
M AD-A273 862
US Army Corps HulII illHlIiIlE
of Engineers
Hydrologic Engineering Center

rGENERALIZED COMPUTER PROGRAM

HECLIB 7>

Volume 2: HECDSS Subroutines

Programmer's Manual

May 1991
93-3013811i111 II 1111 III I 1I11

Approved for Public Release. Distribution Unlimited. CPD-57

93 12 10042

Best
Available

Copy

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE UMS No. 0704-0o188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE Distribution of this document is

unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

Hydrologic Engineering Center CEWRC-HEC

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

609 Second Street
Davis, CA 95616-4687

&a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK IWORK UNIT
ELEMENT NO. NO. NO. rCCESSION NO.

11. TITLE (Include Security Classification)

HECLIB Volume 2: HECDSS Subroutines Programmer's Manual

12. PERSONAL AUTHOR(S)
CEWRC-HEC

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month. Day) 15. PAGE COUNT
Final FROM TO May 1991 273

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP HECDSS, DSS, Time-Series Data, Database

19, ABSTRACT (Continue on reverse if necessary and identify by block number)
Programmers's manual for computer programmers to interface FORTRAN application programs

to HEC's Data Storage System (HECDSS or DSS). The DSS is a database system that was
developed to meet needs for data storage and retrieval for water resource studies. The
system enables efficient storage and retrieval of time series (such as precipitation
hyetographs or hydrographs of stage, discharge, etc.) and othter data-types for which
storage in blocks of contiguous data elements is most appropriate. The DSS consists of a
library of FORTRAN subroutines which can be readily used with application programs to enable
retrieval and storage of information. The current application programs include the widely
used program Flood Hydrograph Package (HEC-1) and the Expected Annual Damage (EAD) program.
In addition, approximately 17 DSS utility programs have been developed. A number of these
programs are for data entry, for example from the USGS WATSTORE database, or from NWS
precipitation data files. Other utility programs include a powerful graphics program, a
report generator, and a program for performing mathematical transformations.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

W UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. C DTIC USERS
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
William J. Charley (916) 756-i104 I CEWRC-HEC

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

HECLIB

Volume 2: HECDSS Subroutines

Programmer's Manual

May 1991

Hydrologic Engineering Center
US Army Corps of Engineers
609 Second Street
Davis, CA 95616-4687

(916) 756-1104 CPD-57

Table of Conteats

1 Introduction .. 1-1
1.1 Background 1-1
1.2 DSS Contrasted with Other Database Systems 1-2
1.3 General Information 1-3
1.4 A Short Description of How DSS Works 1-5
1.5 Programming with DSS 1-6

1.5.1 Opening and Closing DSS Files 1-6
1.5.2 The IFLTAB Array 1-7
1.5.3 DSS Subroutines 1-7
1.5.4 M essage Control 1-8

1.6 Typical Order of Calling DSS Subroutines 1-8
1.7 Machine Specifics .. 1-9

1.7.1 Harris Computers 1-9
1.7.2 Microcomputers Using Microsoft FORTRAN 1-10
1.7.3 Microcomputers Using Lahey FORTRAN 1-11
1.7.4 Unix Operating Systems 1-11

2 General Subroutines .. 2-1
2.1 ZOPEN - Open a DSS File 2-2
2.2 ZCLOSE - Close a DSS File 2-4
2.3 ZFNAME ~ Add File Name Extension and Determine if the File Exists . 2-5
2.4 ZDTYPE - Determine a Record's Data Type and if it Exists 2-7
2.5 ZSET - Set DSS Parameters 2-9
2.6 ZINQIR - Inquire About DSS Parameters 2-15
2.7 ZFVER - Get a DSS File's Version 2-19

3 Pathname Manipulation Subroutines 3-1
3.1 ZPATH - Construct a Pathname 3-2
3.2 ZUPATH - Determine a Pathname's Parts 3-4
3.3 ZUFPN - Un-Form a Pathname 3-6
3.4 ZGPNP - Get Pathname Parts 3-8
3.5 ZCHKPN - Check a Pathname 3-11

4 Time Series Subroutines 4-1
4.1 ZRRTS - Retrieve Regular-Interval Time Series Data 4-3
4.2 ZRRTSX - Retrieve Regular-Interval Time Series Data (Extended) 4-7
4.3 ZSRTS - Store Regular-Interval Time Series Data 4-13
4.4 ZSRTSX - Store Regular-Interval Time Series Data (Extended) 4-16
4.5 ZRITS - Retrieve Irregular-Interval Time Series Data4-21
4.6 ZRITSX - Retrieve Irregular-Interval Time Series Data (Extended) ... 4-25
4.7 ZSITS - Store Irregular-Interval Time Series Data 4-30
4.8 ZSITSX - Store Irregular-Interval Time Series Data (Extended) 4-35
4.9 ZGINTL - Get Time Series Interval 4-40
4.10 ZOFSET - Determine the Time Offset of Time Series Data 4-42

5 Paired Data Subroutines 5-1
5.1 ZRPD - Retrieve Paired Data 5-2
5.2 ZSPD - Store Paired Data 5-7

- 1.11 -

6 Text Subroutines ... 6-1
6.1 ZRTEXT - Retrieve Text Data (Into a File) 6-2
6.2 ZRTXTA - Retrieve Text Data (Into an Array) 6-5
6.3 ZSTEXT - Store Text Data (From a File) 6-8
6.4 ZSTXTA - Store Text Data (From an Array) 6-10

7 Catalog and Tag Subroutines ... 7-1
7.1 ZOPNCA - Open a Catalog File 7-3
7.2 ZCAT - Catalog a DSS File 7-5
7.3 ZRDCAT - Read Pathnames from a Catalog File 7-9
7.4 ZRDPAT - Read a Pathname from a Catalog by Reference Number... 7-13
7.5 ZTAGPA - Get Pathnames from Tags 7-16
7.6 ZRETAG - Change a Record Tag 7-19
7.7 ZSTAGS - Set the Tag Scheme for a DSS file 7-20
7.8 ZRTALL - Change all Record Tags in a DSS file 7-22
7.9 Example of Obtaining Pathnames from a Command Line 7-23
7.10 Example of a Catalog Display Subroutine 7-28

8 General Read / Write Subroutines 8-1
8.1 ZREAD - Read an Individual Record 8-2
8.2 ZREADX - Read an Individual Record (Extended) 8-4
8.3 ZRDBUF - Read an Individual Record in a Buffered Mode 8-6
8.4 ZWRITE - Write an Individual Record 8-9
8.5 ZWRITX - Write an Individual Record (Extended) 8-12
8.6 ZWRBUF - Write an Individual Record in a Buffered Mode 8-15

9 Utility Subroutines .. 9-1
9.1 ZSTFH - Stuff the User Header Array 9-2
9.2 ZUSTFH - Un-stuff the User Header Array 9-5
9.3 ZCHECK - Check if a Record Exists 9-9
9.4 ZRECIN - Display Information About a Record 9-10
9.5 ZFILST - Display Information About a DSS File 9-12
9.6 ZCOREC - Copy a Record 9-13
9.7 ZCOFIL - Copy a DSS File 9-16
9.8 ZRENAM - Rename a Record 9-18
9.9 ZDELET - Delete a Record 9-19
9.10 ZUNDEL - Un-Delete a Record 9-20
9.11 ZUDALL - Un-Delete All Records in a DSS File 9-21
9.12 ZDEBUG - Display Coded Information in the IFLTAB Array 9-22

10 Data Compression Subroutines 10-1
10.1 ZSCOMP - Set Data Compression for a Record 10-4
10.2 ZDCINF - Get Data Compression Information for a Record 10-6
10.3 ZSETCI - Set Default Data Compression for a DSS File 10-8
10.4 ZPRTCI - Print the Default Data Compression for a DSS file 10-11

11 Outdated DSS Subroutines ... 11-1
11.1 ZFPN - Form DSS Pathname 11-2
11.2 ZGTDTS - Get Regular-Interval Time Series Data 11-4
11.3 ZPTDTS - Put Regular-Interval Time Series Data in a DSS File......11-8
11.4 ZGIRTS - Get Irregular-Interval Time Series Data11-12
11.5 ZPIRTS - Put Irregular-Interval Time Series Data 11-16
11.6 ZGTPFD - Get Paired Function Data 11-20
11.7 ZPTPFD - Put Paired Function Data 11-25
11.8 ZOPCAT - Open a Catalog File 11-31
11.9 ZCATLG - Catalog a DSS file 11-32
11.10 ZRDPN - Read Pathnames from a Catalog By Reference Number 11-35

- iv -

Appendix A - Example Application A-1

Appendix B - Internal Subroutines B-1

Appendix C - Data Screening Use of Data Flags C-1

Appendix D - Cross Reference Listing D-1

Appendix E - Abort Error Codes E-1

Appendix F - Summary of Subroutine Calling Sequences F-I

Subroutine Index

Ae05 slon For

Ju:"f ;¢,',,ica

ai

Ju!-PV,

1 Introduction

This manual is intended to provide programmers with information on how to interface
programs with the Hydrologic Engineering Center's Data Storage System (HECDSS or DSS),

and to provide a background on DSS and its capabilities. This document is intended to be

used both as an introduction to programming with DSS and as a reference manual.

DSS is written in FORTRAN 77 and is designed to be called by FORTRAN programs.

It is assumed that the reader has a working knowledge of FORTRAN. The DSS makes use
of several subroutines in the software library "HECLIB". The HECLIB programmers manual
is a companion document that should be accessible when programming with DSS.

1.1 Background

HEC developed the Data Storage System (or DSS) to meet needs for data storage and
retrieval for water resource studies. The system, which has been under development since

1979, enables efficient storage and retrieval of time series and other data-types for which

storage in blocks of contiguous data elements is most appropriate. The DSS consists of a
library of subroutines which can be readily used with applications programs to enable
retrieval and storage of information. At present approximately 20 applications programs
have been adapted in this fashion, including the widely used program Flood Hydrograph
Package (HEC-1) and the Expected Annual Damage (EAD) program. In addition, ap-
proximately 17 DSS utility programs have been developed. A number of these programs are

for data entry, for example f-om the U.S. Geological Survey WATSTORE database, or from
National Weather Service precipitation data files. Other utility programs include a powerful
graphics program, a report generator, and a program for performing mathematical transfor-
mations. Macros, selection screens, and other user interface features combine with DSS
products to provide a set of tools whose application is limited only by the ingenuity of the

user.

The DSS was the outgrowth of a need that emerged in the mid 1970's. During that
time most studies were performed in a step-wise fashion, passing data from one analysis
program to another in a manual mode. While this was functional, it was not very produc-

tive. Programs that used the same type of data, or that were sequentially related, did not use
a common data format. Also, this required that each program have its own set of graphics
routines, or other such functions, to aid in the program's use.

Introduction Page 1-1

The Kissimmee River study performed by the HEC for the Jacksonville District
beginning in 1978, required that an orderly approach be used to properly manage the study
data and the analysis results. A large number of alternative plans and conditions were to be
processed in this project. This study gave birth to the first version of DSS. The basic
design provided for the storage of data in a standard form, independent of any particular
program. The data would be provided to the programs when it was needed, and results
would be stored in the same independent form for use by utilities and other applications
programs. The early design of DSS was conceived to support files containing many
hundreds of data records, or even as many as a few thousand. As the use of DSS expanded
into real-time data storage applications, data files were written to manage as many as 10,000
to 20,000 records. The current DSS version is now designed for rapid storage and retrieval
of files containing as few as 40 to 50 records, or as many as 100,000 or more.

1.2 DSS Contrasted with Other Database Systems

DSS is designed for the storage and retrieval of large sets, or series, of data. This
includes daily flow values, hourly precipitation measurements, rating tables, and pages of
text information. DSS is the least efficient with small sets of data, or elements, the type for
which most commercial database systems are designed. For example, such elemental data
mip,!,c include employee records, accounting data, and inventory of stock.

DSS incorporates a modified hashing algorithm and hierarchical design for database
accesses. This algorithm provides quick access to data sets and an efficient means of adding
new data set to the database. Commercial databases usually employ a relational model. In
this model data is stored in a related manner, so that the database can be viewed essentially
as a collection of tables (composed of rows and columns). This type of system requires the
construction of a data definition file. Although a relational database requires some initial
setup, it can effectively store short data sets comprised of both characters and numbers. The
structure usually provides a advantageous method of retrieving and storing data based on the
data definition. Most of the newer systems use the ANSI ratified Structured Query
Language (SQL) to access data. (An example of SQL might be "SELECT models FROM

parts WHERE model-3210".)

While relational databases are ideal for elemental data sets, they are not as practical for
longer series of data. DSS, however, is designed for such sets of data. DSS database files
are not defined by a data definition file like relational models require; thus there is no set
up required by the user. DSS data is defined by the pathname and conventions used. The

type of data generally stored in DSS does not lend itself well to a query language such as
SQL (although the selective catalog feature has some similar capabilities). Also, the DSS is

Page 1-2 Introduction

made up of a set of utility programs and application programs, whereas commercial

databases are typically accessed by one main program.

1.3 General Information

Direct access files are used for DSS data storage. These files are conventionally named

by the user. Such a file cannot be directly viewed or accessed by programs that do not

interface to the DSS. A DSS file does not need to exist before the first DSS subroutine

(ZOPEN) is called; it will be created if it is not present. Nor are DSS files initialized or set

up prior to use.

Data within a database file is stored in blocks, or records, and each record is identified
by a unique identifier called a "pathname". Each time data is stored or retrieved, its

pathname must be given. Along with the data, information about the data (e.g., units of the

data) is stored in an internal "header". The DSS automatically stores the name of the

program writing the data, the number of times the data has been written, and the last write

date and time.

Through information contained in the pathname and internal header, the data is self-

documented. That is, no additional information is required to identify it. This feature of

the database allows infomation to be recognized and understood years after it was stored.

Data of most any type, using a pathname of any structure (up to 80 characters), can be

stored by DSS. To facilitate the ability of application and utility programs to work with and

display data, standard record conventions were developed. These conventions define what
should be contained in a pathname, how data is stored and what additional information is
stored along with the data. For regular-interval time series data (e.g., hourly data), the

conventions specify that data are stored in blocks of a standard length, uniform for that time
interval, with a pathname that contains the date of the beginning of the block and the time

interval. The conventions identify how a pathname for that data should be constructed.

Conventions have been defined for regular and irregular interval time series data, paired
(curve) data, and text (alphanumeric) data. Conventions for other types of data have been

proposed.

A major component of the DSS conventions is the structure of the pathname. All

conventions segment the pathname into six parts. Parts are referenced by the letters A, B,

C, D, E, and F, and delimited by a slash "/", as follows:

/A/B/C/D/E/F/

Introduction Page 1-3

An example pathname that follows the time-series convention is:

/ALLEGHENY/KINZUA/FLOW-RES IN/01JAN1972/IDAY/OBS/

A non-standard convention may be used to store and retrieve data from a DSS database

file by applications programs for which it is defined. However DSS utility programs

(DSSUTL and DSPLAY) will have only limited to the data. Such data can be copied,

tabulated, renamed, etc.. It cannot be edited or graphically displayed. The non-standard

convention does not have to have a segmented pathname as shown above, although it is

recommended. A pathname which does not follow the standard conventions might be:

/DATA SET 5-A/

Although the beginning and ending slash in this pathname is not required, it is highly

recommended because the slashes identify the string as a pathname, and allow limited use of

the record in utility programs. A preferable modification of this pathname would be:

/DATA SET 5-A//////

In order to maximize the effectiveness of a database, several users should be able to

access the same database file at the same time. For example, a flood forecast model may

need to retrieve data from the file at the same time data elsewhere in the file is being

updated. To do this, the database must incorporate a method of handling multiple users of

the same file at virtually the same time. A DSS multiple user scheme accomplishes this by a
first come - first served approach. When a program requests to write to the file, the DSS

software will queue that request and hold it until all prior requests are completed. Typical
delays take only a fraction of a second and are not detectable by users. This feature does

not require any added programming; the DSS accomplishes multiple user access internally.

A DSS version identifier is stored internally along with each DSS file. The version is in

the form "6-FG", where the number portion (e.g., 6) indicates the file structure, the first

letter signifies moderate software modifications or a collection of minor changes, and the

last letter connotes minor changes. DSS software is not compatible with files that were

created with a different number version (e.g., a file version of 4 is not compatible with

software with a version of 5). (On Harris "h series" computers, DSS version 6 software will

access DSS version 4 files.) The DSS version is printed in the ZOPEN statement and in the

catalog file.

Page 1-4 Introduction

1A A Short Description of How DSS Works

DSS version 6 utilizes a modified hash algorithm based upon the pathname to store and

retrieve data. This structure allows the DSS to "jump" to the location of the data in the file

based upon a disk address determined from the pathname's hash code. The DSS does its own

blocking, providing the maximum use of disk space while allowing varing lengths for data

records.

The first portion of a DSS file is the "permanent section" of the file. This area contains

information about the DSS file, such as its size, how many records are contained in it, and

the amount of inactive space. Following the permanent section is the "hash table". When

retrieving data, the DSS computes a hash code from the pathname. This code points to a

location in the hash table which contains the disk address of the record's "pathname bin*.

The pathname bin contains pathnames that have the same hash code and the disk addresses

of their data sets. If there are more pathnames with the same hash code than that which will

fit in the bin (typically 5), an "overflow bin" is used for the remainder of the pathnames.

The hash code size is usually adjusted so that are few overflow bins. This structure allows

most data to be retrieved in 3 or 4 diV: accesses. These accesses are to the hash table, the

pathname bin (and possibly an overflow bin), and the data record.

The process for storing data operates in a similar same manner. First it is determined

if the data record already exists. If it does, then the existing data area is written over with

the new data (unless the new data record size is larger). If the record dý)es not exist, then

the data is appended to the end of the file, and the appropriate address and information are

added to the hash table and pathname bin. The address buffers are structured in such a way

that if an abort occurs (e.g., a system crash) during a write operation, only the data record

being written will be lost.

The structure described above is for a "dynamic" hash table. It provides for a wide

range in the number of records in a DSS file while efficiently balancing disk space and

record access times. A variation in this algorithm is for "stable" files. In a stable file, a hash

table is not utilized. Instead, the pathname hash code indicates directly the location of the

pathname bin without having to access an intermediate table. In this type of file, all

pathname bins are pre-allocated when the file is first created. A stable type file saves one

disk access for each record, but it causes the DSS files to be large when they are first opened

and can be less efficient with disk space, especially when there are less than the optimum

number of records in the file. This method is intended for somewhat stable databases that

do not frequently change in size (e.g., a master database file).

Introduition Page 1-5

The hash code size can be adjusted for a new database to optimize storage and reirieval

of data according to the expected number of records in the file. It should be noted that any
of the sizes will operate with any number of records, but an incorrect size will not be as
efficient as the appropriate one. When a user squeezes a database file with the program
DSSUTL, the size parameter is automatically adjusted based on the number of records in the
file at that time. The possible sizes are:

Ideal Number Target Range
Size Name Hash Size of Records of Records

Tiny 8 20 1-50
Extra-Small 32 50 1-200
Small 128 200 100-1,000
Medium (default) 512 1,000 200-5,000
Large 1024 4,000 1,000-10,000
Extra-Large 2048 10,000 2,000-20,000
Huge 4096 20,000 5,000-50,000
Extra-Huge 8192 50,000 >25,000

The table type and size are generally set by the experienced user who desires control
over the optimization of database files. The default parameters are sufficient for most users.
These parameters may be set by a call to ZSET prior to opening a new file with ZOPEN, or

by the "SQUEEZE" or "OPEN" commands in DSSUTL.

The DSS software has been tested with database files containing over 200,000 records
on MS-DOS and other computers. With larger files, use of the catalog becomes imprac-
ticable and all references to records should be made with their pathnames only. (When a
catalog reference number is used, a sequential search is made through the catalog file for the
pathname corresponding to that number. This search can take a long time for large
catalogs.) When a correct table size is selected, the DSS show. :ittle degradation in storing or
retrieving records from a very large file. However, such large files are not recommended

because of general computer limitationw such as the backup and copying of those files.

1.5 Programming with DSS

1.5.1 Opening and Closing DSS Files

DSS was designed to be consistent with the style set by the FORTRAN 77 standards.
Before data can be accessed in a DSS database file, the file must first be opened with
subroutine ZOPEN. After all transactions are completed, the file is closed with subroutine
ZCLOSE. Any calls to store or retrieve data without the file opened by ZOPEN will result
in an error. Generally, a DSS file should not be opened more than once during the execu-

Page 1-6 Introduction

tion of a program. Never open or close a DSS file using a FORTRAN OPEN or CLOSE
strtement; DSS files must only be opened by ZOPEN and closed by ZCLOSE.

Programs can access more than one DSS file simultaneously. For example, data can be
retrieved from one DSS file and stored in another. The first file opened by DSS will be

connected to unit 71, then the second will be connected to unit 72, etc. The unit number
can be modified by calling ZSET prior to ZOPEN. A separate IFLTAB array is needed for
each opened DSS file.

1.5.2 The IFLTAB Array

Programs accessing DSS must provide an array named IFLTAB for each DSS file

opened. This array holds file pointers and parameters, and it can be viewed in a similar
manner to a FORTRAN unit number. IFLTAB is an integer array that is dimensioned to

300 INTEGER*4 words or 600 INTEGER*2 words. On Harris 'H series" computers, where
DSS version 4 files might be accessed, the array must be dimensioned to 1200 INTEGER*3

words. The IFLTAB array must not be altered after the DSS file has been opened. A

separate IFLTAB array is neeoed for each DSS file opened concurrently.

Certain elements in IFLTAB contain key flags that are checked frequently by the DSS.

If one of these flags has changed, then memory has been overwritten and the array is
corrupted. When this occurs an error message is printed and the program is aborted. If this
error occurs, it must be corrected before furzher work is done (bounds checking is useful for

this).

1.5.3 DSS Subroutines

Higher level subroutines are available to store and retrieve time series data, paired

(curve) data, and text data. Time series data is composed of two categories: regular-interval
and irregular-interval data. For regular-interval time series data, the date and time of each

data value is implied by its position within the record. For irregular-interval time series
data, each data value has its own date and time stamp associated with it. Regular interval
time-series data is stored by Fubroutine ZSRTS or ZSRTSX and is retrieved by ZRRTS or

ZRRTSX. Irregular interval time-series data is stored by subroutine ZSITS or ZSITSX and
is retrieved by ZRITS or ZRITSX. Paired data, which usually defines a curve or set of
curves, is stored by ZSPD and is retrieved by ZRPD. Text data may be stored by subroutine

ZSTEXT or ZSTXTA and retrieved by ZRTEXT or ZRTXTA. Data that does not meet any
of the conventions established may be stored in a DSS file by calling subroutine ZWRITE

Introduction Page 1-7

and retrieved by calling ZREAD. These subroutines should only be used when no other
subroutines are available for the type of data being used.

Other subroutines are available for the following tasks: to set parameters, such as the
program name (ZSET); to inquire about the value of parameters (ZINQIR); to generate a
pathname (ZPATH); to get pathname parts from a input line (ZGPNP); to break a
pathname into separate parts (ZUPATH); to determine if a record exists and what its data
type is (ZDTYPE); and to provide cataloging and other utility functions (e.g., ZCAT).

1.5.4 Message Control

DSS messages are written to FORTRAN unit 6. This message unit number may be set

to some other number by calling the subroutine ZSET. The amount of message output can
be controlled by setting "MLEVEL" (the message level) with ZSET. This message level can
vary from 0 to 15. Level zero will cause information to be printed only when a sever error
occurs. Most of the higher level subroutines, such as ZSRTS, will print an internal trace for
debugging when the message level is set to 9. Message levels higher than 9 are for installing
DSS on a new computer and generally do not provide any additional information for the
programmer. The default level is 4, which prints the pathname whenever a record is
retrieved or stored.

1.6 Typical Order of Calling DSS Subroutines

A typical sequence of programming instructions used to store or retrieve data in a DSS

file is as follows:

1) The program detects that a DSS database file is to be accessed. For several
HEC application programs this is triggered by a "ZR" or "ZW" record in the input.

2) The DSS file is opened by ZOPEN. The file name is often obtained from the
execution line or from the input. If ZOPEN is called in a routine that may be

called several times, a logical flag may be set to indicate that the file has already
been opened (so the file will not be opened a second time). If data values are to
be stored, the program name is set by a call to ZSET with the 'PROGRAM'
parameter.

Page 1-8 Introduction

3) A DSS pathname for the data to be accessed is constructed from information
on the "ZR" or "ZW" record. Often the subroutine ZGPNP (Get Pathname Parts)
and ZPATH (Form Pathname) are called to produce the pathname.

4) If data values are to be stored, they are organized sequentially into an array.
The data units and type are identified. If the data is time series, the associated

times are identified.

5) The DSS storage or retrieval subroutine is called (e.g., ZSRTS or ZRRTS).

6) The status of the call is checked. If an error occurred, the appropriate action

is taken.

7) If data was retrieved, it is used as input for the program.

8) The remaining sets of data are retrieved or stored, until all DSS accesses are
completed.

9) When all DSS accesses are complete, the file is closed by ZCLOSE (often this is

called at the end of the program).

1.7 Machine Specifics

1.7.1 Harris Computers

Access to DSS subroutines is accomplished by linking with the library HECLIB.
HECLIB is stored in the qualifier 2000SYSS. These subroutines are compiled without any
compiler options. A typical compilation and linking procedure is as follows:

SAUF77 MYSOURCE
VU. R MYPROG
LIB 2000SYSS*HECLIB *LIBERY
BEGIN

The IFLTAB array must be dimensioned to 1200 INTEGER*3 words on the Harris, to
allow compatibility with DSS version 4 files. Unit 6 must be assigned to standard output
prior to calling DSS, unless the message unit is reset with subroutine ZSET.

It should be noted that an old FORTRAN 66 version of HECLIB exists on some Harris
computers. This library does not contain the subroutines documented in this manual.

Introduction Page 1-9

1.7.2 Microcomputers Using Microsoft FORTRAN

The DSS (and HECLIB) subroutines are compiled with Microsoft FORTRAN using a
default word length of INTEGER*2. All integer arguments passed to DSS subroutines must
be this length, unless otherwise indicated. The julian dates and the time interval passed to
the time series routines are some of the variables that must have a word length of
INTEGER*4. The IFLTAB array should be dimensioned to 600 INTEGER*2 words or 300
INTEGER*4 words.

The DSS subroutines are distributed in the library \LIB\HECLIB.LIB. At the time of
the publication of this manual, the subroutines were compiled with Microsoft version 5.0.
The following options were used to compile the library.

/Z1 /FPi /O1s /412 /Gt80 /c

The Microsoft linker supplied with the FORTRAN compiler should be used to link

your program. The linker supplied with DOS should not be used, as it does not know about
the FORTRAN libraries (both linkers are named "LINK"). Typically, programs accessing
DSS require additional segments. The number of segments can be increased by the link
option /SE:number-of-segments. Generally 400 to 500 segments are needed. Occasionally
the stack size may also need to be increased. The instructions necessary to compile and link
a program with DSS might be the following:

FL /FPi /412 /c HYPROG.FOR
LINK MYPROG /SE:400 /ST:3000 /NOD /E
Library: HECLIB+LLIBFORE

(The DSS utility programs are linked with the large memory FORTRAN library with math

chip emulation software.)

Occasionally, large programs will require a larger environment size. The error "HEAP
SPACE EXCEEDED", obtained when executing the program, often indicates an insufficient
environment size. To increase the size, the /P and /E switches need to be added to the
COMMAND.COM command in your CONFIG.SYS file. An example of this is:

shell-c: \dos\command. com /p/e: 512

More information about this may be found in your DOS manual under the COMMAND

command.

DSS files generated with Microsoft FORTRAN are binary compatible with software
compiled with different compilers for DOS and with most Unix computers. A DSS file can
be copied (binary) to a Unix computer, then used by DSS programs on that computer (or

Page 1-10 Introduction

visa versa). Software linked to the HECLIB produced after February 1991 contains file
locking features that allow multiple user access of DSS files on a networked system.

1.7.3 Microcomputers Using Lahey FORTRAN

The DSS and HECLIB subroutines have been compiled with Lahey and Lahey extended
memory (32 bit) FORTRAN. The library compiled with the regular Lahey compiler has a

default integer word length of INTEGER*2. The library compiled with extended memory
Lahey has a default integer word length of INTEGER*4. Because not all HECLIB sub-
routines have been converted to Lahey, it is preferred that the Microsoft FORTRAN

HECLIB be used, if possible. The IFLTAB array must be dimensioned to 600 INTEGER*2

words or 300 INTEGER*4 words.

The DSS library compiled with regular Lahey FORTRAN is distributed in the file

\LIB\HECLIBL.LIB, and the library compiled with extended memory Lahey is distributed
in \LIB\HECLIBL3.LIB. The following options are used in the F77L3.FIG file to compile

the library with extended memory Lahey:

/nO/n7/B/C/D/nF/nH/I/nK/nL/nO/P/nQl/R/nS/nT/W/nX/Z1

Note that the /D option is needef' i that DSS files (which are direct access) will not
have a Lahey Header. The subroutine, 'ompiled with the regular Lahey compiler use the

option "/I' to default integer word lengths to INTEGER*2.

DSS files generated with either Lahey compiler are binary compatible with DSS files

created with the Microsoft compiler and with most Unix computers. However, the Lahey

ZOPEN may adjust the DSS file size if it has been opened by program compiled by

Microsoft.

1.7.4 Liix Operating Systems

The DSS and HECLIB subroutines have been compiled in several Unix operating
systems. (Contact HEC for a current list of which Unix computers for which DSS is

available.) The library is compiled with a default integer word length of INTEGER*4. The
IFLTAB array should be dimensioned to 300 INTEGER*4 words.

Introduction Page 1-11

Generally, the library is compiled using the default compiler options. The library is

distributed in the file:

/usr/hec/lib/heclib.a

DSS files are generally compatible across Unix and DOS computers. However, DSS
files created by a library not converted by HEC may be incompatible ývith other computers.

Page 1-12 Introduction

2 General Subroutines

This chapter describes general DSS subroutines, including ZOPEN and ZCLOSE, both

of which must be called by all programs accessing DSS. ZOPEN opens (or connects) a DSS

file before any data transactions can occur. ZCLOSE closes (or disconfiects) a DSS file after

all accesses to that file are complete. ZOPEN and ZCLOSE should be called once for each

DSS file accessed.

ZFNAME adds any default extensions to a DSS file name (e.g., *.dss*) and determines if

that file exists. ZFVER will determine the DSS version number of a file before it is opened

with ZOPEN.

ZDTYPE determines if a record exists and, if it does, returns its data type (e.g.,

whether it is regular-interval time series, paired data, etc.).

ZSET provides a means of setting several DSS parameters during execution. Items,

such as the program name, and the message level (trace) may be set. ZINQIR provides a

means of determining what parameters are set to. This includes items such as the message

level, the DSS version, and the number of records in a file.

General Subroutines Page 2-1

ZOPEN

2.1 ZOPEN - OMen a DSS File

Purpose:

ZOPEN is used to open (or connect) a DSS file. If the file does not exist, ZOPEN will
create it with public access. Except for the subroutines ZFNAME, ZFVER and ZSET,
ZOPEN must be called prior to any other DSS subroutine.

ZOPEN must be called once (and only once unless the file is closed) for each DSS file
to be accessed. DSS files cannot be opened or connected by any other means.

Calling Seauence:

CALL ZOPEN (IFLTAB, CNAME, IOSTAT)

Declarations:

INTEGER IFLTAB(600), IOSTAT
CHARACTER CNAME* (*)

Argument Description:

IFLTAB (Input-Output) IFLTAB is an array used by the DSS software to
manage the file. After the DSS file has been opened, that file is
referred to in DSS subroutines by IFLTAB. Each DSS file opened must
have its own IFLTAB array, and that array must not be altered. See
"Remarks" concerning the required length of IFLTAB.

CNAME (Input-Output) The name of the DSS file to be opened. If the com-
puter uses file name extensions (e.g., "db.dss"), ZOPEN will append the
default extension (".dss") to the name if it has none.

IOSTAT (Output) A status parameter indicating the success of the operation. If
IOSTAT is returned with zero, then the file was opened successfully. If
IOSTAT is returned non-zero, then a fatal error occurred, and the file
was not opened. Do not attempt to retrieve or store data if IOSTAT is
non-zero. The possible values are:

IOSTAT Description

0 Successful Open.

-1 Unable to create the DSS file.

-2 Unable to connect to the file.

-3 Incompatible DSS versions.

-10 No file name was provided.

>0 Unable to OPEN the file; See the IOSTAT parameter in
the OPEN statement of your FORTRAN manual.

Page 2-2 General Subroutines

ZOPEN

Remarks:

For DSS version 6, IFLTAB must have a length of 300 long integer words, or 600 short
integer words. On Harris computers, its length must be 1200 (short) integer words for
compatibility with version 4 of DSS. Hereafter, its length will be shown as 600 (short)
integer words.

ZOPEN will create the DSS file if it does not exist. Subroutine ZFNAME can be called
prior to ZOPEN to determine if the file exists.

ZOPEN must be called once per DSS file used. ZCLOSE must be called when all
references to that file are complete. After ZOPEN, a DSS file is referred to by use of the
IFLTAB array. By default, the first DSS file opened will be connected to unit 71, the
second to unit 72, etc. This parameter may be changed by a call to ZSET.

DO NOT attempt to open a DSS file with an OPEN statement, or ASSIGN or ATTACH
a DSS file as ZOPEN will accomplish this. To do so may destroy the DSS file (IBM
mainframes are an exception).

The DSS version of a file (e.g., 5-BD or 6-FA) can be determined prior to calling
ZOPEN with subroutine ZFVER. Once the file has been opened, a call to ZINQIR will
obtain the version.

Example:

INTEGER IFLTAB(600)
CHARACTER CNAME*64, CNNAME*64
LOGICAL LEXIST

C
C Connect unit 6 to the standard output via ATTACH.

CALL ATTACH (6, 'OUTPUT', 'STDOUT', ' ', CNAME, ISTAT)
C Get the name of the DSS file from the execution line via ATTACH.

CALL ATTACH (IDUM, 'DSSFILE', ' ', 'NOP', CNAME, ISTAT)
CALL ATTEND

C
C Because data is to be retrieved, make sure the DSS file exists
C before calling ZOPEN (as ZOPEN would create it).

CALL ZFNAME (CNAME, CNNAME, NNAME, LEXIST)
IF (.NOT.LEXIST) THEN

WRITE (6,10) CNNAME
10 FORMAT (' ** The DSS File does not exist: ',A)

GO TO 900
ENDIF

C
CALL ZOPEN (IFLTAB, CNAME, IOSTAT)
IF (IOSTAT.NE.0) THEN

WRITE (6,20) IOSTAT, CNAME
20 FORMAT (' *** Error in opening DSS file, status:',I5,

* ', Name: ',A)
GO TO 900

ENDIF

General Subroutines Page 2-3

ZCLOSE

2.2 ZCLOSE - Close a DSS File

Purtoose:

ZCLOSE is used to close (or disconnect) a DSS file after all DSS transactions with that
file have been completed. ZCLOSE must be called once (and only once) for each DSS file
opened.

Calline Seauence:

CALL ZCLOSE (IFLTAB)

Declarations:

INTEGER IFLTAB (600)

Argument DescriDtion:

IFLTAB (Input-Output) The work space used by DSS to manage the file. This
is the same array that is used in the ZOPEN call and most other DSS
subroutines.

Remarks:

ZCLOSE "zeros" the IFLTAB array so that another DSS file can be opened with it
afterwards. Once a file is closed, it must be reopened before it can be accessed again.
Information about the file size and number of records is written to standard output by
ZCLOSE.

Page 2-4 General Subroutines

ZFNAME

2.3 ZFNAME - Add File Name Extension and Determine if the File Exists

Purpose:

On computers where file name extensions are used, ZFNAME will add the default
extensions to a DSS file name (unless the file name already has an extension) and determine
if that file exists. File name extensions include ".DSS" on MS-DOS computers and ".dss" on
Unix machines. ZFNAME is an optional subroutine, as ZOPEN will automatically add
extensions to the name.

Calling Seouence:

CALL ZFNAME (CNAMIN, CNAME, NNAME, LEXIST)

Declarations:

CHARACTER CNAMIN*(*), CNAME*64
INTEGER NNAME
LOGICAL LEXIST

Areument Description:

CNAMIN (Input) The DSS file name. This is generally the name a user enters.
The name may or may not have extensions.

CNAME (Output) The DSS file name with the default extensions added to it. If
the file name already has an extension, or the computer does not use
extensions, no extension will be added.

NNAME (Output) The number of non-blank characters in CNAME (i.e., its
length).

LEXIST (Output) A logical variable set to .TRUE. if the file exists, or FALSE.
if it does not.

Remarks:

An extension in the name is defined as a period and any characters that follow it. On
MS-DOS computers the default extension is ".DSS". However, a DSS file does not necessari-
ly have to have that extension (although DSS utility programs will not "highlight" files that
do not have the ".DSS" extension). Any extension or no extensions are legal for a DSS file
name, as long as a period appears in the name. For example, "MYDB.DAT", and "MYDB."
are allowable names, whereas "MYDB" (with no period) will have ".DSS" automatically added
to it. The default extension of the catalog file is ".DSC".

Similarly, Unix computers use a default extension of ".dss". and the catalog has an
extension of ".dssc". No extension will be added if the file name contains a period within it.
On computers where extensions are not commonly used (e.g., Harris), ZFNAME will not
change the name (CNAME will equal CNAMIN), and will only determine if the file exists.

General Subroutines Page 2-5

ZFNAME

Example:

C Open a DSS file for retrieving data.
C

CHARACTER CNAMIN*64, CNAME*64
LOGICAL LEXIST

C
CALL ATTACH (0, 'DSS', ' ', 'NOP', CNAMIN, ISTAT)

C
IF (CNAMIN(I:l).EQ.' ') THEN

WRITE (6,*)'No DSS file name provided!'
GO TO 900

ENDIF
C

CALL ZFNAME (CNAMIN, CNAME, NNAME, LEXIST)
C

IF (.NOT.LEXIST) THEN
WRITE (6,20) CNAME(l:NNAME)

20 FORMAT (' The DSS File ',A,' Does Not Exist!',/
* ' The DSS file must exist in order to retrieve data.')

GO TO 900
ENDIF

C
CALL ZOPEN (IFLTAB, CNAME, ISTAT)

C

Page 2-6 General Subroutines

ZDTYPE

2.4 ZDTYPE - Determine a Record's Data Te and if it Exists

Purpose:

ZDTYPE determines if a record exists and, if it does, returns its data type (e.g.,
,whether it is regular-interval time series, paired data, etc.). If the record does not exist,
ZDTYPE will examine the pathname in an attempt to determine if it follows the time-
series conventions.

Calling Seguence:

CALL ZDTYPE (IFLTAB, CPATH, NSIZE, LEXIST, CDTYPE, IDTYPE)

Declarations:

INTEGER IFLTAB(600), NSIZE, IDTYPE
CHARACTER CPATH*80, CDTYPE*3
LOGICAL LEXIST

Argument Description:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CPATH (Input) The pathname of the record to examine. The length of CPATH
is implicit (e.g., CPATH(I:NPATH)).

NSIZE (Output) The size of the data portion of the record, given relative to
floating point values (i.e., if the record consisted of real numbers). If
the record does not exist, NSIZE is returned as zero.

LEXIST (Output) A logical variable set to .TRUE. if the record exists.

CDTYPE (Output) The chaiacter representation of the data type. This variable
corresponds to the data type displayed in the catalog file and as shown
below.

IDTYPE (Output) An integer flag indicating the data type. The currently

defined data tyoes are as follows:

IDTYPE CDTYPE Data Type

0 UND Undefined
100 RTS Regular-Interval Time Series Data
110 ITS Irregular-Interval Time Series Data
200 PD Paired Data
300 TXT Text Data

General Subroutines Page 2-7

ZUTYPE

Remarks:

ZDTYPE replaces the function of subroutine ZCHECK. The data type is stored by the
standard storage routines (e.g., ZSRTS), while ZWRITE sets the data type to 0 (undefined).
Data types cannot be changed or set externally.

Examp~le:

C Tabulate different types of data in a DSS file.
C

INTEGER IFLTAB(600)
CHARACTER CPATH*80, CDTYPE*3
LOGICAL LEXIST

C
C
C Open the DSS file.

CALL ZOPEN (IFLTAB, ...

C
C Get the pathname.

WRITE (6,*) 'Enter DSS Pathname'
READ (5, 20, END-O00, ERR-900) CPATH

20 FORMAT (A)
C
C Determine if the record exists, and its data type.

CALL ZDTYPE (IFLTAB, CPATH, NSIZE, LEXIST, CDTYPE, IDTYPE)
C
C Print a message if the record does not exist, and it
C is not time series. (If the data is time series with a time
C window, the "D" (date) part is not required; thus the record
C may exist with another D part.)

IF ((.NOT.LEXIST).AND.(CDTYPE(2:3).NE.'TS')) THEN
WRITE (6,40) CPATH

40 FORMAT (' Record Does Not Exist: ',A)
GO TO 200

ENDIF
C

IF (IDTYPE.EQ.100) THEN
CALL ZRRTS (

C
ELSE IF (IDTYPE.EQ.lI0) THEN

CALL ZRITS (...

C
ELSE IF (IDTYPE.EQ.200) THEN

CALL ZRPD (...

C
ELSE IF (IDTYPE.EQ.300) THEN

CALL ZRTEXT (
C

ELSE
CALL ZREAD (...

C
ENDIF

Page 2-8 General Subroutines

zsi
ZSET

2.5 ZSET - Set DSS Parameters

Purose:

ZSET provides a means of resetting several default parameters used by DSS. This
includes items such as the name of the program storing data, the DSS file unit number to
use, etc.. ZSET may be called at any time (before or after ZOPEN).

Callingi Seauence:

CALL ZSET (CITEM, CSTR, INUMB)

Declarations:

INTEGER INUMB
CHARACTER CITEM*4, CSTR*6

Argument Description:

CITEM (Input) The item to be set. Items may be abbreviated to the first 4
characters of the name. A list of the available items follows.

CSTR (Input) A character string containing the value to be set. If the
parameter to be set is an integer number, this argument is ignored (and
can be ' ').

INUMB (Input) The integer number containing the value to be set. If the
parameter to be set is a character string, this argument is ignored.

General Subroutines Page 2-9

ZS~r

Summary Table:

CITEM Description Default
CSTR INUMS

'PROGRAM' Sets the name of the program to store with the data. 'Undefi'

'UNIT Sets the unit number of the next DSS file to be 71
opened (via ZOPEN).

'MLEVEL' Sets the message level (trace) for MUNIT. 4

'MUNIT' Sets the unit number of the message output (sta- 6
ndard out).

'80COL' Abbreviates the size of messages to fit within 80 'OFF'
columns.

'TAG' Sets the tag of the next record to be written.

'PRECISION' Sets the precision of the data for use by utility 0
programs.

'TOLERANCE' Sets the tolerance of regular-interval times series 0
data to prevent overwriting unchanged data.

'PROTECT' Protects existing records from being written over. 'OFF'

'READONLY' Places the file in a "read only" mode. 'OFF'

'EXCLUSIVE' Places the file in an "exclusive use" mode. 'OFF

'WLOCK' Places the file in an "exclusive write lock" mode. 'OFF'

'SIZE' Sets the internal hash table size for a new file. 'MEDIUM' 1000

'TABLE' Indicates whether a dynamic or stable hash table 'DYNAMIC'
should be used for a new file.

'COMP' Re-compresses regular- interval time series data 'OFF'
when ZCOFIL is called.

'CAST` Catalog Status - Causes a status line to be dis- 'OFF'
played during a catalog.

'SQST" Squeeze Status - Causes a status line to be dis- 'OFF'
played during a file copy.

'MAP' Causes a catalog map to be created when a new 'OFF'
catalog is generated.

'MAPUNIT" Sets the unit number to use for the catalog map file.

Page 2-10 General Subroutines

Zs~rr

Parameters

PROGRAM This sets the name of the program which is stored with the data. The
name can be up to six characters long. This call should be made prior to
calling any DSS storage subroutines. The default value is 'Undefi'.

UNIT This sets the unit number of the next DSS file to open. In order to use
this parameter, ZSET must be called prior to ZOPEN for that file (you
cannot change the unit number once the file has been opened). This
setting will not change the unit number of other DSS files to be opened.
The default unit number of the first DSS file opened is 71, the second is
72, and for subsequent files the unit number is incremented by one.

MLEVEL This sets the level of messages to be written to the output unit
(MUNIT). The level ranges from "abort" only messages to internal trace
messages. Level 4 is the default. Levels greater than 5 provide
debugging messages for some DSS subroutines (see documentation on the
specific subroutine for debug levels). Level 10 and above are used for
first time installation of DSS on a new computer (and will generate
several pages of cryptic trace for one write). A higher level incor-
porates all lower level messages.

Level Tvye of Messages

0 Messages from an abort only.
I ZOPEN and ZCLOSE statements.
2 Error and warning messages.
3 ZWRITE messages.
4 ZREAD messages (default).
7 Beginning level of debugging messages.
8 Intermediate level of debugging messages.
9 Maximum level of debugging messages.

>10 Internal DSS trace (don't use unless you know what you
are doing).

MUNIT This sets the unit number for messages (the standard output). The
default is unit 6. The unit must be opened prior to calling ZSET.

80COL When CSTR is 'ON', DSS output messages (e.g., ZWRITE and ZREAD
messages) are abbreviated so that they will (usually) fit within 80
columns. If pathnames are long, the 80 column size may be exceeded.

TAG This causes CSTR to be the tag for the next new record written (or
multiple records for a single call to store time-series data). The tag can
be up to 8 character long. It must begin with a non-numeric character
and cannot have embedded blanks or commas. See chapter 7 for more
information on tags. Default tags will be used for subsequent writes
(ZSET must be called prior to every write where a tag is to be set).

PRECISION This stores a precision value to be used by utility programs when
tabulating the record. The precision is a number between 1 and 7 that
represents the minimum number of places to the right of the decimal
that must be displayed. If the precision is 2, the data will be displayed
to the nearest hundredth; 3 indicates to the nearest thousandth. A zero
indicates no precision value is set. The precision is set only for the next
record written (i.e., call ZSET just prior to each write). Subsequent
writes will not store a precision value unless ZSET is called again.

General Subroutines Page 2-11

TOLERANCE When storing regular-interval time series data (ZSRTS), this setting
provides a means of preventing existing data from being overwritten
with the same data but at a possibly lesser precision. This is designed to
preserve the precision of unchanged data during editing. The tolerance
is a number between 0 and 7 that indicates the accpracy of data by the
number of places to the right of the decimal. For example, if a
tolerance of 2 is set, a data value that was within a hundredth of the
value currently stored would not replace that value (138.76 would not
replace 138.7574, but 138.77 would). The tolerance is set only for the
next record written (i.e., call ZSET just prior to each ZSRTS). No
tolerance is checked for subsequent writes (unless ZSET is called again).
This setting is ignored for new records.

PROTECT When CSTR is 'ON', this prevents the next record to be written from
writing over an existing record (with the same pathname). The
protection is only for the next record written (i.e., call ZSET just prior
to each write). Existing records for subsequent writes are not protected
(unless ZSET is called again).

READONLY When CSTR is 'ON' prior to the call to ZOPEN, this will cause the next
file opened to be placed in a "read only" mode. Nothing can be written
to the file in this mode. This setting does not prevent other programs
from writing to the file. This flag applies only to the next file opened;
subsequent files opened will be in a read/write mode unless ZSET is
called again.

EXCLUSIVE When CSTR is 'ON' prior to a call to ZOPEN, this will cause the next
file opened t3 be placed in a "exclusive use" mode. No other programs
can access the file in this mode. This flag applies only to the next file
opened; subsequent files opened will be opened normally unless ZSET
is called again.

WLOCK When CSTR is 'ON' prior to the call to ZOPEN, this will cause the next
file opened to be placed in a "exclusive write lock" mode. In this mode
the file is placed in an exclusive use mode, and-portions of the main
address tables are kept in memory, causing writing to be slightly faster.
If the file is not correctly closed (a system crash or power failure), the
file will have to be squeezed by DSSUTL prior to being used. No other
programs can access the file in this mode. This flag applies only to the
next file opened; subsequent files will be opened normally unless ZSET
is called again.

SIZE This parameter sets the size of the internal hash-address table (according
to the expected number of records) for new files. The expected number
of records should be passed as INUMB. Alternatively, the size name, as
describe in the DSSUTL open command documentation, can be passed
in CSTR instead of INUMB. This call is ignored for existing files.

TABLE This parameter sets the internal hash-address table type for new files.
CSTR can be either 'DYNAMIC' or 'STABLE'. A stable table is
primarily intended for databases that do not change in size frequently.
A dynamic table is intended where the file size may vary considerably
or where the ultimate file size is not known. A stable table reserves a
large portion of space at the beginning of the file for the table (which is
incrementally added in a dynamic table). This call is ignored for
existing files.

Page 2-12 General Subroutines

zsMr

COMP When set to 'ON', prior to a call to ZCOFIL, this will cause regular-
interval time series data to be "re-compressed" as it is copied. The
compression method used will be that which matches pathname parts set
in the file's compression header. If the file does not have a compression
header, then all the data will be "un-compressed*..

CAST When set to 'ON', prior to a call to ZCAT, this will cause a status line to
be written to MUNIT during cataloging. The status line is updated
every 10 records. MUNIT must be connected to a terminal or console
(not a file) during the catalog.

SQST When set to 'ON', prior to a call to ZCOFIL, this will cause a status line
to be written to MUNIT during copying. The status line is updated
during the copy. MUNIT must be connected to a terminal or console
(not a file) during the copy.

MAP When set to 'ON', a map output is written to unit MAPUNT when a new
catalog is created. See the ZCAT subroutine documentation for more
information. Before setting MAP to 'ON', call ZSET setting MAPUNT
to a valid unit number. MAP is set to 'OFF' by defa,

MAPUNIT This sets the unit number for the MAP output when MAP is 'ON' and a
new catalog is created. The unit must have been previously opened. See
the ZCAT subroutine documentation for further information.

Remarks:

The precision and tolerance parameters are completely independent of each other, as
are the size and table type parameters. The size parameter is set more frequently than the
table type. The message unit (MUNIT) must be connected to a terminal or console to set the
catalog status or squeeze status. If a file has system read only permission, READONLY is
set to ON automatically by ZOPEN. The exclusive use mode may not be available on all
computers. The exclusive write lock mode should be set sparingly.

General Subroutines Page 2-13

zsET

Examnle."

C If this is a new file, set the hash size.
CALL ZFNAME (CN, CNAME, NNAME, LEXIST)

C
IF (.NOT.LEXIST) THEN

CALL ZSET ('SIZE', ' , 5000)
ENDIF

C
CALL ZOPEN (IFLTAB, CNAME, ISTAT)
IF (ISTAT.NE.0) GO TO 900

C Set the program name and output to 80 columns.
CALL ZSET ('PROG', 'DATSTR', IDUK)
CALL ZSET ('B0COL', 'ON', IDUJ)

C
C
C
C Store regular-interval time series data.
C Set the tag and the precision.

MAXPRE - 0
NVALS -0

100 CONTINUE
READ (9,120,END-200) CLINE

120 FORMAT (A)
C Parse the line.

CALL PARSLI (CLINE, 20, NFIELD, IBF, IEF, ILF)
C

DO 140 I-I,NFIELD
NVALS - NVALS + 1
VALUES(NVALS)- XREAL (CLINE, IBF(I), ILF(I), IERR)
IF (IERR.NE.0) GO TO 910
N - INDEX (CLINE(IBF(I):IEF(I), '.')
IF (N.GT.0) THEN

J - ILF(I) - N
IF (N.GT.MAXPRE) MAXPRE - N

ENDIF
140 CONTINUE

C
C Go back and read the next value.

GO TO 100
C
C All the data has been read; store it.

CALL ZSET ('TAG', 'NF-FLOW', IDUM)
CALL ZSET ('PREC', ' ', KAXPRE)
IF (LDEBUG) CALL ZSET ('MLEVEL', ' , 9)
CALL ZSITS (IFLTAB,

Page 2-14 General Subroutines

ZINQIR

2.6 ZINOIR - Inquire About DSS Parameters

Purnose:

ZINQIR provides a means of determining what parameters or flags are set to. This
includes items such as the message level, a record's last written date and time, and the
number of records in the file.

Calling Secuence:

CALL ZINQIR (IFLTAB, CITEM, CSTR, INUMB)

Declarations:

INTEGER IFLTAB(600), INUMB

CHARACTER CITEM*4, CSTR*(*)

On MS-DOS microcomputers, INUMB must be INTEGER*4:

INTEGER*4 INUMB

Argument Description:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CITEM (Input) The item to inquire about. Items may be abbreviated to four
characters. A list of available items follows.

CSTR (Output) If the item inquired about is returned as a character string, it
is returned in this variable.

INUMB (Output) If the item inquired about is returned as an integer number, it
is returned in this variable.

Remarks:

ZINQIR will either return a character string, or an integer number; the other variable
will be unchanged. Several items refer to the last record read (e.g., record version). If no
records have been accessed, the variables will be undefined. The information returned is
current to the time the file was last accessed by your program. If someone else is writing to
the file at the same time, and you have not accessed the file for some time, some of the
information returned may not be current (e.g., the number of records in the file).

General Subroutines Page 2-15

ZINQIR

Summary Table:

CITEM Description Variable

'80COL' Returns 'ON' if the abbreviate messages to 80 column flag CSTR

is set.

'DEAD' Returns the percentage of dead space in this file. INUMB

'FDATE' Returns the creation date of the DSS file. CSTR

'FVERS' Returns the DSS version of the file when it was created. CSTR

'HSIZE' Returns the hash table size. INUMB

'MLEVEL' Returns the message level. INUMB

'MUNIT' Returns the unit number used for message output. INUMB

'NAME' Returns the name of DSS file. CSTR

'NREC' Returns the number of records in the file. INUMB

'PRECISION' Returns the precision setting of the last record read. INUMB

'PROGRAM' Returns the name of the program for the last record read. CSTR

'FLAGS' Returns the data flag for the last record read. INUMB

'RDATE' Returns the last write date of the last record read. CSTR

'READONLY' Returns 'ON' if the file is in a read only mode. - CSTR

'RTIME' Returns the last write time of the last record read. CSTR

'RVERS' Returns the version number of the last record read. INUMB

'SIZE' Returns the size of the DSS file in kilobytes. INUMB

'TABLE' Returns the hash table type of the file. CSTR

'TAG' Returns the tag of the last record read. CSTR

'UNIT' Returns the unit number of the DSS file. INUMB

'VERSION' Returns the DSS software version. CSTR

Page 2-16 General Subroutines

ZINQIR

Parameters:

80COL This returns 'ON' in CSTR if the abbreviate message output to 80
columns flag is set. If the flag is not set, 'OFF is .returned.

DEAD This returns in INUMB the percentage of inactive space in the file,
rounded to the nearest integer.

FDATE This returns in CSTR the creation date of the DSS file, as recorded in
the file header. The date is in a 7 character military style form (e.g.,
20MAR84).

FVERS This returns in CSTR the DSS version of the file when it was .-reated, or
last squeezed. The version is returned in a form similar to "6-FC".

HSIZE This returns in INUMB the hash table size as a number of 1 through 8.
The eight sizes correspond to the sizes discussed in the DSSUTL open
command, where 1 represents 'tiny', and 8 'extra-huge'.

MLEVEL This returns in INUMB the current message level. See the MLEVEL
documentation in ZSET for information on the different levels.

MUNIT This returns in INUMB the unit number for writing messages.

NAME This returns in CSTR the name of the DSS file.

NREC This returns in INUMB the number of records in the file, according to
the last access (if someone else is writing to the file at the same time,
the actual number may be different).

PRECISION This returns in INUMB the precision setting of the last record read. If
INUMB is zero, no precision has been set for that record. See ZSET for
more information.

PROGRAM This returns in CSTR the name of the program which stored data in the
last record read.

FLAGS This returns in INUMB the data flag of the last record read. INUMB
will be 1 if data flags are used, otherwise it will be returned as 0.

RDATE This returns in CSTR the last write date of the last record read. The

date is returned in a military style (e.g., 20MAR78).

READONLY This returns 'ON' in CSTR if the file mode is set to read only.

RTIME This returns in CSTR the last write time of the last record accessed.
The time is given in twenty-four hour clock time (e.g., 1630 for 4:30
p.m.).

RVERS This returns in INUMB the version number of the last record accessed.
The version number corresponds to the number of times that record has
been written to.

General Subroutines Page 2-17

ZINQIR

SIZE This returns in INUMB the size of the DSS file in kilobytes (according
to the last access).

TABLE This returns in CSTR 'DYNAMIC1 if the hash table is dynamic, or
'STABLE' if the table type is stable.

TAG This returns in CSTR the tag of the last record read.

UNIT This returns in INUMB the unit number of the DSS file.

VERSION This returns in CSTR the current DSS software version. Versions are in
a form such as "6-EA".

Page 2-18 General Subroutines

ZFVER

2.7 ZFVER - Get a DSS File's Version

Puripose:

ZFVER determines the software version for an un-oiened DSS file. This routine is
used primarily in environments where older (incompatible) DSS version files may exist (for
example both DSS versions 5 and 6 exist on MS-DOS computers). The software version for
an opened DSS file may be obtained by the subroutine ZINQIR.

Calling Seauence:

CALL ZFVER (CNAME, CVER, IVER)

Declarations:

CHARACTER CNAME*64, CVER*4
INTEGER IVER

Araument Description:

CNAME (Input) The name of the DSS file. The default file name extension will
be used if no extension is passed (and the computer system uses
extensions). The file must be un-opened.

CVER (Output) The four character DSS version identifier (e.g., "6-FC"). If
the file is not a DSS file, CVER will be returned blank filled.

IVER (Output) The DSS file version number, or status parameter if the file is
not a DSS file. The possible values returned are:

IVER Description

-3 The file is not a DSS file.
-2 Unable to access the file (but it exists).
-1 The file does not exist.

4 Version 4 file.

5 Version 5 file.

6 Version 6 file.

Remarks:

ZFVER calls ZFNAME to determine if the file exists. If it does, it is temporarily
opened, and key file identifiers are read and examined. ZFVER can also be used to
determine if a file is a DSS file before calling ZOPEN.

General Subroutines Page 2-19

ZVER

C Open a DSS file. It is ok to open a new DSS file, but
C don't open a non-DSS file, or an older versionfile.
C

CHARACTER CNAME*64, CVER*4
C

CALL ATTACH (0, 'DSS', ' ', 'NOP', CNAME, ISTAT)

C
CALL ZFVER (CNAME, CVER, IVER)

C
IF (IVER.EQ.-3) THEN

WRITE (6,20) CNAME
20 FORMAT (' File ',A,' is not a DSS file!')

GO TO 900
ENDIF

C
IF (IVER.EQ.-2) THEN

WRITE (6,40) CNAME
40 FORMAT (' Unable to Access File ',A)

GO TO 900
ENDIF

C
C A IVER of -1 is ok (the file does not exist).
C

IF (IVER.NE.6) THEN
WRITE (6,60) CNAME, CVER

60 FORMAT (' The file ',A,' is a version ',A,' file',/
* ' This program can only access DSS version 6 files.')

GO TO 900
ENDIF

C
CALL ZOPEN (IFLTAB, CNAME, ISTAT)

Page 2-20 General Subroutines

3 Pathname Manipulation Subroutines

DSS records are referenced by their pathnames. A pathname consists of up to 80

characters and is, by convention, separated into six part- The parts are referred to by the

characters A, B, C, D, E, and F, and are delimited by a slash "*/, as follows:

/A/B/C/D/E/F/

Each pathname part may contain up to 32 characters, with the total length of the

pathname not exceeding 80 characters. Pathname parts may have embedded blanks (e.g.,

"RED RIVER" for the A part), but blanks prior to and following each part are removed (so

that a blank will never be adjacent to a slash).

Valid pathname characters are the set of upper case characters, digits, the space

character and the characters ! $ % & () * + -. : ; < > ? [] () \ I -. The characters @ =

can also be used, but are discouraged because they conflict with other uses. Invalid

pathname charactm.. are the set of lower case characters, control characters (including the
null character), the characters , and the "delete" character. Any lower case characters

used in a pathname are translated to upper case by the DSS software. The forward slash (/)
can only be used as a part separator.

Refer to the data conventions portion of the Overview section in the "HECDSS User's

Guide and Utility Program Manuals" as to what each of the parts should contain.

Subroutine ZPATH constructs a pathname from the six pathname parts. ZUPATH

determines the beginning and ending position and length of each part of a pathname.
ZUFPN (un-form pathname) returns each part of a pathname in a character variable.

ZGPNP (get pathname parts) obtains pathname parts from a line where the parts are

identified by the part letter and an equal sign (e.g., A=SCIOTO, B=SOUTH BEND). An

example of using ZPATH, ZUFPN, and ZGPNP is provided in the ZGPNP documentation.

ZCHKPN examines a pathname to determine if it meets the requirements for a

pathname. This includes determining if the pathname contains seven slashes, is equal to or
less than 80 characters in length, and contains invalid characters (e.g., control codes).

Pathname Manipulation Subroutines Page 3-1

ZPATH

3.1 ZPATH - Construct a Pathname

Pu, pose:

ZPATH constructs a DSS pathname from the six pathname parts. ZPATH removes
leading and trailing blanks from each part, and inserts a slash (/) between each part and at
the beginning and end of the pathname.

Calliny Seauence:

CALL ZPATH (CA, CB, CC, CD, CE, CF, CPATH, NPATH)

Declarations:

CHARACTER CA*32, CB*32, CC*32, CD*32, CE*32, CF*32, CPATH*80
INTEGER NPATH

Araument Description:

CA (Input) A character string containing the "A" part of the pathname.
The part may be up to 32 characters in length. The part may have
blanks before and after the part, which will be removed by ZPATH.
Embedded blanks (e.g., "RED RIVER*) are not removed. A null part
should be specified by setting the part to all blanks (e.g., CA ='

CB (Input) The "B" part of the pathname.

CC (Input) The "C" part of the pathname.

CD (Input) The "D" part of the pathname.

CE (Input) The "E" part of the pathname.

CF (Input) The "F" part of the pathname.

CPATH (Output) The completed pathname.

NPATH (Output) The number of characters in the pathname.

Remarks:

ZPATH replaces the functionality of subroutine ZFPN. Each pathname part may
contain up to 32 characters, and the pathname may be up to 80 characters in length
(including slashes). If the sum of the parts and slashes is greater than 80 characters, the last
part(s) will be truncated so that the pathname is 80 characters.

An empty or null pathname part is specified by passing a blank string (' '). Parts
should be blanked prior to calling ZPATH so that null characters (CHAR(0)) do not become
accidentally imbedded in the pathname.

Page 3-2 Pathname Manipulation Subroutines

ZPATH

CHARACTER CPATH*80, CA*32, CB*32, CF*32
C

WRITE (6,*)'Enter Basin Name'

READ (5,10,END-100,ERR-900) CA
10 FORMAT (A)

WRITE (6,*)'Enter Location Name'
READ (5,10,END-100,ERR-900) CB

C
CF - 'COMPUTED'

C
CALL ZPATH (CA, CB, 'STAGE-DAMAGE', ' ', ' ', CF,

* CPATH, NPATH)
C

WRITE (6,20) CPATH(1:NPATH)
20 FORMAT (' Pathname: ',A)

Pathname Manipulation Subroutines Page 3-3

ZUPATH

3.2 ZUPATH - Determine a Pathname's Parts

Pumose:

ZUPATH determines the beginning and ending position, and length of each part of a
pathname. This information is returned in 3 six-element integer arrays. The subroutine
ZUFPN may be called instead of ZUPATH to return the pathname parts.

Calling Seouence:

CALL ZUPATH (CPATH, IBPART, IEPART, ILPART, ISTAT)

Declarations:

CHARACTER CPATH*80
INTEGER IBPART(6), IEPART(6), ILPART(6), ISTAT

Argument Description:

CPATH (Input) The pathname to process.

IBPART (Output) A six-element integer array returned with the beginning
positions (in CPATH) of each of the pathname parts. IBPART(l) is the
beginning position of the "A" part, IBPART(2) is the beginning position
of the B part, etc.. The starting positions do not include slashes.

IEPART (Output) A six-element integer array returned with the ending position
of each of the pathname parts. The ending position is the last character
in each part, and does not include the slash.

ILPART (Output) A six element integer array returned with the length of each
of the pathname parts (excluding slashes). A null part is returned with a
length of zero.

ISTAT (Output) A status parameter that is set to zero if there were no errors.
If CPATH is not a valid pathname, ISTAT is returned as -1.

Remarks:

If a pathname part is null (ILPARTO = 0), the beginning position and the ending
position are both set to the position of the slash following the null part. A program should
not attempt to use these positions when a part is null.

Page 3-4 Pathname Manipulation Subroutines

ZUPATH

C If a pathname meets the time series conventions,
C print the D part and the time interval (-i minutes).

CHARACTER CPATH*80, CC
INTEGER IBPART(6), IEPART(6), ILPART(6)

C
READ (9,20,END-200,ERR-900) CPATH

20 FORMAT (A)
C

CALL ZUPATH (CPATH, IBPART, IEPART, ILPART, ISTAT)
C

IF (ISTAT.NE.0) THEN
WRITE (6,30) CPATH

30 FORMAT (' Error: Invalid Pathname Entered: ',A)
GO TO 900

ENDIF
C
C Get the "C" part of the pathname and move into CC.
C Be sure we do not have a null part.

IF (ILPART(3).GT.O) THEN
CC - CPATH(IBPART(3):IEPART(3))

ELSE
C This is a null part. Blank fill.

CC - '

GO TO 200
ENDIF

C
C Get the time interval and date if it is time-series.

IF ((ILPART(4).GT.0).AND.(ILPART(5).GT.0)) THEN
JSTAT - 1
CALL ZGINTL (INTL, CPATH(IBPART(5):IEPART(5)), NVALS, JSTAT)
IF (JSTAT.GE.0) THEN

WRITE (6,40) CC, CPATH(IBPART(4):IEPART(4)), INTL
40 FORMAT (lX, A, ' data is available for ',A,/,

* ' with a time interval of ',15,' minutes.')

ENDIF
ENDIF

Pathname Manipulation Subroutines Page 3-5

ZUFPN

3.3 ZUFPN - Un-Form a Pathname

Purnpose:

ZUFPN takes a standard pathname and segments it into six parts. Each part is returned
as a separate character variable.

Calline Seauence:

CALL ZUFPN (CA, NA, CB, NB, CC, NC, CD, ND, CE, NE,
* CF, NF, CPATH, NPATH, ISTAT)

Declarations:

CHARACTER CA*32, CB*32, CC*32, CD*32, CE*32, CF*32, CPATH*80
INTEGER NA, NB, NC, ND, NE, NF, NPATH, ISTAT

Argument DescriDtion:

CA (Output) A character string containing the "A" part of the pathname.
The part will be left justified, blank filled in CA. If the part is null,
CA will be returned with all blanks.

NA (Output) The number of characters in the A part. NA will be set to
zero if the part is null (CA is all blanks).

CB (Output) The "B" part of the pathname.

NB (Output) The number of characters in the B part.

CC (Output) The "C" part of the pathname.

NC (Output) The number of characters in the C part.

CD (Output) The "D" part of the pathname.

ND (Output) The number of characters in the D part.

CE (Output) The "E" part of the pathname.

NE (Output) The number of characters in the E part.

CF (Output) The "F" part of the pathname.

NF (Output) The number of characters in the F part.

CPATH (Input) The pathname which is to be segmented.

NPATH (Input) The number of characters in the pathname.

Page 3-6 Pathname Manipulation Subroutines

ZUFPN

ISTAT (Output) A status parameter that is set to zero if there were no errors.
If CPATH is not a valid pathname, ISTAT is returned as -1.

Remarks:

If only one or two parts of the pathname are needed, use subroutine ZUPATH, which
returns the part positions within the pathname. The pathname must follow the standard
conventions (six parts, each part separated by a slash). Each part may contain up to 32
characters, and the pathname may contain up to 80 characters (including slashes). If a part
is longer than the length of the corresponding character variable passed, the part will be
truncated to fit the character variable.

Examiple:

C Break apart a pathname and print its parts.
CHARACTER CPATH*80, CA*32, CB*32, CC*32, CD*32, CE*32, CF*32

C
C Get the pathname.

READ (5,10) CPATH
10 FORMAT (A)

C
C Get the position of the last non-blank character.

CALL CHRLNB (CPATH, NPATH)
CALL ZUFPN (CA, NA, CB, NB, CC, NC, CD, ND, CE, NE,

* CF, NF, CPATH, NPATH, ISTAT)
C

IF (ISTAT.NE.0) THEN
IF (NPATH.EQ.0) NPATH - 1
WRITE (6,10) CPATH(I:NPATH)

10 FORMAT (' Illegal Pathname: ',A)
GO TO 900

ENDIF
C

WRITE (6,20) CA, CB, CC, CD, CE, CF
20 FORMAT (' Part A: ',A,/,' Part B: ',A,/,

* ' Part C: ',A,/,' Part D: ',A,/,
* 'Part E: ',A,/,' Part F: ',A)

C

Pathname Manipulation Subroutines Page 3-7

ZGPNP

3.4 ZGPNP - Get Pathname Parts

llurtoose:

ZGPNP takes a character string (usually read from input) and searches for parts of a
pathname. Pathname parts are identified by a part identifier (A, B, C, D, E, or F), followed
by an equal sign, then the part. Each part must be delimited by either a comma and/or a
blank. Imbedded blanks may be included in a part, but commas, equal signs, and invalid
pathname characters cannot be. The line may contain extraneous information (e.g., a "ZR"
identifier), as long as the parts are identifiable. An example line that might be processed by
ZGPNP is:

ZR-IN A-SCIOTO, B-SOUTH BEND F-OBS,C-FLOW D-

Calling Seouence:

CALL ZGPNP (CLINE, CA, CB, CC, CD, CE, CF, NPARTS)

Declarations:

CHARACTER CA*32, CB*32, CC*32, CD*32, CE*32, CF*32
CHARACTER CLINE*(*)
INTEGER NPARTS(6)

Argument Description:

CLINE (Input) The character string from which to extract the pathname parts.
The string may contain information other than the pathname parts, as
long as it can be distinguished. For example:

ZR, XXX B-SOUTH FORK, XXX F-OBS

(the parts are distinguishable)

ZR B-SOUTH FORK XXX F-OBS

(XXX cannot be distinguished from the "B" part).

CA (Output) The "A" part, if found. If the part is not found, CA is not
altered (a previously set "A" part may be passed without alteration).

CB (Output) The "B" part, if found.

CC (Output) The "C" part, if found.

CD (Output) The "D" part, if found.

CE (Output) The "E" part, if found.

CF (Output) The "F" part, if found.

Page 3-8 Pathname Manipulation Subroutines

ZGPNP

NPARTS (Input-Output) A six-element array that returns the lengths of the parts
found. The first element of NPARTS corresponds to the A part, the
second element corresponds to the B part, etc.. NPARTS may also be
used so that specific parts will not be searched for. To not search for a
part, set the corresponding NPARTS to -2. On return, if a part was not
found, the corresponding NPARTS will be set to -1. If no parts were
found, NPARTS(1) will be set to -10.

Remarks:

ZGPNP is meant to update parts of a pathname, and is often used along with ZUFPN
and ZPATH. Unless a part is found, it will not be altered. ZGPNP searches for a part
letter followed by an equal sign, so other information may be on the input line, as long as it
is distinguishable. If a part is longer than the character variable passed, the part will be
truncated to fit within the length of that variable.

Null parts may be specified by the part letter followed by an equal sign then a comma
(if it is at the end of CLINE, the comma is not necessary). A null part variable is returned
blank filled.

Example 1:

For the following code:

NPARTS(4) - -2
CALL ZGPNP (CLINE(1:80), CA, CB, CC, CD, CE, CF(1:10), NPARTS)

If CLINE contains:

ZR-IN ZA-HI, B-SOUTH BEND, XX C-, D-01JAN1960 F-PLAN 2B-COMPUTED

ZGPNP returns:

NPARTS(l) - -1, CA -
NPARTS(2) - 10, CB - SOUTH BEND
NPARTS(3) - 0, CC -

NPARTS(4) - -2, CD -

NPARTS(5) - -1, CE -

NPARTS(6) - 10, CF - PLAN 2B-CO

Note that ZA is not a valid part identifier, so no "A" part was returned. The B part is
terminated by a comma, so the "XX" was ignored. The C part was set to 0, since a comma
immediately followed the equal sign. No D part was returned because NPARTS(4) was
preset to -2. The F part was truncated, because CF was limited to a length of ten characters
* (1:10).

Pathname Manipulation Subroutines Page 3-9

ZGPNP

The following example illustrates the use of subroutines ZPATH, ZUFPN, and ZGPNP.
This code reads a line, determines if it is a pathname or pathname parts. Pathname pa-ts are
extracted via ZUFPN or ZGPNP; then a new pathname is constructed.. This code may be
used in a loop, allowing the user to specify a completely new pathname or just change
certain parts.

CHARACTER CLINE*80, CPATH*80
CHARACTER CA*32, CB*32, CC*32, CD*32, CE*32, CF*32
INTEGER NPARTS(6)

C
DATA CA, CB, CC, CD, CE, CF /6*' '/

C
C Get the pathname or parts.

WRITE (5,*) 'Enter pathname, or pathname parts, or FINISH'
READ (5,20) CLINE

20 FORMAT (A)
C
C Is this a FINISH command?

IF (CLINE(1:3).EQ.'FIN') GO TO 800
C
C Is this a pathname?

IF (CLINE(1:1).EQ.'/') THEN
C
C Yes it is.

CALL ZUFPN (CA, NA, CB, NB, CC, NC, CD, ND, CE, NE,
* CF, NF, CLINE, 80, ISTAT)

IF (ISTAT.NE.O) GO TO 910
C

ELSE IF (INDEX(CLINE(1:20),'-')) THEN
C
C The line appears to contain pathname parts.

CALL ZGPNP (CLINE, CA, CB, CC, CD, CE, CF, NPARTS)
C

IF (NPARTS(l).EQ.-10) THEN
WRITE (6,*)'Invalid Pathname Line.'
GO TO 800

ENDIF
C

ELSE
C

WRITE (6,*)'Invalid Pathname Line.'
GO TO 800

C
ENDIF

C
C Now that the pathname is in parts, (re)construct the pathname.

CALL ZPATH (CA, CB, CC, CD, CE, CF, CPATH, NPATH)
C

WRITE (6,40) CPATH(1:NPATH)
40 FORMAT (' Pathname: ', A)

Page 3-10 Pathname Manipulation Subroutines

ZCHKPN

3.5 ZCHKPN - Check a Pathname

Purpose:

ZCHKPN examines a pathname to determine if it meets the requirements for a
pathname. This includes determining if the pathname contains seven slashes, is equal or less
than 80 characters in length, and contains any invalid characters (e.g., control codes). If any"null characters" are found, they are changed to blanks.

Calliniz Seouence:

CALL ZCHKPN (CPATH, NPATH, ISTAT)

Declarations:

CHARACTER CPATH*80
INTEGER NPATH, ISTAT

Araument Description:

CPATH (Input-Output) The pathname to be checked.

NPATH (Input) The number of characters in CPATH

ISTAT (Output) A status parameter indicating the validity of the pathname.
ISTAT is returned as zero if CPATH is a valid pathname. If ISTAT is
less than zero, the pathname is invalid and should not be used. The
possible status codes are:

ISTAT Description

0 The pathname is valid.

+6 One or more null characters were detected and converted
to blank characters.

-1 The first character in the pathname is not a slash (/).

-2 The last character in the pathname is not a slash (/).

-3 The number of slashes within the pathname is not seven.
(There must be exactly seven slashes.)

-4 There are fewer than seven characters in the pathname.

-5 There are more than eighty characters in the pathname.

-6 Illegal characters were found in the pathname. (They
were not modified.)

Pathname Manipulation Subroutines Page 3-11

ZcHK]PN

Remarks:

ZCHKPN will print an error message to unit MUNIT if any errors are detected and the
message level is 3 or greater. The pathname will be modified only if it contains null
characters (which can usually be avoided by initializing all pathname parts to blanks in a
data statement).

Page 3-12 Pathname Manipulation Subroutines

4 Time Series Subroutines

The following chapter describes the subroutines used to store and retrieve

regular-interval and irregular-interval time series data.

Regular-interval time series data is data that occurs at a standard time interval. The

date and time of each value is implied by its position within the data block. As described in
"HECDSS User's Guide and Utility Program Manuals, Overview section, the A part of the
pathname contains the group identifier, the B part provides the location, the C part carries

the parameter, the D part is the block start date, the E part holds the time interval and the F
part is an optional descriptor. The E part must be one of the following time intervals:

Valid Time Intervals (E Parts) Block Lenath

IMIN, 2MIN, 3MIN, 4MIN, 5MIN, One Day
10MIN, 15MIN, 20MIN, 30MIN

IHOUR, 2HOUR, 3HOUR, 4HOUR, One Month
6HOUR, 8HOUR, 12HOUR

IDAY One Year

IWEEK, IMON One Decade

IYEAR One Century

Regular-interval time series data may be retrieved with either subroutine ZRRTS or

ZRRTSX. ZRRTSX is the extended form of ZRRTS, and will obtain data flags, the user
header array, and data compression information. Regular-interval time series data may be

stored with either ZSRTS or ZSRTSX, where ZSRTSX is the extended version of ZSRTS.
ZSRTSX can store the user header array and data flags, whereas ZSRTS cannot. Data

compression paranmeters may also be specified with ZSRTSX. (Data compression cannot be

applied when data flags are stored.) Missing values within a record are flagged by values of
-901.0, and values for missing records are flagged with -902.0.

Irregular-interval time series data has an explicit date and time stored with each value.

This data is retrieved with either subroutine ZRITS or ZRITSX. ZRITSX is the extended

form of ZRITS, and will return data flags and the user header in addition to the data.

Irregular-interval time series data may be stored in a DSS file with either ZSITS or ZSITSX.

ZSITSX can store the user header array and data flags, whereas ZSITS cannot.

Time Series Subroutines Page 4-1

Most of the DSS time series routines use julian dates, in days since 31DEC1899 (not
days since the beginning of the year). This form of date provides an exact and relative easy
means of dealing with time date information. For example, to increment the date by one
day, one is added to the julian date, whereas a more complex algorithm would be required

for a military style date such as 28FEB1972. Julian dates can be negative, allowing for
handling data in the 1800's. A julian date can be converted to another-style date (of which
many forms are available) using the HECLIB subroutine JULDAT. Conversely, different
styles of dates can be converted to julian using the subroutine DATJUL. See the HECLIB
documentation for more information on these subroutines.

Several subroutines pass time information in minutes past midnight. The time in

minutes can be converted to a 24 hour military style time (e.g., 1430 is 2:30 p.m.) by the
HECLIB subroutine M2IHM, and back to minutes with subroutine IHM2M. The time
interval of the data is also given in minutes, regardless of the length of the interval.

A utility subroutine, ZGINTL, is used to convert a time interval (in minutes) to the *E

part" of the pathname, and vice-versa. Subroutine ZOFSET will determine the time offset
of regular-interval data. The time offset is defined as the length of time between the
standard time for that interval and the actual time. For example, the time offset for daily
data measured at 8:00 a.m. is 480 minutes (8 hours).

On MS-DOS computers, the julian dates, time interval, and time offset must always be

declared as INTEGER*4.

Page 4-2 Time-Series Subroutines

ZRRTS

4.1 ZRRTS . Retrieve Regular-Interval Time Series Data

Purpose:

ZRRTS is a short call to retrieve regular-interval time series data from a DSS file. The
data retrieved may be based on a time window and can cross record boundaries (that is, it
can read several records with different dates to retrieve the data specified), or it can read all
the data in one record according to the pathname (with no time window). When reading
data based on a time window, the "D part" is ignored, as ZRRTS forms pathnames with a D
part determined by that time window. The time window is specified by variables CDATE,
CTIME, and NVALS. If data flags, compression information, or the user header needs to be
retrieved, use subroutine ZRRSTX, the extended version of this subroutine.

Callina Seouence:

CALL ZRRTS (IFLTAB, CPATH, CDATE, CTIME, NVALS, VALUES,
* CUNITS, CTYPE, IOFSET, ISTAT)

Declarations:

INTEGER IFLTAB(600), NVALS, IOFSET, ISTAT
REAL VALUES(NVALS)
CHARACTER CPATH*80, CDATE*20, CTIME*4, CUNITS*8, CTYPE*8

On MS-DOS microcomputers, the time offset must be INTEGER*4:

INTEGER*4 IOFSET

Argument Description:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CPATH (Input) The pathname of the data to read. The pathname must meet the
regular-interval time series conventions (including a correct "E part").
With a time window specified, the "D part" (date part) will be ignored,
as ZRRTS will form it internally (there may be several D parts,
depending on the time window). If no time window is given, the r, part
must be provided. The length of CPATH is implicit (e.g.,
CPATH(1:NPATH)).

CDATE (Input) The beginning date of the time window. This can be in any one
of the styles accepted by the HECLIB subroutine DATJUL (see the
HECLIB documentation for the different date styles). If the data is to
be retrieved based upon the date in the pathname (that is, no time
window), CDATE should be blank (i.e., ' ').

CTIME (Input) The beginning time of the time window. This must be a
standard 24 hour clock time (e.g., '1630'). If no time window is set
(CDATE is blank), this argument is ignored.

Time Series Subroutines Page 4-3

NVALS (Input-Output) The number of data values to retr;eve. This defines the
end of the time window. If no time window is given, NVALS must contain
the dimension limit of array VALUES on input, and ;3 returned with the
number of data values actually read by ZRRTS (and must be a , ariable).

VALUES (Output) The data retrieved. This will be in a sequential order, with
the first value having a date and time of CDATE and CTIME (unless no
time window is given, whereas the first value will correspond to the date
and time of the beginning of the record).

CUNITS (Output) The units of the data (e.g., 'FEET).

CTYPE (Output) The type of the data (e.g., 'PER-AVER').

IOFSET (Output) The time offset of the data in minutes. (If hourly data is recorded
at 15 minutes past the hour, the offset would be 15 minutes.) If there is no
offset, IOQSET will be returned as zero. Refer to the subroutine ZOFSET
(at the end of this chapter) for more information about time offsets. The
offset must be INTEGER*4 on MS-DOS micro-computers.

ISTAT (Output) A status parameter indicating the success of the operatioi.. If
ISTAT is returned as zero, then the data was successfully read. If ISTAT
is returned with a value between one and three, then data was retrieved,
but some missing values were detected. If ISTAT is greater than ten, a
fatal error occurred, and no data was returned. The possible values are:

ISTAT Description

0 All data retrieved.

1 Some missing data was detected (-901.0).

2 Missing record(s) (-902.0), but some data was found.

3 Missing record(s) and missing data in the data set, however
some data was found.

4 There was no data for this time window, but a record was read.

5 No records were found (the data is returned as all -902's).

GT 10 A "fatal" error occurred.

11 The number of values requested was less than one.

12 A non-standard time interval was provided in the "E" part of the
pathname.

15 The starting date or time was not recognized.

20 The data was not recognized as regular-interval time series.

24 The pathname given does not meet the regular-interval time
series conventions.

53 The data could not be un-compressed.

Page 4-4 Time-Series Subroutines

ZRRT

Remarks:

CUNITS and CTYPE will contain the units and type for the last record read when
reading several records. If no records were found (ISTAT=5), or a fatal error occurred,
CUNITS and CTYPE will be unchanged.

If data flags or the user header needs to be retrieved, or compression information is
required, use ZRRTSX, the extended version of this subroutine.

A debug trace will be printed when the message level (MLEVEL) is set to 8 via
subroutine ZSET. This trace will print the pathname, dates, times, and other information
used by the subroutine.

Example 1:

C Retrieve 200 values starting from December 13, 1982,
C then print them out.

INTEGER IFLTAB(600), IBPART(6), IEPART(6), ILPART(6)
INTEGER*4 JULS, JULE, INTL, IOFSET
CHARACTER CPATH*80, CDATE*20, CTIME*4, CUNITS*8, CTYPE*8
REAL VALUES(200)

C
C Open the DSS file and get the pathname.

CALL ZOPEN (...

C
C Retrieve the data.

NVALS - 200
CALL ZRRTS (IFLTAB, CPATH, '13DEC82', '2400', NVALS,

* VALUES, CUNITS, CTYPE, IOFSET, ISTAT)

IF (ISTAT.GE.10) GO TO 900
IF (ISTAT.GE.4) GO TO 100

C
C Get the time interval from the pathname.

CALL ZUPATH (CPATH, IBPART, IEPART, ILPART, ISTAT)
IF (ISTAT.NE.0) GO TO 910
JSTAT - 1
CALL ZGINTL (INTL, CPATH(IBPART(5):IEPART(5)), N, JSTAT)
IF (JSTAT.NE.O) GO TO 920

C
C Convert 13DEC82 to julian.

CALL DATJUL ('13DEC82', JULS, IERR)
ISTIME - 1440

C Adjust for any time offset.
CALL ZOFSET (JULS, ISTIME, INTL, 2, IOFSET)

C
C PrinL the values, along with the date and time of each one.

DO 80 1-1,200
IDUM - INCTIM (INTL, 0, 1-1, JULS, ISTIME, JULE, IETIME)
CALL JULDAT (JULE, 0, CDATE, NDATE)
IDUM - M21HM (IETIME, CTTME)
WRITE (6,40) CDATE(I:NDATE), CTIME, VALUES(I)

40 FORMAT (IX,A,2X,A,FI0.3)
80 CONTINUE

Time Series Subroutines Page 4-5

ZRRTS

C Retrieve and print the last 60 values from the current time.
C

INTEGER IFLTAB(600), IBPART(6), IEPART(6), ILPART(6)
INTEGER*4 JULS, JULE, INTL, IOFSET
CHARACTER CPATH*80, CDATE*20, CTIME*4, CUNITS*8, CTYPE*8
REAL VALUES(60)

C
C
C Open the DSS file and get the pathname.

CALL ZOPEN (...

C
C Get the time interval from the pathname.

CALL ZUPATH (CPATH, IBPART, IEPART, ILPART, ISTAT)
IF (ISTAT.NE.0) GO TO 910
JSTAT - 1
CALL ZGINTL (INTL, CPATH(IBPART(5):IEPART(5)), N, JSTAT)
IF (JSTAT.NE.0) GO TO 920

C
C Get the current date and time, in julian days.

CALL CURTIM (JULE, IETIME)
C Decrement it by 59 periods (60 values).

IDUM - INCTIM (INTL, 0, -59, JULE, IETIME, JULS, ISTIME)
C Date style 104 is used here, but any style would be ok.

CALL JULDAT (JULS, 104, CDATE, NDATE)
IDUM - M21HM (ISTIME, CTIME)

C
C Now retrieve the data.

NVALS - 60
CALL ZRRTS (IFLTAB, CPATH, CDATE(1:NDATE), CTIME,

* NVALS, VALUES, CUNITS, CTYPE, IOFSET, ISTAT)
IF (ISTAT.GE.lO) GO TO 900
IF (ISTAT.GE.4) GO TO 100

C
C Adjust for any time offset.

CALL ZOFSET (JULS, ISTIME, INTL, 2, IOFSET)
C
C Print the values, along with the date and time of each one.

DO 80 1-1,60
IDUM - INCTIM (INTL, 0, 1-1, JULS, ISTIME, JULE, IETIME)
CALL JULDAT (JULE, 0, CDATE, NDATE)
IDUM - M21HM (IETIME, CTIME)
WRITE (6,40) CDATE(1:NDATE), CTIME, VALUES(I)

40 FORMAT (lX,A,2X,A,F10.3)
80 CONTINUE

Page 4-6 Time-Series Subroutines

ZRRTSX

4.2 ZRRTSX - Retrieve Regular-Interval Time Series Data (Extended Version)

Purtvose:

ZRRTSX is the extended call to retrieve regular-interval time series data from a DSS
file. This subroutine will return data flags, the user header, and compression information (if
available) along with data. If this additional information is not needed, use ZRRTS, the
short form of this subroutine.

The data retrieved may be based on a time window and can cross record boundaries
(that is, it can read several records with different dates to retrieve the data specified), or it
can read all the data in one record according to the pathname (with no time window). When
reading data based on a time window, the *D part" is ignored, as ZRRTSX forms pathnames
with a D part determined by that time window. The time window is specified by variables
CDATE, CTIME, and NVALS.

Calling Seouence:

CALL ZRRTSX (IFLTAB, CPATH, CDATE, CTIME, NVALS, VALUES,
"* FLAGS, LFLAGS, LFREAD, CUNITS, CTYPE, HEADU, KHEADU, NHEADU,
"* IOFSET, ICOMP, ISTAT)

Declarations:

INTEGER IFLTAB (600)
INTEGER NVALS, KHEADU, NHEADU, ICOMP, IOFSET, ISTAT
REAL VALUES(NVALS), HEADU(KHEADU), FLAGS(NVALS)
LOGICAL LFLAGS, LFREAD
CHARACTER CPATH*80, CDATE*20, CTIME*4, CUNITS*8, CTYPE*8

On MS-DOS microcomputers the time offset must be INTEGER*4:

INTEGER*4 IOFSET

Argument Description:

IFLIAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CPATH (Input) The pathname of the data to read. The pathname must meet the
regular-interval time series conventions. With a time window specified,
the "D part" (date part) will be ignored, as ZRRTSX will form it
internally (there may be several D parts, depending on the time
window). If no time window is given, the D part must be provided.
The length of CPATH is implicit (e.g., CPATH(I:NPATH)).

CDATE (Input) The beginning date of the time window. This can be in any one
of the styles accepted by the HECLIB subroutine DATJUL (see the
HECLIB documentation for the different date styles). If the data is to
be retrieved based upon the date in the pathname (that is, no time
window), CDATE should be blank (i.e.,' ').

Time Series Subroutines Page 4-7

2ZRTSK

CTIME (Input) The beginning time of the time window. This must be a
standard 24 hour clock time (e.g., '1630'). If no time window is set
(CDATE is blank), this argument is ignored.

NVALS (Input-Output) The number of data values to retrieve. This defines the
end of the time window. If no time window is specified, NVALS must
contain the dimension limit of array VALUES on input, and is returned
with the number of data values actually read by ZRRTSX (and must be
a variable).

VALUES (Output) The data retrieved. This will be in a sequential order, with
the first value having a date and time of CDATE and CTIME (unlcs. no
time window is given, whereas the first value will correspond to the date
and time of the beginning of the record).

FLAGS (Output) The 32-bit data flags retrieved. See the appendix to interpret
the bit settings. If data flags are not to be retrieved, set LFLAGS to
.FALSE. and FLAGS may be a dummy argument.

LFLAGS (Inpit) A logical flag indicating whether data flags should be retrieved,
if available. Set this to .TRUE. if flags are to be retrieved, .FALSE. if
flags are not to be retrieved.

LFREAD (Output) A logical flag indicating whether data flags were retrieved. If
the data did not have flags, or LFLAGS was set to .FALSE., this
variable will be returned as .FALSE. (and FLAGS will be unchange,.• ,
If flags were retrieved, this variable will be set to .TRUE..

CUNITS (Output) The units of the data (e.g., 'FEET').

CTYPE (Output) The type of the data (e.g., 'PER-AVER').

HEADU (Output) The optional user header array. This array usually may be
decoded by subroutine ZUSTFH.

KHEADU (Input) The dimension of array HEADU. No more than KHEADU
elements of the user header array will be retrieved. If you do not want
to retrieve the user header, set this to zero.

NHEADU (Output) The number of elements in the user header actually retrieved.
NHEADU will always be equal to or less than KHEADU.

IOFSET (Output) The time offset of the data in minutes. (If hourly data is
recorded at 15 minutes past the hour, the offset would be 15 minutes.)
If there is no offset, IOFSET will be returned as zero. Refer to the
subroutine ZOFSET (at the end of this chapter) for more information
about time offsets. The offset must be INTEGER*4 on MS-DOS
micro-computers.

ICOMP (Output) The data compression method used if this data was com-
pressed. If the data was not compressed, ICOMP will be returned as
zero. If ICOMP is greater than zero, more data compression information
can be obtained by calling subroutine ZDCINF.

Page 4-8 Time-Series Subroutines

ISTAT (Output) A status parameter indicating the success of the operation. If
ISTAT is returned with zero, then all the data was successfully read. If
ISTAT is returned with a value between one and three, then data was
retrieved, but some missing values were detected. If ISTAT is greater
than ten, a fatal error occurred, and no data was returned. The possible
values are:

ISTAT Description

0 All data retrieved.

1 Some missing data was detected (-901.0).

2 Missing record(s) (-902.0), but some data was found.

3 Missing record(s) and missing data in the data set,
however some data was found.

4 No data found for this time window, but a record was
found.

5 No records found (no data is returned).

GT 10 A "fatal" error occurred:

11 The number of values requested was less than one.

12 A non-standard time interval was provided in the "E"
part of the pathname.

15 The starting date or time was not recognized.

20 The data was not recognized as regular-interval time
series.

24 The p: 5name given does not meet the regular-interval
time sei ,es conventions.

53 The data could not be un-compressed.

Remaarks:

CUNITS and CTYPE will contain the units and type for the last record read when
reading several records. If no records were found (ISTAT=5), or a fatal error occurred,
CUNITS and CTYPE will be unchanged.

If the data was stored with data flags, no data compression method will be returned,
because data cannot be compressed when flags are used.

A debug trace will be printed when the message level (MLEVEL) is set to 8 via
subroutine ZSET. This trace will print the pathname, dates, times, and other information
used by the subroutine.

Time Series Subroutines Page 4-9

ZErTsx

(Note: This is a more "comprehensive' example of retrieving time series data. For a simpler
example, see the ZRRTS documentation.)

C
C Retrieve database on a user's time window, then print
C the data and information about the data.
C

PARAMETER (KHEADU-100, KDATA-1000)
REAL VALUES(KDATA), HEADU(KHEADU), FLAGS(KDATA)
INTEGER IFLTAB (600)
INTEGER IBPART(6), IEPART(6), ILPART(6)
INTEGER*4 JULS, JULE, INTL, IOFSET
CHARACTER CLINE*80, CPATH*80, CDATE*20, CTIME*4
CHARACTER CUNITS*8, CTYPE*8, CINFO*24, CLABEL*20, CITEM*20
LOGICAL LFREAD, LBASEV

C
C Open the DSS file.

CALL ZOPEN (IFLTAB,
C
C Get the pathname and its length.

WRITE (6,*)'Enter the pathname'
READ (5,10) CPATH

10 FORMAT (A)
C
C Get the time window.

WRITE (6,*)'Enter the time window'
READ (5,10) CLINE
CALL GETIME (CLINE, 1, 80, JULS, ISTIME, JULE, IETIME, ISTAT)
IF (ISTAT.NE.0) GO TO 900

C
C Get the time interval from the pathname.

CALL ZUPATH (CPATH, IBPART, IEPART, ILPART, ISTAT)
IF (ISTAT.NE.0) GO TO 910
JSTAT - 1
CALL ZGINTL (INTL, CPATH(IBPART(5):IEPART(5)), N, JSTAT)
IF (JSTAT.NE.0) GO TO 920

C
C Compute the number of data values asked for.

NVALS - NOPERS (INTL, 0, JULS, ISTIME, JULE, IETIME)
IF (NVALS.LE.0) GO TO 930
IF (NVALS.GT.KDATA) GO TO 940

C
C Convert the date and time to character.

CALL JULDAT (JULS, 104, CDATE, NDATE)
I - M2IHM (ISTIME, CTIME)

Page 4-10 Time-Series Subroutines

ZRRTSX

C Retrieve the data.
CALL ZRRTSX (IFLTAB, CPATH, CDATE, CTINE, NVALS,

* VALUES. FLAGS, -TRUE., LFREAD, CUNITS, CTYPE, HEADU,
* KHEADU, UHEADU, IOFSET, ICOMP, ISTAT)

C
C "Fatal" error?

IF (ISTAT.GE.10) GO TO 950
C No data?

IF (ISTAT.GE.4) GO TO 960
C
C Write pathname, units.

CALL CHRLNB (CPATH, NPATH)
WRITE (6,40) CPATH(1:NPATH), CUNITS, CTYPE

40 FORMAT (' Pathname: ',A,/,' Units: ',A,T20,'Type: ',A)
C
C Get more compression information (if used).

IF (ICOMP.GT.O) THEN
CALL ZDCINF (ICOMP, BASEV, LBASEV, ISIZE, IPREC, ISTAT)
WRITE (6,60) ICOMP, LBASEV, BASEV, ISIZE, IPREC

60 FORMAT (' Compression Method:',13,' User Base:',L2,
* ' Base: ',F6.1,/,' Size Allocated:',12,' Precision:',13)

ELSE
WRITE (6,80)

80 FORMAT (' No Compression Used.')
ENDIF

C
C Print the user header (if any).

IF (NHEADU.GT.0) THEN
NITEM- 0
IPOS - 0
WRITE (6,*)'Header:'

100 CONTINUE
CALL ZUSTFH (CLABEL, CITEM, NITEM, IPOS, HEADU, NHEADU, ISTAT)
IF (ISTAT.NE.0) THEN

WRITE (6,*)'Invalid User header.'
GO TO 140

ENDIF
WRITE (6,120) CLABEL, CITEM

120 FORMAT (1X,A,1X,A)
IF (IPOS.GE.0) GO TO 100

ENDIF
C
C Adjust for any time offset.

140 CONTINUE
CALL ZOFSET (JULS, ISTIME, INTL, 2, IOFSET)

Time Series Subroutines Page 4-11

C Print the values, along with the date and time of each one,
C and any information from the header.

DO 200 I-l,NVALS
IDUM - INCTIM (INTL, 0, I-1, JULS, ISTIME, JULE, IETIME)
CALL JULDAT (JULE, 0, CDATE, NDATE)
IDUM - M2IHN (IETIME, CTIME)

C
C Do we need to print data flag information?

IF (LFREAD) THEN
CALL GETBIT (FLAGS(I), 1, ISCRN)
CALL GETBIT (FLAGS(I), 8, IMOD)

C
IF (ISCRN.EQ.1) THEN

IF (IMOD.EQ.i) THEN
CINFO - 'Screened and Modified'

ELSE
CINFO - 'Screened'

ENDIF
ELSE

CINFO-
ENDIF

C
ELSE

CINFO- '

ENDIF
C

WRITE (6,160) CDATE(1:NDATE), CTIME, VALUES(I), CINFO
160 FORMAT (IX,A,' at ',A,'; ',FlO.3,2X,A)
200 CONTINUE

Page 4-12 Time-Series Subroutines

ZSRIT

4.3 ZSRTS - Store Regular-Interval Time Series Data

Purpose:

ZSRTS is a short call to store regular-interval time series data in a DSS file. The data to
be stored is based on a time window which can cross record boundaries (that is, it can write
several records with different "D parts"). Because the time window is specified by variables
CDATE, CTIME, and NVALS, the *D part" of the pathname is ignored.

If data flags or a user header is to be stored along with the data, use ZSRTSX, the
extended version of this subroutine. ZSRTSX also provides a means of specifying a data
compression method and optional compression parameters. However, data may be compressed
by ZSRTS if subroutine ZSCOMP is called just prior to ZSRTS, or if a file compression method
is set and the required pathname parts match, or if the record already exists and is compressed.

Calline Seouence:

CALL ZSRTS (IFLTAB, CPATH, CDATE, CTIME, NVALS, VALUES,
*CUNITS, CTYPE, IPLAN, ISTAT)

Declarations:

INTEGER IFLTAB(600), NVALS, IPLAN, ISTAT
REAL VALUES(NVALS)
CHARACTER CPATH*80, CDATE*20, CTIME*4, CUNITS*8, CTYPE*8

Argument Description:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call. -

CPATH (Input) The pathname of the data to store. The pathname must meet the
regular-interval time series conventions. The "D part" (date part) is
ignored, as ZSRTS will form it internally from the time window. The
length of CPATH is implicit (e.g., CPATH(h:NPATH)).

CDATE (Input) The beginning date of the time window (the date of the first
value). This can be in any one of the styles accepted by the HECLIB
subroutine DATJUL (see the HECLIB documentation for the different
date styles).

CTIME (Input) The beginning time of the time window in 24 hour clock time
(e.g., '1630'). Any time offset is implied by the date and time specified
(for example, if daily data is measured at 8:00 a.m., then setting CTIME
to '0800' implies an offset of 8 hours or 480 minutes).

NVALS (Input) The number of values to store. This defines the end of the time
window.

VALUES (Input) The data to store. This must be in a sequential order, with the
first value data having a date and time of CDATE and CTIME.

Time Series Subroutines Page 4-13

ZSR'IM

CUNITS (Input) The units of the data (e.g., 'FEET').

CTYPE (Input) The type of the data (e.g., 'PER-AVER').

IPLAN (Input) An argument to indicate whether to write over existing data or
not. If IPLAN is set to zero, the data provided will always replace any
existing data (with the same pathname at the same times).

IPLAN Description

0 Always write over existing data.

1 Only replace missing data flags in the record (-901).

4 If a input value is missing (-901), do not allow it to replace
a non-missing value.

ISTAT (Output) A status parameter indicating the success of the operation. If
ISTAT is returned with zero, then all the data was successfully stored.
The possible values are:

ISTAT Description

0 The data was successfully stored.

4 All of the input data provided were missing data flags
(-901).

GT 10 A "fatal" error occurred:

11 The number of values to store (NVALS) is less than one.

12 Unrecognized time interval (E part).

15 The starting date or time is invalid.

24 The pathname given does not meet the regular-interval
time series-conventions.

51 Unrecognized data compression scheme (when ZSCOMP is
called prior to ZSRTS). Valid schemes are 0 to 5.

52 Invalid precision exponent specified for the delta data
compression method (when ZSCOMP is called prior to
ZSRTS). The precision exponent range is -6 to 6.

Page 4-14 Time-Series Subroutines

ZSRTS

Remarks:

Missing data in the array VALUES should be flagged by setting those values to -901.0.

To set a data compression method to be used by ZSRTS, call subroutine ZSCOMP just
prior to ZSRTS, or use subroutine ZSRTSX, in which compression information is passed is as
arguments. A file compression method may also be set to compress data.

If data without data flags is merged with (or replaces) data with flags, then data flags (set
to zero) will be added to the new data.

If the record exists and has a user header stored with it, ZSRTS will not change or delete
that header.

A debug trace may be turned on by setting the message level (MLEVEL) to either 7, 8,
or 9 via subroutine ZSET. Level 7 gives information regarding the arguments being passed.
The higher levels provide information about the steps taking place inside ZSRTS.

Examvle:

C A program has computed 86 time series data values.
C Store them in a DSS file.
C

INTEGER IFLTAB (600)
CHARACTER CPATH*80, CDATE*20, CTIME*4
REAL VALUES(86)

C
C Open the DSS file and get the pathname.

CALL ZOPEN (...

C
C Assuming the time interval is in minutes,
C convert it to a valid "E part".

ISTAT - 2
CALL ZGINTL (INTL, CE, IDUM, ISTAT)
CALL ZPATH (...

C
C Convert the date from integer 12/24/83
C to a character date.

CALL YMDDAT (IYR, IMON, IDAY, 0, CDATE, NDATE, IERR)
IF (IERR.NE.0) GO TO 900

C Convert the time from minutes to 24 hour clock time.
IDUM - M21HM (ITIME, CTIME)

C
C Now store the data.

CALL ZSRTS (IFLTAB, CPATH, CDATE, CTIME, 86, VALUES,
* 'FEET', 'PER-AVER', 0, ISTAT)

IF (ISTAT.GT.0) GO TO 900

Time Series Subroutines Page 4-15

ZSRTSX

4.4 ZSRTSX - Store Regular-Interval Time Series Data (Extended Version)

Purtose:

ZSRTSX is the extended call to store regular-interval time series data in a DSS file.
ZSRTSX will store data flags and a user header along with the data. In addition, a data
compression method and related parameters may be set with ZSRTSX. If data flags or a user
header is not to be stored or data compression is not used, call ZSRTS, the short form of this
subroutine.

Data is stored based on a time window which can cross record boundaries (that is, it can
write several records with different "D parts"). Because the time window is specified by
variables CDATE, CTIME, and NVALS, the "D part" of the pathname is ignored.

Calling Sequence:

CALL ZSRTSX (IFLTAB, CPATH, CDATE, CTIME, NVALS, VALUES,
"* FLAGS, LFLAGS, CUNITS, CTYPE, HEADU, NHEADU, IPLAN,
"* ICOMP, BASEV, LBASEV, LHIGH, IPREC, ISTAT)

Declarations:

INTEGER IFLTAB (600)
INTEGER NVALS, NHEADU, ICOMP, IPREC, IPLAN, ISTAT
REAL VALUES(NVALS), FLAGS(NVALS), HEADU(NHEADU), BASEV
CHARACTER CPATH*80, CDATE*20, CTIME*4, CUNITS*8, CTYPE*8
LOGICAL LFLAGS, LBASEV, LHIGH

Argument DescriDtion:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CPATH (Input) The pathname of the data to store. The pathname must meet the
regular-interval time series conventions. The "D part" (date part) is
ignored, as ZSRTSX will form it internally from the time window. The
length of CPATH is implicit (e.g., CPATH(h:NPATH)).

CDATE (Input) The beginning date of the time window (the date of the first
value). This can be in any one of the styles accepted by the HECLIB
subroutine DATJUL (see the HECLIB documentation for the different
date styles).

CTIME (Input) The beginning time of the time window. This must be a standard
24 hour clock time (e.g., '1630'). Any time offset is implied by the date
and time specified (for example, if daily data is measured at 8:00 a.m., then
setting CTIME to '0800' implies an offset of 8 hours or 480 minutes).

NVALS (Input) The number of values to store. This defines the end of the time
window.

Page 4-16 Time-Series Subroutines

ZSRTSX

VALUES (Input) The data to store. This must be in a sequential order, with the
first value having a date and time of CDATE and CTIME.

FLAGS (Input) An array containing 32 bit data flags. If flags are not to be stored
then set LFLAGS to .FALSE. and FLAGS may be.a dummy argument.

LFIAGS (Input) A logical flag indicating whether data flags are to be stored or not.
To store the FLAGS array, set LFLAGS to .TRUE.. If data flags are not
to be stored, set this to .FALSE..

CUNITS (Input) The units of the data (e.g., 'FEET).

CTYPE (Input) The type of the data (e.g., 'PER-AVER').

HEADU (Input) The optional user header array. Information should be placed in
this array by subroutine ZSTFH. If no user header is to be stored, this may
be a dummy argument and NHEADU should be set to zero.

NHEADU (Input) The number of elements in the user header array HEADU. If no
user header information is to be stored, set this to zero. To have ZSRTSX
not change an existing record's user header, set this to - I. For new records,
a -I (as well as 0) will store no user header.

IPMAN (Input) An argument to indicate whether to write over existing data or
not. If IPLAN is set to zero, the data provided will always replace any
existing data (with the same pathname at the same times).

IPLAN Description

0 Always write over existinp data.

I Only replace missing data flags in the record (-901).

4 If a input value is missing (-901), do not allow it to replace
a non-missing value.

ICOMP (Input) The data compression method to use. To use the default file
method, set this to zero. To disallow compression for this data, set ICOMP
to -1. The compression methods are described in chapter 10. If data flags
are stored the data will not be compressed.

BASEV (Input) When the delta data compression method is used, the base value
may be specified by setting this argument to the base value and LBASEV
to .TRUE.. If the delta method is not used, this argument is ignored.

LBASEV (Input) A logical flag indicating if the argument BASEV has been set.
To let the compression software select a base value, set this argument to
.FALSE..

LHIGH (Input) When the delta data compression method is used, setting LHIGH
to .TRUE. will pre-allocate two bytes of storage per data value. If LHIGH
is set to .FALSE., the compression software will select the storage size based
on the data. If the delta method is not used, this argument is ignored.

Time Series Subroutines Page 4-17

ZSRTSX

IPREC (Input) When the delta data compression method is used, this defines the
precision exponent of the data (required). The precision exponent may
range from -6 to +6. If the delta method is not used, this argument is
ignored.

ISTAT (Output) A status parameter indicating the success of the operation. If
ISTAT is returned widh zero, then all the data was successfully stored.
The possible values are:

ISTAT Description

0 The data was successfully stored.

4 All of the input data provided were missing data flags

(-901).

GT 10 A "fatal" error occurred.

11 The number of values to store (NVALS) is less than one.

12 Urrecognized time interval (E part).

15 The starting date or time is invalid.

24 The pathname given does not meet the regular-interval
time series-conventions.

51 Unrecognized data compression scheme. Valid schemes
are 0 to 5.

52 Invalid precision exponent specified for the delta data
compression method. The precision exponent range is -6
to 6.

Remarks:

Missing data in the array VALUES should be flagged by setting those values to -901.0.

If data with data flags is merged with (or replaces) data without data flags, then data flags
(set to zero) will be added to the old data before the merge. If data without data flags is merged
with (or replaces) data with flags, then data flags (set to zero) will be added to the new data.
If data flags are used, data compression is disabled.

If ICOMP is set to - 1, the data will not be compressed no matter what the default file
data compression settings are. If ICOMP is -1, and the record already exists and is com-
pressed, the entire record will be un-compressed (and stored un-compressed).

A debug trace may be turned on by setting the message level (MLEVEL) to either 7, 8,
or 9 via subroutine ZSET. Level 7 gives information regarding the arguments being passed.
The higher levels provide information about the steps taking place inside ZSRTSX.

Page 4-18 Time-Series Subroutines

ZSrTSX

Example:

C Store hourly elevation values that are provided
C on a daily report (24 values per report).
C Assume the daily report has been opened as unit 9,
C and the report appears somewhat like the following:
C
C SOUTH BASIN, MARTIN LAKE REPORT, 5/20/90
C 1123.44 1123.48 1124.21 1124.56 1124.99
C 1125.08 1125.12 1125.18 ...
C END
C
C

INTEGER IFLTAB(600)
INTEGER IBF(2), IEF(20), ILF(20)
CHARACTER CPATH*80, CDATE*12
CHARACTER CBASIN*32, CLOC*32, CLINE*80
LOGICAL LBASEV, LHIGH
REAL VALUES(100), BASEV, HEADU, FLAGS

C
C Open the dss file.

CALL ZOPEN (IFLTAB,
C
C Read the basin, location name, and the date of the first
C value from the report.

READ (9, 20, ERR-900, END-990) CBASIN, CLOC, CDATE
C
C Construct the pathname (no date part is needed).

CALL ZPATH (CBASIN, CLOC, 'ELEV', ' ', 'lHOUR', 'OBS',
* CPATH, NPATH)

C
C Read the data.

NVALS - 0
30 CONTINUE

READ (9, 40, ERR-910, END-800) CLINE
40 FORMAT (A)

C Have we reached the end of the data?
IF (INDEX(CLINE,'END').GT.O) GO TO 100

C Parse the line.
CALL PARSLI (CLINE, 20, NFIELD, IBF, IEF, ILF)
DO 50 I-I,NFIELD

NVALS - NVALS + 1
C Convert the character number to a real number.

VALUES(NVALS) - XREAL(CLINE, IBF(I), ILF(I), IERR)
IF (IERR.NE.0) VALUES(NVALS) - 901.0

50 CONTINUE
GO TO 30

Time Series Subroutines Page 4-19

ZSRTSX

100 CONTINUE
C This data is to be compressed.
C Elevation data is normally compressed using the delta method.
C Because this data is updated daily, we should set a base
C value which would be a reasonable minimum elevation that might
C be recorded (say middle of conservation). This value is
C needed only for the first time the month/block is written to.

ICOMP - 2 ! (Delta compression method)
BASEV - 1023.0 ! (base value, probably obtained from
LBASEV - .TRUE. ! an external table)
LHIGH - .TRUE. ! (allocate 2 bytes of space for elevation)
IPREC - -2 1 (store to the nearest hundredth of a foot)

C
C Now store the data.

CALL ZSRTSX (IFLTAB, CPATH, CDATE, '0100', NVALS,
* VALUES, FLAGS, .FALSE., 'FEET', 'INST-VAL', HEADU, 0,
* 0, ICOMP, BASEV, LBASEV, LHIGH, IPREC, ISTAT)

C
IF (ISTAT.GT.0) GO TO 940

Page 4-20 Time-Series Subroutines

4.S ZRITS - Retrieve lrelar-Interval Time Series Data

Puripose:

ZRITS is a short call to retrieve irregular-interval time series data from a DSS file. The
data retrieved may be based on a time window and can cross record boundaries (that is, it can
read several records with different dates to retrieve the dta specified), or it can read all the
data in one record according to the pathname (with no time window). When reading data based
on a time window, the "D part" is ignored, as ZRITS forms pathnames with a D part determined
by the time window.

If data flags or the user header needs to be retrieved, use subroutine ZRITSX, the
extended version of this subroutine. ZRITSX also has the capability to retrieve the value
previous to the time window and the value subsequent to the time window.

Calling Sequence:

CALL ZRITS (IFLTAB, CPATH, JULS, ISTIME, JULE, IETIME,
* ITIMES, VALUES, KVALS, NVALS, JBDATE, CUNITS, CTYPE, ISTAT)

Declarations:

INTEGER IFLTAB(600), KVALS, NVALS, ISTAI
INTEGER JULS, ISTIME, JULE, IETIME, JBDATE, ITIMES(KVALS)
REAL VALUES (KVALS)
CHARACTER CPATH*80, CUNITS*8, CTYPE*8

On MS-DOS microcomputers, the julian dates and time array must be INTEGER*4:

INTEGER*4 JUtS, JULE, JBDATE, ITIMES(KVALS)

On Harris computers, the time array must be INTEGER*6:

INTEGER*6 ITIMES (KVALS)

Argument Descrivtion:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CPATH (Input) The pathname of the data to read. The pathname must meet the
irregular-interval time series conventions (including a correct "E part").
With a time window specified, the "D vart" (date part) will be ignored, as
ZRITS will form it internally (there may be several D parts, depending on
the time window). If no time window is given, the D part must be
provided. The length of CPATH is implicit (e.g., CPATH(I:NPATH)).

Time Series Subroutines Page 4-21

ZRITS

JULS (Input) The julian date of the start of the time window. This is days since
December 31, 1899, not since the beginning of the current year. If no time
window is specified, this argument is ignored (see ISTIME).

ISTIME (Input) The starting time of the time window, in ininutes past midnight
(for midnight ISTIME would be 1440, not 0). To read the entire record
(with no time window set), set ISTIME to -2. The D part of the pathname
will be used to define the time window.

JULE (Input) The julian date of the end of the time window in days since
December 31, 1899. If no time window is set, this argument is ignored.

IETIME (Input) The ending time of the time window in minutes past midnight.
If no time window is set, this argument is ignored.

ITIMES (Output) An array containing the relative date/times of the data values,
in a one-to-one correspondence. The times are given in minutes since the
base date (JBDATE), and can be converted into julian dates and times using
the procedure described in the remarks section.

VALUES (Output) The values retrieved. The date/time of each value is provided
in array ITIMES. Both arrays VALUES and ITIMES must be dimensioned
to KVALS.

KVALS (Input) The dimension of arrays VALUES and ITIMES, or (if desired)
the maximum number of data values to retrieve. No more than KVALS
values will be retrieved. If the message level (MLEVEL set via ZSET) is
5 or greater, a warning message will be printed when the KVALS limit has
been reached.

NVALS (Output) The number of values retrieved. Arrays ITIMES and VALUES
will contain NVALS elements.

JBDATE (Output) The julian base date (in days since Dec. 31, 1899), usually
equivalent to the D part of the first pathname. This date, in conjunction
with the ITIMES array, gives the date/time of each data value.

CUNITS (Output) The units of the data (e.g., 'FEET').

CTYPE (Output) The type of the data (e.g., 'PER-AVER').

Page 4-22 Time-Series Subroutines

ISTAT (Output) A status parameter indicating the success of the operation. If
ISTAT is returned with zero, then the data was successfully read. If ISTAT
is greater than ten, a fatal error occurred. The possible values are:

ISTAT Description

0 Successful data retrieval.

1 The number of data values requested (according to the time
window) exceeds KVALS. The ITIMES and VALUES arrays
will contain KVALS values.

4 No data found (pathname not found). The output arguments

are undefined.

GT 10 A "fatal" error occurred.

20 The data was not recognized as irregular-interval time
series.

21 An internal buffer array is not large enough to read the
record. (This will seldom occur as the same array is used
to store the data, and the error would be detected at that
time.)

24 The pathname does not meet the irregular-interval time
series-conventions.

Remarks:

The base date combined with the ITIMES array provide the date and time of each data
value. The ITIMES array is returned with minutes from JBDATE for each value. This can
be converted to a julian date and time with the subroutine DATCLL. An example use of
DATCLL is:

INTEGER*4 JUL(KVALS), ITIMES(KVALS), JBDATE
INTEGER MINS (KVALS)

CALL ZRITS (
C

DO 20 I-1,NVALS
CALL DATCLL (JBDATE, ITIMES(I), JUL(I), MINS(I))

20 CONTINJE

Earlier versions of DSS stored fractions of a day instead of minutes for the time array.
This caused precision difficulties on 32 bit machines. A minimum of a 32 bit word size for
the ITIMES array will allow a relative time range of up to 4085 years (231 minutes).

CUNITS and CTYPE will contain the units and type for the last record read (when reading
several records). If no data was found (ISTAT=4), or a fatal error occurred, CUNITS and
CTYPE will be unchanged.

Time Series Subroutines Page 4-23

Z•rs

If data flags or the user header needs to be retrieved, or the previous or next data value
(relative to the time window) is needed, use ZRITSX, the extended version of this subroutine.

A debug trace may be turned on by setting the message level (MLEVEL) to either 7, 8,
or 9 via subroutine ZSET. Level 7 gives information regarding the arguments being passed,
whereas the higher levels provides information about the steps taking place inside ZRITS.

Examrile:

C Retrieve the past 60 days of data values and print their dates,
C times and values.
C

PARAMETER (KVALS-1000)
REAL VALUES((KVALS)
INTEGER*4 ITIMES(KVALS), JULS, JULE, JUL, JBDATE
INTEGER IFLTAB (600)
CHARACTER CPATH*80, CUNITS*8, CTYPE*8, CDATE*20, CTIME*4

C
C Open the DSS file and get the pathname.

CALL ZOPEN (IFLTAB,
C
C Get the current julian date and time.

CALL CURTIM (JULE, IETIME)
C Decrement it by 60 days.

IDUM - INCTIM (1440, 0, -60, JULE, IETIME, JULS, ISTIME)
ISTIME - 1440

C
C Retrieve the data.

CALL ZRITS (IFLTAB, CPATH, JULS, ISTIME, JULE,
* IETIME, ITIMES, VALUES, KVALS, NVALS, JBDATE, CUNITS,
* CTYPE, ISTAT)

C
C Check for errors.

IF (ISTAT.GE.10) GO TO 900
IF (ISTAT.EQ.4) GO TO 100

C
C Print out the data.

CALL CHRLNB (CPATH, NPATH)
WRITE (6,20) CPATH(I:NPATH), CUNITS, CTYPE

20 FORMAT (.
DO 60 1-1, NVALS

C Convert the times array into a regular date and time.
CALL DATCLL (JBDATE, ITIMES(I), JUL, IMIN)
CALL JULDAT (JUL, 0, CDATE, NDATE)
IDUM - M21HM (IMIN, CTIME)
WRITE (6,40) CDATE(I:NDATE), CTIME, VALUES(I)

40 FORMAT (lX,A,', ',A,'; ',F8.2)
60 CONTINUE

Page 4-24 Time-Series Subroutines

ZRITSX

4.6 ZRITSX - Retrieve Irregular-Interval Time Series Data (Extended Version)

Purioose:

ZRITSX is the extended call to retrieve irregular-interval time series data from a DSS
file. This subroutine will return data flags and the user header along with the data. In
addition, ZRITSX will, if desired, return the value preceding and/or following the time
window. If this additional information is not needed, use ZRITS, the short form of this
subroutine.

The data retrieved by ZRITSX may be based on a time window and can cross record
boundaries (that is, it can read several records with different dates), or it can read all the data
in one record with no time window. When reading data based on a time window, the "D part'
is ignored, as ZRITSX forms pathnames with a D part determined by the time window.

Calline Seauence:

CALL ZRITSX (IFLTAB, CPATH, JULS, ISTIME, JULE, IETIME,
"* ITIMES, VALUES, KVALS, NVALS, JBDATE, FLAGS, LFLAGS, LFREAD,
"* CUNITS, CTYPE, HEADU, KHEADU, NHEADU, INFLAG, ISTAT)

Declarations:

INTEGER IFLTAB(600), KVALS, NVALS, ISTAT
INTEGER JULS, ISTIME, JULE, IETIME, JBDATE
INTEGER ITIMES(KVALS), KHEADU, NHEADU, INFLAG
REAL VALUES(KVALS), FLAGS(KVALS), HEADU(KHEADU)
CHARACTER CPATH*80, CUNITS*8, CTYPE*8
LOGICAL LFLAGS, LFREAD

On MS-DOS microcomputers, the julian dates and the time array must be INTEGER*4:

INTEGER*4 JULS, JULE, JBDATE, ITIMES (KVALS)

On Harris computers, the time array must be INTEGER*6:

INTEGER*6 ITIMES (KVALS)

Araument Descrivtion:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CPATH (Input) The pathname of the data to read. The pathname must meet the
irregular-interval time series conventions (including a correct "E part").
With a time window specified, the "D part" (date part) will be ignored, as
ZRITSX will form it internally. If no time window is given, the D part
must be provided. The length of CPATH is implicit (e.g.,
CPATH(I:NPATH)).

Time Series Subroutines Page 4-25

JULS (Input) The julian date of the start of the time window. This is days since
December 31, 1899 (not since the beginning of the current year). If no time
window is specified, this argument is ignored (see ISTIME).

ISTI14E (Input) The starting time of the time window, in jninutes past midnight
(for midnight ISTIME would be 1440, not 0). To use no time window and
read the entire record, set ISTIME to -2. The D part of the pathname will
be used to define the time window.

JULE (Input) The julian date of the end of the time window in days since
December 31, 1899. If no time window is set, this argument is ignored.

IETIHE (Input) The ending time of the time window in minutes past midnight.
If no time window is set, this argument is ignored.

ITIMES (Output) An array containing the relative date/times of the data values,
in a one-to-one correspondence. The times are given in minutes since the
base date (JBDATE), and can be converted into julian dates and minutes
since midnight as discussed in the remarks section.

VALUES (Output) The values retrieved. The date/time of each value is provided
in array ITIMES. Both arrays VALUES and ITIMES must be dimensioned
to KVALS.

KVALS (Input) The dimension of arrays VALUES and ITIMES, or (if desired)
the maximum number of data values to retrieve. No more than KVALS
values will be retrieved. If the message level is 5 (MLEVEL) or greater,
a warning message will be printed when the KVALS limit has been reached.

NVALS (Output) The number of values retrieved. Arrays ITIMES and VALUES
will contain NVALS elements.

JBDATE (Output) The julian base date (in days since Dec. 31, 1899), usually
equivalent to the D part of the pathname. This-date, in conjunction with
the ITIMES array, gives the date/time of each data value.

FLAGS (Output) The 32-bit data flags retrieved. This must be dimensioned to
KVALS. See the appendix to interpret the bit settings. If data flags are
not to be retrieved, set LFLAGS to .FALSE. and FLAGS may be a dummy
argument.

LFLAGS (Input) A logical flag indicating whether data flags should be retrieved,
if available. Set this to .TRUE. if flags are to be retrieved, .FALSE. if flags
are not to be retrieved.

LFREAD (Output) A logical flag indicating whether data flags were retrieved. If
the data did not have flags, or LFLAGS was set to .FALSE., this variable
will be returned as .FALSE. (and FLAGS will be unchanged). If flags were
retrieved, this variable will be set to .TRUE..

CUNITS (Output) The units of the data (e.g., 'FEET).

CTYPE (Output) The type of the data (e.g., 'PER-AVER').

Page 4-26 Time-Series Subroutines

zRrrsx

HEADU (Output) The optional user header array. This array usually may be
decoded by subroutine ZUSTFH.

KHEADU (Input) The dimension of array HEADU. No more than KHEADU
elements of the user header array will be retrieved. If you do not want
to retrieve the user header, set KHEADU to zero.

NHEADU (Output) The number of elements in the user header actually retrieved.
NHEADU will always be equal to or less than KHEADU.

INFLAG (Input) A flag indicating if the value preceding and/or following the time
window should be retrieved. This is valid only when a time window is
provided (i.e., ISTIME is not set to -2). Valid INFLAG values are:

INFLAG Description

0 Normal - retrieve data based on the time window.

I Retrieve the value (and its date/time) preceding the time
window in addition to the data within the time window.

2 Retrieve the value (and its date/time) following the time
window in addition to tht data within the time window.

3 Retrieve both values (and their date/time) preceding and
following the time window in addition to the data within
the time window.

ISTAT (Output) A status parameter indicating the success of the operation. If
ISTAT is returned with zero, then the data was successfully read. If ISTAT
is greater than ten, a fatal error occurred. The possible values are:

ISTAT Description

0 Successful data retrieval.

I The number of values requested (according to the time
window) exceeds KVALS. The ITIMES and VALUES
arrays will contain KVALS values.

4 No data found (pathname not found). The output arguments
are undefined.

GT 10 A "fatal" error occurred:

20 The data was not recognized as irregular-interval time
series.

21 An internal buffer array is not large enough to read the
record. (This will seldom occur as the same array is used
to store the data, and the error would be detected at that
time.)

24 The pathname does not meet the irregular-interval time
series-conventions.

Time Series Subroutines Page 4-27

ZRITSX

Remarks:

The base date combined with the ITIMES array provide the date and time of each data
value. The ITIMES array is returned with minutes from JBDATE for each value. This can
be converted to a julian date and time with the subroutine DATCLIL. An example use of
DATCLL is:

INTEGER*4 JUL(KVALS), ITIMES(KVALS), JBDATE
INTEGER MINS (KVALS)

CALL ZRITSX (
C

DO 20 I-I,NVALS
CALL DATCLL (JBDATE, ITIMES(I), JUL(I), MINS(I))

20 CONTINUE

Earlier versions of DSS stored fractions of a day instead of minutes for the time array.
This caused precision difficulties on 32 bit machines. A minimum of a 32 bit word size for
the ITIMES array will allow a relative time range of up to 4085 years (231 minutes).

When a preceding or subsequent value to the time window is requested via INFLAG,
ZRITSX will search up to one record preceding or following the records within the data block.
If no value is found, that point is not returned (i.e., a missing data flag is not returned).

CUNITS and CTYPE will contain the units and type for the last record read (when reading
several records). If no data was found (ISTAT=4), or a fatal error occurred, CUNITS and
CTYPE will be unchanged.

A debug trace may be turned on by setting the message level (MLEVEL) to either 7, 8,
or 9 via subroutine ZSET. Level 7 gives information regarding the arguments being passed,
whereas the higher levels provides information about the steps taking place inside ZRITSX.

Example:

C Retrieve cumulative precipitation data from January 5, 1990
C until January 25, 1990, then convert and print incremental
C precipitation for those times.
C

PARAMETER (KVALS-1000)
REAL VALUES(KVALS), FLAGS(KVALS)
INTEGER*4 ITIMES(KVALS), JULS, JULE, JUL, JBDATE
INTEGER IFLTAB (600)
CHARACTER CPATH*80, CUNITS*8, CTYPE*8
CHARACTER CDATE1*20, CTIMEl*4, CDATE2*20, CTIME2*4
LOGICAL LFREAD

C
C Open the DSS file and get the pathname.

CALL ZOPEN (IFLTAB, .

C

Page 4-28 Time-Series Subroutines

zRrrsx

C Convert Jan 5 '90 and Jan 25 '90 to Julian.
CALL DATJUL ('JAN 5, 1990', JULS, IERR)
IF (IERR.NE.0) GO TO 900
CALL DATJUL ('JAN 25, 1990', JULE, IERR)
IF (IERR.NE.0) GO TO 900
ISTIME - 0001
IETIME - 1400

C
C Retrieve the previous and following data values.

INFLAG - 3
C
C Retrieve the data.

CALL ZRITSX (IFLTAB, CPATH, JULS, ISTINE, JULE,
* IETIME, ITIXES, VALUES, KVALS, NVALS, JEDATE, FLAGS, . TRUE.,
* LFREAD, CUNITS, CTYPE, IDUM, 0, NDUX, INFIAG, ISTAT)

C
C Check for errors.

IF (ISTAT.GE.10) GO TO 900
IF (ISTAT.EQ.4) GO TO 100

C
C Convert and print the data.

CALL CHRLNB (CPATH, NPATH)
WRITE (6,20) CPATH(l:NPATH), CUNITS, CTYPE

20 FORMAT (.
C

DO 60 I-1, NVALS-l
C Check for invalid precipitation data.

IF ((VALUES(I).LT.0).OR.(VALUES(I+I).LT.0)) GO TO 60
C

C Compute incremental from cumulative.
PREINC - VALUES(I+l) - VALUES(I)

C
C Convert the times of both into regular dates and times.

CALL DATCLL (JBDATE, ITIMES(I), JUL, IMIN)
CALL JULDAT (JUL, 0, CDATE1, NDATE1)
IDUM - M2IHM (IMIN, CTIME1)
CALL DATCLL (JBDATE, ITIMES(1+1), JUL, IMIN)
CALL JULDAT (JUL, 0, CDATE2, NDATE2)
IDUM - M21HM (IMIN, CTIME2)

C
WRITE (6,40) CDATEl(1:NDATEl), CTIME1, CDATE2(1:NDATE2),

* CTIME2, PREINC
40 FORMAT (' From ',A,' at ',A,' through ',A,' at ',A,' ;',F6.2)

C
IF (LFREAD) THEN

CALL GETBIT (FLAGS(I), 8, IEST)
CALL GETBIT (FLAGS(I+1), 8, JEST)
IF ((IEST.GT.0).OR.(JEST.GT.0)) WRITE (6,*) '(Estimated)'

ENDIF
60 CONTINUE

Time Series Subroutines Page 4-29

zsrIS

4.7 ZSITS - Store Irreular-Interval Time Series Data

Pun1rose"

ZSITS is a short call to store irregular-interval time series data in a DSS file. The data
to be stored is based on an implied time window which can cross record boundaries (that is,
ZSITS can write several records with different 'D parts"). The time window is implied by the
date and time of the first and last data values (which is to be provided in the ITIMES" array).

Irregular-interval time series data is stored with times to the nearest minu~e. Data for
times of less than a minute cannot be stored with this convention. The times of the data must
be in ascending order, and no value may have the same exact time as another (you cannot have
two data points for the same time in a record).

If data flags or a user header is to be stored with the data, use ZSITSX, the extended
version of this subroutine.

Callina Seauence:

CALL ZSITS (IFLTAB, CPATH, ITIMES, VALUES, NVALS, JBDATE,
* CUNITS, CTYPE, INFLAG, ISTAT)

Declarations:

INTEGER IFLTAB(600), ITIMES(NVALS), NVALS, JBDATE, INFLAG, ISTAT
REAL VALUES (NVALS)
CHARACTER CPATH*80, CUNITS*8, CTYPE*8

On MS-DOS microcomputers, the base date and the time array must be INTEGER*4:

INTEGER*4 JBDATE, ITIMES(KVALS)

On Harris computers, the time array must be INTEGER*6:

INTEGER*6 ITIMES (KVALS)

Argument Description:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CPATH (Input) The pathname of the data to store. The pathname must meet the
irregular-interval time series conventions. The "D part" (date part) is
ignored, as ZSITS will form it internally. The length of CPATH is implicit
(e.g., CPATH(I:NPATH)).

Page 4-30 Time-Series Subroutines

ZSMIT

ITIMES (Input) The array containing the relative date/times of the data values,
in a one-to-one correspondence to the data. These values are to be in
minutes from the base date (JBDATE), and can be generated from standard
dates and times by the methods discussed in remarks (following). The times
must be in ascending order, and no two times can be the same.

VALUES (Input) The values to store. The date/time of each value must be defined
in array ITIMES.

NVALS (Input) The number of values to store. Arrays ITIMES and VALUES
must contain NVALS elements.

JBDATE (Input) The julian base date (in days since Dec. 31, 1899), which when
combined with each element of ITIMES will give the julian date and time
for that value. All numbers in ITIMES must be relative to this value.

CUNITS (Input) The units of the data (e.g., 'FEET').

CTYPE (Input) The type of the data (e.g., 'PER-AVER').

INFLAG (Input) INFLAG is a flag to indicate whether the data should be replaced
or merged with existing data. Replace will replace all the data between the
implied time window (time of first and last data). Merge will combine the
data with the data already stored. (Merging data replaces data occurring
at the same time and inserts data at new times.)

INFLAG = 0 to merge data.
INFLAG = I to replace data.

ISTAT (Output) A status parameter indicating the success of the operation. If
ISTAT is returned with zero, then all the data was successfully stored. If
ISTAT is greater than ten, a fatal error occurred. The possible values are:

ISTAT Description

0 The data was successfully stored.

4 No data was given to store (NVALS was zero).

GT 10 A "fatal" error occurred.

21 An internal buffer array is not large enough to store this
number of data values. If this error occurs, the time-block
identified by in the "E part" of the pathname spans too long
of a time, and holds more data values than the internal
buffers can accommodate. The time-block should be
changed to the next lower size (e.g., from "IR-MONTH" to
"IR-DAY-).

24 The pathname does not meet the irregular-interval time
series conventions.

30 The times of the data values are not in a ascending order,
or two values occur at the same time.

Time Series Subroutines Page 4-31

Mrsr

Remarks:

Generally the base date (JBDATE) is the julian date of the first value (although it does
not have to be as long as ITIMES will produce the correct date). The ITIMES array can be
computed from the julian date (JUL) and time (IMIN) of the data volues by the following
procedure (where JBDATE has been determined earlier):

INTEGER*4 JBDATE, JUL, ITIMES(NVALS)
INTEGER IMIN

ITIMES(I) - ((JUL - JBDATE) * 1440) + IMIN

Note that this math must usually be done in large integers (INTEGER*4 or INTEGER*6).

Earlier versions of DSS stored fractions of a day instead of minutes for the time array.
This caused precision difficulties on 32 bit machines. A minimum of a 32 bit word size for
the ITIMES array will allow a relative time range of up to 4085 years (231 minutes).

With reference to INFLAG and data already present in the DSS file, replace will replace
all the data within the implied time window, while merge will combine the two data sets, only
replacing those values that occur at exactly the same time (within one minute of significance).
INFLAG has no meaning for a new record. Usually the replace mode is used for editing data,
and the merge mode is used for adding new data to the record.

If you are updating data where the first or last value might be deleted (for example an
editing process where the first data might be removed), an explicit time window may be
specified by setting the beginning time of the time window in the first element of ITIMES,
and setting the corresponding data value to -902.0. The end of the time window is indicated
in a similar manner, by setting the ending time in the last element in ITIMES and the
corresponding value to -902.0. ZSITS will ignore the -902.0, but use the times to delete any
data between that time and the next (or preceding) value in the array. (This cannot be used
to delete an entire record, just data within a record.)

If data without data flags is merged with (or replaces) data with flags, then data flags (set
to zero) will be added to the new data.

A debug trace may be turned on by setting the message level (MLEVEL) to 9 via
subroutine ZSET.

Page 4-32 Time-Series Subroutines

Example
C Read Irregular-interval time series data from an ASCII file, then
C store it in DSS. The input file might appear like the following:
C 3/12/90, 0800, 32.25
C 3/13/90, 1200, 33.14
C END
C Set a data precision (used by DSSUTL) by counting the number of
C digits to the right of the decimal point.
C

PARAMETER (KVALS-1000)
INTEGER*4 ITIMES(KVALS), JBDATE, JUL
INTEGER IFLTAB(600), IBF(20), IEF(20), ILF(20)
REAL VALUES(KVALS)
CHARACTER CLINE*80, CPATH*80, CUNITS*8, CTYPE*8

C
C Open DSS file and get the pathname.

CALL ZOPEN (IFLTAB,
C

20 CONTINUE
READ (9,40,END-200) CPA:i, CUNITS, CTYPE

40 FORMAT (
C

NVALS - 0
MAXPRE - 0

60 CONTINUE
C Read a line from the input.

READ (9,80,END=200) CLINE
80 FORMAT (A)

C Did we reach the end of the data yet?
IF (INDEX(CLINE,'END').GT.0) GO TO 100

C
C Parse the line.

CALL PARSLI (CLINE, 20, NFIELD, IBF, IEF, ILF)
IF (NFIELD.NE.3) GO TO 900

C
C Get the date and time from this line.

CALL DATJUL (CLINE(IBF(l):IEF(1)), JUL, IERR)
IF (IEPR.NE.O) GO TO 900
IMIN - IHM2M (CLINE(IBF(2):IEF(2)))
IF (IMIN.LT.0) GO TO 900

C Compute the relative time of this value.
NVALS - NVALS + I
IF (NVALS.EQ.1) JBDATE - JUL
ITIMES(NVALS) - ((JUL - JBDATE) * 1440) + IMIN

C
C Get the data value.

VALUES(NVALS) - XREAL (CLINE, IBF(3), ILF(3), IERR)
IF (IERR.NE.0) GO TO 900

C

Time Series Subroutines Page 4-33

zsris

C Determine the data precision.
N - INDEX (CLINE(IBF(3):IEF(3)), .')

IF (N.GT.0) THEN
3 - ILF(3) - N
IF (J.GT.MAXPRE) MAXPRE - J

ENDIF
C
C Go back and read the next value.

GO TO 60
C
C All the data has been read; store it.

100 CONTINUE
IF (NVALS.LE.0) GO TO 800

C
C Set the data precision.

CALL ZSET ('PREC', ' ', MAXPRE)
C

CALL ZSITS (IFLTAB, CPATH, ITIHES, VALUES, NVALS,
* JBDATE, CUNITS, CTYPE, 0, ISTAT)

IF (ISTAT.NE.0) GO TO 900
GO TO 20

Page 4-34 Time-.Series Subroutines

ZSITSX

4.8 ZSITSX - Store Irre=lar-Interval Time Series Data (Extended Version)

Purpose:

ZSITSX is the extended call to store irregular-interval time series data in a DSS file. This
subroutine will store data flags and a user header along with the data. If flags or the user
header will not be stored, use ZSITS, the short form of this subroutine.

The data stored by ZSITSX is based on implied time window which can cross record
boundaries (that is ZSITSX can write several records with different "D parts"). The time
window is implied by the date and time of the first and last data values (which is to be provided
in the "ITIMES" array).

Irregular-interval time series data is stored with times to the nearest minute. Data for
times of less than a minute cannot be stored with this convention. The times of the data must
be in an ascending order, and no value may have the same exact time as another (you cannot
have two data points for the same time in a record).

Calling Seuuence:

CALL ZSITSX (IFLTAB, CPATH, ITIMES, VALUES, NVALS, JBDATE,
* FLAGS, LFLAGS, CUNITS, CTYPE, HEADU, NHEADU, INFLAG, ISTAT)

Declarations:

INTEGER IFLTAB(OO), ITIMES(NVALS), NVALS, JBDATE
INTEGER NHEADU, INFLAG, ISTAT
REAL VALUES(NVALS), FLAGS(NVALS), HEADU(NHEADU)
CHARACTER CPATH*80, CUNITS*8, CTYPE*8
LOGICAL LFLAGS

On MS-DOS microcomputers, the base date and the time array must be INTEGER*4:

INTEGER*4 JBDATE, ITIMES(KVALS)

On Harris computers, the time array must be INTEGER*6:

INTEGER*6 ITIMES (KVALS)

Argument Description:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CPATH (Input) The pathname of the data to store. The pathname must meet the
irregular-interval time series conventions. The "D part" (date part) is
ignored, as ZSITSX will form it internally. The length of CPATH is
implicit (e.g., CPATH(I:NPATH)).

Time Series Subroutines Page 4-35

zsrrsx

ITIMES (Input) The array containing the relative date/times of the data values,
in a one-to-one correspondence to the data. These values are to be in
minutes from the base date (JBDATE), and can be generated from standard
dates and times by the methods discussed in remarks (following). The times
must be in ascending order, and no two times can be the same.

VALUES (Input) The values to store. The date/time of each value must be defined
in array ITIMES.

NVALS (Input) The number of values to store. Arrays ITIMES and VALUES
must contain NVALS valid elements.

JBDATE (Input) The julian base date (in days since Dec. 31, 1899), which when
combined with each element of ITIMES will give that data values total
julian date and time. All values in ITIMES must be relative to this value.

FLAGS (Input) An array containing 32 bit data flags. If flags are not to be stored
then set LFLAGS to .FALSE. and FLAGS may be a dummy argument.

LFLAGS (Input) A logical flag indicating whether data flags are to be stored or not.
To store the FLAGS array, set LFLAGS to .TRUE.. If flags are not to be
stored, set this to .FALSE..

CUNITS (Input) The units of the data (e.g., 'FEET').

CTYPE (Input) The type of the data (e.g., 'PER-AVER').

HEADU (Input) The optional user header array. Information should be placed in
this array by subroutine ZSTFH. If no user header is to be stored, this may
be a dummy argument and NHEADU should be set to zero.

NHEADU (Input) The number of elements in the user header array HEADU. If no
header information is to be stored, set this to zero. If the record exists and
is stored with a user header, that header may be retained by setting this to
the negative of the dimension of HEADU. Up to the absolute value of that
dimension number of header elements will be retained (and also retrieved
in HEADU). If the record does not exist, then no header will be stored
when NHEAU is less than zero.

INFLAG (Input) INFLAG is a flag to indicate whether the data should be replaced
or merged with existing data. Replace will replace all the data between the
implied time window (time of first and last data). Merge will combine the
data with the data already stored. (Merging data replaces data occurring
at the same time, while inserting data that are for new times.)

INFLAG = 0 to merge data.
INFLAG = I to replace data.

Page 4-36 Time-Series Subroutines

zsrIsX

ISTAT (Output) A status parameter indicating the success of the operation. If
ISTAT is returned with zero, then all the data was successfully stored. If
ISTAT is greater than ten, a fatal error occurred. The possible values art.:

ISTAT Description

0 The data was successfully stored.

4 No data was given to store (NVALS was zero).

GT 10 A "fatal" error occurred:

21 An internal buffer array is not large enough to store this
number of data values. If this error occurs, the time-block
identified by in the "E part" of the pathname spans too long
of a time, and holds more data values than the internal
buffers can accommodate. The time-block should be
changed to the next lower size (e.g., from "IR-MONTH" to
"IR-DAY-).

24 The pathname given does not meet the irregular-interval
time series-conventions.

30 The times of the data values are not in a ascending order,
or two values occur at the same time.

Remarks:

Generally the base date (JBDATE) is the julian date of the first data value (although it
does not have to be as long as ITIMES will produce the correct date). The ITIMES array can
be computed from the julian date (JUL) and time (IMIN) of the data values by the following
procedure (where JBDATE has been determined earlier):

INTEGER*4 JBDATE, JUL, ITIMES(NVALS)
INTEGER IMIN

ITIMES(I) - ((JUL - JBDATE) * 1440) + IMIN

Note that this math must usually be done in large integers (INTEGER*4 or INTEGER*6).

Earlier versions of DSS stored fractions of a day instead of minutes for the time array.
This caused precision difficulties on 32 bit machines. A minimum of a 32 bit word size for
the ITIMES array will allow a relative time range of up to 4085 years (231 minutes).

With reference to INFLAG and data already present in the DSS file, replace will replace
all the data within the implied time window, while merge will combine the two data sets, only
replacing those values that occur at exactly the same time (within one minute of significance).
INFLAG has no meaning for a new record. Usually the replace mode is used for editing data,
and the merge mode is used for adding new data to the record.

Time Series Subroutines Page 4-37

ZSFIsx

If you are updating data where the first or last value might be deleted (for example an
editing process where the first data might be removed), an explicit time window may be
specified by setting the beginning time of the time window in the first element of ITIMES,
and setting the corresponding data value to -902.0. The end of the time window is indicated
in a similar manner, by setting the ending time in the last element in ITIMES and the
corresponding value to -902.0. ZSITSX will ignore the -902.0, but use the times to delete any
data between that time and the next (or preceding) value in the array. (This cannot be used to
delete an entire record, just data within a record.)

If data with data flags is merged with (or replaces) data without data flags, then data flags
(set to zero) will be added to the old data before the merge. If data without data flags is merged
with (or replaces) data with flags, then data flags (set to zero) will be added to the new data.

A debug trace may be turned on by setting the message level (MLEVEL) to 9 via
subroutine ZSET.

Example:

C Do a range check on data stored in a DSS file.
C Read the pathnames, and the time window from an external file.
C

PARAMETER (KVALS-4000, KHEADU-500)
INTEGER*4 ITIMES(KVALS), JULS, JULE, JBDATE
INTEGER IFLTAB (600)
REAL VALUES(KVALS), HEADU(KHEADU), FLAGS(KVALS)
CHARACTER CLINE*80, CPATH*80, CUNITS*8, CTYPE*8
LOGICAL LFREAD

C
C Open the DSS file.

CALL ZOPEN (IFLTAB,
C
C Read the time window.

READ (5, 20) CLINE
20 FORMAT (A)

CALL GETIME (CLINE, 1, 80, JULS, ISTIME, JULE, IETIME, IST)
IF (IST.NE.O) GO TO 900

C
C Read irregular-interval time series pathnames.
100 CONTINUE

READ (5, 20, END-800) CPATH
C
C Retrieve the data.

CALL ZRITSX (IFLTAB, CPATH, JULS, ISTIME, JULE, IETIME, ITIMES,
* VALUES, KVALS, NVALS, JBDATE, FLAGS, .TRUE., LFREAD, CUNITS,
* CTYPE, HEADU, KHEADU, NHEADU, 0, ISTAT)

IF (ISTAT.NE.O) GO TO 100

Page 4-38 Time-Series Subroutines

zsrrsx

C Now do a range check.
C If the value is less than zero, reject it.
C If it is greater than 30, mark it questionable, greater than 50
C reject it. (Bit 2 is ok, 4 is questionable, bit 5 is rejected.)
C

DO 120 I-I,NVALS
C If we did not read flags, zero out the flag.
C (Note that on some computers, a zero may set some bits on,
C and FLAGS must be zeroed by equivalencing to an integer.)

IF (.NOT.LFREAD) FLAGS(I) - 0.0
C Does it fail to be a positive value?

IF (VALUES(I).LT.O.0) THEN
CALL SETBIT (FLAGS(I), 5)

C Is it greater than 30?
ELSE IF (VALUES(I).GT.30.0) THEN

C Is it greater than 50?
IF (VALUES(I).GT.50.0) THEN

CALL SETBIT (FLAGS(I), 5)
ELSE

C Data is questionable.
CALL SETBIT (FLAGS(I), 4)

ENDIF
ELSE

C Passes the range check, mark ok.
CALL SETBIT (FLAGS(I), 2)

ENDIF
120 CONTINUE

C
C Test complete. Re-store the data.

CALL ZSITSX (IFLTAB, CPATH, ITIMES, VALUES, NVALS, JBDATE, FLAGS,
* .TRUE., CUNITS, CTYPE, HEADU, NHEADU, 0, ISTAT)

IF (ISTAT.NE.0) GO TO 900
C
C Get the next set of data.

GO TO 100

Time Series Subroutines Page 4-39

ZGINIM

4.9 ZGINTL - Get Time Series Interval

Purtoose:

Given the "E part" from a regular-interval time series pathname, ZGINTL will compute
the time interval in minutes and the maximum number of data values contained in a block.
Conversely, given a time interval in minutes, ZGINTL will generate a standard E part. If the
E part meets the irregular-interval time series conventions, a status parameter will be returned
indicating so (although no time interval will be returned).

Calling SeQuence:

CALL ZGINTL (INTL, CE, NVALS, ISTAT)

Declarations:

INTEGER INTL, NVALS, ISTAT
CHARACTER CE*32

On MS-DOS microcomputers, the time interval INTL must be declared as INTEGER*4.

INTEGER*4 INTL

Argument Description:

INTL (Input or Output) The time interval in minutes. When generating the E
part, this will be input. When computing the interval from the E part,
this will be output.

CE (Input or Output) The E part. When generating the E part, this will be
output. When computing the interval from the E part, this will be input.

NVALS (Output) The number of data values in a regular-interval time series block
for this interval.

ISTAT (Input-Output) ISTAT is used both as a flag on input, and a status
parameter on output. On input, ISTAT indicates on whether to convert
INTL to an E part, or convert the E part to INTL.

As Input

ISTAT Description

I Get the integer interval (INTL) from the character E part
(CE).

2 Get the character E part (CE) from the integer interval
(INTL) in minutes.

Page 4-40 Time-Series Subroutines

ZGEMIL

As Output

ISTAT Description

0 E part or INTL meets the regulr-interval time series
conventions.

I E part meets the irregular-interval time series conventions
(no interval returned).

-1 The E part is not recogL zed as time series.

Remarks:

ZGINTL can be used to help determine the type of data from the pathname. Because
ISTAT is used both as an input and an output parameter, make sure that it is a variable that
is set properly before calling ZGINTL.

Example:

C Get the time interval from a pathname.
C

CALL ZUFPN (.... CE, NE,
or, alternatively

CALL ZGPNP (.... CE,
C
C Get the time interval in minutes from the E part.

ISTAT - 1
CALL ZGINTL (INTL, CE, ND, ISTAT)

C
C If ISTAT is returned as -4, the pathname is not time series.

IF (ISTAT.EQ.-1) GO TO 900
C Is the record irregular-interval time series?

IF (ISTAT.EQ.l) GO TO 100
C Regular-interval time series data.

Time Series Subroutines Page 4-41

ZOFSET

4.10 ZOFSET - Determine the Time Offset of Time Series Data

Pumose:

ZOFSET will compute the interval offset from the standard interval time for
regular-interval time series data. For example, the standard times for daily data is at 2400
hours (midnight), but data that is recorded at 0800 has an offset of 480 minutes (8 hours).
ZOFSET can also change the julian date and time to the standard time for that interval.
Another capability of ZOFSET is to adjust the date and time according to the offset given.

Calling Seauence:

CALL ZOFSET (JUL, ITIME, INTL, IFLAG, IOFSET)

Declarations:

INTEGER JUL, ITIME, INTL, IFLAG, IOFSET

On MS-DOS micro-computers, the julian date, time interval and time offset must be
INTEGER*4:

INTEGER*4 JUL, INTL, IOFSET

Argument Descrimtion:

JUL (Input-Output) The julian date, in days from 31DEC1899.

ITIME (Input-Output) The time, in minutes past midnight.

INTL (Input) The time interval, in minutes. This must correspond to the
standard regular-interval time series conventions.

IFLAG (Input) A flag indicating whether the date and time should be changed
to a standard time :

IFLAG Description

0 Only compute the offset (don't change JUL or ITIME).

1 Compute the offset and change the date and time to the
standard date and time for that interval.

2 Adjust JUL and ITIME according to the offset provided
(JUL and ITIME will be changed to a standard date and
time first, then adjusted).

IOFSET (Input-Output) The computed time offset, in minutes. The offset is the
number of minutes between the standard time ard the given time (JUL,
ITIME). If IFLAG is 2, then this argument must contain the offset to
adjust JUL and ITIME with.

Page 4-42 Time-Series Subroutines

ZOFSET

If the date/time are changed to a standard date/time, it is adjusted up. For example, a
daily data value must occur between 0001 hours, and 2400 hours (1440 minutes). If ZOFSET
changes the date and time to standard, it will become 2400 hours (144Q minutes).

Example 1:

C Check for a time offset of a date and time.
CALL ZOFSET (JUL, ITINE, INTL, 0, IOFSET)

C
C Now call an interpolation routine to compute data
C for the standard time interval.

IF (IOFSET.GT.O) THEN
RATIO - REAL(IOFSET)/REAL(INTL)
CALL INTERP (...

In the above example, if:

INTL - 1440 (1 day)
JUL - 29348 (May 8, 1980)
ITIME - 420 (7 a.m.)

then IOFSET would be returned:

IOFSET - 420

if IFLAG were set to I (adjust date/time), then the following variables would be returned:

JUL - 29348 (May 8, 1990)
ITIME - 2400 (midnight)
IOFSET - 420

Example 2:

C Adjust the date and time for data returned by ZRRTS
C according to the offset, so that values are printed
C with the correct time.
C

CALL ZRRTS (..., IOFSET, ...)

C
C Print the values and their date and time.

DO 80 I-I,NVALS
IDUM - INCTIM (INTL, 0, 1-1, JULS, ISTIME, JULE, IETIME)

C Adjust the date and time according to the offset.
CALL ZOFSET (JULE, IETINE, INTL, 2, IOFSET)
CALL JULDAT (JULE, 0, CDATE, NDATE)
IDUM - M21HK (IETIME, CTIME)
WRITE (6,40) CDATE(l:NDATE), CTIME, VALUES(I)

40 FORMAT (IX,A,2X,A,FlO.3)
80 CONTINUE

Time Series Subroutines Page 4-43

5 Paired Data Subroutines

Paired data is a group of data that represents a two variable relationship. Typical

examples are data that make up a curve (e.g., a rating table or a flow-frequency curve).

Several sets of data may be stored in the same record if one of the variables is the same.

For example, several elevation-damage curves may be stored in the same record, where the

curves may be residential, commercial, etc.. However, a stage-damage curve and a

stage-flow curve should not be stored in the same record. A scale associated with the data

set may be one of three types: linear, logarithmic, or probability.

Paired data is exchanged between a program and DSS in a singly dimensioned array.

This usually requires that data be transferred from a doubly dimensioned array (with X and

Y ordinates) into a singly dimensioned array. Examples of such a procedure are provided.

A label may be given to each data set. Labels are typically used to differentiate

between curves within the same record. For example, a elevation-damage record may

contain three curves whose labels might be "RESIDENTIAL", "AGRICULTURAL", and

"COMMERCIAL".

Paired data is retrieved by subroutine ZRPD and stored with subroutine ZSPD. Prior

to February 1987, paired data was stored and retrieved with subroutines ZWRITE and

ZREAD, respectively. Because DSS version 6 uses an internal header to store information

about the data, ZWRITE and ZREAD can no longer be used. The older subroutines

ZGTPFD and ZPTPFD may still be used, although they maybe somewhat more cumbersome

than ZRPD and ZSPD.

Further paired data conventions may be found in the Overview section of the "HECDSS

User's Guide and Utility Program Manuals".

Paired Data Subroutines Page 5-1

ZIPD

5.1 ZRPD - Retrieve Paired Data

P•rlose"

ZRPD retrieves paired (curve) data from a DSS file. The curve's labels and the user
header may be retrieved in addition to the data.

Calling Seouence:

CALL ZRPD (IFLTAB, CPATH, NORD, NCURVE, IHORIZ,
"* ClUNIT, CITYPE, C2UNIT, C2TYPE, VALUES, KVALS, NVALS,
"* CIABEL, KLABEL, LABEL, HEADU, KHEADU, NHEADU, ISTAT)

Declarations:

INTEGER IFLTAB(600), NORD, NCURVE, IHORIZ, KVALS, NVALS
INTEGER KLABEL, KHEADU, NHEADU, ISTAT
REAL VALUES(KVALS), HEADU(KHEADU)
CHARACTER CPATH*80, CLABEL(KLABEL)*12
CHARACTER CIUNIT*8, C1TYPE*8, C2UNIT*8, C2TYPE*8
LOGICAL LABEL

Argument Descrivtion:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CPATH (Input) The pathname of the data to read. The pathname must meet the
paired function data conventions.

NORD (Output) The number of ordinates (number of points per curve) read.
Each curve within a single record will have the same number of
ordinates.

NCURVE (Output) The number of curves retrieved in this record.

IHORIZ (Output) The variable number to appear on the horizontal axis for
plotting (1 for first variable, 2 for second).

ClUNIT (Output) The units of the first variable (e.g., 'FEET, 'PERCENT').

CITYPE (Output) The type of data for the first variable. The following types
are recognized by DSS utility programs:

UNT Untransformed
LOG Logarithmic - data expressed as logarithms.
PROB Probability - data expressed in percent.

C2UNIT (Output) The units of the second variable.

Page 5-2 Paired Data Subroutines

ZRPD

C2TYPE (Output) The type of data for the second variable.

VALUES (Output) The data values retrieved. The first NORD elements in
VALUES correspond to the first variable (i.e., the X axis values of the
data points). The data for the second variable (the Y axis values) begins
at element NORD+1. Y axis values for a second curve would begin at
(NORD * 2) + 1.

KVALS (Input) The dimension of array VALUES. VALUES must be dimen-
sioned to at least:

KVALS - (NCURVE + 1) * NORD

NVALS (Output) The number of values retrieved.

CLABEL (Output) The labels for each curve. For example, if a
ELEVATION-DAMAGE function is retrieved containing residential,
agricultural and commercial damage, then CLABEL might be returned
as:

CLABEL(1) - 'RESIDENTIAL
CLABEL(2) - 'AGRICULTURAL'
CLABEL(3) - 'COMMERCIAL I

For this example, NCURVE would be eturned with 3, and CLABEL
should be dimensioned to at least 3.

KLABEL (Input) The dimension of CLABEL. No more than KLABEL labels
will be placed into CLABEL. If you do not wish to retrieve any labels,
set KLABEL to zero.

LABEL (Output) A logical variable indicating if labels were returned. LABEL
will be set to .TRUE. if labels were retrieved (there will be NCURVE
labels), otherwise it will be as .FALSE..

HEADU (Output) The optional user header array. This array usually may be
decoded by subroutine ZUSTFH.

KHEADU (Input) The dimension of array HEADU. No more than KHEADU
elements of the user header array will be retrieved. If you do not want
to retrieve the user header, set this to zero.

NIIEADU (Output) The number of elements in the user header actually retrieved.
NHEADU will always be equal to or less than KHEADU.

Paired Data Subroutines Page 5-3

ZRPD

ISTAT (Output) A status parameter indicating the success of the operation. If
ISTAT is returned with zero, then the data was successfully read. The
possible values are:

ISTAT Description

0 Successful data retrieval.

-1 The record does not exist.

1 The dimension of VALUES (KVALS) was not large
enough to retrieve all the data. Only KVALS values
returned; the curves are incomplete.

20 The record is not paired data.

Remarks:

Up to 50 curves (with the same ordinates) can be stored in one record. The maximum
number of labels is also 50. Either all curves will have a label, or no curves will have labels.
If the VALUES array is dimensioned smaller than the number of data values in the record,
only the first KVALS values will be retrieved.

A debug trace will be printed when the message level (MLEVEL) is set to 7 (or above)
via subroutine ZSET.

Points can be located within a singly dimension array by the following example:

C To print the data (as X, Y1, Y2, Y3, ...):
DO 20 I-1,NORD

WRITE (6,10) (VALUES(J),J-I,NVALS,NORD)
10 FORMAT (' X:',F8.2,', Y(s):',50(2X,F8.2))
20 CONTINUE

C To transform the data into a doubly dimensioned array:
IPOS - 0
DO 20 I-l,NCURVE+l

DO 20 J-1,NORD
IPOS - IPOS + 1
CURVE(J,I) - VALUES(IPOS)

20 CONTINUE

Page 5-4 Paired Data Subroutines

ZRPD

Example:

C Retrieve Paired Data from a DSS file, then print it in the form:
C 1, X, YI, Y2,
C

PARAMETER (KVALS-1000, KLABEL-50)
INTEGER IFLTAB(600), NORD, NCURVE, IHORIZ, NVALS
INTEGER NHEADU, ISTAT
REAL VALUES (KVALS)
CHARACTER CPATH*80, ClUNIT*8, C2UNIT*8, ClTYPE*8, C2TYPE*8
CHARACTER CLABEL(KLABEL)*12, CNAME*64
LOGICAL LABEL

C
C Open the DSS file.

CALL ZOPEN (IFLTAB, CNAME, ISTAT)
IF (ISTAT.NE.0) GO TO 900

C

C Get the pathname.
CALL ZPATH (.

C
C Retrieve the data.

CALL ZRPD (IFLTAB, CPATH, NORD, NCURVE, IHORIZ,
* ClUNIT, CITYPE, C2UNIT, C2TYPE, VALUES, KVALS, NVALS,
* CLABEL, KIABEL, LABEL, DUM, 0. NHEADU, ISTAT)

IF (ISTAT.NE.0) GO TO 910
C
C Write the record's pathname.

CALL CHRLNB (CPATH, NPATH)
WRITE (6,20) CPATH(l:NPATH)

20 FORMAT (' Record Pathname: ',A)
C

C Write the label information (if there are labels).
IF ((LABEL) .AND.(NCURVE.LE.KLABEL)) THEN

WRITE (6,30)
30 FORMAT (' Curve Labels:')

DO 50 I-I,NCURVE
WRITE (6,40) I, CIABEL(I)

40 FORMAT (' Curve',13,' Label: ',A)
50 CONTINUE

ENDIF
C
C Write the data (as point, X, Y1, Y2, Y3, ...).

DO 80 I-I,NORD
WRITE (6,60) I, (VALUES(J),J-I,NVALS,NORD)

60 FORMAT (' Point',14,'; X:',F8.2,', Y(s):',50(2X,F8.2))
80 CONTINUE

C

Paired Data Subroutines Page 5-5

ZRPD

Example results for an ELEVATION-DAMAGE Function having two damage
categories and 18 ordinates:

Input
CPATH - /JAMES RIVER/DRI/ELEVATION-DAMAGE//1980./PLAN B/
NPATH - 48
KLABEL - 10
KVALS - 1000

Output
NORD - 18
NCURVE - 2
IHORIZ - 2
CIUNIT - 'FEET'
CITYPE - 'UNT'
C2UNIT - '$1000'
C2TYPE - 'INT'
NVALS - 54
LABEL - TRUE.
CL&BEL(1) - 'S.F. RES'
CLABEL(2) - 'COMMERCIAL'
ISTAT - 0

The VALUES array contains all of the data:
VALUES(1) through VALUES(I) contain the ELEVATION data.
VALUES(19) through VALUES(36) contain DAMAGE data for "S.F. RES".
VALUES(37) through VALUES(54) contain DAMAGE data for"COMMERCIAL".

Page 5-6 Paired Data Subroutines

ZSPD

L,2 ZSPD - Store Paired Data

Purtvose:

ZSPD stores paired (curve) data in a DSS file. Curve labels and the user header may be
stored in addition to the data.

Calline Seauence:

CALL ZSPD (IFLTAB, CPATH, NORD, NCURVE, IHORIZ,
* ClUNIT, CITYPE, C2UNIT, C2TYPE, VALUES,
* CLABEL, LABEL, HEADU, NHEADU, IPLAN, ISTAT)

INTEGER IFLTAB(600), NORD, NCURVE, IHORIZ
INTEGER KVALS, KLABEL, NHEADU, IPLAN, ISTAT
REAL VALUES(KVALS), HEADU(NHEADU)
CHARACTER CPATH*80, CIABEL(KLABEL)*12
CHARACTER C1UNIT*8, C1TYPE*8, C2UNIT*8, C2TYPE*8
LOGICAL LABEL

Argument Description:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CPATH (Input) The pathname of the data to store. The pathname must meet
the paired function data conventions.

NORD (Input) The number of ordinates (number of points per curve). Each
curve to be stored in a single record must have the same number of
ordinates.

NCURVE (Input) The number of curves to store in this record.

IHORIZ (Input) The variable number to appear on the horizontal axis for
plotting (1 for first variable, 2 for second).

CIUNIT (Input) The units of the first variable (e.g., 'FEET', 'PERCENT).

CITYPE (Input) The type of data for the first variable. The following types are
recognized by DSS utility programs:

UNT Untransformed
LOG Logarithmic - data expressed as logarithms.
PROB Probability - data expressed in percent.

C2UNIT (Input) The units of the second variable.

Paired Data Subroutines Page 5-7

ZSPD

C2TYPE (Input) The type of data for the second variable.

VALUES (Input) The data values to store. The first NORD elements in VALUES
correspond to the first variable (the X axis). The data for the second
variable must begin at element NORD+l (the Y axis). Y axis values for
a second curve would begin at (NORD * 2) + 1.

CLABEL (Input) A optional character array with labels corresponding to each
curve. For example, if a ELEVATION-DAMAGE function is to be
stored containing residential, agricultural and commercial damage, then
CLABEL might be as follows:

CIABEL(1) - 'RESIDENTIAL
CLABEL(2) - 'AGRICULTURAL'
CLABEL(3) - 'COMMERCIAL

For this example, NCURVE would be set to 3, and CLABEL should be
dimensioned to at least 3.

LABEL (Input) A logical variable indicating if labels are to be stored. LABEL
must be set to .TRUE. to store labels, otherwise it should be set to
.FALSE..

HEADU (Input) The optional user header array. Information should be placed
in this array by subroutine ZSTFH. If no additional user information is
to be stored, this may be a dummy argument and NHEADU should be
set to zero.

NHEADU (Input) The number of elements in the user header array HEADU. If
no header information is to be stored, set this to zero.

IPLAN (Input) A flag indicating whether to write over existing data or not

IPLAN Description

0 Always write the record to the file.

I Only write the record if it is new (i.e., no record
previously existed in that file under that pathname).

2 Only write the data if the record already existed in the
file.

Page 5-8 Paired Data Subroutines

ZSPD

ISTAT (Output) A status parameter indicating the success of the operation. If
ISTAT is returned with zero, then the data was successfully stored,
otherwise an error occurred. The possible values are:

ISTAT Description

0 The data was successfully stored.

-1 The IPLAN specified requested the record be written
only if it was new, but the file already contained a
record with the pathname supplied.

-2 The IPLAN specified requested the record be written
only if it already existed, but the pathname supplied was
not found.

-3 The pathname does not meet the paired data conventions.

-4 The number of ordinates is less than one.

-5 NCURVE is less than one or greater than 50.

Remarks:

Up to 50 curves (with the same ordinates) can be stored in one record. The maximum
number of labels is also 50. Either all curves will have a label, or no curves will have labels.

A debug trace will be printed if the message level (MLEVEL) is set to 7 (or above) via
subroutine ZSET.

Unless the number of data points for the curve(s) is known prior to obtaining them (for
example, if you are reading them from an external file), the data usually must be read into a
buffer, then reorganized into a singly dimensioned array before storing with ZSPD. Points
can be converted from a doubly dimensioned array into a singly dimension array by the
following example:

C
C The data has been read into array CURVE as X, Y1, Y2, Y3,

IPOS - 0
DO 20 I-1,NCURVE+1
DO 20 J-1,NORD
IPOS - IPOS + 1
VALUES(IPOS) - CURVE(J,I)

20 CONTINUE

Paired Data Subroutines Page 5-9

ZSPD

Example,

C Read (a) Curve(s) from an external file, then store it in DSS.
C Up to 10 curves (in one record) can be stored by this routine.
C The external file contains data in the form:
C X, Yl, Y2,
C X, Yl, Y2,
C END
C

PARAMETER (KVALS-1000, KLABEL-10)
INTEGER IFLTAB(600), NORD, NCURVE, IHORIZ
INTEGER ISTAT, IBF(20), IEF(20), ILF(20)
REAL VALUES(KVALS), CURVES(300,11)
CHARACTER CPATH*80, C1UNIT*8, C2UNIT*8, C1TYPE*8, C2TYPE*8
CHARACTER CLABEL(KIABEL)*12, CNAME*64, CLINE*80

C
C Open the DSS file.

CALL ZOPEN (IFLTAB, CNAME, 1STAT)
IF (ISTAT.NE.0) GO TO 900

C
C Get the pathname.

CALL ZPATH (.
C
C Get the number of Curves, IHORIZ.

READ (5,*) NCURVE, IHORIZ
C
C Get the data units and type.

READ (5,20) ClUNIT, CITYPE, C2UNIT, C2TYPE
20 FORMAT (...
C
C Read the label information.

DO 40 I-1,NCURVE
READ (5,30) CLABEL(I)

30 FORMAT (...
40 CONTINUE

C
C Read the data (as X, Yl, Y2, Y3, ...).

NORD - 0
50 CONTINUE

READ (5,60,END-200) CLINE
60 FORMAT (A)

C
C Did we reach the end of the data yet?

IF (INDEX(CLINE,'END').GT.0) GO TO 100
C
C Parse the line.

CALL PARSLI (CLINE, 20, NFIELD, IBF, IEF, ILF)
IF (NFIELD.NE.NCURVE+Il) GO TO 900

C

Page 5-10 Paired Data Subroutines

ZSPD

C Place the data in the curves array.
NORD - NORD) + 1
DO 80 I-l,NFIELD
CURVES(NORD,I) - XREAL (CLINE, IBF(I), ILF(I), IERR)
IF (IERR.NE.0) GO TO 900

80 CONTINUE
C
C Go back and read the next value.

GO TO 50
C
C
100 CONTINUE

C All the data has been read. Transfer the data into
C a singly dimensioned array.

IPOS - 0
DO 120 I-l,NCURVE+l
DO 120 J-1,NORD
IPOS - IPOS + 1
VALUES(IPOS) - CURVES(J,I)

120 CONTINUE
C
C Store the data.

CALL ZSPD (IFLTAB, CPATH, NORD, NCURVE, IHORIZ,
"* ClUNIT, ClTYPE, C2UNIT, C2TYPE, VAI.UES, CLABEL, .TRUE.,
"* HEADU, 0, 0, ISTAT)

IF (ISTAT.NE.0) GO TO 910
C
C

Paired Data Subroutines Page 5-11

ZSPD

Example results for storing an ELEVATION-DAMAGE function having two damage
categories ("S.F. RES" and "COMMERCIAL*) and 5 ordinates:

ELEVATION S.F. RES COMMERCIAL
DAMAGE DAMAGE

500.0 0.0 0.0
502.0 25.8 0.0
504.0 51.2 323.4
506.0 93.8 655.7
508.0 137.9 809.1

Input:
CPATH - /JAMES RIVER/DR1/ELEVATION-DAMAGE//1980/PLAN B/
NORD - 5
NCURVE - 2
IHORIZ - 2
CIUNIT - 'FEET'
CITYPE - 'UNT'
C2UNIT - '$1000'
C2TYPE - 'UNT'
LABEL - .TRUE.
CLABEL(1) - 'S.F. RES'
CLABEL(2) - 'COMMERCIAL'
NHEADU - 0
IPLAN - 0

The VALUES array contains all of the ELEVATION-DAMAGE data:
VALUES(I) through VALUES(5) contain the ELEVATION data.
VALUES(6) through VALUES(10) contain DAMAGE data for "S.F. RES".
VALUES(11) through VALUES(l 5) contain DAMAGE data for"COMMERCIAL".

For example:

VALUES(I) = 500.0
VALUES(2) = 502.0

"VLUES() = 508.0
VALUES(6) = 0.0
VALUES(7) = 25.8

VALUES(10) = 137.9
VALUES(1) = 0.0
VALUES(12) = 0.0

VALUES(15) = 809.1

Page 5-12 Paired Data Subroutines

6 Text Subroutines

Text data is defined as generic alpha-numeric lines of text, where each line is preceded

by a line feed character and ends with a carriage return character. It does not, at this time,

accommodate other types of characters, such as those that would be used to create a
graphical display. There are no definitive size limitations for a DSS text record, but it is

recommended that a record contain no more than about 200 lines of text. There are noA

conventions set for the structure of a text record's pathname. However, it is recommended

that the pathname parts be labeled in a descending order of importance, and that the

pathname imply that the record contains text data and not one of the other types of data.

The maximum possible length of a line in a DSS text record is 160 characters. A

reasonable maximum length is 132 characters. Text data is stored with trailing blanks

(blanks to the right of the last character in a line) removed. A line feed character is stored

at the beginning of each line, and a carriage return character is stored at the end. A blank

line consists of a line feed, a single blank, and a carriage return. Generally, text is stored

without carriage control (e.g., a blank in column 1), although this is up to the programmer,

as DSS does not check for this.

The maximum number of bytes that can be stored in a text record is 9600 on DOS
machines, and 16,000 on most other machines (including the line feed and carriage return).

The number of lines that can be stored is dependent on the average length of the lines. If

the average length is about 40 characters, the maximum number of lines would be about 200

for DOS and about 350 for other computers. Generally, an appropriate number of lines to

store in a single record is from 2 to 150 lines. If one desired to store a large amount of text,

for example an entire book, the text could be divided into sections consisting of I to 3

pages. A sequence number (or page number) could be converted into character form (using

subroutine INTGRC), and used as part of the pathname.

Subroutines ZRTEXT and ZRTXTA retrieve text records from a DSS file, and

subroutines ZSTEXT and ZSTXTA store text data. ZRTEXT p'!ces the retrieved text in a
file (or writes it on the screen), while ZRTXTA puts it into a character array. Conversely,

ZSTEXT stores text read from an ASCII file, while ZSTXTA stores text from a character

array.

Text Subroutines Page 6-1

6.1 ZRTEXT - Retrieve Text Data (into a File)

Purtoose;

Subroutine ZRTEXT jetrieves text data from a DSS file, and places it into an ASCII
file or writes it to the screen. The file or screen is identified by a uuit number, which must
have been opened)-y the calling program. An alternative subroutine, ZRTXTA, will
retrieve text data and place the text into a character array.

Callini Seouence:

CALL ZRTEXT (IFLTAB, CPATH, IUNIT, HEADU, KHEADU, NHEADU,
* LCCNTL, NLINES, ISTAT)

Declarations:

INTEGER IFLTAB(600), IUNIT, NLINES, ISTAT
INTEGER KHEADU, NHEADU
REAL HEADU(KHEADU)
CHARACTER CPATH*80
LOGICAL LCCNTL

Artument Descrintion:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CPATH (Input) The pathname of the text record to retrieve.

IUNIT (Input) The unit number (connected to a file or the screen) of where to
write the text data. The unit must be opened prior to calling ZRTEXT.

HEADU (Output) The optional user header array. This array usually may be
decoded by subroutine ZUSTFH.

KHEADU (Input) The dimension of array HEADU. No more than KHEADU
elements of the user header array will be retrieved. If you do not want
to retrieve the user header, set this to zero.

NHEADU (Output) The number of elements in the user header actually retrieved.
NHEADU will always be equal to or less than KHEADU.

LCCNTL (Input) A logical flag indicating whether a FORTRAN carriage control
character (a blank space) should be placed at the beginning of each text
line. If LCCNTL is set to .TRUE., a blank character will be inserted.

NLINES (Output) The number of lines in the text record.

Page 6-2 Text Subroutines

ZRTEXT

ISTAT (Output) A status parameter indicating the success of the retrieval. If
ISTAT is returned with zero, then the data was successfully retrieved. If
ISTAT is any other value, no data was retrieved The possible values are:

ISTAT Description

0 The record was successfully retrieved.

-1 The record was not found.

-2 The record specified is not a text record.

-3 An internal buffer was not large enough to retrieve the
record.

-4 An error occurred while writing the text data to JUNIT.
The FORTRAN error code is printed in an error message.

Remarks:

ZRTEXT does not page the text (if the text is written to the screen, it will be displayed
all at once). If an unknown amount of text is to be displayed on the screen, it is usually
preferable that it first be written to a scratch file, then copied to the screen a page at a time.

Generally, text data is stored without carriage control characters (although DSS does not
check for this). ZRTEXT uses FORTRAN to write each line of test to IUNIT. FORTRAN
requires that the first character in a formatted write be used for carriage control. By setting
LCCNTL to .TRUE. a blank space is inserted a the beginning of each line to account for
this. Generally, when writing text data to the screen LCCNTL is set to .TRUE., and when
writing to a file LCCNTL is set to .FALSE.

If an error occurs, an error message will be written to the output (MUNIT) if the
message level (MLEVEL) is one or greater. The messages contain the pathname, and
information dbout the error. A debug trace may be activated by setting the message level to
7 (or above) with subroutine ZSET.

Example:

C Read a text record from a DSS file. If -,e output is to
C the screen, display the text one page at a time.
C

INTEGER IFLTAB(600)
CHARACTER CPATH*80, CLINE*132, CNAME*64
LOGICAL LSCREEN

C
CALL ATTACH (5, 'INPUT', 'STDIN', 'S-0', CLINE, NSTAT)
CALL ATTACH (6, 'OUTPUT', 'STDOUT', ' ', CLINE, ISTAT)
CALL ATTACH (7, 'TEXT', 'STDOUT', ' ', CLINE, ISTAT)
CALL ATTACH (8, 'SCRATCH', 'SCRATCHI', ' ', CLINE, ISTAT)
CALL ATTEND

C
CALL ZOPEN (IFLTAB, ...

Text Subroutines Page 6-3

ZRTEYT

WRITE (6,*)'Enter Pathname'
READ (5,20,END-800) CPATH

20 FORMAT (A)
C
C Is the text to be written to the screen or a file?

INQUIRE (UNIT-7, NAME-CNAME)
IF (CNAME(l:3).EQ.'CON') THEN

C Text is to be written to the screen. First write it to
C a scratch file so that it can be paged to th-ý screen.

LSCREEN - .TRUE.
IUNIT - 8

ELSE
C Text is to be written to a file. No paging.

LSCAEEN - .FALSE.
IUNIT - 7

ENDIF
C

CALL ZRTEXT (IFLTAB, CPATH, IUNIT, HEADU, 0, NHEADU,
* .FALSE., NLINES, ISTAT)

IF (ISTAT.NE.0) Gr TO 800
C

IF (LSCREEN) THEN
C Page text from the scratch file to the screen.

REWIND (UNIT-IUNIT)
40 CONTINUE

C
C Write 24 lines of text to the screen.

DO 80 1-1,24
READ (IUNIT, 20, END-800) CLINE
CALL CHRLNB (CLINE, N)
IF (N.EQ.0) N - 1
WRITE (7, 60) CLINE(I:N)

60 FORMAT (IX,A)
80 CONTINUE

C
C Pause by waiting for a carriage return.

READ (5,20) CLINE(l:l)
GO TO 40

ENDIF
C

800 CONTINUE
CLOSE (UNIT-8)
CLOSE (UNIT-9)

Page 6-4 Text Subroutines

ZRTXTA

6.2 ZRTXTA - Retrieve Text Data (Into an Array)

PurTose:

Subroutine ZRTXTA retrieves text data from a DSS file and places it into a character
array. ZRTXTA is usually called when the text is to be processed by the calling program,
or the amount of text retrieved is small enough that it conveniently fits into a character
array. An alternative subroutine, ZRTEXT, retrieves text data and places it into a file.

Calling Seauence:

CALL ZRTXTA (IFLTAB, CPATh, CARRAY, KLINES, NLINES,
* HEADU, KHEADU, NHEADU, ISTAT)

Declarations:

INTEGER IFLTAB(600), KLINES, NLINES, ISTAT
INTEGER KHEADU, NHEADU
REAL HEADU(KHEADU)
CHARACTER CPATH*80, CARRAY(KLINES)*(*)

Argument DescriDtion:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CPATH (Input) The pathname of the text record to retrieve.

CARRAY (Input) A character array that will contain the text data. The first
element of CARRAY (i.e., CARRAY(I)) will contain the first line of
text.

KLINES (Input) The dimension (number of elements) of CARRAY. No more
than KLINES lines of text will be placed into CARRAY. The length of
CARRAY is implied by FORTRAN (e.g., CARRAY(KLINES)*80).

NLINES (Output) The number of lines retrieved and placed into CARRAY.

HEADU (Output) The optional user header array. This array usually may be
decoded by subroutine ZUSTFH.

KHEADU (Input) The dimension of array HEADU. No more than KHEADU
elements of the user header array will be retrieved. If you do not want
to retrieve the user header, set this to zero.

NHEADU (Output) The number of elements in the user header actually retrieved.
NHEADU will always be equal to or less than KHEADU.

Text Subroutines Page 6-5

ZRTITA

ISTAT (Output) A status parameter indicating the success of the retrieval. If
ISTAT is returned with zero, then the data was successfully retrieved.
If ISTAT is negative, no data was retrieved The possible values are:

ISTAT Description

0 The record was successfully retrieved.

I CARRAY was not large enough (the dimension KLINES)
to hold all the text lines in the record. CARRAY will
contain KLINES lines of text. No error message will be
printed.

-1 The record was not found.

-2 The record specified is not a text record.

-3 An internal buffer was not large enough to retrieve the
record.

Remarks:

Generally, ZRTXTA is called when the type of text to retrieve (its approximate length
and number of lines) is known. Each element (line) in CARRAY is pre-blanked. A blank
line in the text will show up as an element in CARRY containing all blanks. If a text line is
longer than the length of CARRAY, it will be truncated to the length of CARRAY. (ISTAT
will not reflect truncation; therefore CARRAY should be declared as long as necessary.)
Elements in CARRAY greater than NLINES are undefined.

If an error occurs, an error message will be written to the output (MUNIT) if the
message level (MLEVEL) is one or greater. The messages contain the pathname, and
information about the error. No error message is printed if CARRAY is not large enough to
hold all the lines of text in the record (ISTAT = 1). A debug trace may be activated by
setting the message level to 7 (or above) with subroutine ZSET.

Page 6-6 Text Subroutines

ZRTXTA

Example

C Retrieve text data from a DSS file and write it to
C a file connected to unit 9. If the word "Location:"
C is found in the text, pass the location name to the
C subroutine PROCES.
C

PARAMETER (KLINES-500)
INTEGER IFLTAB (600)
CHARACTER CPATH*80, CLOC*40, CARRAY(KLINES)*132

C
C

CALL ZOPEN (IFLTAB, ...

C
WRITE (6,*)'Enter Pathname'
READ (5,20,END-800) CPATH

20 FORMAT (A)
C
C
C Retrieve the text data for this record.

CALL ZRTXTA (IFLTAB, CPATH, CARRAY, KLINES, NLINES,
* HEADU, 0, NHEADU, ISTAT)

IF (ISTAT.LT.0) GO TO 800
C
C Was the array large enough to hold the entire record?

IF (ISTAT.EQ.I) THEN
WRITE (6,*)'Caution: Text record terminated at ',NLINES,' lines'
ENDIF

C
C Process the text, one line at a time.

DO 60 I-l,NLINES
CALL CHRLNB (CARRAY(I), NLEN)

C Is this a blank line? If so set its length to 1 for writing.
IF (NLEN.EQ.0) NLEN - 1

C
C Write the text line to unit 9.

WRITE (9,40,ERR-900) CARRAY(I)(I:NLEN)
40 FORMAT (A)

C
C Scan for "Location:". If found, process this location.

J - INDEX (CARRAY(I)(l:NLEN), 'Location:')
IF (J.GT.0) THEN

CLOC - CARRAY(I)(J+9:)
CALL PROCES (CLOC)

ENDIF
C

60 CONTINUE
C

Text Subroutines Page 6-7

6.3 ZSTEXT . Store Text Data (From a File)

ZSTEXT reads text from an ASCII file and stores it in a DSS text record. The file is
identified by a unit number passed as an argument. An alternative subroutine, ZSTXTA,
will store text data from a character array.

Callina Seauence:

CALL ZSTEXT (IFLTAB, CPATH, IUNIT, HEADU, NHEADU,
* NLINES, ISTAT)

Declarations:

INTEGER IFLTAB(600), IUNIT, NLINES, ISTAT, NHEADU
REAL HEADU(NHEADU)
CHARACTER CPATH*80

Argument Description:

IFLTAB (Input-Output) The DSS work sý ýce used to manage the DSS file. This
is the same array used in the ZOI IN call.

CPATH (Input) The pathname of the text record to store.

IUNIT (Input) The unit number of the file containing the text to store. The
file must be opened (and rewound) prior to calling ZSTEXT.

HEADU (Input) The optional user header array. Information should be placed
in this array by subroutine ZSTFH. If no user header is to be stored,
this may be a dummy argument and NHEADU should be set to zero.

NHEADU (, .put) The number of elements in the user header array HEADU. If
no header information is to be stored, set this to zero.

NLINES (Output) The number of lines read from the file and stored in the text
record.

ISTAT (Output) A status parameter indicating the success of the operation. If
ISTAT is returned with zero, then the data was successfully stored. If
ISTAT is any other value, no data was stored. The possible values are:

ISTAT Description

0 The record was successfully stored.

-3 An internal buffer was not large enough to store the record.

-4 An error occurred while reading tle text data from the file. The
FORTRAN error code will be printed.

Page 6-8 Text Subroutines

ZSTE]CT

Remarks,

ZSTEXT does not rewind the unit before reading. ZSTEXT can read from the
keyboard (if]UNIT is connected to the keyboard).

ZSTEXT uses a FORTRAN read to read from IUNIT until the end-of-file is reached,
or, alternatively, an end-of-file marker is found. The end-of-file condition (defined by an
"END=" statement in a FORTRAN read) is typically used. The alternative end-of-file
marker on Harris computers is a SEOF at the beginning of a new line, or a control-Z at the
beginning of a line for DOS and Unix machines. Because these characters must be read by
FORTRAN, a carriage return must follow. If IUNIT is connected to a keyboard, reading
can only be terminated when an end-of-file marker is typed (the user must enter a control-
Z or SEOF, then a carriage return).

If an error occurs (ISTAT is not zero), an error message will be written to the output
(MUNIT) if the message level (MLEVEL) is one or greater. The messages contain the
pathname, and information about the error. A debug trace may be activated by setting the
message level to 7 (or above) with subroutine ZSET.

Example:

C This program is initiated when a NWS weather summary is
C received. It calls a routine to retrieve the summary and
C place it into a temporary scratch file. ZSTEXT is then called
C to store the summary in a DSS file.
C

INTEGER IFLTAB(600)
CHARACTER CTEMP*64, CNAME*64, CPATH*80
CHARACTER CLOC*32, CDATE*8, CTIME*8

C
C

CALL ATTACH (5, 'INPUT', 'STDIN', 'S-O', CTEMP, ISTAT)
CALL ATTACH (6, 'OUTPUT', 'STDOUT', ' ', CTEMP, ISTAT)
CALL ATTACH (0, 'DSSFILE', ' ', 'NOP', CNAME, ISTAT)
CALL ATTACH (8, 'SCRATCH', 'SCRATCH2', ' 1, CTEMP, ISTAT)
CALL ATTEND

C
CALL ZOPEN (IFLTAB, CNAME, TSTAT)
IF (ISTAT.NE.0) STOP

C
C LOADSM will retrieve the latest summary received from the NWS,
C and place it in the file connected to u -.t 8. The location,
C date, and time, of the summary will also be returned.

CALL LOADSM (8, CLOG, CDATE, CTIME, IERR)
IF (IERR.NE.0) GO TO 900

C
CALL ZPATH ('NWS', CLOC, 'SUMMARY', CDATE, CTIME, ' ', CPATH,

* NPATH)
C

REWIND (UNIT-8)
CALL ZSTEXT (IFLTAB, CPATH, 8, HEADU . NTAINES, ISTAT)
IF (ISTAT.NE.0) GO TO 910

Text Subroutines Page 6-9

ZSITIA

6.4 ZSTXTA - Store Text Data (From an Arramy

Purpose:

Subroutine ZSTXTA stores ASCII text from a character array into a DSS text record.
An alternative subroutine, ZSTEXT, stores text data from a file.

Calling Seauence:

CALL ZSTXTA (IFLTAB, CPATH, CARRAY, NLINES, HEADU, NHEADU,
* ISTAT)

Declarations:

INTEGER IFLTAB(600), NLINES, ISTAT, NHEADU
REAL HEADU (NHEADU)
CHARACTER CPATH*80, CARRAY(NLINES)*(*)

Areument Descriiption:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CPATH (Input) The pathname of the text record to store.

CARRAY (Input) A character array containing the text data to store. The array
must be padded with blanks (i.e., characters to the right of the end of
each line must be blanks). Trailing blanks are not stored. The length of
CARRAY is implied by FORTRAN (e.g., CARRAY(NLINES)* 132).

NLINES (Input) The number of lines in CARRAY to store.

HEADU (Input) The optional user header array. Information should be placed
in this array by subroutine ZSTFH. If no user header is to be stored,
this may be a dummy argument and NHEADU should be set to zero.

NHEADU (Input) The number of elements in the user header array HEADU. If
no header information is to be stored, set this to zero.

ISTAT (Output) A status parameter indicating the success of the operation. If
ISTAT is returned with zero, then the data was successfully stored. If
ISTAT is any other value, no data was stored. The possible values are:

ISTAT Description

0 The record was successfully stored.

-3 An internal buffer was not large enough to store the
record.

Page 6- 10 Text Subroutines

ZSTXTA

Remarks:

If an error occurs (ISTAT is not zero), an error message will be written to the output
(MUNIT) if the message level (MLEVEL) is one or greater. The messages contain the
pathname, and information about the error. A debug trace mny be actiyated by setting the
message level to 7 (or above) with subroutine ZSET.

Example:

C A flood forecast has been made. Read notes typed in by the
C forecaster and store in a text record.
C

INTEGER IFLTAB(600), IBF(2), IEF(2), ILF(2)
CHARACTER CPATH*80, CBASIN*32, CDATE*9, CTIME*4, CLINE*80
PARAMETER (KLINES-600)
CHARACTER CARRAY(KLINES)*132

C
CALL ZOPEN (IFLTAB, ...

C
WRITE (6, *) 'Enter Forecast Basin Name'
READ (5,20) CBASIN

20 FORMAT (A)
C

WRITE (6,*)'Enter Forecast Date and Time'
READ (5,20) CLINE
CALL PARSLI (CLINE, 2, NFIELD, IBF, IEF, ILF)
IF (NFIELD.NE.2) GO TO 900
CDATE - CLINE(IBF(l):IEF(1))
CTIME - CLINE(IBF(2):IEF(2))

C
WRITE (6,*)'Enter Forecast Notes.'
WRITE (6,*)'Enter END at the beginning of the line when done.'

C
C Read text from the forecaster. Write data to DSS when "END" is
C entered, or the number of lines reaches the dimension limit.

NLINES - 0
40 CONTINUE

NLINES - NLINES + 1
IF (NLINES.GT.KLINES) GO TO 100
READ (5,20) CARRAY(NLINES)
IF (CARRAY(NLINES)(l:3).EQ.'END') GO TO 100

GO TO 40
C
100 CONTINUE

CALL ZPATH (CBASIN, 'FORECAST NOTES', CDATE, CTIME, ' ', '

* CPATH, NPATH)
C
C Don't store the entry "END".

NLINES - NLINES - 1
CALL ZSTXTA (IFLTAB, CPATH, CARRAY, NLINES, HEADU, 0, ISTAT)
IF (ISTAT.NE.0) GO TO 900

Text Subroutines Page 6-11

7 Catalog and Tag Subroutines

The following chapter describes the subroutines that are used to access or generate the

catalog and condensed catalog, and the subroutines that utilize record tags.

The catalog file is a list of the record pathnames in a DSS file, along with their last

written date and time and the name of the program that wrote that record. The catalog is

usually sorted alphabetically by pathname parts. Each pathname has a record tag and a

reference number, either of which may be used in place of the pathname in several of the

utility programs. On most computers, the name given to the catalog file is the DSS file's

name with a "C" appended to it (e.g., On Unix "file.dssc'). On MS-DOS computers, the

catalog file has an extension of ".DSC".

A catalog reference number is the sequential number of a pathname in the catalog file.

These numbers are provided for quick interactive reference to a record from a utility

program. When a number is given, the utility program sequentially searches the catalog file

until it finds that number, then returns the associated pathname. Reference numbers are

temporary; they may change each time the catalog is updated.

A record tag is a one to eight character semi-permanent record identifier that is not

necessarily unique. It must begin with a non-numeric valid tag character. Valid tag

characters are the set of upper case characters, numbers, and the characters
!$%&()*+-.:;<>?[]{)\]~. The characters@# can also be used, butare

discouraged because they conflict with other uses. Invalid tag characters are the set of lower

case characters, the space character, control characters (including the null character), the

characters , / = and the "delete" character.

Tags can be set by the user, or can be set according to a scheme based on the parts of

the pathname. For example, a scheme might cause a data record of observed flow with a "B

part" of NATP to have a tag of NATP-OF. The default tag is the letter "T" followed by the
"sequence number" of the record (the number of new records written to the file). Tag(s)

may be used in place of pathnames in several DSS programs. If more than one pathname has

the same tag, only the first one found will be used.

A special catalog, called a "condensed catalog", is useful primarily for time series data.

In this type of catalog, pathname parts are listed in columns, and pathnames for time series

data, which differ only by the date (D part), are referenced with just one line. Repeating

parts are replaced by dashes for easier reading. On most computers, the name given to the

condensed catalog file is the name of the DSS file with the letter "D" appended to it (e.g., On

Catalog and Tag Subroutines Page 7-1

Unix "file.dssd"). On MS-DOS computers, the condensed catalog file has an extension of

".DSDI.

Subroutine ZOPNCA opens "%e catalog file, and determines if a valid catalog exists in

that file. ZCAT generates a new catalog (and the optional condensed catalog), and can also

obtain pathnames from a current catalog based on selective pathnane parts (e.g., all

pathnames with a "C" part of "FLOW"). A program may read pathnames from the catalog

file with subroutine ZRDCAT, or read pathnames based on their reference number with

ZRDPAT.

If a record's tag is known, ZTAGPA will retrieve its pathname using internal DSS

tables, usually quicker than reading it from the catalog file. Subroutine ZSTAGS will set the

tagging scheme to be used for new records stored in a DSS file. A single record tag may be

changed by ZRETAG. All tags within a DSS file may be changed according the tagging

scheme by subroutine ZRTALL.

These subroutines are usually used only by utility programs. Two extensive examples

of these subroutines are provided at the end of this section.

Page 7-2 Catalog and Tag Subroutines

ZOPNCA

7.1 ZOPNCA - Open a Catalog File

Puripose:

ZOPNCA opens a DSS file's catalog file. If the catalog file does not exist, ZOPNCA
can create it. If the file does exist, ZOPNCA returns the number of records in the catalog.
ZOPNCA will also open the condensed catalog file, if desired.

Calling Seouence:

CALL ZOPNCA (CDSSFI, ICUNIT, LGENCA, LOPNCA, LCATLG,
* ICDUNT, LGENCD, LOPNCD, LCATCD, NRECS)

Declarations:

CHARACTER CDSSFI*64
INTEGER ICUNIT, ICDUNT, NRECS
LOGICAL LGENCA, LOPNCA, LCATLG, LGENCD, LOPNCD, LCATCD

On MS-DOS microcomputers, NRECS must be INTEGER*4:

INTEGER*4 NRECS

Argument DescriDtion:

CDSSFI (Input) The name of the DSS file whose catalog file is to be opened.

ICUNIT (Input) The unit number to open the catalog file with. (Most DSS
utility programs use unit 12 for the catalog file).

LGENCA (Input) A logical flag indicating whether the catalog file should be
created if it does not exist. When set to .TRUE., the file will be
created.

LOPNCA (Output) A logical variable indicating the status of the open. LOPNCA
will be .TRUE. 1f ý.he catalog file was successfully opened. If the file
could not be opened, LOPNCA will be set to .FALSE..

LCATLG (Output) A logical variable returned as .TRUE. if the file contains a
valid catalog. If LCATLG is .FALSE., ZCAT should be called to
generate a new catalog of the DSS file.

ICDUNT (Input) The unit number to open the condensed catalog file with. (Most
DSS utility programs use unit 13 for this file).

LGENCD (Input) A logical flag indicating whether the condensed catalog file
should be created if it does not exist. When set to .TRUE., the file will
be created.

Catalog and Tag Subroutines Page 7-3

ZOPNCA

LOPNCD (Output) A logical variable indicating the status of the condensed
catalog open. LOPNCD will be -TRUE. if the condensed catalog file
was successfully opened. If the file could not be opened, LOPNCD will
be set to .FALSE..

LCATCD (Output) A logical variable returned as .TRUE. if the condensed catalog
file contains a valid (condensed) catalog.

NRECS (Output) The number of records in the (regular) catalog file. This is
the number shown in the catalog header.

Remarks:

Pathnames may be obtained from the catalog file with subroutine ZRDCAT, which is a
general catalog reading routine, or by subroutine ZRDPAT, which obtains pathnames based
on their reference number. If the tag of the pathname desired is known, subroutine
ZTAGPA should be called to obtain the pathname.

The condensed catalog is designed primarily for DSS files with time series data
(although it may be used with any type of record). It does not need to be accessed, but
should be opened if it exists. If it does exist, it is typically updated whenever a new
complete catalog is made (it does not require much additional computer time). The
condensed catalog is for display purposes only; pathnames cannot be read from it.

A comprehensive example of ZOPNCA is provided at the end of this section.

Example:

CHARACTER CDSSFI*64
LOGICAL LOPNCA, LCATLG, LGENCD, LOPNCD, LCATCD
INTEGER*4 NRECS

C
C Open DSS file, etc.
C
C Assume COPT contains commanld options. IF COPT contains
C a "C" (e.g., CA.C), get the condensed catalog.

IF (INDEX(COPT,'C').GT.0) THEN
LGENCD - .TRUE.

ELSE
LGENCD - .FALSE.

ENDIF
C
C Don't open the catalog if it is already opened (unless we
C want a condensed catalog, and it is not yet opened).

IF ((.NOT.LOPNCA).OR.(LGENCD.AND.(.NOT.LOPNCD))) THEN
CALL ZOPNCA (CDSSFI, 12, .TRUE., LOPNCA, LCATLG, 13,

* LGENCD, LOPNCD, LCATCD, NRECS)
ENDIF

C
IF (.NOT.LOPNCA) GO TO 900
IF (.NOT.LCATLG) CALL ZCAT (...

Page 7-4 Catalog and Tag Subroutines

ZCAT

7.2 ZCAT - Catalog a DSS File

Purpose:

ZCAT generates a catalog (or listing) of the record pathnames in a DSS file. The
catalog may be sorted by pathname parts. ZCAT can create a selective catalog by matching
pathname parts. The selective catalog can be created from a current catalog (which is much
more efficient than generating a new catalog), or directly from the DSS file. ZCAT can also
produce an optional condensed catalog when generating a new catalog. The catalog files
must be opened externally to ZCAT by subroutine ZOPNCA.

Calling Seouence:

CALL ZCAT (IFLTAB, ICUNIT, ICDUNT, INUNIT, CINSTR,
* LABREV, LSORT, LCDCAT, NRECS)

Declarations:

INTEGER IFLTAB(600), ICUNIT, ICDUNT, INUNIT, NRECS
CHARACTER CINSTR*(*)
LOGICAL LABREV, LSORT, LCDCAT

On MS-DOS microcomputers, the number of records variable must be INTEGER*4:

INTEGER*4 NRECS

Argument Description:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call. -

ICUNIT (Input) The unit number of file where the catalog is to be written. If a
new catalog is to be made, this should be the unit number of the catalog
file. If a selective catalog is to be produced from an existing catalog,
this unit should probably be attached to a scratch file.

ICDUNT (Input) The unit number of the condensed catalog file. If ICDUNT is
set to zero, ZCAT will not generate a condensed catalog.

INUNIT (Input) The input catalog unit number. If a new catalog is to be
made, this must be set to zero. If a selective catalog is to be produced
from an existing catalog, this is the unit number of the existing catalog.
If INUNIT is non-zero, the DSS file will not be cataloged.

CINSTR (Input) A character string containing any instructions for generating the
catalog, such as the sort order or selective pathname parts. For example,
if CINSTR is 'O=FB, C=FLOW', the catalog will be sorted in the
pathname part order of FBACED, and only those pathnames with a C
part of "FLOW" will be cataloged. CINSTR is usually a portion of the
input line of the program. If no special instructions are given, set this
to blank (' ').

Catalog and Tag Subroutines Page 7-5

ZCAT

LABREV (Input) A logical flag indicating whether an abbreviated catalog should
be produced. If set to .TRUE., an abbreviated catalog will be genera-
ted, otherwise the standard catalog will be produced.

ISORT (Input) A logical flag indicating whether the pathnames should be
sorted. When LSORT is set to .TRUE., the pathnames are sorted (this
takes longer than an unsorted catalog).

LCDCAT (Output) A logical flag returned with .TRUE. if a condensed catalog
was produced.

NRECS (Output) The number of records cataloged. This number will be the
same as the reference number for the last pathname in the catalog file.

Remarks.

A description of the catalog and condensed catalog may be found in the "HECDSS
User's Guide and Utility Program Manuals%, Overview section. Additional information may
also be found in the DSSUTL documentation, located in the same publication. Information
about the selective catalog is located in Chapter 5 of the DSSUTL documentation.

The fastest catalog that can be generated is an unsorted abbreviated catalog. In this
procedure, pathnames are just copied from the internal DSS address tables to the catalog. In
a regular extended catalog, each record must be accessed to obtain the program name, date
and time, etc..

After the catalog (or condensed catalog) has been generated, it may be displayed on the
screen by reading directly from the catalog. ZCAT should not be used to display the catalog
on the screen (do not set ICUNIT to standard output).

Pathnames may be read from the catalog file with subroutine ZRDCAT, which is a
general catalog reading routine, or by subroutine ZRDPAT, which obtains pathnames based
on their reference number. If you desire to display an abbreviated catalog and a regular
catalog already exists, use subroutine ZRDPAT to read the pathnames from the catalog (see
the example at the end of this section). The condensed catalog is for display purposes only;
Pathnames cannot be read from it.

DSS uses the computer's native sorting algorithm (not its own). On MS-DOS com-
puters, the size of a file that can be sorted by the DOS sort function is 64,000 bytes. Thus,
larger files will not be able to be sorted. (The typical limit for sorting is between 1,000 and
2,000 records.) DOS also requires additional RAM for sorting. If this RAM is not available
(a large program or other memory resident programs are present), the catalog will not be
sorted.

Units 66, 67, 68, and 69 are used for sorting. On Harris computers, work files W2, W3,
Ul, and U2 are used for sorting (and their contents destroyed). On other computers the
files dsssort.in, dsssort.out, and dsssort.tmp are used then deleted.

The condensed catalog is an optional catalog designed primarily for time series data
(although it may be used with any record type). Generally, if the condensed catalog already
exists, it should be updated wnen a complete sorted catalog is produced. A condensed
catalog can only be made when the default sort order is used. (An abbreviated or complete
catalog can be used, and selective pathname parts may be specified).

Page 7-6 Catalog and Tag Subroutines

ZCAT

A status line with the percent complete can be displayed on the screen by setting
'CAST' to 'ON' with ZSET before calling ZCAT. The message unit (MUNIT) must be
connected to the screen to display a status line.

A "catalog map" may be generated by ZCAT when creating a new, catalog. A catalog
map is a listing ce the pathnames only (no title or reference numbers), which is useful for
creating a input file of pathnames for some programs. This option is initiated by setting the
map options in subroutine ZSET. The map file must be opened and its unit number passed
to ZSET through the 'MAPUNT" parameter, then the ZSET 'MAP' parameter must be set to
'ON'. The catalog map is only created when a new catalog is generated. Be sure to call
ZSET with 'MAP' set to 'OFF' after the map has been made.

A comprehensive example of ZCAT is provided at the end of this section.

Example 1:

INTEGER IFLTAB(600)
LOGICAL LCDCAT
INTEGER*4 NRECS

C
C Open the DSS file, etc.
C
C Open the catalog file.

CALL ZOPNCA (...
IF (.NOT.LOPNCA) GO TO 900

C
C If a condensed catalog may be made, set the unit number.

IF (LOPNCD) THEN
ICDUNT - 13

ELSE
ICDUNT - 0

ENDIF
C
C Generate a new catalog.

CALL ZCAT (IFLTAB, 12, ICDUNT, 0, ' ', .FALSE., .TRUE.,
* LCDCAT, NRECS)

IF (NRECS.EQ.0) GO TO 900

Catalog and Tag Subroutines Page 7-7

ZCAT

Examole 2:

C Search the DSS file for all pathnames
C with a "B" part of "SOUTH BRIDGE".

CHARACTER CPATH*80, CTAG*8
INTEGER*4 NRECS
LOGICAL LDUM

C
C Open the DSS file.

CALL ZOPEN (
C
C Use a scratch file for this catalog.

OPEN (UNIT-12, STATUS-'SCRATCH', ERR-900)
C
C Call ZCAT to obtain a scratch catalog of pathnames
C with a "B" part of "SOUTH BRIDGE". Make the catalog
C abbreviated and unsorted to get the pathnames quickly.

CALL ZCAT (IFLTAB, 12, 0, 0, 'B-SOUTH BRIDGE', .TRUE.,
* .FALSE., LDUM, NRECS)

IF (NRECS.EQ.0) GO TO 920
C

Now process these pathnames.
REWIND (UNIT-12)

20 CONTINUE
C Read a pathname.

CALL ZRDCAT (12, .TRUE., 0, CTAG, IDUM, CPATH, NPATH, NFOUND)
C Have we read all the pathnames?

IF (NFOUND.EQ.0) GO TO 800
C
C Process the pathname.

CALL PROCES (CPATH)
C Get the next one.

GO TO 20

Page 7-8 Catalog and Tag Subroutines

IRDCAT

7.3 ZRDCAT - Read Pathnames from a Catalog Mle

ZRDCAT reads pathnames from a catalog file. All the pathnames in the catalog may
be read, or pathnames may be obtained based on their record tags. ZRDCAT can return
multiple pathnames in a single call, if desired.

This routine is frequently used by programs to obtain pathnames for computation or
utility purposes. If the pathnames are to be displayed on the screen, subroutine ZRDPAT is
preferable. If the tag of a record is known, subroutine ZTAGPA will usually obtain its
pathname faster than ZRDCAT can.

Calling Seauence:

CALL ZRDCAT (ICUNIT, LALL, IOUNIT, CTAGS, NDIM,
* CPATHS, NPATHS, NFOUND)

Declarations:

INTEGER IGUNIT, IOUNIT, NDIM, NPATHS(NDIM), NFOUND
CHARACTER CTAGS(NDIM)*8, CPATHS(NDIM)*80
LOGICAL LALL

Argument Description:

ICUNIT (Input) The unit number of the catalog file (from ZOPNCA).

LALL (Input) A logical variable that, when set to .TRUE., indicates all of the
pathnames should be read from the catalog file.- Under this condition,
one pathname at a time is returned. NFOUND will be set to one until
the end of the catalog is reached, at which point it will be set to zero. If
LALL is .FALSE., then ZRDCAT will search for pathnames according
to the tags given in CTAGS.

IOUNIT (Input) If desired, the pathnames can be written to a file instead of
returned in the CPATHS array, when LALL is set to .FALSE.. IOUNIT
is the unit number of this file (which must be opened prior to calling
ZRDCAT). If the pathnames are to be returned in the variable
CPATHS, set this to zero.

CTAGS (Input-Output) If LALL is set to .TRUE., then CTAGS will be
returned with the tag corresponding to the pathname read. If LALL is
.FALSE., then CTAGS should be a character array (or a single character
variable) containing the tags of the pathnames to read.

NDIM (Input) If LALL is .FALSE., this is the number of tags in CTAGS to
search for, and must also be the dimension of CTAGS, CPATHS, and
NPATHS. If LALL is set to .TRUE., this argument is ignored (only one
pathname will be returned at a time).

Catalog and Tag Subroutines Page 7-9

ZRDCALT

CPATHS (Output) The pathname(s) retrieved. If LALL is .TRUE., this will
contain the single pathname read from the catalog. If LALL is
.FALSE., the first element of CPATHS will contain the pathname
corresponding to the tag in the first element of CTAGS. If a pathname
was not found for the corresponding tag, then that~element of CPATHS
will be blank filled. If IOUNIT is greater than zero, nothing will be
returned in this argument.

NPATHS (Output) The length of the pathname(s) retrieved in CPATHS. If the
pathname for the tag specified could not be found, then the correspond-
ing element will be zero. NPATHS must be dimensioned to NDIM,
regardless if IOUNIT is greater than zero or not, as it is used for
internal bookkeeping. If LALL is .TRUE., NPATHS can be a single
integer variable.

NFOUND (Output) The number of pathnames obtained. If LALL is .FALSE.,
then this is the number of pathnames returned in the array CPATHS. If
LALL is .TRUE., then NFOUND will be set to one until the end of the
catalog file is reached (and then it will be set to zero).

Remarks

ZRDCAT is usually used when a program needs to read pathnames from the catalog
file for processing. If pathnames are to be displayed on the screen, where reference
numbers are used, subroutine ZRDPAT should be called instead. Although ZRDCAT will
obtain pathnames based on their tags, subroutine ZTAGPA will obtain a pathname from a
tag more efficiently than ZRDCAT can.

If several pathnames are to be searched for based on their tags, it is much more
efficient to pass all the tags to ZRDCAT in the CTAGS array, than to call ZRDCAT once
for each tag. If duplicate tags exist (for different pathnames), the pathname corresponding
to the first matching tag is returned.

When IOUNIT is set greater than zero, ZRDCAT will write a sequence number (not the
catalog reference number), the record tag, and the pathname. The format
(16,2X,A8,4X,A80) is used.

ZRDCAT rewinds the catalog before accessing it except for subsequent calls when
LALL is .TRUE.. However, if LALL is .TRUE. and ZRDCAT does not reach the end of
the catalog, the catalog file must be rewound before calling ZRDCAT again. (Call
ZRDCAT until NFOUND returns 0, or rewind the catalog before using it the next time.)

Page 7-10 Catalog and Tag Subroutines

ZMDCAT

C Search the catalog file for pathnames
C with a "B" part of "SOUTH BRIDGE".

CHARACTER CPATH*80, CTAG*8
INTEGER IBPART(6), IEPART(6), ILPART(6)

C
C Open the DSS file, catalog file, etc.
C

20 CONTINUE
C Read a pathname.

CALL ZRDCAT (12, .TRUE., 0, CTAG, IDUX, CPATH, NPATH, NFOUND)
C Have we read all the pathnames from the catalog?

IF (NFOUND.EQ.0) GO TO 800
C Break it apart to get the B part.

CALL ZUPATH (CPATH, IBPART, IEPART, ILPART, ISTAT)
IF (ISTAT.NE.0) GO TO 900

C Check the B part.
IF (CPATH(IBPART(2):IEPART(2)).EQ.'SOUTH BRIDGE') THEN

CALL PROCES (CPATH)
ENDIF
GO TO 20

Example 2:

C We have 3 tags. Obtain their pathnames from the catalog.
CHARACTER CTAGS(3)*8, CPATHSS(3)*80
INTEGER NPATHS(3)

C
C Open DSS file, catalog file, etc.
C
C Set the CTAGS array.

CTAGS(1) - 'T312'
CTAGS(2) - 'SB-FLOW'
CTAGS(3) - 'SB-PREC'

C
C Read the pathnames.

CALL ZRDCAT (12, .FALSE., V, CTAGS, 3, CPATHS, NPATHS, NFOUND)
C
C Print the pathnames.

IF (NFOUND.EQ.0) THEN
WRITE (6,*) 'No pathnames found matching the tags given.'

ELSE
DO 40 1-1,3
IF (NPATHS(I).GT. 0) WRITE (6,20)CTAGS(I), CPATHS(I) (I:NPATHS (I))

20 FORMAT (' Tag: ',A,'; Pathname: ',A)
40 CONTINUE

ENDIF

Catalog and Tag Subroutines Page 7-11

7RDCAT

C Get tags from a command line, then obtain their pathnames from
C the catalog and place them in a scratch file for later processing.

CHARACTER CTAGS(20)*8, CDUM*l, CLINE*80
INTEGER NPATHS(20), IBF(20), IEF(20), ILF(20)

C

C Open DSS file, catalog file, etc.
C
C Get the tags.

WRITE (6,*)'Enter Record Tags'
READ (5,20) CLINE

20 FORMAT (A)
CALL PARSLI (CLINE, 20, NFIELD, IBF, IEF, ILF)
DO 40 I-I,NFIELD

CTAGS(I) - CLINE(IBF(I):IEF(I))
40 CONTINUE

C
C Open a scratch file.

OPEN (UNIT-15, STATUS-'SCRATCH', ERR-900)
C
C Read the pathnames.

CALL ZEDCAT (12, .FALSE., 15, CTAGS, NFIELD, CDUM, NPATHS, NFOUND)
C

C At some later point, get the pathnames and process.
CHARACTER CTAG*8, CPATH*80

C
REWIND (UNIT-15)
DO 120 I-1,NFOUND

READ (15, 110, END-800) J, CTAG, CPATH
110 FORMAT (16,2X,A8,4X,A)

CALL PROCES (CTAG, CPATH)
120 CONTINUE

Page 7-12 Catalog and Tag Subroutines

ZRDPAT

7.4 ZRDPAT - Read a Pathname from a Cataloe File by Reference Number

Purrme:

ZRDPAT searches for a pathname from a catalog file according to the pathname's
reference number. ZRDPAT may be used in a loop to obtain a set of pathnames, or used to
read a single pathname. If reference numbers are not used, subroutine ZRDCAT should be
called instead. If the record tag is known, call subroutine ZTAGPA.

Callina Seauence:

CALL ZRDPAT (ICUNIT, IPOS, INUHB, CTAG, CPATH, NPATH, LEND)

Declarations:

INTEGER ICUNIT, IPOS, INUMB, NPATH
CHARACTER CPATH*80, CTAG*8
LOGICAL LEND

On MS-DOS microcomputers, the position variables must be INTEGER*4:

INTEGER*4 IPOS, INUMB

Argument Description:

ICUNIT (Input) The catalog unit number (from ZOPNCA).

IPOS (Input-Output) A file position indicator used by ZRDPAT. When first
reading from the catalog, ICUNIT should be rewound and IPOS set to 0.
(The calling program must always set IPOS to 0 when the catalog is
rewound.)

INUMB (Input-Output) The catalog reference number of the pathname to read.
When the end of the catalog file is reached, INUMB will be returned
with the reference number of the last pathname in the catalog. If
INUMB is less than or equal to IPOS on input, ZRDPAT will return the
next pathname and its reference number from the catalog.

CTAG (Output) The record tag of the pathname read.

CPATH (Output) The pathname corresponding to the reference number
INUMB.

NPATH (Output) The number of characters in the pathname retrieved.

LEND (Output) A logical flag set to .TRUE. when the end of the catalog file
has been reached. No pathname will be returned when LEND is
.TRUE. (CPATH will be unchanged).

Catalog and Tag Subroutines Page 7-13

ZRDPAT

Remarks:

The catalog file must be rewound and IPOS set to zero before calling ZRDPAT to
retrieve a (or set of) pathname(s). ZRDPAT only can search for pathnames in a forward
direction; INUMB must always be greater than IPOS. Thus, if a sequejnce of reference
numbers for pathnames to be retrieved is "12, 18, 9, 20, then the catalog has to be rewound
and IPOS set to 0 after reading pathname 18 before pathname 9 will be found. It is more
efficient to sort the reference numbers in ascending order prior to calling ZRDPAT.

If INUMB is less than or equal to IPOS on input, ZRDPAT will read the next pathname
in the catalog and return its reference number as INUMB. Thus, the entire catalog file can
be read by rewinding the file, setting IPOS and INUMB both to zero, then calling ZRDPAT
until LEND is .TRUE.. In this case INUMB does not need to be reset by the program each
time ZRDPAT is called.

Example 1:

C Obtain the pathname that has the reference number 24.
C

CHARACTER CTAG*8, CPATH*80
INTEGER*4 IPOS, INUMB
LOGICAL LEND

C
CALL ZOPNCA (...

C
REWIND 12
IPOS - 0
INUMB- 24
CALL ZRDPAT (12, IPOS, INUMB, CTAG, CPATH, NPATH, LEND)

C If LEND is .TRUE., or INUMB is not 24, the pathname
C was not found.

IF ((LEND) .OR. (INUMB.NE.24) GO TO 900

Example 2:

C Read all the pathnames from the catalog.
C

REWIND 12
IPOS - 0
INUMB - 0

10 CONTINUE
CALL ZRDPAT (12, IPOS, INUMB, CTAG, CPATH, NPATH, LEND)
IF (LEND) GO TO 900
WRITE (6,20) INUMB, CTAG, CPATH(1:NPATH)

20 FORMAT (lX,16,2X,A,2X,A)
GO TO 10

Page 7-14 Catalog and Tag Subroutines

ZRDPAT

Example 3:

C Read the set of pathnames with the reference numbers of
C 10 through 60.
C

REWIND 12
IPOS - 0
INUMB - 9

10 CONTINUE
INUMB - INUMB + 1
CALL ZRDPAT (12, IPOS, INUMB, CTAG, CPATH, NPATH, LEND)
IF (LEND) GO TO 900
WRITE (6,20) INUMB, CTAG, CPATH(1:NPATH)

20 FORMAT (IX,16,2X,A,2X,A)
IF (INUMB.LT.60) GO TO 10

Example 4:

C Read the set of pathnames whose reference numbers are
C contained in the array NUMBS (e.g., 8, 12, 15, 9, 20, 13).
C

REWIND 12
IPOS - 0
DO 20 I-1,JNUMBS

INUMB - NUMBS(I)
C Are the numbers in ascending order?
C If not, rewind the catalog and reset IPOS.

IF (INUMB.LE.IPOS) THEN
REWIND 12
IPOS - 0

ENDIF
CALL ZRDPAT (12, IPOS, INUMB, CTAG, CPATHli NPATH, LEND)
IF (LEND) GO TO 900
WRITE (6,10) INUMB, CTAG, CPATH(I:NPATH)

10 FORMAT (1X,16,2X,A,2X,A)
20 CONTINUE

Catalog and Tag Subroutines Page 7-15

ZrAGPA

7.5 ZTAGPA - Get Pathnames from TaM

Purpose:

Given a record tag, or an array of tags, subroutine ZTAGPA obtains the corresponding
pathname(s). ZTAGPA searches through tables in the DSS file, not the catalog file, to find
the pathnames. ZTAGPA provides the fastest means of obtaining pathnames from tags.

Callina Seauence:

CALL ZTAGPA (IFLTAB, IOUNIT, CTAGS, NDIM, CPATHS, NPATHS
* NFOUND)

Declarations:

INTEGER IFLTAB(600), IOUNIT, NDIM, NPATHS(NDIM), NFOUND
CHARACTER CTAGS(NDIM)*8, CPATHS(NDIM)*80

Aruument Description:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

IOUNIT (Input) If desired, the pathnames can be written to a file instead of
returned in the CPATHS array. IOUNIT is the unit number of this file
(which must be opened prior to calling ZTAGPA). If the pathname(s)
are to be returned in variable CPATHS, set this to zero.

CTAGS (Input) A character variable or array containing the tag(s) of the
pathnames to search for.

NDIM (Input) The number of tags in CTAGS to search for. CPATHS and
NPATHS must have a minimum dimension of NDIM.

CPATHS (Output) The pathname(s) retrieved. If more than one tag is specified,
then the first element of CPATHS will contain the pathname cor-
responding to the tag in the first element of CTAGS. If a pathname was
not found for a tag, that element of CPATHS will be blank filled. If
IOUNIT is greater than zero, this argument is ignored.

NPATHS (Output) The length of the pathname(s) retrieved in CPATHS. If the
pathname for the tag specified could not be found, then this element
will be zero. NPATHS must be dimensioned to NDIM, regardless if
IOUNIT is greater than zero or not (it is used for internal bookkeeping).

NFOUND (Output) The number of pathnames retrieved. If a pathname is not
found, this will be returned as zero.

Page 7-16 Catalog and Tag Subroutines

ZTAGPA

Remarks

If duplicate tags exist (the same tag is used for more than one pathname), the pathname
for that the first matching tag found is returned. ZTAGPA has no capability of returning
more than one pathname with an identical tag.

ZTAGPA first searches an internal tag table in the DSS file for matching tags. This
table is automatically updated whenever the file is squeezed or cataloged. If the tag is not
found in the internal table (the table has not been updated since the record was added), the
main pathname-hash table will be searched. If the tag is in the tag table, the pathname wiln
be retrieved very quickly. Otherwise the search will take somewhat longer. However, this
is usually faster than searching the catalog file.

If several pathnames are to be retrieved based on their tags, it is more efficient to pass
all the tags in the CTAGS array at one time than to call ZTAGPA for each tag.

When IOUNIT is greater than zero, ZTAGPA will write to that unit a sequence number
(not the catalog reference number), the tag, and the pathname in the format
(I6,2XA8,4X,A80).

Examole 1:

C Get the pathname corresponding to the tag "LA-FLOW".
CHARACTER CPATH*80, CTAG*8

C
C Open the DSS file, etc.
C CALL ZOPEN (...

C
CTAG - 'LA-FLOW'
CALL ZTAGPA (IFLTAB, 0, CTAG, 1, CPATH, NPATH, NFOUND)

C Did we find it?
IF (NFOUND.EQ.O) GO TO 800

C Yes, process it.
CALL PROCES (CPATH, NPATH)

Example 2:

C We have 3 tags. Print their pathnames.
CHARACTER CTAGS(3)*8, CPATHS(3)*80
INTEGER NPATHS(3)

C
C Open the DSS file, etc.
C CALL ZOPEN (
C
C Set the CTAGS array.

CTAGS(l) - 'T312'
CTAGS(2) - 'SB-FLOW'
CTAGS(3) - 'SB-PREC'

C
C Obtain the pathnames.

CALL ZTAGPA (IFLTAB, 0, CTAGS, 3, CPATHS, NPATHS, NFOUND)

Catalog and Tag Subroutines Page 7-17

ZTAGPA

C Print the pathnames.
IF (NFOUND.EQ.0) THEN

WRITE (6,*) 'No pathnames found matching the tags given.'
ELSE

DO 40 1-1,3
IF(NPATHS(I).GT.0)WRITE(6,20)CTAGS(I),CPATHS(I)(1:NPATHS(I))

20 FORMAT (' Tag: ',A,'; Pathname: ',A)
40 CONTINUE

ENDIF

Example 3:

C Get tags from a command line. Retrieve their pathnames
C and place them in a scratch file for later processing.

CHARACTER CTAGS(20)*8, CDUM*1, CLINE*80
INTEGER NPATHS(20), IBF(20), IEF(20), ILF(20)

C
C Open the DSS file, etc.
C CALL ZOPEN (...

C
C Get the tags.

WRITE (6,*)'Enter Record Tags'
READ (5,20) CLINE

20 FORMAT (A)
CALL PARSLI (CLINE, 20, NFIELD, IBF, IEF, ILF)
DO 40 I-l,NFIELD

CTAGS(I) - CLINE(IBF(I):IEF(I))
40 CONTINUE

C
C Open a scratch file.

OPEN (UNIT-15, STATUS-'SCRATCH', ERR-900)
C
C Get the pathnames.

CALL ZTAGPA (IFLTAB, 15, CTAGS, NFIELD, CDUM, NPATHS, NFOUND)
C

C At some later point, get the pathnames and process.
C

CHARACTER CTAG*8, CPATH*80
REWIND (UNIT-15)
DO 120 I-l,NFOUND

READ (15, 110, END-800) J, CTAG, CPATH
110 FORMAT (16,2X,A8,4X,A)

CALL PROCES (CTAG, CPATH)
120 CONTINUE

Page 7-18 Catalog and Tag Subroutines

ZRETAG

7.6 ZRETAG - Change a Record Tag

Purpose:

Subroutine ZRETAG changes the tag of a single existing record. A new record's tag
may be set by subroutine ZSET.

CallinE Seouence:

CALL ZTAGPA (IFLTAB, CPATH, NPATH, CTAG, LFOUND)

Declarations:

INTEGER IFLTAB(600), NPATH
CHARACTER CPATH*80, CTAG*8
LOGICAL LFOUND

Argument Descriotion:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CPATH (Input) The pathname of the record whose tag is to be changed.

NPATH (Input) The number of characters in CPATH.

CTAG (Input) The new tag for the record. The tag must be left justified and
blank padded.

LFOUND (Output) A logical flag set to .TRUE. if the record exists and was
re-tagged. If the record does not exist, LFOUND is set to .FALSE..

Remarks:

ZRETAG ignores any file tagging scheme, and sets the tag to that provided. The
entire file may be re-tagged using the file's tagging scheme by calling subroutine ZRTALL.

Be sure that the new tag meets the tag requirements discussed at the beginning of this
chapter.

Catalog and Tag Subroutines Page 7-19

ZSTAGS

7.7 ZSTAGS - Set the Tag Scheme for a DSS file

purtxose:

ZSTAGS sets or changes a DSS file's default tagging scheme. The scheme is set by a
string that identifies the characters of pathname parts to make up the tags. A further
description is given below in remarks.

Callin2 Seauence:

CALL ZSTAGS (IFLTAB, CSCHEK, ISTAT)

Declarations:

INTEGER IFLTAB(600), ISTAT
CHARACTER CSCHEM*(*)

Argument Description:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CSCHEM (Input) A character string containing the tagging scheme to be set (e.g.,
"Bl,B2,...'). To clear the file's tag scheme (so that sequence numbers
will be used for tags), set CSCHEM to blank.

ISTAT (Output) A status parameter set to zero if no error occurred. If the
tagging scheme was not recognized, this variable will be returned as -1.

Remarks:

A file tag scheme generates tags based on characters from pathnames. A typical tag
might be the location name followed by part of the data parameter. For example, the
observed flow at location NATP might have a tag of *NATP-FO"; the barometric pressure
at FLD might be "FLD-BPr. Each character in the tag scheme is set by specifying the
pathname part letter (A, B, C, D, E, or F) followed by the character position number in that
part. Tag character identifiers must be separated by commas. When a character or symbol
without a character position is used, that character is inserted into the tag. For example, the
tag "NATP-FO" may be generated by the following scheme:

B1,B2,B3,B4,-,C1,F1

This generates a tag using the first through fourth characters of the B part, a dash, the first
character of the C part, then the first character of the F part. If no character corresponds to
the position given, that character is ignored.

It is also possible to use characters from the second word of a part by preceding the
part letter with an underscore " ". The tag "FLD-BP", from a pathname with a C part of
"BAROMETRIC PRESSURE", was created using the following scheme:

B1,B2,B3,-,CI,_Cl

Page 7-20 Catalog and Tag Subroutines

ZSTAGS

The underscore causes the first character of the second word to be counted as position one.
Words within a pathname are delimited by any of the following characters:

-@ + ; :<blank>

If there is not a second word for a part, that tag character is ignored.

Only one tag scheme may be set for a file.

Examnle:

INTEGER IFLTAB(600)
CHARACTER CSCHEM*20

C
C Open the DSS file, etc..
C

CSCHEK - 'B1,B2,B3,B4,-,GC,_Cl'
CALL ZSTAGS (IFLTAB, CSCHEM, ISTAT)

C
IF (ISTAT.NE.0) WRITE (6,20) CSCHEM

20 FORMAT Invalid tagging scheme provided: ',A)

Catalog and Tag Subroutines Page 7-21

ZITALL

7A8 ZRTALL - Change all Record Tagg in a DSS file

Purgose:

Subroutine ZRTALL changes all record tags in a DSS file according to the file's tag
scheme (set by ZSTAGS). If no tag scheme is set, the records are re-tagged according to the
current sequence number (e.g., T32).

Callina Seauence:

CALL ZRTALL (IFLTAB)

Declarations:

INTEGER IFLTAB (600)

Argument Descriotion:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

Remarks:.

Subroutine ZSTAGS is usually called prior to ZRTALL.

Page 7-22 Catalog and Tag Subroutines

7.9 Examnle of Obtaining Pathnames from References on a CommandLine

The following comprehensive example takes a program's input line and obtains the
pathnames identified by the user. The user may specify the pathname, a selective catalog
reference (e.g., "C=FLOW'), catalog reference numbers, record tags, or.*ALL". This
example is a complete subroutine, which may be obtained on floppy diskette from the HEC.

SUBROUTINE GETPAT (IFLTAB, CLINE)
C
C Get pathnames for processing (call PROCES).
C
C This subroutine takes a command litne, figures
C out what pathnames are referenced, then calls
C subroutine PROCES with those paths (one at a time).
C Example command lines are:
C TA /OHIO/PITTSBURGH/FLOW/OlJANl950/lDAY/OBS/
C TA 1, 29, 5-8, 3
C TA C-FLOW F-OBS
C TA T432, PITT-OF, T53
C TA ALL
C
C CLINE is the command line with the command removed.
C
C Written by Bill Charley, HEC, 1990.
C
C

PARAMETER (KTAGS-20)
CHARACTER CLINE*(*), CPATH*80, CTAG*8, CDSSFI*64
CHARACTER CPATHS (KTAGS)*80, CTAGS (KTAGS)*8
INTEGER IFLTAB(*), NPATHS(KTAGS), IBF(20), IEF(20), ILF(20)
INTEGER*4 IPOS, IBEG, IEND, ICOUNT, NRECS, IDUM
LOGICAL LEND

C
COMMON /LOGS! LOPNCA, LCATLG, LOPNCD, LCATCD
LOGICAL LOPNCA, LCATLG, LOPNCD, LCATCD

C
C
C Get the length of the command line.

CALL CHRLNB (CLINE, NLINE)
IF (NLINE.EQ.O) GO TO 900

C
C
C Was a regular pathname entered?

IF (CLINE(l:l).EQ.2/') THEN
CPATH - CLINE
CALL PROCES (CPATH)

C

Catalog and Tag Subroutines Page 7-23

C Was a reference to a catalog file made?
ELSE IF ((INDEX(CLINE(I:5),'-').NE.O).OR.(CLINE(I:3).EQ. 'ALL')

* .OR.(INDEX(123456789',CLINE(1:1)).GT.0)) THEN
C
C Yes. Be sure we have a catalog.

IF (.NOT.LOPNCA) THEN
C Get the name of the DSS file.

CALL ZINQIR (IFLTAB, 'NAME', CDSSFI, IDUM)
CALL ZOPNCA (CDSSFI, 12, .TRUE., LOPNCA, LCATLG, 13,

* .FALSE., LOPNCD, LCATCD, NRECS)
IF (.NOT.LOPNCA) GO TO 910

C If not catalogec produce a new complete catalog.
IF (.NOT.LCATLG) THEN

C Is a condensed catalog associated with this DSS file?
IF (LOPNCD) THEN

ICDUNT - 13
ELSE

ICDUNT - 0
ENDIF
CALL ZCAT (IFLTAB, 12, ICDUNT, 0, ' ', .FALSE.,

* .TRUE., LCATCD, NRECS)
IF (NRECS.LE.0) GO TO 930

ENDIF
ENDIF

C
C Check for a selective catalog reference.

IF (INDEX(CLINE(l:5),'-').NE.0) THEN
C Yes. Open a scratch file to place pathnames in.

OPEN (UNIT-14, STATUS-'SCRATCH')
REWIND 12

C Have ZCAT make a selective catalog from the original catalog.
CALL ZCAT (IFLTAB, 14, 0, 12, CLINE, .TRUE., .FALSE., LCATCD,

* NR�ECS)
IF (NRECS.LE.O) GO TO 900

C Read through the catalog.
20 CONTINUE

CALL ZRDCAT (14, .TRUE., 0, CTAG, 1, CPATH, NPATH, NFOUND)
C All done?

IF (NFOUND.EQ.0) THEN
CLOSE (UNIT-14)
GO TO 800

ENDIF
CALL PROCES (CPATH)
GO TO 20

C
C Were all pathnames specified?

ELSE IF (CLINE(1:3).EQ.'ALL') THEN
C Yes. Read all pathnames from the catalog.

40 CONTINUE
CALL ZRDCAT (12, .TRUE., 0, CTAG, 1, CPATH, NPATH, NFOUND)
IF (NFOUND.EQ.0) GO TO 800
CALL PROCES (CPATH)
GO TO 40

Page 7-24 Catalog and Tag Subroutines

C Was a catalog reference number given?
ELSE IF (INDEX('123456789',CLINE(1:I)).GT.0) THEN

C Yes. Parse the command line.
CALL PARSLI (CLINE, 20, NFIELD, IBF, IEF, ILF)

C
REWIND 12
IPOS - 0

C
C Get the reference number(s).

DO 80 I-1,NFIELD
C Is there a dash between two numbers (e.g., "5-8").

IDASH - INDEX (CLINE(IBF(I):IEF(I)),'-')
IF (IDASH.GT.0) THEN

C Yes. Find the beginning and ending number
IBEG - INTGR (CLINE, IBF(I), IDASH-1, IERR)
IF (IERR.NE.0) GO TO 920
IEND - INTGR (CLINE, IBF(I)+IDASH, ILF(I)-IDASH, IERR)
IF (IERR.NE.0) GO TO 920
IF (IBEG.GT.IEND) GO TO 920

ELSE
C No a single number. Make the end equal
C the beginning (e.g., 5-5).

IBEG - INTGR (CLINE, IBF(I), ILF(I), IERR)
IF (IERR.NE.0) GO TO 920
IEND - IBEG

ENDIF
C
C Now read the records.

IF (IBEG.LT.IPOS) THEN
REWIND 12
IPOS - 0

ENDIF
DO 60 ICOUNT-IBEGIEND

GALL ZRDPAT (12, IPOS, ICOUNT, CTAG, CPATH, NPATH, LEND)
IF (LEND) THEN

WRITE (6,*)'The reference number given is greater than',
* ' the number cataloged.'

GO TO 800
ENDIF
CALL PROCES (CPATH)

60 CONTINUE
80 CONTINUE

C
ENDIF

C
ELSE

C

Catalog and Tag Subroutines Page 7-25

C Must be Record Tags.
C Parse the command line.

CALL PARSLI (CLINE, 20, NFIELD, IBF, IEF, ILF)
C

IF (NFIELD.GT.KTAGS) NFIELD - KTAGS
C Copy the tags from the line into the CTAGS array.

DO 100 I-l,NFIELD
IF (ILF(I).GT.8) GO TO 950
CTAGS(I) - CLINi;(IBF(I):IEF(I))

100 CONTINUE
C
C Get the pathnames from the DSS file.

CALL ZTAGPA (IFLTAB, 0, CTAGS, NFIELD, CPATHS, NPATHS, NFOUND)
C
C Make sure that we found some pathnames.

IF (NFOUND.EQ.0) GO TO 940
IF (NFOUND.LT.NFIELD) THEN

WRITE (6, 120)
120 FORMAT (' *** Unable to Find Pathnames for the',

* ' Following Tag(s):')
DO 160 I-l,NFIELD

IF (NPATHS(I).EQ.0) WRITE (6, 140) CTAGS(I)
140 FORMAT (' Tag: ',A)
160 CONTINUE

ENDIF
C

DO 180 I-1,NFIELD
IF (NPATHS(I).GT.0) CALL PROCES (CPATHS(I))

180 CONTINUE
C

ENDIF
C
C

800 CONTINUE
RETURN

C
C
C Error Messages.

900 CONTINUE
WRITE (6,*)'*** No Pathnames Match the Parameters Specified ***'
GO TO 800

C
910 CONTINUE

WRITE (6,*)'*** Unable to access the catalog file ***'
GO TO 800

C
920 CONTINUE

WRITE (6,*)'*** Unrecognizable Catalog Reference Number Given'
GO TO 800

C

Page 7-26 Catalog and Tag Subroutines

930 CONTINUE
WRITE (6,*)'**** No Records Cataloged - Possible Empty File **'

GO TO 800
C

940 CONTINUE
WRITE (6,*)' *** No Pathnames Match the Tag(s) Specified ***'

GO TO 800
C

950 CONTINUE
WRITE (6,*)'*** Unrecognized Pathname Reference *'

GO TO 800
C

END

Catalog and Tag Subroutines Page 7-27

7.10 ExamUle of a Catalog Disglay Subroutine

The following is a comprehensive example of a subroutine that may be used by a
program to process DSS catalog display requests. These requests include displaying the
general catalog, the condensed catalog, and generating a new catalog with a variety of options.
It may be used in conjunction with the previous example (subroutine GETPAT). This
example is a complete subroutine, which may be obtained on floppy diskette from the HEC.

SUBROUTINE CATALG (IFLTAB, CIN, COPT)
C
C General DSS catalog functions.
C Display catalog, unless options indicate otherwise.
C On Input:
C CIN - Input command line with command removed (e.g., "C-FLOW").
C COPT - Command Options (parsed from command line):
C A: Abbreviated
C C: Condensed catalog
C F: Full (display all the catalog at once - don't pause)
C M: Catalog Map file
C N: Generate New catalog
C P: Send catalog to the printer
C S: Suppress catalog output
C U: Generate unsorted catalog (when new)
C
C Written by Bill Charley, HEC, 1990
C
C

CHARACTER CIN*(*), COPT*(*), CLINE*132, CPATH*80, CTAG*8
CHARACTER CDSSFI*64
INTEGER IFLTAB(*)
LOGICAL LSORT, LABBR, LGENCD, LEND
INTEGER*4 ICUR, IBEG, NREC, NORECS

C
COMMON /LOGS/ LOPNCA, LCATLG, LOPNCD, LCATCD
LOGICAL LOPNCA, LCATLG, LOPNCD, LCATCD

C
C
C

ICUNIT - 12
ICDUNT - 13

C
C Check if the catalog file has been opened yet, or a
C condensed catalog is requested and is unopened.

IF ((.NOT.LOPNCA).OR.
* ((.NOT.LOPNCD).AND.(INDEX(COPT,'C').GT.0))) THEN

C
C Condensed catalog requested?

IF (INDEX(COPT,'C').GT.O) THEN
LGENCD - .TRUE.

ELSE
LGENCD - .FALSE.

ENDIF

Page 7-28 Catalog and Tag Subroutines

C Get the name of the DSS file.
CALL ZINQIR (IFLTAB, 'NAME', CDSSFI, IDUM)

C Open the catalog file(s).
CALL ZOINCA (CDSSFI, ICUNIT, .TRUE., LOPNCA, LCATLG,

* ICDUNT, LGENCD, LOPNCD, LCATCD, NORECS)
C

IF (.NOT.LOPNCA) THEN
WRITE (6,*) ' *** Unable to Access the Catalog File ***'
GO TO 820

ENDIF
C

ENDIF
C
C
C Are we creating a new catalog?

IF (INDEX(COFT,'N').GT.O) LCATLG - .FALSE.
C Are we requesting a condensed catalog, and it does not exist?

IF ((.NOT.LCATCD).AND.(INDEX(COPT,'C').GT.0).AND.
* (LOPNCD)) LCATLG - .FALSE.

C
C Should the Catalog file be updated?

IF (LCATLG) THEN
CALL ZINQIR (IFLTAB, 'NREC', CLINE, NREC)
IF (NREC.NE.NORECS) THEN

WRITE (6,20) NREC, NORECS
20 FORMAT (/,' The Catalog File Needs to be Updated -',

* ' Current Number of Records in the DSS File:',15,/,
* ' Number of Records in the Catalog File: ',15,/)

ENDIF
ENDIF

C
C New option specified?

IF (INDEX(COPT,'N').GT.0) LCATLG - .FALSE.
IF ((.NOT.LCATCD).AND.(INDEX(COPT,'C').GT.0).AND.(LOPNCD))

* LCATLG - . FALSE.
C

REWIND ICUNIT
IF (LOPNCD) REWIND ICDUNT

C
C Should a new catalog be made?

IF (.NOT.LCATLG) THEN
C
C Check for 'Map' option.

IF (INDEX(COPT,'M').GT.O) THEN
OPEN (UNIT-MAPUNT, FILE-'T3', IOSTAT-ISTAT)
IF (ISTAT.EQ.0) THEN

WRITE (6,*)' Catalog Map file - T3'
CALL ZSET ('MAP', 'ON', I)
CALL ZSET ('MAPUNT', ' ', MAPUNT)

ELSE
WRITE (6,*)' Unable to Access the Catalog Map File T3.'

ENDIF
ENDIF

Catalog and Tag Subroutines Page 7-29

C Check for 'Unsorted' option.
IF (INDEX(COPT,'U').GT.O) THEN

LSORT - .FALSE.
IF (INDEX(COPT,'C').GT.0) THEN

WRITE (6,*)' *** Must Generate a SORTED catalog to produce',
' the condensed version.'

LSORT - .TRUE.
ENDIF

ELSE
LSORT - .TRUE.

ENDIF
C
C Check for 'Abbreviated' option.

IF (INDEX(COPT,'A').GT.O) THEN
IABBR - .TRUE.

ELSE
LABBR - .FALSE.

ENDIF
C
C Should we get a condensed catalog?

IF (.NOT.LOPNCD) ICDUNT - 0
C
C Now catalog the file.

CALL ZCAT (IFLTAB, ICUNIT, ICDUNT, 0, CIN, LABBR, LSORT,
* LCATCD, NORECS)

C
IF (INDEX(COPT,'M').GT.0) CLOSE (UNIT-MAPUNT)

C
C Successful catalog ?

IF (NORECS.LE.0) THEN
IF (INDEX(CIN(l:5),'-').GT.O) THEN

WRITE (6,*)'*** No Pathnames Match Parts Specified ***'
ELSE

WRITE (6,*)'*** No Records Cataloged: Empty File ***'
ENDIF
GO TO 820

ENDIF
C

LCATLG - . TRUE.
C

ENDIF
C

IF (INDEX(COPT,'S').GT.O) GO TO 800
C
C Now display the catalog file.

IUNIT - ICUNIT
C Do we want to look at the condensed catalog?

IF ((LCATCD).AND.(INDEX(COPT,'C').GT.0)) IUNIT - ICDUNT
REWIND IUNIT

C Set the number of lines to print on the screen at 22.
JLINE - 22

C Check for 'Full' option.
IF (INDEX(COPT,'F').GT.O) JLINE - 30000

Page 7-30 Catalog and Tag Subroutines

ICUR - 0
IBEG - 0

100 CONTINUE
C
C Check for abbreviated mode.

IF ((INDEX(COPT,'A').GT.O).AND.(INDEX(COPT,'C').EQ.0)) THEN
C

DO 140 I-1,JLINE
CALL ZRDPAT (IUNIT. ICUR, IBEC, CTAG, CPATH, NPATH, LEND)
IF (LEND) GO TO 800
WRITE (6,120) ICUR, CTAG, CPATH(1:NPATH)

120 FORMAT (IX,16,2X,A,2X,A)
140 CONTINUE

C
ELSE

C Long form, or condensed catalog.
DO 180 I-1,JLINE

READ (IUNIT, 150, END-800) CLINE
150 FORMAT (A)

CALL CHRLNB (CLINE, NIAST)
IF (NLAST.EQ.0) NLAST - 1
WRITE (6, 160) CLINE(1:NLAST)

160 FORMAT (lX,A)
180 CONTINUE

C
ENDIF

C
C Prompt user for next Screen of catalog or next command.

IF (ICUR.LT.NORECS) THEN
WRITE (6,*) 'Press Carriage Return To Continue,',

* ' or Enter New Command.'

READ (5,200) CIN
200 FORMAT (A)

CALL CHRLNB (CIN, NIN)
IF (NIN.EQ.0) GO TO 100

ENDIF
C

800 CONTINUE
C Done displaying pathnames - print file if option given.

IF (INDEX(COPT,'P').GT.0) CALL PRINTF (IUNIT, 'Catalog')
C

820 CONTINUE
RETURN

C
END

Catalog and Tag Subroutines Page 7-31

8 General Read / Write Subroutines

The following chapter describes the DSS subroutines for reading or writing individual

records. These subroutines should only be used for data that does not meet any of the

standard DSS conventions (time series data, paired data, or text data). Data stored by one of

these subroutines will not be recognized as a standard data type by the DSS programs.

However, the data may be tabulated by DSSUTL.

A pathname does not have to follow the DSS conventions, although it cannot be more

than 80 characters or less than 4 characters long. However, if it does not contain six parts

separated by slashes, DSSUTL will not be able to access the record.

The basic routine for reading a record is ZREAD, and for writing a record is ZWRITE.

These routines store or retrieve the user header array and the data array. The lengths of

these arrays are treated as short integer words for several computers (e.g., Harris, MS-

DOS). If floating point numbers are stored, then the array lengths need to be multiplied by

the number of short integer words per real word. On Unix workstations, all lengths are in

long integer words (INTEGER*4).

ZREADX and ZWRITX are extended versions of ZREAD and ZWRITE. These

subroutines will read or write an internal header array and the data compression array as

well as the user header and data arrays. The arrays in ZREADX and ZWRITX are all in

long integer words. There is more control with these subroutines than with ZREAD or

ZWRITE.

ZRDBUF and ZWRBUF can preform "buffered" reading or writing. These subroutines

can read or write a large amount of data in a single record with a relatively small data array.

This is accomplished by calling the subroutine multiple times with the same pathname to

store or retrieve the record. For example, 10,000 data values can be stored 500 at a time by

calling ZWRBUF 20 times. ZWRBUF has the additional capability of being able to store

data whose total number is unknown until the last call is made. For example, a program can
read data from an external file into a relatively small array, then call ZWRBUF when that

array becomes full, instead of having to read all the data into a large array and count the

number of data values before storing it.

General Read / Write Subroutines Page 8-1

ZREAD

&1 ZREAD - Read an Individual Record

Purpose:

ZREAD reads an individual record from a DSS file. It should be called only for data
that does not follow the standard DSS conventions. ZREAD returns the user header and the
data array as short integer words for Harris computers and MS-DOS computers. On other
computers (e.g., Unix) these arrays are in long integer words (INTEGER*4).

Callina Sequence:

CALL ZREAD (IFLTAB, CPATH, NPATH, IHEADU, NHEADU, IDATA,
* NDATA, IPLAN, LFOUND)

Declarations:

INTEGER NHEADU, NDATA, NPATH, IPLAN
INTEGER IFLTAB(600), IHEADU(NHEADU), IDATA(NDATA)
CHARACTER CPATH*80
LOGICAL LFOUND

Argument Description:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CPATH (Input) The pathname of the data to retrieve. This pathname does not
have to follow the DSS conventions. However, it cannot be greater than
80 characters or less than 4 characters long.

NPATH (Input) The number of characters in CPATH. Trailing blanks must be
excluded.

IHEADU (Output) The user header array.

NHEADU (Input-Output) The number of elements returned in the user header
array. On input, this should be the dimension of IHEADU. If IPLAN
is set to 1, then NHEADU will be returned with the actual number of
elements read. To have ZREAD not retrieve the user header, set this
variable to zero. NHEADU must be a variable.

IDATA (Output) The data array.

NDATA (Input-Output) The number of elements in the data array. As input,
this should be the dimension of IDATA. If IPLAN is set to 1, then this
will be returned with the number of data elements read. NDATA must
be a variable.

Page 8-2 General Read / Write Subroutines

ZREAD

IPLAN (Input) This argument indicates whether the NHEADU and NDATA
variables should be updated to the actual number of values read. If set
to one, NHEADU and NDATA will be updated. If set to any other
value, NHEADU and NDATA will not be changed.

LFOUND (Output) A logical status variable indicating if the record was found or
not. If LFOUND is returned .TRUE., then the record was retrieved. If
LFOUND is returned .FALSE., then the record does not exists not
found, and no data was retrieved.

Remarks:

The IDATA array may either be real or integer. The number of data elements returned
(NDATA) is given in integer words. On some computers (e.g., Harris, MS-DOS), two
integer words are required for each real word and NDATA must be modified to reflect this
(if real numbers are retrieved). The ninth word of the HECLIB common block "WORDS"
contains the number of single integer words per real word. By either multiplying or
dividing NDATA by this value, machine transportable code for retrieving real data can be
produced. An example using this common block follows.

Example:

C Retrieve the record named "/DATA SET 5/",
C (which contains floating point numbers).

INTEGER IFLTAB(600), IHEADU(lO0)
REAL RDATA(1000)
LOGICAL LFOUND

C
COMMON /WORDS/ IWORDS(10)

C
CALL ZOPEN (...

C
NDATA- 1000
NHEADU- 100

C
C The record contains real values, so change NDATA to
C reflect this. Element 9 in common block "WORDS"
C contains the number of short integer words in a
C long (real) word.

NDATA - NDATA * IWORD(9)
C

CALL ZREAD (IFLTAB, '/DATA SET 5/', 12, IHEADU, NHEADU,
* RDATA, NDATA, 1, LFOUND)
IF (.NOT.LFOUND) GO TO 900

C
C Change NDATA back to reflect real words.

NDATA - NDATA / IWORD(9)

General Read / Write Subroutines Page 8-3

ZRFADX

8.2 ZREADX - Read an Individual Record (Extended)

Purpose:

ZREADX reads an individual record from a DSS file. It not only returns the data and
user header arrays, but the internal header and the compression header as well. ZREADX
should only be called for data that does not follow the standard DSS conventions.

Calling Seauence:

CAL ZREADX (IFLTAB, CPATH, HEADI, KHEADI, NHEADI,
"* HEADC, KHEADC, NHEADC, HEADU, KHEADU, NHEADU, DATA,
"* KDATA, NDATA, IPLAN, LFOUND)

Declarations:

INTEGER IFLTAB(600), KHEADI, NHEADI, KHEADC, NHEADC
INTEGER KHEADU, NHEADU, KDATA, NDATA, IPMAN
REAL HEADI(KHEADI), HEADC(KHEADC), HEADU(KHEADU), DATA(KDATA)
CHARACTER CPATH*80
LOGICAL LFOUND

Argument Description:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CPATH (Input) The pathname of the data to retrieve. This pathname does not
have to follow the DSS conventions. However, it cannot be greater than
80 characters or less than 4 characters long. -

HEADI (Output) The internal header array. This array contains items such as
the units of the data.

KHEADI (Input) The dimension of HEADI. No more than KHEADI elements
will be retrieved.

NHEADI (Output) The number of elements returned in HEADI.

HEADC (Output) The data compression header array. This array contains
internal information on how the data is compressed.

KHEADC (Input) The dimension of HEADC. No more than KHEADC elements
will be retrieved.

NHEADC (Output) The number of elements returned in HEADC.

HEADU (Output) The user header array. This array usually may be decoded by
subroutine ZUSTFH.

Page 8-4 General Read / Write Subroutines

ZRFADX

KHEADU (input) The dimension of HEADU. No more than KHEADU elements
will be retrieved.

NHEADU (Output) The number of elements returned in HEADU.

DATA (Output) The data retrieved.

YDATA (Input) The dimension of the array DATA. No more than KDATA
values will be returned.

NDATA (Output) The number of elements returned in the data array.

IPLAN (Input) An internal DSS flag. Set to zero.

LFOUND (Output) A logical status variable indicating if the record was found or
not. If LFOUND is returned .TRUE., then the record was retrieved. If
LFOUND is returned .FALSE., then the record does not exist and no
data was retrieved.

Remarks:

The header and data arrays passed to ZREADX are treated as real arrays. They can be
integer arrays as well, but the number variables (KHEADI, NHEADI, etc.) must be
modified to reflect this on some computers. The ninth word of the HECLIB common block
"WORDS" contains the number of single integer words per real word. By dividing the
number variable by this value, machine transportable code for retrieving short integer data
can be produced.

General Read / Write Subroutines Page 8-5

ZRDBUF

8.3 ZRDBUF - Read an Individual Record in a Buffered Mode

Purnose:

ZRDBUF reads an individual record from a DSS file. It can, if desired, buffer the
data by reading a portion of the record at a time. This is useful when a large amount of
data is to be retrieved. The data array can be relatively small, and multiple calls to
ZRDBUF will retrieve all the data. ZRDBUF should only be called for data that does not
follow the standard DSS conventions.

Calling Seouence:

CALL ZRDBUF (IFLTAB, CPATH, HEADU, KHEADU, NHEADU, DATA, KDATA,
* NDATA, LEND, IPMAN, LFOUND)

Declarations:

INTEGER IFLTAB(600), KHEADU, NHEADU, KDATA, NDATA, IPLAN
REAL HEADU(KHEADU), DATA(KDATA)
CHARACTER CPATH*80
LOGICAL LEND, LFOUND

Argument Description:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CPATH (Input) The pathname of the data to retrieve. This pathname does not
have to follow the DSS conventions. However, it cannot be greater than
80 characters or less than 4 characters long. -

HEADU (Output) The user header array. If the number of elements stored is
greater than KHEADU, subsequent calls to ZRDBUF will read the
remainder of HEADU.

KHEADU (Input) The dimension of the array HEADU. No more than KHEADU
values will be returned at a time.

NHEADU (Output) The number of elements returned in the user header array.

DATA (Output) The data retrieved. If the number of elements stored is
greater than KDATA, then subsequent calls to ZRDBUF will return the
remainder of the data.

KDATA (Input) The dimension of the array DATA. No more than KDATA
values will be returned at a time.

NDATA (Output) The number of elements returned in the data array.

Page 8-6 General Read / Write Subroutines

ZRDBUF

LEND (Output) A logical variable that is returned .TRUE. if all the data
(including HEADU) has been read for this record. If LEND is
.FALSE., then subsequent call to ZRDBUF (with the same pathname)
will return more data.

IPLAN (Input) An internal DSS flag. Set to zero.

LFOUND (Output) A logical status variable indicating if the record was found or
not. If LFOUND is returned .TRUE., then the record was retrieved. If
LFOUND is returned .FALSE., then the record does not exist.

Remarks:

ZRDBUF may be called for a standard read, or a buffered read. For a buffered read,
ZRDBUF is called multiple times with the same pathname, until LEND is returned as
.TRUE.. An example of this follows.

The header and data arrays passed to ZRDBUF are treated as real arrays. They can be
integer arrays as well, but the number variables (KHEADU, NHEADU, KDATA, and
NDATA) must be modified to reflect this on some computers. The ninth word of the
HECLIB common block "WORDS" contains the number of single integer words per real
word. By dividing the number variable by this value, machine transportable code for
retrieving short integer data can be produced.

General Read / Write Subroutines Page 8-7

2ZDBUF

Example
C Retrieve data and print it.
C If more data exists than the size of the data array, call
C ZRDBUF several times to read all of it.
C

PARAMETER (KDATA-500, KHEADU-100)
INTEGER IFLTAB (600)
REAL DATA(KDATA), HEADU(KHEADU)
LOGICAL LEND, LFOUND
CHARACTER CPATH*80

C
C Open the DSS file, etc.
C

WRITE (6,*)'Enter Pathname'
READ (5,20) CPATH

C
20 CONTINUE

CALL ZRDBUF (IFLTAB, CPATH, HEADU, KHEADU, NREADU, DATA,
* KDATA, NDATA, LEND, 0, LFOUND)

C
IF (.NOT.LFOUND) THEN

WRITE (6,40) CPATH
40 FORMAT (' *** Record Not Found ***',/,' Pathname: ',A)

GO TO 900
ENDIF

C
DO 60 I-1,NHEADU

WRITE (6,*) HEADU(I)
60 CONTINUE

C
DO 80 I-l,NDATA

WRITE (6,*) DATA(I)
80 CONTINUE

C
IF (.NOT.LEND) GO TO 20

Page 8-8 General Read / Write Subroutines

ZWIrrE

8.4 ZWRITE - Write a Individual Record

Purpose:

ZWRITE writes an individual record to a DSS file. ZWRITE should only be called for
data that does not follow the standard DSS conventions. ZWRITE stores the user header and
the data array as short integer words for Harris computers and MS-DOS computers. On
other computers (e.g., Unix) these arrays are in long integer words (INTEGER*4).

Callint Seauence:

CALL ZWRITE (IFLTAB, CPATH, NPATH, IHEADU, NHEADU, IDATA,
* NDATA, IPLAN, LFOUND)

Declarations:

INTEGER NHEADU, NDATA, NPATH, IPLAN
INTEGER IFLTAB(600), IHEADU(NHEADU), IDATA(NDATA)
CHARACTER CPATH*80
LOGICAL LFOUND

Argument Description:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CPATH (Input) The pathname of the data to store. This pathname does not
have to follow the DSS conventions. However, if it does not contain six
parts separated by slashes, utility programs (e.g., DSSUTL) will not be
able to access the record. The pathname cannot be greater than 80
characters or less than 4 characters long.

NPATH (Input) The number of characters in CPATH. Trailing blanks must be
excluded.

IHEADU (Input) An array that contains any additional user information to store.
Generally, subroutine ZSTFH is called to prepare this array.

NHEADU (Input) The number of elements in IHEADU (in integer words).

IDATA (Input) The data to store. This may be either an integer array or a real
array.

NDATA iput) The number of elements in the data array to store (in integer
words). If the array is declared as REAL, this number should be
multiplied by the ninth element in the common block words, as
described under remarks.

General Read / Write Subroutines Page 8-9

IPLAN (Input) An argument indicating whether to write over existing data or

not

IPLAN Description

0 Always write the record to the file.

1 Only write the record if it new (i.e., it does not currently
exist).

2 Only write the data if the record already exists.

If IPLAN is set to 1 or 2, and that condition is not met, then an error
message will be written to the output (provided the message level is set
to two or greater).

LFOUND (Output) A logical status variable indicating if the record already
existed. If LFOUND is returned .TRUE., then the record existed, and
was written over (unless IPLAN was set to 1). If LFOUND is returned
.FALSE., then the record did not previously exist.

Remarks:

The data may be real or integer. The number of elements to store is in integer words.
On some compuiters (e.g., Harris, MS-DOS), two integer words are required for each real
word, and NDATA must be modified to reflect this. The ninth word of the HECLIB
common block "WORDS" contains the number of single integer words per real word. By
either multiplying or dividing NDATA by this value, machine transportable code for storing
real data can be produced. An example using this common block follows.

When a record is written, ZWRITE issues a message containing the pathname and
version number of the record if the message level is 3 or greater (the default is 3). If an
error occurs (such as IPLAN indicates only a new record may be written, and the record
already exists), then an error message will be given for a message level of 2 or greater. If a
fatal error occurs (e.g., there is no more disk space left), then an error message will be
written, regardless of the message level.

Page 8-10 General Read / Write Subroutines

ZWRrrE

Example

C Store a record named "/DATA SET 5/", (containing REAL data).
INTEGER IFLTAB(600)
REAL RDATA(1000)
LOGICAL LFOUND

C
COMMON /WORDS/ IWORDS(lO)

C

CALL ZOPEN (...

C
C Compute the data values (and place in array RDATA).
C
C
C The record contains real values, so change NDATA to
C reflect short integer words. Word 9 in common block
C "WORDS" contains the number of short (integer) words
C in a long (real) word.
C

NDATA - NDATA * IWORD(9)
C

CALL ZWRITE (IFLTAB, '/DATA SET 5/', 12, IHEADU, 0,
* RDATA, NDATA, 0, LFOUND)

General Read / Write Subroutines Page 8-11

ZWRMIX

8.5 ZWRITX - Write an Individual Record (Extended)

Purme:

ZWRITX writes an individual record to a DSS file. It will not only store the data and
the user header array, but will also store an internal header array and a data compression
header array. ZWRITX should only be called for data that does not follow the standard DSS
conventions.

Calling Seouence:

CALL ZWRITX (IFLTAB, CPATH, NPATH, HEADI, NHEADI,
"* HEADC, NHEADC, HEADU, NHEADU, DATA, NDATA, ITYPE,
"* IPLAN, ISTAT, LFOUND)

Declarations:

INTEGER IFLTAB(600), NPATH, NHEADI, NHEADC
INTEGER NHEADU, NDATA, ITYPE, IPLAN, ISTAT
REAL HEADI(NHEADI), HEADC(NHEADC), HEADU(NHEADU), DATA(NDATA)
CHARACTER CPATH*80
LOGICAL LFOUND

Argument Description:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CPATH (Input) The pathname of the data to store. This pathname does not
have to follow the DSS conventions. However, if it does not contain six
parts separated by slashes, utility programs (e.g., DSSUTL) will not be
able to access the record. The pathname cannot be greater than 80
characters or less than 4 characters long.

NPATH (Input) The number of characters in CPATH. Trailing blanks must 'e
excluded.

HEADI (Input) The internal header array. This array usually contains the data

units and similar information.

NHEADI (Input) The number of elements in HEADI.

HEADC (Input) The data compression array.

NHEADC (Input) The number of elements in HEADC.

HEADU (Input) The user header array. Generally, subrout.ne ZSTFH is called
to prepare this array.

NHEADU (Input) The number of elements in HEADU.

Page 8-12 General Read / Write Subroutines

zvh=a

DATA (Input) The data array.

NDATA (Input) The number of elements in the data array to store.

ITYPE (Input) The data type (set to zero).

IPLAN (Input) An argument indicating whether to write over existing data or
not

IPLAN Description

0 Always write the record to the file.

1 Only write the record if it new (i.e., it does not currently
exist).

2 Only write the data if the record already exists.

If IPLAN is set to 1 or 2, and that condition is not met, then an error
message will be written to the output (provided the message level is set
to two or greater).

ISTAT (Output) A status parameter indicating the success of the operation. If
ISTAT is returned with zero, then the data was successfully stored. The
possible values are:

ISTAT Description

0 Data stored.

-1 The record does not exist, and IPLAN was set to 2 (write
over existing records only).

-2 The record already exists, and IPLAN was set to 1 (do
not write over existing records).-

-10 An invalid pathname was given.

-Il An invalid number of data values (NDATA) was given.

-12 The DSS file has read access only.

LFOUND (Output) A logical status variable indicating if the record already
existed. If LFOUND is returned .TRLTE., then the record existed, and
was written over (unless IPLAN was set to 1). If LFOUND is returned
.FALSE., then the record did not previously exist.

Remarks:

The header and data arrays passed to ZWR1TX are treated as real arrays. They can be
integer arrays as well, but the number variables (NHEADI, etc.) must be modified to reflect
this for some computers. The ninth word of the HECLIB common block "WORDS" contains
the number of single integer words per real word. By multiplying the number variable by
this value, machine transportable code for storing short integer data can be produced.

General Read / Write Subroutines Page 8-13

ZWRrrX

When a record is written, ZWRITX issues a message containing the pathname and
version number of the record if the message level is 3 or greater (the default is 3). If an
error occurs (such as IPLAN indicates only a new record may be written, and the record
already exists), then an error message will be given for a message level of 2 or greater. If a
fatal error occurs (e.g., there is no more disk space left), then an error message will be
written, regardless of the message level.

Page 8-14 General Read / Write Subroutines

ZWRBUF

8.6 ZWRBUF - Write an Individual Record in a Buffered Mode

ZWRBUF writes an individual record to a DSS file. It can, if desired, buffer the data
by storing a portion of it at a time. This is useful when a large amount of the data is stored.
The data array supplied to ZWRBUF can be relatively small, and multiple calls to the
subroutine will store all the data. ZWRBUF should only be called for data that does not
follow the standard DSS conventions.

Calling Seauence:

CALL ZWRBUF (IFLTAB, CPATH, HEADU, NHEADU, NTOTH, DATA, NDATA,
* NTOTD, LEND)

Declarations:

INTEGER IFLTAB(600), NHEADU, NTOTH, NDATA, NTOTD
REAL HEADU(NHEADU), DATA(NDATA)
CHARACTER CPATH*80
LOGICAL LEND

Argument Description:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CPATH (Input) The pathname of the data to store. This pathname does not
have to follow the DSS conventions. However, if it does not contain six
parts separated by slashes, utility programs (e.g, DSSUTL) will not be
able to access the record. The pathname cannot be greater than 80
characters or less than 4 characters long.

HEADU (Input) The user header array. Generally, subroutine ZSTFH is called
to prepare this array.

NHEADU (Input) The number of elements in HEADU for this call. If the header
array needs to be buffered, then this value will be less than NTOTH,
and subsequent calls will store the remainder of the array.

NTOTH (Input) The total number of elements to store in the header area. This
is usually equal to NHEADU, but will be greater if the header is to be
buffered.

DATA (Input) The data array.

NDATA (Input) The number of elements in DATA for this call. If the data
array needs to be buffered, then this value will be less than NTOTD,
and subsequent calls will store the remainder of the array.

General Read / Write Subroutines Page 8-15

ZWiBUF

NTOTD (Input) The total number of elements to store in the data area. If this is
not a buffered write, then NTOTD will equal NDATA. If the write is
buffered, then this will be the total number of data values to be stored.
If the amount of data to store is unknown, then set this variable to -1,
and set LEND to indicate when all of the data has.been stored. See
remarks for a further explanation.

LEND (Input) A logical flag indicating the end of the data set. If the total
number of data values to store is unknown when ZWRBUF is first
called (NTOTD set to -1), then LEND should be set to .FALSE. until
ZWRBUF is called with the last set of data. If NTOTD is not minus
one, then this argument is ignored.

Remarks:

ZWRBUF may be called for a standard single write, or a buffered write. For a
buffered write, ZWRBUF is called multiple times with the same pathname, until all the data
is stored. If the write is to be unbuffered, set NTOTD equal to NDATA.

ZWRBUF can store data where the number of data values to be stored is unknown. To
use the subroutine in this fashion, set NTOTD to minus one and LEND to .FALSE., then
call ZWRBUF as many times as needed to store the data. On the last call for that data set,
set LEND to .TRUE.. When used this way, the data is always stored at the end of the file,
which will produce inactive space if the record already existed. NTOTH must always be
specified.

The header and data arrays passed to ZWRBUF are treated as real arrays. They can be
integer arrays as well, but the number variables (KHEADU, etc.) must be modified to
reflect this for some computers. The ninth word of the HECLIB common block "WORDS"
contains the number of single integer words per real word. By multiplying the number
variable by this value, machine transportable code for retrieving short integer data can be
produced.

Page 8-16 General Read / Write Subroutines

ZWRBUF

Examole 1:

PARAMETER (KHEADU-100, KDATA-500)
INTEGER IFLTAB(600)
REAL HEADU(KHEADU), DATA(KDATA)
CHARACTER CPATH*80
LOGICAL LEND, LDTJM

C
C Open the DSS file, etc..
C
C
C Store 400 values with ZWRBUF in a non-buffered write.

READ (5,20) CPATH
20 FORMAT (A)

C
C Get the data values.

CALL DATVAL (DATA, HEADU)
NHEADU- 50
NDATA - 400
CALL ZWRBUF (IFLTAB, CPATH, HEADU, NHEADU, NHEADU,

* DATA, NDATA, NDATA, LDUM)
C

Example 2:

C Store 10,000 values a buffered mode, where the total
C number of data values is known.

READ (5,20) CPATH
C

NTOTD- 10000
ICOUNT - 0

C
DO 100 1-1,10000

ICOUNT - ICOUNT + 1
C Get a data value.

CALL GETVAL (DATA(ICOUNT))
C If we have reached the array dimension limit, store the data.

IF (ICOUNT.EQ.KDATA) THEN
CALL ZWRBUF (IFLTAB, CPATH, HEADU, 0, 0,

* DATA, ICOUNT, NTOTD, LDUM)
C Reset the counter.

ICOUNT - 0
ENDIF

100 CONTINUE
C

General Read / Write Subroutines Page 8-17

ZWRBUF

Example 3:

C Store data in a buffered mode, where the total
C number of data values to store is unknown.

READ (5,20) CPATH
C
C We don't know how much to store (but LEND will be set
C to .TRUE. when we have ali the data).

NTOTD - -1
ICOUNT - 0

C
200 CONTINUE

ICOUNT - ICOUNT + 1
C Get a data value.

CALL GETNUM (DATA(ICOUNT), LEND)
C If we have reached the array dimension limit, or the last
C data value has been calculated, store the data array.

IF ((ICOUNT.EQ.KDATA).OR.(LEND)) THEN
CALL ZWRBUF (IFLTAB, CPATH, HEADU, 0, 0,

* DATA, ICOUNT, NTOTD, LEND)
C Do we need to compute more data?

IF (LEND) GO TO 300
C Reset the counter.

ICOUNT - 0
ENDIF

C
GO TO 200

C
C

300 CONTINUE

Page 8-18 General Read / Write Subroutines

9 Utility Subroutines

The following chapter describes several DSS utility subroutines. Some of these routines

(e.g., ZSTFH) are for use by general application programs, while others (e.g., ZRENAM) are

usually used only by utility programs.

Subroutine ZSTFH places additional record information in the user header array. Such

information may include a project's latitude and longitude, or the operator's name. Rating

tables often include a datum, shift, offset and transform in the user header. A program can

decode information from the user header with ZUSFTH.

Subroutine ZCHECK determines if a record exists (similar to ZDTYPE), and returns

the number of data values and user header elements stored. Subroutine ZRECIN will

display information about a record, while ZFILST will display information about a file.

These two subroutines are used for display purposes only; subroutine ZINQIR returns

information about a record or file for a program's intei nal nse.

Subroutine ZCOREC copies a record from one DSS file to another, or duplicates a

record within the same file. ZCOFIL copies a DSS file to a new DSS file, or appends the

file to an existing DSS file.

Subroutine ZDELET deletes a record from a DSS file by flagging a record status cell.

The data is not physically removed until the file is squeezed by DSSUTL. The record may

be recovered by calling subroutine ZUNDEL (until file is squeezed). All records in a DSS

file that were deleted by ZDELET may be recovered by ZUDALL. ZUDALL can also

display a list of the deleted records within the file that are recoverable.

A record can be renamed (its pathname changed) with subroutine ZRENAM. Informa-

tion in the DSS file or in the IFLTAB array can be decoded with ZDEBUG. ZDEBUG is

used only for "low level" de-bugging. Subroutine trace statements activated by setting the

message level MLEVEL with ZSET are intended to be used for de-bugging a program

interface with DSS.

Utility Subroutines Page 9-1

9.1 ZSTFH - Stuff the User Header Array

Purpose:

ZSTFH places user information in the user header array in preparation for writing to a
DSS record. The information is stored in Hollerith (alpha-numeric) format. Each header
item is identified by a label indicating what the data is. ZSTFH places a colon (:) between
each label and item, and a semi-colon (;) after each item. For example, if the item 1234.0
has the label "DATUM", and the item "LOGLOG* has the label *TRANSFORM", the
following header array would be produced.

0032DATUM: 1234.0; TRANSFORl:LOGLOG;

The first element in the header will contain the total number of bytes in the array (0032 in
this example).

ZSTFH can stuff several items in the header at one time, or append information to the
header (allowing multiple calls to ZSTFH to stuff multiple items).

A user header assembled by ZSTFH can be disassembled by subroutine ZUSTFH.

Callina Seauence:

CALL ZSTFH (CIABEL, CITEN, NITEH, HEADU, KHEADU, NHEADU, ISTAT)

Declarations:

INTEGER NITEM, KHEADU, NHEADU, ISTAT
CHARACTER CLABEL(NITEM)*(*), CITEM(NITEM)*(*)
REAL HEADU (KHEADU)

Argument Description:

CLABEL (Input) A character string identifying the item to stuff. Usually this is
a single word (e.g., "DATUM"), but it can be more than one (with
embedded blanks). If more than one item is to be stored, then this must
be a character array, and the first element of CLABEL corresponds to
the first element of CITEM. A label may not contain a colon or semi-
colon.

CITEM (Input) A character string containing the item to stuff. If the item is a
number, it must be converted to character by an internal write or with
subroutine INTGRC or XREALC. The item may contain blanks but not
a colon or semi-colon. If more than one item is to be stored, then this
must be a character array, and the first element of CITEM corresponds
to the first element of CLABEL.

NITEM (Input) The number of items to store in this call, which is also the
dimension of arrays CLABEL and CITEM. This is often set to one.

HEADU (Input-Output) The header array to stuff.

Page 9-2 Utility Subroutines

ZSTFH

KHEADU (Input) The dimension of HEADU. No more than KHEADU elements
will be stored in HEADU.

NHEADU (Input-Output) The number of elements in HEADU. On the first call
set this to zero to initialize HEADU.

ISTAT (Output) A status parameter indicating the success of the operation. If
ISTAT is returned with zero, then information was successfully added to
the user header array. If ISTAT is non-zero, an error occurred. The
possible values are:

ISTAT Description

0 Successful operation.

1 A label contains all blanks.

2 An item contains all blanks.

3 The number of elements required for this information is
greater than KHEADU. Increase the dimension of
HEADU.

4 Array HEADU is invalid. This is most probably caused
by not initializing HEADU for this data set (set
NHEADU to zero on the first call).

5 NITEM is less than or equal to zero.

Remarks:

On the first call to ZSTFH set NHEADU to zero. Information in the header cannot be
edited; The array would need to be completely un-stuffed, then re-stuffed.

The label and item variables can each be up to 60 characters in length. However, it is
recommended to keep the combination of both under 70 characters for manageability.

Information stored in the user h.-ader does not have to be generated by ZSTFH,
although if it is not, it cannot be displayed by DSS utility programs.

The minimum dimension of the header array can be computed from the number of
bytes to be stuffed (the length of the labels and items) and the number of bytes per real
word. The minimum dimension is:

[(number of bytes + (3 * number of items)) / bytes per word] + 2

Usually, a dimension size of 50 words is sufficient for most purposes.

A debug trace is available by setting the message level to 9 with ZSET.

Utility Subroutines Page 9-3

ZffrFH

C Store information about a gage in the user header,
C by appending information to the header.

PARAMETER (KHEADU-100)
REAL HEADU (KHEADU)

C
NHEADU - 0
CALL ZSTFH ('USGS GAGE ID', '012345678', 1, HEADU, EKEADU,

* NHEADU, ISTAT)
IF (ISTAT.NE.0) GO TO 900
CALL ZSTFH ('LATITUDE', '412345', 1, HEADU, KHEADU,

* NHEADU, ISTAT)
IF (ISTAT.NE.0) GO TO 900
CALL ZSTFB ('LONGITUDE', '1212345', 1, HEADU, KHEADU,
* NHEADU, ISTAT)

IF (ISTAT.NE.0) GO TO 900
CALL ZSTFH ('DATUM', '1234.56', 1, HEADU, KHEADU,

* NHEADU, ISTAT)
IF (ISTAT.NE.0) GO TO 900
CALL ZSTFH ('OPERATOR', 'JOHN DOE', 1, HEADU, KHEADU,

* NHEADU, ISTAT)
IF (ISTAT.NE.0) GO TO 900

C Store information about a gage in the user header,
C with one call to ZSTFH.

PARAMETER (KHEADU-lO0)
REAL HEADU(KHEADU)
CHARACTER CLABEL(5)*20, CITEM(5)*20

C
DATA CLABEL(1) /'USGS GAGE ID'/
DATA CLABEL(2) /'LATITUDE'/
DATA CLABEL(3) /'LONGITUDE'/
DATA CLABEL(4) /'DATUM'/
DATA CLABEL(5) /'OPERATOR'/

C
CITEM(l) - '012345678'
WRITE (CITEM(2), '(17)') LAT
WRITE (CITEM(3), '(17)') LONG
WRITE (CITEM(4), '(FlO.2)') DATUM
CITEM(5) - 'JOHN DOE'
NHEADU - 0
CALL ZSTFH (CLABEL, CITEM, 5, HEADU, KHEADU, NHEADU, ISTAT)
IF (ISTAT.NE.0) GO TO 900

Both of these examples would generate the following header array

0094USGS GAGE ID:012345678; LATITUDE:412345; LONGITUDE:1212345;
DATUM:1234.56; OPERATOR:JOHN DOE;

Page 9-4 Utility Subroutines

ZUSTFH

9,2 ZUSTFH - Un-stuff the User Header Array

Purpose:

ZUSTFH disassembles a user header array created by ZSTFH. ZUSTFH can either
return all items in the array (returning one at a time), or search for specific items. For a
description of this array, see the ZSTFH documentation.

Callina Seauence:

CALL ZUSTFH (CLABEL, CITEM, NITEM, IPOS, HEADU, NHEADU, ISTAT)

Declarations:

INTEGER NITEM, IPOS, NHEADU, ISTAT
CHARACTER CLABEL(NITEM)*(*), CITEM(NITEM)*(*)
REAL HEADU (NHEADU)

Argument DescriDtion:

CLABEL (Input-Output) If specific items are to be searched for in the header,
this is the labels of those items to search for. Labels must be left-
justified and blank filled. If ZUSTFH is to return all items in the
header (NITEM set to zero), one at a time, then this will be returned
with the label corresponding to CITEM.

CITEM (Output) The items corresponding to CLABEL. If you are searching
for specific items, and the label given was not found, then CITEM will
be returned blank filled.

NITEM (Input) If ZUSTFH is to search for specific items in the array, then
NITEM is the number of items to search for and CLABEL and CITEM
must be dimensioned to at least NITEM. If all items in the header array
are to be returned (one at a time), then this should be set to zero on the
first call, and ZUSTFH should be called multiple times, returning one
item at a time, until IPOS is returned with -1.

IPOS (Input-Output) An internal position variable. If all items are to be
returned from the header (NITEM set to 0), then this variable must be
set to zero on the first call. When all items have been returned, then
IPOS will be returned as -1. If ZUSTFH is to search for specific items,
then this argument is ignored. IPOS must be a variable.

HEADU (Input) The user header array.

NHEADU (Input) The number of elements in HEADU.

Utility Subroutines Page 9-5

ZUSTlH

ISTAT (Output) A status parameter indicating the success of the operation. If
ISTAT is zero, then information was successfully returned from the user
header array. If ISTAT is less than zero, an error occurred and no items
were returned. If ISTAT is greater than zero, an error occurred and
portions of the items are returned. The possible vlues are:

ISTAT Description

0 Successful operation.

-1 The header array is invalid. (The first element of
HEADU does not contain a valid header count.)

-2 The internal header count indicates that the header array
is greater than the size passed (NHEADU).

2 The length of the item or label is greater than the
character variable CITEM or CLABEL. The item or
label is truncated to the variable length.

4 The length of the item or label is greater than 60, an
internal dimension limit. The item or label is truncated
to 60 characters.

Remarks:

The items and labels are returned left-justified, blank filled, with colons and semi-
colons removed. There is no debug trace for ZUSTFH.

Page 9-6 Utility Subroutines

Exampl
Given the following user header array-

0094USGS GAGE ID:012345678; LATITUDE:412345; LONGITUpE:1212345;
DATUM:1234.56; OPERATOR:JOHN DOE;

C Example 1
C Search for the latitude and longitude stored in the user
C header array, getting one item at a time.
C

REAL HEADU(NHEADU)
CHARACTER CLABEL*20, CITEK*20

C
CALL ZUSTFH ('LATITUDE', CITEN, 1, IPOS, HEADU. NHEADU, ISTAT)
IF (ISTAT.NE.0) GO TO 900
WRITE (6,*)'The latitude is: ', CITEM
CALL ZUSTFH ('LONGITUDE', CITEM, 1, IPOS, HEADU, NHEADU, ISTAT)
IF (ISTAT.NE.0) GO TO 900
WRITE (6,*)'The longitude is: ', CITEM

C Example 2
C Search for the latitude and longitude stored in the user
C header array, getting both items at the same time.
C

REAL HEADU (NHEADU)
CHARACTER CLABEL(2)*20, CITEM(2)*20

C
CLABEL(2) - 'LATITUDE'
CLABEL(2) - 'LONGITUDE'
CALL ZUSTFH (CLABEL, CITEM, 2, IPOS, HEADU, NHEADU, ISTAT)
IF (ISTAT.NE.0) GO TO 900
WRITE (6,*)'The latitude is: ', CITEM(l)
WRITE (6,*)'The longitude is: ', CITEM(2)

Both of these examples would print

The latitude is: 412345
The longitude is: 1212345

Utility Subroutines Page 9-7

C Example 3
C Get all labels and items from the user header.
C

REAL HEADU(NHEADU)
CHARACTER CLABEL*20, CITEM*20

C
IPOS - 0
NITEM - 0

20 CONTINUE
CALL ZUSTFH (CLABEL. CITEM, NITEM, IPOS. HEADU, NHEADU, ISTAT)
IF (ISTAT.NE.0) GO TO 900
WRITE (6,40) CLABEL(1), CITEM(1)

40 FORMAT (' Label: ',A,', Item: ',A)
IF (IPOS.GT.0) GO TO 20

Using the same header array, this example would print

Label: USGS GAGE ID , Item: 012345678
Label: LATITUDE , Item: 412345
Label: LONGITUDE , Item: 1212345
Label: DATUM , Item: 1234.56
Label: OPERATOR , Item: JOHN DOE

Page 9-8 Utility Subroutines

ZACHECK

9.3 ZCHECK - Check if a Record Exists

ZCHECK checks for the presence of a record in a DSS file. If the record exists, the
number of elements in the user header and data arrays are returned.

Calling Seouence:

CALL ZCHECK (IFLTAB, CPATH, NPATH, NHEAD, NDATA, LFOUND)

Declarations:

INTEGER IFLTAB(600), NPATH, NHEAD, NDATA
CHARACTER CPATH*80
LOGICAL LFOUND

Argument Descrintion:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CPATH (Input) The pathname of the record to check. The pathname does not
have to follow the standard conventions.

NPATH (Input) The number of characters in CPATH. Trailing blanks must be

excluded.

NHEAD (Output) The number of real elements stored in the user header array.

NDATA (Output) The number of real elements stored in the data array.

LFOUND (Output) A logical status variable that is returned .TRUE. if the record
was found, or .FALSE. if it does not exist.

Remarks:

ZCHECK is generally used only by lower level routines. Programs typically call
ZDTYPE instead of ZCHECK. No messages are printed by ZCHECK.

Earlier versions of DSS returned the lengths NHEAD and NDATA in short integer
words. Version 6 now returns those values for real arrays. This change is the only incom-
patibility between DSS version 6 and earlier versions.

Utility Subroutines Page 9-9

ZRUECN

9.4 ZRECIN - Disglay Information About a Record

PurposeQ

ZRECIN displays information about a record. This information is the same as that
printed in the CHECK command for DSSUTL. It contains the type of data, its last written
date and time, and the program that wrote it. If it is time-series data, then any data
compression statistics or data flag information is also displayed. Examples of the output are
given below.

Callina Seauence:

CALL ZRECIN (IFLTAB, IUNIT, MLEVEL, CPATH, BUFF, KBUFF, LFOUND)

Declarations:

INTEGER IFLTAB(600), IUNIT, MLEVEL, KBUFF
REAL BUFF(KBUFF)
CHARACTER CPATH*80
LOGICAL LFOUND

Argument Description:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

IUNIT (Input) The unit number to write the information to. This is usually
connected to the standard output.

MLEVEL (Input) The message level. If this is set to zero, only a statement
indicating if the record exists or not is displayed. If MLEVEL is two or
more, information about the record is displayed.

CPATH (Input) The record pathname.

BUFF (Input) A temporary buffer array. The record header and compression
header are read into this array. Its size should be a minimum of 70
elements.

KBUFF (Input) The dimension of BUFF.

LFOUND (Output) A logical status variable that is returned .TRUE. if the record
was found, or .FALSE. if it does not exist.

Remarks:

ZRECIN is designed to display information, not as a means of a program obtaining
information about a record. A program should not attempt to read information from it, as
items may be moved in the display in different versions of DSS.

Page 9-10 Utility Subroutines

ZRECIN

Example Displays:

Record Found:
/ALLEGHENY/NATP/PRECIP-INC/OIJUL1989/IHOUR/OBS/
Regular-interval time series; Tag: T1284
Last Written on 11OCT89, at n9:58 by Program: Undefi
Version: 1; Number of data: 744; Space Allocated: 10
Compressed to 4.3%
Compression Method: 3; Repeat + Delta
Precision: -2; Element Size: 1; Base: 0.00; User set base: F

Record Found:
/ALLEGHENY/BRFP/FLOW/0 1APR1990/IHOUR/REV/
Regular-interval time series; Tag: T299
Last Written on 10JUL90, at 16:43 by Program: DATCHK
Version: 2; Number of data: 720; Space Allocated: 1440
Data flags set.

Utility Subroutines Page 9-11

9.5 ZFILST - Display Information About a DSS File

Purt~ose;

ZFILST displays status information about a DSS file. The information displayed is the
same as that displayed in the DSSUTL FQ (File Query) command. It includes items such as
the file size, amount inactive space, and file statistics. The information is written to unit
MUNIT (which can be reset from the default by subroutine ZSET).

Callina Seouence:

CALL ZFILST (IFLTAB)

Declarations:

INTEGER IFLTAB (600)

Argument Description:

IFLTAB (Input-Cutput) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

Remarks:

ZFILST is designed to display information, not as a means of a program obtaining
information about the file. A program should not attempt to read information from it, as
items may be moved in the display in different versions of DSS.

Examnie Disvlav-

DSS File MASTDB; Created on 10JAN90; DSS Version 6-EA
Number of Records: 3840; Pointer Utilization: 2.50
File Size: 12210.4 Kilobytes; Percent Inactive Space: 6.06
Max Ha%'-- Code: 1024; Stable Hash Table
Numb Bins per Block: 32; Size of Bin: 112 words
Bins Used: 619; Overflow Bins: 181
Hash Codes Used: 438; Max Paths for one Hash Code: 11
Average Number of Paths to search: 8.8; (Max Hash Code: 262)

Page 9-12 Utility Subroutines

ZCOREC

9.6 ZCOREC - Copy a Record

Purp~ose:

ZCOREC copies a record from one DSS file to another, or duplicates a record within
the same file. A regular-interval time series record can also be compressed (or un-com-
pressed) according to the new file's default data compression setting, if desired.

Calline Seouence:

CALL ZCOREC (IFTOLD, IFTNEW, CPOLD, CPNEW, BUFF1, KBUFF1,
* BUFF2, KBUFF2, ISTAT)

Declarations:

INTEGER IFTOLD(600), IFTNEW(600), KBUFF1, KBUFF2, ISTAT
REAL BUFF1 (KBUFFI), BUFF2 (KBUFF2)
CHARACTER CPOLD*80, CPNEW*80

Argument Descrintion:

IFTOLD (Input-Output) The DSS work space used to manage the DSS file. This
is the IFLTAB for the DSS file tv 4.opy from.

IFTNEW (Input-Output) The DSS work spa ý. used to manage the DSS file. This
is the IFLTAB for the DSS file n copy IQ. If the record is to be
duplicated within the same file, this should be array IFTOLD.

CPOLD (Input) The pathname of the record to copy.

CPNEW (Input) The pathname that the copied record is to have. If the record is
to be copied from one file to another, then this may be CPOLD. If the
record is being duplicated within the file, then this pathname cannot be
the same as CPOLD.

BUFF1 (Input) A scratch array that will temporarily hold the data, or portions
of the data. If the data is time series and is to be re-compressed, this
must be large enough to hold all the data within the record. Otherwise
BUFFI can be smaller, as buffered reads and writes are used. However,
it is more efficient to make this array large enough to hold all of the
data within the record. A typical dimension for this array is 750.

KBUFF1 (Input) The dimension of BUFF1.

BUFF2 (Input) A scratch array that will temporarily hold the internal header
array. This array does not need to be as large as BUFF1. A typical
dimension for this array is 100.

KBUFF2 (Input) The dimension of BUFF2.

Utility Subroutines Page 9-13

ZCOREC

ISTAT (Output) A status parameter indicating the success of the operation. If
ISTAT is returned as zero, then the record was copied successfully. If
ISTAT is other than zero, the record was not copied. The possible
values are-

ISTAT Description

0 Successful operation.

I The record to be copied (CPOLD) does not exist.

2 The new record (CPNEW) already exists, and write
protection was set for the file.

- I KBUFFI or KBUFF2 is zero.

-2 The buffers supplied (BUFFI and BUFF2) are too small
for this record. Tl'e size required will be printed if the
message level is 2 or greater.

-12 The file being copied to is in a read access only mode.

Remarks:

Except for time- series data that is to be re-compressed, the data is copied by buffered
reads and writes. Thus only portions of the data and user header arrays will be copied at a
time (up to KBUFFI values). If space is available, setting KBUFFI to the size of the data
array is most efficient.

Time series data can be re-compressed (or un-compressed) using the default data
compression settings of the DSS file being copied to by calling ZSET with a parameter of
"COMP", prior to ZCOREC. This will remain set until explicitly set "OFF" by a subsequent
call to ZSET.

Page 9-14 Utility Subroutine.

ZCOREC

EXamole 1:

C Copy a record from one DSS file to another.
INTEGER IFTOLD(600), IFTNEW(600)
CHARACTER CPATH*8O
PARAMETER (KBUFFl-750, KBUFF2-100)
REAL BUFFi (KBUFFl), BUFF2 (KBUFF2)
CHARACTER CNOLD*64, CNNEW*64

C
READ) (5,*) CNOLD, CNNEW
CALL ZOPEN (IFTOLD, CNOLD, ISTAT)
IF (ISTAT.NE.O) GO TO 900
CALL ZOPEN (IFTOLD, CNNEW, ISTAT)
IF (ISTAT.NE.O) GO TO 900

C
CPATH - '/SACRAMENTO/I ST/FLOW/OlJANl98O/lHOUR/OBS/'

C
CALL ZCOREC (IFTOLD, IFrNEW, CPATH, CPATH, BUFFi, KBUFF1,

* BUFF2, KBUFF2, ISTAT)
IF (ISTAT.NE.0) GO TO 910

C

Example 2:

C Duplicate a record within a DSS file.
INTEGER IFLTAB(600)
CHARACTER CPOLD*80, CPNEW*80
PARAMETER (KBUFFI-750, KBUFF2-100)
REAL BUFF1(KBUFF1), BUFF2(KBUFF2)
CHARACTER CNAME*64

C
READ (5,*) CNAME
CALL ZOPEN (IFLTAB, CNAME, ISTAT)
IF (ISTAT.NE.0) GO TO 900

C
CPOLD - '/SACRAKENTO/I ST/ELEV-DAKAGE//1.980/PLAN B/'
CPNEW - '/SACRAMENTO/I ST/ELEV-DAMAGE//1980/REVISED/'

C
CALL ZCOREC (IFLTAB, IFLTAB, CPOLD, CPNEW, BUFF1, KBUFFI,

* BUFF2, KBUFF2, ISTAT)
IF (ISTAT.NE.0) GO TO 910

C

Utility Subroutines Page 9-15

ZCOFIL

9.7 ZCOFIL - Cop a DSS F'le

Puroose:

ZCOFIL copies a DSS file to a new DSS file, or appends the file to an existing DSS f"-.
ZCOFIL copies only valid data, so any inactive space is not copied. ZCOFIL is called by
DSSUTL to "squeeze" a DSS file. Regular interval time series records can also be com-
pressed (or un-compressed) according to the new file default data compression setting, if
desired. ZCOREC should be called if less than the entire file is to be copied.

Calline Seauence:

CALL ZCOFIL (IFTOLD, IFTNEW, BUFF1, KBUFF1, BUFF2, KBUFF2,
* LUNDEL, LRETAG)

Declarations:

INTEGER IFTOLD(600), IFTNEW(600), KBUFFI, KBUFF2
REAL BUFFI(KBUFFI), BUFF2(KBUFF2)
LOGICAL LUNDEL, LRETAG

Argument Descriotion:

IFTOLD (Input-Output) The DSS work space used to manage the DSS file. This
is the IFLTAB for the DSS file to copy from.

IFTNEW (Input-Output) The DSS work space used to manage the DSS file. This
is the IFLTAB for the DSS file to copy IQ.

BUFF1 (Input) A scratch array that will temporarily hold data and internal
arrays. The minimum dimension of this array should be 750 elements.

KBUFF1 (Input) The dimension of BUFF1.

BUFF2 (Input) A scratch array that will temporarily hold data and internal
arrays. The minimum dimension of this array should be 750 elements.

KBUFF2 (Input) The dimension of BUFF2.

ULNDEL (Input) A logical flag that should be set to .TRUE. if records that have
been deleted, but not yet physically removed, should be copied. (They
will be un-deleted in the new file).

LRETAG (Input) A logical flag that should be set to .TRUE. if the records should
be assigned new tag identifiers when they are copied. The tags assigned
will use the file tag settings. (See chapter 7 for information on tags.)

Page 9-16 Utility Subroutines

ZCOFIL

Remarks:

ZCOFIL reads through the file in a *brute force" fashion. Thus, if a file somehow
becomes damaged, ZCOFIL will copy all data that is recoverable. (It cannot tell if data
itself has become corrupt.)

Buffered reads and writes are used for larger data records. The buffer arrays passed do
not necessarily need to be as large as the record sizes.

Time series data can be re-compressed (or un-compressed) using the default data
compression settings of the DSS file being copied to by calling ZSET with a parameter of
"COMP*, prior to ZCOFIL. This will be reset to 'OFF' upon completion of the copy.

Utility Subroutines Page 9-17

ZRENAM

9.8 ZRENAM - Rename a Record

Purpose:

ZRENAM changes the pathname of a record in a DSS file.

Calling Seouence:

CALL ZRENAM (IFLTAB, CPATHO, NPATHO, CPATHN, NPATHN, LFOUND)

Declarations:

INTEGER IFLTAB(600), NPATHO, NPATHN
CHARACTER CPATHO*80, CPATHN*80
LOGICAL LFOUND

Argument Description:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CPATHO (Input) The pathname of the record to be renamed.

NPATHO (Input) The number of characters in CPATHO.

CPATHN (Input) The new pathname to be give:- to the record.

NPATHN (Input) The number of characters in CPATHN

LFOUND (Output) A logical status variable that is returned .TRUE. if the record
was found and renamed, or .FALSE. if the original record did not exist
in the DSS file.

Remarks:

ZRENAM does not change the record's tag or any other information. With a message
level of 3 or greater, ZRENAM prints a message with the old pathname and the new
pathname. Error messages are printed with a message level of 2 or greater.

Page 9-18 Utility Subroutines

ZDELET

9.9 ZDELET - Delete a Record

Purpose:

ZDELET deletes a record from a DSS file by flagging a record status cell. The data is
not physically removed until the file is squeezed by DSSUTL. A deleted record can be un-
deleted by DSSUTL or the subroutines ZUNDEL and ZUDALL (until the file is squeezed).

Calling Seouence:

CALL ZDELET (IFLTAB, CPATH, NPATH, LFOUND)

Declarations:

INTEGER IFLTAB(600), NPATH
CHARACTER CPATH*80
LOGICAL LFOUND

Argument Descrintion:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CPATH (Input) The pathname of the record to eliminate. This pathname does
not have to follow the standard conventions.

NPATH (Input) The number of characters in CPATH. Trailing blanks must be
excluded.

LFOUND (Output) A logical status variable that is returned .TRUE. if the record
was deleted, or .FALSE. if the record did not exist in the DSS file.

Remarks:

ZDELET is usually only called by utility programs. With a message level of 3 or
greater, ZDELET prints a message indicating the record was deleted. Error messages are
printed with a message level of 2 or greater.

Utility Subroutines Page 9-19

ZUNDEL

9.10 ZUNDEL - Un-Delete a Record

Purmoe:

ZUNDEL recovers a DSS record that was previously deleted by ZDELET by modifying
a record status cell. The DSS file must not have been squeezed by DSSUTL since the record
was deleted (as that will physically remove the record). All deleted records within a file can
be recovered by subroutine ZUDALL. ZUDALL can also determine what records are
available to recover.

Calling Seauence:

CALL ZUNDEL (IFLTAB, CPATH, NPATH, ISTAT)

Declarations:

INTEGER IFLTAB(600), NPATH, ISTAT
CHARACTER CPATH*80

Areument Descriotion:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CPATH (Input) The pathname of the record to recover.

NPATH (Input) The number of characters in CPATH. Trailing blanks must be
excluded.

ISTAT (Output) A status parameter indicating the success of the operation. If
ISTAT is returned with zero, then the record was successfully recovered.
If ISTAT is non-zero, an error occurred. The possible values are:

ISTAT Description

0 Successful operation.

1 The record could not be found.

2 The record already exists (it was not deleted).

Remarks:

With a message level of 3 or greater, ZUNDEL prints a message indicating the record
was recovered. Error messages are printed with a message level of 2 or greater.

Page 9-20 Utility Subroutines

ZUDALL

9.11 ZUDALL - Un-Delete AU Records in a DSS File

ZUDALL recovers all records in a DSS file that were previously deleted by ZDELET.
The DSS file must not have been squeezed by DSSUTL since the records were deleted (as
that will physically remove the records). ZUDALL can also display a list of the deleted
records within the file that are available to recover.

Calling Seauence:

CALL ZUDALL (IFLTAB, IUNIT)

Declarations:

INTEGER IFLTAB(600), IUNIT

Areument Description:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

IUNIT (Input) If the records available to recover are to be displayed, this is the
unit number to write the pathnames of those records to. If the records
are to be recovered, IUNIT must be zero.

Remarks:

To only display the deleted records in a file, set IUNIT to the unit number of the
output (otherwise IUNIT must be zero). ZUDALL will not recover any records when
displaying available records to recover. The following message is printed for each record
available to recover.

--- -ZUNDEL; Available: pathname

IUNIT must be set to zero to actually recover records.

With a message level of 3 or greater, ZUDALL prints a message with the pathname for
each record that was recovered. If no records are available to recover, ZUDALL prints a
message indicating so.

Utility Subroutines Page 9-21

ZDEBUG

9.12 ZDEBUG - Display Coded Information from the file or the IFLTAB Array

Purtpose:

ZDEBUG displays coded information in the IFLTAB array or an array containing
information read from the DSS file. ZDEBUG is used internally in debugging possible
damaged areas in a file, and for installing the DSS software on a new computer. It is not
intended for debugging programs accessing DSS.

Calline Seouence:

CALL ZDEBUG (MUNIT, IARRAY, IADD, ILEN)

Declarations:

INTEGER MUNIT, IARRAY(*), IADD, ILEN

On MS-DOS microcomputers, the address must be INTEGER*4:

INTEGER*4 IADD

On Harris computers, the address must be INTEGER*6:

INTEGER*6 IADD

Argument Description:

MUNIT (Input) The unit number to print out the information to.

IARRAY (Input) The DSS IFLTAB array or other array to display.

IADD (Input) The file address or location within the array. (For example, if
you were displaying the IFLTAB array from word 32 to 50, this would
be the number 32.) The address is displayed in the left-hand column,
and incremented for each word. It is used for informational purposes
only.

ILEN (Input) The number of large integer words to print.

Remarks:

The output from ZDEBUG occupies 132 columns. Each word in the array is printed as
a large integer, a character string, a real number, two small integers, and 4 or 6 bytes
(depending on the computer). The address, and the address' record and word are printed on
the left side of the information.

Page 9-22 Utility Subroutines

ZDEBUG

If ZDEBUG is called with the IFLTAB array and a length of 30 after a call to ZOPEN,
the output might appear as the following:

Address Rea Word Offset Large Int Char leal Small Ints Bytes
1 1 1 C 1) 6 - 0.00 0 6 0 0 0 0 0 6
2 1 2 (2) 13579 -5- 0.00 0 13579 0 0 0 0 53 11
3 1 3 (3) 71 - G 0.00 0 71 0 0 0 0 0 71
4 1 4 C 4) 71 -- 0.00 0 71 0 0 0 0 0 71
5 1 5 (5) 1 - 0.00 0 1 0 0 0 0 0 1
6 1 6 C 6) 1 - 0.00 0 1 0 0 0 0 0 1
7 1 7 C 7) 0 - 0.00 0 0 0 0 0 0 0 0
8 1 8 a 8) 4929 - A ********** 0 4929 0 0 0 0 19 65
9 1 9 C 9) 2207838 - 1-^ *********** 0 2207838 0 0 0 33 176 94

10 1 10 (10) 1 - 0.00 0 1 0 0 0 0 0 1
11 1 11 (11) 0 - 0.00 0 0 0 0 0 0 0 0
12 1 12 (12) 0 - 0.00 0 0 0 0 0 0 0 0
13 1 13 (13) 0 - 0.00 0 0 0 0 0 0 0 0
14 1 14 (14) 0 - 0.00 0 0 0 0 0 0 0 0
15 1 15 C15) 49624753831936 ZDSS- 0.71 5915731 5439488 90 68 83 83 0 0
16 1 16 (16) 4193 - a *********** 0 4193 0 0 0 0 16 97
17 1 17 (17) 419,. -b ************ 0 4194 0 0 0 0 16 98
18 1 18 (18) 0 - 0.00 0 0 0 0 0 0 0 0
19 1 19 C19) 29784033787904 6-EA- 0.42 3550533 4259840 54 45 69 65 0 0
20 1 20 (20) 2207838 - 1-^ ********** 0 2207838 0 0 0 33 176 94
21 1 21 C21) 127762 - 0.00 0 127762 0 0 0 1 243 18
22 1 22 (22) 27041739132473 10JAN9 ************ 3223626 4279865 49 48 74 65 78 57
23 1 23 (23) 26388279066624 0- 0.37 3145728 0 48 0 0 0 0 0
24 1 24 (24) 26496278285881 02JAN9 , 3158602 4279865 48 50 74 65 78 57
25 1 25 (25) 26938034880512 1- 0.38 3211264 0 49 0 0 0 0 0
26 1 26 (26) 26511175398202 09:13: ************ 3160378 3224378 48 57 58 49 51 58
27 1 27 (27) 27049704030208 14- 0.38 3224576 0 49 52 0 0 0 0
28 1 28 (28) 1383873 - 0.00 0 1383873 0 0 0 21 29 193
29 1 29 (29) 1024 - 0.00 0 1024 0 0 0 0 4 0
30 1 30 (30) 2 - 0.00 0 2 0 0 0 0 0 2

Utility Subroutines Page 9-23

10 Data Compression Subroutines

Regular-interval time series data may be compressed by one or more of three methods.

The method may be selected by the user or by the storing program based on the kind of data

that is being stored. At this time, no other data types can be compressed by DSS.

The first method is a repeat counter scheme that flags duplicate values. It uses one bit

per value to indicate a repeated value. It is often used for precipitation data, and can

compress some precipitation records by up to 97 percent. This compression method should

never be used for data that is updated frequently (e.g., entering real time data in a master

database file), as it would cause the record to expand often and require excessive rewrites.

The second method (called the delta method) compresses data by storing the differences

between the data values and the minimum value in the record. This is designed for data

where the difference between the maximum value and the minimum value is not too large,

and the "precision" of the values (the number of digits to the right of the decimal place) is

known. The software determines the amount of space required for the data based on the

difference between the maximum and the minimum (or base) value (excluding missing data

flags), and the precision number. If data is to be updated frequently with this method (e.g.,

entering real-time data in a master database file), the base value and a storage size can be

specified. This allows the software to update the data without having to recompute a base

value (and possibly re-compress the record) each time. Data compressed by this method are

typically precipitation and stage values, and are compressed by 50 or 75 percent of their

original size.

The third type of compression stores three significant digits for each value, and is often

used to compress flow data. Data records compressed under with method are reduced in size

by 50 percent.

The repeat method can be used in combination with the differences method or

significant digits method. The differences method may not be used with the significant

digits method.

The methods discussed in this chapter are often referenced by the software as numbers.

The numbers and their corresponding methods are as follows:

Data Compression Subroutines Page 10-1

Number Method

0 NONE
I REPEAT
2 DELTA
3 REPEAT + DELTA
4 SIGNIFICANT DIGITS
5 REPEAT + SIGNIFICANT DIGITS

The delta method requires a precision exponent parameter indicating the accuracy of

the data. If the data to be stored is measured to the nearest hundredth (0.01) (e.g., precipit-

ation), the precision exponent would be -2. if the data is to the nearest thousandth, the
precision exponent would be -3.

In addition, a "base value" and "data size" parameter may be specified for the delta
method. These parameters are typically only used with "real-time data", data that is updated
frequently, and only to increase the efficiency of storing future data. The base value is the

expected minimum value that the data will obtain for that record. For example, the base
value for incremental precipitation would be 0.0. The data size parameter indicates whether

one or two bytes should be pre-allocated for each data value. One byte allocates a dif-
ference of 256 units, two bytes allocates a difference of 65,536 units. Typically, hourly
precipitation would pre-allocate only one byte (up to 2.56 inches per hour), whereas

reservoir elevations would pre-allocate two bytes (up to 65.536 feet difference). If the data

changes so that either of the selected values is invalid, the software will automatically select
new values and re-compress the data. If the parameters are not specified, the software will

automatically select values based upon the data.

There are two ways to instruct the DSS software to compress regular-interval time

series data. One is to set data compression methods for the entire DSS file based on
matching pathname parts, and the other is to specify the compression method as an argu-

ment in the subroutine that stores the data.

In the first procedure a header section in the file is set with pathname part(s) and

compression methods. If a new record is stored, and its pathname part(s) match those in the
file header section, then that record will be compressed with the method specified. For

example, one may designate that records with a pathname C part that begins with "PRECIP"
be compressed with the REPEAT + DELTA method, and a pathname C part of "FLOW" be
compressed with the SIGNIFICANT DIGITS method. As many parts/methods as desired
may be defined in the file header. Only new records are compressed by this means, unless

the "C" option is used in the DSSUTL squeeze command. The data compression file header
may be set by the Data Compression command in DSSUTL, or by calling the subroutine

ZSETCI.

Page 10-2 Data Compression Subroutines

For the second procedure subroutine ZSCOMP is called prior to ZSRTS to define a data

compression method, or subroutine ZSRTSX is called instead of ZSRTS, with the data

compression method passed as an argument. In both cases the method passed will override

any default file methods set.

The compression method used, and its associated parameters, may.be obtained for a

record by calling subroutine ZDCINF after retrieving the data. Compression information

about a record can be printed with subroutine ZRECIN, as described in chapter 9. A DSS

file's default compression methods can be printed with subroutine ZPRTCI.

Data compression may not be used in conjunction with data flags.

Data Compression Subroutines Page 10-3

ZSCOMP

10.1 ZSCOMP - Set Data Comoression for a Record

Purtvose."

ZSCOMP sets data compression parameters when storing data with subroutine ZSRTS.
ZSCOMP must be call just prior to ZSRTS, and the compression parameters apply only to
that call to ZSRTS.

Calling Seauence:

CALL ZSCOMP (ICOMP, BASEV, LBASEV, LHIGH, IPREC)

Declarations:

INTEGER ICOMP, IPREC
REAL BASEV
LOGICAL LBASEV, LHIGH

Argument Description:

ICOMP (Input) The data compression method to use, as described in the
introduction to this chapter.

BASEV (Input) When the delta data compression method is used, the base value
may be specified by setting this argument to the base value and
LBASEV to .TRUE.. If the delta method is not used, this argument is
ignored.

LBASEV (Input) A logical flag indicating if the argument BASEV has been set.
To let the compression software select a base value, set this argument to
.FALSE.. If the delta method is not used, this argument is ignored.

LHIGH (Input) When the delta data compression method is used, setting
LHIGH to .TRUE. will pre-allocate two bytes of storage per data value.
If LHIGH is set to .FALSE., the compression software will select the
storage size based on the data. If the delta method is not used, this
argument is ignored.

IPREC (Input) When the delta data compression method is used, this defines
the precision exponent of the data (required). The precision exponent
may range from -6 to +6.

Remarks:

ZSCOMP is normally used when adding data compression capabilities to existing code.
The subroutine ZSRTSX includes data compression parameters as arguments, and is typically
called in place of ZSCOMP.

Page 10-4 Data Compression Subroutines

ZSCOMF

The compression parameters passed in for ZSCOMP override any default file compres-
sion methods set (unless ICOMP is set to zero). To disallow compression for this data, set
ICOMP to -1.

ZSCOMP must be called prior to each call to ZSRTS to set data compression paramet-
ers. The parameters set by ZSCOMP are reset upon exit from ZSRTS. If the record is
already compressed, it will be re-compressed with the new method specified.

Example:

C If precipitation or flow data is to be stored, compress the data.
C For precipitation, use the delta + repeat method (method #3).
C For flow data, use the significant digits method (method #4).
C

C
CALL ZPATH (CA, CB, CC, CD, CE, CF, CPATH, NPATH)

C
C Is this precip data? (If so, compress with delta + repeat).

IF (CC(l:6).EQ.'PRECIP') THEN
C Set the compression method to 3, with a base value of 0.0.
C Store data to the nearest hundredth of an inch. Do not
C require a two byte space pre-allocation.

CALL ZSCOMP (3, 0.0, .TRUE., .FALSE., -2)
ENDIF

C
C Is this flow data? (If so, compress with significant digits).

IF (CC(1:4).EQ.'FLOW') THEN
C Set the compression method to 4. All other arguments
C are ignored.

CALL ZSCOMP (4, DUN, LDUM, LDUM, IDUM)
ENDIF

C
C Now store the data.

CALL ZSRTS (IFLTAB, CPATH, CDATE, CTIME, NVALS,
* VALUES, CUNITS, CTYPE, IPLAN, ISTAT)

Data Compression Subroutines Page 10-5

DCINF

10.2 ZDCINF - Get Data Compression Information for a Record

Purpose:

ZDCINF returns data compression parameters for the last regular-interval time series
record read. This includes the compression method, and if the delta method was used, the
base value, the precision, and the number of bytes allocated for each value. The record
must have been retrieved to use this subroutine. To obtain data compression information
about a record that has not been read, call subroutine ZRECIN.

Calling Seauence:

CALL ZDCINF (ICOMP, BASEV, LBASEV, ISIZE, IPREC, ISTAT)

Declarations:

INTEGER ICOMP, IPREC, ISIZE, ISTAT
REAL BASEV
LOGICAL LBASEV

Argument Description:

ICOMP (Output) The data compression method used, as described in the
introduction to this chapter.

BASEV (Output) The base (minimum) value of data when the delta compression
method is used. If the delta method "- not used, this argument is
undefined.

LBASEV (Output) A logical flag set to .TRUE. if the base value was set for the
delta method. If the delta method is not used, this argument is un-
defined.

ISIZE (Output) If the delta compre.sion method was used, this argument will
contain the number of bytes (one or two) allocated for each data value.
If the delta method is not used, this argument is undefined.

IPREC (Output) If the delta compression method was used, this argument will
contain the precision exponent. If the delta method is not used, this
argument is undefined.

ISTAT (Output) A status parameter set to zero if the data was compressed. If
ISTAT is non-zero, the data was not compressed and the subroutine
arguments are undefined.

Remarks:

ZDCINF can only be called after the data has been retrieved with ZRRTS or ZRRTSX.
If the data was not compressed, ISTAT will be returned negative, and the arguments will be
unchanged.

Page 10-6 Data Compression Subroutines

iDCINF

Examle:

C Retrieve time-series data and print the data compression
C information about it.
C
C Retrieve the data

CALLI ZRRTS (IFLTAB, CPATH, CDATE, CTIME, NVALS,
* VALUES, CUNITS, IOFSET, ISTAT)

C
C "Fatal" error?

IF (ISTAT.GE.10) GO TO 950
C No data?

IF (ISTAT.GE.4) GO TO 960
C
C Write pathname, units.

CALL CHRLNB (CPATH, NPATH)
WRITE (6,40) CPATH(l:NPATH), CUNITS, CTYPE

40 FORMAT (' Pathname: ',A,/,' Units: ',A,T20,'Type: ',A)
C
C Get compression information.

CALL ZDCINF (ICOMP, BASEV, LBASEV, ISIZE, IPREC, JSTAT)
C

IF (JSTAT.EQ.0) THEN
C Does this compression include the delta method?

IF ((ICOMP.EQ.2).OR.(ICOMP.EQ.3)) THEN
WRITE (6,60) ICOMP, LBASEV, BASEV, ISIZE, IPREC

60 FORMAT (' Compression Method:',13,' Based Set:',L2,
' Base: ',F6.1,/,' Size Allocated:',12,' Precision:',13)

ELSE
WRITE (6,80) ICOMP

80 FORMAT (' Compression Method:',13)
ENDIF

ELSE
WRITE (6,100)

100 FORMAT (' No Compression Used')
ENDIF

C

Data Compression Subroutines Page 10-7

ZSEMII

10.3 ZSETCI - Set Default Data Compression for a DSS File

Purpose:

ZSETCI sets the data compression header for a DSS file. The compression method set
will be used on all new regular-interval time series records that match the defined pathname
parts, unless a compression method is specified when storing the data with ZSRTSX or
ZSCOMP. For example, one may designate that records with a pathname C part that begins
with "PRECIP" be compressed with the REPEAT + DELTA method. Any time a new record
is written (from any program), and the C part begins with "PRECIP", the data will be
compressed automatically with the REPEAT + DELTA method (unless overridden). As
many parts/methods settings as desired may be defined in the file header. Only new records
are compressed by this means, unless the "C" option is used in the DSSUTL squeeze
command. File compression settings may also be removed with ZSETCI.

Calling Seguence:

CALL ZSETCI (IFLTAB, CPARTS, LPARTS, ICOMP, BASEV, LBASEV,
* LHIGH, IPREC, ISTAT)

Declarations:

INTEGER IFLTAB(600), ICOMP, IPREC, ISTAT
CHARACTER CPARTS(6)*32
REAL BASEV
LOGICAL LBASEV, LHIGH, LPARTS(6)

Argument Description:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CPARTS (Input) A six element character array containing the pathname parts to
match. Only those elements that are to be matched (as indicated by
LPARTS) need to be defined. The first element of CPARTS cor-
responds to the A part of the pathname, the second element to the B
part, etc.. The "@" character may be used as a wild character at the end
(only) of a portion of a part, so only the beginning of the part is
matched. For example, if CPARTS(3) = 'PRECIP@', "PRECIP-CUM",
and "PRECIP-INC", will both match.

LPARTS (Input) A six element logical array indicating which parts are to be
matched. The first element of LPARTS corresponds to CPARTS(1) (the
"A" part), the second element to CPARTS(2), etc.. If an element of
LPARTS is .FALSE., that part will not be matched. If an element is
.TRUE., then that part must match.

ICOMP (Input) The data compression method to use, as described in the
introduction to this chapter. To delete a file setting, set ICOMP to zero.

Page 10-8 Data Compression Subroutines

ZSETC!

BASEV (Input) When the delta data compression method is used, the base value
may be specified by setting this argument to the base value and
LBASEV to .TRUE.. If the delta method is not used, this argument is
ignored.

LBASEV (Input) A logical flag that should be set to .TRUE. if the argument
BASEV has been set.

LHIGH (Input) When the delta data compression method is used, setting
LHIGH to .TRUE. will pre-allocate two bytes of storage per data value.
If LHIGH is set to .FALSE., the compression software will select the
storage size based on the data.

IPREC (Input) When the delta data compression method is used, this defines
the precision exponent of the data (required). The precision exponent
may range from -6 to +6.

ISTAT (Output) A status parameter indicating the success of the operation. If
ISTAT is returned with zero, then the file header was changed success-
fully. The possible values are:

ISTAT Description

0 The file header was successfully modified.

-1 The part identifiers were not found (no match). This only
applies when deleting a file setting (ICOMP is zero).

I An invalid compression method (ICOMP) was specified. ICOMP
may range from 0 to 5.

2 An invalid precision value (IPREC) was specified for use with
the delta compression method. IPREC may range from -6 to +6.

Remarks:

If the parts match an existing file setting, then that compression method will be
replaced. A file setting can be deleted by making ICOMP zero (with matching CPARTS).

As many compression sets may be defined for a DSS file as desired. If a pathname
matches more than one set, the first matching set encountered is used.

The data compression header may be displayed with subroutine ZSETCI.

Data Compression Subroutines Page 10-9

ZSEI"

Example:

C Set a dss file's data compression header so that precipitation
C and flow data are automatically compressed.
C

CHARACTER CPARTS(6)*32
LOGICAL LPARTS(6)

C
C Attach units, open the DSS file, etc.

CALL ZOPEN (...
C
C Use the repeated values + delta method for precipitation data
C Set the base to zero, and the precision to a hundredth (0.01).

DO 20 1-1,6
LPARTS(I) - .FALSE.

20 CONTINUE
CPARTS(3) - 'PRECIP@'
LPARTS(3) - .TRUE.
CALL ZSETCI (IFLTAB, CPARTS, LPARTS, 3, .TRUE., 0.0,

* .FALSE., -2, ISTAT)
IF (ISTAT.NE.0) GO TO 900

C
C Use the significant digits method for flow data.

DO 40 1-1,6
LPARTS(I) - .FALSE.

40 CONTINUE
CPARTS(3) - 'FLOW@'
LPARTS(3) - .TRUE.
CALL ZSETCI (IFLTAB, CPARTS, LPARTS, 4, .FALSE., 0.0,

* .FALSE., IDUM, ISTAT)
IF (ISTAT.NE.0) GO TO 900

C

Page Iu-ili Data Compression Subroutines

ZPkTrC

10.4 ZPRTCI - Print the Default Data Compression for a DSS file

Purpose:

ZPRTCI prints information about a DSS file's data compression header. All compres-
sion information, or a portion of it based on matching pathname parts, can be printed. The
information is written to the DSS message unit (MUNIT).

Calling Seouence:

CALL ZPRTCI (IFLTAB, LALL, CPARTS)

Declarations:

INTEGER IFLTAB(600)
CHARACTER CPARTS(6)*32
LOGICAL LALL

Argument Description:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array usud in the ZOPEN call.

LALL (Input) A logical variable indicating if all information is to be printed
out, or just information for specific parts. If LALL is .TRUE., then all
information is printed, and the argument CPARTS is ignored. If LALL
is .FALSE., the CPARTS is examined for matching parts to determine
what compression information should be printed.

CPARTS (Input) A six element character array containing the pathname parts to
match when LALL is .TRUE.. The first element of CPARTS cor-
responds to the A part of the pathname, the second element to the B
part, etc.. If a part is not to be matched, it must be blank filled. The
parts must match exactly as specified in the file header (wild characters
are not expanded).

Remarks:

ZPRTCI will always print a message to MUNIT, regardless if parts match or not. If
LALL is .FALSE. and the parts do not match, the message "No Data Compression Set" will
be printed. The information printed is the same as that displayed with the "DC ?" command
in DSSUTL.

Data Compression Subroutines Page 10-11

An example message that might be printed for a file, with LALL set to .TRUE. is:

Pathname Parts: C-PRECIP@
Compression Method: 3; Repeat + Delta
Precision: -2
Compression Software selects allocation space for the Delta scheme.

Pathname Parts: A-NORTH RIVER, C-STAGE
Compression Method: 2; Delta
Precision: -3
Two bytes allocated for each value.

Example:

C Print a file's data compression header.
CHARACTER CPARTS(6)*32
LOGICAL LALL

C
C Attach files, open the DSS file, etc.

CALL ZOPEN (...
C

C
IF (LALL) THEN

C Print all of the file's data compression header.
CALL ZPRTCI (IFLTAB, .TRUE., CPARTS)

ELSE IF (LPRCIP) THEN
C Print compression information for precipitation data only.

DO 20 1-1,6
CPARTS(I) -

20 CONTINUE
CPARTS(3) - 'PRECIP@'
CALL ZPRTCI (IFLTAB, .FALSE., CPARTS)

ELSE

Page 10-12 Data Compression Subroutines

11 Outdated Subroutines

The subroutines documented in this chapter were written for previous versions of DSS
and have since been replaced by other routines that are more convenient to use or provide
more capability. These routines are still fully supported, but their replacements should be

called instead when writing new DSS interface code. In fact, most of these routines
rearrange arguments and call their replacements. This chapter is intended as an aid for

modifying existing DSS interface code.

Outdated Subroutines Page 11-1

ZFPN

11.1 ZFPN - Form DSS Pathname

Purpose:

ZFPN constructs a record pathname from six pathname parts. ZFPN removes leading
and trailing blanks from each part, and inserts a slash (/) between each part.

Replaced By-,

ZPATH

Calling Seouence:

CALL ZFPN (CA, NA, CB, NB, CC, NC, CD, ND, CE, NE,
* CF, NF, CPATH, NPATH)

Declarations:

INTEGER NA, NB, NC, ND, NE, NF, NPATH
CHARACTER CA*32, CB*32, CC*32, CD*32, CE*32, CF*32, CPATH*80

Argument Description:

CA (Input) A character string containing the "A" (first) part of the
pathname. Up to 32 characters may be used in a pathname part. The
part may have leading and trailing blanks which will be removed by
ZFPN

NA (Input) The number of characters in CA. This number may include
leading and trailing blanks. If the part is null, NA may be set to zero
(or CA should contain only blanks).

CB (Input) The "B" part of the pathname.

NB (Input) The number of characters in CB.

CC (Input) The "C" part of the pathname.

NC (Input) The number of characters in CC.

CD (Input) The "D" part of the pathname.

ND (Input) The number of characters in CD.

CE (Input) The "E" part of the pathnaniý.

NE (Input) The number of characters in CE.

CF (Input) The "F" part of the pathname.

Page 11-2 Outdated Subroutines

ZFPN

NF (Input) The number of characters in CF.

CPATH (Output) The completed pathname.

NPATH (Output) The number of characters in CPATH, including slashes.

Remarks:

ZFPN calls ZPATH.

Each pathname part may contain up to 32 characters, and the pathname may contain up
to 80 characters (including slashes). If the sum of the parts and slashes is greater than 80
characters, the pathname will be truncated to 80 characte,s

A frequent problem encountered is the entrance of control char3cters (or null charac-
ters) in the pathname. This usually occurs when the pathname part is not blanked prior to
usage or the part length specified is longer than the dimension of the part. It is good
practice to initialize pathname parts with blanks.

Example:

C Form a pathname, reading the A part from the keyboard,
C and using the location for the B part.

CHARACTER CA*32, CB*32, CYEAR*4, CPATH*80
C

READ (5,10,END-100,ERR-900) CA
10 FORMAT (A)

CB - CLOC
C

CALL ZFPN (CA, 32, CB, 32, 'STAGE-DAMAGE', 12, ' ', 0,
* CYEAR, 4, 'COMPUTED', 8, CPATH, NPATH) -

C
WRITE (6, 20) CPATH(I:NPATH)

20 FORMAT (' Pathname: ',A)

Outdated Subroutines Page 11-3

ZGTIES

11.2 ZGTDTS - Get Regular-Interval Time Series Data

Purvose;

ZGTDTS retrieves regular-interval time series data from a DSS file. The data retrieved
is based on a time window and may cross record boundaries (that is, ZGTDTS may read
several records with different D (date) parts to retrieve the data specified).

Reolaced by.

ZRRTS and ZRRTSX

Callina SeQuence:

CALL ZGTDTS (IFLTAB, CA, NA, CB, NB, CC, NC, CF, NF,
"* JULS, ISTIME, JULE, IETIME, INTL, DUM, 0,
"* IOFSET, VALUES, NVALS, CUNITS, CTYPE, ISTAT)

Declarations:

INTEGER IFLTAB(600), NA, NB, NC, NF, JULS, ISTIME, JULE
INTEGER INTL, IETIME, IOFSET, NVALS, ISTAT
REAL VALUES(NVALS), DUM
CHARACTER CA*32, CB*32, CC*32, CF*32, CUNITS*8, CTYPE*8

On MS-DOS microcomputers, the julian dates, the time interval and interval offset
must be INTEGER*4:

INTEGER*4 JULS, JULE, IOFSET, INTL

Argument Descrivtion:

IFLTAB (Input-Ouw.ut) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CA (Input) A character string containing the "A" part of the pathname. Up
to 32 characters may be used in a pathname part. The part may nave
leading and trailing blanks (which will be removed).

NA (Input) The number of characters in CA. This number may include
leading and trailing blanks, if desired. If the pprt is null, NA may be
set to zero (or CA should contain only blanks).

CB (Input) The "B" part of the pathname.

NB (Input) The number of characters in CB.

CC (Input) The "C" part of the pathname.

Page 11-4 Outdated Subroutines

ZGT1lYI

NC (Input) The number of characters in CC.

CF (Input) The "F" part of the pathname.

NF (Input) The number of characters in CF.

JULS (Input) The julian date of the start of the time window. This is in days
since 31DEC1899 (not since the beginning of the current year).

ISTIME (Input) The starting time of the time window, in minutes past midnight
(for midnight ISTIME would be 1440, not 0). JULS and ISTIME define
the time of the first data value.

JULE (Input) The julian date of the end of the time window, in days since

31DEC 1899.

IETIME (Input) The ending time of the time window in minutes past midnight.

INTL (Input) The time interval of the data in minutes. For hourly data this
would be 60. For monthly data set INTL to 43200.

DUK (Unused) A dummy variable. This used to be the internal header array,
which now is returned as parameters (e.g., CUNITS, CTYPE).

(Unused) Zero. This used to be the length of the internal header array.

IOFSET (Output) The time offset of the data in minutes. (If hourly data is
recorded at 15 minutes past the hour, the offset would be 15 minutes.)
If there is no offset, IOFSET will be returned as zero. [For version 4,
this was buffer space to hold the record. Data is now read directly from
the disk into the values array.]

VALUES (Output) The actual data values retrieved. The values in this array are
undefined if ISTAT is greater than 10.

NVALS (Input-Output) As input, this variable must contain the dimension size
of VALUES. NVALS is returned with the number of data values read.
The array VALUES will contain NVALS real elements.

CUNITS (Output) The units of the data (e.g., FEET).

CTYPE (Output) The type of the data (e.g., PER-AVER).

Outdated Subroutines Page 11-5

ZGTInS

ISTAT (Output) A status parameter indicating the success of the operation. If
ISTAT is returned with zero, then all the data was successfully read. If
ISTAT is returned with a value between one and three, then data was
retrieved, but some missing values were detected. If ISTAT is greater
than ten, a fatal error occurred, and no data was returned. The possible
-al ues are:

ISTAT Description

0 All data retrieved.

1 Some missing data was detected (missing values set to
-901.0).

2 Missing record(s) (missing values set to -902.0 for the
record not found), but some data was found.

3 Missing record(s) and missing data in the data set,
however some data was found.

4 No data found for this time window, but a record was
found.

5 No records found (no data is returned).

GT 10 A "fatal" error occurred.

1I The number of values requested was less than one.

12 A non-standard time interval was provided.

15 The starting date or time was not recognized.

20 The data was not recognized as regular-interval time
series.

24 The pathname given does not meet the regular-interval
time series conventions.

53 The data could not be un-compressed.

Remarks:

ZGTDTS calls ZRRTSX.

CUNITS and CTYPE will contain the units and type for the last record read (when
reading several records). If no data was found (ISTAT=4), or a fatal error occurred,
CUNITS and CTYPE will be unchanged.

A debug trace will be printed when the message level (MLEVEL) is set to 8 via
subroutine ZSET. This trace will print the pathname, dates, times, and other information
used by the subroutine.

Page 11-6 Outdated Subroutines

ZGTIUrS

C Retrieve the past 50 days of daily data and print them.
C

INTEGER IFLTAB(600)
INTEGER*4 JULS, JULE, INTL, IOFSET
CHARACTER CA*32, CB*32, CC*32, CF*32
CHARACTER CDATE*20, CTIME*4, CUNITS*8, CTYPE*8
REAL VALUES(100)

C
C Open the DSS file, get the pathname parts, time interval, etc.

CALL ZOPEN (
C
C
C Get the current date and time.

CALL CURTIM (JULE, IETIME)
INTL - 1440

C Decrement it by 49 days (50 values).
IDUM - INCTIM (INTL, 0, -49, JULE, IETIME, JULS, ISTIME)

C
C Now retrieve the data.

NVALS - 100
CALL ZGTDTS (IFLTAB, CA, NA, CB, NB, CC, NC, CF, NF,

* JULS, ISTIME, JULE, IETIME, INTL, DUN, 0, IOFSET,
* VALUES, NVALS, CUNITS, CTYPE, ISTAT)
IF (ISTAT.GE.10) GO TO 900
IF (ISTAT.GE.3) GO TO 100

C
C Adjust the starting time to account for any offset.

CALL ZOFSET (JULS, ISTIME, INTL, 2, IOFSET)
C
C Print the data values along with their date-and time.

DO 80 1-1,50
IDUM - INCTIM (INTL, 0, I-1, JULS, ISTIME, JULE, IETIME)
CALL JULDAT (JULE, 0, CDATE, NDATE)
IDUM - M21HM (IETIME, CTIME)
WRITE (6,40) CDATE(1:NDATE), CTIME, VALUES(I)

40 FORMAT (lX,A,2X,A,FI0.3)
80 CONTINUE

Outdated Subroutines Page 11-7

11.3 ZPTDTS - Put Regular-Interval Thie Series Data in a DSS File

Purnose:

ZPTDTS stores regular-interval time series data in a DSS file. The data is based on a
time window, and may cross record boundaries (that is, ZPTDTS may write several records
with different D (date) parts).

Rervlaced By,

ZSRTS and ZSRTSX

Calline Seouence:

CALL ZPTDTS (IFLTAB, CA, NA, CB, NB, CC, NC, CF, NF,
"* JULS, ISTIME, JULE, IETIME, INTL, DUMi, IDUM,
"* DUM2, VALUES, NVALS, CUNITS, CTYPE, ISTAT)

Declarations:

INTEGER IFLTAB(600), NA, NB, NC, NF, JULS, ISTIME, JULE
INTEGER INTL, IETIME, IDUM, NVALS, ISTAT
REAL VALUES(NVALS), DUM1, DUM2
CHARACTER CA*32, CB*32, CC*32, CF*32, CUNITS*8, CTYPE*8

On MS-DOS microcomputers, the julian dates and time interval must be INTEGER*4:

INTEGER*4 JULS, JULE, INTL

Argument Description:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CA (Input) A character string containing the "A" part of the pathname. Up
to 32 characters may be used in a pathname part. The part may have
leading and trailing blanks (which will be removed).

NA (Input) The number of characters in CA (the dimension). This number
may include leading and trailing blanks, if desired. If the part is null,
NA should be set to zero (or CA should contain only blanks).

CB (Input) The "B" part of the pathname.

NB (Input) The number of characters in CB.

CC (Input) The "C" part of the pathname.

Page 11-8 Outdated Subroutines

NC (Input) The number of characters in CC.

CF (Input) Tae 'F' part of the pathname.

NF (Input) The number of characiors in CF.

JULS (Input) The julian date of the start of the time window. This is in days
since 31DEC1899 (not since the beginning of the current year).

ISTIME (Input) The starting time of the time window, in minutes past midnight
(for midnight ISTIME would be 1440, not 0). JULS and ISTIME define
the time of the first data value. Any time offset is implied by these
values (e.g., for daily data recorded at 8:00 a.m., set ISTIME to 480, an
implied offset of 480 minutes).

JULE (Input) The julian date of the end of the time window (in days since

31DEC1899).

IETIM.E (Input) The ending time of the time window in minutes past midnight.

INTL (Input) The time interval of the data in minutes. For hourly data this
would be 60. For monthly data, INTL would be 43200.

DUMi (Unused) A dummy variable. In version 4 this contained the internal
header array.

I"DUM (Uni;. t) A dummy variable. In version 4 this was the length of the
intern header array.

DUM2 (Unused) A dummy variable. In version 4 this was a buffer array to
hold the record written to disk. The subroutine now has its own buffers
to accomplish this.

VALUES (Input) The actual data values to store. Values-in the array that are
missing should be set to -901.

NVALS (Input-Output) As input, this variable must contain the dimension size
of VALUES. NVALS is returned with the number of data values
stored. The array VALUES must contain NVALS real elements.

CUNITS (Input) The units of the data (e.g., FEET).

CTYPE (Input) The type of the data (e.g., PER-AVER).

Outdated Subroutines Page 11-9

ISTAT (Input-Output) As input, ISTAT is an argument to indicate whether to
write over existing data or not. If ISTAT is set to zero, the data
provided will always replace any existing data (with the same pathname
at the same times). As output, ISTAT is a status parameter indicating
the success of the operation. If ISTAT is returned with zero, then all
the data was successfully stored. If ISTAT is greater than ten, a fatal
error occurred. The possible values are:

As Input

ISTAT Description

0 Always write over existing data.

-l Only replace missing data flags in the record (-901).

-2 If all the data are missing data flags (-901), write the
record regardless. (Normally, if all the input data values
are missing, the record will not be written).

-4 If an input data value is missing (-901), do not allow it to
replace an existing data value.

As Output

0 The data was successfully stored.

4 All of the input data provided were missing data flags
(-901). No data was stored.

GT 10 A "fatal" error occurred-

11 NVALS is less than one.

12 An illegal time interval was given.

15 The starting date is illegal.

24 The pathname does not meet the regular-interval time
series conventions.

Remarks:

ZPTDTS calls ZSRTSX.

The argument NVALS must be set to the dimension of VALUES prior to calling
ZPTDTS. NVALS is not necessarily the number of data values to store; the number of data
values to store is determined by the time window.

A debug trace may be turned on by setting the message level (MLEVEL) to either 7, 8,
or 9 via subroutine ZSET. Level 7 gives information regarding the arguments being passed.
The higher levels provide information about the stwps tak; Ig place inside the subroutine.

Page 11-10 Outdated Subroutines

If ISTAT is not returned with zero, an error (or warning) message will be written to the
standard output, provided the message level is set accordingly. The error messages are
explicit. If a fatal error occurs, what the error is, and any relevant informatiod will be
printed.

Examvle:

C Store NVALS data values.

C
INTEGER IFLTAB (600)
INTEGER*4 JULS, JULE, INTL, IYMDJL
CHARACTER CA*32, CB*32, CC*32, CF*32, CTIME*4
REAL VALUES(1000)

C
C Open the DSS file, get the pathname parts, etc.

CALL ZOPEN (
CALL ZGPNP (...

C
C If the date is in the integer form 12/24/82,
C convert it to julian.

JULS - IYMDJL (IYR, IMON, IDAY)
C Convert the time from 24 hour clock time to minutes.

ISTIME - IHM2M (CTIME)
C
C Increment the time by NVALS-1 periods.

IDUM - INCTIM (INTL, 0, NVALS-1, JULS, ISTIME, JULE, IETIME)
C
C Now store the data.

ISTAT - 0
C As input, NVALS is the dimension of VALUES,
C not necessarily the number of values.

NVALS - 1000
CALL ZPTDTS (IFLTAB, CA, NA, CB, NB, CC, NC, CF, NF,

* JULS, ISTIME, JULE, IETIME, INTL, DUM, IDUM, DUM,
* VALUES, NVALS, 'CFS', 'PER-AVER', ISTAT)

IF (ISTAT.GT.0) GO TO 900
C

Outdated Subroutines Page 11-11

ZGIRTS

11A4 ZGIRTS - Get Irremular-Interval "lme Series Data

urD~ose:

ZGIRTS retrieves irregular-interval time series data from a DSS file. The data
retrieved may be based on a time window and can cross record boundaries (i.e., several
records with different "D parts* may be read with one call to ZGIRTS). If no time window
is specified, all the data from that record will be retrieved (using the "D part" for the date).

Replaced By-,

ZRITS and ZRITSX

Callina Seauence:

CALL ZGIRTS (IFLTAB, CPATH, NPATH, JULS, ISTIME, JULE, IETIME,
"* DUMI, IDUMI, DUM2, IDUM2, KVALS, DATES, VALUES, NVALS,
"* BDATE, CUNITS, CTYPE, ISTAT)

Declarations:

INTEGER IFLTAB(600), NPATH, JULS, ISTIME, JULE, IETIME
INTEGER IDUMI, IDUM2, KVALS, NVALS, ISTAT
REAL DATES(KVALS), VALUES(KVALS), BDATE, DUMI, DUM2
CHARACTER CPATH*80, CUNITS*8, CTYPE*8

On MS-DOS microcomputers, the julian dates must be INTEGER*4:

INTEGER*4 JULS, JULE

Argument Description:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CPATH (Input) The pathname of the data to read. The pathname must meet the
irregular time-series conventions specified in the HECDSS Users Guide,
including a correct "E part". With a time window specified, the "D part"
(date part) will be ignored, as ZGIRTS will form it internally (there may
be several D parts, depending on the time window). If no time window
is specified, a correct D part must be provided.

NPATH (Input) The number of characters in CPATH.

JULS (Input) The julian date of the start of the time window. This is days
since 31DEC1899, not since the beginning of the current year. If no
time window is specified, this argument is ignored (see ISTIME).

Page 11 - 12 Outdated Subroutines

ZGIT

ISTIME (Input) The starting time of the time window, in minutes past midnight
(for midnight ISTIME would be 1440, not 0). To have no time window
set (and read the entire record), set ISTIME to -2. This will use the D
part of the pathname to define the time window.

JULE (Input) The julian date of the end of the time window in days since
31DEC1899. If no time window is set, this argument is ignored.

IETIME (Input) The ending time of the time window in minutes past midnight.
If no time window is set, this argument is ignored.

DUM1 (Unused) A dummy variable. In version 4 this was a buffer array to
hold the record to read. The subroutine now has internal buffers to
read the record with.

IDUM1 (Unused) A dummy variable. In version 4 this was the dimension of
the buffer.

DUM2 (Unused) A dummy variable. In version 4 this was the internal header
array, which now is returned as parameters (e.g., CUNITS, CTYPE).

IDUM2 (Unused) A dummy variable. In version 4 this was the length of the
internal header array.

KVALS (Input) The dimension of arrays DATES and VALUES, or (if desired)
the maximum number of data values to retrieve. No more than KVALS
data values will be retrieved.

DATES (Output) An array containing the dates of the data (VALUES), in a
one-to-one correspondence. The dates are given in the number of days
and fraction of a day from BDATE. On computers where the precision
is sufficiently large, BDATE can be added to each element of DATES to
produce julian days and fractions of a day since 31DEC1899. DATES
will be returned with NVALS elements.

VALUES (Output) The actual data values retrieved.

NVALS (Output) The number of data values read. Arrays DATES and
VALUES will contain NVALS elements.

BDATE (Output) The julian base date (in days since 31DEC1899), usually
equivalent to JULS (with no fractional part). All the dates in array
DATES are relative to this date.

CUNITS (Output) The units of the data (e.g., FEET).

CTYPE (Output) The type of the data (e.g., PER-AVER).

Outdated Subroutines Page 11-13

ZGIrTS

ISTAT (Output) A status parameter indicating the success of the operation. If
ISTAT is returned with zero, then the data was successfully read. If
ISTAT is greater than ten, a fatal error occurred. The possible values
are:

ISTAT Description

0 Successful data retrieval.

1 The number of data values requested (according to the
time window) exceeds KVALS. The ITIMES and
VALUES arrays will contain KVALS values.

4 No data found (pathname not found). The output

arguments are undefined.

GT 10 A "fatal" error occurred:

20 The data was not recognized as irregular-interval time
series.

21 An internal buffer array is not large enough to read the
record. (This will seldom occur as the same array is used
to store the data, and the error would be detected at that
time.)

24 The pathname does not meet the irregular-interval time
series-conventions.

Remarks:

ZGIRTS calls ZRITSX.

The BDATE argument is provided to take care of precision problems on many
computers. The complete julian date and fraction of a day requires precision of 9 sig-
nificant digits (for example a number of 35020.0001). This can be represented by a BDATE
of 35000.0 and a DATES(N) value of 20.0001. On machines with a precision of 9 or more
significant digits, BDATE can be added to each of the DATES elements to compute a total
julian date and fraction. This cannot be done on 32 bit machines (e.g., a PC), but can be
accomplished on 48 bit and larger machines (e.g., Harris and CDC). An example of
changing this style of date to a standard style is provided in the example following.

CUNITS and CTYPE will contain the units and type for the last record read (when
reading several records). If no data was found (ISTAT=4), or a fatal error occurred,
CUNITS and CTYPE will be unchanged.

A debug trace may be turned on by setting the message level (MLEVEL) to either 7, 8,
or 9 via subroutine ZSET. Level 7 gives information regarding the arguments being passed.
The higher levels provide information about the steps taking place inside the subroutine.

Page 11-14 Outdated Subroutines

ZGETS

Example:

C Retrieve data for the past 60 days and print them.
C

INTEGER IFLTAB(600)
INTEGER*4 INTL, JULS, JULE, JUL, JULR, JULB
REAL DATES(1000), VALUES(1000), BDATE
CHARACTER CPATH*80, CUNITS*8, CTYPE*8, CDATE*20, CTIME*4

C
C Open the DSS file and get the pathname parts.

CALL ZOPEN (...

C
C Get the current julian date and time.

CALL CURTIM (JULE, IETIME)
INTL - 1440

C Decrement it by 60 days (from midnight).
IDUM - INCTIM (INTL, 0, -60, JULE, IETIME, JULS, ISTIME)
ISTIME - 1440

C
C Retrieve the data.

CALL ZGIRTS (IFLTAB, CPATH, NPATH, JULS, ISTIME, JULE, IETIME,
* DUMI, IDUMI, DUM2, IDUM2, 1000, DATES, VALUES, NVALS, BDATE,
* CUNITS, CTYPE, ISTAT)

C
C Check for errors.

IF (ISTAT.EQ.4) GO TO 100
IF (ISTAT.GE.10) GO TO 900

C
C Print the data values.

WRITE (6,20) CUNITS, CTYPE
20 FORMAT (' Units: ',A,', Type: ',A)

C
JULB - INT4(BDATE)
DO 60 I-1,NVALS

C Convert julian dates to standard.
JULR - INT4(DATES(I))
JUL - JULB + JULR
FRACT - DATES(I) - REAL(JULR)
RMIN - (FRACT * 1440.) + 0.6
MIN- INT(RMIN)

C Convert to standard date and time.
CALL JULDAT (JUL, 0, CDATE, NDATE)
IDUM - M2IHM (MIN, CTIME)

C Print the value.
WRITE (6,40) CDATE(I:NDATE), CTIME, VALUES(I)

40 FORMAT (IX,A,', ',A,': ',F8.2)
60 CONTINUE

Outdated Subroutines Page 11-15

ZPMIRT

11.5 ZPIRTS - Put Irregular-Interval Time Series Data

Purtvose:

ZPIRTS stores irregular-interval time series data in a DSS file. The data is stored
based upon an implied time window which can cross record boundaries. The time window
is implied by the date and times of the first and last values in the time array.

Irregular-interval time series data is stored with times to the nearest minute. Data for
times of less than a minute cannot be stored with this convention. The times of the data
must be in ascending order, and no value may have the same exact time as another (you
cannot have two data points for the same time in a record).

Rep~laced By:.

ZSITS and ZSITSX

Callina Seouence:

CALL ZPIRTS (IFLTAB, CPATH, NPATH, DUMI, IDUMI, DUM2,
* IDUM2, DATES, VALUES, NVALS, BDATE, CUNITS, CTYPE,
* INFLAG, ISTAT)

Declarations:

INTEGER IFLTAB(600), NPATH, NVALS, INFIAG, ISTAT, IDUMI, IDUM2
REAL DATES(NVALS), VALUES(NVALS), BDATE, DUM1, DUM2
CHARACTER CPATH*80, CUNITS*8, CTYPE*8

Argument Description:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CPATH (Input) The pathname of the data to store. The pathname must meet
the irregular-interval time series conventions specified in the HECDSS
Users Guide, including a correct "E part". The "D part" (date part) is
ignored, as ZPIRTS will form it internaiy.

NPATH (Input) The number of characters in CPATH.

DUM1 (Unused) A dummy variable. In version 4 this was a buffer array to
hold the record to store. The subroutine now has internal buffers toaccomplish this.

IDUM1 (Unused) A dummy variable. In version 4 this was the dimension of
the buffer.

DUM2 (Unused) A dummy variable. In version 4 this was the internal header
array.

Page 11-16 Outdated Subroutines

IDUM2 (Unused) A dummy variable. In version 4 this was the length of the
internal header array.

DATES (Input) The array containing the dates of the data (VALUES), in a
one-to-one correspondence. The dates must be given in days and
fraction of a day from BDATE, where the addition of BDATE and
DATES(I) is the date and time of the respective data value. On
computers where the precision is sufficiently large, BDATE can be set
to zero, and each element of DATES may be the total julian day and
fraction of the day since 31DEC1899. DATES should contain NVALS
elements.

VALUES (Input) The data values to store.

NVALS (Input) The number of data values to store. Arrays DATES and
VALUES must contain NVALS valid elements.

BDATE (Input) The base date, which when added with each element of DATES
will give the total julian day and fraction of a day for the respective
data. All values in array DATES should be relative to this value. (See
remarks).

CUNITS (Input) The units of the data (e.g., FEET).

CTYPE (Input) The type of the data (e.g., PER-AVER).

INFIAG (Input) INFLAG is a flag to indicate whether the data sh-.uld be
replaced or merged with existing data. Replace will replace all the data
between the implied time window (time of first and last data). Merge
will combine the data with the data already stored. (Merging data
replaces data occurring at the same time and inserts data at new times.)

INFLAG = 0 to merge data.
INFLAG - I to replace data.

Outdated Subroutines Page 11-17

ZPEIRS

ISTAT (Output) A status parameter indicating the success of the operation. If
ISTAT is returned with zero, then all the data was successfully stored.
If ISTAT is greater than ten, a fatal error occurred. The possible values
are:

ISTAT Description

0 The data was successfully stored.

4 No data was given to store (NVALS was zero).

GT 10 A "fatal" error occurred:

21 An internal buffer array is not large enough to store this
number of data values. If this error occurs, the
time-block identified by in the 'E part" of the pathname
spans too long of a time period, and holds more data
values than the internal buffers can accommodate. The
time-block should be changed to the next lower size (e.g.,
from "IR-MONTH" to "IR-DAYu).

24 The pathname does not meet the irregular-interval time
series conventions.

30 The times associated with the data values are not in a
ascending order, or two values occur at the same time.

Remarks:

ZPIRTS calls ZSITSX.

The BDATE argument is provided to take care of precision problems on many
computers. The complete julian date and fraction of a day require a precision of 9 sig-
nificant digits (for example a number of 35020.0001). This can be represented by a BDATE
of 35000.0 and a DATES(N) value of 20.0001. On machines with a precision of 9 or more
significant digits, BDATE can be set to zero, and each of the DATES elements may be a
total julian date and fraction. Typically this cannot be done on 32 bit machines (e.g., a PC),
but can be accomplished on 48 bit and larger machines (e.g., Harris and CDC). An example
of obtaining this style of date from a standard style is provided in the example following.

With reference to INFLAG and data already present in the DSS file, replace will
replace all the data within the implied time window, while merge will combine the two data
sets, only replacing those values that occur at exactly the same time (within one minute of
significance). INFLAG has no meaning for a new record. Usually the replace mode is used
for editing data, and the merge mode is used for adding new data to the record.

A debug trace may be turned on by setting the message level (MLEVEL) to 9 via
subroutine ZSET.

Page 11-18 Outdated Subroutines

ZPrIri

C Read data from an ASCII file and store in the DSS file.
INTEGER IFLTAB(600), IBF(5), IEF(5), ILF(5) -
INTEGER*4 JUL
CHARACTER CPATH*80, CLINE*80, CUNITS*8, CTYPE*8
REAL DATES(1000), VALUES(1000)

C
C Open the DSS file and get the pathname parts.

CALL ZOPEN (...

C
READ (5,20) CUNITS, CTYPE

20 FORMAT (A,A)
NVALS - 0

C
100 CONTINUE

IF (NVALS.GE.1000) GO TO 200
READ (5,20,END-200) CLINE

C
C Parse the line.

CALL PARSLI (CLINE, 5, NFIELD, IBF, IEF, ILF)
IF (NFIELD.NE.3) GO TO 900

C
C The date should be in the first field, the time in
C the second, and the data in the third field.

NVALS - NVALS + 1
CALL DATJUL (CLINE(IBF(l):IEF(l)), JUL, IERR)
IF (IERR.NE.0) GO TO 900

C Set BDATE to the date of the first value.
IF (NVALS.EQ.1) BDATE - REAL(JUL)

C
NTIME - IHM2M (CLINE(IBF(2):IEF(2)))
IF (NTIME.LT.0) GO TO 900

C
DATES(NVALS) - (REAL(JUL) - BDATE) + (REAL(NTIME)/1440.)
VALUES (NVALS) - XREAL (CLINE, IBF(3), ILF(3), IERR)
IF (IERR.NE.0) GO TO 900

C
GO TO 100

C
200 CONTINUE

C Now store the data.
IF (NVALS.LE.0) GO TO 800
CALL ZPIRTS (IFLTAB, CPATH, NPATH, DUM, IDUM, DUM, IDUM,

* DATES, VALUES, NVALS, BDATE, CUNITS, CTYPE, 0, ISTAT)
IF (ISTAT.NE.0) GO TO 900

Outdated Subroutines Page I I- 19

ZGTPFD

11.6 ZGTPFD - Get Paired Function Data

Purgose:

ZGTPFD retrieves paired function data from a DSS file.

Replaced By;

ZRPD

Callina Seouence:

CALL ZGTPFD (IFLTAB, CPATH, NPATH, NORD, NCURVE, IHORIZ
"* CIUNIT, C2UNIT, CITYPE, C2TYPE, CLABEL, KIABEL, NIABEL,
"* DUM, IDUMI, IDUM2, VALUES, KVALS, NVALS, ISTAT)

Declarations:

INTEGER IFLTAB(600), NPATH, NORD, NCURVE, IHORIZ
INTEGER KLABEL, NLABEL, IDUMI, IDUM2, KVALS, NVALS, ISTAT
REAL VALUES (KVALS)
CHARACTER CPATH*80, C1UNIT*8, C2UNIT*8, CITYPE*8, C2TYPE*8
CHARACTER CLABEL(KIABEL)*12

Araument Description:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call. -

CPATH (Input) The pathname of the data to retrieve. The pathname must meet

the paired function data conventions.

NPATH (Input) The number of characters in CPATH.

NORD (Output) The number of ordinates read (number of points per curve).
Each curve stored in a single record must have the same number of
ordinates.

NCURVE (Output) The number of curves retrieved.

IHORIZ (Output) The variable number to appear on the horizontal axis for
plotting (I for first variable, 2 for second).

ClUNIT (Output) The units of the first variable (e.g., 'FEET', or 'PERCENT).

C2UNIT (Output) The units of the second variable.

Page 11-20 Outdated Subroutines

ZGTPFD

CITYPE (Output) The type of data for the first variable. The following types
are recognized by the DSS utility programs:

UNT Untransformed
LOG Logarithmic - data expressed as logarithms.
PROB Probability - data expressed in percent.

C2TYPE (Output) The type of data for the second variable.

CLABEL (Output) The labels for each curve. For example, if an
ELEVATION-DAMAGE function is retrieved containing residential,
agricultural and commercial damage, then CLABEL might be returned
as:

CLABEL(1) - 'RESIDENTIAL
CLABEL(2) - 'AGRICULTURAL'
CIABEL(3) - 'COMMERCIAL

For this example, NCURVE would be returned with 3, and CLABEL
should be dimensioned to at least 3.

KiABEL (Input) The dimension of CLABEL. No more than KLABEL labels

will be placed into CLABEL.

NLABEL (Output) The number of labels read.

DUM (Unused) A dummy variable. In version 4 this contained the internal
header array.

IDUMI (Unused) A dummy variable. In version 4 this was the dimension of
the internal header array.

IDUM2 (Unused) A dummy variable. In version 4 this was the length of the
internal header array.

VALUES (Output) The data values retrieved. The first NORD elements in
VALUES correspond to the first variable. The data for the second
variable begins at element NORD+1.

KVALS (Input) The dimension of array VALUES. VALUES must be dimen-
sioned to at least

KVALS - (NCURVE + 1) * NORD

NVALS (Output) The number of values retrieved.

Outdated Subroutines Page 11-21

ZGTPFD

ISTAT (Output) A status parameter indicating the success of the operation. If
ISTAT is returned with zero, then the data was successfully read. The
possible values are:

ISTAT Description

0 Successful data retrieval.

-1 The record does not exist. The output arguments are
undefined.

1 The dimension of VALUES (KVALS) was not large
enough to retrieve all the data. Only KVALS values
returned; the curves are incomplete.

20 The record is not paired data.

Remarks:

ZGTPFD calls ZRPD.

Up to 50 curves (with the same ordinates) can be stored in one record. The maximum
number of labels is also 50. Either all curves will have a label, or no curves will have labels.
If the VALUES array is dimensioned smaller than the number of data values in the record,
only the first KVALS values will be retrieved.

A debug trace will be printed when the message level (MLEVEL) is set to 7 (or above)
v'ia subroutine ZSET.

Points can be located within a singly dimension array by the following example:

C To print the data (as X, YI, Y2, Y3, ...):
DO 20 I-I,NORD

WRITE (6,10) (VALUES(J),J-I,NVALS,NORD)
10 FORMAT (' X:',F8.2,', Y(s):',50(2X,F8.2))
20 CONTINUE

C To transform the data into a doubly dimensioned array:
IPOS - 0
DO 20 I-1,NCURVE+l

DO 20 J-1,NORD
IPOS - IPOS + 1
CURVE(J,I) - VALUES(IPOS)

20 CONTINUE

Page 11-22 Outdated Subroutines

ZGTPFD

Example :

C Retrieve paired data from a DSS file.
PARAMETER (KVALS-900, KLABEL-8)
INTEGER IFLTAB(600)
REAL VALUES(KVALS)
CHARACTER CPATH*80, ClUNIT*8, C2UNIT*8, ClTYPE*8, C2TYPE*8,

* CLABEL(KLABEL)*12
C
C Open the DSS file.

CALL ZOPEN(
C
C Get the pathname.

CALL ZPATH (
C
C
C Retrieve the data.

CALL ZGTPFD (IFLTAB, CPATH, NPATH, NORV. CURVE, IHORIZ
* ClUNIT, C2UNIT, CITYPE, C2TYPE, CLABEL, KLABEL, NIABEL,
* DUN, IDUKI, IDUM2, VALUES, KVALS, NVALS, ISTAT)

IF (ISTAT.NE.O) GO TO 900
C
C Write the record's pathname.

WRITE (6,20) CPATH(l:NPATH)
20 FORMAT (' Record Pathname: ',A)

C
C Write the label information (if there are labels).

IF (NLABEL.GE.1) THEN
WRITE (6,30)

30 FORMAT (' Curve Labels:')
DO 50 I-l,NLABEL

WRITE (6,40) I, CLABEL(I)
40 FORMAT (' Curve',13,' Label: ',A)
50 CONTINUE

ENDIF
C
C Write the data (as point, X, Yl, Y2, Y3, ...).

DO 80 I-I,NORD
WRITE (6,60) I, (VALUES(J),J-I,NVALS,NORD)

60 FORMAT (' Point',14,'; X:',F8.2,', Y(s):',50(2X,F8.2))
80 CONTT'TE

C

Outdated Subroutines Page 11-23

ZGTPFD

Example results for an ELEVATION-DAMAGE Function having two damage
categories and 18 ordinates:

Input
CPATH - /JAMES RIVER/DR1/ELEVATION-DAMAGE//1980/PLAN B/
NPATH - 48
KLABEL - 10
KVALS - 1000

Output
NORD - 18
NCURVE - 2
IHORIZ - 2
CIUNIT - 'FEET'
CITYPE - 'UNT'
C2UNIT - '$1000,
C2TYPE - 'UNT'
NVALS - 54
LABEL - .TRUE.
CIABEL(1) - 'S.F. RES'
CLABEL(2) - 'COMMERCIAL'
ISTAT - 0

The VALUES array contains all of the data:
VALUES(1) through VALUES(18) contain the ELEVATION data.
VALUES(l9) through VALUES(36) contain DAMAGE data for "S.F. RES".
VALUES(37) through VALUES(54) contain DAMAGE data for"COMMERCIAL".

Page 11-24 Outdated Subroutines

ZlPTPFD

11.7 ZPTPFD - Put Paired Function Data

Purpose:

ZPTPFD stores paired function data in a DSS file.

Replaced Br:.

ZSPD

Callina Seauence:

CALL ZPTPFD (IFLTAB, CPATH, NPATH, NORD, NCURVE, IHORIZ,
"* ClUNIT, C2UNIT, CITYPE, C2TYPE, CLABEL, KIABEL, NLABEL,
"* DUM, IDUMI, IDUM2, VALUES, KVALS, NVALS, IPLAN, ISTAT)

Declarations:

INTEGER IFLTAB(600), NPATH, NORD, NCURVE, IHORIZ
INTEGER KLABEL, NIABEL, KVALS, NVALS, IPLAN, ISTAT
INTEGER IDUM1, IDUM2
REAL VALUES(KVALS), DUM
CHARACTER CPATH*80, CIUNIT*8, C2UNIT*8, ClTYPE*8, C2TYPE*8
CHARACTER CLABEL(KLABEL)*12

Argument Descrintion:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This
is the same array used in the ZOPEN call.

CPATH (Input) The pathname of the data to store. The pathname must meet

the paired function data conventions.

NPATH (Input) The number of characters in CPATH.

NORD (Input) The number of ordinates (number of points per curve). Each
curve to store in a single record must have the same number of
ordinates.

NCURVE (Input) The number of curves to store in this record.

IHORIZ (Input) The variable number to appear on the horizontal axis for
plotting (1 for first variable, 2 for second).

C1UNIT (Input) The units of the first variable (e.g., 'FEET', 'PERCENT").

C2UNIT (Input) The units of the second variable.

Outdated Subroutines Page 11-25

zi2rPFD

CiTYPE (Input) The type of data for the first variable. The following types are
recognized by the DSS utility programs:

UNT Untransformed
LOG Logarithmic - data expressed as logarithms.
PROB Probability - data expressed in percent.

C2TYPE (Input) The type of data for the second variable.

CLABEL (Input) A optional character array with labels corresponding to each
curve. For example, if a ELEVATION-DAMAGE function is to be
stored containing residential, agricultural and commercial damage, then
CLABEL might be as follows:

CLABEL(1) - 'RESIDENTIAL
CLABEL(2) - 'AGRICULTURAL'
CLABEL(3) - 'COMMERCIAL

KLABEL (Input) The dimension of CLABEL.

NLABEL (Input) The number of curve labels to store. If no labels are to be
stored, set this to zero. If labels are supplied, NLABEL must be equal
to NCURVE.

DUM (Unused) A dummy variable. In version 4 this contained the internal
header array.

IDUMI (Unused) A dummy variable. In version 4 this was the dimension of
the internal header array.

IDUM2 (Unused) A dummy variable. In version 4 this was the length of the
internal header array.

VALUES (Input) The data values to store. The first NORD elements in VALUES
correspond to the first variable (the X axis). The data for the second
variable must begin at element NORD+I (the Y axis).

KVALS (Input) The dimension of VALUES.

NVALS (Output) The number of values stored.

IPLAN (Input) An argument indicating whether to write over existing data or
not:

IPLAN Description

0 Always write the record to the file.

1 Only write the record if it is new (i.e., no record exists
with that pathname).

2 Only write the data if the record already existed in the
file.

Page 11-26 Outdated Subroutines

ZPTPFD

ISTAT (Output) A status parameter indicating the success of the operation. If
ISTAT is returned with zero, then the data was successfully stored,
otherwise an error occurred. The possible values are:

ISTAT Description

0 The data was successfully stored.

-1 IPLAN requested that the record be written only if it was
new, but the file already contained a record with the
pathname supplied.

-2 IPLAN requested that the record be written only if it
already existed, but the pathname supplied was not
found.

-3 The pathname does not meet the paired data conven-
tions).

-4 The number of ordinates is less than one.

-5 NCURVE is less than one or greater than 50.

Remarks:

ZPTPFD calls ZSPD.

Up to 50 curves (with the same ordinates) can be stored in one record. The maximum
number of labels is also 50. Either all curves will have a label, or no curves will have labels.

A debug trace will be printed if the message level (MLEVEL) is set to 7 (or above) via
subroutine ZSET.

Unless the number of data points for the curve(s) is known prior to obtaining them (for
example, if you are reading them from an external file), the data usually must be read into a
buffer, then reorganized into a singly dimensioned array before storing with ZSPD. Points
can be converted from a doubly dimensioned array into a singly dimensioned array by the
following example:

C
C The data has been read into array CURVE as X, Y1, Y2, Y3,

IPOS - 0
DO 20 I-1,NCURVE+1
DO 20 J-1,NORD
IPOS - IPOS + 1
VALUES(IPOS) - CURVE(J,I)

20 CONTINUE

Outdated Subroutines Page 11-27

Examole:

C Read (a) Curve(s) from an external file, then store it in DSS.
C Up to 10 curves (in one record) can be stored by this routine. t
C The external file contains data in the form:
C X, Yl, Y2,
C X, Yl, Y2,
C END
C

PARAMETER (KVALS-1000, KIABEL-10)
INTEGER IFLTAB(600), NORD, NCURVE, IHORIZ
INTEGER ISTAT, IBF(20), IEF(20), ILF(20)
REAL VALUES(KVALS), CURVES(300,11)
CHARACTER CPATH*80, ClUNIT*8, C2UNIT*8, CITYPE*4, C2TYPE*4
CHARACTER CIABEL(KUABEL)*12, CNAME*64, CLINE*80

C

C Open the DSS file.
CALL ZOPEN (IFLTAB, CNAME, ISTAT)
IF (ISTAT.NE.0) GO TO 900

C
C Get the pathname.

CALL ZPATH (.
C
C Get the number of Curves, IHORIZ.

READ (5,*) NCURVE, IHORIZ
C
C Get the data units and type.

READ (5,20) ClUNIT, CITYPE, C2UNIT, C2TYPE
C
C Read the label information.

DO 40 I-1,NCURVE
READ (5,30) CLABEL(I)

40 CONTINUE
C
C Read the data (as X, Yl, Y2, Y3, ...).

NORD - 0
50 CONTINUE

READ (5,60,END-200) CLINE
60 FORMAT (A)

C
C Did we reach the end of the data yet?

IF (INDEX(CLINE,'END').GT.0) GO TO 100
C
C Parse the line.

CALL PARSLI (CLINE, 20, NFIELD, IBF, IEF, ILF)
IF (NFIELD.NE.NCURVE+l) GO TO 900

Page 11-28 Outdated Subroutines

ZPTPFD

C Place the data in the curves array.
NORD - NORD + i
DO 80 I-I,NFIELD
CURVES(NORD,I) - XREAL (CLINE, IBF(I), ILF(I), IERR)

* IF (IERR.NE.O) GO TO 900
80 CONTINUE

C
C Go back and read the next value.

GO TO 50
C

100 CONTINUE
C All the data has been read. Transfer the data into
C a singly dimensioned array.

IPOS - 0
DO 120 I-l,NCURVE+l
DO 120 J-1,NORD
IPOS - IPOS + 1
VALUES(IPOS) - CURVES(J,I)

120 CONTINUE
C
C Store the data.

NLABEL - NCURVE
CALL ZPTPFD (IFLTAB, CPATH, NPATH, NORD, NCURVE, IHORIZ,

* ClUNIT, C2UNIT, CITYPE, C2TYPE, CLABEL, KIABEL, NLABEL,
* DUM, IDUMi, IDUM2, VALUES, KVALS, NVALS, 0, ISTAT)

IF (ISTAT.NE.0) GO TO 900

Outdated Subroutines Page 11-29

ZPWFD

Example results for storing an ELEVATION-DAMAGE function having two damage
categories ("S.F. RES" and "COMMERCIAL") and 5 ordinatet

ELEVATION S.F. RES COMMERCIAL
DAMAGE DAMAGE

500.0 0.0 0.0
502.0 25.8 0.0
504.0 51.2 323.4
506.0 93.8 655.7
508.0 137.9 809.1

Input
CPATH - /JAMES RIVER/DR1/ELEVATION-DAMAGE//1980/PLAN B/
NORD - 18

NCURVE -2
IHORIZ - 2
ClUNIT - 'FEET'
CITYPE - 'UNT'
C2UNIT - '$1000'
C2TYPE - 'UNT'
LABEL - .TRUE.
CLABEL(1) - 'S.F. RES'
CLABEL(2) - 'COMMERCIAL'
NHEADU - 0
IPLAN - 0

The VALUES array contains all of the ELEVATION-DAMAGE data:
VALUES(I) through VALUES(5) contain the ELEVATION data.
VALUES(6) through VALUES(10) contain DAMAGE data for "S.F. RES".
VALUES(I 1) through VALUES(1 5) contain DAMAGE data for "COMMERCIAL*.

For example:

VALUES(I) - 500.0
VALUES(2) - 502.0

VALUES(5) - 508.0
VALUES(6) - 0.0

VALUES(7) - 25.8

VALUES(10) - 137.9
VALUES(11) - 0.0
VALUES(12) - 0.0

VALUES(15) - 809.1

Page 11-30 Outdated Subroutines

ZOPCAT

11.8 ZOPCAT - Open a Catalog File

Purp~ose:

ZOPCAT opens a DSS file's catalog file. If the catalog file does not exist, ZOPCAT can
create it. If the file does exist, ZOPCAT returns the number of records in the catalog.
ZOPCAT cannot open the condensed catalog file.

Replaced By:

ZOPNCA

Calling Seouence:

CALL ZOPCAT (CDSSFI, CATFIL, ICUNIT, LOPEN, LCATLG,
* LCREAT, NRECS)

Declarations:

ITTEGER ICUNIT, NRECS
CHARACTER CDSSFI*64, CATFIL*64
LOGICAL LOPEN, LCATLG, LCREAT

On MS-DOS microcomputers, NRE - must be INTEGER*4:

INTEGER*4 NRECS

Argument Description:

CDSSFI (Input) The name of the DSS file whose catalog file is to be opened.

CATFIL (Output) The name of the catalog file.

ICUNIT (Input) The unit number to open the catalog file with. (Most DSS utility
programs use unit 12 for the catalog file).

LOPEN (Input) A logical variable indicating the status of the open. LOPEN will
be .TRUE. if the catalog file was successfully opened (otherwise it will be
.FALSE.)

LCATLG (Output) A logical variable returned as .TRUE. if the file opened is a valid
catalog file. If LCATLG is .FALSE., ZCAT should be called to generate
a catalog of the DSS file.

LCREAT (Input) A logical flag indicating whether the catalog file should be created,
if it does not exist. When set to .TRUE., the file will be created.

NRECS (Output) The number of records in the catalog file. This is the number
shown in the catalog header.

Outdated Subroutines Page 11-31

ZCATLG

11.9 ZCATLG - Catalog a DSS file

PrrWQse:

ZCATLG generates a catalog (or listing) of the record pathnames in a DSS file. The
catalog may be sorted by pathname parts. ZCATLG can create a selective catalog by matching
pathname parts. The selective catalog can be created from a current catalog (reducing
resources), or directly from the DSS file. The catalog file must be opened externally by
subroutine ZOPNCA.

ZCATLG cannot produce a condensed catalog.

Replaced By.

ZCAT

Callin2 Seouence:

CALL ZCATLG (IFLTAB, ICUNIT, INUNIT, CINSTR, IBEG, NINSTR,
* LABREV, LSORT, NRECS)

Declarations:

INTEGER IFLTAB(600), ICUNIT, INUNIT, IBEG, NINSTR, NRECS
CHARACTER CINSTR*(*)
LOGICAL LABREV, LSORT

On MS-DOS microcomputers, NRECS must be INTEGER*4:

INTEGER*4 1hRECS

Argument Description:

IFLTAB (Input-Output) The DSS work space used to manage the DSS file. This is
the same array used in the ZOPEN call.

ICUNIT (Input) The unit number of file where the catalog is to be written. If a
new catalog is to be made, this should be the unit number of the catalog
file. If a selective catalog is to be produced from an existing catalog, this
unit should probably be attached to a scratch file.

INUNIT (Input) The input catalog unit number. If a new catalog is to be made,
this must be set to zero. If a selective catalog is to be produced from an
existing catalog, this is the unit number of the existing catalog. If INUNIT
is non-zero, the DSS file will not be cataloged.

Page 11-32 Outdated Subroutines

ZeATLG

CINSTR (Input) A character string containing any instructions for generating the
catalog, such as the sort order or selective pathname parts. For example,
if CINSTR is 'O=FB, C-FLOW', the catalog will be sorted in the pathname
part order of FBACED, and only those pathnames with a C part of "FLOW"

* will be cataloged. CINSTR is usually a portion of the input line of the
program. If no special instructions are given, set this to blank (' ').

IBEG (Input) The beginning position in CINSTR (all characters prior to IBEG
are ignored).

NINSTR (Input) The number of characters in CINSTR to use, starting at IBEG. If
there are no instructions, set NINSTR to 0.

LABREV (Input) A logical flag indicating whether an abbreviated catalog should be
produced. If set to .TRUE., an abbreviated catalog will be generated,
otherwise the standard catalog will be produced.

ISORT (Input) A logical flag indicating whether the pathnames should be sorted.
When LSORT is set to .TRUE., the pathnames are sorted (this takes longer
than an unsorted catalog).

NRECS (Output) The number of records cataloged. This number will be the same
as the reference number Cror the last pathname in the catalog file.

Remarks:

ZCATLG calls ZCAT.

A description of the catalog may be found in the "HECDSS User's Guide and Utility
Program Manuals", Overview section. Additional information may also be found in the
DSSUTL documentation, located in the same publication. Information about the selective
catalog is located in Chapter 5 of the DSSUTL documentation.

The fastest catalog that can be generated is an unsorted abbreviated catalog. In this
procedure, pathnames are just copied from the internal DSS address tables to the catalog. In
a regular extended catalog, each record must be accessed to obtain the program name, date and
time, etc..

After the catalog has been generated, it may be displayed on the screen by reading directly
from the catalog. ZCATLG should not be used to display the catalog on the screen (do not set
ICUNIT to standard output).

Pathnames may be read from the catalog file with subroutine ZRDCAT, which is a general
catalog reading routine, or by subroutine ZRDPAT, which obtains pathnames based on their
reference number. If you desire to display an abbreviated catalog and a regular catalog already
exists, use subroutine ZRDPAT to read the pathnames from the catalog.

Units 66, 67, 68, and 69 are used for sorting. On Harris computers, work files W2, W3,
UI, and U2 are used for sorting (and their contents destroyed). On other computers the files
dsssort.in, dsssort.out, and dsssort.tmp are used then deleted.

Outdated Subroutines Page 11-33

ZCATLG

A status line with the percent complete can be displayed on the screen by setting "CAST
to 'ON' with ZSET before calling ZCATLG. The message unit must be connected to the screen
to display a status line.

A "catalog map" may be generated by ZCATLG when creating a new catalog. A catalog
map is a listing of the pathnames only (no title or reference numbers), which is useful for
creating an input file of pathnames for some programs. This option is initiated by setting the
map options in subroutine ZSET. The map file must be opened and its unit number passed to
ZSET through the MAPUNT parameter, then the ZSET MAP parameter must be set to 'ON'.
The catalog map is only created when a new catalog is generated. Be sure to call ZSET with
MAP set to 'OFF after the map has been made.

Page 11-34 Outdated Subroutines

ZRDPN

11.10 ZRDPN - Read Pathnames from a Catalog F'de By Reference Number

Purxose:

ZRDPN reads pathnames from a catalog file according to their reference numbers.
ZRDPN may be used in a loop to obtain a set of pathnames, or it can read a single pathname.

Rerftced By-

ZRDPAT

Calling Sequence:

CALL ZRDPN (ICUNIT, IPOS, INUMB, CPATH, NPATH)

Declarations:

INTEGER ICUNIT, IPOS, INUMB, NPATH
CHARACTER CPATH*80

On MS-DOS microcomputers, IPOS and INUMB must be INTEGER*4:

INTEGER*4 IPOS, INUMB

Argument Description:

ICUNIT (Input) The unit number of the catalog file.

IPOS (Input-Output) A file position indicator used by ZRDPN. When first
reading from the catalog, the file should be rewound and IPOS set to 0.
(The calling program must always set IPOS to 0 when the catalog is
rewound.) Upon reaching the end of the catalog file, IPOS will be set to
100,000, and no pathname will have been read (CPATH would be
undefined).

INUMB (Input-Output) The catalog reference number of the pathname to read.
When the end of the catalog file is reached, INUMB will be returned with
the reference number of the last pathname in the catalog. If IPOS is less
than or equal to INUMB on input, ZRDPN will return the next pathname,
and its reference number, in the catalog.

CPATH (Output) The pathname corresponding to the reference number INUMB.

NPATH (Output) The number of characters in the pathname.

Outdated Subroutines Page 11-35

ZRDPN

Remark&

ZRDPN calls ZRDPAT.

The catalog file must be rewound and IPOS set to zero before calling ZRDPN to retrieve 0
a (set of) pathname(s). ZRDPN only can search for pathnames in a forward direction; INUMB
must always be greater than IPOS. Thus, if a sequence of reference numbers for pathnames to
be retrieved is "12, 18, 9, 20", then the catalog has to be rewound and IPOS set to 0 after
reading pathname 18 before pathname 9 will be found. It is more efficient to sort the reference
numbers in ascending order prior to calling ZRDPN.

If INUMB is less than or equal to IPOS on input, ZRDPN will read the next pathname
in the catalog and return its reference number as INUMB. Thus, the entire catalog file can be
read by rewining the file, setting IPOS and INUMB both to zero, then calling ZRDPN until
IPOS is 100,C J. In this case INUMB does not need to be reset by the program each time
ZRDPAT is called.

Examvle 1:

C Read a single pathname (e.g., INUMB-24).
CALL ZOPNCA (...

C
REWIND 12
IPOS - 0
INUMB - 24
CALL ZRDPN (12, IPOS, INUMB, CPATH, NPATH)

C If IPOS-100,000, then pathname 24 was not found.
IF (IPOS.GE.100000) GO TO 900

Example 2:

C Read a series of pathnames from 10 through 60.
REWIND 12
IPOS - 0
INUMB - 9

10 CONTINUE
INUMB - INUMB + 1
CALL ZRDPN (12, IPOS, INUMB, CPATH, NPATH)
IF (IPOS.GE.100000) GO TO 900
WRITE (6,20) INUMB, CPATH(1:NPATH)

20 FORMAT (lX,16,2X,A)
IF (INUMB.LT.60) GO TO 10

Page 11-36 Outdated Subroutines

2ZDPN

Exampl 3

C Read the set of pathnames whose reference numbers are
SC contained in the array NUMBS (e.g., 8, 12, 15,.9, 20, 13).

C
REWIND 12
IPOS - 0
DO 20 I-1,JNUMBS

INUMB - NUMBS(I)
C Are the numbers in ascending order?
C If not, rewind the catalog and reset IPOS.

IF (INUMB.LE.IPOS) THEN
REWIND 12
IPOS - 0

ENDIF
CALL ZRDPN (12, IPOS, INUMB, CPATH, NPATH)
IF (IPOS.GE.100000) GO TO 900
WRITE (6,10) INUMB, CPATH(1:NPATH)

10 FORMAT (IX,I6,2X,A)
20 CONTINUE

Outdated Subroutines Page 11-37

Appendix A

Example Appikation

The following example shows how a program may be interfacedwith the DSS software
for retrieving and storing data. This example uses regular-interval time series data. Other types
of data follow a similar procedure. The steps in this example are summarized in Chapter I.

CHARACTER CNAME*64, CDSSIN*64, CDSSOT*64, CLINE*80
INTEGER IFLTAB(600)
LOGICAL LDSSIN
DATA LDSSIN /.FALSE./

C

C
Open unit 6 to the standard output via subroutine ATTACH.
CALL ATTACH (6, 'OUTPUT', 'STDOUT', ' ', CNAME, ISTAT)

C
C Obtain the names of the DSS input and DSS output files.
C ATTACH passes information from the execution line to the program.
C The following code allows either one file specified for both the
C input and output DSS file, or a separate DSS file for input and
C for output.

CNAME - ' '
CALL ATTACH (IDUM, 'DSSFILE', ' ', 'NOP', CNAME, ISTAT)
CALL ATTACH (IDUM, 'DSSIN', CNAME, 'NOP', CDSSIN, ISTAT)
CALL ATTACH (IDUM, 'DSSOUT', CNAME, 'NOP', CDSSOT, ISTAT)

C
C
C READ INPUT.
C
C As the input file is being read in, look for either a "ZR",
C or a "ZW" card to trigger access to the DSS file.

READ (5, 20, END-800, ERR-900) CLINE
20 FORMAT (A)

C
IF (CLINE(I:2).EQ.'ZR') THEN

CALL DSSIN (CDSSIN, CLINE, IFLTAB)
C Remember that this DSS file was opened.

LDSSIN - .TRUE.
ELSE IF (CLINE(l:2).EQ.'ZW') THEN

C For DSS output, just save the ZW line, until the results
C are computed (subroutine DSSOUT will use CLINE).

CALL SAVDSS (CLINE)
ELSE IF .

C

C
C End of reading input. At this point, any data read from the

C DSS file would have already occurred. Close the DSS input file.
IF (LDSSIN) CALL ZCLOSE (IFLTAB)

C

Example Application Page A-1

SUBROUTINE DSSIN (CDSSIN, CLINE, IFLTAB)
C
C GET DATA FROM DSS
C
C Read time series data specified on the ZR card from DSS.
C Put flow data in array FLOWIN and precipitation data in PRECIN.
C

CHARACTER CDSSIN*(*), CLINE*(*)
INTEGER IFLTAB (600)

C
CHARACTER CA*32, CC*32, CE*8, CF*32, CPATH*80, CDUM*1
CHARACTER CLOC(10)*20, CDATE*20, CTIME*4, CTEMP*64
INTEGER JSTATS(6)
INTEGER*4 INTL
REAL VALUES(500), FLOWIN(500,10), PRECIN(500,10)
LOGICAL LFIRST, LEXIST

C (Several variables are passed by common blocks.)
C

DATA LFIRST /.TRUE./
DATA CA, CC, CE, CF, CPATH /5*' '/

C
C
C Open the DSS file the first time this subroutine is executed.

IF (LFIRST) THEN
LFIRST - .FALSE.

C Make sure that the DSS input file exists.
CTEMP - CDSSIN
CALL ZFNAME (CTEMP, CDSSIN, NDSSIN, LEXIST)
IF (.NOT.LEXIST) THEN

C The DSS input file does not exist: No data can be read in.
C Print error message and stop.

WRITE (6,*)'The DSS input file does not exist!', CDSSIN
STOP

ENDIF
C Open the DSS file.

CALL ZOPEN (IFLTAB, CDSSIN, ISTAT)
IF (ISTAT.NE.0) GO TO 900

C
C Check that a time window (from a time card) has been given.
C Also, make sure that the number of data values to retrieve (NVALS)
C is defined.

C
C Put the time interval in the E part.

IS - 2
CALL ZGINTL (INTL, CE, ND, IS)
IF (IS.NE.0) GO TO 900

ENDIF
C

Page A-2 Example Application

C Obtain the pathname parts from this card. (The locations
C names are already provided in array CLOC).
C First, indicate not to look for the B, D, or E parts.

JSTATS(2) - -2
JSTATS(4) - -2

* JSTATS(5) - -2
CALL ZGPNP (CLINE, CA, CDUM, CC, CDUM, CDUM, CF, JSTA -)

C
C Check that we have a valid "C" part.

IF ((CC.NE.'FLOW').AND.(CC.NE.'PRECIP')) GO TO 900
C
C Read data from DSS for each location specified.
C

DO 100 I-l,NLOCS
C
C Put the pathname together.

CALL ZPATH (CA, CLOC(I), CC, ' ', CE, CF, CPATH, NPATH)
C
C Now retrieve the data.

CALL ZRRTS (IFLTAB, CPATH, CDATE, CTIME, NVALS, VALUES,
* CUNITS, CTYPE, IOFSET, ISTAT)

C Check for a fatal error.
IF (ISTAT.GT.10) GO TO 940

C
C Now transfer the data into the proper input arrays,
C while checking for missing data (-901 or -902). If
C missing data is found, interpolate or set to 0.

IF (CC(l:4).EQ.'FLOW') THEN
CALL DATRAN (CC, VALUES, FLOWIN, NVALS, IOFSET, ISTAT)

ELSE
CALL DATRAN (CC, VALUES, PRECIN, NVALS, IOFSET, ISTAT)

ENDIF
IF (ISTAT.NE.0) GO TO 960

C
100 CONTINUE

C
C All done reading data for this parameter.

RETURN
C
C
C ERROR PROCESSING.

900 CONTINUE

END

Example Application Page A-3

SUBROUTINE DSSOUT (CDSSOT)
C
C WRITE DATA OUT TO DSS
C
C After all the data has been computed, write out the
C computed flows and stages.

CHARACTER CDSSOT*(*)

C
CHARACTER CA*32, CE*8, CF*32, CPATH*80, CDUM*1
CHARACTER CLINE*80, CLOC(10)*20, CDATE*9, CTIME*4
INTEGER IFLTAB(600), JSTATS(6)
REAL FLOOUT(500,10), STGOUT(500,10)
LOGICAL LSTORF(10), LSTORS(10)
(Several variables are passed by common blocks.)

C
C
C Open the DSS file (it will be created if it does not exist).

CALL ZOPEN (IFLTAB, CDSSOT, ISTAT)
IF (ISTAT.NE.0) GO TO 900

C Set the name of the program (COMFLO).
CALL ZSET ('PROGRAM', 'COMFLO', IDUM)

C
C Obtain the A and F pathname parts from the line saved earlier
C by subroutine CLINE (which is passed via a common block).
C First, indicate not to look for the B, C, D, or E parts.

JSTATS(2) - -2
JSTATS(3) - -2
JSTATS(4) - -2
JSTATS(5) - -2
CALL ZGPNP (CLINE, CA, CDUM, CDUM, CDUM, CDUM, CF, JSTATS)

C
C Store data in DSS for each location and parameter specified.
C

DO 100 I-l,NLOCS
C
C Is the computed flow to be stored?

IF (LSTORF(I)) THEN
C
C Put the pathname together.

CALL ZPATH (CA, CLOC(I), 'FLOW', ' ', CE, CF, CPATH, NPATH)
C
C Store the flow data (date and time computed earlier).

CALL ZSRTS (IFLTAB, CPATH, CDATE, CTIME, NVALS,
* FLOOUT(I,I), 'CFS', 'PER-AVER', 0, ISTAT)

C Check for a fatal error.
IF (ISTAT.GT.10) GO TO 940

C
ENDIF

C

Page A-4 Example Application

C Is the computed stage to be stored?
IF (LSTORS(I)) THEN

C
C Put the pathname together.

CALL ZPATH (CA, CLOC(I), 'STAGE', ' ', CE, CF, CPATH, NPATH)

C Store the stage data (date and time computed earlier).
CALL ZSRTS (IFLTAB, CPATH, CDATE, CTIME, NVALS,

* STGOUT(l,I), 'FEET', 'PER-AVER', 0, ISTAT)
C Check for a fatal error

IF (ISTAT.GT.10) GO TO 940
C

ENDIF
C
C
100 CONTINUE

C
C Done storing data.

CALL ZCLOSE (IFLTAB)
RETURN

C
C
C Error Processing.
900 CONTINUE

CALL ZCLOSE (IFLTAB)
RETURN
END

Example Application Page A-5

Appendix B

Internal Sulotines

The following describes the subroutines that are used internally to the DSS, and which
DSS subroutines call them. These subroutines are not intended to be called directly by the
programmer; they are provided for general information and as an aid in tracking down
program errors.

ZABORT - Abort upon a Fatal Error

Purpose: When a fatal (un-recoverable) error occurs (such as no more disk space
left), this causes an abnormal termination of the software.

Called By: ZBDUMP ZCHECK ZERROR ZGTREC
ZMULTU ZOPEN ZPTREC ZTAGPA
ZWRBUF

ZASSIG - Assign DSS File

Purpose: Makes a "shared assignment" or "exclusive assignment" for DSS files on
Harris computers only. Creates the DSS file, if not present.

Called By: ZOPEN

ZBDUMP - Dump Buffers

Purpose: Causes all internal buffers (that have been modified) to be written to
disk, then cleared from memory. This normally occurs at the
completion of every write.

Called By: ZGTREC ZMULTU ZOPEN ZRRTS
ZSRTSX

ZBEGDT - Beginning Date

Purpose: Determines the standard block start date for regular interval time-series
data.

Called By: ZCAOUT ZRRTSX ZSRTSX

ZBKDAT - Block Data

Purpose: Block data for DSS. This is usually part of the ZINIT subroutine.

Called By: ZINIT

Internal Subroutines Page B-I

ZCAOUT - Catalog Output

Purpose: Copies pathnames and information from the intermediate sorted file to
the catalog file and produces the condensed catalog.

Called By: ZCAT

ZCATDR - Catalog Date Reference

Purpose: Sets the D part of a time-series pathname to search for, when a date
reference is given (e.g., "D-M-2M").

Called By: ZSETCA

ZCATFI - Catalog File

Purpose: This physically searches the DSS file for pathnames when a new catalog
is generated. This routine can also generate an internal tag-hash code
table.

Called By:. ZCAT ZCOFIL

ZCATIT - Catalog Title

Purpose: Writes the catalog title information.

Called By: ZCAT

ZERROR - Fatal Error Processing

Purpose: Prints fatal error messages that are common to several subroutines.

Called By- ZBDUMP ZCAT ZCATFI ZCHECK
ZDELET ZDTYPE ZOWRIT ZPTREC
ZRDINF ZRETAG ZRITSX ZRPD
ZRRTSX ZRTALL ZRTEXT ZRTXTA
ZSITSX ZSPD ZSRTSX ZSTAGS
ZSTEXT ZSTXTA ZTAGPA ZUDALL
ZUNDEL

ZFSIZE - File Size

Purpose: Determines the internal table sizes for new files.

Called By: ZOPEN

ZGETAD - Get Address

Purpose: Gets a file address from a physical record number and word position.

Called By: ZCOFIL ZNWBIN ZOPEN ZPTREC
ZTAGFI

Page B-2 Internal Subroutines

ZGETAG - Generate Tag

Purpose: Generates the tag for a new record.

Called By:. ZNWRIT ZRTALL

ZGETCI - Get Compression Information

Purpose: Determines if a record's pathname parts match those of the default data
compression scheme for new regular-interval time series records. If it
does, the associated compression method and parameters are returned.

Called By: ZPRTCI ZSETCI ZSRTSX

ZGETRW - Get Record and Word

Purpose: Gets the physical file record and relative word position from a word
address.

Called By: ZCOFIL ZDEBUG ZGTREC ZNWBIN
ZOPEN ZPTREC ZTAGFI

ZGTAGS - Get Tag Scheme

Purpose: Gets the default tag scheme for a file.

Called By: External pcograms

ZGTREC - Get a Disk Record

Purpose: Obtains a section of the DSS file. If the data requested is in memory, it
is transferred and not physically read.

Called By: ZCATFI ZCHECK ZCOFIL ZCOREC
ZDELET ZGETCI ZGTAGS ZMULTU
ZNWBIN ZOPEN ZOWRIT ZPRTCI
ZRDBUF ZRDINF ZREADX ZRECIN
ZRETAG ZRRTSB ZRRTSX ZRTALL
ZSETCI ZSQPRM ZSRTSX ZTAGFI
ZTAGPA ZUDALL ZUNDEL ZUPRTS
ZWRITX

ZHASH - Determine the Hash Code

Purpose:. Obtains the hash code for a given pathname and hash table size.

Called By: ZCHECK

Internal Subroutines Page B-3

ZINCBK - Increment Block

Purpose: Increments the dates of a time series block.

Called By: ZCAOUT ZRRTSX ZSITSX ZSRTSX

ZINIT - Initialize Variables

Purpose: Initializes the variables used by DSS. This subroutine is only called once
(regardless of the number of DSS files opened).

Called By: ZINQIR ZOPEN ZSET

ZIRBEG - Irregular Beginning Date

Purpose: Determines the start date and block length for irregular-interval time
series data.

Called By: ZCAOUT ZRITSX ZSITSX

ZIRDOW - Irregular Down

Purpose: Moves data in a buffer array down for insertion of additional data when
storing irregular-interval time series data.

Called By: ZSITSX

ZLAHEY - Lahey Open Adjustment

Purpose: If a Microsoft Fortran program previously wrote to the file, ZLAHEY
adjusts the file size so that the last record can be read by Lahey Fortran.

Called By: ZOPEN

ZMATCA - Match Catalog Pathname Parts

Purpose: Matches pathname parts for the selective catalog feature.

Called By: ZSELCA

ZMIN2R - Minutes to Real

Purpose: Converts irregular-interval time series minutes array to a real array
composed of julian dates and fractions of a day.

Called By: ZGIRTS ZPIRTS

Page B-4 Internal Subroutines

ZMOVBK - Move a Data Block

Purpose: Transfers OAta out of a regular-interval time series record into a data
array.

SCalled By: ZSRTSX

ZMULTU - Multiple User

Purpose: Initializes and dumps buffers, and takes care of multiple user accesses.
This subroutine is very system dependent.

Called By: ZCATFI ZCLOSE ZCOFIL ZCOREC
ZDELET ZRENAM ZRETAG ZRTALL
ZSETCI ZSETPR ZSRTSX ZSTAGS
ZTAGFI ZUDALL ZUNDEL ZWRBUF
ZWRITX

ZNWBIN - New Bin

Purpose: Generates a new pathname bin when needed.

Called By: ZNWRIT

ZNWRIT - New Write

Purpose: Prepares addresses, bins, space and the information block for new
records. This routine is called whenever a new record is written.

Called By: ZCOFIL ZCOREC ZRENAM ZSRTSX
ZWRBUF ZWRITX

ZORDPN - Order Pathnames

Purpose: Obtains pathnames from an already existing catalog file for ZCAT.

Called By: ZCAT

ZOWRIT - Old Write

Purpose: Updates addresses and the information block when existing records are
re-written.

Called By: ZCOFIL ZCOREC ZSRTSX ZWRBUF
ZWRITX

ZPRTC - Print Compression

Purpose: Prints information about the file's default data compression settings.

Called By: ZPRTCI

Internal Subroutines Page B-5

ZPTREC - Put a Disk Record

Purpose: Stores a set of information in the DSS file. ZPTREC actually transfers
data into memory. It is not written to disk unless all the internal buffers
are full or until the transaction is complete.

Called By: ZCHECK ZCOFIL ZCOREC ZDELET
ZNWBIN ZNWRIT ZOPEN ZOWRIT
ZRENAM ZRETAG ZRTALL ZSETCI
ZSETPR ZSQPRM ZSRTSX ZSTAGS
ZTAGFI ZUDALL ZUNDEL ZUPRTS
ZWRBUF ZWRITX

ZR2MIN - Real to Minutes

Purpose: Converts a real array composed of julian dates and fractions of a day to
minutes for irregular-interval time series data.

Called By. ZPIRTS

ZRDINF - Read Information Block

Purpose: Reads a record's information block.

Called By: ZRDBUF ZRECIN ZRRTSX ZWRBUF
ZWRITX

ZRREC - Read Record

Purpose: Reads a physical record from the disk. All actual reading from the DSS
file occurs in this subroutine.

Called By: ZGTREC ZPTREC

ZRRTSB - Retrieve Regular-Interval Time Series Buffer

Purpose: Reads only the portion of the disk requested for regular-interval time
series data (as opposed to the entire record).

Called By: ZRRTSX

ZSELCA - Selective Catalog

Purpose: Determines which pathnames match selective catalog parameters.

Called By: ZCATFI ZORDPN

Page B-6 Internal Subroutines

ZSETCA - Set Catalog Parameters

Purpose: Sets parameters to be used by ZSELCA.

Called By: ZCAT

ZTAGFI - Tag File

Purpose: Writes a new tag - hash code table when the file is cataloged or
squeezed.

Called By- ZCATFI

ZUPRTS - Update Regular-Interval Time Series

Purpose: Writes only that portion of a record that needs to be updated when
storing regular-interval time series data. (If only 3 values are to be
written to an existing record, then only a portion of the record is
written instead of the entire record).

Called By. ZSRTSX

ZWREC - Write Record

Purpose: Writes a physical record to the disk. All actual writing to the DSS file
occurs in this subroutine.

Called By: ZBDUMP ZGTREC ZPTREC

Internal Subroutines Page B-7

Appendix C

Data Screening Use of Dafta Flap

This appendix illustrates the bit settings of data flags used by data screening software
that may be stored with time-series data. Data flags written to DSS consist of 32 bits. The
bits connote the following information about the associated data value:

Bit Representation

1: Screened - set when original data has been screened

Quality of original data:

2: Okay
3: Missing
4: Questionable
5: Reject

6-7: Range of current data - an integer in [0,3]
8: Current value is different from original value

9-11: Who set current value - an integer in [0,7]:
0 original value, no revision
1 DATCHK program
2 DATVUE program
3 manual entry in the DATVUE program
4 original value accepted in the DATVUE program

12-15: Replacement method - an integer in [0,15]:
0 no revision
I linear interpolation
2 manual change
3 replace with missing value

Tests Failed:

16: absolute magnitude
17: constant value
18: rate-of-change
19: relative magnitude
20: duration-magnitude
21: reserved for future use
22: coefficient of variation
23: gage list
24: recurring value

Other.

25-31: reserved for future use
32: protect value from being automatically changed

Data Screening Use of Data Flagss Page C-I

Appendix D

Cros Reference Ustng

The following is a cross reference list of which HECLIB subroutifies are called by the
DSS routines, and an inverse list showing the DSS subroutines called by the HECLIB
routines. These lists are for aiding the design of a program overlay structure and for general
information. The lists encompass software for several compilers. Not all the routines are
necessarily called by the compiler you are using.

ZABORT calls: ABORT GETNAM WAIT WHEN

WIND

ZASSIG calls: CASSIG CCREAT CRETYP WAITS

ZBDUMP calls: ZABORT ZERROR ZINQIR ZWREC

ZBEGDT calls: JLIYMD

ZBKDAT calls: Nothing

ZCAOUT calls: CHRLNB DATJUL ZBEGDT ZGINTL
ZINCBK ZIRBEG ZUPATH

ZCAT calls: CASSIG CCREAT CHRLNB FILEN
GETU! GETNAM system ZCAOUT
ZCATFI ZCATIT ZERROR ZORDPN
ZSETCA

ZCATDR calls: CHRLNB CURTIM INCTIM INTGR
IYMDJL JLIYMD JULDAT

ZCATFI calls: CHRWT HOL2CH HOLCHR ZERROR
ZGTREC ZMULTU ZSELCA ZTAGFI

ZCATIT calls: CHRFLB CHRLNB CURTIM DATJUL
JULDAT M21HM ZINQIR

ZCATLG calls: ZCAT

ZCHECK calls: CH2HOL HOL2CH ZABORT ZERROR
ZGTREC ZHASH ZPTREC

ZCHKPN calls: Nothing

ZCLOSE calls: CHRLNB CLOSF ZINQIR ZMULTU

ZCOFIL calls: CHRWT HOLCHR ZCATFI ZCHECK
ZCOREC ZGETAD ZGETRW ZGTREC
ZINQIR ZMULTU ZNWRIT ZOWRIT
ZPTREC

DSS Cross Reference Listing Page D-lI

ZCOREC calls: CHRLNB DATIUL HOLCHR JULDAT
M2IHM ZCHECK ZGINTL ZGTREC
ZMIULTU ZN WRIT ZOFSET ZOWRIT
ZPTREC ZREADX ZRRTSX ZSRTSX
ZUPATH

ZDCINF calls: DHINFO

ZDEBUG calls: GETIl HOL2CH XREALC ZGETRW

ZDELET calls: HOL2CH ZCHECK ZERROR ZGTREC
ZMULTU ZPTREC

ZDTYPE call&- CHRLNB ZCHECK ZERROR ZGINTL
ZUPATH

ZERROR calls: ZABORT

ZFILST calls: CHRFIL CHRLNB ZINQIR

ZFNAME calls: CHRFLB UPCASE

ZFPN calls: ZPATH

ZFSIZE calls: UPCASE

ZFVER calls: HOLCHR ZFNAME

ZGETAD calls: Nothing

ZGETAG calls: ISCAN REMBLK ZUPATH

ZGETCI calls: CHGTYP CHRLNIB GETIl HOLCHR
ZGTREC

ZGETRW calls: Nothing

ZGINTL calls: Nothing

ZGIRTS calls: ZMIN2R ZRMTX

ZGPNP calls: CHRLNB PARSEQ

ZGTAGS calls: ZGTREC

ZGTDTS calls: DATCLN JULDAT M2IHM NOPERS
ZADDHD ZFPN ZGINTL ZRRTSX

ZGTPFD calls: ZRPD

ZGTREC calls: ZABORT ZBDUMP ZGETRW ZRREC
ZWREC

ZHASH calls: Nothing

ZINCBK calls: IYMDJL JLlYMD

Page D-2 DSS Cross Reference Listing

ZINIT calls: ABORT WHEN ZBKDAT

ZINQIR calls: GETNAM HOL2CH HOLCHR ZINIT

ZINTBK calls: IDAYWK INCTIM JLIYMD NOPERS
ZOFSET

ZIRBEG calls: JLIYMD

ZIRDOW calls: Nothing

ZLAHEY calls: HOLCHR

ZMATCA calls: Nothing

ZMIN2R calls: Nothing

ZMOVBK calls: JULDAT LEQNER NOPERS

ZMULTU calls: FLLKOF FLLKON LOCKF sync
ZABORT ZBDUMP ZGTREC

ZNWBIN calls: ZGETAD ZGETRW ZGTREC ZPTREC

ZNWRIT calls: CH2HOL CHRHOL GETIl PUT~l
ZGETAG ZNWBIN ZPTREC ZUPATH

ZOFSET calls: DATCLL IDAYWK INCTIM IYMDJL
JLIYMD

ZOPCAT calls: CCREAT CHRLNB CRETYP INTGR
UPCASE

ZOPEN calls: CH2HOL CHRHOL CHRLNB CLOSF
CREAF FILEN GETNAM HOLCHR
LEINFO OPENF WHEN - ZABORT
ZASSIG ZBDUMP ZFNAME ZFSIZE
ZGETAD ZGETRW ZGTREC ZINIT
ZLAHEY ZPTREC

ZOPNCA calls: CCREAT CHRLNB CRETYP INTGR
UPCASE

ZORDPN calls: ZRDPAT ZSELCA

ZOWRIT calls: CHRHOL HOL2CH ZDEBUG ZERROR
ZGTREC ZPTREC

ZPATH calls: CHRFLB

ZPIRTS calls: ZMIN2R ZR2MIN ZSITS

ZPRTC calls: CHGTYP GETIl HOLCHR

ZPRTCI calls: CHRLNB ZGETCI ZGTREC ZPRTC

DSS Cross Reference Listing Page D-3

ZPTDTS calls: DATCLN JULDAT M21HM NOPERS
ZFPN ZGINTL ZSRTSX

ZPTREC calls: ZABORT ZERROR ZGETAD ZGETRW
ZINQIR ZRREC ZWR.EC

ZR2MIN calls: Nothing

ZRDBUF calls: CH2HOL CHRLNB HOL2CH ZGTREC
ZRDINF

ZRDCAT calls: CHRLNB

ZRDINF calls: CHRLNB HOL2CH ZCHECK ZERROR
ZGTREC ZINQIR

ZRDPAT calls: CHRLNB

ZRDPN calls: ZRDPAT

ZREAD calls: CHRLNB ZRDBUF ZREADX

ZREADX calls: CHRLNB ZGTREC ZRDBUF

ZRECIN calls: CHRLNB DHINFO HOLCHR ZGTREC
ZRDINF

ZRENAM calls: HOLCHR ZCHECK ZDELET ZMLJLTU
ZN WRIT ZPTREC

ZRETAG calls: CHRHOL ZCHECK ZERROR ZGTREC
ZMULTU ZPTREC

ZRITS calls: ZRITSX

ZRITSX calls: CHRLNB DATCLL HOLCHR IYMDJL
JLIYMD JULDAT ZERROR ZGIRTS
ZINQIR ZIRBEG ZR2MIN ZREADX
ZUJPATH

ZRPD calls: CHRLNB HOLCHR ZERROR ZINQIR
ZREADX

ZRREC calls: IREADF -SEEA-F

ZRRTS calls: ZRRTSX

ZRRTSB calls: DUREAL JULDAT NOPERS ZGTREC

ZRRTSX calls: CHRLNB DATJUL HOLCHR IDAYWK
IHM2M INCTIM IYMDJL JULDAT
M21HM NINDX NOPERS YMDDAT
ZBDUMP ZBEGDT ZERROR ZGINTL
ZGTREC ZINCBK ZOFSET ZRDINF
ZRRTS ZRRTSB ZUPATH

Page D-4 DSS Cross Reference Listing

ZRTALL calls: CHRHOL HOL2CH ZERROR ZGETAG
ZGTREC ZMULTU ZPTREC

ZRTEXT calls: CHRLNB HOLCHR ZERROR ZINQIR
ZREADX

ZRTXTA calls: CHRLNB HOLCHR ZERROR ZINQIR
ZREADX

ZSCOMP calls: Nothing

ZSELCA calls: CHRLNB DATJUL ZGINTL ZMATCA
ZUPATH

ZSET calls: ZINIT

ZSETCA calls: CHRLN`B ZCATDR ZGPNP

ZSETCI calls: CHGTYP CHRHOL CHRLNB PUTIl
ZGETCI ZGTREC ZMULTU ZPTREC

ZSETPR calls: ZMULTU ZPTREC

ZSIT calls: ZSITSX

ZSITX calls: CHRHOL CHRLNB DATCLL IYMDJL
JULDAT M21HM ZERROR ZINCBK
ZINQIR ZIRBEG ZIRDOW ZMIN2R.
ZPIRTS ZR2MIN ZREADX ZSET
ZUPATH ZWRITX

ZSPD calls: CHRHOL CHRLNB ZERROR ZWRITX

ZSQPRM calls: CHRHOL HOLCHR ZGTREC ZPTREC

ZSRTS calls: ZSRTSX

ZSRTSX calls: CHRHOL CHRLNB DATJUL DCREAL
DUREAL HOL2CH IDAYWK IHM2M
INCTIM IYMDJL JULDAT M2IHM
NOPERS YMDDAT ZBDUMP ZBEGDT
ZCHECK ZERROR ZGETCI ZGINTL
ZGTREC ZINCBK ZINQIR ZMOVBK
ZMULTU ZNWRIT ZOFSET ZOWRIT
ZPATH ZPTREC ZSRTS ZUFPN
ZUPRTS

ZSTAGS calls: INTGR PARSLI ZERROR ZMULTU
ZPTREC

ZSTEXT calls: CHRHOL CHRLNB ZERROR ZWRITX

ZSTFH calls: CHRFLB CHRHOL HOLCHR INTGR

ZSTXTA calls: CHRHOL CHRLNB ZERROR ZWRITX

DSS Cross Reference Listing Page D-5

ZTAGFI calls- ZGETAD ZGETRW ZGTREC ZMULTU

ZPTREC

ZTAGPA calls: HOL2CH ZABORT ZERROR ZGTREC

MTINT calls: INCTIM JULDAT M2EIHM NOPERS
ZFPN ZGINTL ZINTBK ZQFSET
ZRRTS

ZUDALL calls: HOL2CH ZERROR ZGTREC ZMULTU
ZPTREC

ZUFPN calls: CHRLNB ZUPATH

ZUNDEL calls: HOL2CH ZCHECK ZERROR ZGTREC
ZMIJLTU ZPTREC ZUDALL

ZUPATH calls: CHRLNB

ZUPRTS calls: CHRHOL JULDAT LEQNER NOPERS
ZGTREC ZPTREC

ZUSTFH calls: CHRLNB GETHOL HOLCHR INTGR

ZWRBUF calls: CH2HOL CHRLNB HOL2CH ZABORT
ZCHECK ZMULTU ZN WRIT ZOWRIT
ZPTREC ZRDINF

ZWREC calls: SEEKF WRITF

ZWRITE calls: ZWRITX

ZWRITX calls: ZCHECK ZGTREC ZMUTLTU ZNWRIT

ZOWRIT ZPTREC ZRDINF

Page D-6 DSS Cross Reference Listing

ABORT is called by: ZABORT ZINIT

CASSIG is called by- ZCAT

CCREAT is called by: ZASSIG ZCAT ZOPCAT ZOPNCA

CH2HOL is called by- ZCHECK ZN WRIT ZOPEN' ZRDBUF
ZWRBUF

CHOTYP is called by: ZGETCI ZPRTC ZSETCI

CHRFIL is called by: ZFILST

CHRFLB is called by: ZCATIT ZFNAME ZPATH ZSTFH

CHRHOL is called by- ZN WRIT ZOPEN ZOWRIT ZRETAG
ZRTALL ZSETCI ZSITSX ZSPD
ZSQPRM ZSRTSX ZSTEXT ZSTFH
ZSTXTA ZUPRTS

CHRLNB is called by. ZCAOUT ZCAT ZCATDR ZCATIT
ZCLOSE ZCOREC ZDTYPE ZFILST
ZGETCI ZGPNP ZOPCAT ZOPEN
ZOPNCA ZPRTCI ZRDBUF ZRDCAT
ZRDINF ZRDPAT ZREAD ZREP.DX
ZRECIN ZRITSX ZRPD ZRRTSX
ZRTEXT ZRTXTA ZSELCA ZSETCA
ZSETCI ZSITSX ZSPD ZSRTSX
ZSTEXT ZSTXTA ZUFPN ZUPATH
ZUSTFH ZWRBUF

CHRWT is called by: ZCATFI ZCOFIL

CLOSF is called by- ZCLOSE ZOPEN

CREAF is called by- ZOPEN

CRETYP is called by: ZASSIG ZOPCAT ZOPNCA

CURTIM is called by: ZCATDR ZCATIT

DATCLL is called by- ZOFSET ZRITSX ZSITSX

DATCLN is called by- ZGTDTS ZPTDTS

DATJUL is called by: ZCAOUT ZCATIT ZCOREC ZRRTSX
ZSELCA ZSRTSX

DCREAL is called by- ZSRTSX

DHINFO is called by-. ZDCINF ZRECIN

DUREAL is called by- ZRRTSB ZSRTSX

FILEN is called by: ZCAT ZOPEN

DSS Cross Reference Listing Page D-7

FLLKOF is called by- ZMULTU

FLLKON is called by. ZMULTU

GETHOL is called by, ZUSTFH

GETIlI is called by, ZCAT ZDEBUG ZGETCI ZNWRIT
ZPRTC

GETNAM is called by. ZABORT ZCAT ZINQIR ZOPEN

HOL2CH is called by* ZCATFI ZCHECK ZDEBUG ZDELET
ZINQIR ZOWRIT ZRDBUF ZRDINF
ZRTALL ZSRTSX ZTAGPA ZUDALL
ZUNDEL ZWRBUF

HOLCHR. is called by- ZCATFI ZCOFIL ZCOREC ZFVER
ZGETCI ZINQIR ZLAHEY ZOPEN
ZPRTC ZRECIN ZRENAM ZRITsx
ZRPD ZRRTSX ZRTEXT ZRTXTA
ZSQPRM ZSTFH ZUSTFH

IDAYWK is called by- ZINTBK ZOFSET ZRRTSX ZSRTSX

IHM2M is called by- ZRRTSX ZSRTSX

INCTIM is called by- ZCATDR ZINTBK ZOFSET ZRRTSX
ZSRTSX ZTSINT

INTTGR is called by. ZCATDR ZOPCAT ZOPNCA ZSTAGS
ZSTFH ZUSTFH

ISCAN is called by- ZGETAG

IYMDJIL is called by.- ZCATDR ZINCBK ZOFSET ZRMTX
ZRRT'SX ZSITX ZSRTSX

JLIYMD is called by- ZBEGDT ZCATDR ZINCBK ZINTBK
ZIRBEG ZOFSET ZRITSX

JULDAT is called by: ZCATDR ZCATIT ZCOREC ZGTDTS
ZMOVBK ZPTDTS ZRITSX ZRRT'SB
ZRRT'SX ZSmTX ZSRTSX ZTSINT
ZUPRTS

LEQNER is called by-* ZMOVBK ZUPRTS

LFINFO is called by- ZOPEN

LOCKF is called by.- ZMULTU

M21HM is called by- ZCATIT ZCOREC ZGTDTS ZPTDTS
ZRRTSX ZSmTX ZSRTSX MTINT

NINDX is called by- ZRRTSX7

Page D-8 DSS Cross Reference Listing

NOPERS is called by, ZGTDTS ZlN`TBK ZMOVBK ZPTDTS
ZRRTSB ZRRTSX ZSRTSX MTINT
ZUPRTS

OPENF is called by. ZOPEN

PARSEQ is called by* ZGPNP

PARSLI is called by. ZSTAGS

PUTIlI is called by. ZNWRIT ZSETCI

READF is called by. ZRREC

REMBLK is called by. ZGETAG

SEEKF is called by. ZRREC ZWREC

sync is called by: ZMULTU

system is called by* ZCAT

UPCASE is called by* ZFNAME ZFSIZE ZOPCAT ZOPNCA

WAIT is called by-. ZABORT

WAITS is called by* ZASSIG

WHEN is called by: ZABORT ZINIT ZOPEN

WIND is called by: ZABORT

WRITE is called by* ZWREC

XREALC is called by:* ZDEBUG

YMDDAT is called by:. ZRRTSX ZSRTSX

ZABORT is called by: ZBDUMP ZCHECK ZERROR ZGTREC
ZMULTU ZOPEN ZPTREC ZTAGPA
ZWRBUF

ZADDHD is called by: ZGTDTS

ZASSIG is called by:. ZOPEN

ZBDUMP is called 1ty: ZGTREC ZMULTU ZOPEN ZRRTSX
ZSRTSX

ZBEGDT is called by: ZCAQUT ZRRTSX ZSRTSX

ZBKDAT is called by: ZINIT

ZCAOUT is called by: ZCAT

ZCAT is called by: ZCATLG

DSS Cross Reference Listing Page D-9

ZCATDR is called by-. ZSETCA

ZCATFI is called by. ZCAT ZCOFIL

ZCATIT is called by. ZCAT

ZCHECK is called by* ZCQFII. ZCOREC ZDELE1T ZDTYPE
ZRDINF ZRENAM ZRETAG ZSRTSX
ZUNDEL ZWRBUF ZWRITX

ZCOREC is called by. ZCOFIL

ZDEBUG is called by. ZOWRIT

ZDELET is called by. ZRENAM

ZERROR is called by. ZBDUMP ZCAT ZCATFI ZCHECK
ZDELET ZDTYPE ZOWRIT ZPTREC
ZRDINF ZRETAG ZRMTX ZRPD
ZRRTSX ZRTALL ZRTEXT ZRTXTA
ZSITSX ZSPD ZSRTSX ZSTAGS
ZSTEXT ZSTXTA ZTAGPA ZUDALL
ZUNDEL

ZFNAME is called by: ZFVER ZOPEN

ZFPN is called by: ZGTDTS ZPTDTS ZTSL, T

ZFSIZE is called by, ZOPEN

ZOETAD is called by, ZCOFIL ZNWBIN ZOPEN ZPTREC
ZTAGFI

ZGETAG is called by- ZNWRIT ZRTALL

ZGETCI is called by, ZPRTCI ZSETCI ZSRTSX

ZGETRW is called by. ZCOFIL ZDEBUG ZGTREC ZNWBIN
ZOPEN ZPTREC ZTAGFI

ZGINTL is called by, ZCAQUT ZCOREC ZDTYPE ZGTDTS
ZPTDTS ZRRTSX ZSELCA ZSRTSX

MTINT

ZGIRTS is called by: ZRITSX

ZGPNP is called by, ZSETCA

ZGTREC is called by- ZCATFI ZCHECK ZCQFIL ZCOREC
ZDELET ZGETCI ZGTAGS ZMULTU
ZNWBIN ZOPEN ZOWRIT ZPRTCI
ZRDBUF ZRDINF ZREADX ZRECIN
ZRETAG ZRRTSB ZRRTSX ZRTALL
ZSETCI ZSQPRM ZSRTSX ZTAGFI
ZTAGPA ZUDALL ZLTNDEL ZUPRTS
ZWRITX

Page D-10 DSS Cross Reference Listing

ZHASH is called by: ZCHECK

ZINCBK is called by- ZCAOUT ZRRT'SX ZSIT*SX ZSRTSX

ZINIT is called by: ZINQIR ZOPEN ZSET
4'

ZINQIR is called by: ZBDUMP ZCATIT ZCLOSt ZCOFIL
ZFILST ZPTREC ZRDINF ZRITSX
ZRPD ZRTEXT ZRTXTA ZSITSX
ZSRTSX

ZINTBK is called by: ZTSINT

ZIRBEG is called by: ZCAOUT ZRITSX ZSITSX

ZIRDOW is called by:. ZSITSX

ZLAHEY is called by: ZOPEN

ZMATCA is called by: ZSELCA

ZMIN2R is called by.- ZGIRTS ZPIRTS ZSITSX

ZMOVBK is called by: ZSRTSX

ZMULTU is called by: ZCATFI ZCLOSE ZCOFIL ZCOREC
ZDELET ZRENAM ZRETAG ZRTALL
ZSETCI ZSETPR ZSRTSX ZSTAGS
ZTAGFl ZUDALL ZUNDEL ZWRBUF
ZWRITX

ZNWBIN is called by- ZNWRIT

ZN WRIT is called by: ZCOFIL ZCOREC ZRENAM ZSRTSX
ZWRBUF ZWRITX

ZOESET is called by: ZCOREC ZINTBK ZRRtSX ZSRTSX
MTINT

ZORDPN is called by: ZCAT

ZOWRIT is called by: ZCOFIL ZCOREC ZSRT'SX ZWRBUF
ZWRITX

ZPATH is called by: ZFPN ZSRTSX

ZPIRTS is called by: ZSITSX

ZPRTC is called by: ZPRTCI

ZPTREC is called by: ZCHECK ZCQFIL ZCOREC ZDELET
ZNWBIN ZN WRIT ZOPEN ZOWRIT
ZRENAM ZRETAG ZRTALL ZSETCI
ZSETPR ZSQPRM ZSRTSX ZSTAGS
ZTAGFI ZUDALL ZUNDEL ZUPRTS
ZWRBUF ZWRITX

DSS Cross Reference Listing Page D-lIl

ZR2MIN is called by. ZPIRTS ZRMTX ZSmTX

ZRDBUF is called by: ZREAD ZREADX

ZRDINF is called by. ZRDBUF ZRECIN ZRRTSX ZWRBUF
ZWRITX

ZRDPAT is called by- ZQRDPN ZRDPN

ZREADX is called by- ZCOREC ZREAD ZRITSX ZRPD
ZRTEXT ZRTXTA ZSITX

ZRITSX is called by- ZGIRTS ZRITS

ZRPD is called by. ZGTPFD

ZRREC is called by- ZGTREC ZPTREC

ZRRTS is called by. ZRRT'SX MTINT

ZRRTSB is called by- ZRRTSX

ZRRT'SX is called by-. ZCOREC ZGTDTS ZRRTS

ZSELCA is called by, ZCATFI ZORDPN

ZSET is called by-. ZSmTX

ZSETCA is called by- ZCAT

ZSITS is called by- ZPIRTS

ZSITSX is called by: ZSITIS

ZSPD is called by- ZPTPFD

ZSRTS is called by: ZSRTSX

ZSRTSX is called by- ZCOREC ZPTDT'S ZSRTS

ZTAGFI is called by: ZCATFI

ZUDALL is called by-. ZUNDEL

ZUFPN is called by- ZSRTSX

ZUPATH is called bT. ZCAQUT ZCOREC ZDTYPW ZGETAG
ZN WRIT ZRITSX ZRRTSX ZSELCA
ZSITSX ZUFPN

ZUPRTS is called by: ZSRTSX

ZWREC is called by: ZBDUMP ZGTREC ZPTREC

ZWRITX is called by:. ZSITSX ZSPD ZSTEXT ZSTXTA

ZWRITE

Page D-12 DSS Cross Reference Listing

Appedix E

Abort Error Codes

r
The following is a list of error codes that may be printed if a fatal error is detected by

the basic DSS software that stores or retrieves information. If one these errors occur, a
message will be printed with the error, then the program will be aborted. These *low-level*
errors occur relatively infrequently, and are not the same as the errors for the *high-level"
subroutines (such as ZSRTS). Refer to the individual subroutine documentation for error
codes for high-level subroutines.

"Keys" within several DSS arrays (such as the IFLTAB) are checked frequently to
ensure that the arrays are not corrupted (by the calling program overwriting memory), and
damaging the database. However, it is possible for an area of a DSS array to be corrupted
and stored on disk, damaging the database file, before being detected.

Internal addresses are physically stored after the data has been stored, so that if a crash
occurs (e.g., a power failure or the disk space is exceeded), only that record will be lost and
the database will not be damaged. However, occasionally all internal DSS buffers may
become used, and some buffers will be written prior to the data block. If this occurs at the
time of a crash, the file could become damaged. Also, some computers may buffer I/O in a
way that records are not physically written to disk the way that the DSS software expects
(such as disk cashing). This also could cause damage to a database file if a crash occurs.

A damaged file can usually be recovered by squeezing the file with DSSUTL. (Be sure
there is sufficient disk space to do so.) The cause of the error should be determined before
proceeding. (It should be noted that a file with only minor damage may not be detected for

a while.)

Code Error Descrintion

11 - Pointer or address array incorrect. The address from the pathname address
array (pathname bin) points to a record information block where the pathname
does not match the bin pathname. This typically indicates that the area read is
not a record information block, and the file is damaged.

20 - Illegal Unit number. An invalid unit number was encountered during a write
or read operation.

Abort Error Codes Page E-1

Cod Error Descrintion

30 - Error on Physical Read. An error occurred during a read operation. This may
be caused by a damaged file with an address that points to a location beyond
the file's bounds. Typically, the error occurs when the end-of-file is reached.

40 - Error on Physical Write. An error occurred during a writi operation. This can
occur if the disk space is exceeded. This usually does not indicate a damaged
file (although squeezing the file is a good idea).

41 - Disk Space Exceeded. There is insufficient disk space left for this file to
continue writing.

S0 - Corrupt IFLTAB array (Keys don't match). The IFLTAB array has been
overwritten by the calling program. Check your program for a bounds error
that can cause this.

60 - Incomplete Buffered write. A buffered write using ZWRBUF was not
terminated with LEND set to .TRUE..

70 - DSS File Not Opened. A DSS subroutine was called with an invalid IFLTAB
array (containing only zeros). This error usually occurs when testing modifica-
tions to a program. Usually the routine that opens the DSS file was not called,
or the IFLTAB array was not passed to the routine calling DSS (e.g., it is not in
common), or there is a typographical error in the code (e.g., IFLTAB given the
wrong name). Less frequently this error may occur if the IFLTAB array is
overwritten by the calling program.

100 - Illegal KTABLE variable (IFLTAB Corrupt). The IFLTAB variable containing
the table type did not contain a valid type. This can only occur if IFLTAB is
overwritten. Check your program for a bounds error.

110 - Illegal Number of Characters per Machine word Set. The DSS software was not
installed correctly, or a common block was destroyed.

130 - Excess writes on a read only file. The file was given "read only" permission,
and excessive writes were attempted. After 40 low-level write attempts the
program is aborted.

200 - Unable to make shared assignment. A file lock was attempted, but was denied
because the file did not have shared access (although it was supposedly opened
with shared access).

210 - Unable to lock file. A lock on the file was denied (nor could it que for a lock).

220 - Unable to unlock file. The file could not be unlocked. Memory is probably
overwritten for this error to occur.

300 - Incompatible Versions. The DSS file is not a version 6 file, and the routine
accessed is version 6 only. If you are sure the file is version 6, and was
correctly opened, then the IFLTAB array may be invalid or corrupt.

320 - Insufficient Header Space in ZWRBUF. The total amount of user header data
to store is greater than the space allocated in the first call to ZWRBUF.

330 - Insufficient Data Space in ZWRBUF. The total number of data values to store
is greater than the space allocated in the first call to ZWRBUF.

Page E-2 Abort Error Codes

Appendix F

Sunm-ay of Subroutine Calling Sequences

ZCAT - Catalog a DSS File .. 7-5

CALL ZCAT (IFLTAB, ICUNIT, ICDUNT, INUNIT, CINSTR,
* LABREV, LSORT, LCDCAT, NRECS)

ZCATLG - Catalog a DSS file ... 11-32

CALL ZCATLC (IFLTAB, ICUNIT, INUNIT, CINSTR, IBEG, NINSTR,
* LABREV, LSORT, NRECS)

ZCHECK - Check if a Record Exists 9-9

CALL ZCHECK (IFLTAB, CPATH, NPATH, NHEAD, NDATA, LFOUND)

ZCHKPN - Check a Pathname ... 3-11

CALL ZCHKPN (CPATH, NPATH, ISTAT)

ZCLOSE - Close a DSS File . .. 2-4

CALL ZCLOSE (IFLTAB)

ZCOFIL - Copy a DSS File .. 9-16

CALL ZCOFIL (IFTOLD, IFTNEW, BUFFI, KBUFFI, BUFF2, KBUFF2,
* LUNDEL, LRETAG)

ZCOREC - Copy a Record ... 9-13

CALL ZCOREC (IFTOLD, IFTNEW, CPOLD, CPNEW, BUFFI, KBUFF1,
* BUFF2, KBUFF2, ISTAT)

ZDCINF - Get Data Compression Information for a Record 10-6

CALL ZDCINF (ICOMP, BASEV, LBASEV, ISIZE, IPREC, ISTAT)

ZDEBUG - Print Coded Information in the IFLTAB Array 9-22

CALL ZDEBUG (MUNIT, IARRAY, IADD, ILEN)

DSS Subroutine Calling Sequences Page F-I

ZDELET - Delete a Record .. 9-19

CALL ZDELET (IFLTAB, CPATH, NPATH, LFOUND)

ZDTYPE - Determine a Record's Data Type and if it Exists 2-7

CALL ZDTYPE (IFLTAB, CPATH, NSIZE, LEXIST, CDTYPE, IDTYPE)

ZFILST - Display Information About a DSS File 9-12

CALL ZFILST (IFLTAB)

ZFNAME - Add File Name Extension and Determine if it Exists 2-5

CALL ZFNAME (CNAMIN, CNAME, NNAIE, LEXIST)

ZFPN - Form DSS Pathname 11-2

CALL ZFPN (CA, NA, CB, NB, CC, NC, CD, ND, CE, NE,
"* CF, NF, CPATH, NPATH)

ZFVER - Get a DSS File's Version 2-19

CALL ZFVER (CNAME, CVER, IVER)

ZGINTL - Get Time Series Interval 4-40

CALL ZGINTL (INTL, CE, NVALS, ISTAT)

ZGIRTS - Get Irregular-Interval Time Series Data 11-12

CALL ZGIRTS (IFLTAB, CPATH, NPATH, JULS, ISTIME, JULE, IETIME,
"* DUMI, IDUMI, DUM2, IDUM2, KVALS, DATES, VALUES, NVALS,
"* BDATE, CUNITS, CTYPE, ISTAT)

ZGPNP - Get Pathname Parts ... 3-8

CALL ZGPNP (CLINE, CA, CB, CC, CD, CE, CF, NPARTS)

ZGTDTS - Get Regular-Interval Time Series Data 11-4

CALL ZGTDTS (IFLTAB, CA, NA, CB, NB, CC, NC, CF, NF,
"* JULS, ISTIME, JULE, IETIME, INTL, DUM, 0,
"* IOFSET, VALUES, NVALS, CUNITS, CTYPE, ISTAT)

Page F-2 DSS Subroutine Calling Sequences

ZGTPFD - Get Paired Function Data 11-20

CALL ZGTPFD (IFLTAB, CPATH, NPATH, NORD, NCURVE, IHORIZ
"* ClUNIT, C2UNIT, CITYPE, C2TYPE, CIABEL, KIABEL, NLABEL,
"* DUM, IDUMI, IDUM2, VALUES, KVALS, NVALS, ISTAT)r

ZINQIR - Inquire About DSS Parameters 2-15

CALL ZINQIR (IFLTAB, CITEM, CSTR, INUMB)

ZOFSET - Determine the Time Offset of Time Series Data 4-42

CALL ZOFSET (JUL, ITIME, INTL, IFLAG, IOFSET)

ZOPCAT - Open a Catalog File 11-31

CALL ZOPCAT (CDSSFI, CATFIL, ICUNIT, LOPEN, LCATLG,
"* LCREAT, NRECS)

ZOPEN - Open a DSS File .. 2-2

CALL ZOPEN (IFLTAB, CNAME, IOSTAT)

ZOPNCA - Open a Catalog File ... 7-3

CALL ZOPNCA (CDSSFI, ICUNIT, LGENCA, LOPNCA, LCATLG,
"* ICDUNT, LGENCD, LOPNCD, LCATCD, NRECS)

ZPATH - Construct a Pathname 3-2

CALL ZPATH (CA, CB, CC, CD, CE, CF, CPATH, NPATH)

ZPIRTS - Put Irregular-Interval Time Series Data 11-16

CALL ZPIRTS (IFLTAB, CPATH, NPATH, DUMI, IDUMI, DUM2,
"* IDUM2, DATES, VALUES, NVALS, BDATE, CUNITS, CTYPE,
"* INFIAG, ISTAT)

ZPRTCI - Print the Default Data Compression for a DSS file 10-11

CALL ZPRTCI (IFLTAB, LALL, CPARTS)

DSS Subroutine Calling Sequences Page F-3

ZPTDTS - Put Regular-Interval Time Series Data in a DSS File 11-8

CALL ZPTDTS (IFLTAB, CA, NA, CB, NB, CC, NC, CF, NF,
"* JULS, ISTIME, JULE, IETIME, INTL, DUM1, IDUM,
"* DUK2, VALUES, NVALS, CUNITS, CTYPE, ISTAT)

ZPTPFD - Put Paired Function Data 11-25

CALL ZPTPFD (IFLTAB, CPATH, NPATH, NORD, NCURVE, IHORIZ,
"* ClUNIT, C2UNIT, CITYPE, C2TYPE, CIABEL, KIABEL, NIABEL,
"* DUN, IDUM1, IDUM2, VALUES, KVALS, NVALS, IPLAN, ISTAT)

ZRDBUF - Read an Individual Record in a Buffered Mode 8-6

CALL ZRDBUF (IFLTAB, CPATH, HEADU, KHEADU, NHEADU, DATA, KDATA,
"* NDATA, LEND, IPLAN, LFOUND)

ZRICAT - Read Pathnames from a Catalog File 7-9

CALL ZRDCAT (ICUNIT, LALL, IOUNIT, CTAGS, NDIH,
"* CPATHS, NPATHS, NFOUND)

ZRDPAT - Read a Pathname from a Catalog by Reference Number 7-13

CALL ZRDPAT (ICUNIT, IPOS, INUMB, CTAG, CPATH, NPATH, LEND)

ZRDPN - Read Pathnames from a Catalog File 11-35

CALL ZRDPN (ICUNIT, IPOS, INUMB, CPATH, NPATH)

ZREAD - Reid an Individual Record 8-2

CALL ZREAD (IFLTAB, CPATH, NPATH, IHEADU, NHEADU, IDATA,
"* NDATA, IPLAN, LFOUND)

ZREADX - Read an Individual Record (Extended) 8-4

CALL ZREADX (IFLTAB, CPATH, HEADI, KHEADI, NHEADI,
"* HEADC, KHEADC, NHEADC, HEADU, KHEADU, NHEADU, DATA,
"* KDATA, NDATA, IPLAN, LFOUND)

ZRECIN - Display Information About a Record 9-10

CALL ZRECIN (IFLTAB, IUNIT, MLEVEL, CPATH, BUFF, KBUFF, LFOUND)

Page F-4 DSS Subroutine Calling Sequences

ZRENAM - Rename a Record ... 9-18

CALL ZRENAM (IFLTAB, CPATHO, NPATHO, CPATHN, NPATHN, LFOUND)

ZRETAG - Change a Record Tag 7-19

CALL ZTAGPA (IFLTAB, CPATH, NPATH, CTAG, LFOUND)

ZRITS - Retrieve Irregular-Interval Time Series Data 4-21

CALL ZRITS (IFLTAB, CPATH, JUIS, ISTIME, JULE, IETIME,
* ITIMES, VALUES, KVALS, NVALS, JBDATE, CUNITS, CTYPE, ISTAT)

ZRITSX - Retrieve Irregular-Interval Time Series Data (Extended) 4-25

CALL ZRITSX (IFLTAB, CPATH, JULS, ISTIME, JULE, IETIME,
"* ITIMES, VALUES, KVALS, NVALS, JBDATE, FLAGS, LFLAGS, LFREAD,
"* CUNITS, CTYPE, HEADU, KHEADU, NHEADU, INFLAG, ISTAT)

ZRPD - Retrieve Paired Data 5-2

CALL ZRPD (IFLTAB, CPATH, NORD, NCURVE, IHORIZ,
"* ClUNIT, CITYPE, C2UNIT, C2TYPE, VALUES, KVALS, NVALS,
"* CLABEL, KLABEL, LABEL, HEADU, KHEADU, NHEADU, ISTAT)

ZRRTS - Retrieve Regular-Interval Time Series Data 4-3

CALL ZRRTS (IFLTAB, CPATH, CDATE, CTIME, NVALS, VALUES,
"* CUNITS, CTYPE, IOFSET, ISTAT)

ZRRTSX - Retrieve Regular-Interval Time Series Data (Extended) 4-7

CALL ZRRTSX (IFLTAB, CPATH, CDATE, CTIME, NVALS, VALUES,
"* FLAGS, LFLAGS, LFREAD, CUNITS, CTYPE, HEADU, KHEADU, NHEADU,
"* IOFSET, ICOMP, ISTAT)

ZRTALL - Change all Record Tags in a DSS file 7-22

CALL ZRTALL (IFLTAB)

ZRTEXT - Retrieve Text Data (Into a File) 6-2

CALL ZRTEXT (IFLTAB, CPATH, IUNIT, HEADU, KHEADU, NHEADU,
* LCCNTL, NLINES, ISTAT)

DSS Subroutine Calling Sequences Page F-5

ZRTXTA - Retrieve Text Data (Into an Array) 6-5

CALL ZRTXTA (IFLTAB, CPATH, CARRAY, KLINES, NLINES,
* HEADU, KHEADU, NHEADU, ISTAT)

ZSCOMP - Set Data Compression for a Record 10-4

CALL ZSCOMP (ICOHP, BASEV, LBASEV, LHIGH, IPREC)

ZSET - Set DSS Parameters ... 2-9

CALL ZSET (CITEI, CSTR, INUMB)

ZSETCI - Set Default Data Compression for a DSS File 10-8

CALL ZSETCI (IFLTAB, CPARTS, LPARTS, ICOMP, BASEV, LBASEV,
* LHIGH, IPREC, ISTAT)

ZSITS - Store Irregular-Interval Time Series Data 4-30

CALL ZSITS (IFLTAB, CPATH, ITIMES, VALUES, NVALS, JBDATE,
* CUNITS, CTYPE, INFLAG, ISTAT)

ZSITSX - Store Irregular-Interval Time Series Data (Extended) 4-35

CALL ZSITSX (IFLTAB, CPATH, ITIMES, VALUES, NVALS, JBDATE,
* FLAGS, LFLAGS, CUNITS, CTYPE, HEADU, NHEADU, INFLAG, ISTAT)

ZSPD - Store Paired Data .. 5-7

CALL ZSPD (IFLTAB, CPATH, NORD), NCURVE, IHORIZ,
* ClUNIT, CITYPE, C2UNIT, C2TYPE, VALUES,
* CLABEL, LABEL, HEADU, NHEADU, IPLAN, ISTAT)

ZSRTS - Store Regular-Interval Time Series Data 4-13

CALL ZSRTS (IFLTAB, CPATH, CDATE, CTIME, NVALS, VALUES,
* CUNITS, CTYPE, IPLAN, ISTAT)

ZSRTSX - Store Regular-Interval Time Series Data (Extended) 4-16

CALL ZSRTSX (IFLTAB, CPATH, CDATE, CTIME, NVALS, VALUES,
"* FLAGS, LFLAGS, CUNITS, CTYPE, HEADU, NHEADU, IPLAN,
"* ICOMP, BASEV, LBASEV, LHIGH, IPREC, ISTAT)

Page F-6 DSS Subroutine Calling Sequences

ZSTAGS - Set the Tag Scheme for a DSS file 7-20

CALL ZSTAGS (IFLTAB, CSCHEM, ISTAT)

ZSTEXT - Store Text Data (From a File) 6-8

CALL ZSTEXT (IFLTAB, CPATH, IUNIT, HEADU, NHEADU,
"* NLINES, ISTAT)

ZSTFH - Stuff the User Header Array 9-2

CALL ZSTFH (CLABEL, CITEM, NITE_, HEADU, KHEADU, NHEADU, ISTAT)

ZSTXTA - Store Text Data (From an Array) 6-10

CALL ZSTXTA (IFLTAB, CPATH, CARRAY, NLINES, HEADU, NHEADU,
"* ISTAT)

ZTAGPA - Get Pathnames from Tags 7-16

CALL ZTAGPA (IFLTAB, IOUNIT, CTAGS, NDIM, CPATHS, NPATHS
"* NFOUND)

ZUDALL - Un-Delete All Records in a DSS File 9-21

CALL ZUDALL (IFLTAB, IUNIT)

ZUFPN - Un-Form a Pathname 3-6

CALL ZUFPN (CA, NA, CB, NB, CC, NC, CD, ND, CE, NE,
"* CF, NF, CPATH, NPATH, ISTAT)

ZUNDEL - Un-Delete a Record 9-20

CALL ZUNDEL (IFLTAB, CPATH, NPATH, ISTAT)

ZUPATH - Determine a Pathname's Parts 3-4

CALL ZUPATH (CPATH, IBPART, IEPART, ILPART, ISTAT)

ZUSTFH - Un-stuff the User Header Array 9-5

CALL ZUSTFH (CLABEL, CITEM, NITEM, IPOS, HEADU, NHEADU, ISTAT)

DSS Subroutine Calling Sequences Page F-7

ZWRBUF - Write an Individual Record in a Buffered Mode 8-15

CALL ZWRBUF (IFLTAB, CPATH, HEADU, NHEADU, NTOTH, DATA, NDATA,
"* NTOTD, LEND)

ZWRITE - Write an Individual Record 8-9

CALL ZWRITE (IFLTAB, CPATH, NPATH, IHEADU, NHEADU, IDATA,
"* NDATA, IPLAN, LFOUND)

ZWRITX - Write an Individual Record (Extended) 8-12

CALL ZWRITX (IFLTAB, CPATH, NPATH, HEADI, NHEADI,
"* HEADC, NHEADC, HEADU, NHEADU, DATA, NDATA, ITYPE,
"* IPLAN, ISTAT, LFOUND)

Page F-8 DSS Subroutine Calling Sequences

Subroutine Index

ZCAT 7-5 ZREAD 8-2
ZCATLG 11-32 ZREADX 8-4
ZCHECK 9-9 ZRECIN 9-10
ZCHKPN 3-11 ZRENAM 9-18
ZCLOSE 2-4 ZRETAG 7-19
ZCOFIL 9-16 ZRITS......................... 4-21
ZCOREC 9-13 ZRITSX 4-25
ZDCINF 10-6 ZRPD 5-2
ZDEBUG 9-22 ZRRT .S 4-3
ZDELET 9-19 ZRRTSX 4-7
ZDTYPE 2-7 ZRTALL 7-22
ZFILST 9-12 ZRTEXT 6-2
ZFNAME 2-5 ZRTXTA 6-5
ZFPN 11-2 ZSCOMP 10-4
ZFVER 2-19 ZSET 2-9
ZGINTL 4-40 ZSETCI 10-8
ZGIRTS 11-12 ZSITS 4-30
ZGPNP 3-8 ZSITSX 4-35
ZGTDTS 11-4 ZSPD 5-7
ZGTPFD 11-20 ZSRTS 4-13
ZINQIR 2-15 ZSRTSX 4-16
ZOFSET 4-42 ZSTAGS 7-20
ZOPCAT 11-31 ZSTEXT 6-8
ZOPEN 2-2 ZSTFH 9-2
ZOPNCA 7-3 ZSTXTA 6-10
ZPATH 3-2 ZTAGPA 7-16
ZPIRTS 11-16 ZUDALL 9-21
ZPRTCI 10-11 ZUFPN 3-6
ZPTDTS 11-8 ZUNDEL 9-20
ZPTPFD 11-25 ZUPATH 3-4
ZRDBUF 8-6 ZUSTFH 9-5
ZRDCAT 7-9 ZWRBUF 8-15
ZRDPAT 7-13 ZWRITE 8-9
ZRDPN 11-35 ZWRITX 8-12

