY 2) (cj+l,k - 2 Ci,I,k, + CS,,-I,k)

"+ (k.ZIZ1 2)(Cin,k+l - 2 0,3 , +c',..l(3.40)

which is equivalent to

c~j~k = ij - 1/ 2 iiA(cj+l,,k C'ijk

+ k~a(c'+,,j,k - 2 <t,,,k + CýS',ij,k)

+ kY/#(ci+l,k - 2<t%,k + C'I,....,k)

+ k,-y(cnkl- 2c,, C,.1 (3.41)

where eij,k =C(Xi, Y3 ,Zk, tn) = c(i~Xx, jLy, kLz, nZt), A = AtAa =Zt/ZAx 2 ,

=At/Ay', and _1 = iAt/AZz 2 .

The solution to this scheme will be compared to the exact analytical solution

from Seinfeld (25:536) which is

c(x, y, z, t) = [s/(8(1rt)3/2 (k.xkykz)112)] (.2
-*exp[-(x _ jjt)

2 /(4k.,t) - y 2 /(4k3 ,t) - Z 2 / (4k~t)] (.2

where s is the source term, or 80 in this case.

3-14

The other variation uses a forward-time central-space finite difference scheme

to solve equation (3.43) which adds a source term, or forcing function, 6(t)- f(x, y, z)

to equation (3.37) instead of initial conditions which is

ct + fic, = k~c, + kycy + kc,. + 6(t) (X, y, z). (3.43)

In equation (3.43)

(x + 10)ir (y + 10)r.s (z + 10)7r (3.44)f(X1y,z) sin 20 20 20

when x = y = 0, and z = height, where height is the height of the source, and 6(t)

is the delta function.

The forward-time central-space finite difference scheme used to solve equation

(3.43) is

,n n
- ik + i +,(,k _1j/Ax)(c+,,k - 2c(,k,(+ cU1,- 3,k)

At 2Ax

+ (kylAy 2)(ci+1,k - 2 c0j,k + Ci,,j,k)

+ (kz/Az2)(cj,k+1 - 2cj,k + c•, 3,k_,)

+ ,(t). f(x, y, z) (3.45)

which is equivalent to

c = Cik - 1/ 2fiA(c+j,k -c-

+ k.a(c+ij,k - 2 Cj,k + c_ 1,,k)

"+ ky 3(c<,j+,,k - 2 C•,J,k + CIjl1,k)

+ kz-y(c,'+, - 2c0,, + c,,,_)

3-15

+ 6(t) - f(x,y,z) -At (3.46)

where 0 = c(x, y 3 ,zk,t,) = c(i x,jzAy,kLz, nAt), A = At/Ax, a At/Ax2,

= At/Ay2 , _Y = At/Az2 , and f(x, y, z) is the forcing function or source term.

The solution to this scheme will be compared to the exact analytical solution

which is

c(x, y, z, t) = exp(wt], sin[ir(x + fit + 10)/20]

• sin[7r(y + 10)/20]. sin[7r(z + 10)/20]

where w = -(ir/400)(k, + ky + ks).

The stability condition for these methods is kxp _< 1/8, when k. = ky = k,.

The stability analysis is similar to that done on the two-dimensional equation above,

with

21

g = 1 - 16k.-p sin2 10 - iaA sin 0. (3.48)
2

Using the condition Ig9 < 1 from Theorem 2.2.1, Theorem 2.2.3 and Corollary 2.2.2

in Strikwerda (26), which shows that the first derivative term can be ignored, gives

16k•P sin2 10 < 2 and k.,p < 1/8. Thus this method is also conditionally stable. The

results of using this finite difference scheme to solve equations (3.37) and (3.43) will

be presented in Section 4.3.4.

3.4.5 Steady state equation. This subsection describes the steady state two

dimensional advection-diffusion equation and the numerical method used to solve it

in this research. Following reference (25), if ct --+ 0 as t --ý oo and k, is negligible in

equation (3.37), then

fic, = kycyy + kzc~z (3.49)

3-16

with initial conditions

c(O,y,z) = sin(7r(y + 10)/20) sin(r(z + 10)/20)
C(X,,Z) 0 YZ--±Io(3.50)c(x, y,z) = 0 y, z--*±410

where ii is the wind speed (positive constant), ky = k, both equal ii in this research

and are the y-axis and z-axis diffusivity terms respectively, and q is the source term.

The central-space finite difference scheme used to solve equation (3.49) is

c n c n
2A+1,P = (kI/Ay2)(c0+i - 2c,,p + n

21Ax (kvp~,p p + cI,P)
+ (kL/Az 2)(c,,p+i - 2,n, + Cn,, (3.51)

The solution to equation (3.51) will be compared to the exact solution which

is

7r 2 7r(Y + 10) .r(z+ 10)c=exp1-2-f6] sin(- -sin(") (3.52)
"200 ~ 20) i(20 (.2

The stability condition analysis is similar to the two-dimensional advection-

diffusion equation discussed in Section 3.4.3.

3.5 Conclusion

Three Gaussian plume models are described in this chapter, SCREEN, AFTOX,

and GAUSPLUM. SCREEN uses a form that includes reflection terms, but that

doesn't include crosswind terms. SCREEN, therefore, mainly does calculations of

pollutant concentrations under the centerline of the plume. AFTOX uses three forms

of the Gaussian model which include two Gaussian puff models, one when there is

no inversion in the atmosphere, and one when there is an inversion. AFTOX also

uses the Gaussian plume model. GAUSPLUM uses the Gaussian plume model. The

3-17

results and comparison of SCREEN, AFTOX, the program GAUSPLUM developed

in this study, will be presented in Section 4.2. The other models of air pollution

transport discussed in tl~is chapter all follow from the three-dimensional advection-

diffusion equation. They are all special cases of the three-dimensional advection-

diffusion equation. The advection equation does not include any diffusion. The one-

and two-dimensional advection-diffusion equations only include the downwind, and

downwind and crosswind diffusion terms, respectively. The steady-state equation

has no change in the concentration with respect to time. The results of the numer-

ical schemes used to solve the advection equation, one, two and three dimensional

advection-diffusion equations, and the two- dimensional steady state equation will

be discussed in Sections 4.3.1, 4.3.2, 4.3.3, 4.3.4, and 4.3.5 respectively.

3-18

IV. Results

4.1 Introduction

The purpose of this study is to examine models which use analytical solutions

in their calculations of pollutant concentrations and to ilnd numerical solutions of

the various partial differential equations used in pollution modeling. This chapter

includes a comparison of the models SCREEN (10), AFTOX (19), and the pro-

gram GAUSPLUM (developed in this study) using the examples taken from Turners

workbook (27) described in Section 3.3. The results of the numerical solutions of

the different equations described in Section 3.4 are also presented here.

The comparison of SCREEN, AFTOX, and GAUSPLUM will be discussed in

Section 4.2 The results of the numerical schemes used to solve the partial differential

equations and the sections they are discussed as follows: the advection equation in

Section 4.3.1, the one, two and three dimensional advection-diffusion equations will

be discussed in Sections 4.3.2, 4.3.3, and 4.3.4, respectively, and two-dimensional

steady state equation in Section 4.3.5.

4.2 Comparison of Gaussian models

A comparison of the three Gaussian models which use analytical solutions

in their calculations is done using the six problems from Turner's workbook (27)

described in Section 3.3. Table 4.1 shows the comparison of SCREEN, AFTOX,

GAUSPLUM using problems 1, 2, and 3, which calculate the concentration at a

certain location where a receptor is located. Table 4.2 shows the comparison of

SCREEN, AFTOX, GAUSPLUM using problems 4,5, and 11, which give the location

and value of the maximum concentration. The models all have solutions to the six

problems within an order of magnitude of the solutions given in Turner's workbook.

This is expected since they each use a form of the Gaussian plume model.

4-1

Turner Workbook Examples (27)

ex. Turner SCREEN AFTOX GAUSPLUM
(g/m 3) (glrn3) (g/m 3) (glm3)
1 11.0 E-6 11.34 E-6 4.0 E-6 10.95 E-6
2 33.0 E-6 41.45 E-6 23.0 E-6 32.9 E-6
3 13.0 E-6 NA 9.0 E-6 12.95 E-6

Table 4.1 Comparison of concentrations at given point

As Table 4.1 shows, the SCREEN model produces higher estimates than Turn-

er's workbook results for problems 1 and 2 and isn't applicable for problem 3.

This result is because the equation (see eq. 3.1) used in the model lacks the term

exp[-_(y/Oa) 2] found in both AFTOX and GAUSSPLUM which allows the receptor

to be at points away from the x-axis. The AFTOX model consistently underesti-

mated the values for each of the three problems in Table 4.1. All three models results

are within an order of magnitude on either side of the results in Turners workbook.

The results are similar for the problems which determine the maximum con-

centration and its location. Table 4.2 shows these results. Again all three models

solutions are within an order of magnitude of the problems in Turners workbook.

Turner Workbook Examples (27)

ex. Turner SCREEN AFTOX GAUSPLUM
(g/m 3) at m (g/m 3) at m (g/m 3) at m (g/M3) at m
4 280.0 E-6 at 1000 235.6 E-6 at 1005 180.0 E-6 at 1420 263.4 E-6 at 1000
5 1.1 E-4 at 5600 0.782 E-4 at 5454 1.0 E-4 at 2839 1.13 E-4 at 5475

11 6.4 E-5 at 13000 2.52 E-5 at 12434 6.8 E-5 at 6109 6.08 E-5 at 12500

Table 4.2 Comparison of maximum concentration calculations

As described in Chapter III both the SCREEN (Section 3.2.1) and AFTOX

(Section 3.2.2) models require additional input such as ambient temperature (outside

air temperature) and exit velocity of the pollutant. Figure 4.1 is output from the

SCREEN program and Figure 4.2 is from the AFTOX program for problem 2 in

Turners workbook. The following is a brief description of the two figures. Each

program asks for ambient air temperature, emmission rate, wind speed, stack height,

4-2

stack gas temperature, and the location of the receptor for the calculation. Problem

2 says it is an overcast winter morning. SCREEN asks for the ambient temperature

only, while AFTOX asks for both the ambient temperature and the time and date

of the calculation. The date chosen for AFTOX for this problem is January 6, 1992.

For these programs the value of the ambient temperature is taken from climatological

data for the WPAFB area for the time of year described in each problem. The exit

velocity and stack diameter used here come from other examples in the workbook.

The program GAUSPLUM simply asks for the stability class, emission rate,

wind speed, stack height and the location of the receptor. The output for GAUS-

PLUM displays the value of the distance and the concentration value. It only does

calculations for one distance at a time so for problems 4, 5, and 11 this program is

run several times to determine the maximum concentration and its distance.

4-3

*** SCREEN-1.1 MODEL RUN ***

*** VERSION DATED 88300 ***

SIMPLE TERRAIN INPUTS:

SOURCE TYPE = POINT

EMISSION RATE (G/S) = 80.00
STACK HEIGHT (M) = 60.00
STK INSIDE DIAM (M) = 2.00
STK EXIT VELOCITY (M/S)= 2.00
STK GAS EXIT TEMP (K) = 293.50
AMBIENT AIR TEMP (K) = 284.00
RECEPTOR HEIGHT (M) = .00
IOPT (i=URB,2=RUR) = 2

BUILDING HEIGHT (M) = .00
MIN HORIZ BLDG DIM (M) = .00
MAX HORIZ BLDG DIM (M) = .00

BUOY. FLUX = .03 M**4/S**3; MOM. FLUX = 3.99 M**4/S**2.

*** STABILITY CLASS 4 ONLY ***
*** 10-METER WIND SPEED OF 6.0 M/S ONLY ***

*** SCREEN DISCRETE DISTANCES ***

CALCULATION MAX CONC DIST TO TERRAIN

PROCEDURE (UG/M**3) MAX (M) HT (M)

SIMPLE TERRAIN 41.45 500. 0.

Figure 4.1 Partial output of SCREEN program for problem 2

4.3 Results and comparison of exact solutions

This section shows the results of the finite difference methods used to solve the

partial differential equations described in chapter III.

4-4

USAF TOXIC CHEMICAL DISPERSION MODEL
AFTOX

WPAFB OH
DATE: 01-06-1992
TIME: 0800 LST

CONTINUOUS BUOYANT PLUME

TEMPERATURE = 6 C
WIND DIRECTION = 360
WIND SPEED = 6 M/S
SUN ELEVATION ANGLE IS 5 DEGREES
CLOUD COVER IS 8 EIGHTHS
CLOUD TYPE IS LOW (St, Ns, FOG)
GROUND IS DRY
THERE IS NO INVERSION
ATMOSPHERIC STABILITY PARAMETER IS 3.5
EMISSION RATE(KG/MIN) = 4.8
EFFLUENT IS STILL BEING EMITTED
STACK HEIGHT ABOVE GROUND(M) = 60
GAS STACK TEMP(C) = 15
VOLUME FLOW RATE(M3/MIN) = 4
EFFECTIVE PLUME HEIGHT(M) = 60 AT DISTANCE(M) = 2
CONCENTRATION AVERAGING TIME IS 10 MIN
HEIGHT ABOVE GROUND IS 0 M
DOWNWIND DISTANCE IS 500 M
CROSSWIND DISTANCE IS 0 M

THE CONCENTRATION IS .018 MG M-3

Figure 4.2 Partial output of AFTOX program for problem 2

4-5

4.3.1 Advection equation. The numerical sol'ation to the advection equa-

tion (see eq. 3.11) is found using the Lax-Friedrichs and the leapfrog finite difference

schemes. For both schemes A = 0.8, Ax = 0.1, and At = 0.08. On the boundary,

when x = -2, c = 0, and cn,+' = c+_j1 when m = 3. The finite difference for-

mula, equation (3.17), in Section 3.4.1 is used in the Ada program in appendix (B.1)

in procedure Compute-New. Figure 4.3 shows the solution to the initial-boundary

value problem (see eq. 3.12) discussed in Section 3.4.1 using the Lax-Friedrichs finite

difference scheme. Figure 4.4 shows the solution to the same initial-boundary value

problem using the leapfrog finite difference scheme, equation (3.18), in procedure

Compute-New.

1.4

1.2

0.8

- 0.6
0.4

0.2

0

-0.2

-0.4

-2 -1 0 1 2 3
x

Figure 4.3 Lax-Friedrichs solution of advection equation

In both Figure 4.3 and Figure 4.4 the exact solution is shown as a dashed line,

and the solution of the finite difference scheme is shown as the curve with diamonds.

The leapfrog method has more oscillations in its solution than the Lax-Friedrichs,

but the overall accuracy is better for the leapfrog scheme. The approximation at

the peak in Figure 4.4, the leapfrog solution, is much better than in Figure 4.3. The

4-6

1.4

1.2

1

0.8

- 0.6
0.4

0.2

0

-0.2

-0.4

-2 -1 0 1 2 3

Figure 4.4 Leapfrog solution of advection equation

solution of the Lax-Friedrichs scheme can be improved by decreasing the value of

Ax while keeping the same value of A.

As discussed in Section 3.4.1 the Lax-Friedrichs scheme is conditionally stable.

To show this A = 1.6 is used in the scheme with the results shown in Figure 4.5.

In Figure 4.5 the exact solution is shown as a solid line while the solution of the

Lax-Friedrichs scheme is shown as a line with diamonds.

Figures 4.3 and 4.4 show that the solutions of the Lax-Friedrichs scheme and

the leapfrog scheme are reasonable approximations to the solution of the advection

equation. As the values of AZx and At are decreased, while keeping A constant, the

solutions of the schemes become better approximations to the advection equation.

In the next section a diffusion term is added to the advection equation and the

one-dimensional advection-diffusion equation is looked at.

4-7

1.4

1.2

1

0.8

0.6

O 0.4

0.2

0

-0.2

-0.4

-2 -1 0 1 2 3
x

Figure 4.5 Lax-Friedrichs solution with A = 1.6

4.3.2 1-D advection-diffusion equation. The one-dimensional advection-

diffusion equation (see eq. 3.22) is a combination of the advection equation described

in Section 4.3.1 and the diffusion equation discussed in Appendix C.1. The forward-

time central-space scheme (see eq. 3.23) is used to solve the advection-diffusion

equation (see eq. 3.22). It is in Ada procedure Compute-New which is found in

Appendix B.2.

The stability condition for this method, discussed in Section 3.4.2, is kq. • 1/2

where mu = At/Ax2 . This stability condition means the time step At is at most

Ax 2!/2kx and when decreasing Ax by half to increase the spatial accuracy, At must

decrease by one-fourth. This restriction limits practical use of this method. The

data in Table 4.3 show the cases used in this method.

Table 4.3 includes: it, the advection coefficient; kx, the diffusion coefficient;

Ax, the space incrementer; At, the time incrementer; the range in space; kxg, which

from the stability analysis must be less than or equal to one half; a = (Axu)/(2k,),

4-8

Try (k.At)/Ax 2 a = (Axu)/(2k.)
_i kr Ax At x-range (5 0.5) (< 1.0) t
1 4 4 1 0.1 -10..10 0.4 0.5 2.0
2 10 4 1 0.1 -10..10 0.4 1.25 2.0

3 8.1 4 1 0.1 -10..10 0.4 1.0125 2.0
4 6 7 2 0.2 -20..20 0.35 0.85714 10.0
5 1 1 0.5 0.05 -10..10 0.2 0.25 2.0
6 3.95 1 0.5 0.05 -10..10 0.2 0.9875 2.0
7 4.01 1 0.5 0.05 -10..10 0.2 1.0025 2.0
8 1.0025 0.25 0.5 0.05 -10..10 0.05 1.0025 2.0
9 1.0025 0.25 0.5 0.2 -10..10 0.2 1.0025 2.0
10 4 0.25 0.5 0.25 -10..10 0.15 4 2.0

Table 4.3 1-D advection-diffusion test data

which Strikwerda shows must be less than or equal to one; and t, the time of final

calculation.

The cases included in Table 4.3 all satisfy the stability condition k•p : 1/2.

These cases were done to test the other condition a = (Axfi)/(2k,) < 1 to see if

oscillations detracted from the accuracy of the solution. The cases also varied the

advection term to see its impact on the solutions. In Figure 4.6 the solution for test

case number 6 is plotted.

In Figure 4.7 the solution for test case number 10 is plotted. Case number

10 has an oscillating solution because the a < 1 condition is not met. In this case

a = 4.0 which causes the oscillation even though the stability condition is met.

These two cases, numbers 6 and 10 in Table 4.3, have similar advection terms,

3.95 and 4.0, respectively. The diffusion terms differ by a larer margin and contribute

to the differences in the a condition and also to the oscillations in case 10. Case

6 satisfies the a-condition and has a non-oscillating solution, while case 10 violates

the condition and has an oscillating solution.

In the other cases of Table 4.3 the advection coefficient and the diffusion coef-

ficient are varied to see the effect of a higher advection term than diffusion term. In

4-9

0.3

0.25

0.2

0.15

0.1

0.05

0

-0.05
-10 -5 0 5 10

x

Figure 4.6 Test case 6

100

80

60

40

20

0

-20

-40

-60

-80
-10 -5 0 5 10

x

Figure 4.7 Test case 10

4-10

all of the cases with a greater than one the solution oscillates as expected. In the

other cases, where a is less than one and the advection coefficient is greater than

the diffusion coefficient, the solution is simlilar to case number six in Figure 4.6. In

the next section, a second diffusion coefficient is added to the equation to see if the

diffusion has a larger impact on the solution.

4.3.3 2-D advection-diffusion equation. The two-dimensional advection-

diffusion equation (see eq. 3.29) adds the crosswind (y-axis) diffusion term to the

one-dimensional equation. The forward-time central-space scheme, equation (3.30),

in Section 3.4.3 is used to solve the 2-D advection-diffusion equation (3.29). It is

used in Ada procedure Compute-Final found in Appendix B.3. The data in Table 4.4

show the cases used in this method.

Try
i k. ky Ax Ay At time
1 2 0.0625 0.0625 0.2 0.2 0.02 1.6
2 0.5 0.0625 0.0625 0.2 0.2 0.02 1.6
3 4 0.05 0.05 0.2 0.2 0.02 1.6
4 4 0.05 0.05 0.1 0.1 0.08 1.6
5 0.5 0.5 0.5 0.2 0.2 0.02 1.6
6 0.5 1 1 0.2 0.2 0.1 1.6
7 0 1 1 0.2 0.2 0.1 1.6
8 0 1 1 0.2 0.2 0.08 1.6
9 0.5 1 1 0.2 0.2 0.04 1.6
10 0.5 0.9 0.9 0.2 0.2 0.04 1.6
11 0.5 1 1 0.2 0.2 0.01 1.6
12 0.5 1 1 0.2 0.2 0.02 1.6
13 1 1 1 0.2 0.2 0.01 1.6
14 4 1 1 0.2 0.2 0.01 1.6
15 0 1 1 0.2 0.2 0.01 1.6
16 0 0.0625 0.0625 0.2 0.2 0.02 1.6
17 1 0.0625 0.0625 0.2 0.2 0.02 1.6
18 1.5 0.0625 0.0625 0.2 0.2 0.02 1.6

Table 4.4 2-D advection-diffusion test data

4-11

Table 4.4 includes: fi, the advection coefficient; k,, k., the x-axis, and y-axis

diffusion coefficients; Ax, the x-axis incrementer; Ay, the y-axis iacrementer; At,

the time incrementer; and t, the time of final calculation.

The stability condition for this method, discussed in Section 3.4.3, is kp • 1/4

where u = At/Ax2. This stability condition means the time step At is at most

Ax 2/2k, and when decreasing Ax by half to increase the spatial accuracy, At must

decrease by one-eighth. This restriction limits practical use of this method even

more than the one-dimensional case.

Two cases that show the difference between complying with the stability condi-

tion and violating it are case 5 and case 12. Case 5 is an example of complying with

the stability condition, while case 12 is one that violates the condition. The only

differences between the two cases are that for case 5, k., = 1/2 and k.,At/Ax2 = 1/4,

while for case 12, k, = 1.0 and k,,At/Ax2 = 1/2.

Figure 4.8 shows the solution to equation (3.32) using test case 5 from Table 4.4,

where the view is looking at the xz-plane with the x-axis going from left to right,

and the concentration is on the z-axis. The y-axis goes into the page. The lines

in the figure are the concentration contours for different values of y similar to that

in Figure 4.9 which shows the solution using case 5 with y = 0. When y = 0 the

resulting contour is the maximum concentration contour since it is directly downwind

from the source. The minimum concentration contour is near the boundary at y =

±10. Figure 4.10 shows the solution to equation (3.32) using test case 12 with the

same view as Figure 4.8. Case 12 violates the stability condition which results in

large oscillations. Again the lines in the figure are the concentration contours for a

given value of y. Figure 4.11 shows the solution using case 12 with y = 0 and shows

the maximum concentration contour.

Most of the cases in Table 4.4 vary the terms fi, k.,, ky, and time while keeping

the Ax and Ay constant. One exception to this is case 3 and case 4 which changes

Ax, Ay and At, but keeps the other terms constant. Case 3 is stable since kxp = 1/4

4-12

which meets the stability condition. Case 4 on the other hand does not meet the

stability condition and is, therefore, unstable.

c(x,y)
0.1-

0.07
0.06

0.038:81 _ _ _ _ __ _ _ _ _ __ _ _ _ _ _

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
X

Figure 4.8 2-D test case 5

These results show how only slightly violating the stability condition can cause

large oscillations. The same result will be shown in the next section for the 3-D

advection-diffusion equation.

4-13

0.1

0.09

0.08

0.07

0.06

x 0.05

0.04

0.03

0.02

0.01

0
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

x

Figure 4.9 2-D test case 5 with maximum concentration

c(x,y)

5e+34

0

-5e+34

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
x

Figure 4.10 2-D test case 12

4-14

8e+34

6e+34

4e+34

2e+34

0

-2e+34

-40+34

-6e+34

-8e+34
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

x

Figure 4.11 2-D test case 12 with y = 0

4.3.4 3-D advection-diffusion equation. The three-dimensional advec-

tion-diffusion equation (3.37) adds the vertical (z-axis) diffusion term to the two-

dimensional equation. The other equations are all special cases of the three-dimen-

sional advection-diffusion equation. The advection equation has no diffusion term.

The one-dimensional advection-diffusion equation has no crosswind or vertical diffu-

sion, and the two-dimensional advection-diffusion equation has no vertical diffusion.

The steady-state equation has no concentration change with respect to time. This

research looks at the three-dimensional advection-diffusion equation in two ways,

one with the source as part of the initial conditions, and a second way by adding a

forcing function or source term so that initial conditions are incorporated into the

equation. This section will look at the results of using a forward-time central-space

scheme, equation (3.40) in Section 3.4.4, to solve the three-dimensional advection-

diffusion equation with the forcing function added, equation (3.43). The scheme is

used in Ada procedure Compute-Final found in Appendix B.4. Table 4.5 shows the

4-15

cases used in the method without the source term and with the initial conditions,

equation (3.38), discussed in Section 3.4.4.

Case stable
ii k., At Ait < 0.125 t
1 0.5 1 1 2 0.25 10
2 0.5 0.5 1 2 0.125 10
3 0.5 0.25 1 2 0.0625 10
4 0.5 0.125 1 2 0.03125 10

Table 4.5 3-D without source term

In Table 4.5: ii is the advection coefficient, k. = ki = k, are the diffusivity coef-

ficients, At is the change in time, Ati is the change in the spatial directions where

i is x, y, or z, stable is the stability conditon, and t is the time of the calculation.

In these cases the only difference between them is the change in At which affects

the stability condition. The three previous sections show that the a-condition must

be met for the solution to be well-behaved. In this section the stability condition is

examined, that is kAt/Ai2 < 0.125, where i is x, y, or z.

Figure 4.12 shows case 3 from Table 4.5, as a line with squares, compared to

the exact solution, equation (3.42), as a solid line. The figure shows the solution for

x=8, z=0, andt= 10.

Figure 4.13 shows cases 1, 2 and 3 from Table 4.5, as a line with crosses, a

line with diamonds and a line with squares, respectively, compared to the exact

solution, equation (3.42), as a solid line. The figure again shows the solution for

x=8, z=0, andt= 10.

The reason the numerical solution only seems to move toward the exact solution

near y = 0 and not change much near the boundary is that the boundary condition

c(x,y,z,t) = 0 when x = ±10 or y = ±10, or z = ±10 does not represent what

the exact solution does at those boundary points. The exact solution has the same

boundary condition, except that the boundary is at ±oo. The boundary condition

for the numerical solution causes the boundary to act as a sink for the pollutant

4-16

0.4

0.35

0.3

0.25

C 0.2

0.15

0.1

0.05

0
-10 -5 0 5 10

y

Figure 4.12 3-D test case 3 and exact solution

0.45

0.4

0.35

0.3

-" 0.25

c6 0.2

0.15

0.1

0.05

-10 -5 0 5 10
y

Figure 4.13 3-D case 2,3,4 and exact solution

4-17

as it is dispersed and advected. The other variation described in Section 3.4.4 has

conditions such that the exact calculation has the same boundary conditions as the

numerical calculation.

Table 4.6 shows the cases used in the scheme with the source term, equation

(3.45).

Case stable
ii k, Ai <0.125 At t
1 0.2 1 5 0.04 1 10
2 0.2 1 5 0.02 0.5 10
3 0.2 1 5 0.01 0.25 10
4 0.2 1 5 0.005 0.125 10

Table 4.6 3-D with source term

In Table 4.6: it is the advection coefficient, k. = kv = k. are the diffusivity coeffi-

cients, Ai is the change in the spatial directions where i is x, y, or z, stable is the

stability conditon, At is the change in time, and t is the time of the calculation.

Again, At is the only difference between the cases and this changes the stability

condition as shown in the table. These cases all satisfy the stability condition. The

following three figures are of cases 1, 2, and 3 which show that as At is decreased the

numerical solution converges on the exact solution. This result would be the same

as decreasing both the spatial terms Ai and At such that the stability condition

remained the same as in Table 4.6. Figure 4.14 shows case 1 as a line with squares.

Figure 4.15 shows case 2 as a line with crosses. Figure 4.16 shows case 3 as a line

with diamonds. In all three figures the exact solution, equation (3.47), is a solid line.

The tvýo variations of the three-dimensional advection-diffusion equation in

this section show how the boundary conditions can have an effect on the numerical

solution. The boundary condition for the variation without the source term does

not represent the actual conditions where the boundary is at ±oo. The numerical

solution is less than actual since the boundary condition artificially lowered the value

4-18

0.45

0.4

0.35

0.3

'-" 0.25c•

*6 0.2

0.15

0.1

0.05

0.
-10 -5 0 5 10

y

Figure 4.14 3-D case 1 with source term

0.45

0.4

0.35

0.3

-: 0.25

*6 0.2

0.15

0.1

0.05

0
-10 -5 0 5 10

y

Figure 4.15 3-D case 2 with source term

4-19

0.45

0.4

0.35

0.3

V 0.25

. 0.2

0.15

0.1

0.05

0
-10 -5 0 5 10

y

Figure 4.16 3-D case 3 with source term

at points near the boundary. The other variation has the same boundary conditions

as the exact calculation and the numerical and exact solutions are much closer.

4.3.5 Steady state equation. The two-dimensional steady state equation is

similar to the two-dimensional advection-diffusion equation except the concentration

does not change with respect to time. This section will look at the results of using a

central-space scheme, equation (3.51) in Section 3.4.5, to solve the two-dimensional

steady state equation (3.49) with the forcing function added in the initial conditions,

equation (3.50). The scheme is used in Ada procedure Compute-Final found in

Appendix B.5. Table 4.7 shows the cases used in this scheme.

In Table 4.7 ii is the advection coefficient, k. = k, = i! are the diffusivity coefficients,

Ax is the change in x-axis direction, Ai is the change in the crosswind and vertical

directions where i is y, or z, and stable is the stability conditon (kyAx)/(Ay 2). In

these cases the only difference between them is the change in /Ax which also changes

value of the stability condition by the same factor.

4-20

Case stable
fi k Az Ai <-0.25
1 4 4 5 5 0.2
2 4 4 2 5 0.08
3 4 4 1 5 0.04
4 4 4 0.5 5 0.02

Table 4.7 2-D steady state data

Figure 4.17 shows case 1 as a line with squares. Figure 4.18 shows case 3 as

a line with crosses. Figure 4.19 shows case 4 as a line with diamonds. Figure 4.20

shows a comparison of all four cases with the exact solution. In all four figures the

exact solution, equation (3.52), is a solid line.

0.7

0.6

0.5

•" 0.4

"1" 0.3

0.2

0.1

-10 -5 0 5 10
Y

Figure 4.17 Steady state case 1

If the stability condition is satisfied, then decreasing the value of Ax does not

require any changes in other variables. However, if the stability condition is satisfied,

and a decrease in Ay and Az is wanted by one half, then Az must be decreased by

one fourth.

4-21

0.7

0.6

0.5

a 0.4

"w' 0.3

0.2

0.1

0
-10 -5 0 5 10

y

Figure 4.18 Steady state case 3

0.7

0.6

0.5

a 0.4

0;
-"6 0.3

0.2

0.1

0 I
-10 -5 0 5 10

Y

Figure 4.19 Steady state case 4

4-22

0.7

0.6

0.5

S 0.4

"W 0.3

0.2

0.1

0
-10 -5 0 5 10

y

Figure 4.20 Steady state comparison

4.4 Conclusion

The results of the comparison of SCREEN, AFTOX, and GAUSPLUM show

that they can be used in general cases such as those in the problems of Turner's

workbook. SCREEN and AFTOX can also be used in much more detailed cases

since they each ask for more details than provided by the problems in the workbook.

The numerical solutions found for the advection equation, all three advection-

diffusion equations, and the steady-state equation show the effect of violating the

stability condition or the condition that handles oscillations in the solution.

Each of these results show possibilities for further research in the area of air

pollution modeling, some of which will be discussed in Chapter V.

4-23

V. Conclusion and Recommendations

5.1 Conclusion

The purpose of this study was to analyze models which use analytical solutions

in their calculations of pollutant concentrations and to find numerical solutions of

the various partial differential equations used in pollution modeling.

Many air pollution transport models use Gaussian analytical equations to solve

the partial differential equations used in pollution modeling. This study has looked

at three such models and made comparisons between them using example problems

which deal with finding pollutant concentrations at a given location and time and

finding the maximum concentration and its location.

The Gaussian plume model used in many air pollution transport models has

difficulties when the wind speeds are low to calm. This research has looked at

numerically solving the advection equation, advection-diffusion equation, and the

steady-state equation using low wind speeds in the calculations. The results of these

calculations were compared to exact solutions.

5.2 Recommendations

Pollution modeling has many areas of interest to consider for further research

based on this research. The first is to look at more of the models which use analytical

equations in their calculations. This research looked at SCREEN, AFTOX, and

GAUSPLUM. Two other models to consider are TOXST (12), and TOXLT (11)

which are referenced in the bibliography of this thesis. These models look at short

term and long term exposure of pollutants.

Another area of possible further research could be continuing the two and three-

dimensional research by looking at variable advection and diffusion coefficients. This

research looked at those coefficients as constant in determining solutions. Although

5-1

the advection coefficient is often averaged as the mean wind speed, it can be a made

variable function dependent on some standard deviation of the wind speed. The

diffusion coefficient is in reality variable and dependent on the distance from the

source. These variations could be added to numerical (finite- difference) schemes.

Also, other numerical schemes, such as the finite element method, could be applied

to the same equations evaluated in this research.

Another subject of possible further research could be expanding the regions of

concern and using parallel computing systems in finding solutions to the equations

to better simulate the boundaries in real life, like x, y, z -- +oo. This research some-

what limited in range due to storage limits encountered using the Ada progamming

language.

A fourth area of possible further research could be looking at the area of risk

assessment of pollutants done by models currently available through the Environ-

mental Protection Agency and other sources of pollution models.

5-2

Appendix A. GA USPL UM Ada Code

This Appendix contains the Ada source code for the program GAUSPLUM.

The description for the variables used in the programs is within each program in

the form of comment blocks before each procedure within the program. Comment

lines start with a double hyphen and comment blocks begin and end with a line of

hyphens.

-- FILE: gausplum.a
-- PROJECT: Gaussian Plume Model
-- DATE: 16 APR 93
-- VERSION: Version 1.0
-- AUTHORS: Capt Dave Paal
-- DESCRIPTION: This program calculates the concentration of
-- pollutants in a plume using a Gaussian Plume Equation. The
-- program asks the user for the source strength, the surface
-- wind speed, coordinates of the receptor(x,yz), Pasquill
-- Gifford stability condition, and the effective height of the
-- plume. The diffusion terms, sigmas, are calculated using the
-- Pasquill Gifford sigmas, and x given by the user.
-- OPERATING SYSTEM: UNIX/Sun Sparc Station
-- LANGUAGE: Meridian Ada
-- FILES USED:

-- CONTEXT CLAUSES

with textio;
with MathLib;
use MathLib;
with my.integer.io;
with myfloat-io;

procedure gausmod is

A-i

-- TYPE DECLARATIONS

-- type Stable-Type is (A,BC,D,E,F);

-- GLOBAL VARIABLES AND EXCEPTIONS
Q : float; -- Source Strength, grams/second
X : float; -- Distance in X-direction in meters
U : float; -- Surface wind speed in meters/second
Y : float; -- Distance in Y-direction in meters
Z : float; -- Distance in Z-direction in meters
H : float; -- Effective height of plume in meters
Stable : character; -- Stability condition A to F
SigmaY : float; -- lateral diffusion term
SigmaZ : float; -- vertical diffusion term
Concentration : float; -- calculated concentration

-- PROCEDURE: Get-Info
-- DESCRIPTION: This procedure asks the user for the following:
-- Source strength, coordinates of receptor (X,Y,Z), surface

-- wind speed, stability condition, and the effective height of
-- the plume.

-- INPUT PARAMETERS: Q : source strenght in grams per second,
-- X : distance in x-direction in meters,
-- Y : distance in y-direction in meters,
-- Z : distanct in z-direction in meters,
-- U : surface wind speed in meters per second,

-- H : effective height of plume in meters,
-- Stable : stability condition, character A to F.
-- OUTPUT PARAMETERS: Same as Input Parameters.
-- LOCAL VARIABLES: None.
-- GLOBALS USED: Same as parameters.
-- CALLED BY: main.
-- CALLS: None.

procedure Get-Info (Q : in out float;
X : in out float;
Y : in out float;
Z : in out float;
U : in out float;

A-2

H in out float;
Stable in out character) is

begin
TextIo.put-line("Enter the Source Strength in grams per

second.");
MyFloatIo.get(Q);
TextIo.put-line("Enter the distance in the X-direction in

meters.");
MyFloatIo .get (X);
TextIo.put.line("Enter the Y-direction distance in

meters.");
MyFloatIo. get (Y);
TextIo.put-line("Enter the Z-direction distance in

meters.");
MyFloatIo.get (Z);
TextIo.put.line("Enter the surface wind speed in

meters/second.");

MyFloatIo. get (U);
TextIo.put.line("Enter the effective height of the plume in

meters.");
MyFloatlIo.get (H);
TextIo.putline("Enter the stability condition, in upper

case.");
Text_Io.get (Stable);

end Get-Info;

-- PROCEDURE: CalcPGSigma
-- DESCRIPTION: This procedure calculates the Pasquill Gifford
-- diffusion terms sigma-y, and sigma-z for the given stability
-- condition, A to F, and the distance X in meters from the
-- source.
-- The general form of the equations are:
-- sigmay = (KI * X)/[1.0 + (X/K2)]**K3,
-- and sigmaz = (K4 * X)/[1.0 + (X/K2)]**K5.
-- As found in Air Pollution Modeling by Paolo Zannetti on
-- p.149. The constants Ki to K5 used in this procedure were
-- derived by Gifford in 1976 in a diffusion experiment in flat
-- terrain.
-- INPUT PARAMETERS: Stable : stability condition given by user,

X : x-direction distance of receptor,

A-3

-- OUTPUT PARAMETERS: SigmaY : lateral diffusion term,
-- SigmaZ : vertical diffusion term.

-- LOCAL VARIABLES: None.
-- GLOBALS USED: Same as parameters.
-- CALLED BY: Main.
-- CALLS: None.

procedure CalcPGSigma (Stable : in character;
X : in Float;

SigmaY : in out Float;
SigmaZ : in out Float) is

begin
case Stable is

when 'A' =>
SigmaY : (X * 0.250)/exp(O.189*ln(1.O + (X/927.0)));
SigmaZ : (X * 0.1020)/exp(-1.918*ln(1.0 + (X/927.0)));

when 'B' =>
SigmaY : (X * 0.202)/exp(O.162*ln(1.0 + (X/370.O)));
SigmaZ : (X * O.0962)/exp(-O.1O1*ln(1.0 + (X/370.0)));

when 'C'=>
SigmaY : (X * 0.134)/exp(O.134*ln(1.0 + (X/283.0)));
SigmaZ : (X * O.0722)/exp(O.102*ln(1.0 + (X/283.0)));

when 'D' =>
SigmaY : (X * O.0787)/exp(O.135*ln(1.0 + (X/707.0)));
SigmaZ := (X * O.0475)/exp(O.465*ln(1.0 + (X/707.0)));

when 'E' =>
SigmaY : (X * O.0566)/exp(O.137*ln(1.0 + (X/1070.0)));
SigmaZ : (X * O.0335)/exp(O.624*ln(1.0 + (X/1070.O)));

when 'F' =>
SigmaY : (X * O.037)/exp(O.134*ln(1.0 + (X/1170.0)));
SigmaZ : (X * O.022)/exp(O.7*ln(1.0 + (X/1170.0)));

when others =>
TextIo.put.line("Invalid stability condition");

end case;
end CalcPGSigma;

-- PROCEDURE: CalcConcentration
-- DESCRIPTION: This procedure calculates the pollution
-- concentration for the user entered source strength,
-- distance, stability condition surface wind speed, and

A-4

effective height of the plume.
-- INPUT PARAMETERS: SigmaY : lateral diffusion term,
-- SigmaZ : vertical diffusion term,
-- Q : source strength,
-- H : effective height of plume,
-- Y : distance in y-direction,
-- Z : distance in z-direction,
-- U : surface wind speed.
-- OUTPUT PARAMETERS: Concentration : calculated concentration.

-- LOCAL VARIABLES: None.
-- GLOBALS USED: Same as parameters.

-- CALLED BY: Main.
-- CALLS: None.

procedure CalcConcentration (SigmaY : in Float;
SigmaZ : in Float;

Q : in Float;
Y : in Float;
Z : in Float;
U : in Float;
H : in Float;
Concentration : out Float) is

result1 : float;
result2 : float;
result3 : float;
result4 : float;
Pi : float := 3.1415926;

begin
resultl := (Q/(2.0 * Pi * SigmaY * SigmaZ * U));
result2 := exp((-1.0/2.0)*(Y/SigmaY)*(Y/SigmaY));
result3 := exp((-1.O/2.0)*((Z-H)/SigmaZ)*((Z-H)/SigmaZ));
result4 : exp((-1.0/2.0)*((Z+H)/SigmaZ)*((Z+H)/SigmaZ));
Concentration := resulti * result2 * (result3 + result4);

end CalcConcentration;

-- PROCEDURE: Print-Concentration
-- DESCRIPTION: This procedure prints the output of the program.

A-5

It prints out the concentration and the coordinates of the
receptor, the source strength, effective height of the plume,

-- surface wind speed, and the stability condition given.
-- INPUT PARAMETERS: Concentration calculated concentration,
-- X,Y,Z : recptor coordinates,
-- Q source strength,

-- H effective height of plume,
-- U : surface wind speed,
-- Stable stability condition.
-- OUTPUT PARAMETERS: None.
-- LOCAL VARIABLES: None.
-- GLOBALS USED: All.
-- CALLED BY: Main.
-- CALLS: None.

procedure Print-Info (Concentration : in Float;
X, Y, Z : in Float;
Q : in Float;

U : in Float;
H : in Float;
Stable : in character) is

begin
TextIo.put-line("The following concentration results

from");
TextIo.put-line("these input variables:");
TextIo.put-line("Source strength
MyFloatIo.put(Q);
TextIo.new_line;
TextIo.putline("X distance =
MyFloatIo.put(X);
TextIo.new-line;
TextIo.put -line("Y distance =
MyFloatIo.put(Y);
Text_Io.newline;
TextIo.put-line("Z distance =
MyFloat-lo.put(Z);
TextIo.new-line;
Text-lo.put-line("Surface wind direction is ");

MyFloat-lo.put(U);
Text-Io.new-line;
Text-lo.put-line("Effective height of the plume is

A-6

MyFloatIo.put(H);
TextIo.new-line;
TextIo.put-line("Stability condition given is I);

TextIo.put(Stable);
TextIo.new-line;
TextIo.put-line("The calculated concentration is
MyFloatIo.put(Concentration);
TextIo.new-line;

end Print-Info;

-- PROCEDURE: gausmod (a.k.a main)
-- DESCRIPTION: This is the main program and calls all the above
-- modules
-- INPUT PARAMETERS: none
-- OUTPUT PARAMETERS: none
-- LOCAL VARIABLES: none
-- GLOBALS USED: All.
-- CALLED BY: none
-- CALLS: Get-Info, CalcPGSigma, CalcConcentration,
-- and Print-Info.

begin -- MAIN
Get_Info(Q, X, Y, Z, U, H, Stable);
CalcPGSigma(Stable, X, SigmaY, SigmaZ);
CalcConcentration(SigmaY, SigmaZ, Q, Y, Z, U, H,

Concentration);
PrintInfo(Concentration, X, Y, Z, Q, U, H, Stable);

end gausmod;

A-7

Appendix B. Numerical solutions Ada code

The B-series appendices contain the Ada programming language programs

which contain the finite difference schemes used to solve the advection equation, one-,

two-, and three-dimensional advection-diffusion equations, and the two-dimensional

steady- state equation.

Appendix B.1 has the program for the advection equation. Appendix B.2

has the program for the 1-D advection-diffusion equation. Appendix B.3 has the

program for the 2-D advection-diffusion equation. Appendix B.4 has the program

for the 3-D advection- diffusion equation. Appendix B.5 has the program for the

2-D steady-state equation.

The description for the variables used in the programs is within each program

in the form of comment blocks before each procedure within the program. Comment

lines start with a double hyphen and comment blocks begin and end with a line of

hyphens.

B-1

B.1 Advection Equation Ada Code
-- FILE: ex131.a
-- PROJECT: Thesis work

-- DATE: 15 Jul 93

-- VERSION: Version 1.0
-- AUTHORS: Capt Dave Paal
-- DESCRIPTION: This program solves a hyperbolic partial
-- differential equation using the Lax-Friedrichs scheme.
-- The partial differential equation to be solved is:

-- d/dt (U) + d/dx (U) = 0

-- OPERATING SYSTEM: UNIX/Sun Sparc Station
-- LANGUAGE: Meridian Ada
-- FILES USED: Output: numl3l.dat.

-- CONTEXT CLAUSES

with text-io;
with MathLib;
use MathLib;
with my-integer.io;
with myfloat_io;

procedure prob131 is

-- TYPE DECLARATION

type Vector is array (1..50) of float;

-- GLOBAL VARIABLES AND EXCEPTIONS
V_Old : Vector;
VNew Vector;
DeltaX : float;
DeltaT : float;
MinX : float;
Max-X : float;
TValue : float;
T : float;
Outfile : TextIo.FileType;

B-2

-- PROCEDURE: Get information for calculation
-- DESCRIPTION: This procedure gets the values of DeltaX,
-- DeltaT, MinX, MaxX, and Iterations.
-- INPUT PARAMETERS: None.
-- OUTPUT PARAMETERS: DelX : incrementor for space

DelT : incrementor for time
-- LowX : lower bound for X
-- HiX : upper bound for X
-- Time : time value wanted for calculation
-- LOCAL VARIABLES: None.
-- GLOBALS USED: None.
-- CALLED BY: main.
-- CALLS: none.

procedure Get-Info (DelX : in out float;
DelT : in out float;
LowX : in out float;
Hi_ :in out float;
Time : in out float) is

begin

TextIo.put-line("Enter the value (Floating point, ie 0.1) of
Delta X.");

MyFloatIo. get (DelX);
TextIo.put-line("Enter the value (Floating point, ie 0.1) of

Delta T.");
MyFloatIo.get(DelT);
TextIo.put-line("Enter the minimum value (Floating point, ie

-2.0) of X.");
MyFloatIo. get (LowX);
TextIo.put-line("Enter the maximum value (Floating point, ie

3.0) of X.");
MyFloatIo. get (HiX);
TextIo.put-line("Enter calculation time value (Floating point,

ie 1.6).");
MyFloatIo .get (Time);

end Get-Info ;

-- PROCEDURE: Initial Vector
-- DESCRIPTION: This procedure initializes the vector

B-3

-- using DelX, Low_X, HiX. If xl<=I1.0 the vector element
-- is given the value 1-Ix1, otherwise the vector element is
- zero.
-- INPUT PARAMETERS: VOld : vector to represent x direction
-- DelX : space incrementer
-- DelT : time incrementer
-- LowX : lower bound for X
-- HiX : upper bound for X
-- OUTPUT PARAMETERS: VOld initial vector for problem
-- LOCAL VARIABLES: X : Value of X for each iteration of loop
-- Count : number of X increments.
-- GLOBALS USED: None.
-- CALLED BY: main.
-- CALLS: none.

procedure InitialVector (VOld : in out Vector;
DelX, LowX, HiX : in float) is

X : float := Low-X;
count : integer := integer((HiX - LowX)/DelIX);

begin
for i in 1..count loop

if abs(X) <= 1.0 then
VOld(i) := 1.0 - abs(X);
else

VOld(i) := 0.0;
end if;
X := X + DelX;

end loop;
end Initial-Vector;

-- PROCEDURE: Compute New Vector
-- DESCRIPTION: This procedure calculates the solution vector
-- in increments each time it is called by the main
-- program.
-- INPUT PARAMETERS: VOld : Vector for calculating answer
-- VNew : Vector for calculating answer
-- DelX : incrementor for space
-- DelT : incrementor for time
-- LowX : lower bound for X

B-4

-- HiX : upper bound for X

-- OUTPUT PARAMETERS: VOld : Becomes vector with values for this
iteration

-- VNew : Vector for calculating answer

-- LOCAL VARIABLES: Lambda : float DeltaT/DeltaX
-- Count : Counter for Vector array
-- GLOBALS USED: None.
-- CALLED BY: main.
-- CALLS: none.

procedure ComputeNew(VOld : in out Vector;
VNew : in out Vector;
DelX, DelT, LowX, HiX : in float) is

Lambda : float := DelT/DelX;
Count : integer := integer((HiX - LowX)/DelX);

begin
V_New(1) :=0.O;
for i in 2..(Count - 1) loop

VNew(i) := 0.5*(VOld(I+1) + VOld(I-1)) -
0.5*Lambda*(VOld(I+l) - VOld(I-1));

end loop;
VNew(Count) := VNew(Count-1);
for i in 1..Count loop

VOld(i) := VNew(i);
end loop;

end Compute-New;

-- PROCEDURE: Print-Info

-- DESCRIPTION: This procedure prints the output of the program.

-- It prints out the vector with the points for the time
-- iteration given.
-- INPUT PARAMETERS: VOld : Vector for calculating answer
-- VNew : Vector for calculating answer

-- DelX : incrementor for space
-- DelT : incrementor for time

LowX : lower bound for X
-- HiX : upper bound for X
-- OUTPUT PARAMETERS: VNew : Vector answer

B-5

-- LOCAL VARIABLES: Count :integer counter for array
-- GLOBALS USED: None.

-- CALLED BY: main.
-- CALLS: none.

procedure Print-.Info(V_.New : in out Vector;
Del_.X, Del-.T, Lov-.X, Hi_.X, Time : in float;

File :in out Text-.Io.File-Type) is

Count : integer :=integerC(Hi-X - Low-.X)/Del-X);
X-.Value : float Lov-.X+Del-.X;

begin
Text-.Io.put-line("The following are the results using the

Lax- 11)

Text...Io.put-line("Friedrichs scheme on a hyperbolic partial

dif eq.");
Text-.Io.put-.line("'The resulting vector is ;

Text-.Io .new..line(File);
Text-Io.put-line(File,"# The following are the results using

the ");
Text-Io.put-line(File,"# Lax-Friedrichs scheme on a

hyperbolic");
Text-.Io. put-.line (File,"* partial dif eq. The resulting vector

is "1);
Text-Io.put(File,"# Output for Min..x"1);
My-.Float-Io.put(File,Lov_.X,3,2,O);
Text..Io .nev-.line(File);
Text-.Io.put(File,'# Max..x=");

My..Float-.Io.put(FileHi-.X,3,2,O);
Text-Io .new..line(File);
Text-Io.put(File,"# Delta...=");
My-.Float-.Io.put(File,Del-.X,3,5,O);
Text-Io .nev-line (File);

Text-.Io.put(File,"# Deltaj=.");
My-.Float-.Io.put(File,Del_.T,3,5,O);
TextIo .nevjline(File);
Text-.Io.put(File,"# Time of calculation=");
My-.Float-Io.put(File,Time,3,5,O);
Text-.Io.nev-line(File);
for i in 1. .Count loop

My_.Float_.Io .put(XValue, 1,2,0);
Text-Io.put C"

B-6

'y..FloatIo.put(V-.New(i) .1,6,2);
TextIo .nev...line;

Text-.Io.set-.col(File,l);
My-.Float-.Io.put(File,X_.Value,1 ,2,O);
Text-.Io.set-.col(File,iO);
My-.Float-.Io.put(File,V-.New(i) ,1,6,2);
X-.Value := X,.Value + Del_.X;

end loop;

TextIo .new-line;
Text-Io .new-.line;

end PrintInfo;

-- PROCEDURE: Main
-- DESCRIPTION: This is the main program and calls all the above

-- modules

-- INPUT PARAMETERS: none
-- OUTPUT PARAMETERS: none
-- LOCAL VARIABLES: none
-- GLOBALS USED: All.

-- CALLED BY: none
-- CALLS: Get-Info, Initial-.Vector, Compute-.New, Print_.Info.

begin --MAIN
Text-.Io.Create(Outfile,Text-Io.Out..File,"nulml3l .dat");
GetInfo (Delta_.X, Delta..T, Min_.X, Max-.X, T-Value);
Initial-Vector CV-.Old, Delta-X, Min..., Max-.X);
T := Delta-.T;
while T <= T-.Value loop

Compute..New(V-.Old, V_.New, Delta_.X, DeltaT, Min..., Max..X);
T := T + Delta-.T;

end loop;
Print-.Info(V-.New, Delta-.X, Delta..T, Min..., Max..X, T-Value,

Outfile);
Text-Io .Close(Outfile);

end probl.3l;

B-7

B.2 1-D Advection-Diffusion Equation Ada Code
-- FILE: exadvdif.a
-- PROJECT: Thesis work
-- DATE: 19 Jul 93
-- VERSION: Version 1.0
-- AUTHORS: Capt Dave Paal
-- DESCRIPTION: This program solves a hyperbolic partial
-- differential equation using the forward-time and
-- central-space forward difference scheme.
-- The partial differential equation to be solved it:

-- d/dt (U) + d/dx (U) = b * d**2/dx**2 (U)

-- OPERATING SYSTEM: UNIX/Sun Sparc Station
-- LANGUAGE: Meridian Ada
-- FILES USED: Output: advdifl.dat.

-- CONTEXT CLAUSES

with textio;
with MathLib;
use MathLib;
with my.integer.io;
with my.float.io;

procedure exadvi is

-- TYPE DECLARATION

type Vector is array (1..50) of float;

-- GLOBAL VARIABLES AND EXCEPTIONS
VOld : Vector;
VNew : Vector;
DeltaX : float;
DeltaT : float;
MinX : float;
MaxX : float;
TValue : float;
A, B : float;

B-8

Bmu : float;
T : float;
Outfile : TextIo.FileType;

-- PROCEDURE: Get information for calculation
-- DESCRIPTION: This procedure gets the values of DelX, DelT,
-- LowX, HiX, and Time.

-- INPUT PARAMETERS: None.

-- OUTPUT PARAMETERS: DelT : time incrementor

-- DelX : space incrementor
-- Lov.X : lower bound for X

-- HiX : upper bound for X

-- A, B : constants (positive)
-- Time : time calculation is wanted
-- LOCAL VARIABLES: None.

-- GLOBALS USED:

-- CALLED BY: main.
-- CALLS: none.

procedure Get-Info (DelX : in out float;
DelT : in out float;

LovX : in out float;
HiX : in out float;
A, B : in out float;

Time : in out float) is

begin

TextIo.putline("Enter the value (Floating point, ie 0.1) of
Delta X.");

MyFloatIo. get (DelX);
TextIo.put-line("Enter the value (Floating point, ie 0.05) of

Delta T.");
MyFloatIo.get (DelT);
TextIo.put-line("Enter the minimum value (Floating point, ie

-2.0) of X.");
MyFloatIo.get (LowX);
TextIo.put-line("Enter the maximum value (Floating point, ie

3.0) of X.");

MyFloatIo.get (HiX);
TextIo.put-line("Enter the value (Positive Floating point, ie

0.5) of A.");

B-9

MyFloatIo.get(A);
TextIo.put-line("Enter the value (Positive Floating point, ie

0.5) of B.");
MyFloatIo.get(B);
TextIo.put-line("Enter calculation time value (Floating point,

ie 1.6).");
MyFloatIo.get(Time);
end Get_Info;

-- PROCEDURE: Initial Vector
-- DESCRIPTION: This procedure initializes the vector
-- using DelX, Low.X, HiX. If IxI<=1.0 the vector element
-- is given the value 1-Ixi, otherwise the vector element is
-- zero.
-- INPUT PARAMETERS: DelX : space incrementor
-- LowX, HiX : min and max range
-- A, B : positive constants
-- OUTPUT PARAMETERS: VOld : V(0)
-- LOCAL VARIABLES: X : float
-- Count : number of X increments
-- Mu : DelT/(DelX * DelX)
-- GLOBALS USED: none.
-- CALLED BY: main.
-- CALLS: none.

procedure Initial-Vector (VOld : in out Vector;
DelX, DelT, LowX, HiX, A, B : in float) is

X : float := LowX;
count : integer := integer((HiX - Low_X)/DelX);
Mu : float := DelT/(DelX * DeIX);

begin
if B*Mu > 0.5 then

TextIo.put-line("B*Mu > 0.5 causes unstable results");
else

for i in 1..count loop
if abs(X) <= 1.0 then

VOld(i) : 1.0 - abs(X);
else

VOld(i) : 0.0;

end if;

B-10

X := X + DelX;
end loop;

end if;
end Initial-Vector;

-- PROCEDURE: Compute Vector answer for time wanted.
-- DESCRIPTION: This procedure calculates new vector
-- INPUT PARAMETERS: VOld : Vector for V(N)
-- VNew : Vector for V(N+I)
-- DelX : incrementor for space
-- DelIT : incrementor for time
-- LowX : lower bound for X
-- HiX : upper bound for X
-- A, B : positive constants
-- OUTPUT PARAMETERS: VOld : Vector for V(N)
-- VNew : Vector for V(N+1)
-- LOCAL VARIABLES: Mu : float DelT/DelX**2
-- Count : Counter for Vector array
-- Alpha : (DelX * A)/(2*B)
-- GLOBALS USED: None.
-- CALLED BY: main.
-- CALLS: none.

procedure ComputeNew(VOld : in out Vector;
VNew : in out Vector;
DelX, DelT, LowX, HiX, A, B : in float) is

Count : integer := integer((HiX - LowX)/DelIX);
Mu : float := DelT/(DelIx * DelX);
Alpha : float := (DelX * A)/(2.0*B);

begin
V_New(1) :=0.O;
for i in 2..(Count - 1) loop

VNew(i) := ((1.0 - 2.0 * B * Mu) * VOld(i)) + (B * Mu *

(1.0 - Alpha) * VOld(i+l)) +
(B * Mu * (1.0 + Alpha) * VOld(i-1));

end loop;
VNew(Count) := VNew(Count-1);
for i in 1..Count loop

B-11

VOld(i) := V.Now(i);
end loop;

end Compute-New;

-- PROCEDURE: Print-Info
-- DESCRIPTION: This procedure prints the output of the program.
-- It prints the point and corresponding concentration for the
-- wanted time to both the screen and an output file named
-- advdifl.dat.
-- INPUT PARAMETERS: VNew : Vector answer
-- DelX : incrementor for space
-- DelT : incrementor for time

-- LowX : lower bound for X
-- HiX : upper bound for X
-- OUTPUT PARAMETERS: VNew : Vector answer
-- LOCAL VARIABLES: Count : integer counter for array
-- XValue : value of x for each iteration

through vector
Alpha : (DelX * A) / (2.0 * B) <= 1.0 for

no oscillation
Bmu : (B * DelT)/(Drl!_-X * DelX) <= 0.5

for stability
-- GLOBALS USED: None.
-- CALLED BY: main.
-- CALLS: none.

procedure PrintInfo(VNew : in out Vector;
DelX, DelT, LowX, HiX, Time, A, B : in float;

File : in out TextIo.FileType) is

Count : integer : integer((HiX - LowX)/DelIX);
XValue : float := LowX+DelIX;
Alpha : float : (DelX * A) / (2.0 * B);
Bmu : float : (B * DelT)/(DelIX * DelX);

begin
TextIo.put-line("The following are the results using forward

time ");
TextIo.put-line("central space scheme on a hyperbolic partial

difeq.");
TextIo.put-line("The resulting vector is ");

B-12

Text-Io.put-.line(File,'# The following are the results using

the ");
Text-.Io.put-.line(File,"# forward time/central space scheme on

a is
Text-Io.put-.line(File,"# Ct + aCx = bCxx.'");
Text-Io.put-line(File,"# The resulting vector is:)

Text-.Io.put(File,"# Output for Min..x=");
My-.Float-Io.put(File,Low_.X,3,2,O);
Text-.Io .new-line(File);
Text-Io.put(File,'# Max-.x=");
My-.Float-Io.put(File,Hi-X,3,2,O);
TextIo .new-.line(File);
Text-.Io.put(File,"# Delta X=");
My-Float..Io.put(File,Del_.A,3,5,O);
Text-Io.new-line(File);
Text-.Io.put(File,"* Delta-.T=");

Text..Io .new-.line(File);
Text-lo.put(File,"# Lame of calculation=");
My..Yloat-Io.put(File,Time,3,5 1),
Text-.Io .new...line(File);
Text..Io.put(File,"# Alpha= (Dei ra-.X *)2=;
My-.Float-Io.put(File,Alpha,3,5,O);
Text-lo.new-.line(File);
Text-.Io.put(File,"* Bmu= B*Delta_.T/Delta-.X**2=");
My-.Float-Io.put(File,Bmu,3,5,O);
Text-Io.new-.line(File);
for i in 1. .Count loop

Text-l.o.set-.col(File,l);

My-Float-Io.put(File,X-Value,2,2,O);
Text-Io set..col(File, 15);

My-Float-.Io.put(File,V-.New(i) ,2,6,2);
X-Value := X-Value + Del..X;

end loop;
Text-.Io .new-line;
Text-Io.new-line;

end Print-Info;

-- PROCEDURE: Examplel.3.1 (a.k.a main)
-- DESCRIPTION: This is the main program and calls all the above

B-13

-- modules

-- INPUT PARAMETERS: none

-- OUTPUT PARAMETERS: none
-- LOCAL VARIABLES: none

-- GLOi3ALS USED: All.
-- CALLED BY: none
-- CALLS: Get-Info, Initial_.Vector, Compute...New, Print-Info.

begin --MAIN
Text-Io.Create(Outfile,TextIo.Out_.File,"advdifl.dat");
GetInfo (Delta..X, Delta_.T, Min_.X, Max-.X, A, B, TValue);

Initial-.Vector (V..Old, Delta-.X, Delta-T, Min_.X, Max-.X, A, B);

Emu := B*Delta-.T/(Delta_.X*Delta_.X);
if Bmu > 0.5 then

Text..Io.put-line("Unstable result, try again.");
else

T := Delta-.T;
while T <= L.Value loo~p

Compute-.New(VD.ld, V..New, Delta-.X, Delta..T, Min_.X, Max-.X,

A, B);
T :=T + Delta-.T;

end loop;
Print-Info(V...New, Delta_.X, Delta-.T, Min_.X, Max_.X, T-.Value,

A, B, Outfile);
end if;
Text-Io.Close(Outfile);

end exadvi;

13-14

B.3 2-D Advection-Diffusion Equation Ada Code
-- FILE: exadvdif2.a
-- PROJECT: Thesis work, example calculation

-- DATE: 23 Jul 93

-- VERSION: Version 1.0

-- AUTHORS: Capt Dave Paal
-- DESCRIPTION: This program solves a partial differential
-- equation using the forward time and central space.
-- The partial differential equation to be solved is:

-_ Ct + A*Cx = K1*Cxx + K2*Cyy

-- OPERATING SYSTEM: UNIX/Sun Sparc Station
-- LANGUAGE: Meridian Ada

-- FILES USED: Output: expltest.dat

-- CONTEXT CLAUSES

with textio;
with MathLib;
use MathLib;
with my-integer-io;
with my.float.io;

procedure ctprob is

-- TYPE DECLARATION

type Matrix is array (1..80,1..80) of float;

-- GLOBAL VARIABLES AND EXCEPTIONS
CN :Matrix;
CNew : Matrix;
DeltaX : float;
DeltaY : float;
DeltaT : float;
MinX : float;
MaxX : float;
MinY : float;
MaxY : float;

B-15

A : float;
K1 : float;
K2 : float;
TValue : float;
T float;
Outfile : TextIo.FileType;

-- PROCEDURE: Get information for calculation
-- DESCRIPTION: This procedure gets the values of DelX, DelT,
-- DelY, LowX, HiX, Low_Y, HiY, A, K1, K2, and Time.
-- INPUT PARAMETERS: None.
-- OUTPUT PARAMETERS: DelX : incrementor for space
-- DeIT : incrementor for time

DelY : incrementor for Y direction
-- LowX : lower bound for X
-- HiX : upper bound for X
-- LovY : lower bound for Y
-- HiY : upper bound for Y
-- A : constant wind sy -ad
-- Ki, K2 : diffusivity constants
-- Time : wanted time level
-- LOCAL VARIABLES: None.
-- GLOBALS USED: DelX, DelT, Del_Y, LowX, HiX, LowY, HiY,
-- A, K1, K2, and Time.
-- CALLED BY: main.
-- CALLS: none.

procedure GetIntfo (Del-X : in out float;

DelY : in out float;
DelIT : in out float;
LowX : in out float;
HiX : in out float;
LowY : in out float;
HiY : in out float;
A i in out float;
K1, K2: in out float;
Time : in out float) is

begin

TextIo.put-line("Enter the value (Floating point) of Delta
X. ");

B-16

MyFloatIo. get (DelX);
TextIo.put-line("Enter the value (Floating point) of Delta

Y. "1);
MyFloatIo. get (DelY);

TextIo.put-line("Enter the value (Floating point) of Delta
T. ") ;

MyFloatIo. get (DelT);

TextIo.put-line("Enter the minimum value (Floating point)
of X. ");

MyFloatIo. get (LowX);

TextIo.put-line("Enter the maximum value (Floating point)
of X. ");

MyFloatIo.get(HiX);
TextIo.put-line("Enter the minimum value (Floating point)

of Y. ");

MyFloatIo. get (LowY) ;

TextIo.put-line("Enter the maximum value (Floating point)
of Y. ");

MyFloatIo.get (HiY);
TextIo.putline("Enter the value (Positive Floating point)

of A. ");
MyFloat-Io.get (A);
TextIo.put-line("Enter the value (Positive Floating point)

of K1. ");
MyFloatIo .get(K1);
TextIo.put.line("Enter the value (Positive Floating point)

of K2. "1);
MyFloatIo .get (K2);
TextIo.put-line("Enter the number of time value wanted

(float).");
MyFloatIo .get (Time);

end GetInfo;

-- PROCEDURE: Initial Matrix

-- DESCRIPTION: This procedure initializes the matrix
-- using DelX, DelY, LowX, HiX, LowY, HiY.
-- INPUT PARAMETERS: CN, DelX, DelY, LowX, HiX, LowY, Hi_
-- OUTPUT PARAMETERS: CN.

-- LOCAL VARIABLES: X : X value incrementer.

-- Y : Y value incrementer.

-- CountX : number of X increments.

-- CountY : number of Y increments.

B- 17

-- GLOBALS USED: CN, DelX, DelY, LowX, HiX, LowY, HiY.
-- CALLED BY: main.
-- CALLS: none.

procedure Initial-Matrix (CN : in out Matrix;
DelX, DelY : in float;
LowX, HiX, LowY, HiY : in float) is

X : float : LowX;
Y : float : Low_Y;
CountX : integer := integer((Hi_X - LowX)/DeIX);
CountY : integer := integer((HiY - LowY)/DelY);
R : float := sqrt(X*X + YY);

begin
for j in 1..CountY loop

X := LowX;
for i in 1..CountX loop

if (R >= 0.0 and R <= 1.0) then
CN(i,j) := 1.0 - R;
else

CN(i,j) := 0.0;
end if;
X : X + DelX;
R : sqrt(X*X + Y*Y);

end loop;
Y := Y + DelIY;

end loop;
end Initial-Matrix;

-- PROCEDURE: Compute final Matrix
-- DESCRIPTION: This procedure calculates new vector
-- INPUT PARAMETERS: CN : Matrix for CN(i,j)
-- CNew : Matrix for calculating answer
-- DelX : incrementor for space
-- DelT : incrementor for time
-- DelY : incrementor for Y direction
-- LowX : lower bound for X
-- HiX : upper bound for X

-- LowY : lower bound for Y
-- HiY : upper bound for Y

B-IS

-- A constant

-- K1 X diffusivity constant
-- K12 Y diffusivity constant

-- OUTPUT PARAMETERS: C..N :Matrix for C(N)
-- C-.New :Matrix for calculating answer

-- LOCAL VARIABLES: Mu :(A*Del-.T)/(2.O*Del-X)

-- ~Alpha CKl*Del-.T)/(Del-.X*Del-.X)
-- Beta (K2*Del..T)/(Del-Y*Del-.Y)
-- Count-.Y : integer((Hi-Y -Lov-Y)/Del-Y)
-- ~Count-X : integer((Hi-X - Lov-.X)/Del-.X)

-- GLOBALS USED: C-.N, C_.Nev, Del-X, Del-T, Del-Y, Lov_.X, Hi-.X
-- Low..Y, Hi-Y, A, K1, K2.

-- CALLED BY: main.
-- CALLS: none.
-- ANALYSIS: O(1).

procedure Compute-.Final(C-.N : in out Matrix;

C-.Nev : in out Matrix;
Del-.X, Del-.T, Del..Y : in float;
Lov-.X, Hi-X, Low..Y, Hi-.Y : in float;
A, K(1, K(2 : in float) is

Mu : float := (A*Del-.T)/(2.O*Del-.X);
Alpha :float :(K1*Del-.T)/(Del-.X*Del-.X);

Beta :float :(K2*Del-.T)/(Del-.Y*Del-Y);

Count-.X : integer :integer((Hi-X - Lov-.X)/Del-.X);
Count-.Y: integer : integer((Hi-.Y - Low..Y)/Del-Y);

begin
for i in 1. .Count...X loop

C-.New(i,Count-.Y) :0O.O;
C...New(i,1) :0O.O;

end loop;
for i in 1. .Count-Y loop

C-.New(Count-.X,i) :0O.O;
C_.New(l,i) :0O.O;

end loop;
for j in 2.. (Count-.Y - 1) loop

for i in 2.. (Count-.X - 1) loop
C-.New(i,j) := C-.N(i,j) - Mu*(C-.N(i+l,j) - C-.N(i-l,j)) +

Alpha*(C-.N(i+l,j) - 2.O*C_.N(i,j) +

C-.N(i-l,j)) +

B-19

Beta*(CN(i,j+l) - 2.0*CN(i,j) +

CeN(i,j-1));
end loop;

end loop;
for i in 1..CountX loop

for j in 1..CountY loop

CN(i,j) := CNew(i,j);

end loop;
end loop;

end Compute-Final;

-- PROCEDURE: Print-Info

-- DESCRIPTION: This procedure prints the output of the program.
-- It prints out the matrix with the points for the time
-- iteration given.
-- INPUT PARAMETERS: CNew : Matrix for calculating answer

DelX : incrementor for space
-- DelIT : incrementor for time

DelIY : incrementor for Y direction

-- LowX : lower bound for X

-- HiX : upper bound for X

-- LowY : lower bound for Y

-- HiY : upper bound for Y
-- OUTPUT PARAMETERS: CNew : Matrix answer

-- File : output file

-- LOCAL VARIABLES: CountX, Count_Y : matrix integer counters
-- X_Value, YValue : X and Y points

-- GLOBALS USED: CNew, DelX, DelT, Del_Y, Low_X, HiX,
-- Low_Y, HiY, File.

-- CALLED BY: main.

-- CALLS: none.

procedure PrintInfo(CNew : in out Matrix;
DelX, DelT, DelY : in float;

LowX, HiX, LowY, Hi)Y : in float;
File : in out TextIo.FileType) is

CountX : integer : integer((HiX - LowX)/DelX);
CountY : integer : integer((HiY - LowY)/DelIY);
XValue : float : LowX;
YValue : iloat : LowY;

B-20

begin
Text -o. put-line("#The following are the results using the

forward time ");

Text-.Io.put-line('# central space for the partial

diferential equation:");

Text-.Io.put-.line("* Ct + A*Cx = K1*Cxx + K2*Cyy 11);

Text-.Io.put-.line("# The resulting matrix is:')

Text-Io .new-line;
Text-Io.new-line(File,2);
Text-.Io.put-.line(File,"# Output for a=.5, kl=.5, k2=.511);

Text-.Io.put-.line(File,"# delta..x=.2, delta-.y=.2,

delta..t=.02,t=.06");

for j in 1. .Count-.Y loop
XValue := Low_.X;
for i in 1. .Count_.X loop

TextIo.set..col(File, 1);
My-.Float-.Io.put(File,X-.Value,1,2,0);
Text .1o .set..col (File ,10);
My-Float-Io.put(File, Y-.Value,1,2,0);
TextIo set..col(File,20);
My-.Float-.Io.put(File,C-.New(i,j) ,1,6,2);

Text-Io .new..line (File);

X-.Value := X-.Value + DelX;
end loop;
Y..Value := Y-Value + Del-Y;

end loop;

TextIo .new-.line;

end PrintInfo;

-- PROCEDURE: Main
-- DESCRIPTION: This is the main program and calls all the above

-- modules

-- INPUT PARAMETERS: none
-- OUTPUT PARAMETERS: none
-- LOCAL VARIABLES: none
-- GLOBALS USED: All.
-- CALLED BY: none
-- CALLS: Get-Info, Initial-Matrix, Compute_.Final, PrintInfo.

begin -- MAIN

B-21

Text-Io.Create(Outfile,Text-Io.Out-File, "expltest.dat");
GetInfo (Delta_.X, Delta..Y, Delta-.T, Min-.X, Max_.X, Min-.Y,

Max..Y, A, K1, K2, T-Value);
Initial-Matrix (C-M., Delta..X, Delta..Y, Min_.X, Max..X, MinY,

Max_.Y);

T :=DeltaT;
while T <= T-Value loop

Max_.X, MinY, Max-Y, A, K1, K2);

T :=T + Delta-.T;
end loop;
Print-Info(C-.New, Delta-.X, Delta-.T, Delta-Y, Min..., Max..X,

Min_.Y, Hax-.Y, Outfile);
Text-.Io.Close(Outfile);

end ctprob;

B-22

B.4 3-D Advection-Diffusion Equation Ada Code
-- FILE: threedprob.a
-- PROJECT: Thesis work
-- DATE: 12 Aug 93

-- VERSION: Version 1.0
-- AUTHORS: Capt Dave Paal
-- DESCRIPTION: This program solves a partial differential
-- equation using the forward time and central space.
-- The partial differential equation to be solved is:

-- Ct + A*Cx = K1*Cxx + K2*Cyy + K3*Czz + F(X,Y,Z)

-- Where F(X,Y,Z) is the source term.
-- For this example the following conditions must hold for a
-- stable non-oscillating solution:
-- (Ki*DelIT)/(DelIX*DelX)<= 1/8
-- and (A*DelX)/(2*Ki)<= 1.0
-- where the i subscript is 1,2,or 3 for X,Y,or Z
-- diffusivity terms.
-- These conditions limit the usefulness of this program
-- because they more or less make the diffusivity terms
-- constant when in reality they are variable
-- (K(i)u=sigma(i)**2/(2*time).
-- Another limitation of this program is that the source term
-- is hard coded as F(O,O,StackHeight) and the program is
-- dependent on whether the Delta.X,(Y and Z) terms and the
-- minimum values of each will increment to X=O, Y=O,
-- and Z= height.
-- OPERATING SYSTEM: UNIX/Sun Sparc Station
-- LANGUAGE: Meridian Ada
-- FILES USED: Output: test3d.dat

-- CONTEXT CLAUSES

with textio;
with MathLib;
use MathLib;
with my-integer.io;
with myfloat.io;

procedure threed is

B-23

-- TYPE DECLARATION

type TriMatrix is array (0..50,0..50,0..50) of float;

-- GLOBAL VARIABLES AND EXCEPTIONS
CN :TriMatrix;
CNew TriMatrix;
CCalc . TriMatrix;
DeltaX : float;
DeltaY float;
DeltaZ float;
DeltaT float;
MinX : float;
MaxX : float;
MinY : float;
MaxY : float;
MinZ : float;
MaxZ : float;
A : float;
TValue : float;
QValue : float;
StkHgt : float;
T : float;
Outfile : TextIo.FileType;

-- PROCEDURE: Get information for calculation
-- DESCRIPTION: This procedure gets the values of DelX, DelT,
-- Del_Y, DelZ, LowX, HiX, LowY, HiY, LowZ, HiZ,
-- A, and Time.

-- INPUT PARAMETERS: None.
-- OUTPUT PARAMETERS: DelX : incrementor for space
-- DelT : incrementor for time

DelY : incrementor for Y direction
-- DelZ : incrementor for Z direction
-- LowX : lower bound for X
-- HiX : upper bound for X
-- LowY : lower bound for Y
-- HiY : upper bound for Y
-- LowZ : lower bound for Z

B-24

-- HiZ upper bound for Z

-- A constant wind speed
-- Time : wanted time level

-- LOCAL VARIABLES: None.

-- GLOBALS USED: None.

-- CALLED BY: main.

-- CALLS: none.

procedure Get-Info (DelX : in out float;
DelY : in out float;
DelIZ : in out float;
DelT : in out float;
LowX : in out float;
HiX :in out float;
LowY : in out float;
HiY : in out float;
LowZ : in out float;
HiZ : in out float;
A : in out float;
Time : in out float;
Quantity : in out float;
Height : in out float) is

begin

TextIo.put.line("Enter the value (Floating point) of Delta
X. ");

MyFloatIo. get (DelX);
TextIo.put-line("Enter the value (Floating point) of Delta

Y. ");
My-Floatlo. get (DelY);
Text-lo.put-line("Enter the value (Floating point) of Delta

Z. ");
MyFloat-Io.get (DelZ);
Text-Io.put-line("Enter the value (Floating point) of Delta

T. ");

MyFloatIo. get (DelT);
Text-lo.put-line("Enter the minimum value (Floating point)

of X. ");
MyFloatIo.get (LowX);
Text-lo.put-line("Enter the maximum value (Floating point)

B-25

of X. ");

MyFloatIo.get(HiX);
TextIo.put-line("Enter the minimum value (Floating point)

of Y. ");
MyFloatIo.get (LowY);
TextIo.put-line("Enter the maximum value (Floating point)

of Y. ");
MyFloat-Io.get(Hi-Y);
TextIo.put-line("Enter the minimum value (Floating point)

of Z. "1);

MyFloatIo.get (Low.Z);
TextIo.put-line("Enter the maximum value (Floating point)

of Z. ");
MyFloatIo.get (HiZ);
TextIo.put-line("Enter the value (Positive Floating point)

of A. ");

MyFloatIo. get (A);
TextIo.put-line("Enter the number of time value wanted

(float). ");

MyFloatIo .get (Time);
TextIo.put-line("Enter the value (Positive Floating point)

of Q. "5);
MyFloatIo.get (Quantity);
TextIo.put-line("Enter the height of the stack (float).");
MyFloatIo.get (Height);

end GetInfo;

-- PROCEDURE: Compute final TriMatrix

-- DESCRIPTION: This procedure calculates final answer through
-- iterations using a finite difference scheme with forward
-- time/central space.

-- INPUT PARAMETERS: CN : TriMatrix for CN(i,j)

-- CNew : TriMatrix for calculating answer

-- DelX : incrementor for space

-- DelT : incrementor for time
DelY : incrementor for Y direction

-- DelZ : incrementor for Z direction
-- LowX : lower bound for X
-- HiX : upper bound for X
-- LowY : lower bound for Y
-- HiY : upper bound for Y

B-26

-- LowZ : lower bound for Z

-- HiZ upper bound for Z

-- A constant

-- Time counter for time iteration

-- OUTPUT PARAMETERS: CN TriMatrix for C(N)

-- CNew : TriMatrix for calculating answer

-- LOCAL VARIABLES: Mu : (A*DelT)/(2.0*DelIX)
-- K1 : X diffusivity constant

-- K2 : Y diffusivity constant

-- K3 : Z diffusivity constant

-- Alpha : (KI*DelT)/(DelX*DelX)

-- Beta : (K2*DelT)/(DelY*DelY)

-- Gamma : (K3*DelT)/(DelIZ*DelZ)

-- CountY : integer((HiY -LowY)/DelY)

-- CountX : integer((HiX - LowX)/DelX)

-- CountZ : integer((HiZ - LowZ)/DelZ)

-- X : counter for X axis

-- Y : counter for Y axis

-- Z : counter for Z axis

-- Fofxyz : source forcing function

-- Pi : the number Pi

-- GLOBALS USED: None.

-- CALLED BY: main.

-- CALLS: none.

procedure ComputeFinal(CN : in out TriMatrix;
CNew : in out TriMatrix;
CCalc : in out TriMatrix;
T, DelX, DelY, DelZ, DeIT : in float;
LowX, HiX, LowY : in float;

HiY, LowZ, HiZ : in float;

A, Quantity, Height : in float) is

K1 : float : 1.0;

K2 : float : 1.0;

K3 : float : 1.0;
Mu : float : (A*DelT)/(2.0*DelX);
Alpha : float : (KI*DelIT)/(DelIX*DelX);
Beta : float : (K2*DelIT)/(DelY*DelY);
Gamma : float : (K3*DelT)/(DelZ*DelZ);
CountX : integer := integer((Hi_X - LowX)/DelX);

B-27

CountY : integer integer((HiY - LowY)/DelIY);
CountZ : integer := integer((HiZ - LovwZ)/DelZ);

X : float LowX;
Y : float : LovwY;

Z : float : LowZ;
Fofxyz : float;
Pi : float := 3.141592654;

begin

for k in 1..(CountZ) loop
Y := LowY;
for j in 1.. (CountY) loop

X := LowX;
for i in 1.. (CountX) loop

if (k = 1) then
C_New(i,j,k) 0.0;
CCalc(i,j,k) 0.0;

elsif (k = CountZ+1) then
CNew(ij,k) 0.0;
CCalc(i,jk) 0.0;

elsif Cj = 1) then
C_New(i,j,k) 0.0;
CCalc(i,j,k) 0.0;

elsif (j = CountY+1) then
CNew(i,j,k) 0.0;
CCalc(i,j,k) 0.0;

elsif (i = 1) then
CNew(i,j,k) 0.0;
CCalc(i,j,k) 0.0;

elsif (i = CountX4I) then
CNew(ij,k) 0.0;
CCalc(i,j,k) 0.0;

else
if (T = 0.0 and X = 0.0 and Y <= 0.0

and (Y + DelIY) > 0.0
and Z <= Height and (Z + DelIZ) > Height)

then
Fofxyz Quantity;

else
Fofxyz 0.0;

end if;

B-28

MuMu float :-(A*Del-.T)/(2.0*DelX);
-- Alpha :float (K1*Del-.T)/(Del-X*Del-.X);
-- Beta :float :-(K2*Del-.T)/(Del-Y*Del-Y);

-- Gamma :float (K3*Del-.T)/(Del-Z*Del-.Z);
C-M.ew(i~j,k) := C..N(i,j,k) - Mu*(C-M.(i+lj,k) -

C-M.(i-I,j,k)) +
Alpha*(C-.N(i+l,j,k) - 2.0*CN(i,j,k) +

C-.N(i-l,j,k)) +
Beta*(C-N(i,j+l,k) - 2.0*C-.N(i,j,k) +

C-N(i,j-l,k)) +
Gaznma*(C-.N(i,j,k+l) - 2.0*C-.N(i~j,k) +

C-.N(i,j ,k-1))+
Fofxyz*Del-T;

if T /= 0.0 then
C-.Calc(i,j ,k) :=(Quantity/(8.0*sqrt(Kl*K2*K3)

*sqrt(Pi*Pi*Pi*T*T*T)))*

exp (- ((X-A*T) *(X-A*T) /(4. 0*K1*T))
(Y*y/ (4. 0*K2*T)) -

(Z*Z/(4.0*K3*T)));
end if;

end if;
X :=X + Del-.X;

end loop;

Y := Y + Del-.Y;
end loop;
Z :=Z + Del-.Z;

end loop;
for i in 1. .Count-.X loop
for j in 1. .Count-.Y loop

for k in 1. .Count-.Z loop

C-.N(i,j,k) C=...New(i~j,k);
end loop;

end loop;

end loop;
end Compute-.Final;

-- PROCEDURE: Print-.Info
-- DESCRIPTION: This procedure prints the output of the program.
-- It prints out the matrix with the points for the time
-- iteration given.
-- INPUT PARAMETERS: C..New : Tri-.Matrix for calculating answer

B-29

-- DelX : incrementor for space
-- DelY : incrementor for Y direction
-- DelZ : incrementor for Z direction

DelT : incrementor for time
-- LowX : lower bound for X
-- HiX : upper bound for X
-- LowY : lower bound for Y
-- HiY : upper bound for Y

LowZ : lower bound for Z
-- HiZ : upper bound for Z
-- OUTPUT PARAMETERS: CNew : TriMatrix answer
-- File : output file with values of matrix
-- LOCAL VARIABLES: CountX, CountY, CountZ : integer counters
-- X_Value, YValue, Z_Value : X,Y,and Z points
-- K1, K2, K3 diffusivity coefficients
-- BIMu, B2Mu, B3Mu : Stability requirements <=1/8
-- Alphal, Alpha2, Alpha3 : Oscilatory condition <= 1
-- GLOBALS USED: None.
-- CALLED BY: main.
-- CALLS: none.

procedure PrintInfo(CNew : in out Tri_Matrix;
CCalc : in out TriMatrix;

DelX, DelY, DelZ, DelT, A : in float;
LowX, HiX, LowY, HiY : in float;
LowZ, HiZ, Time : in float;
Quantity, Height : in float;
File : in out TextIo.FileType) is

K1 : float := 1.0;
K2 : float := 1.0;
K3 : float := 1.0;
CountX : integer := integer((HiX - LowX)/DelX);
CountY : integer := integer((HiY - LowY)/DelY);
CountZ : integer := integer((HiZ - LowZ)/DelZ);
XValue : float LowX;
YValue : float : LowY;
ZValue : float : Low.Z;
BIMu : float : (KI*DelT)/(DelX*DelX);
B2Mu : float : (K2*DelT)/(DelX*DelX);
B3Mu : float : (K3*DelT)/(DelX*DelX);
Alphal : float := (A*DelX)/(2.0*Kl);

B-30

Alpha2 float (A*Del-.X)/(2.O*K2);
Alpha3 float (A*Del-X)/(2.O*K3);

begin
Text-.Io.put-line('#The following are the results using the

forward time "t);

Text-Io.put-.line("# central space for the partial diferential

equation:");
Textj-o.put-line("# Ct + A*Cx = K1*Cxx + K2*Cyy + K3*Czz +

Text-.Io.put-.line("* The resulting matrix is: ;
Text-Io.new-line;
Text-.Io.new-.line(File,2);
Text-.Io.put(File,'# Output for threedprob.a")
Text-Io .new-line(File);
Text-Io.put-lineCFile,"# Ct + A*Cx K1*Cxx + K2*Cyy + K3*Czz

+ FXYZ')

TextIo .new-line(File);
Text- o. put (File,"# Min..X
Hy-.Float-.Io.put(File,Low-.X,3,2,O);
Text-Io.put(File,", Max-.X = 11);

My-.Float-.Io.put(File,Hi-.X,3,2,O);
Text-Io.put(File,', Delta-.X =1)
My.Yloat-Io .put (File ,Del-X,3 ,5, 0);
Text-.Io .new-line(File);
Text-Io.put(File,"# Min-.Y=

Text- o. put (File,", Max-.Y =")

My-Float-.Io~put(File,Hi-.Y,3,2,O);
Text-Io. put (File,", Delta-.Y = 1)
My-.Float-.Io.put(File,Del-.Y,3,5,0);
Text-Io .newjline(File);
Text-Io.put(File,"# Min-Z 6)

My-.Float-.Io.put(File,Low-.Z,3,2,O);
Text-Io.put(File,'", Max-.Z =1)
My-.Float-Io.put(File,Hi-.Z,3,2,O);
Text-Io.put(File,', Delta..Z = 1)
My-.Float-Io.put(File,Del-.Z,3,5,O);
Text-Io.new-line(File);

Text-Io.put(File,"# Deltaj =

My -loat-Io.put(File,Del-.T,3,3,O);
Text-lo.new-.line(File);

B-31

Text-.Io.put(File,"# Time of calculation 1)

My-.Float-.Io .put (File ,Time ,3 ,3,0);
Text-.Io .new-.line(File);
Text_.Io.put(File,"# A=
My-.FloatIo . put (File ,A ,3, 2,0);
Text-.Io .new-.line(File);

Text-.Io.put(File,'# Emission Value
My-.Float-.Io.put(File,Quantity,3,2,O);
Text.1o .new-.line(File);
Text-Io.put(File,"# Stack height
My-.Float-.Io.put(File,Height,3,2,O);
Text-Io new-line (File);

Text-.Io.put(File,"# B1Mu = (K1*Del-T)/(Del-.X*Del-.X) =

Hy-.Float-Io.put(File,B1Mu,3,4,0);
Text..Io .new-line(File);
Text-Io.put(File,"# B2Mu = (K2*Del-.T)/(Del-.X*Del-.X) =

My-.Float-.Io.put(File,B2Mu,3,4,O);
TextIo .new-line(File);
Text-.Io.put(File,"# B3Mu = (K3*Del-.T)/(Del..X*Del-.X) =

My-.Float-.Io.put(File,B3Mu,3,4,O);
Text-Io .new-.line(File);
TextIo.put(File,"# Alphal = (A*Del-.X)/(2*Kl)=

My-.Float-Io.put(File,Alphal,3,4,0);
Text-Io new-.line (File);
TextIo.put(File,"# Alpha2 = CA*Del-.X)/(2*K2)=
14y-.Float-Io.put(File,Alpha2,3,4,O);
Text-.Io .new-.line(File);
Text_.Io.put(File,"# Alpha3 = (A*DelX)/(2*K3)=
My..Yloat-Io.put(File,Alpha3,3,4,O);
Text-.Io.new-.line(File);
Text-.Io.set-.col(File,i);
Text_.Io. put (File,"# X 1) ;
Text..Io set..col (File,10);
Text.._Io. put (File," Y 1) ;
TextIo. set..col (File ,20);
Text..-Io. put (File," Z 1) ;
Text-Io.set-.col(File,30);
TextIo.put(File,"Numerical");
Text-Io.set-col(File,47);
Text_.Io.put(File,"Actual");
Text-.Io.new-.line(File);
for i in 1. .Count-X+1 loop

1B-32

Z..Value :=Low_.Z;
for k in 1. .Count...Z+l loop

Y-Value :- Low-.Y;
for j in 1. .Count..Y+1 loop

My-.Float-.Io.put(File,X..Yalue,1 ,2,O);

Text-Io.set-.col(File,10);
My-Float-Io.put(File, Y-.Value,1,2,0);

Text..Io set-.col(File,20);
My-.Float-.Io.put(File, Z..Value,1,2,0);

Text-.Io.set-.col(File,30);
My-.Float-Io.put(File,C-.New(i,j,k),1,6,2);
Text-Jo. set-.col(File,47);
My-.Float-Io.put(File,C-.Calc(i,j,k),1,6,2);
Text-Io .new-.line (File);
Y-Value :=Y.Value + Del-Y;

end loop;
Z-Value := Z-Value + DelZ;

end loop;
X-Value :=X-alue + Del..X;

end loop;
Text-.Io .new-.line;

end Print-Info;

-- PROCEDURE: Main
-- DESCRIPTION: This is the main program and calls all the above

-- modules

-- INPUT PARAMETERS: none
-- OUTPUT PARAMETERS: none
-- LOCAL VARIABLES: none
-- GLOBALS USED: All.
-- CALLED BY: none
-- CALLS: Get-Info, Compute_.Final, Print-Info.

begin --MAIN
Text-.Io.Create(Outfile,Text-.Io.Out-.File,"test3d.dat");
GetInf 0 (Delta_.X, Delta-.Y, DeltaZ, Delta-.T, Min_.X, Max-.X,

Min..Y, MaxY, Min-.Z, Max-j, A, T-Value,
Q...Value, Stk_.Hgt);

T := 0.0;
while T <= T-Value loop

Compute-.Final(C-.N, C..New, C-.Calc, T, DeltaX, Delta_.Y,

B-33

Delta-.Z, Delta..T, Min-.X, Max-X, Min-.Y, MaxY,
Min-.Z, Max..Z, A, Q_.Value, Stk_.Hgt);

T :=T + Delta-.T;
end loop;
Print-..Info (C-.New, C...Calc, Delta..X, Delta-.Y, Delta..Z, DeltaT,

A, Min..X, Max-.X,Min_.Y,Max-.Y,Min...Z,Max-.Z,T-.Value,

Text-Jo. Close (Dutfile);
end threed;

B-34

B.5 Steady-State Equation Ada Code
-- FILE: ubareqkcon.a

-- PROJECT: Thesis work, example calculation
-- DATE: 15 Sep 93
-- VERSION: Version 1.0
-- AUTHORS: Capt Dave Paal
-- DESCRIPTION: This program solves a partial differential
-- equation using the forward time and central space.
-- The partial differential equation to be solved is:

-- UBar*Cx = KY*Cyy + KZ*Czz

-- where KY/UBar = KZ/UBar = 1.0
-- and (Ki*DelT)/(UBar*DelX*DelX)<= 1/4

-- with C(O,x,y) = sin((Pi/20)*(Y + 10)) * sin((Pi/20)*(Z + 10))
-- and C(x,y,z) = 0.0 at Y=+-10 and Z=+-1O
-- OPERATING SYSTEM: UNIX/Sun Sparc Station
-- LANGUAGE: Meridian Ada
-- FILES USED: Output: kconequ.dat.

-- CONTEXT CLAUSES

with text-io;
with MathLi.b;
use MathLib;
with my-integer-io;
with my.float.io;

procedure kconequbar is

-- TYPE DECLARATION

type Matrix is array (0..90,0..90) of float;

-- GLOBAL VARIABLES AND EXCEPTIONS
CN : Matrix;
CNew : Matrix;
CCalc : Matrix;
X : integer;

B-35

DeltaX : float;
DeltaY : float;
DeltaZ : float;
MinX : float;
MaxX : float;
MinY : float;
MaxY : float;
MinZ : float;
MaxZ : float;
UBar : float;
Outfile : TextIo.FileType;

-- PROCEDURE: Get information for calculation
-- DESCRIPTION: This procedure gets the values of DelX, DelY,
-- DelZ, LowX, Hij, LowY, HiY, LowZ, HiZ, UBar,
-- Quantity, Height.

-- INPUT PARAMETERS: None.
-- OUTPUT PARAMETERS: DelX : incrementor for space
-- DelY : incrementor for Y direction
-- DelZ : incrementor for Z direction
-- LowX : lower bound for X
-- HiX : upper bound for X

-- LowY : lower bound for Y
-- HiY : upper bound for Y
-- LowZ : lower bound for Z
-- HiZ : upper bound for Z
-- Ubar : constant wind speed
-- LOCAL VARIABLES: None.
-- GLOBALS USED: None.
-- CALLED BY: main.
-- CALLS: none.

procedure Get-Info (DelX : in out float;
DelY : in out float;
DelZ : in out float;

LowX : in out float;
HiX : in out float;
LowY : in out float;
HiY : in out float;
Low_Z : in out float;
Hi_Z : in out float;
Ubar : in out float) is

B-36

begin

TextIo.put-line("Enter the value (Floating point) of Delta
X. ");

MyFloatIo. get (DelX);
TextIo.put-line("Enter the value (Floating point) of Delta

Y. i);

MyFloatIo.get (DelIY);
TextIo.put-line("Enter the value (Floating point) of Delta

Z. ");
MyFloatIo.get (DelZ);
TextIo.put-line("Enter the minimum value (Floating point)

of X. ");
MyFloatIo.get (LowX);
TextIo.put-line("Enter the value (Floating point) of X

wanted. ");
MyFloatIo. get (HiX) ;

TextIo.put-line("Enter the minimum value (Floating point)
of Y. ");

MyFloat-lo. get (LowY);
Text-lo.put-line("Enter the maximum value (Floating point)

of Y. ");
MyFloatIo.get(HiY);
TextIo.put-line("Enter the minimum value (Floating point)

of Z. ");
MyFloatIo. get (LowZ);
Text-Io.put-line("Enter the maximum value (Floating point)

of Z. ");
MyFloatIo.get (HiZ);
TextIo.put-line("Enter the value (Floating point) of UBar.

10) ;
MyFloatIo.get (Ubar);

end Get_Info;

-- PROCEDURE: Compute final Matrix
-- DESCRIPTION: This procedure calculates final answer through
-- iterations using a finite difference scheme with forward
-- time/central space.
-- INPUT PARAMETERS: CN : Matrix for CN(i,j)
-- CNew : Matrix for calculating numerical

B-37

answer
-- CCalc : Matrix for calculating exact

answer
-- DelX incrementor for space
-- DelY incrementor for Y direction
-- DelZ incrementor for Z direction
-- LowX : lower bound for X
-- HiX upper bound for X

where calculation is made
-- LowY lower bound for Y
-- HiY : upper bound for Y
-- LowZ lower bound for Z
-- HiZ upper bound for Z
-- Ubar : constant wind speed
-- OUTPUT PARAMETERS: CN : Matrix for C(N)

-- CNew : Matrix for calculating numerical
answer

-- CCalc : Matrix for calculating exact
answer

-- LOCAL VARIABLES: KY : Ubar*sigmaY-2/2*X
-- KZ : Ubar*sigmaZ-2/2*X
-- Alpha : (KY*DelX)/(Ubar*Del_Y*DelY)
-- Beta : (KZ*DelX)/(Ubar*DelZ*DelZ)
-- CountY : integer((HiY -LowY)/DelY)
-- CountX : integer((HiX - LowX)/DelIX)
-- CountZ : integer((HiZ - LowZ)/DelZ)
-- X :value of x
-- Y :value of y
-- Z : value of z
-- Pi : the number Pi
-- GLCBALS USED: None.
-- CALLED BY: main.
-- CALLS: none.

procedure ComputeFinal(CN : in out Matrix;
CNew : in out Matrix;
CCalc : in out Matrix;

X : in integer;
DelX, DelY, DelZ : in float;
LowX, HiX, Low-Y, HiY : in float;
LowZ, HiZ : in float;
Ubar : in float) is

B-38

KY float Ubar;
KZ float Ubar;

Count-.X integer integer((Hi-.X - Low-.X)/Del-.X);
Count-Y integer integer((Hi-.Y - Low-.Y)/Del_.Y);

Count-.Z integer integer((Hi..Z - Low..Z/Dl..)
X..Value float :=Low-.X + float(X-1)*DelX;

Y :float Low_.Y;

Z :float Low..Z;
Alpha float (KY*Del-X)/(Ubar*Del-Y*Del-Y);
Beta float (KZ*Del-.X)/(Ubar*Del-.Z*Del-.Z);
Fofxyz :float;
Pi :float :=3.141592654;
PiDiv20 :float :=Pi/20.O;

begin
Z :=Low..Z;
f or k in 1.. (Count_.Z) loop

Y :=Low-.Y;
for j in 1.. (Count_.Y) loop
if (k = 1) then

C-.New(j,k) :=0.0;
elsif (k = Count-.Z+1) then

C_.New(j,k) :=0.0;
elsif (j = 1) then

C-.New(j,k) :=0.0;
elsif Ci = Count-Y+1) then

C-.New(j,k) 0.0;

elsif (X_.Value =0.0) then

C-.New(j,k)
sin((PiDiv2O)*(Y+10.0) '*sin((PiDiv2O)*(Z+10 .0));

else
-- Alpha float :=(KY*Del-.X)/(Ubar*Del-.Y*Del-.Y);

-- Beta float :=(KZ*Del..X)/(Ubar*Del-.Z*Del-.Z);

C-.New(j,k) := C-N(j,k) +

Alpha*(C..N(j+1,k) - 2.0*C_.N(j,k) +

C_.N(j-1,k)) +
Beta*(C-.N(j,k+l) - 2.0*C-.N(j,k) +

C-.N(J ,k-1));
end if;
C-.Calc(j ,k) :=exp((-(Pi*Pi)*X-.Value)/20))*

sin((PiDiv2O)*(Y+10.0))*sin((PiDiv2O)*(Z+10 .0));

B-39

Y := Y + DelY;
end loop;
Z := Z + DelZ;

end loop;
for k in 1..(CountZ) loop

for j in 1..(CountY) loop
CN(j,k) := CNew(jk);

end loop;
end loop;

end Compute-Final;

-- PROCEDURE: Print-Info

-- DESCRIPTION: This procedure prints the output of the program.
-- It prints out the matrix with the points for the time
-- iteration given.
-- INF'" 'ARAMETERS: CNew : Matrix for calculating numerical

answer
-- CCalc : Matrix for calculating exact

answer
-- DelX : incrementor for space
-- DelY : incrementor for Y direction
-- DelZ incrementor for Z direction

--UBar : advection constant
-- LowX : lower bound for X
-- HiX : upper bound for X
-- LowY : lower bound for Y
-- HiY : upper bound for Y
-- LowZ : lower bound for Z
-- HiZ : upper bound for Z
-- OUTPUT PARAMETERS: CNew : Matrix numerical answer
-- CCalc : Matrix for calculating exact

answer
-- File : output file has values of matrix

-- LOCAL VARIABLES: CountX, CountY, CountZ : integer counters
-- XValue, YValue, Z_Value : XY, and Z points

-- GLOBALS USED: None.
-- CALLED BY: main.
-- CALLS: none.

procedure PrintInfo(CNew : in out Matrix;
CCalc : in out Matrix;

B-40

Del-X, Del-.Y, Del-.Z, Ubar :in float;

Low..X,Hi..X,Low_.Y,Hi-.Y,Low_.Z,Hi-.Z :in float;
File : in out Text-Io.File-.Type) is

KY :float Ubar;
KZ :float Ubar;
Count-.X :integer integer((Hi-X - Low-.X)/Del_.X);

Count-.Y : integer integer((Hi-.Y - Low-Y)/Del-.Y);
Count-Z :intege- integer((Hi-Z - Low...Z)/Del-.Z);

X-Value :float Low...X;
Y-.Value : float Low-.Y;
Z-.Value :float Low-.Z;
StableY :float :=(KY*Del-X)/(Ubar*Del-.Y*Del-.Y);

StableZ :float (KZ*DelX)/CUbar*Del_.Z*Del_.Z);

begin
Text-Io.put-.line("#The following are the results using the

forward time 11);
Text-.Io.put-.line("# central space for the partial diferential

equation:");
Tezt...Io.put-line("# Ubar*Cx = KY*Cyy + KZ*Czz)

Text-Io.put-line('# The resulting matrix is:)

Text-.Io new-.line;
Text-.Io.new-line(File.,2);
Text-.Io.put(File,'# Output from file ubareqkcon.a)

Text-.Io.new-.line(File);
Text-Io.put-line(File,"# Ubar*Cx = KY*Cyy + KZ*Czz)

Text-Io .new-.line(File);
Text-Io.put-line(File,"# KY and KZ are constant and equal

Text-.Io .new-.line(File);
Text_.Io.put(File,"# Min..X
My-.Float-.Io.put(FileLow-.X,3,2,O);
Text..Io.put(File,", Hax-.X = 1)
My-.Float-Io.put(File,HiX,3,2,O);
Text-.Io.put(File,", DeltaX = 1)
Hy-.Float-Io.put(File,DelX,3,5,O);

Text-Io.new..line(File);
Text..jo.put(File,"# Minj
My-.Float-.Io .put(File,Low-.Y,3,2,O);
Text-.Io.put(File,", Max-Y = 1)
My-.Float-Io put(File,Hi-Y,3,2,O);
Text_.Io.put(File,", Delta)? =")

B-41

My-.Float..Io-put(File,Del-.Y,3,5,O);
Text-Io.new-.line(File);
Text-Io.put(File,"S Min..Z

My-.Float-Io.put(File,Lov-.Z,3,2,O);
Text-Io.put(File,", Max..Z ='9
My-.Float-.Io.put(File,HiZ,3,2,O);

Text-Io.put(File,", DeltaZ = 1)

My-Float-.Io.put(File,Del..Z,3,5,O);
Text-Io .riew.line(File);
Text-Io.put(File,"# U-Bar=
My-.Float-Io.put(File,Ubar,3,5,O);
TextIo .nev-line(File);

TextIo.put(File,"# Y stability value =

My-.Float-Io.put(File,StableY,3,5,O);
Text-.Io .nev-line(File);
Text-.Io.put(File,"# Z stability value=
My-.Float-Io.put(File,StableZ,3,5,O);
TextIo .new-.line (File);

Text-.Io.set-.col(File,1);
Text-Io.put(File,"# X 1) ;
Text-.Io.set-.col(File,1O);
Text-.Io. putC(File," Y "e);

Text-.Io.set-.col(File,20);

Text-Io.putCFile," Z 11);
Text-Io set-.col(File,30);
Text-.Io .put (File, "Numerical"');
Text-Io set-.col(File,47);
Text- o. put (File, "Actual");

TextIo .nev-line(File);
for k in 1. .Count..Z+1 loop

Y-.Value :=Low...Y;

for j in 1. .Count-.Y+1 loop
Text-Io.set-.col(File,1);

My-.Float...Io.put(File,Hi-.X,1,2,O);
Text-.Io.set-.col(File,1O);

My-.Float-.Io.put(File, Y_.Value,1,2,O);

Text-.Io.set-.col(File,20);

Text-.Io.set...col(File,30);

My-.Float-.Io.put(File,C-.Nev(j ,k),1,6,2);
Text-Io.set..col(File,47);

B-42

TextIo .new-.line (File);
Y-Value :=Y-Value + Del..Y;

end loop;
Z..Value := Z-Value + Del-.Z;

end loop;

Text-Io .nev..line;
end Print-.Info;

-- PROCEDURE: Examplel.3.1 (a.k.a main)
-- DESCRIPTION: This is the main program and calls all the above

-- modules

-- INPUT PARAMETERS: none
-- OUTPUT PARAMETERS: none
-- LOCAL VARIABLES: none
-- GLOBALS USED: All.
-- CALLED BY: none
-- CALLS: Get-Info, Compute-.Finial, Print-Info.

begin --MAIN
Text-.Io.Create(Outfile,Text-Io.Out-.File,"kconequ.dat'l);
Get-Info (Delta..X, Delta-Y, Delta-.Z, Min_.X, Max-X, Min-Y,

Max-.Y, Min..Z, Hax-.Z, U_.Bar);
X := integer((Ma~x-.X - Hin-.X)/Delta-.X)+l;
for I in 1. .X loop

Compute-.Final(C...N, C..New, C_.Calc, I, Delta-.X, Delta_.Y,
Delta-.Z, Min_.X, Max-.X, Min..Y, Max-.Y, Min-2. Max-.Z, U-.Bar);

end loop;
Print-Info(C-.New, C-.Calc, Delta-.X, Delta-.Y, Delta-Z, U-.Bar,

Min..., Max-.X, Min-Y, Max-.Y, Min-Z, Max_.Z, Outfile);
Text-.Io .CloseCOutfile);

end kconequbar;

B-43

Appendix C. 1-D diffusion and 3-D steady state equations

This appendix describes the one-dimensional diffusion equation and the three-

dimensional steady state equations and how they used to this research.

C.1 The Diffusion Equation:

The one-dimensional diffusion equation (C.1), also known as the one-dimen-

sional heat equation, is the simplest parabolic partial differential equation.

ct = bczx (C.1)

The finite difference scheme used in this research to solve equation (C.1) is the

forward-time central-space scheme

Cnýi- Crn -- kcn+l - 2cn. + Cn
At kx 1 A6X2 n-m-1 (C.2)

which can also be written as

Cm = CM + k +qz(cn+1 - 2cnn +c) (C.3)

where p = At/Ax2. The stability condition for this method is kp < 1/2. It is

found by replacing c,, with gn'ei in Equation C.2 leaving

C-1

g -I e;° - 2 + e-'O
g-E1 = k. e (C.4)

and solving for g gives

g = 1 - 4k.,IL sin 2 -0. (C.5)
2

The condition jgj < 1 from Theorem 2.2.1 in Strikwerda (26:42) is equivalent to

4k,, sin 2 10 < 2 which is true for all 0 if and only if k,,p _• 1/2. Thus this method

is conditionally stable.

C.2 3-D Steady State Equation

The Eulerian approach (25:542) to the three- dimensional steady state equation

examined in this research is

iicr = kxc- + kyy + k•cy + q (C.6)

with

c(XI,z) = X) x,y,z --+ +0 (C.7)

where U is the wind speed (positive constant), k. = ky = k, are constant in this

research and are the x-axis, y-axis, and z-axis difiusivit- terms respectively, and q is

C-2

the source term. The forward-time central-space finite difference scheme (C.8) used

to solve equation (C.6) is

cn+1 - n C n 1jk- O-l~ Cn cn +n

Ci,j,k i,j,k . Ci+1,jk - l,3 ,k -- k6 C,+l ,-2 c.j,k+C,..,j,k +
Lit +2,Ax -- AX2+

Cn 20, Cn

k y i ,+ i' k - .2 h'' ' + " _,j a k +}

cn •--2c' ~

The solution to eq. (C.8) would be compared to the exact solution (25:542) of

q exp[- ii(r x) I (C.9)
47rkir 2k(

where q = the source term, ki = (kk 1 k2)
1/3 , and r = (x 2 + y2 + z2)1/2

The stability condition is the similar to the three-dimensional advection-diffu-

sion discussed in Section 3.4.4. It is assumed that kxc., <« ic,, that is, the diffusion

in the x-axis direction is much less than the advection in the x- axis direction and

is therefore negligible. It is for this reason that this equation was not looked at in

detail.

C-3

Bibliography

1. Benarie, Michael M. "The limits of air pollution modeling," Atmospheric En-
vironment, 21(1):1-5 (1987).

2. Bierly, E. W. and E. W. Hewson. "Some restrictive meteorological conditions to
be considered in the design of stacks," Journal of Applied Meteorology, 1 (3):383-
390 (1962).

3. Burden, Richard L. and J. Douglas Faires. Numerical Analysis. Boston, Mas-
sachusetts: PWS-KENT publishing company, 1989.

4. Chock, David P. "A comparison of numerical methods for solving the advection
equation-II," Atmospheric Environment, 19(4):571-586 (1985).

5. Chock, David P. "A comparison of numerical methods for solving the advection
equation-III," Atmospheric Environment, 25A(5/6):853-871 (1991).

6. Chock, David P. and A. M. Dunker. "A comparison of numerical methods
for solving the advection equation," Atmospheric Environment, 17(1):11-24
(1983).

7. Dop, Han Van. "Buoyant Plume Rise in a Lagrangian Framework," Atmo-
spheric Environment, 26A(7):1335-1346 (1992).

8. Draxler, R.R., R. Dietz, et al. "Across North America Tracer Experiment (AN-
TEX): Sampling and Analysis," Atmospheric Environment, 25A(12):2815-2836
(1991).

9. Egana, B.A. and J.R.Mahoney. "Numerical modeling of advection and diffusion
of urban area source pollutants," Journal of Applied Meteorology, 11:312-322
(January 1972).

10. EPA. SCREEN Model User's Guide. Technical Report, Research Triangle Park,
NC 27711: U. S. Environmental Protection Agency, April 1992. EPA-450/4-92-
006.

11. EPA. Toxic Modeling System Long-Term (TOXLT) User's Guide. United
States Environmental Protection Agency, Research Trianle Park, NC 27711,
1992. EPA-450/4-92-003.

12. EPA. Toxic Modeling System Short-Term (TOXST) User's Guide. United
States Environmental Protection Agency, Research Trianle Park, NC 27711,
1992. EPA-450/4-92-002.

13. Eppel, D.P. and others. "A Numerical Model For Simulating Pollutant Trans-
port From a Single Point Source," Atmospheric Environment, 25A(7):1391-1401
(1991).

14. Henderson-Sellers, B. and S.E. Allen. "Verification of the plume rise/dispersion
model," Ecological Modeling, 30:209-277 (1985).

BIB-1

15. Hoult, D.P., et al. "A theory of plume rise compared with field observatoins,"
Journal of Air Pollution Control Association, 19:585-590 (1969).

16. Kasibhatla, Prasad S., Peters L. K. and Fairweather G. "Numerical simulation
of transprot from an infinite line source: error analysis," Atmospheric Environ-
ment, 22(1):75-82 (1988).

17. Kasibhatla, Prasad S. and Leonard K. Peters. "Numerical Simulation of
Transport from a Point Source: Error Analysis," Atmospheric Environment,
24A(3):693-702 (1990).

18. Krishnamurthy, Ramesh and J. Gordon Hall. "Numerical and approximate
analytical solutions for plume rise," Atmospheric Environment, 21(10):2083-
2089 (1987).

19. Kunkel, B. A. AFTOX - The Air Force Toxic Chemical Dispersion Model - A
User's Guide, 1991. PL-TR-91-2119, ADA246726.

20. Lamb, R.G. "Air pollution models as descriptors of cause-effect relationships,"
Atmospheric Environment, 18(3):591-606 (1984).

21. McRae, Gregory J., William R. Goodin and John H. Seinfeld. "Numerical
solution of the atmospheric diffusion equation for chemically reacting flows,"
Journal of Computational Physics, 45(1):1-42 (1982).

22. Okamoto, Shin'ichi and Kiyoshige Shiozawa. "Trajectory plume model for simu-
lation of air pollution transients," Atmospheric Environment, 21 (10):2145-2152
(1987).

23. Reynolds, Steven D., Philip M. Roth and John H. Seinfeld. "Mathematical mod-
eling of photochemical air pollution," Atmospheric Environment, 7(7):1033-
1061 (1973).

24. Schohl, G.A. and F.M. Holly Jr. "Cubic-spline interpolation in Lagrangian ad-
vection computation," Journal of Hydraulic Engineering, 117:248-253 (Febru-
ary 1991).

25. Seinfeld, John H. Atmospheric Chemistry and Physics. New York, NY: John
Wiley and Sons, 1986.

26. Strikwerda, John C. Finite Difference Schemes and Partial Differential Equa-
tions. Pacific Grove, CA 93950: Wadsworth and Brooks, 1989.

27. Turner, D. Bruce. "Workbook of Atmospheric Dispersion Estimates,". U. S.
Department of Health, Education and Welfare, Cincinnati, OH, 1969. Public
Health Service Publication No. 999-AP-26.

28. Young, David M. and Robert T. Gregory. A survey of numerical mathematics.
Reading, MS: Addison-Wesley Publishing Company, 1988.

29. Zannetti, Paolo. Air pollution modeling: theories, computational methods and
available software. New York, NY: Van Nostrand Reinhold, 199G.

BIB-2

Vita

Capt Paal was born in San Antrrnio, Texas on 9 December 1962. He attended

the College of Saint Thomas in Saint Paul, Minnesota and graduated with a Bachelor

of Arts in Mathematics in 1987. Capt Paal attended the Air Force Institute of

Technology (AFIT) at Texas A&M University for the Basic Meteorology Program

in 1988. In 1989 Capt Paal was assigned to the Air Force Global Weather Central,

Offutt Air Force Base, Omaha, Nebraska as Production Duty Officer. In 1992 Capt

Paal was selected to attend AFIT in residence at Wright Patterson Air Force Base,

Dayton, Ohio for completion of a Master of Science in Computer Systems.

Permanent address: 312 Hickory Street
Chaska, Minnesota 55318

VITA- I

Form Approved

REPORT DOCUMENTATION PAGE OMB F o A0pro4ed

P~oi 'c'eooru<tura"e j, - iipt~o -f f,_- r~o ý-?s ma ,a ie- De esj e rý r- t -,e~ "e c,'e. 7~ r,, e4,Z e. jj.s,ý
gdther'19 4nd n I'~ iJ need ancQ ,~io et ta e , e. l n' l , 'O and,"--'e, rn.eee. a, e et , " e se nd•, :t-ei , X •e:t ot ' "
C0ilel'on .) . nt ' ,rntt.)t s' .0 cn g ges,t -a-,- .oýr o t ý oc e-'.es -'len rat t,,t. oe~t x-i e'e,%j
Da~ ~q~v S..te 1204 a' 1~~ 2292 4302 a'O rt re Off -. 1,,qee1 ,cE 08 qet o3e'.tc- 4C.a1< e_ (C 4 2',88) A --a s 2

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I Decznr)-ep 19 Master's Thesis
4. TITLE AND SUBTITLE S FUNDING NUMBERS

AIR POLLUTION TRANSPORT MODELING

6. AUTHOR(S)

David M. Paal, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFBOH AFIT/ENC/GCS/93D-1
45433-6583

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING '/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution
unlimited

13. ABSTRACT (Maximum 200 words)

This research effort addresses modeling of the transportation of air
pollution in the atmosphere and the numerical analysis of the partial
differential equations used in such modeling. Three Gaussian models
are examined and compared using example problems. Several finite
difference schemes are developed to solve the partial differential
equations used in air pollution transport modeling. This study
examines three Gaussian models: SCREEN, AFTOX, and the program
GAUSPLUM. The model GAUSPLUM is developed in this study and uses the
Ada programming language and the analytic solution to the advection-
diffusion equation. Numerical analysis of the partial differential
equations (PDE) used in air pollution modeling is also examined. The
equations are generally parabolic or hyperbolic PDE's. The followinq
are examined in this research: the advection equation; the one-,
two-, and three-dimensional advection-diffusion equations; and the
two-dimensional steady-state equation.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Air Pollution Transport, Modeling, Finite Difference 119
Scheme, Stability, Consistency, Convergence, 16. PRICE CODE
Advection-Diffusion Equations

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

PPesc•e- 0b ANS Sta 139-8
2938-102

