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ABSTRACT

Recent observations of the geometries of growing and collapsing bubbles over

axisyimmetric headforms have revealed the complexity of the "microfluidmechanics"

associated with these flows (Hamilton et al., 1982, Brianqon Marjollet and Franc, 1990,

Ceccio and Brennen, 1991). Among the complex features observed were bubble to

bubble interaction, cavitation noise generation and bubble interaction with the boundary

layer which leads to the shearing of the underside of the bubble and alters the collapsing

process. All of these previous tests were performed on small headform sizes. The focus

of this research is to determine the dynamics governing the growth and collapse of

traveling bubbles and to analyze the scaling effects due to variations in geometry size,

Reynolds number and cavitation number. For this effect, cavitating flows over Schiebe

headforms of different sizes (5.08cm, 25.4cm and 50.8cm in diameter) were studied in

the David Taylor Large Cavitation Channel (LCC). This thesis presents the scaling

effects captured on high-speed film and electrode sensors as well as the noise signals

generated during the collapse of the cavities. The influence of each of these parameters

on the dynamics involved in the growth and collapse phases of the traveling bubble are

presented, along with the acoustical impulse produced during the collapse of the bubble.

In order to model and analyze the dynamics of the three-dimensional bubble

deformation in the presence of the pressure field around the Schiebe headform, an

unsteady numerical code using traveling sources has been developed. This thesis presents

calculations of the interaction between the irrotational flow outside the boundary layer of

the headform and individual traveling bubbles. An error estimation of the method and

comparisons with the LCC experiments are presented. This method is shown to predict

some of the features of three-dimensional bubble growth and collapse dynamics
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remarkably well. Furthermore, analysis of these computations allow a better

understanding of bubble interaction and event rate prediction.
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NOMENCLATURE

aqi Distance from the point i to the source Q .......................................................... [-
2(P-P..)

Cp Pressure coefficient, Cp = pU .. . . . . . . . . . . . . . . . . . . . . . . .  . . . . . ..[-

D Headform diameter ..................................................................................... [ml

i Dimensionless acoustic impulse referred to the center of the headform .............. [-

iji Acoustic impulse referreu to a distance of one meter from the cavitation ......... [m]

k Gas polytropic constant (k=l.4 for isentropic air) .......................................... [-]

N(R) Nuclei number distribution ....................................................................... [mI4]

Np Number of ring panels for potential flow calculation .......................................... [-

Nb Number of discretization points on the surface of the bubble ............................. [-

P Static local pressure ....................................................................................... [Pa]

P. Static free-stream pressure .......................................... ..... [Pa]

P,r Dissolved air content relative to saturation conditions ................................ [%1

PV Water vapor pressure (Pv=3250 at ambient temperature) ................................ [Pa]

Qi Local required source strength .......................................................................... [-

Q Averaged traveling source strength ................................................................... [-

R Radius at the base of the hemispherical cap of the bubble ........................... [m]

R.m Bubble maximum radius at the base of the hemispherical cap ....................... [m]
R

r Dimensionless bubble radius r = --.. ............................................[-
D

Re Reynolds number Re = UD ............................................................................
V

t Tim e ........................................................................................................... [s]

S Surface tension S=0.0717 ........................................................................... [kg/s2]

U_ Free-stream velocity ...................................................................................... [m/s]

v Dimensionless velocity v = ........................................... ............ [-U-



-xii-

V Dimensionless bubble volume V .................................................................... [-]

We Weber number We = pUD ............................. .......... [-
S

X. Attachment coordinate along the axis of revolution ..................................... [m]

X, Collapse coordinate along the axis of revolution .......................................... [m]

5 Bubble thickness in the direction normal to the headform surface ............... [m]

Si Normal distance to the headform of the bubble surface point i ......................... [-]

E Bubble sphericity, E= R ................................................................................... [-

Ei Displacement of the bubble surface node i ......................................................... [-]

7 Global coverage parameter ............................................................................... [-

Yi Dimensionless electrode duration parameter for electrode i ............................... [-

Pi Dimensionless panel strength per unit surface for ih ring panel .......................... [-

v Kinematic viscosity (v=8.5337.10-7 at ambient temperature) ................... [m2/s]

p Water density (p=996.3 at ambient temperature) .................................... [kg/m 3]

_ Cavitation number, 2(P. -P.c Caitaton nmber p -................................................. [-]

19i Inception cavitation number ......................................................................... [-]

T Dimensionless time T = t . ............................................................................ [-
D

AT Dimensionless bubble travel time between electrodes 1 and 2 ............................ [-

,rw Acoustic impulse duration ............................................................................ [-]

As a general rule the parameters written in lower case are dimensionless unless otherwise

stated.
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A. GENERAL CONSIDERATIONS

A.1 INTRODUCTION

Recently Ceccio and Brennen (1989, 1991) and Kumar and Brennen (1991) have

performed a number of experiments to determine the interactions between the boundary

layer and traveling cavitation bubbles. It appeared quite obvious that the headform and

boundary layer shape significantly affected the dynamics involved in the growth and

collapse phases of individual bubbles. The experiments were performed on a 5.08cm

diameter axisymmetric headform and revealed a surprising complexity in the flow around

single cavitation bubbles. Among the phenomena observed during those experiments were

the fact that the bubbles have an approximately hemispherical shape and are separated

from the solid surface by a thin film of liquid. This general conformation persists during

the growth phase, though especially with the larger bubbles the thin film appears to

become unstable and may begin to shear off the underside of the bubble leaving a cloud of

smaller bubbles behind. On the other hand, the collapse phase is quite complex and

consists of at least three processes occunring simultaneously, namely collapse, shearing

due to the velocity gradient near the surface and the rolling up of the bubbles into vortices

as a natural consequence of the first two processes. These processes tend to produce

small transverse vortices with vapor/gas filled cores. It was noted that the collapse phase

was dependent on the shape of the headform and the details differed between the =TC

headform (Lindgren and Johnson, 1966) which possesses a laminar separation and the

Schiebe body (Schiebe, 1972; Meyer, Billet and Holl, 1989) which does not.

All of these previous experiments were, however, conducted in the same facility

with the same headform size (5.08cm in diameter) and over a fairly narrow range of flow

velocities (around 9m/s). Clearly this raises the issue of how the phenomena identified

change with speed, scale and facility. There are very real questions as to how the
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observed phenomena might scale with both headform size and with tunnel velocity. The

experiments described here represent one effort to answer some of these questions for the

case of cavitation occurring on simple axisymmetric headforms. This thesis will focus on

traveling bubble cavitation, and the interaction between the flow and the dynamics and

acoustics of individual bubbles. The current investigation employed Schiebe headforms

with a minimum pressure coefficient on the surface of Cpmn= -0.78. We note that such

scaling experiments are difficult to undertake since they require the testing of several

geometries. Billet and Holl (1979) have performed such experiments on a series of NACA

and Joukowski hydrofoils. They mostly observed data for the desinent cavitation number,

crd, and observed an increise of this quantity as the Reynolds number was increased.

In chapter B of this thesis we will investigate the spherical bubble dynamic model

developed by Plesset (1949) and apply it to the case of the flow over the Schiebe

headform, in order to gain some insight as to what dynamics govern the growth and

collapse of a cavitation bubble. Pre ated in chapter C are the scaling experiments

performed in the Large Cavitation C annel (LCC) over three Schiebe headforms of

different sizes. In light of the complexity of the dynamics of the traveling bubbles and the

important bubble-to-bubble interactions seen (particularly over the larger headforms) it

becomes clear that the spherical Rayleigh-Plesset model cannot reproduce many of the

phenomenon observed. For understanding this effect a novel unsteady three-dimensional

numerical code has been developed and is presented in chapter D. This model attempts to

reproduc, the three-dimensional bubble-flow interactions in the presence of the pressure

gradient field induced by the headform. An error estimation of the method is then

presented along with some computational results. These results are also compared with

the experimental data taken in the LCC.
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A.2 SCHIEBE HEADFORMS

The cavitating flow around Schiebe headforms (Schiebe, 1972) has been widely

studied for small headform sizes (Meyer et al., 1985, Ceccio, 1989, Kumar, 1991) and has

therefore become a useful geometry to compare cavitation data taken from various

research laboratories. The shape of this headform is the solution of the geometry induced

by a potential disc-source placed perpendicular to a uniform flow. This headform presents

relatively smooth but strong adverse pressure gradients and the boundary layer has

therefore the property of being relatively robust to laminar detachment, unlike the ITTC

body (Lindgren and Johnson, 1966). As a guide to interpretation of the flow over this

headform, a panel method was developed to solve the axisymmetric potential flow in the

absence of cavitation. Some results from these calculations are presented in figure A. 1,

which shows the isobars in the low pressure region on the surface of the headform. The

minimum pressure coefficient on this headform has a value

Cp.=-0.78. Note the large pressure gradient normal to the surface of the headform in

the vicinity of the minimum pressure point and the elongated shape of the isobars as the

pressure decays. This pressure gradient distribution will be shown in later sections of this

thesis to be a determinant factor for the bubble deformation.
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I Cp -"0.45

'.-0.50
-0.70

-0.75,...

CPmm- -0.78

Figure A.1 Pressure distribution aroumd the Sddebe headform
This figure shows the solution of the flow around the headform using an
axisymmetric potential flow calculation. The low pressure region near the nose
of the headform is shown with lines of constant Cp. The minimum calculated
pressure is shown as Cpd.=-O. 78.
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B. SPHERICAL BUBBLE DYNAMICS

A simple approach to understand the dynamics of growing and collapsing

cavitation bubbles is made by considering the case of an expanding bubble in an infinite

incompressible fluid (Plesset, 1949). The driving pressure perturbations causing the

growth or collapse of the cavity are applied through changes in the medium pressure at

infinity, P,. The nuclei from which the bubble grows is assumed to be typically a micron-

size gas bubble and is initially in equilibrium with the surrounding medium. Such a model

has been widely used to predict some features of bubble cavitation in various flows

(Plesset and Prosperetti 1977, Hamilton et al. 1982, Kumar and Brennen 1992), and

remains an extremely useful tool to understand the underlying dynamics of complex three-

dimensional viscous cavitating flows. In this chapter we will attempt to use this model to

predict some features of the cavitation bubbles traveling over Schiebe headforms.

B.I RAYLEIGH-PLESSET MODEL

By writing the force balance on the surface of the spherical bubble and integrating

the momentum equation from the bubble surface to an infinite radius, we can derive the

Rayleigh-Plesset equations for spherical bubble dynamics (Plesset, 1949).
P•-P..(t)--PgRO . 3k = d2SR 3 dR'( 2 4vdR 2S

+ ~t p-R t2%dt) t (B.1)

Where Ro is the initial radius of the nucleus in its equilibrium state, R is the current bubble

radius, P, is the water vapor pressure at ambient temperature and P._ is the pressure at

infinity. This equation includes the partial pressure of the gas inside the bubble which is

assumed to follow jL polytropic law (power k term), the surface tension effects (S term),

the viscous growth effects (v term) and the fluid inertia terms. The gas in the initial

nucleus has been aissumed to be air which behaves isentropically, so that the gas polytropic
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constant k=l.4. The compressibility, gas diffusion and thermal effects have been omitted

in this analysis.

Using the length (diameter, D) and time scale (free-stream velocity, U.) of the

flow over an axisymmetric headform, it is possible to write the Rayleigh-Plesset equation

in the following dimensionless form

S2r dr 2 
_ 

)r4 ( 4'r~3k
Cp_ o++cTi= -2r--3 _ + T+ - (13.2)

dC +r dr) r Re ,dJ rWe , roWe r J

where Cp. is the pressure coefficient, We the Weber number, Re the Reynolds number, T

the dimensionless time, and r the dimensionless radius and are defined as

Cp P -_e= ; t = r= (B.3)
Cp=1/2 pU_2 ;- We = - "R v-D-t'r =RD

Knowing the pressure distribution over the Schiebe headform (see figure A. 1), we can

follow a streamline close to the surface of the headform and obtain the pressure coefficient

time history Cp(T) that a traveling nucleus would encounter. If we crudely approximate

that the pressure field in the vicinity of the bubble is isotropic and that the local pressure

the nucleus experiences may be considered as an infinite reference pressure, we can then

substitute the term Cp.,() by Cp(r) in equation B.2. It then becomes possible to

numerically solve the dimensionless Rayleigh-Plesset equation B.2 using a standard

adaptive finite difference method with a fourth-order Runge-Kutta algorithm to find the

radius of the bubble as a function of time r(tc). The results of such computations are

presented as a function of time, r, in figure B.1 for various cavitation numbers and the

following cavitation conditions: R0=100lpm, D=50.8cm, U.=1l.5m/s, with an initial

nucleus position at x,=-1.
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F1gure B.1 Rayleigh-Plesset bubble radius as a function of time
The computed bubble base radius from the Rayleigh-Plesset spherical bubble
model is shown as a finction of time. The calculation uses the pressure
distribution on the surface of the headform. Conditions shown are for
We=93x 10$, Re=6.8x 106 and for cavitation numbers ranging from e=0.4
to a=0.60. The time origin r~=0 corresponds to a nucleus position upstream of
the headform atx.=-1.
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B.2 NUCLEUS STABILITY CRITERIA OVER HEADFORMS

A stable equilibrium state of the nucleus may be found by setting all the first and

second time derivatives of the bubble radius to zero in the Rayleigh-Plesset equation B.2.

The equilibrium radius r. is thus given by

4 4o
Cp..+a =----~+ Ca+- _)3 (B.4)

Solutions for this equation do not exist when the critical pressure coefficient drops below

the value for which drj/dCp. = Co. Therefore, for pressures less than this critical value

both the first and second time derivative of the bubble radius have to be of the same

positive sign in equation B.2, indicating a bubble explosion. The limit of stability is thus

given by the critical pressure
_4 1-3k

CP-..t = 4 -3 (B.5)
3k ri_1 itWe

with

r. =r3k-3 k(aroWe +4). (B.6)

The critical bubble equilibrium radius, r,_cit, was first identified by Blake (1949) and

Neppiras and Noltingk (1951). The critical pressure coefficient, Cp.., is often referred

to as Blake's threshold pressure. If the minimum pressure coefficient along a streamline is

below the Blake's critical pressure coefficient Cpnm < CP•. i the nucleus is bound to

become unstable.

This criteria is useful to define a critical nucleus radius above which all nuclei will

become unstable and explode. Using equations B.6 and B.4, the critical initial radius,

rock, is found as the solution of the following equation

(r 3.We+4)= 4±4 1-3k 3kI(B.7)ro-k•'t oCMw3k (3k (Cpn, + a)We)
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We note that Ceccio and Brennen (1991) observed that for the isothermal case (k=l), a

solution of this equation for the critical radius adheres fairly closely to the following

expression
--K

We(Cpmm +7c) 
(B.8)

where the factor Kc is close to unity. This expression can be easily derived if we assume

that aoro ,We < 4 which is the case for the smallest headform (D=5.08cm) at most

cavitation numbers, but becomes erroneous for the larger headforms.

In the case of the Schiebe headform, potential flow calculations (Z. Liu et al.,

1993) have shown that the minimum pressure decays as a function of the normal distance,

5, to the headform as Cp,(8)=Cp,. -106(Cp -1). Thus, using equation B.II we

find that
Cpm (g) Cp,,j + 5ri2 _/ CPi. (B.9)

Using Ceccio and Brennen's approximation (equation B.8) then yields

]I -T~i (r._,tWe Cp

This equation gives the critical initial strearntube radius within which a nucleus of

minimum radius r% will encounter low enough pressures to cause it to become unstable. In

figure B.2 are presented solutions of this equation and are referred to as "Critical nucleus

stability criteria" curves, for various cavitation numbers for the 5.08cm headform and

U.=ll.5m/s (We =93-_03). Note that all these curves attain an asymptotic value as r,

becomes large. This value is independent of the Weber number and is given by

Sai,_ma = 0.4j-(Cp, + a).

A great limitation of this critical radius theory comes from that fact that it assumes

that the nucleus remains spherical until it becomes unstable and explodes. We will show

that, in fact, for many nucleus initial upstream positions and initial radius values, ro, the

value of the critical radius, r is larger than the distance of the nucleus pathline from
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the headform. Consequently the nucleus is not allowed to grow spherically to the critical

radius and the previous assumption is erroneous. Examine a streamline starting far

upstream from the headform with an initial off-axis dimensionless radius ri. From the

continuity and Bernoulli equations, the dimensionless distance, 8, between the streamline

and the headform surface around the minimum pressure coefficient point is

ri2 (B-11)241 _ -Cp. 31l

Obviously the nucleus cannot remain spherical when its radius becomes larger than a

fraction of its distance, 8, to the headform. The maximum limiting case occurs when the

nucleus would touch the surface of the headform, i.e., when &-re_•. Inserting this

condition in equation B. 11 yields critical values of initial streamline radii of

= 22r l-Cp, Il3k- 1 k(rooWe + 4). (B.12)

For the case when rj-rjj.,, the nucleus stability theory becomes invalid because the

nucleus would intersect the surface of the headform before it becomes unstable. We note

that, for a given headform shape, this critical radius is only a function of the initial nucleus

radius r. and the product aWe. In figure B.2 are also presented the values of the critical
initial off-axis radius, r,, as a function of the nucleus radius, r., for various values of

aWe. These curves are referred to as the "Interaction with headform criteria" curves.

The region under each one of these curves represents conditions for which a spherical

nucleus would overlap the headform surface before it reaches its critical unstable radius.

Comparing the two sets of curves in figure B.2, we can see that the initial

streamtube radius region within which the instability criteria does not apply can be

substantial for certain conditions, especially for the low dWe values. We may consider,

for example, the 5.08cm headform under the following conditions: 0=0.45 and

U_=I 1.5m/s (aWe = 42.103). If we look at all the nuclei in the upstream flow field of
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Figure B.2 Initial streamtube radius versus critical equilibrium nucleus
radius
The first set of curves represents the standard equilibrium solution to the critical
unstable nucleus radius. The figure represents this nucleus radius versus the
initial upstream radial distance it came from, thus indicating the minimum
pressure it will encounter. The second set of curves indicates the limit of
validity of this criteria due to interaction of the nucleus with the headform.
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size approximately Ro=25 urn that could become unstable and cavitate according to the

spherical stability criteria (considering the flow rate in the streamtube to follow U.jxri 2 ),

25% may not since they intersect the headform before becoming unstable. This value rises

to 40% for nuclei of size Ro=50 pim and 100% of the nuclei larger than Ro=1001pm will

intersect the headform. This headform interaction effect can therefore be significant m

"e, timating event rates, particularly for the smaller headforms. Further study of the

stability of deformed nucleus therefore needs to be done in order to take this effect into

account.

B.3 PRESSURE IMPULSE DURING COLLAPSE

The acoustic noise produced at a distance R by a spherical bubble of varying radius

R(t), may be modeled by the pressure induced by a monopole source of varying strength,

Q(t). The potential induced at a distance R by such a source is
-Q -0,R2

p(t,R) = 4R R -. (B.13)4i,,R R

From the unsteady Bernoulli equation, the solution for the pressure perturbation induced

by the source is

P(t, R)- P(R=R k (B. 14)

In a manner similar to equation B.2, using the length and time scale of the flow over the

headform, it is possible to write this equation in the following dimensionless form

Cp _r, r) ' r= j2 +2r(2rr2 +r2r.) = +r4 r (B.215)C p!ýr = j / 2 2 .2 4 r r .4 r2 " r .5

Examining the pressure far from the bubble (neglecting the fourth order term in rir) we

find that

1 d2V 1 dQ
Cp(,,r) = T --- = - (B.16)

2irr d 2 2itr dr
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where v is the dimensionless volume of the bubble and Q the dimensionless source

strength (Q=QID2U.).

The amplitudes of the acoustic pressure pulses generated from a collapsing bubble

at a distance R can quantified by defining the impulse, I(R), as the integral of the

instantaneous pressure perturbation, from the beginning of the collapse pulse to the

moment when the pressure returns to its mean value. Thus
end at p=p.

I(R) = J(P(t,R)- P.)dt. (B.17)

be&in at p =p.

Consider the pressure seen at the center of the headform (thus roughly at a distance D/2

from the collapsing bubble). The pressure at this location will be referred to as P... The

importance of defining this pressure we become clear later since it is the one that is

recorded by the hydrophone located in the center of the headform. We know from

equation B.16 that the pressure perturbation decays inversely with the distance, r, to the

bubble source. The pressure induced by the collapsing bubble at any point in the flow is

thus related to the pressure in the center of the headform as

D
P(t,R)- P. =-TR (Pm - Pj. B.18)

The impulse at the center of the headform is then
end atpp-p 2 RIcem, f (Pt.. (t) - P-)dt = I(R). (1B.19)

begin atp=p.

If we define the dimensionless pressure impulse, i(r), as
end at Cp=O

i(r)= Cp(rr)dr (B.2o)

ben at qp--O

then we find that it relates to the dimensional impulse as

i(r) = 2 I(R) = IU I (B.21)
pU..D pU..R
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To compare the noise signals from cavitation bubbles over different headform sizes, we

may refer all the impulses to that which we would record at the center of the headform,

R=D/2. This impulse will be referred to as the dimensionless center impulse, where

i2n = i(r = 0.5) = 2 I,1,1. (B.22)
pU.D

Another way to compare signals over different headform sizes is to refer the recorded

impulses to that which we would record at a unit radius R=lm from the cavitation noise

source. This impulse will be referred to as the unit impulse, where
iuait = i(r = l/D) = hII.,,= (B.23)

This impulse has the unit of length, [m]. In the next section both of these impulses shall be

used to analyze the noise signals recorded by the inner hydrophone.

In order to estimate theoretical values of these impulses, numerical calculations of

the growth and collapse of bubbles were carried out using the same method as presented

in section B. 1. For these calculations, the time steps were chosen particularly small, such

that the maximum radius change of the bubble per time step does not exceed 1/10000' of

its current radius. For these calculations, variations of the Weber number, Reynolds

number or initial nucleus radius, ro, have shown little effect on the computation of the

dimensionless center impulse. Numerical results for i.... are thus shown in figure B.3 for

We = 93 X 104, Re = 6.8 X 106 , ro = 1.9 X 10-4, and different cavitation numbers, c.

As expected, the impulse increases with decreasing cavitation number. The reason

for the small influence of We, Re or r. on the impulse can be explained as follows. From

equation B.16, the impulse may be rewritten as

iC = JCp,r = 0.5)dr 4r -r (B.24)bone& at, Cp,---ob, t• d clp. C--o d~be&., Cp_--o

We observe from numerical calculations that the bubble growth velocity just after rebound

has roughly the same magnitude as the collapse velocity (within 20%). Indeed, as the
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radius of the bubble tends to zero during collapse (r -4 0), the partial pressure of the gas

term dominates all the other terms in the Rayleigh-Plesset equation B.2. Thus

d2r 1 + + r0  (13.25)
dr7 -2r r roWe r

It follows from equation B.25, that during rebound the second derivative of the bubble

radius with time is mostly dependent on the radius of the bubble itself, thus yielding almost

identical bubble collapse and growth rates. We note that in effect, the rebound velocity is

slightly smaller than the collapse velocity by about 20% due to viscous dissipative effects.

Thus we have roughly

rl cp--o at emd =ý dcp-- aolbqw

SI--o at rebotmd = ,i---O at Capee

and therefore the impulse is mostly dependent on the collapse radius rate of change

icenm %= 8r 2•C o. (B.27)

We also notice that the Weber number, Reynolds number and relative nucleus size ro terms

become quickly negligible in the Rayleigh-Plesset equation B.2 as the bubble explodes and

grows beyond a few times its initial nucleus size. The radius rate of change of the bubble

is thus fairly insensitive to these parameters during the growth and collapse phases.

Therefore the theoretical dimensionless impulse i... is mostly a function of the cavitation

number and remains about the same for all headform sizes, D, or nucleus radius, Ro.
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Figure B.3 Dimensionless impulse, i., , as a function of the cavitation
number
Calculated dimensionless center impulse, i , based on the Rayleigh-Plesset
spherical bubble model
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C. SCALING EXPERIMENTS IN THE LCC

C.A INTRODUCTION

The experiments performed by Ceccio and Brennen (1989, 1991) and Kumar and

Brennen (1991) over various headforms showed a great complexity in the fluid mechanics

associated with traveling cavitation bubbles and need to be mentioned here. On the ITC

headform, when some of the larger bubbles pass the point of laminar separation they

induce an attached "streak" of cavitation at the lateral extremes of the bubble as

represented in figure C.1. These streaks stretch out as the bubble proceeds downstream,

being anchored at one end to a point on the body surface along the lamina separation line

and at the other end to the "wing-tips" of the bubble. The main bubble then collapses,

leaving the two streaks it induced to persist longer.

The directional terminology used in describing the traveling bubble is as follows.

The exterior surface of the bubble corresponds to the bubble side furthest from the

headform surface. The interior of the bubble corresponds to the bubble surface exposed

to the headform. The upstream side of the bubble is located in the upstream direction with

respect to the uniform flow. This side is the side on which the streaks appear and is also

referred to as the wake side or the wailing surface of the bubble. The downstream side is

also referred to as the leading surface of the bubble.

One of the important consequences of these variations in the details of the collapse

processes is the effect on the noise produced by a single cavitation event (Ceccio and

Brennen, 1992; Kumar and Brennen, 1992). Bubble fission can produce several bubble

collapses and therefore several acoustic pulses. Presumably this would also effect the

cavitation damage potential of the flow. Kumar and Brennen (1991-1992) have further
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Figure C.1 Schematic diagram of an attached traveling bubble
This schematic shows the development of attached separation streaks shed in the
wake of the traveling bubble.
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examined the statistical properties of the acoustical signals from individual cavitation

bubbles on two different headforms in order to learn more about the bubble/flow

interactions. They were also able to demonstrate a relationship between the number of

cavitation events and the nuclei number distribution measured by holographic methods in

the upstream flow.

We note that questions on the scaling of cavitation have been asked for many years

but particularly in the aftermath of the ITlC comparative tests conducted by Lindgren and

Johnsson (1966) who showed how disparate the appearance of cavitation was at different

speeds, in different facilities and at different water "qualities". This characterization refers

to the number of cavitation nuclei present in the water, where most of these nuclei usually

consist of very small air bubbles in the range of 5 to 3001pm. As OHern et al. (1985,

1988) have shown, the nuclei are similar in size distribution in most deaerated water

tunnels and in the ocean. This causes one set of scaling questions since the ratio of body

size to the nucleus size will change with the body size. The other set of scaling issues

derives from the complex interactions between the bubbles and the flow close to the

headform, where the flow is Reynolds number dependent. Scaling effects will thus be

caused by the changes in both body size and tunnel velocity. In order to address this

problem, the present experiments were conducted in the Large Cavitation Channel of the

David Taylor Research Center in Memphis Tennessee, on geometrically similar Schiebe

headforms which are 5.08, 25.4 and 50.8cm in diameter for speeds ranging up to 15m/s

and for a range of cavitation numbers.

C.2 EXPERIMENTAL SETUP

C.2.1 Large Cavitation Channel

We were fortunate to have the opportunity to examine some cavitation scaling

effects by conducting experiments in a new facility called the Large Cavitation Channel,
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Figure C.2 Schematic diagram of the Large Cavitation Channel
This figure shows the overall dimensions and setup of the LCC. Notice flat top

and the asymmetric contraction upstream of the test section. The entire bottom

half of the tunnel may be immersed in a pool for acoustical isolation.
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which has just been constructed for the David Taylor Research Center (Morgan, 1990).

Briefly this facility is a very large water tunnel with a working section which is

3.05m x 3.05m in cross-section. It is capable of tunnel speeds above 15m/s and the

pressure control allows operation at sufficiently low pressures in the working section to

permit cavitation investigations. Polished lucite windows are located along the side walls

of the test section and in the corners at the top and bottom. Figure C.2 shows a schematic

of the water tunnel indicating the overall dimensions.

C.2.2 Headforms

Three Schiebe headforms of diameter 5.08cm, 25.4cm and 50.8cm were machined

out of sohd blocks of clear lucite. The instrumentation used is identical for all three

headforms and consists of a series of electrodes and an inner hydrophone. A second

hydrophone was also placed in the 25.4cm headform. The interiors of the headforms were

hollowed out in order to place the hydrophones in the center and as close as possible to

the cavitation. The insides were then filled with water at atmospheric pressure. Lucite

was chosen for its good acoustical match with water in addition to its electrically

insulating properties required for the electrodes. Figure C.3 shows a schematic of the

headform with its instrumentation. The dimensionless quantities represented are identical

for all headforms. These headforms were mounted in the center of the working section

using after-bodies and a supporting strut as shown in figure C.4.

C.2.3 Electrode bubble detection

Silver epoxy electrodes were machined flush in the lucite headform as presented in

figure C.3 and can be seen on the photographs of figure C.17. A pattern of alternating

voltages is applied to the electrode pairs, and the electric current from each electrode is

monitored. When a bubble passes over one of the electrodes, the impedance of the flow is

altered, causing a drop in current (Ceccio 1989). Thirteen of these electrodes take the
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Figure C.3 Schemadc diagram of the headform
Presented here are the dimensionless locations of the electrodes and
hydrophone. The same locations were used for all three headforms.
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form of small circular patches (about 1mm in diameter) at different axial locations. In

addition, three ring electrodes covering the entire circumference of the body are installed

at particular axial locations in order to measure the cavitation event rate over the entire

headform. An electronic Schmitt trigger peak detector box connected to one of the

electrodes allows us to detect the presence of a traveling bubble. The trigger pulse is then

fed to both the digital recorders and to the photographic setup.

C.2.4 High speed photography and flash

Two cameras, triggered simultaneously, were set up in order to take flash pictures

of individual cavitation bubbles at different angles and different enlargements. Four

powerful EG&G model SS166 flash heads with SS162-165 energy storage racks were

used. The film exposure time was of the flash duration and was measured to be about

30p.s. Triggering can be done either manually or through a computer controlled lock-out

system connected to the electrode peak detector signal. A variable delay unit was

employed in order to take photographs of bubbles at various times after passing an

electrode. The delay time can be adjusted by increments of lOPs and up to lOms. In

addition, a CCD video camera was focused on the top surface of the headform. The

EG&G flash heads were used in strobing mode, synchronized with the video camera

framing rate in order to make a video recording for each operating condition.

C.2.5 Hydrophones

An International Transducer Corporation hydrophone model ITC-1042 with a flat

isotropic gain response of +_2dB out to 80kHz was installed inside each of the headforms.

The center of the hydrophone was placed on the axisymmetric axis, one headform radius

from the front stagnation point. In addition a Bruel & Kjaer 8103 hydrophone with similar

performances was placed sideways inside the 25.4cm headform in order to record local

noise signals. The 64 kbyte digital pressure signal acquisitions of the collapsing bubbles

were made at a sampling rate of 1MHz with a 16 bit resolution. By filling the interior of
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the headformn with water, the intention was to provide a fairly reflection and reverberation

free acoustic path between the cavitation and the hydrophone. Ceccio (1989) successfully

checked this technique earlier by comparing the signals from a single cavitation event

using hydrophones installed inside and outside the headform. In the present tess, a similar

check was performed by comparing the internal hydrophone signals with those from two

Sonatech STI-01-02 hydrophones (with a flat frequency response up to 100kHz). These

STI hydrophones were mounted in a water-filled polyurethane encapsulation, flush in a

recess in the side wall of the test section, one upstream and the other downstream from

the headform. In addition, using each of the ITC and STI hydrophones in turn as a

transmitter and a receiver over a range of frequency from 1kHz to 100kHz, it V. as possible

to accomplish reciprocity type calibrations. Results of these calibrations are presented

later in the thesis.

C.2.6 Water nuclei measurement

C.2.6.a Susceptibility meter

The David Taylor cavitation susceptibility meter (Shen and Gowing, 1984) was

installed in the lower upstream part of the test section. Such devices cause the water to

cavitate by pumping it through a venturi where it undergoes sufficiently low pressures.

The cavitation number in the venturi can be adjusted by varying the flow rate through the

venturi. Susceptibility measurements are made by counting the number of bubble

cavitation events per volume of water passing through the venturi, over a range of

cavitation numbers. In the present experiments the inlet tube is connected to a 5.08cm

diameter hole in the test section tunnel wall. The flow then passes through the venturi, a

variable speed pump, a flow-meter and is then exhausted back through another port hole

to the LCC. The diameter of the venturi at the throat is 2mm. The flow ,'ate through the

venturi is regulated by varying the pump speed. The cavitation number in the venturi is

calculated by measuring the flow velocity with the flow-meter and by monitoring the
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pressure just upstream of the venturi nozzle using a Sensotec 430 pressure transducer.

Individual cavitation events are counted by the means of a high frequency hydrophone

(band-passed between 10 and 100kHz) located next to the venturi.

C.2.6.b Particle Dynamics Analyzer

A Dantec Particle Dynamics Analyzer was set up to measure the nuclei distribution

about 3 meters upstream from the headform This device is similar to a Laser Doppler

Velocimeter but in addition uses measurements of the spatial distribution of light scattered

by particles crossing the control volume. Phase information of light scattered at different

angles by bubbles passing through the control volume is collected via three

photomultipliers. The Bragg theory of light scattering through spherical micro-bubbles of

different radii allows, in principle, to correlate this phase information with the actual size

of the bubble. In our case the PDA optics had a focal leigth of 150cm which allowed the

control volume to be located close to the tunnel centerline.

C.2.6.c Dissolved air content

Two bypass water lines connected to two Orbisphere type probes monitored the

dissolved oxygen content. This value is then referred to percentages of dissolved air

contents relative to atmospheric conditions at ambient temperatures, Pir The dissolved

oxygen content of the tunnel water was being varied by pumping the water through

vertical dearation tanks. Water temperature was also constantly monitored and recorded

for each condition.

C.3 HYDROPHONE CALIBRATION

Acoustic calibration was performed for both the internal hydrophone (ITC),

mounted in the center of the Schiebe headforms and the outer hydrophone (STI-02),

mounted on the upper side wall of the test section, just ahead of the headforms. In order

to achieve consistent data comparisons, the same ITC hydrophone model was installed in
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all three headforms. For the purpose of these calibrations, both hydrophones have no

signal pre-amplification and are fed directly into the digital recorders. A spectrum

analyzer has been used to measure the transfer function gain between the hydrophones at

frequencies ranging from 3kHz to 100kHz. Both hydrophones were used as a receiver

and as a transmitter, allowing us to perform reciprocity calibrations. Furthermore the

specification curves supplied by the hydrophone manufacturers allow us to verify the

voltage-to-pressure transfer gain between the hydrophones, in the following manner.

Using one of the hydrophones (hydrophone A) as a transmitter and the other

(hydrophone B) as a receiver we may write the overall transfer function between the

transmitted input voltage signal through A, VA, and the received output voltage signal

through B, Vct, as
V~t(f) = H•(f).M(f).H" (f).ViA.(f) (C.1)

where HB (f) is the transfer function of hydrophone B in the receiving mode which

includes the pressure to voltage signal conversion [dB re 1Volt/laPa]. The transfer

function of hydrophone A in the transmitting mode is given by HA (f) which includes the

voltage to pressure signal conversion [dB re lm.jPaIVolt]. Finally M(f) is the medium

transfer function between hydrophones A and B. This term includes the influence of the

water between both hydrophones and the influence of the tunnel setup including the

headform and its supporting structure. The transmitted voltage signals were obtained for

frequencies between 3kHz to 100KHz by frequency increments of one third octave. All

the input and output voltage measurements are given in dB relative to lVolt. Reciprocity

test in the STI to ITC direction and in the ITC to STI direction were performed for all

three headforms. The table in figure C.5 presents the data from these calibration tests.

For each headform we may write the following two reciprocal transfer function

equations

Vrc(f) = H2(f)T M(f).Hrc(f).VSTn(f)Stam ITMSC rr (C.2)
Vs.t (f)=Htrr(f)'M(f)'Hsn (f)-.v• (f),



-28-

r- ,, o r- 44 -- W

6 o6 o6 , _-; _- -ý

N

- > 
, . .

a? P0" 7 ' r- '.

ii

r eh% oo oe v % ot %Dg is n -i dB rT Vo u
d nal, Vd a d nd th ng vd '0 d 1 au t

received~~~~~~~~~ý Cigal Vm losoni h is he ounre the viuacue

hy ro %hnC M G cifca 4t0 in In 00 q C e

-6 r, 6~40%

00 %

IM -W2

4-i el4 - 4 0 % - - D~ O 0 ~ 0

F~gue C Hydophne clibatio reult

For_ _ __ _ eah-afr h nu n uptvlaei hw nd eIVl sn

each hydropho as a trnsite and a% reev r. 0 00itv dB vaue

correspond to the trnsite sigal V. , and the neatv dB vaue to the

reeie sinl- j losoni h is treclmsaetemnfcue

hydopon seiications. 'C



-29 -

Dividing the transmitted voltage signal (hydrophone A) by the received signal

(hydrophone B) yields the overall transfer function gain, CA->B(f). This gain includes all

effects from one end of the hydrophone lead to the other, for signals transmitted in both

directions. Thus

GSn->rrc(f) = H (f). M(f). Hrc(f)

rTc->sfl (f) = ~H (f). M(f). HS' (f) (c.3)

Both of these transfer function gains are presented in figure C.6 as a function of

frequency, for all three headforms.

A system is .,own to be reciprocal if the overall transfer function from

hydrophone A to B can be scaled with the overall transfer function from B to A, over the

entire frequency range. This condition has to be met in the present experiment since the

hydrophones and the medium impedance are all known to be reciprocal (Albers 1902).

Thus we should find that

GsTI->rrc (f) / Grc->s (f) = C (C.4)

where C is a constant independent of the frequency. Figure C.7 presents this theoretical

constant value, C, for the frequency range between 3kHz to 100kHz. We observe from

this figure the flat shape of the curves over the measured frequency range for all three

headforms. This constant value C is about -9dB with a noise measurement less than

±5dB. Reciprocity calibration has therefore proven successful with a ±5dB noise level.

This noise level will thus be representative for the cavitation noise data presented in a later

section.

In addition to reciprocity, the hydrophones calibration transfer functions, H(f),

[gtPa to Volts] supplied by the hydrophone manufacturers can be verified in the following

way. Among the hydrophone transfer functions supplied are the ITC transfer functions in

both the transmitter and receiver mode (Hr,(f) and f-C(f)) and the STI transfer
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Figure C.6 Voltage gain, G, between hydrophones
The gains are shown as a function of the frequencies measured. Gains are
shown in dB from the ITC to the STI and from the STI to the ITC hydrophones
for all three headforms.
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Figure C.7 Reciprocity test between the hydrophones
The system is said to be reciprocal if the reciprocity constant C is independent
of frequency. This figure shows a reciprocal constant value C- -9dB with a
±SdB noise level over this frequency range.
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Figure C.8 Medium acoustic impedance, M(f)
The medium acoustic impedance is shown as a function of frequency, for all

three headforms.
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function in receiver mode (Hs(f)). These functions are summarized in the table in figure

C.5 for discrete frequencies. From equation C.2 we are able to determine the medium

acoustic impedance as
V•, (f)

M(f) = rrc 2mVfr) f (C.5)
Hrr (f) Hs" (f).~c(

where all the hydrophone transfer functions are known. Figure C.8 shows the values of

M(f) for all three headforms for frequencies up to 100kHz.

We notice that all the data points have a value of about -10dB with a noise level of

about ±8dB. This impedance appears roughly the same for all the three headform

configurations, indicating that the presence of the lucite headform and the different after-

bodies do not have a significant impact on the acoustical properties of the tunnel. A

theoretical value of M(f) may be estimated by assuming that the medium consists of water

whose impedance is independent of frequency for this frequency range (Albers, 1902,

Coates, 1989) and whose point source noise transfer gain decreases as I/R, where R is the

distance between the two hydrophones (as in equation B. 16). Knowing that distance for

the three different headform setups, we find the following theoretical values of M.

Headform Distance between Theoretical medium

diameter ITC and STI impedance

D=5.08cm R=2.56m M=-8.18dB

D=25.4cm R=2.31m M=-7.28dB

D=50.8cm R=2.44m M=-7.75dB

We observe that theoretical values of M are close to the average -10dB medium

value obtained from figure C.8. This agreement therefore validates the calibration curves

Hrr (f) and HS• (f) given by the manufacturers within an overall measurement noise of

about ±8dB. We note that this ±8dB noise level is also that given by the frequency
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response curve of the STI hydrophone and therefore probably originates mostly from that

hydrophone. The inner ITC hydrophone transfer function gain given is said to be accurate

to ±2dB. The conversion of the recorded acoustical cavitation signals from Volts to

Pascals using the ITC manufacturer calibration curves should therefore be somewhat

accurate (within frequencies up to lOOkHz)

C.4 EXPERIMENTAL ANALYSIS

C.4.1 Test conditions

All three headforms (D=50.8cm, D=25.4cm and D=5.08cm) were tested for

similar conditions. The test matrix included the three dissolved air contents (Pai,=80%,

Pmir=50% and Pjir=30%) and three velocities (U.--9m/s, U.,=11.5m/s and U_=15m/s).

Combined effect of the headform size and flow velocity thus allowed a Reynolds number

range from Re--0.54x10 6 to Re--9.41xl0 6. For each of these conditions about five

cavitation numbers were investigated, ranging from bubble inception to fully attached

cavitation.

C.4.2 Cavitation inception data

Figure C.9 presents the observed cavitation inception numbers, qi, as a function of

the headform diameter, D, tunnel velocity, U*, and dissolved air content, Pair Inception

was based on an arbitrarily chosen event rate of about 50 cavitation events per second.

The events were detected by means of the first upstream flush-mounted patch electrode,

the current from which was moderated by the presence of a bubble (Ceccio and Brennen,

1989-1991).

The trends in figure C.9 are fairly clear. All the curves can been seen to have an

asymptote value equal to the magnitude of the minimum pressure coefficient on the

surface of the headform (CPmin= -0.78). The inception number increases with increasing
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headform size. This headform size effect is a consequence of the fact that the flow rate of

water passing through the low pressure region increases with larger headforms. More

nuclei are thus susceptible to initiate cavitation and therefore, for a specific event rate, the

value of ai is larger. The values of ai also increase with an increase in air content for a

similar reason, namely more nuclei at the larger air contents. In order to illustrate the

important difference in cavitation inception and event rate scaling effects with headform

size, we contrast in figure C. 10 the cavitation patterns over the three headforms for

identical cavitation conditions. This figure shows photographs of all three headforms

scaled to the same relative size, for the same cavitation number, c:=0.51, the same

dissolved gas content, Pir-=30%, and the same flow velocity, U,=l 1.5m/s.

We note from figure C.9 that these conditions correspond to inception cavitation

conditions on the smallest headform, and are thus conditions where we very occasionally

observe a traveling bubble. Figure C. 10 shows one of these bubbles on the smallest

headform. In contrast, on the 25.4cm headform we already observe the presence of

bubbles and patch type cavities. Finally, on the 50.8cm headform, for the same cavitation

conditions, we observe quite extensive cavitation patterns. Scaling effects with headform

size are therefore very significant Figure C.9 also demonstrates that the cavitation

inception number increases with decreasing tunnel velocity. This effect is not so readily

explained. However it is clear that in order to achieve the same cavitation number at a

lower velocity one requires a lower tunnel pressure. It may therefore be that the nuclei

concentration in the tunnel increases considerably with decreasing operating pressure.

Hamilton et al. (1982) had also observed similar trends over 5.08cm headforms with

increasing free stream flow velocities and had also attributed this effect to the decrease in

tunnel velocity. They also found incipient cavitation numbers which were substantially

higher than the ones presented here (ai-l.1). Billet and Holl (1979) had observed
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(4qk

Figure C.10 Cavitation photographs over all three headforms
All three headforms are presented for identical cavitation conditions: Pair=30%,
a=0.51, U. =1 l.5m/s. Scaled to the same relative size are presented, from top
to bottom, D=50.8cm, D=25.4cm, D=5.08cm.
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Figure C.1I Average number of observable events on the headform
Data shows measurements for all velocities and headform diameters as a
function of the cavitation number.
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desinent cavitation numbers that were very close to the ones presented here (around 0.6)

for different air contents of 3ppm and 9ppm. Higher air contents also yielded higher

desinent cavitation numbers.

C.4.3 Event rate observations

Both the photographs and the video tapes were analyzed in order to explore the

variations in the cavitation event rates with headform size and tunnel velocity. The eveat

rates were evaluated by counting the number of individual bubbles (or events) observable

in a single frame and averaging this number over many frames. This allowed construction

of figure C. 11 in which the average number of observable events is plotted against the

cavitation number, a, for each of three velocities (9, 11.5 and 15m/s) for the three

headforms (this data is for 30% dissolved air content).

Not surprisingly, the number of events increases with decreasing cavitation number

and with increasing headform size. Not so predictable is the tendency for the number of

events to decrease with increasing speed. The data on the number of events may be

converted to cavitation event rates using bubble lifetimes obtained from the knowledge of

the local velocity of the bubble over the headform (using the panel method potential flow

calculations) and the measured locations of bubble appearance and collapse (presented

later in the thesis in figures C.21 and C.20 as a function of ar). The resulting event rate

data for 30% dissolved oxygen content is presented in figure C. 12. It is clear that this is

consistent with the cavitation inception data of figure C.9 given the selected criterion of

50 events/sec.

As previously stated, one of the purposes of the present investigations was to

demonstrate the connection between the event rate (and the inception number) and the

nuclei number distribution. It is instructive to present the event rate data of figure C. 12 in

the following modified form. Let us estimate that all the nuclei which pass through an
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function of the cavitation number.
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annular stream-tube bounded on the inside by the headform and on the outside by the

stream-surface which just touches the Cp=-a isobar (see Fig. A.1) cavitate and form

observable bubbles. Then, using the pressure distribution from figure A.1 and the

potential flow calculations of the streamtube shapes (therefore neglecting boundary layer

effects) extended in the upstream direction, we can calculate the volume flow rate of liquid

in the stream-tube for each cavitation number operating condition. Dividing the data of

figure C. 12 by these values we obtain an estimate of the number of cavitation nuclei per

unit liquid volume. This data is presented in figure C. 13.

It is significant that some of the variation with cavitation number, headform size

and tunnel velocity which was present in figures C. 11 and C. 12 has now been substantially

removed. Indeed, with several exceptions a fair fraction of the data of figures C. 11 and

C. 12 would now appear to correspond to a nuclei concentration of 0.1 nuclei/cm 3. The

most noticeable deviation from this uniform value occurs at the highest speed (U.=15m/s)

with the two larger headforms. The fact that most of the data appears to correspond to

the same nuclei concentration is simultaneously encouraging and puzzling. It is

encouraging because it suggests that a more careful analysis which begins with the same

nuclei number distribution and follows each nucleus along its streamline may allow

synthesis of the event rates and the inception numbers. But it is also puzzling because the

concentration of 0.1 nuclei/cm 3 is at least an order of magnitude smaller than most of the

measurements of cavitation nuclei would suggest.

Referring to Billet's (1985) useful review on the subject of nuclei concentrations

and distributions, one method for counting nuclei is the cavitation susceptibility meter in

which the liquid is drawn through an orifice (or other device) and is subjected to low

pressures. The device is of sufficiently small size so that cavitation events occur

individually. Then the concentration of actual cavitation nuclei (as opposed to potential

nuclei) is obtained from the measured event rate and the known volume flow rate. Billet's

review indicates that the typical concentrations measured by susceptibility meters is
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usually of the order of one nuclei per cm3, significantly smaller than the concentrations

obtained by holographic methods. While this may suggest that only a fraction of the

potential nuclei actually cavitate, the data is, as yet, inadequate to support any firm

conclusion. The other principal and most reliable method for observation of nuclei

(micro-bubbles and particles) is obtained by systematically surveying the reconstructed

holograms of volumes of tunnel water, taken while the tunnel is in operation (for example

Gates et al., 1979). For de-aerated tunnel water, such inspections typically reveai

concentrations of the order of 20 nuclei/cm 3 with sizes ranging from about 5pm to about

2001im. However the next question to ask is what fraction of these potential nuclei do, in

fact, cavitate when subjected to sub-critical pressures. Here the answer is quite unclear.

In the present expelAments a number of measurements have been made using the

David Taylor susceptibility meter simultaneously with the cavitation measurements

performed on the headform. The cavitation number in the venturi is defined as

a-V 0 P. (C.6)
1/2 pVT.

where P. is the stagnation pressure upstream of the venturi and VT is the average throat

velocity in the venturi. For a given flow condition in the LCC test section the cavitation

number in the venturi of the susceptibility meter was being varied by varying the flow rate.

For different venturi cavitation numbers, r,. the number of cavitation events per minute

was counted. By decreasing cr, the event rate in the nozzle was varied from none to

about 50/min. Knowing the flow rate we can thus calculate the number of events per

liquid volume. Figure C. 14 shows the measurements taken for different tunnel conditions

and different headforms.

A number of trends may be observed from this figure. For each condition, as the

cavitation number is increased, we notice a decrease in the number of cavitation events,

which is to be expected. The conditions from this figure seem to be split in two
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Figure C.14 Number of events in the susceptibility meter
This figure shows the number of cavitation events occurring in the venturi nozzle

per volume of water pumped. The cavitation number in the nozzle is reduced for

each tunnel condition, increasing the event rate. Shown here are measurements

for various tunnel operating conditions.
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Figure C.15 Water susceptibility cavitation number

This figure shows the susceptibility cavitation number cyo.o1 as a function of the

LCC test section centerline pressure. Presented here are data for different

headform sizes and different dissolved air contents.
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categories. The first category of data already shows a high number of events per cm 3 for

high cavitation numbers (around a;=1.2), indicating that the water has a tendency to

"cavitate easily." The other category requires cavitation numbers around 0.5 to cavitate.

We note that observing events for cavitation numbers above unity is surprising since it

indicates that we already observe events for venturi throat pressures which are above

vapor pressure. This would indicate that this device is also capable of measuring large air

bubbles passing through the venturi. In order to summarize these curves and to quantify

the water susceptibility for a given tunnel condition we define the susceptibility cavitation

number, avo.01, as the venturi cavitation number for which we measure 0.01 events per

cm3. Figure C. 15 presents this cavitation number versus the tunnel test section centerline

pressure, for the same tunnel conditions as presented in figure C. 14.

It appears clearly from this figure that the conditions at higher dissolved air content

(100%) are much more susceptible to cavitate than the 30% air content conditions. For

the conditions at 30% air content, a sudden increase of susceptibility is observed as the

tunnel pressure is lowered below 60kPa. It suggests that the nuclei population is

substantially larger when the facility is operated at the lower pressures. These

observations correlate well with the headform event rates shown in figure C. 13 where we

observed an increase in cavitation events with higher dissolved air contents. We also

observed in figure C.13 an increase in the event rates with a decrease in tunnel velocity

and thus with a decrease in tunnel pressure needed to achieve the same cavitation numbers

at a lower velocity. Visual observation of the tunnel at those lower pressures also

indicated a substantial increase in the larger free stream bubbles. We do observe though, a

few data points at 30% air content which indicate low water susceptibility even for

relatively low pressures (represented on the figure as "30% air settled"). Careful analysis

of these points indicate that these measurements were taken at times when the tunnel has

been just started after a few days settling time, or when the tunnel has just been emptied

and refilled again. Therefore, it appears as though running the tunnel for long periods of
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time at low pressures will tend to increase the water susceptibility. However decisive

conclusions would require more tests in the tunnel, and the understanding of the evolution

of the dissolved nuclei population in time remains a difficult problem to address.

In the present experiments a Dantec Particle Dynamics Analyzer was also set up to

measure the nuclei distribution about 3 meters upstream from the headform, but provided

no reliable data. Due to the extreme sensitivity of this instrument to various settings we

were unable to produce sufficiently reproducible signals. Part of the problem came from

the fact that the LCC lucite windows were subjected to deformations at different pressures

as the cavitation number was varied, which forced us to constantly realign the laser beams.

Results of these measurements are therefore not presented here.

Ceccio (1991) described a model to calculate the cavitation event rate which is

based on a known nuclei number distribution function and follows all the possible sizes of

nuclei along the streamlines on which cavitation might occur. This model may be

corrected and improved by including other effects which may be important such as the

effect of the boundary layer and the screening effect which occurs in the stagnation point

flow and was first described by Johnson and Hsieh (1966), or by taking into account the

intersection with the headform criteria described earlier in chapter B. A brief preview of

these results is given here. If one assumes a typical nuclei number distribution function,

N(R) of the form N(R) = 10-5 / R3-5 for R < 200pim, then typical event rates for the

Schiebe headform are shown in figure C.16.

Qualitative comparison of figure C. 16 with figure C.12 reveals significant areas of

both agreement and disagreement. Note first that the trends in event rate with headform

size and with cavitation number are quite similar. However the trend with tunnel velocity

predicted by the model is contrary to the trend in most of the experiments. This

discrepancy appears to be caused by assuming a common nuclei distribution for all

operating conditions when, in fact, the nuclei population may be much higher at the low
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tunnel velocities than at the high as stated earlier. The other area of disagreement to

which reference was made earlier is that the event rates in the model are much higher than

in the experiments.

C.4.4 Cavitation appearance

A typical bubble cavitation event consists of the growth and collapse of a bubble as

it travels through the low pressure region close to the headform surface. The shape and

size the bubble will assume are dependent on the cavitation number and the pressure

coefficient history it experiences along its trajectory. In this section we shall describe in

more detail the observations made during a study of the photographs and video

recordings. The following observations were made at dissolved air contents of 30%.

C.4.4.a Bubble shape

For cavitation numbers close to the minimum pressure coefficient a--0.78, the

bubble life-time is very short. In figure C.9 we noted that the highest inception cavitation

numbers occur for the largest bodies at the lowest velocities. Figure C. 17.a shows a

cavitation bubble for such conditions (¢ri--0.77; D=50.8cm; 9m/s; 30% dissolved air

content). All the bubbles assume a very thin disc-like geometry. For such cavitation

numbers there is little or no growth normal to the headform surface. The bubble grows

almost entirely in the plane parallel to the headform. At the end of its lifetime the center

of the bubble does not collapse first. Instead we observe the evanescence of the bubble's

leading edge. There seems to be a fixed location on the headform at which the cavity

collapses, creating a fairly straight leading edge on the bubble. At these cavitation

numbers we can see from figure A. 1, that the critical isobar Cp=-a is very elongated and

close to the body surface. The region below vapor pressure is quite similar to the shape

the bubbles assume. It appears that the bubbles are prevented from growing in the

direction perpendicular to the body surface by the high normal pressure gradients normal
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(a) (c)

(d)

Figure C.17 High speed photography of cavitation events
- 50.8cm diameter headform (distance between two patch electrodes: 2.54cm):

Figure a: U- =9mrs, (;=0.77; Figures b-c-d-e-f: U_ =15m/s, a=0.60;

Figures g-h: U_ =lSm/s, cr=0.54; Figure i. U_ =l5m/s, a=0.51
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L ~I

Figure C.17 High speed photography of cavitation events
25.4cm diameter headtorm (distance between two patch electrodes: 1.27c?):

Figures j-k: U_ =15mA/, (T=0.55; Figures I-n-n: U_ =I~m/s, c;=0.53:

Figureo: U_ =l5nmA, y=0.49
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to the surface. On the other hand, since the smallest headform has much smaller cavitation

inception numbers (significantly less than 0.78), the bubbles observed on this headform do

not assume such a flattened shape, even under inception conditions.

As the cavitation number is decreased below ai, the bubbles grow in volume (in

diameter and in height) and assume the roughly hemispherical shape typified by figure

C. 17.b. The maximum volume is mostly cavitation number dependent. As the bubbles

approach their collapse phase their thickness, 8, normal to the headform surface decreases

faster than their base radius, R, and the leading edge collapses most rapidly a:ong a fairly

straight front (figures C. 17.j, C. 17j.1). At this stage they appear thin and close to the

headform surface (see also Ceccio, 1989) and look similar to the bubbles observed under

inception conditions.

One unique feature of the present experiments was the appearance of wave-like

circular dimples on the exterior of the hemispherical cap (figures C. 17.b, C. 17.e, C. 17.f, C

.17.g, C.17.j, C.17.1, C.17.m). The dimples seem to become more pronounced as the

volume of the bubble increases. They are absent during the growth phase as seen in figure

C. 17.c, and appear early in the collapse phase. Their ring shape could be interpreted as a

precursor of a collapsing reentrant jet, but we note that the center of the dimple retains a

concave curvature at all times. The dimple seems quite stable, and remains on the bubble

until the very last stage of collapse. The reason for its presence is unclear, although they

might be due to a local over-pressure that forms early during the growth phase on the

exterior of the bubble, as will be discussed later in chapter D. On the 50.8cm headform

the dimples sometimes also appear in pairs on the largest bubbles. On the smallest

headform they are not as pronounced and thus were never observed in the past

experiments performed by Ceccio and Brennen (1989) and by Kumar and Brennen (1990).

Measurements of the bubbles on all three headforms show that the radius at the

base of the hemispherical cap R, scales linearly with the headform diameter D, thus, at the

same cavitation number, the ratio R/D appears to be the same for all three headforms. We
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do not observe any variation of R/D with the velocity U. either. Furthermore the

dimensionless collapse location is approximately the same for all headforms. This appears

to be true as long as the interactions between bubbles, or between bubbles and patch

cavities remains limited. Therefore simple size scaling of the base diameter of the bubble

cap with the headform size seems to be possible. This simple scaling applies only to the

bubble's base radius though, since the shape of the bubble, its thickness 5, the amount of

shear on its base and the cavitation event rate vary greatly from one headform to the other.

C.4.4.b Bubble tail and patches

Figure C.17.a shows the presence of streaks of vapor or "tails" extending behind

both sides of the bubble. It appears as though the bubble is sheared in the region

extremely close to the headform surface leaving the tails behind in its wake. The

undersides of some bubbles appear roughened towards the trailing and leading edges. The

structure of the tails is always extremely wavy and turbulent, and they seem to be attached

to the headform surface (fig. C.17.c). They always appear early in the growth phase of the

bubble. As the bubble is convected downstream it continues to "feed vapor" into the tails,

allowing them to extend in length and height (figures C.17.c, C.17.d, C.17.e,

C. 17.0. Ultimately the larger bubbles will collapse leaving behind patch-like cavities. It

seems clear that whether a bubble will be sheared or not is determined early in the growth

phase. If a bubble does not exhibit the trailing edge streaks early in its passage as seen in

figure C.17.c, it will grow and collapse with a smooth cap shape (fig C.17.b, C.17.j,

C.17.1). For this reason, at fixed cavitation conditions, the leading edge of the streaks are

always located around the same position on the headform (fig. C.17.c, C.17.d, C.17.e,

C. 17.). The same statement can thus be made for the leading edge of the patches. If the

thickness of those streaks is small, the dynamic of the final collapse of the bubble appears

unaffected by them and appears similar to the process described in the previous paragraph

and seen in figure C.17.m. However, for small enough cavitation numbers the patch can
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out-grow the bubble and swallow it leaving behind a patch-like cavity (fig. C.17.k,

C. 17.n). At this point it is not clear if all the patch cavitation structures are generated by

traveling bubbles. Some of them evidently are, and can be recognized by a planform

shape, similar to a "V" with its vertex pointing downstream. The final length and

thickness of the patch cavity are dependent on the bubble that generated it, and therefore

vary with the headform diameter and cavitation number. For cavitation numbers close to

the minimum pressure coefficient ; = 0.78, no patches and very few bubble tails are

observed as in figure C. 17.a. For these conditions the tails seem unable to grow

sufficiently to form a patch-like cavity. Figures C. 17.k and C. 17.n show two typical

patches at lower cavitation numbers. We notice that the patch on figure C. 17.k (higher

cavitation number) is thinner and does not extend as far downstream as that of figure

C.17.k. The collapse mechanism of the patch itself is quite unclear. In the video

recordings they vanish entirely between two frames (1/30 seconds). Is the entire patch

swept downstream once the bubble head has vanished, or does it entirely collapse on the

headform? The current investigation has not, as of yet, been able to answer these

questions.

The number of sheared bubbles seems to increase with the cavitation number,

headform diameter and flow velocity. Since the ratio of the laminar boundary layer

thickness to headform size will scale with Re-1 /2 , we would expect that the shearing of the

cavitation bubbles would increase as the relative boundary layer thickness decreases.

However, at the highest Reynolds number of 107, we note that the theoretical laminar to

turbulent transition comes close to the low pressure region and might cause further

disruptive effects.

C.4.4.c Bubble-patch interactions

When the cavitation number is sufficiently reduced, the transient patches become

fairly stable and remain on the headform, thus creating attached cavities for periods of up
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to a few seconds. As their number increases the patches will merge to create larger

attached structures. Favre and Avellan (1987) have shown that those attached cavities

disturb the initial pressure distribution in such a way that they actually extend downstream

beyond the original Cp=-oi isobar. Those attached cavitation pockets have been seen to

shed large structures downstream without "disrupting" the upstream original attachment

point to the headform. The cavitation number at which this phenomenon happens varies

considerably from one headform to the other. It can be seen in figure C.17.i at a

cavitation number of about 0.5 for the 50.8cm headform. By contrast, at the same

cavitation number, the 25.4cm headform produces just a few bubbles and patches (figure

C.17.o) and the 5.08cm headform shows no cavitation. At this point we note that the

transient cavitation patch phenomenon was never observed on the smallest headform.

That headform seems to exhibit an abrupt switch from traveling bubble cavitation (some of

which have long tailing tails) to persistent attached cavities. The attachment location of

these cavities on the smallest headform is fixed for all conditions, and usually corresponds

to a roughness element. This has not been observed on the larger headforms, even though

the polished finish was identical to that of the 5.08cm body. Roughness scaling appears to

be a very critical parameter for the attached cavitation scaling of these bodies.

For all test conditions on the larger headforms at cavitation number below 0.7 we

noticed the coexistence of the two different kinds of cavitation patterns: traveling bubbles

and transient patches. Quite remarkably, even for the conditions at which we observe

many patch-type cavities, some very smooth hemispherical traveling bubbles are still

present (figure C.17.b, C.17.h). We can see in figures C.17.g, C.17.h, C.17.i bubble type

cavitation riding above fully attached cavities.

Comparing the shape of the bubbles encountering patch cavities .ith those which

do not, it is clear that the shapes differ because the former are not subjected to the

boundary layer shear which the latter experience. Bubbles which do encounter patches or

attached cavities will eventually collapse and merge completely with the larger structure
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upstream of its closure region. By doing so they appear to perturb the attached cavity

shape, as has been observed by Briangon-Marjollet et aL (1990).

C.4.5 Bubble dimensions

In order to examine the relative size of the bubbles on the three headforms and at

different cavitation numbers, various bubble dimensions were measured from the still

photographs and the video tape recordings. The base of an individual bubble (surface next

to the headform) at the point of maximum bubble growth, being close to circular, was

characterized by its radius Rnm. The height, 8, of the bubble in a direction normal to the

headform surface was also estimated, as was the location of bubble collapse at an axial

distance, Xc, from the front stagnation point. First we present in figure C. 18 the ratio of

maximum base radius to headforin diameter, rm, =RaD as a function of the cavitation

number. We can see that the velocity has very little influence on the non-dimensional

bubble size. Furthermore, for all three headforms, this not.dimensional bubble size

parameter remains roughly the same for a fixed cavitation number. This result can be

explained by analysis of the Rayleigh-Plesset equation for spherical bubble growth. Once

the nucleus has begun to grow, viscous (Reynolds number) and surface tension (Weber

number) effects soon become negligible and the dimensionless bubble growth rate,

(dR/dt)/U. (where R is the spherical bubble radius, and U. is the reference free stream

velocity) depends only on the cavitation number, a, and the pressure coefficient history,

Cp(t). Moreover the bubble's travel time "t" available for growth in the low pressure

region scales like D/U, and so the equations yield values for Rma,,/D which depend only

on the headform shape (as manifest in Cp) and ;. To obtain the necessary input to this

calculatin, namely Cp along a streamline, the potential flow around the Schiebe headform

was obtained using a panel method. Substitution of the pressure coefficient history on a

streamline close to the headform surface into the Rayleigh-Plesset equation produced the
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Figure C.18 Bubble maxinmum radius as a function of the cavitation

number
This figure shows measurements for all velocities and headform diameters. Also

included is the theoretical radius calculations based on the Rayleigh-Plesset and

on the traveling source model.
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theoretical maximum bubble radius result included in figure C. 18. It is remarkable that,

despite the very non-spherical shape of the actual cavitation bubbles, the Rayleigh-Plesset

equation yields values which are close to the base radius of the actual bubbles. It is as if

the headform surface acts as a plane of symmetry for the growth of the bubble and the

pressure distribution parallel to the surface are the sole driving terms in that plane. For the

low cavitation numbers though the Rayleigh-Plesset model departs from the experimental

data and yields larger bubble sizes. Also presented on this figure is the result of the bubble

radius calculated using the single source model and will be discussed in the next chapter.

The only experimental data in figure C. 18 which differs substantially from the rest

are that for the D=5.08cm headform at U..=9m/sec. This might be due to measurement

errors since the gas coming out of solution at these low pressures make an accurate

reading of the small bubble radius difficult. Finally we note that for inception conditions

the bubbles on the smaller headform appear larger relative to the size of the headform

because the inception cavitation number ai is lower for that smaller headform.

The bubble sphericity, as measured by E=4&/R at the point of maximum growth of

the bubble, also changes substantially with cavitation number as seen in figure C.19. The

difference in sphericity between the two larger headforms at the same cavitation number is

not clear. On the larger diameter headforms, we observed that bubbles appeared

extremely thin for cavitation numbers close to inception. The Cp distribution curves

above the headform in figure A. 1, show that the isobars near the minimum pressure region

Cp=-0.78 are extremely elongated and close to the surface. Hence there exists a high

normal pressure gradient close to the headform surface. Rayleigh-Plesset calculations for

a nucleus experiencing pressures along a streamline extremely close to the headform show

that for cavitation numbers higher than 0.6, a hemispherical bubble would grow to a radius

that exceeds at all times the height of the critical isobar Cp=-a. This over-pressure on the

exterior of the bubble forces it to be flattened. The three-dimensionality of the bubble for
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This figure shows measurements for all velocities and headform diameters as a
function of the cavitation number.
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those conditions therefore has to be very important. For smaller cavitation numbers, the

critical isobar is considerably further from the headform surface and it transpires that even

the exterior of the bubble experiences pressures below the vapor pressure for some time,

allowing it to grow in the direction normal to the headform surface. The cavitation

inception number for the 5.08cm headform is around 0.55. Therefore all the bubbles we

have observed on this headform are quite hemispherical since the Cp=-a isobar is far from

the surface at this cavitation number. We note that even in this case the pressure gradient

normal to the surface remains much larger than that parallel to the surface (figure A. 1) and

the bubble height 8, in the direction normal to the headform surface, will decay faster than

its base radius R in the collapse phase. Therefore, for any cavitating condition, the

sphericity of a bubble will always decrease towards the collapse phase. Also presented on

this figure is the result of the bubble radius calculated using the single source model.

Measurements of the non-dimensional location of bubble collapse as represented

by xc=XfD are presented in figure C.20 and exhibit a clear dependence on cavitation

number with little dependence on the body diameter or the free-stream velocity. The

Rayleigh-Plesset calculations provided similar results and the location of collapse is in fair

agreement with the observations for high cavitation numbers. We note that as soon as the

attached cavities appear for low cavitation numbers, the pressure distribution is modified

and the bubbles tend to merge into these cavities at locaticns further upstream making

these measurements more difficult.

The influence of the Reynolds number on the non-dimensional attachment location

of cavitation x.=Xa/D is shown in figure C.21. The data in that figure include

measurements made on all three headforms and all cavitation numbers.

The attachment position appears to be the same for both trailing tails on traveling

bubbles, for the leading edge of transient patches or for the separation of attached cavities.

We note that this location is mostly Reynolds number dependent, and is affected " -ry little

by the cavitation number.
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Figure C.20 Dimensionless bubble collapse location, x,
The data are shown for all velocities and headform diameters as a function of
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As the cavitation number is reduced, the number of cavitating bubbles appearing

on the surface in a still photograph increases. The fraction of the surface in the low

pressure region which is covered by bubbles was estimated from the pictures and plotted

against a in figure C.22. Note that the increase in the void fraction at lower a is mostly

due to the presence of patches and attached cavities; bubbles do not contribute

significantly to this void fraction. Examining this graph, we see that the void fraction

increases with headform diameter. Clearly this void fraction depends on the cavitation

nuclei number distribution in the incoming stream. We should address the possible

reasons for the trend toward an increasing number of patches or extent of attached

cavitation for larger headforms and lower velocities. While the explanation is not at all

conclusive, it seems reasonable to suggest that this trend is related to the boundary layer

thickness in the region in which cavity attachment may occur. If attachment were related

to the ratio of the boundary layer thickness (proportional to (DfU)1r7) to the size of a

typical roughness (about the same for all headforms) then this might explain the observed

trends.

C.4.6 Cavitation noise

For a range of cavitation numbers between inception and a value at which the

cavitation patches persisted, it was possible to identify within the hydrophone output the

signal produced by each individual bubble collapse. In order to isolate individual bubble

signals it was found necessary to digitally high-pass filter the signals using a cut-off

frequency of 5kHz in order to reduce the effect of vibration and noise caused by cavitation

at the top of the supporting strut. This filtering did not, however, substantially effect the

results. The processing amplifier gain response was calibrated and applied to the results.

The noise from the cavitation was analyzed in several ways. We present first a spectral

analysis which is the traditional approach normally taken toward cavitation noise.



- 65-

However more fundamental information can be gained from an analysis of the pressure

pulses produced by individual cavitation events as will be described later.

C.4.6.a Spectral analysis

FFT analyses of the signals from individual events were performed for different

cavitation conditions for Nyquist frequencies up to 500kHz. In order to compare the

shape of the Power Spectral Density for different cavitating conditions the values have

been non-dimensionalized by the number of sampled points, N, multiplied by the mean

squared power amplitude, PSD, where

1 F i=N/2-1 1
PS'D =-½[C 2 (fo)+C 2(fN 2 )+2 XYC 2(f). (c.7)

The dimensionless PSD curves are presented in figure C.23 and consist of data averaged

over several cavitation events.

First we notice that, for all headforms and tests conditions, the measured spectral

shape varies little with the operating condition and cavitation number as was reported by

Arakeri and Shanmuganathan (1985). Most of the data represented here was taken close

to inception. The influence of the hydrophone cutoff frequency above 80kHz can be

observed in all signals. The measured decay between 1kHz and 80kHz in the present data

appears roughly constant, with a value of about -22dB/dec for all conditions. This value is

similar to the value of -24dB/dec (or f6 /5 ) obtained earlier by Kumar and Brennen (1992)

and by Ceccio and Brennen (1991,1992) in the Caltech Low Turbulence Water Tunnel.

By way of comparison we note that the spectra obtained by Blake et aL (1977) for

cavitation on a hydrofoil show a comparable frequency dependence of -20dB/dec (or f-1 ),

though there is also a consistent dip in their spectra at 10kHz. Arakeri and

Shanmuganathan (1985) have presented data with a similar frequency dependence though

the slope also increases from about -12dB/dec (or 0/5) to -30dB/dec (or f 3/2) as the

bubble interactions increase. None of this data is very close to the value of -8dB/dec
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which Fitzpatrick and Strasberg (1956) predicted for the range 10 to 100kHz based on a

Rayleigh-Plesset analysis. Taking fluid compressibility into account yields decays as low

as -40dB/dec (f-2) for the very high frequencies (around 100kHz and up), but these

frequencies are beyond the capability of the hydrophone used in the present experiments.

Measurement of the frequency decay as a function of the cavitation number for

different cavitating conditions is shown in figure C.24. We observe that this slope seems

to decrease as the cavitation number value is reduced below 0.6. For some cavitation

conditions the slope can be as low as -35dB/dec. This change is consistent with the

effects of bubble interactions observed by Arakeri and Shanmuganathan (1985). It

appears as though increasing bubble interactions destroy the coherent structure of the

pressure fronts, thus reducing their high frequency content.

C.4.6.b Acoustic pressure pulses

As described in chapter B in equation B. 17, the amplitudes of the acoustic pressure

pulses were measured by defining the impulse, I, as the integral of the pressure time

history from the beginning of the collapse pulse to the moment when the pressure returns

to its mean value. Since the impulse varies inversely with the distance of the hydrophone

from the noise source, we formed a dimensionless impulse, i in equation B.22 by

dividing the impulse recorded by the inner hydrophone by the headform radius, the free-

stream velocity and the fluid density as indicated by the Rayleigh-Plesset analysis. We also

defined a unit impulse in equation B.23 as the impulse one would measure at a unit

distance from the cavitation noise source. The hydrophone output for each of the

experimental conditions was examined in order to identify at least 40 of the larger pulses

associated with a bubble collapse. The average values of the impulses obtained in this way

are plotted against cavitation number in figure C.25 and C.26. All these points were taken

for a 30% dissolved air content.
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We observe that the dimensionless center impulse increases with lower cavitation

numbers as is expected. Comparing the value of these impulses with the theoretical values

presented in figure B.3 we notice that they are substantially lower (by almost two orders

of magnitude). The complexity of the fluid dynamics involved during the collapse of real

bubbles (viscous shearing, interaction with headform, interaction with other bubbles...)

therefore appear to result in a smaller impulse than for the ideal spherical case. We have

to note that the discrepancy also certainly comes in large part from the poor frequency

response of the hydrophone above 100kHz, and from the high-pass filtering that was

required to "clean" the signals. Even with these limitations, valuable information can be

gained by comparing the different impulses with one another.

If we compare the unit impulse for all three headforms we observe that it is the

same order of magnitude. This impulse calculation might therefore be more suitable to

model the scaling effects. We observe that it initially increases as the cavitation number is

decreased below inception. However most of the data also indicates that the unit impulse

ceases to increase and, in fact, decreases when ay is decreased below a certain value

(apeak = 0.43, 0.50 and 0.62 for th." 5.08cm, 25.4cm and 50.8cm diameter headform).

The decrease at low cavitation numbers might be caused by the increasing presence of

attached cavitation patches, damping the bubble collapse mechanism. The conditions at

which the impulses are maximum seem to correspond well to circumstances in which the

cavities cover about 20% of the surface area of the headform in the neighborhood of the

minimum pressure point. Higher void fractions increase the interactions between the

bubbles and the patches and considerably reduce the acoustic impulse. Such an effect was

previously reported by Arakeri and Shanmuganathan (1985) who noticed strong

interaction effects for void fraction values larger than 25%. The location of the peaks

appears to be somewhat shifted towards higher cavitation numbers for lower velocities.

This trend is consistent with the previous observations from figure C.22 of the average
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void fraction over the headform at constant cavitation numbers, which exhibited an

increase with a decrease in velocity.

The unit impulse standard deviation also shown in figure C.25 is substantial,

around 40% of the average value. Therefore for identical cavitation conditions the

cavitation noise may vary considerably from one event to another. The dimensional

duration of the impulse tw, presented in figure C.25, reveals a cavitation number

dependence similar to that observed for the impulse. It appears to be of the same order of

magnitude for all velocities and diameters. Examining this data it should be recalled that

the typical response time of the hydrophone is about 3±s and is not negligible compared

with the measured duration.

In summary, we find that the acoustic impulse produced by a single bubble

collapse, while exhibiting considerable variability, nevertheless scales with headform size

and tunnel velocity in the way which is expected on the basis of the Rayleigh-Plesset

analysis. Moreover, when the bubble concentration exceeds a certain value the noise from

individual events becomes attenuated. Because of this attenuation a unit impulse scaling

has been shown to be more suitable for comparing the signals from different headform

sizes.

C.4.6.c Electrode signal analysis

When a bubble is located over a particular electrode, denoted by the index "i", it

modifies the water electrical impedance in its vicinity which eventually yields a voltage

signal vi(t), from that electrode. Figure C.27 presents an example of the signals over the

50.8cm diameter headform from the first and second patch electrodes (located at axial

distances of 5.08 and 7.62cm from the headform stagnation point). The corresponding

noise signal is plotted on the same figure, time shifted by 1701s which corresponds to the

time necessary for the acoustic noise to travel from the headform surface to the
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hydrophone. The signals from an unsheared bubble (seen in photograph C. 17.b) and from

a sheared bubble developing attached streaks (seen in photograph C. 17.d) are contrasted

in this figure.

Analyses of these electrode signals sheds additional light on the mechanism of the

bubble collapse. Sheared bubbles produce much longer electrode signals. Moreover, the

trace from the first electrode will vanish before that from the second electrode, indicating

that the collapse mechanism always proceeds in a downstream direction. Whether the

cavity disappears by collapsing on the headform itself or detaches and is convected away

by the flow is unclear. The time interval between the ends of the two electrode signals is

often comparable to that measured for the case of unsheared traveling bubbles. This might

suggest that the leading edge of the patch detaches first and the cavity is convected away

by the flow.

The typical time during which a bubble covers an electrode is given by
t=cndo l /

ri= Jv (t)dt /vi (C.8)

and can be written in dimensionless form by defining an electrode signal duration

parameter yT---TiUJ/D. Clearly a bubble with attached streaks or patches will yield

substantially larger yi values than single unattached bubbles. Therefore yi provides a

valuable indicator of the type of event which has occurred. The global coverage

parameter y groups the electrode duration parameters of the first two upstream patch

electrodes and is defined as

(C.9)

Non-sheared bubbles have all been observed to have coverage parameters typically less

than 0.01.

For single traveling bubbles, the duration parameters over the first and the second

upstream patch electrode are strongly correlated. Figure C.28 represents a plot of y
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versus the dimensionless electrode duration for the first electrode, y1, for a wide range of

cavitation numbers and velocities. Clearly there exists a strong correlation between both

electrode durations y1 and T2- It follows that a long (or short) duration at the first

electrode leads to a long (or short) duration at the second electrode. Therefore we may

conclude from figure C.28 that trailing streaks or tails (which cause larger duration) only

appear very early in the bubble evolution and that, if they do not appear, the bubble will

continue without a tail for the rest of its lifetime. This conclusion was also reached from

studies of photographs and video observations. Note that the above implies that the

leading edges of the attached patches are always upstream of the first electrode.

The instant at which a bubble passes over the electrode "i' is denoted by ti and

may be defined by the quantity

t= end of signal /t= end of signal

ti= fvi(t)tdt/ vi(t)dt. (C.10)

t0 / t=O

Then the non-dimensional interval (or bubble travel time) between the signals from

electrodes 1 and 2 can be thus defined as

AT = (tl - t2 )U- (C..1)

D

Data about this quantity are presented in figure C.29. For all conditions we see that the

non-dimensional interval is concentrated around a value of Ar--0.043. Panel method

calculations of the non-dimensional travel time along a streamline between electrode 1 and

electrode 2 yield an exactly identical value of A-=0.043 for the streamline closest to the

headform. This travel time increases only slightly as the streamline is located further from

the headform. From the photographs we estimated that a typical non-dimensional bubble

thickness for cavitation numbers around 0.65 is about 8--0.01 and the potential flow travel

time for streamlines located at that distance above the headform surface is AT=0.044. The

agreement between the measured travel time for non-sheared bubbles (represented by T
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values less than 0.01) and the potential flow calculation thus indicates that there is no slip

between the bubble and the inviscid flow outside the boundary layer. The bubbles appear

to ride over the boundary layer and travel at the same velocity as the outer flow.

For y coverage parameters less than 0.005 which correspond to the smallest

bubbles at the highest cavitation numbers (a > 0.70) some scatter can be observed. For

those conditions photographs indicate that many bubbles collapse before they reach the

second electrode. The signals measured on the second electrode may therefore be

generated by rebounded bubbles. At the other extreme the large values of Y (>0.01)

correspond to long sheared bubbles with tails attaching to the headform surface. Note

from figure C.29 that the scatter in AT increases significantly with y and that there is a

trend toward greater travel times indicating that the bubble velocity is slower than that of

the flow outside the boundary layer. This is consistent with part of the bubble being

within the boundary layer. Part of the reason also originates from the difficulty to pinpoint

a precise bubble passage instant for these conditions.

Since the electrodes and the hydrophone signals were recorded simultaneously, it

is possible to correlate the acoustic output of each event with the y value for that event in

order to explore the effect of bubble attachment on the noise. Figure C.30 presents the

coverage parameter y as a function of the unit acoustic impulse, iý., for the 50.8cm

headform at 30% dissolved oxygen content. Most of the data is confined to cavitation

numbers close to inception (low event rates) in order to ensure no overlap between events.

This figure leads to several conclusions. First we focus on the data on the left-

hand side for values of y less than 0.01. These correspond to unattached bubbles with the

smallest bubbles having the smallest values of y. In this regime the impulse increases with

increasing y (i.e., decreasing cavitation numbers and increasing bubble size) as previously

suggested by many authors, for example Fitzpatrick and Strasberg (1956) and Hamilton et

al. (1982). The data here clearly exhibit an upper bound or envelope on the impulse.
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coverage parameters, y, ranging from 0.001 to 0.1. Data show measurements

for various flow velocities and cavitation numbers.
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Ceccio and Brennen (1989, 1991) also demonstrated that the impulse may be much

smaller than this maximum. Vogel et al. (1989) have also reported that the cavitation

noise increases for the case of unsheared bubbles as the ratio of the maximum bubble

radius to the distance to the headform increases. The present data adds to these earlier

studies in that it shows a clear decline in the impulse when the value of y exceeds abuJt

0.02. These y values correspond to bubbles which have attached streaks and patches and

it is apparent that this results in a decrease in the impulse associated with the collapse of

these events. The largest coverage parameters, y, correspond to the lowest cavitation

numbers and thus to the largest patch cavities. The reduction in cavitation noise for these

types of events can probably be attributed to the fact that the collapse is much less

coherent, producing high pressure nodes which are much smaller in magnitude.
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D. UNSTEADY 3-D BUBBLE DYNAMICS MODEL

"For every problem there is one solution
which is simple, neat and wrong."

H.L Menckel

D.1 INTRODUCTION

The purpose of the following method is to model the three dimensional dynamics

of the growth and collapse of bubbles as they travel through the low pressure region in a

nominally steady flow. Several studies have attempted to model the geometry of

collapsing bubbles in simple quiescent flows such as a bubble in the vicinity of a solid wall,

or a group of bubbles placed in a symmetric pattern, or a bubble placed in the vicinity of a

vortex core (G. Chahine et aL, 1993). The method presented here takes into account the

presence of a pressure gradient in the flow over an axisymmetric headform and observes

the deformations that occur in the shape of the bubble. The numerical model is unsteady,

three dimensional and inviscid. The shearing and vorticity resulting from the interactions

with the boundary layer have been omitted. The method therefore models the type of

traveling bubble that has been observed to grow outside the boundary layer and does not

seem to be too affected by its presence. The attached trailing streaks seen in the wake of

some of the bubbles are not modeled here.

A solution to the non-cavitating steady potential flow over the headform may be

found using a classical panel method approach (Kellogg, 1953, Kuethe and Chow, 1986).

The three-dimensionality of the bubbles observed in the LCC experiments indicates that a

large number of three-dimensional panels meshed on the surface of the traveling bubble

would be necessary to model the dynamics of the flow accurately. Such a method has

been developed by Chahine (1977) in which several boundary elements are distributed on

the surface of the bubble. The computational time and memory required to solve such a
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complex model is very large and limits the solution to a small number of bubbles with a

small number of mesh points and simple flow cases.

This present work demonstrates that it is, in fact, possible to model the dynamics

of the bubble using a single traveling three-dimensional source whose intensity and

position will be determined by averaged conditions on the bubble surface. The

deformation of the bubble surface will be entirely determined by the axisymmetric velocity

flow field over the headform on which is superimposed the traveling variable intensity

source representing the bubble. An image source of identical strength is added inside the

headform and travels along with the bubble source. Its position is at all times

symmetrically located with respect to the headform surface. This source is added to

ensure "smoother" conditions for the zero normal velocity conditions on the headform.

D.2 DESCRIPTION OF NUMERICAL METHOD

D.2.1 Potential flow over axisymmetric headform

D.2.1.a Potential ring panel method

For the incompressible and irrotational flow considered here, a velocity potential (p

may be defined such that

V2 9 = O. (D.1)

Due to the linear nature of Laplace's equation we can apply the principle of superposition

in order to model the flow field for complex geometries. The potential flow around an

axisymmetric headform may be modeled by the superposition of a uniform free-stream

velocity U. and a series of ring sources distributed over the surface of the headform. The

intensity of these rings is uniform over their circumference. For the present case of the

flow over a Schiebe headform, the density distribution of the panel rings has been

increased in the low pressure region on the surface of the headform as shown in

figure D. 1.
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Figure D.1 Distribudon of ring panels on the surface of the Schiebe
headform
This figure shows the location of the N. panels on the headform surface and
their increased concentration near the low pressure region. The total number of
panels, N, has been set to 93.
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For the purpose of simplifying calculations each ring source has a uniform intensity

distribution per unit surface, MK [m/sI. A normalized panel intensity, ,. may be defined

using the free-stream velocity : gi=M/.LU. The potential flow theory allows us to

calculate the induced velocity of each ring panel at any point in the flow field.

Superposition further allows us to add the contribution of each panel to determine the

flow over the complete headform.

In order to find the induced velocity of the id, ring panel at the point C we need to

integrate the potential over both the entire width and circumference of the ring. Consider

a source ring of thickness dx and radius R (which can be visualized as a circular wire) with

a total intensity 2:rR,.dx as shown in figure D.2. The integration of the induced potential

over the entire circumference of the wire proceeds as follows. The induced potential of

the wire at the point C is

d(pi =_f (D.2)

where a is the distance from the control point C to the point on the ring represented by the

angle 0 with respect to the vertical axis and can be written as

a2 = +rc2 +R 2 +(x -x) 2 - 2rcR cos0. (D.3)

The induced axial and radial velocity components are derived from the potential q)i as

dv i "-1 . ad 
(D.4)

dv,, d(pi
ar

Due to the symmetrical nature of the problem we need only integrate the potential

equation D.2 over half of the wire so that
it d O

dq=i 2RpdxJ
o jrc2 + RV+ (xc - x)2 - 2rcRcos0

dvd 2 2gxC - x dO. (D.5)-RtiXo VOgc _"R2 + (xc - x)2 - 2 rcR cos 0

dvi = -2RgidxJ + rc - Rcos0 dO
3 2 + +(- X)2 - 2 riR cosO

r I III |
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xC C (xC,rJ)

Xi+1

Xi /"",

Wire

element dx

Ring panel i

Figure D.2 Schematic of the ring panel Induced velodty at the control
point C
This figure shows the layout of the i" ring panel and the variables used to
integrate the potential and velocity field at the point C.
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The radial velocity term dvi may be rewritten as
dr=Rglidx X" -rc2 +R 2 +(Xc -x)2 d0!.1, 0

dv~j f ' de-f ddv , -0 r 2 2+ R2+(X _ x) 2 - 2r Rcos0 4r 2 + (x _x) 2 - 2rRcosO

Furthermore, Kellogg (1953) has shown that it is possible to solve these equations in

terms of elliptic integrals by defining the quantities p2 =(r,+R)2 +(Xc_X) 2 and
2

q2 = (r. -R) 2 +(x, -x) 2 and letting 712 =1 -2q- We thus find that
p2

de / dO 2 /2_______ E0• d0, +=R x )'-2Rcs P Cs2+Sin2 -=P 0o 41 - q2sin2 E ,

pl ~ ~ i~ p22

whereE rill.! is the complete elliptic integral of the first kind. Similarly we can write

that
dO 212 dO 2 x/2

f'2 2 JX 2SI~ V1 -ýsin`OO= L 1
Vr,2+R2+(x-x) -2r:RcosO p' •j1-TI2sin20 p3(1-112) =d T2,

whereF(T1i2) is the complete elliptic integral of the second kind. Thus we find the

following expressions for the potential and velocity fields in terms of the complete elliptic

integrals
4Rg-id 7

v 2-4Ridx(x- - x)-vj q2  F(ijJ f (D.6)

Mg. id(-rc+R FrAdv,, = r x 2 2 + (X"-drc

Expressions for the complete elliptic integrals can be found using Hastings'

approximations
E( q,'X ) ) 2(1 ,

2 2 2 2+4 3 2-4 (D .7)

..... .. _j_........... . .....
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In order to find the total potential and velocity vector components at the control

point C due to the ring panel "i" we still need to integrate the wire over the width of the

panel. Since we assume that the intensity of the source is uniform on the panel we can

write

=Oi4gi R f 11 d
=4 f -

P (2

vj =-41t R(xJ x) F T,2Idx (D.8)

qC 1, p 2q2
r 'pI q2p

In the present calculations, these integrals were evaluated numerically using Simpson's rule

of integration.

D.2.1.b Establishment of a linear system

In order to find the flow at the control point C induced by the entire headform, we

superimpose the influence of each of the ring panels, as well as the uniform flow, U., in

the direction of the x axis. The dimensionless equations for the uniform stream can be

simply written as
(PC xC

Xv =1 (D.9)

v =0

For simplicity we extract from equation D.8 the following potential and velocity influence

coefficients for the idh panel at the point C.

Ac. =4 . .E 2I, dx
xhtA(1, Kdx 2)

q 2p

2 "-jR (_r 2 + R 2 + (x - X)2Acn 2 +,g ( ))d

IC1
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These integral coefficients were numerically evaluated for each of the Np panels. By

superposition, the-potential and velocities at the point C are given by

i-N,
Oc = x,+ XA~igi

i-N,
CvX = 1+ Axii (D.11)

i-N,

rvc= XAý-g
i=1

D.2.1.c Resolution of the linear system

Our system consists of the NP sourcm strengths p, as unknowns. These are

determined so that the boundary condition of zero normal velocity on the surface of the

headform is satisfied. To this effect we establish Np linearly independent conditions to

obtain a closed system. The NP zero normal velocity boundary conditions are chosen at

the center of each ring panel. Consider j to be the control point for the boundary

condition located in the middle of the i'h panel, as shown in figure D.3.

The same set of equations is applied to calculate the velocity at the control point j.

In doing so, though, we must take into account the fact that the point j is located on the

panel singularity itself. Indeed we need to exclude the immediate vicinity of the point j

when we use Simpson's integration to integrate over the width of the jth panel in order to

calculate the self-influence coefficients Aj, Ajj and A),j. The boundary condition requires

that

VnM Ij = 0 (D.12)

which can be written as

v' cos cj - v sin a. =0 (D.13)
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Figure D.3 Schematic illustrating the zero normal velocity condition
The ring panels are represented by the indices "T". The zero normal velocity
conditions are imposed at the control points denoted by the indices 'I" located
at the center of the panels.
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where
i=Np
i=IP

V, =l+ XAlUJgL
i=NP (D.14)

i=1

Therefore
i=NNX A41i tana, YX- AJitan(j. (D.15)

i-Il 3=1

Therefore, the Np linear equations which must be solved can be written in matrix form as

A~j= tj (D.16)

where Aj = Ak - Aj. tan aj and tj = tan aj.

The algorithm employs a standard successive orthogonalization method to solve this set of

linear equations. This has the advantage of only requiring one additional dummy vector

of size Ng/4.

D.2.2 Unsteady three dimensional source

In order to model the dynamics of the individual traveling bubble, a three

dimensional source is placed in the oncoming uniform stream. A corresponding image

source is located inside the headform, at the same distance from the headform surface as

the original source. The intensity of the image source is identical to that of the original

source at all times, thus ensuring that the combined effect of both sources on the velocity

at the headform surface approximately cancels out. The intensity and exact position of the

source as a function of time is determined by the conditions on the surface of the bubble

and is discussed later.

The effect of a three dimensional source of strength Q on the potential and velocity

flow field is as follows
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_ Q

v Q (Xc - xq)CosC (D.17)VYQ =~ 4a ac3 D

Q (re - r )cosOcVr -- 3rQ 4 1 a Cq

where a. is the distance of the control point C from the source Q and can be written as

a q = V(x" - Xq )2 + (rc cosec - rq )2 +4 r e sin 2 eC. (D.18)

The source strength Q represents the dimensionless volumetric rate of fluid emitted by the

source
1 dV dv

Q=UD2 dt dc (D.19)

where V and v are the dimensional and dimensionless bubble volumes. Later we compare

the value of the source strength Q to the sum of the strengths of the NP ring panels
i-Nv

distributed on the headform's surface, Qh.a. = p, From potential flow theory we
i-I

can show that the overall volumetric flow rate necessary to generate an infinite body of

diameter D is EV = - U..D 2. Thus the dimensionless headform source strength is
dt 4

Q (D.20)

We will see later that the source strength required to model the traveling cavitation bubble

is always substantially less than this value of V,/4. In order to take into account the effect

of the traveling bubble source and its image source on the zero normal velocity boundary

condition, we need to add one term in the linear system previously defined by equation D

.16. We compute the normal velocity condition only in the plane containing the source

and image source (i.e., where O-O). The consequences of this will be analyzed later in the

code validation section. The linear system is now written as
i=Nv

-(AJtan aj"Aj) gi = (l+vJ• ')+v o(,))tan XJ -vi Q(,)-vi (-o (D.21)
i= I
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where the subscript Q denotes bubble source terms and Q denotes image source terms.

Therefore only the right-haid side vector term needs to be changed in our Np system of

equations. The matrix equation becomes

A = t'j (D.22)

wher., as before
ni = A). - A) -. tan cti. (D.23)

but the vector on the right hand side is now

t' =1 v T, 5 v(z) tg 0aj - Výo•Q vij5 (). A(v ,)VD.24)

We will see later that the influence of these additional terms is small and they can

therefore be neglected in the solution of the flow field. Indeed, the combined effect of the

source, Q, and the image source, Q, on the normal velocity is small over the entire

headform. Neglecting these terms, we may therefore simply use equation D. 16 and thus

avoid having to solve this NP system of equations for every time step, that is for every

different source position and strength Q. The computational time can therefore be greatly

reduced since the linear system needs to be solved just once at the beginning of the

program.

D.2.3 Bubble growth and collapse algorithm

Initially the algorithm assumes a stable spherical nucleus of radius R. in equilibrium

in the oncoming uniform flow. The initial position of the nucleus, x. and r. may be

chosen as desired. In order to reduce computational time in the early nucleus growth

phase, the algorithm is effectively started only when the nucleus becomes explosively

unstable. Until then the nucleus is assumed to follow a streamline and remain in a stable

spherical equilibrium state, with a radius equal to the equilibrium radius r, given by

equation B.4. The unsteady bubble growth algorithm starts when the nucleus becomes

neutrally stable and reaches the critical pressure condition according to equations B.5

and B.6.
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After the nucleus becomes unstable, the source position Xq(t), rq(') and strength

Q(,t) need to be computed for each time step, t. The source displacement is also modified

from the simple displacement along a streamline in a manner described below. These

quantities, Xq(t), rq•C) and Q(t), then determine the pressure and velocity field for the time

'c. During each time step, the velocity vectors on the surface of the bubble derived from

the potential flow are used to compute the new bubble shape and source location. This

cycle is repeated in time. The algorithm continues to compute the bubble shape until the

bubble has completely collapsed.

D.2.3.a Source strength, Q(,c), and position computation

Consider the bubble shape at a particular time step r. As in the derivation of the

Rayleigh-Plesset equation, the balance of forces acting on the surface of a growing bubble

consists of the liquid pressure on the surface of the bubble (manifest by the Cp*rfi term),

the vapor pressure (manifest by the a term) and partial pressure of the gas inside the

bubble (manifest by the (Vo/V)k term), the surface tension (manifest by the We term) and

the viscous normal stress (manifest by the Re term) due to the expansion of the bubble

surface. In a dimensionless form, this balance yields

CPo•r = _T+ 4 (av, + 4o +_.4_(. - 4 (D.25)- Rf -, -r ) a , roWe . V ) r ,We

where the index "i" indicates a local quantity at some point on the surface of the bubble.

V. is the initial equilibrium nucleus volume and V the current bubble volume. Cp*,.e.i is

thus the local boundary pressure coefficient one expects to find on the surface of the

bubble.

Note that in the case of a spherical bubble we can derive from the equation of

continuity the velocity gradient normal to the bubble surface

avi 2 3r
= _(D.26)

ar r tu

and thus
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8 (&4 0' 3 4
Cp•, rRe a , roWe A r ) rWe (D.27)

Furthermore, for the spherical case the momentum equation yields
,,€ 2 r ({'•r2

Cp =Cp:. +2r-3r +3 (D.29)ar2 aT

where Cp*. is the pressure coefficient in a quiescent mcdia at an infinite distance. One

therefore obtains the dimensionless Rayleigh-Plesset equation B.2.

The unsteady Bernoulli equation for the pressure in a potential flow, when written

in dimensionless form yields

Cp =- v-2 -24v (D.29)

In the .at circumstances, the potential flow calculations described in section D.2.2

(including the influence of the traveling sources) provide the potential and velocity field at

all points in the flow. The velocities vc and vc and the potential V induced at a point C in

the flow are given by

i- N

i -1 aQ

iN_ "_((x, _ COco-a, (xI -x-)cos0 - |
v =1+ YAc4i+ +

a- I (D.30), ~cq /

i=N•. _...(rc-rq)cos0c (rc- r-)cos O"
vC = A- 4__ 3 + Q q

Therefore the pressure coefficient given by the unsteady Bernoulli equation is strongly

dependent on the traveling source strength, position and rate of change in time.

The evaluation of the source strength, Q, proceeds as follows. For each time step,

the algorithm finds the value of the source Qi, such that the pressure coefficient, Cpj,

calculated using equation D.29, matches the required boundary condition, Cp*i, given by

equation D.25, so that

Cpi = Cp. (D.31)
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Note that this computation is done locally at each point on the surface of the bubble (as

indicated by the indices "i"). For that purpose, the surface of the bubble is discretized by

defining Nb nodes which are equidistant from one another and cover the circumference of

the bubble in the axial plane of symmetry (0c--O). This plane of symmetry contains the

highest pressure gradient- -n the flow above the headform and thus captures most of the

dynamics of deformation of the bubble. The method could be extended to include

additional nodes not on this plane of symmetry in order to have an even better estimate of

the required source strength Q. For the present calculation Nb= 45 , as can be seen in

figure D.4. Also note the fact that the radius of curvature of the bubble at each node is

estimated by measuring the radius of curvature in the symmetry plane only. This

approximation can be made since the surface tension effects are influential only when the

radius of curvature is very small, which is the case when the bubble has an almost spherical

shape.

The computation of the condition D.31 at each node of the bubble surface yields

Nb values of the source strengths Q•. In order to compute the bubble growth over the next

time step we need to determine an average source strength Q for this particular time. For

this purpose we use a weighted average of the Nb values of Q1. The weighting term is

chosen to give more weight to the points furthest from the headform and is given by the

normal distance, Si, of the bubble surface node "i" to the headform's surface, as shown in

figure D.4. Therefore the averaging expression for the source is given by
i=Nb

=i=1 (D.32)Q=i=Nt,

i=1

This choice is justified by the fact that it leads to bubble pressures which are constant from

one time step to the next. We will see later that the values of Qi also vary little over the

surface of the bubble.
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Direction of Flow Bubble node
...................... point "?"

(Nb-=4 5)

Bubble rofile

Image SourceQ
Panel location on the
surface of the headform

Figure D.4 Bubble discretization scheme
The bubble is discretized using Nb= 45 equidistant nodes. All the nodes are
located on the plane of symmetry of the bubble. Also presented in this figure
are the variables used to compute the bubble evolution.
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The next step is to displace the source in order to minimize the variation in source

strengths, Q1, over the surface of the bubble. Indeed, experience showed that there is an

optimum location for the source in the bubble such that the differences between the

average source strength Q and the local ideal value Qj, are minimized over the Nb bubble

points. Naturally the image source in the headform is also displaced along with the bubble

source. The displacement vector of the source, Z, is determined in the following manner.

From equation D.31, we find the source strength, Qi, necessary to satisfy the pressure

boundary condition at each point i. The algorithm then calculates the displacement, ei, of

the source in the direction of the bubble surface node "i" (indicated in figure D.4 by the

unit vector Riqi), such that the pressure boundary condition in equation D.31 is satisfied for

the average source strength value Q. In other words we find the displacement of the

source that would yield Qi=Q. In order to compute the displacement E, two pressure

coefficient gradients are computed. The first gradient, VQi = Ci-- represents the changeaQ'

in pressure coefficient on the surface of the bubble as the source strength varies. The

second gradient, V. =Cp, represents the change in pressure coefficient on the surfaceae

of the bubble as the source moves in the direction iqi-* A first-order approximation of the

source displacement Ei can then be obtained as

VQiEi= A.Q (D.33)

The final overall displacement vector i applied to the source is then given by averaging all

the displacements, q, in all the directions .iqi. It is again effective to weight the

displacements ei by the distance 8i of the bubble node from the headform surface. Thus,

the final source displacement vector used is
i=N,

•= iffii-N (D.34)
i=Nb
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The process of averaging the source strength and repositioning the source is repeated until

the values converge. Usually three iterations are necessary for convergence.

D.2.3.b Bubble displacement and time step incrementation

Having located the optimal source location and strength for a particular time, T,

the computation then proceeds to the next time step. During the time increment the

bubble is deformed and travels downstream in the following manner. From equation D.30

the velocity at each node on the surface of the bubble is calculated. The position and

shape of the bubble at the next time step is then given by displacing each node through a

distance equal to the velocity vector times the time increment, Ar. During this time

increment the bubble source is also displaced along its pathline and finally the image

source is moved accordingly. We note that the Bernoulli equation D.29 requires the

values of the source strength ar-I position from the previous time step in order to compute

the unsteady inertial term, aqwa

The averaged value of the source strength, Q, is thus used to compute the

unsteady pressure field and the deformation of the bubble surface during each time step.

We note, though, that this averaging can create some instabilities on the bubble surface,

particularly during the collapse phase. The use of an average source strength does not

correct for local errors in the surface location. Some error instabilities are caused by the

t. Ct that the velocity vector induced by the source increases inversely with the square of

the distance from the source, V• Q/4 . To some extent, the bubble displacement

algorithm tends to correct errors in the node location and to stabilize itself during the

growth phase (Q>O). Nodes located too close to the source will automatically generate

larger outward velocities and are thus displaced further from the source. However, during

the collapse phase (Q<O), a node on the bubble surface located too close to the source will

tend to generate a larger inward velocity. Thus this surface distortion will increase during

each time step. These instabilities are thus prone to generate reentrant jets.
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Reentrant jet instabilities on the bubble surface during collapse have been widely

studied, particularly in the case of non-symmetrical flow configurations. Benjamin and

Ellis (1966) first observed such jets experimentally in the case of bubbles in the presence

of a nearby solid wall boundary. Later Plesset and Chapman (1971) studied the formation

of these reentrant jets theoretically. Additional studies by Duncan and Zhang (1991) have

shown the effect of compliant walls of different stiffness. They have shown that the

direction and intensity of the jet are dependent on the stiffness of the boundary. The

collapse of a bubble near a free surface has been shown to develop reentrant jets directed

away from the free surface (Chahine 1977). It is important to note, though, that the

present algorithm generates instabilities on some nodes of the surface that are not caused

by real hydrodynamic instabilities. These reentrant jets are due to a suction of the source

on these nodes located too close to the source. The pressure coefficient field does not

exhibit the reentrant jet-like depression that one would expect if these jets had a physical

meaning. The dynamic pressure boundary condition on the surface of these nodes

(equation D.31) is therefore not satisfied and we can thus conclude that this jet formation

is erroneous. In order to counter such error instabilities the calculation of the

displacement of the bubble surface needs to include some corrective terms in addition to

the simple velocity displacement described previously. The purpose for these corrections

is to reposition the unstable bubble surface points closer to the required boundary

condition of equation D.3 i.

The unstable bubble surface nodes requiring such corrective terms may be

identified as those exhibiting "adverse conditions". For the growth case (Q>O) an adverse

condition may be defined by a node requiring a slower growth rate than the average

source strength Qi < Q. For the collapse case (Q<O) adverse conditions may be defined as

requiring a slower collapse rate than the average source strtagth Q1 > Q. We may

generalize these two cases by sta.. . t1, t adverse conditions occur when the relative

difference between the average source, Q, and the local source intensity, Qi, is larger than
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some chosen fractional value k: (Q - Q) > k. For the present calculations k has been set
Q

to k=10-3. The stabilizing method applied at these node points takes the form of source

strength corrections. For the velocity displacement calculation at these points, a corrected

source strength, Qm.,._i, is used in place of the average source strength Q. A first-order

approximation using the same pressure coefficient gradients as in equation D.33 is used to

compute this corrected source and is expressed in the following equation

Oc.med -i = Q + (Q,-Q) V2_i ai2 -- QO+(Q, - Q)ri- (D.35)

- Vej AT

We note that, without the influence of the image source, this correction would displace the

surface node "i" by an additional value E£ in the direction of the unit vector fI

The time increment, AT, used has to be adapted during the growth or collapse

phase of the bubble. Two important factors need to be taken into account in determining

its value:

1) The source displacement per time step should not exceed a fraction k of the bubble size.

This is particularly important when we consider that the computation of the unsteady

pressure term in the Bernoulli equation D.3 1, L42 requires the computation of a finite
at'

difference using values of the source location at two successive time steps. This condition

may be expressed as
k-r•

AT < k (D.36)

where rcv is the average radius of the bubble and vq, and vq1 are the velocities used for the

displacement of the source.

2) The volume change of the bubble per time step should not exceed a fraction, k, of the

bubble volume. This condition becomes crucial when the bubble volume is small,

particularly during the final phase of the collapse. We may express this condition as

A k < (D.37)

3 au.



- 101 -

Experience indicated that preferred values of both of the k factors were about 0.05. The

time step used in the algorithm corresponds to the more restrictive of the two conditions.

Even though the presence of the image source inside the headform should

minimize the normal velocity on the surface of the headform, it is good practice to check

and see whether any of the nodes on the bubble surface have entered the headform during

the time incrementation procedure. Indeed the underside of the bubble is located

extremely close to the headform surface and numerical errors may cause some points to

actually penetrate the headform. For the same reason it is wise to check that the source

location does not come too close to the surface of the bubble (especially during the phase

of the bubble growth when the source is strongly attracted to the headform). Finally,

because of the deformation of the bubble, it is necessary to redefine the Nb nodes on the

surface of the bubble at each time step to ensure that they are equidistant from one

another. All of these steps may be summarized in the flow chart of figure D.5.
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D.3 PRESSURE PERTURBATION ANALYSIS

In order to analyze the dynamics of a traveling bubble the following quantities need

to be defined. The pressure coefficient perturbation, ACp, is defined as the difference

between the unsteady pressure caused by the traveling bubble over the headform surface

and the original pressure under non-cavitating conditions.

ACp = Cplwit bubbl - CPlwimto bubble* (D.38)

Using the unsteady Bernoulli equation D.29, the pressure perturbation can also be written

as the combined effect of a perturbation in the velocity field, ACpv, and a perturbation in

the time derivative of the potential field, ACp,, such that

ACp = ACpV + ACp, (D.39)

where
ACpv = (v2 + v 2) -(v 2 +v 2)

X r flwl.mbubble X r with bubble

ACp~p = - ~A~~p•~ = 2with bubble

Both of these effects are quite complex and generate three dimensional perturbations in

the pressure field. We may write the cavitating velocity field as the superposition of the

velocity field induced by the headform without cavitation and the velocity field induced

only by the sources

V [withbubble = V + . (D.40)

Replacing those velocities in equation D.39 we find that

ACpV = -2vx L•.- v (D.41)

We see that the change in the velocity related pressure coefficient perturbation, ACp,,

consists of the product of the velocity induced by the sources and the velocity induced by

the non-cavitating headform. As a first approximation we may consider the velocity field

induced by the sources to be isotropic and to decay in a spherical manner far from the

sources. The velocity field induced by the flow over the headform has a much more

complex, three-dimensional structure. Therefore the product of those two velocity fields
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generates a pressure coefficient perturbation field, ACpv, which is not spherical.

Furthermore, the pressure perturbation field due to the time derivative of the potential

field, ACp,, is also non-isotropic. Indeed the sources change position as their strength

varies, thus generating a preferred direction in the pressure perturbation. The addition of

these two non-spherical pressure field perturbations in equation D.39 leads to a complex

pressure field perturbation, ACp. The shape of this perturbation is crucial in the present

algorithm since it eventually determines the shape of the bubble. This three-dimensionality

is an essential feature of the dynamic boundary condition on the surface of the bubble, and

will ultimately lead to the differences we will observe between this method and the

spherical Rayleigh-Plesset calculations. A more detailed analysis of the shape of the

pressure perturbation field will be described later in section D.5 where we discuss some

results of bubble computations.

D.4 ERROR ESTIMATION ANO CODE VALIDATION

All the figures illustrating estimates of the errors in the numerical method use the

following typical cavitation condition: Ro=100pm, D=50.8cm, U,,=l 1.5m/s, c:=0.45 with

an initial nucleus position: x.=-1.0, r,=0.01. This condition is roughly in the middle of

the range of the conditions calculated and thus the errors are quite representative.

D.4.1 Normal velocity leakage into the headform

In this paragraph we will look at the normal velocity leakage into the headform

due to the presence of the traveling sources. As stated in equation D.20 the overall

dimensionless source strength required to model the Schiebe headform is equal to r/4.

We can see from figure D.17 that for the range of cavitation numbers tested the bubble

source strength, Q, does not exceed a value of about 0.002. The traveling source strength

is therefore less than 0.2% of headform strength. This small percentage, combined with

the fact that the source is coupled to an image source of equal intensity inside the

headform, shows how little influence the bubble has on the overall flow over the
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headform. We must note that this conclusion applies to the influence of the source on the

velocity field but not to the influence of the source on the pressure field in the vicinity of

the bubble, since the pressure calculation also takes into account the time derivative of the

source strength, as manifest in equation D.29.

D.4.1.a Small normal velocity perturbation assumption

As mentioned previously and in paragraph D.2.2, the presence of the traveling

source together with its image source has very little effect on the zero normal velocity

condition on the surface of the headform. Therefore, the computation of the linear system

D.22 does not appear to be necessary at every time step. In this paragraph we will

attempt to quantify the error caused by not solving the zero normal velocity condition on

the headform surface for each new source position and strength. For this purpose, the

normal velocity on the surface of the headform has been computed in the plane of

symmetry containing the bubble source and the axis of revolution. Figure D.6 shows the

normal velocity divided by the tangential velocity at different times during the growth and

collapse phases. We observe that the maximum normal velocity error is about 0.4%, thus

validating our approximation. This small error is due to the following effects. In the

region of the headform surface close to the bubble, where the influence due to the

traveling source might be substantial, the normal velocity is countered by the presence of

the image source inside the headform. The exact location of this image source with

respect to the original source is crucial and requires careful consideration of the position,

slope and radius of curvature of the panel distribution on the surface of the headform. For

the headform control points further from the bubble, the source has little influence on the

normal velocity condition since the velocity induced by the source decays as the inverse

square of the distance from the source.
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Figure D.6 Normal velocity [%I in the axial direction on the surface of the

headform
Calculated normal velocities divided by the tangential velocity for different

locations on the surface of the headform, as indicated by the dimensionless

curvilinear abscissa, s.
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D.4.l.b Superposition of an axisymmetric and a three-dimensional flow

We should also quantify the error due to the superposition of a series of

axisymmetric ring panels and a three-dimensional source. A full three-dimensional flow,

computation would require the discretization of the ring panels in the circumferential

direction. The error introduced by not performing this discretization may be estimated by

looking at the normal velocity distribution over the circumference of the headform. Figure

D.7 shows the distribution of the normal velocity divided by the tangential velocity over

the circumference of the headform. The plot shows these values for various times, ranging

from growth to collapse conditions. The axial locations, x. at which the velocities have

been computed around the circumference are identical to the axial positions of the

traveling source for each time step. The angle, 0, shown is taken relative to symmetry

plane containing the source (as shown in figure D.2).

We can see that the maximum error is less than 1 %, thus validating our

approximation. Once again, due to the decay of the velocity with the distance from the

source, the influence of the source appears to be only significant for angles, 0, under 30

degrees. We conclude that this model, combining axisymmetric ring elements with an

unsteady traveling three-dimensional source, is capable of modeling the three-dimensional

geometry of the bubble. Discretization of the ring panels around their circumference is

therefore not necessary.

D.4.2 Pressure distribution on the surface of the bubble

In this section we estimate the error in the computation of the shape of the bubble

by examining the pressure distribution on the surface of the bubble as a function of time.

This error may be quantified by contrasting the pressure coefficient on the surface of the

bubble, Cp. given by solving the potential flow, with the pressure coefficient. Cp*. given

by the pressure boundary condition in equation D.25. Figure D.8 shows the difference
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Figure D.7 Normal velocity [%] in the circumferential direction on the

surface of the headform
Calculated normal velocities divided by the tangent velocity for different

angular positions on the surface of the headform, as indicated by the angle 0.

The axial locations for the velocity computation are the same as the axial

location of the source.
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between these two pressures on the exterior surface of the bubble for various times. The

angle, 0, is defined relative to the direction normal to the headform as represented in

figure D.4. Figure D.8 shows the pressure difference for angles, 0. between -90o to +900

corresponding to the exterior surface of the bubble.

We observe that, for all time steps, the difference between pressure coefficients,

Cp-Cp*, over the exterior surface of the bubble is between 0.05 and -0. 1. The condition

on the surface pressure is thus fairly well satisfied at all times. The single source model is

therefore able to appropriately modify the original pressure field induced by the headform

in the vicinity of the bubble. From the computation of equation D.25 we also know that,

once the bubble is larger than a few times its original nucleus size, the viscous, surface

tension and non-condensable gas content terms become small compared to the cavitation

number term. Thus, for almost all times Cp* is roughly equal to -Y and figure D.8 simply

represents the sum Cp+a. The absolute pressure coefficient variations on surface of the

bubble are thus less than ±0._1.

It is also possible to quantify the error in the shape of the surface of the bubble by

examining the local source strength distribution, Qi. Figure D.9 shows the difference

between the ideal source strength, Qi, required in order to fulfill the Cp--Cp* condition and

the averaged source strength, Q, used by the model at each time increment. The

difference presented in this figure is divided by IQI and is shown for the exterior surface

versus time in a manner similar to figure D.8.

We observe that the departure from the average source value Q is small, the values

of (Qi-Q)/IQI being less than 0.01 at all times. Thus a simple source comes very close to

modeling the three dimensionality of the bubble. Naturally, the relative error becomes

large when the source strength Q approaches zero around the time t=3.09. Some

important trends may be noted by comparing figures D.8 and D.9.
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Figure D.8 Error in the pressure coefficient distribution on the surface of
the bubble
The plot shows the difference in pressure coefficients Cp-Cp* for different
locations on the surface of the bubble represented by the angle 0. The range of
angles shown covers the exterior surface of the bubble. These values are plotted
for different dimensionless times during the growth and collapse phases.
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During the early bubble growth phase (2.82<T<2.95), we observe an over-pressure

of up to Cp=0.05 on the exterior surface of the bubble. This over-pressure fist appears

when the growing nucleus encounters the surface of the headform and begins to be

compressed against it. One consequence of this can be seen in figure D.9 where the

exterior of the bubble requires smaller source values during the growth phase (Q, is

smaller by 0.3%). This indicates the tendency for the exterior of the bubble surface to

come closer to the source, i.e., for the bubble to be flattened. Also the values of Q are

larger taian the average source value Q at the leading and trailing surfaces of the bubble

(angles around ±90o). This again indicates the tendency of the bubble to expand in a

direction parallel to thne headform surface (where the pressures are lower), thus producing

a flattened and elongated bubble shape.

As the bubble reaches its maximum size at c'=3.09. we see from figure D.8 that the

leading edge of the bubble (0=90o) is subjected to a strong under-pressure (Cp<-0.01).

whereas the trailing edge (0=-900) is subjected to an over-pressure (Cp>0.005). The local

source strength Qi reflects the same asymmetry (larger values at the leading edge and

smaller values at the trailing edge), indicating that the bubble tends to continue to grow at

the leading edge and shrink at the trailing edge. This phenomena is responsible for the

wedge-like shape of the bubble that is observed during collapse. The fact that the single

source model is not able to completely follow such complex three-dimensional bubble

deformations and produces the errors shown in those two figures partly explains the need

to add the corrective term-s defined in equation D.35 and discussed in the following

paragraph.

D.4.3 Corrective displacement of the bubble surface nodes

The importance of the corrective terms applied to the bubble surface nodes

exhibiting adverse conditions described by equation D.35 can be estimated by comparing

the actual volumetric rate of growth of the bubble with the average source strength Q.
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Indeed, if the corrective source strength terms, _d,, were non-existent, the volume

of the bubble would simply increase by the average source strength value Q. The

following equation would then hold

dVQ() (D.42)
d'c

where V is the volume of the bubble. Departures from this equation represent corrections

to the local source strength, Q..T.,w that have been necessary for bubble surface to

match the pressure boundary condition. We note that this error estimation gives us only

an integral representation of the local corrective source strengths over the entire

circumference of the bubble. In reality these corrective effects are applied only to a few

nodes on the surface of the bubble. Furthermore the values of Q,,,, depend on the

adverse condition of these nodes (as defined in paragraph D.2.3). These nodes may be

identified by examining the regions where the conditions are adverse in figure D.9.

Because of the three dimensionality of the bubble shape, the actual volume of the

bubble is hard to estimate. It is possible though, to compute the bubble surface area, S, in

the plane of symmetry. If we assume that the bubble has roughly a hemispherical cap

shape of base radius rc, the bubble volume would be V = 2/3 3r. Furthermore the

surface area of the cap in the plane of symmetry would be given by S = 1/2 xr4. Thus the

volume of the bubble may be estimated as

V=24 S3 (D.43)3 'X

Figure D. 10 plots the variation of the volume of the bubble based on this estimate.

Comparing figure D. 10 to figure D. 17 we can see that the rate of change of the

bubble volume is less than we would anticipate by examining the average source strength,

Q. For all the cavitation numbers shown the maximum volume deficiency is about 30%.
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Figure D.IO Estimated volumetric rate of change of the bubble
The estimated dimensionless rate of change of the bubble volume based on the

surface area S in the plane of symmetry is represented as a function of time for

a range of cavitation numbers. The discrepancy between these curves and those

of figure D.17 gives an indication of the correction required to match the

pressure boundary condition on the bubble surface.
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The local corrective source terms, i, therefore tend to slow the growth and

collapse of the bubble. This is not surprising since they are only applied when the local

conditions are adverse and therefore always decrease the magnitude of the average source

strength, Q, yielding an overall reduction in the bubble growth or collapse rate. The

average source strength Q thus overestimates the real bubble volume rate of change.

When analyzing these curves, though, we need to be alert to the fact that this calculated

volume is quite crude and probably underestimates the real bubble volume, since the

bubbles tend to be wider in the circumferential direction than in the plane of symmetry.

The volume deficiency value of 30% therefore overestimates the magnitude of the

correction applied.

D.5 RESULTS

D.5.1 Comparison of computed bubble shapes with experiments

A number of photographs of the profiles of traveling cavitation bubbles on a

5.08cm diameter Schiebe headform were taken by Ceccio (1990) in the Caltech Low

Turbulence Water Tunnel (LTWT). A large number of photographs were also taken

during the LCC experiments but these were taken from an oblique angle as seen in figures

C.17.a through C.17.m. This angle makes comparisons between the computed bubble

shapes and those photographs more difficult. Figure D. 11 includes a comparison between

the photographs of bubbles in the LTWT and the computed bubble shape at fi -e different

times. The comparison is made for the same cavitation number and roughly identical axial

bubble location on the headform surface. For the purpose of this comparison, the effective

cavitation number in the experiments has been calculated taking into account the blockage

effects due to the small cross section area of the LTWT test section (A,=929cm2). The

corrected cavitation number, ;h, which includes the tunnel blockage effect is given by

Gh =(l_)(G..+1)l (D.44)
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where a_ is the cavitation number without blockage effects, Ak is the headform frontal

area (A=--xD2/4) and A, is the tunnel cross-sectional area. The experimental cavitation

number q_---0.45 presented here therefore yields a corrected cavitation number ,h---0.39

with blockage effects. Presented in figure D. II are the photographs of the bubble. Next

to each photograph are superimposed at the same scale the computed bubble shape (solid

line) and the outline of the bubble from the photograph (dashed line). The five

photographs were taken at different times during the bubble lifetime. The first two during

the growth phase, the third one when it has reached its maximum size and is just starting

to collapse and the last two during collapse. The computed values for each of these times

are as follows

photo number time, r x, coordinate r,, coordinate Source, Q

1 2.95 0.19 0.42 1.49-10&4

2 3.06 0.30 0.44 1.50-10-4

3 3.16 0.40 0.46 -2.80-10-6

4 3.22 0.47 0.47 -1.17.10-4

5 3.30 0.56 0.48 -1.68.10-4

First we observe that the program simulates a spherical cap bubble shape similar to

that observed in the experiments. The underside of the bubble is relatively flat and

conforms to the headform surface. Then, during the growth phase the program shows a

compression of the cap in the direction normal to the headform. This flattening of the

bubble appears more pronounced in the experiments than in the computation. As the

bubble starts to collapse it produces a wedge shape similar to the experiments, with the

leading edge of the bubble thinner than the trailing edge. Furthermore the overall bubble
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Figure D.11 Comparison between computed bubbles and photographs
Typical bubble shape over the Schiebe headform for 0=0.39. Next to each
photograph is superimposed, at the same scale, the computed bubble shape
(solid line) and the outline of the bubble from the photograph (dashed line).
The crosses indicate the location of the sources.
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dimensions and growth and collapse locations match the photographs remarkably well.

Consequently the program captures many of the dynamics of the flow that determine the

bubble shape. As previously mentioned, the largest discrepancy observed i that the

computed bubbles do not appear as elongated as in the experiments, particularly for higher

cavitation numbers. This limitation seems to be inherent in the single source model. Also

the program does not produce the dimple that has been observed on the exterior surface of

the bubble, but does point out the possible cause of its formation as will be discussed later.

A more extensive analysis of the bubble shape computation in time is presented in figures

D. 12 for a cavitation number cr--0.45.

D.5.2 Typical bubble growth and collapse

Figures D.12.1 through D.12.20 present the time history of a typical bubble

growth and collapse for the following conditions: Ro=100tm, D=50.8cm, U-=l 1.5m/s.

Y=0.45 with an initial nucleus position: xqo=-l.0, ro--0.01. The time increment between

each figure is At=0.02. The first figure is for t=2.809 and corresponds to the time the

nucleus reaches its critical size and becomes unstable. The presentation of the bubble

dynamics in figure D.12 includes for each time: a) (top left) the bubble shape: b) (top

right) the pressure coefficient, Cp, on the surface of the headform; c) (bottom left) the

pressure coefficient perturbation, ACp, due to the presence of bubble: d) (bottom right)

the pressure perturbation term induced by the time derivative of the potential field, ACpq,.

Furthermore, by comparing the pressure distributions in figures (c) and figures (d) and

using equation D.39 it is possible to estimate the influence of the velocity induced pressure

perturbation, ACpv. The figure captions give information on the time t, the average

source strength Q, the source location Xq and rq, the pressure coefficient CPq that would be

experienced at the source location if no bubble were present (i.e. Q--O), the average radius

of the bubble, rc,, based on the circumference of the bubble (rr,•= circumference/27t), and

the average bubble surface growth or collapse velocity, vurf, defined as v•.=Q/r2acc.
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Figure D.12.1 Time, t=2.808. (a) bubble shape, (b) Cp, (C) ACp, (d) ACp.V
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Figure D.12.2, Time, t=2.828. (a) bubble shape, (b) Cp, (c) ACp, (d) ACp1 ,

Q=4.24xlO-6, xq=O.059, rq=0.355, CPq=-O.7 8, rcirc=3.93xJO3, v..=0.274
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Figure D.12.3, Time, T=2.848. (a) bubble shape, (b) Cp, (c) ACp, (d) ACpo
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Figure D.12.7, Time, r=2.928. (a) bubble shape, (b) Cp, (c) ACp, (d) ACpp

Q=8.48xl0-5, Xq=0.1 6 6 , rq=0.4 12, CPq=-0.54 , rcic=2.19Xl0-2, vr4 =0. 175
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-0.6 to -0.5 -0.14 to -0.10

under -0.6 under -0.14

Figure D.12.8, Time, c=2.948. (a) bubble shape, (b) Cp, (c) ACp, (d) ACpV

Q=9.29x0-5, xq=O=.187, rq=0.419, Cpq=-0.50, rirc=2.46xl0O2, v.r=0.153
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Figure D.12.9, Time, r=2.968. (a) bubble shape, (b) Cp, (c) ACp, (d) ACp,

Q=9.52xla5. xq=O0.208, rq=0.426, Cpq=-0.4 7 , rcarc=2.68xlOA2, v•,f=O.1 3 2
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Figure D.12.10, Time, r=2.988. (a) bubble shape, (b) Cp, (C) ACp, (d) ACpV

Q=9.23x10-5, q=O*2 2 7, r q=0.4 31, CPq=-O.4S, rcirc=2.86Xl0A2 v.,=0.112
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under -0.6 under -0.14

Figure D.12.1 1, Time, t=3.008. (a) bubble shape, (b) Cp, (c) ACp, (d) ACp,
Q=8.35xlO-i, Xq=0.245, rq=0.435, Cpq=-0.43 , rcir- 3 .02XlO-2, v .. =0.0915
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-0.6 to -0.5 -0.14 to -0.10

under -0.6 under -0.14

Figure D.12.12, Time, t=3.028. (a) bubble shape, (b) Cp, (c) ACp, (d) ACpV

Q=6.98xJO-5, xq=0.2 6 4 , rq=0.4 3 9, Cpq=-0.4 1, rc,rc=3.13xlO-2, v,,.=0.0710
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uunder -0.14

Figure D.12.13, Time, t=3.048. (a) bubble shape, (b) Cp, (c) ACp, (d) ACpV
Q=S.02X 1()-5 , xq=0.2 8 4 , rq=O.4 44 , CPq=-O. 3 9 , r,,rc=3.22x10-2, vsud=O.O4 82
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Figure D.12.14, Time, t=3.068. (a) bubble shape, (b) Cp, (c) ACP, (d) ACpq,

Q=2.68X ia5, xq=0.30~5 , rq = 0.448, Cpq:=-O* 37 , rcirc=3 .2 8xlfr 2, vsurf- 0*0 2 4 8
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-0.6 to -0.5 .0. 14 to -0. 10

under -0.6 under -0.14

Figure D.12.15, Time, t=3.089. (a) bubble shape, (b) Cp, (C) ACp, (d) ACp(P
Q=-2.52X1]&)6 , xq=0.3 28 , rq=O.453 , Cpq=-0.3S, rire =3.29x 102, vi',r=-0.0023
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-0.6 to -0.5 -0.14 to -0.10

under -0.6 1 under -0.14

Figure D.12.16, Time, r=3.109. (a) bubble shape, (b) Cp, (c) ACp, (d) ACp'V
Q=-3.ISxIa5,X -,?0.352, ?rq =0.455, CPq=-O. 3 3 , rcirc =3.21 Xja 2, v',,r,=-0.03O6



-135 -

D 20

over 0.0 over 01.14

-0. 1 to 0.0) 1). 10 to ). 14

*,f 0.06 to 0).10
-0.2 to -0(.1

0.0 2 to 0.06u
-0.3 to -0.2

-0.02 to 11.02

.04to.a -0.06 to -0.012

-0.5 to -0.4 -0.10 to -0.06
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under -0.6 under -0. 14

Figure D.12.17, Time, t=3.128. (a) bubble shape, (b) Cp, (C) ACP, (d) ACP,
Q=-5.80x1()5,xq =0.3 76, i-q=0.45 9, CPq=0.03 2 , r,,re=2.97xI0-2, 1.suf -0*06 5S
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Figure D.12.18, Time, t=3.14 8. (a) bubble shape, (b) Cp, (C) ACp, (d) ACPq

Q=-8.27x1(%5,.xq=O* 4OJ, 1rq=0.462, Cpq=-O. 3O, rcrr=2.50x)0A Turf 4-O~ 3
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Figure D.12.19, Time, x=3.168. (a) bubble shape, (b) Cp, (c) ACp, (d) ACp'P
Q=-9.95xIO-5 xq=0.424, rq=0.466, Cpq=-().28, r,20x(-2 y ,,,j-.
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Figure D.12.20, Time, r=3.188. (a) bubble shape, (b) Cp, (C) ACP, (d) ACpq,

Q=-9.55x 10-5, x -0.445, r q =0.469, Cpq,=O0 2 7 , rrc=1 .29 xlO-2 ', u,=0.7
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over .0.24

-0.27 to -0.24 -0.39 to -0.36

-0.30 to -0.27 -0.42 to -0.39

-0.33 to -0.30 -0.45 to -0.42

-0.36 to -0.33 under -0.45

D/50I

Figure D.13 Pressure distribution, Cp, close to the bubble

The conditions shown here are identical to those of figure D.12.2.b: c=0.45,

"t=-2.828, Q=4.24x10-6, xq=0.059, rq=0.355, Cpq=-0. 7 8 , rcirc=3.93X103,

v,,,f=0.274. This figure illustrates the way the isobars curve around the surface

of the bubble indicating the Cp= -a condition on the surface. Also shown is the

local over-pressure on the exterior of the bubble induced during this early
growth phase.
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The source and image source locations are also shown in Figure D. 12, as represented by

the crosses in figures (a). A number of different phases in the life of the bubble may be

identified from these figures.

Figure D.12.1:

After the nucleus encounters a low enough pressure to cause it to become unstable

it first grows very rapidly towards the headform surface, where the pressure is lowest. If

the nucleus is a few radii from the surface of the headform when it becomes unstable, the

bubble is strongly deformed and becomes elongated as it grows in the direction of the

headform. The source location relative to the center of the bubble is also displaced

towards the headform.

Figure D.12.2:

As the growing bubble interacts with the headform its interior surface next to the

headform begins to flatten. The positive pressure perturbations generated in both the (c)

and (d) figures appear quite spherical and equal in intensity at this time, indicating that the

velocity induced pressure perturbation, ACp,, is small. The rate of increase of the source

strength Q is greater than the effect of the source displacement per time step, explaining

the quasi-isotropic nature of th -Cp, pressure perturbation. This pressure perturbation

translates into a local over-pressure, Cp, above the exterior surface of the bubble as can be

seen in figure (b). Figure D. 13 includes a close-up view of the Cp pressure distribution

around the bubble.

Figures D.12.2-7:

The local over-pressure on the exterior surface of the bubble observed in figure

D. 12.2.b remains until figure D. 12.7.b at time t-2.93 and causes the bubble to be locally

depressed. This local "crushing" of the bubble exterior surface is quite violent and might

be the source of the dimple depression observed in the LCC experiments. This

ph, riomenon can also be observed in the error estimation figures D.8 and D.9, where the

exterior nodes on the surface of the bubble present adverse conditions between the times
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2.82 and 2.95 and require corrective displacements that brings them closer to the source.

It appears as if, after having been forced toward the headform during the early phase, the

growing bubble "rebounds." The position of the source is shifted towards the headform

surface during this time. This source location also contributes to produce a flatter and

more elongated bubble shape in the directions parallel to the headform surface.

We can see from the (c) figures, that the bubble generates an over-pressure

perturbation ACp in its surroundings during this time. We may refer to this time as the

driving growth phase. Examining the unperturbed pressure field over the headform (figure

D. 12.1 .b) and noting the values of Cpq in the figure captions, we can see that this phase

corresponds to a time when the bubble is traveling through the region where it encounters

pressures lower than the cavitation number. Looking at the absolute pressure field, Cp, in

the (b) figures, the intensity of the high pressure perturbation, ACp, counteracts the

prevailing low pressure field so that the boundary condition on the bubble surface (Cp=-a•)

is met. We note that the large pressure perturbation in both the (c) and (d) figures

increases in intensity and reaches its maximum in figure D.12.4 at T=2.87. This maximum

pressure perturbation occurs at a time when the source is already downstream of the

minimum pressure coefficient point. After this time the over-pressure intensity decays.

We can observe though, that this decay occurs in a non-isotropic manner. This non-

sphericity can be explained by analyzing each of the ACp, and ACp, pressure

perturbations separately. Looking at the high pressure, ACp,, in the (d) figures, we

observe a low pressure wave perturbation propagating clockwise during this entire growth

phase. The positive ACp,, values are located downstream of the source which corresponds

to the direction of the source displacement and thus to the direction of maximum

momentum increase. As the downstream displacement velocity of the source increases,

the momentum change upstream of the source decreases to the point that it eventually

produces negative inertial pressure perturbations, ACp,. On the other hand, the velocity-

related pressure perturbation, ACpv, exhibits the opposite behavior. Upstream of the
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source the velocity induced by the sources is opposite to the flow over the headform and

thus produces higher ACp, pressure values. Downstream of the source both of these

velocities add up producing lower ACp, pressure values. The sum of both pressure

perturbations ACp9 and ACp, in the (b) figures shows that the high velocity-induced

pressure, ACpv, is the dominant term upstream of the source, whereas the high

momentum-induced pressure, ACp,, is the dominant term downstream. Thus ACp shows

a fairly uniform high pressure distribution in all directions from the source. From the (c)

figures we see that this high pressure perturbation becomes elongated in the upstream

direction as the bubble travels downstream. It appears as though the high pressure field

upstream of the bubble does not move as fast as the source, causing this elongated

pressure shape.

The overall intensity of this high pressure perturbation does decay with time after

figure D.12.5 and is almost null by figure D.12.9. The inertial-pressure, ACp,, decays

faster than the velocity-pressure, ACp,. The result on the pressure perturbation ACp is

seen in the form of an expanding counter-clockwise low pressure wave. It is quite

remarkable to observe that, while a low ACp,, pressure wave is propagating in the

clockwise direction, a low ACp pressure wave propagating in the opposite (counter-

clockwise) direction.

Figures D.12.8-10:

The bubble has just passed through the low pressure region where the pressure

coefficient is lower than the cavitation number and has reached the point where Cpq-a.

The ACp pressure perturbation field in the (c) figures is close to zero at this point. We

note that the pressure perturbation ACp, is symmetrical about the source location,

generating an over-pressure downstream of the source and an under-pressure upstream.

The perturbation ACp, is thus almost exactly balanced by the perturbation ACp, which has

the opposite shape distribution.
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Figures D.12.10-15:

The bubble continues to grow during this phase which may be referred to as the

inertial growth phase. The bubble is now traveling through the region where it encounters

unperturbed pressures higher than the cavitation number, as is shown by the values of CPq.

It still continues to grow due to the fluid inertial terms. The bubble growth is decelerating

as is shown by the decay in the source strength, Q, and of the surface growth velocity,

v.f. The source location remains very close to the headform surface but also shifts in the

upstream direction relative to the center of the bubble. Since the source strength is still

positive this produces the wedge bubble shape that can be seen in the (a) figures (with the

thicker side upstream). As discussed in the previous section, this shape is similar to that

observed in the experiments.

During this phase the bubble generates negative pressure perturbations ACp in its

vicinity (in the (c) figures), which can be explained as follows. In the (d) figures, we

continue to observe the same ACp, clockwise low-pressure wave propagation as we did

during the driving growth phase. The deceleration of the bubble growth eventually yields

large negative values of ACp, even downstream of the source. As the source strength Q

decreases, the influence of the velocity-related pressure perturbation ACp, is reduced.

The low pressure perturbation field, ACp, becomes almost identical to the momentum-

related pressure field ACp,. As in the previous phase, this negative ACp pressure

distribution is generated by a clockwise low pressure wave expansion.

Figures D.12.15-16:

These figures correspond to the time when the source strength Q is approaching

zero at T=3.09. The bubble has reached its maximum size and is now about to start

collapsing. Notice that by this time the bubble is quite far downstream (by more than a

tenth of the headform diameter) of the unperturbed ending of the low pressure region

(Cp<-a) and is modifying the pressure field in the high pressure recovery region. As we

stated before, the pressure perturbations ACp and ACp, are roughly equal in intensity at
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this time, indicating that the velocity pressure perturbation, ACp,, is almost zero. We

notice that this is also the moment when the pressure perturbations ACp and ACp, have

reached their minimum negative values. This minimum in ACp, indicates that this is also

the time when the source strength Q is decreasing most rapidly. The almost spherical

pressure perturbation distribution observed is due to the fact that the source displacement

effect is small compared to the source intensity decay.

Figures D.12.16-19:

The bubble is now collapsing (Q<O). We observe the displacement of the source

in the downstream direction relative to the bubble center, which causes the tip of the

wedge shaped bubble to disappear gradually. The low pressure perturbation generated by

the sources continues to modify the pressure coefficient, Cp, such that boundary condition

on the surface of the bubble remains satisfied. Even though the rate of decrease of the

source intensity Q is not as high as in figure D.12.15, the bubble collapse velocity

increases rapidly, as indicated by the values of v,., since the bubble radius, r•, is smaller.

The low pressure field perturbation in the (c) figures has an almost spherical shape

and is slightly elongated in the upstream direction, with a shape similar to that of figures D

.12.2-8. The overall low pressure perturbation ACp decays in intensity with time. This is

understandable since the bubble becomes smaller and does not need to generate such a

extensive low pressure perturbation to meet the boundary condition on its surface. A high

pressure wave perturbation in the (d) figures is now propagating ia a clockwise direction

indicating an increase in the time derivative of the source strength, aQ/aTr, and the

acceleration of the source in the downstream direction. On the other hand, the negative

value of the source Q results in a low pressure perturbation ACp,, upstream of the source

and a high pressure perturbation downstream. The decrease of the positive ACp, pressure

field by a low clockwise pressure propagation in the (d) figures, balances well the

appearance of a negative ACpv pressure field by a low counter-clockwise pressure
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propagation, so that the overall negative ACp pressure field in the (c) figures decreases m

an almost isotropic manner.

Figure D.12.20:

This figure corresponds to the final stage of the collapse. The drastic increase in

rate of change of the source strength Q, produces the large over-pressures in the

momentum-related pressure perturbation, ACp,, as seen in the (d) figure. The source

strength Q is still negative and the bubble surface velocity v.6 continues to increase as the

radius of the bubble decreases. The pressure perturbations ACp and ACp, have quite

similar values far from the bubble. The term ACp, is negligible far from the bubble, which

confirms the derivation of equation B. 16 indicating that the pressure perturbation in the far

field of a collapsing source is simply proportional to the second derivative of the bubble

volume (i.e., the rate of change of the source strength). The pressure perturbation at this

time extends far from the bubble. However, close to the bubble surface the velocity-

related pressure perturbation ACp, still influences the ACp perturbation. In the immediate

neighborhood of the bubble the perturbations ACp, and ACp, have opposite distributions.

In this region the high pressure perturbation ACp, downstream of the source dominates

the low pressure ACp,,. We have therefore a positive ACp perturbation downstream of the

source which eventually causes the wedge shape of the bubble to disappear. We note

from the (b) figure that, at this stage, the dynamic boundary condition is still roughly Cp,-

a. The dissolved gas content and surface tension terms are still small effects at this time.

Indeed the bubble collapse velocity is still increasing and is not yet slowed by the non-

condensable gas. The over-pressure perturbations ACp, and ACp continue to increase

very rapidly and are eventually responsible for the collapse noise impulse. This time frame

sequence ends at figure D. 12.20 since the bubble has already rebounded by the next time

step, "c=3.208.
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D.5.3 Pressure distribution over headform

The pressure in the vicinity of the bubble has been computed for times ranging

from initial growth to collapse. The purpose of this paragraph is to identify the influence

of the bubble on the surrounding flow field. By quantifying the distance below which the

influence of the traveling bubble is substantial, we can predict to what extent multiple

bubbles may interact with one another. The pressure perturbation of individual bubbles

has been computed just above the headform surface, at a distance equal to 1/100 of the

headform diameter, D. Presented in figures D.14 and D.15, as a function of time and for

three different cavitation numbers, is the absolute pressure coefficient, Cp, and

perturbation pressure distribution, ACp, parallel to the headform surface. The

dimensionless curvilinear abscissa, s, starts at the nose of the headform (x = r = 0).

Presented in figure D.16 is the perturbation pressure, ACp, in the direction normal to the

surface of the headform, as we travel with the source (at the same axial location as the

source). For all figures three different cavitation numbers a=0.35, o=0.45 and a=0.55 are

shown. Note that the time scale on the figure is different for each cavitation number.

The white areas in the figures D.14 and D.15 represent the leading and trailing

edge extremes of the bubble. Note that the time scale is different for the three different

cavitation numbers. For all three cavitation numbers in figures D. 14 we observe that the

initial pressure distributions, Cp, at time T=2.8 are identical. The minimum pressure

coefficient Cp,=-0.78 is located at about s=0.42. We observe that the influence of the

source counters the initial pressure variations of the flow over the headform (from an

under-pressure Cp=-0.78 to the downstream over-pressure Cp=O), such that it results in a

rather steady pressure value Cp=-a on the surface of the bubble. We clearly see by

observing figures D.14 and D.15 that the source first induces higher pressures in order to

counter the original low pressure, then induces low pressure perturbations in higher

original pressure fields. The very top part of each graphs shows the final high pressure
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Figure D.14.1 Pressure coefficient, Cp, in the direction parallel to the

headform, cr--0.55
The pressure coefficient distribution, Cp, in the direction parallel to the
headform surface is presented as a function of time. The white area represents
the bubble width.
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Figure D.14.2 Pressure coefficient, Cp, in the direction parallel to the

headform, cr--0.45
The pressure coefficient distribution, Cp, in the direction parallel to the

headform surface is presented as a function of time. The white area represents

the bubble width.
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Figure D.14.3 Pressure coefficient, Cp, in the direction parallel to the

headform, c=--0.35
The pressure coefficient distribution, Cp, in the direction parallel to the

headform surface is presented as a function of time. The white area represents

the bubble width.
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Figure D.15.1 Pressure perturbation, ACp, in the direction parallel to the

headform, ;=0.55
The perturbation pressure coefficient distribution, ACp, in the direction parallel

to the headform svrface is presented as a function of time. The white area

represents the bubble width.
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Figure D.15.2 Pressure perturbation, ACp, in the direction parallel to the

headform, 7=0.45
The perturbation pressure coefficient distribution, ACp, in the direction parallel

to the headform surface is presented as a function of time. The white area

represents the bubble width.
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Figure D.15.3 Pressure perturbation, ACp, in the direction parallel to the

headform, a=0.35
The perturbation pressure coefficient distribution, ACp, in the direction parallel

to the headform surface is presented as a function of time. The white area
represents the bubble width.
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Figure D.16.1 Pressure perturbation, ACp, in the direction normal to the
headform, a=0.55
The perturbation pressure coefficient distribution, ACp, in the direction normal
to the headform surface is presented as a function of time. The white area
represents the bubble height.
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Figure D.16.2 Pressure perturbation, ACp, in the direction normal to the

headform, r--0.45
The perturbation pressure coefficient distribution, ACp, in the direction normal

to the headform surface is presented as a function of time. The white area

represents the bubble height.
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Figure D.16.3 Pressure perturbation, ACp, in the direction normal to the

headform, ;--0.35
The perturbation pressure coefficient distribution, ACp, in the direction normal

to the headform surface is presented as a function of time. The white area
represents the bubble height.
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collapse perturbation in the form of a high pressure wave expansion. From these figures

we can also observe some features of the asymmetry of the pressure perturbation upstream

and downstream of the source. Figures D. 15 clearly shows the increasing influence of the

bubble as the cavitation number is reduced. The ratio of the distance of influence to the

bubble size is observed to increase as the bubble gets larger. The high pressure

perturbation generated during the early growth of the bubble increases the low pressures.

One can therefore speculate that this might have an effect on the cavitation event rates.

since the nuclei close to a growing bubble will not experience the low pressures which

would cause them to become unstable. By observing figures D. 16 we see that the

pressure perturbation extends as far in the direction normal to the headform as it does in

the parallel direction. Again we can measure the increase in the "zone of influence" of a

bubble as the cavitation number is decreased.

D.5.4 Program main parameters as a function of time

In this section we present some of the main parameters as a function of time for a

series of cavitation numbers. Among the variables presented here are the average source

strength, Q, in figure D. 17; the bubble cap base radius, r, in figure D. 18; the bubble

sphericity, c, as a function of time in figure D. 19; and three different bubble dimensions in

figure D.20. As in the previous section, all these bubbles were computed with the

following conditions: Ro=100ltm, D=50.8cm, U_0=1 1.5m/s and an initial nucleus position

Xqo=-l.0, rqo--O.01.

At first look, the average source strength curves as a function of time in figure

D. 17 appear similar in shape for all cavitation numbers. However a scaling analysis of all

these curves does show some differences, indicating that the computed bubble dynamics

does not simply scale with cavitation number. It is possible though to estimate crudely the

decay law of source strength versus the cavitation number as Q-o"6-5. As discussed in the
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Figure D.17 Average source strength, Q, as a function of time
Th. computed average source strength, Q, is shown as a function of time for

different cavitation numbers ranging from a=0.40 to a=0.60.
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Figure D.18 Computed bubble base radius as a function of time

The computed bubble base radius is shown as a function of time for different

cavitation numbers ranging from O=0.40 to a=0.60. Notice the difference with

the radii from the solution of the Rayleigh-Plesset equation shown in figure B.1.
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Figure D.19 Bubble sphericity as a function of time

The computed bubble sphericity, F, is shown as a function of time for different

cavitation numbers ranging from 0=0.40 to 7=0.60. Notice the Rayleigh-

Plesset solution at E=1.
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Figure D.20 Bubble dimensions as a function of time

Different bubble dimensions are shown for a cavitation number a=0.50,
indicating the three dimensional shape of the bubble.
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previous section, the value of the source strength is an important parameter for computing

the value of the velocity-related pressure perturbation ACp,. On the other hand, the

variation of the source strength in time, aQ/Ir, will dictate the value of the momentum-

related pressure perturbation, ACp,. Considering the direction downstream of the source,

we can therefore see from figure D. 17 why the ACp, perturbation is first positive, then

negative as Q becomes negative. Similarly, we see why ACp•, first exhibits positive values

up to the point where the source strength, Q, reaches its maximum value, then negative

values up to the point where Q is minimum, then positive again during the final collapse

phase. We also observe that the minimum value of aQ/lar occurs when Q just crosses the

zero value, generating the lowest ACp,, perturbation pressures at that time. The maximum

value of aQ/aYc generating the largest ACp, pressures occurs during the final collapse of

the bubble.

The computed bubble base radius, r, is presented as a function of time in figure

D. 18. It is interesting to compare this set of curves with the spherical Rayleigh-Plesset

radius solution shown in figure B. 1. We see that the traveling source model solution

yields smaller bubble sizes than the Rayleigh-Plesset model. Furthermore the bubbles

collapse much sooner in figure D. 18 than in figure B. 1. The main difference in the shape

of these curves occurs at the time when the bubble has reached its maximum size and

starts to collapse. The collapse phase happens much faster in the traveling source model

than in the spherical model where the bubble takes a long time to increase its momentum

inwards.

The bubble sphericity, e, as a function of time in figure D. 19 shows that bubbles

tend to become more elongated with increasing cavitation numbers. For all cavitation

numbers, the minimum sphericity value of the bubble is found during the growth phase.

After this time the increase in sphericity is not due to the fact that the bubble height, 8,

increases during the collapse phase, but to the fact that the thin leading edge of the wedge-

like bubble disappears, thus leading to a smaller bubble base radius. The single source
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model is not able to model the thinning of this wedge shape in the manner observed in the

experiments. Figure D.20 gives another representation of the three-dimensional shape of

the bubble as a function of time, for the cavitation number o-=.50. In this figure are

shown the bubble height, 8, normal to the headform surface, the bubble base radius, r,

(radius of the bubble at the base of the cap) and an estimated bubble cap radius, r,,, based

on the area of the bubble in the plane of symmetry, S, and defined by rn, = 42_lx. We

see from this figure that the base radius is larger than the two other dimensions indicating

the non-sphericity of the bubble. However, towards the end of the collapse the

evanescence of the leading edge of the bubble reduces this dimension. The bubble height

8 is the smallest of these three dimensions, indicating the flattened-elongated shape of the

bubble. As the bubble collapses, though, we see that rp is almost equal to 8, indicating

that the bubble has almost a hemispherical cap shape (e--l).

D.5.5 Cimparison with the LCC experiments

Using the figures D. 17 through D.20 we are able to compare the computed bubble

size, collapse location and sphericity with the experimental data. The computed maximum

bubble base radius is shown in figure C. 18 along with the experimental data points and the

solution of the Rayleigh-Plesset model. We see that the base radius computed using the

traveling source model has values well within the envelope of the experimental data. The

spherical Rayleigh-Plesset model overshoots the experimental data particularly at the

lower cavitation numbers.

The same trend can be seen for the collapse location, x, in figure C.20. Again we

see that the traveling source model is able to predict the location of collapse very well.

The Rayleigh-Plesset model solution yields larger values of x. which were not observed in

the experiments.

Finally the bubble sphericity, £, is presented in figure C.19. As noted earlier, the

computed sphericity using the traveling source model is larger than the experimental
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values. This model causes the bubble exterior surface to be flattened during the growth

phase, but is not able to elongate the bubble enough in the direction parallel to the

headform surface. Note that the computed and experimental sphericity values presented

here are measured at the time when the bubble reaches its maximum size and that the

numerical program does allow lower sphericity values (down to e=0.73) at earlier times as

can be seen in figure D.19. We do observe a decrease in sphericity with increasing

cavitation numbers as seen in the experimental data. Note that the Rayleigh-Plesset

spherical model yields sphericity values e=l for all conditions.

Analysis of cavitation scaling effects was performed using this numerical method

but is not presented here in great detail since varying of the Weber number, We, Reynolds

number, Re, or ratio of initial radius to headform diameter, ro=R]D, did not significantly

affect the results of the coi .putation. All the computational results presented here

therefore used identical stream velocities, U-=l l.Sm/s, headform diameter, D=50.8cm,

and initial nucleus radius, R=-1001im. L-. some cases though, for certain values of r. and

r.o, important variations were observed .:uring the initial nucleus growth. As stated in

section B.2 some nuclei start to interact with the headform surface before they even reach

pressures sufficiently low to cause them to become unstable. We noticed that these

headform interactions occur mostly in the case of large nucleus to headform size ratios, r.,

and are almost always present in the case of the 5.08cm headform. These nuclei are

sheared and compressed on the headform surface before they become unstable and the

time at which they actually start to grow is thus modified. A critical parameter in this case

appears to be the initial off-axis location, rq, of the source. Further studies are needed in

order to understand the significance of each of these parameters influencing both the initial

nucleus stability criteria and the bubble dynamics.
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E. CONCLUSIONS

In this thesis we have presented some of the results from a series of experiments

carried out in the Large Cavitation Channel (LCC) to investigate the scaling of the

dynamics and acoustics of individual cavitation bubbles in flows around headforms. Many

of the phenomena observed by Ceccio and Brennen (1989, 1991) in experiments on

5.08cm headforms were seen again in the present experiments. Such micro-fluid

mechanical phenomena included the hemispherical shape of individual cavitation bubbles,

the thin film separating them from the surface, the destabilization of that film, the

occasional production of attached streaks in the wake of the bubbles and the complex

processes during the bubble collapse including bubble fission and roll-up into vortices.

Among some of the phenomena that were observed for the first time using such

large headforms were the following. The present experiments yielded substantially lower

cavitation inception numbers for the larger headforms. One result of this was that for the

same air content, velocity and cavitation number, we observed bubble inception on the

smallest headform and fully developed attached cavitation on the largest. Some of the

differences in the appearance of individual bubbles on the three headforms could be

attributed to this large difference in inception numbers since it implied quite different

locations for the critical Cp=-a isobars. The most noticeable effect of scale on the

appearance of cavitation was the increase in bubble-generated attached streaks and

patches for the larger headforms. On the 5.08cm headform a traveling bubble would

occasionally generate two attached streaks or tails at the lateral extremes of the bubble.

These would disappear almost immediately after the bubble collapsed. On the larger

headforms at higher speeds (larger Reynolds numbers) and low cavitation numbers the

streaks began to occur more frequently and extend behind the entire width of the bubble.

The streaks would tend to produce a transient patch of attached cavitation which would

disappear shortly after the bubble collapsed. For low enough cavitation numbers however.
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the patches would persist almost indefinitely and create larger attached cavitation

structures. It is possible that this is the mechanism of formation for most patch and

attached cavitation. Also the simultaneous coexistence and interaction of all the forms of

cavitation structures over the large headforms is remarkable.

Another new observation during the present experiments was the appearance of a

remarkably repeatable "dimple" on the exterior surface of the traveling bubbles on the two

larger headforms. These seem to be more pronounced when the bubble (or headform) is

sufficiently large which suggests that the dimples are influenced by surface tension effects.

Cavitation event rates were also evaluated from the photographs and videotapes

and this data clearly complements the observations of cavitation inception since inception

was based on a chosen event rate. The event rates increase. with increasing headform size

and with decreasing cavitation number in the expected fashion if one assumes a fixed

nuclei concentration. It is also demonstrated that the event rates appear to correspond to

a nuclei population of the order of 0.1 nuclei/cm 3 which is at least an order of magnitude

lower than the expected nuclei population. We are continuing to investigate possible

explanations for this discrepancy including the bubble screening effect first suggested by

Johnson and Hsieh (1966).

The noise generated by individual events and the variations in the noise with the

type of event were also investigated. We first demonstrate that the acoustic impulse

generated by individual traveling bubbles scales quite well with headform size and tunnel

velocity and that this scaling is in accord with that expected from the Rayleigh-Plesset or

Fitzpatrick-Strasberg analysis. As expected, lower cavitation numbers lead to larger

bubbles and larger impulses as long as the bubbles do not interfere with one another or

with larger patch cavities.

As in the previous study by Ceccio and Brennen (1989, 1991) the i--pulses

generated are substantially less than the magrnitude predicted by the Rayleigh-Plesset

analysis. It seems likely that the shearing and fission the bubble experiences prior to
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collapse lead to a less highly focused and less "efficient" noise-producing event. The

present study has added to this information. We have shown that the events which

generate attached "streaks" or "tails" and which represent a greater fraction of the events

at higher Reynolds numbers also produce significantly smaller acoustic impulses. This

correlation was observed by a special cross-correlation of the surface electrode signals and

the hydrophone output. The above observation has clear implications for the scaling of

cavitation noise.

Some additional observations were made for those conditions at which the

cavitation number was small enough for persistent attached patches to form and at which

the void fraction of bubbles in the cavitation region became significant. First it was clear

that when a traveling bubble encountered (or rode over) a patch its dynamics were altered

and its acoustic output substantially diminish. Secondly like Arakeri and

Shanmuganathan (1985) we also observed a significant decrease in the noise when the

void fraction was sufficiently large so that the bubbles covered about 20% of the area in

the cavitation region.

This significant decrease led us to develop a new numerical method which would

allow us -To study the interactions between the traveling bubble and the surrounding flow

field. The single source method has proven to be quite adequate to capture many of the

dynamics involved. Because the bubble is only deformed by the combined effect of the

two sources and the headform ring panels, the kinematic conditions on the bubble surface

and on the entire headform surface are quite accurately satisfied. The method developed

here is valid in the sense that it does not induce significant errors on the zero normal

velocity condition on the entire headform. The dynamic condition on the bubble surface

though can only be satisfied on the average around the circumference of the bubble. The

single source algorithm therefore does require some corrective effects in order for the

evolution of the bubble shape to remain stable in time. We have seen that these

corrections add up to less than 30% of the bubble volume.
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Comparisons with the LCC experiments showed that the bubble shape, size and

collapse location were remarkably accurate. Furthermore it reproduces a number of the

features in the dynamics of the bubble such as the compression of the exterior surface

during the growth phase and the evolution from a cap shape to a wedge shape. We have

observed the dynamics with which the growing nuclei first interacts with the surface of the

headform and generates an over-pressure above its exterior surface. This phenomena is

assumed to be responsible for the appearance of the dimples observed on the photographs

taken in the LCC. Perhaps the most significant value of this method is that it allows to

compute the unsteady pressure field surrounding the bubble as it travels above the

headform surface, and thus allows evaluation of bubble interactions. We have thus been

able to quantify, for different cavitation numbers, the distance below which the bubble

significantly alters the pressure field. The analysis of the pressure perturbation induced by

the source showed us that it is caused by the combined effect of both a velocity-induced

pressure perturbeion and a momentum-change-induced pressure perturbation, both of

which are three dimensional. By modeling these perturbations for different cavitation

numbers we were able to predict the distance below which the source has a significant

influence and thus to predict some bubble interactions. Computations also showed that

the bubble first generates a high pressure perturbation, followed by low pressure and

finally by a very strong over pressure during the final collapse phase. It also showed that

the low pressure generated after the first over-pressure extended farther from the bubble

than the latter and lasted for a longer period of time. As a result, the bubble lifetime is

able to extend much farther downstream than the original low pressure region (Cp<-ar), as

has been observed by Favre et a! (1987).

Further interesting development of this method would include the study of nucleus

stability as it travels along different streamlines and starts to interact with the headform

surface. The way these dynamics influence the event rate prediction still needs to be

addressed. This numerical model can also be extended to include interaction between
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several bubbles. Because of the simplicity inherent in this single source model (as

compared to the boundary element method), the addition of several sources should be very

straightforward. Finally the simple source model could also be improved by adding higher

order terms to the simple source, such as a dipole.

The experiments performed in the LCC proved very useful and allowed for the first

time experiments on large headforms. A number of scaling effect trends have been

observed that are presented here. It would be extremely interesting to perform additional

measurements to accurately study some the trends, particularly the decreasing noise

impulse as the cavitation number is reduced below a certain value. In order to fully

analyze the dynamics of the deformation of the bubble surface, some very high-speed film

(at a rate of at least 10kHz) would be extremely useful. This would also allow comparison

in time of the experimental bubble shape with the numerical solution of the single source

method. It might be possible to refine the sensitivity of the electrode sensing device close

to the location of the bubble collapse in order to trigger such camera.
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APPENDIX

PROGRAM STRUCTURE

The program "3DSOURCE" presented in chapter D is written in C language. It

includes 2100 lines of code and can be run in different modes: either calculating bubble

deformations in time, given an initial nuclei position, or using already existing bubble

calculations to compute pressure field over the headform at a given time (as presented in

figure D. 12 for example). The run time to compute a complete bubble from an initial

nuclei to the final collapse is about 5 hours on a Sun SparcStation 10. In order to run, the

program requires two files. The first file, "SCHIEBE.DAT," includes all information

regarding the headform geometry. The second file, "BUBBLE.YKC," includes

information about the flow and initial conditions. In addition the programs asks the user

for output file names which will include the bubble shape, source position and strength,

and pressure distribution on the surface of the bubble. The gray-level pressure distribution

contour plots (as the ones presented in figures D.12 for example) have been post-

processed from data files generated by the program 3D_SOURCE. These plots have been

created using various commercial software such as Mathematica, PvWave or XImage. In

the following section we present examples of the two files required to run the program

3DSOURCE. The program VISU.C runs on IBM-PC compatible machines with vga

screen capability and produces a graphical animation of the bubble shape from files created

by the 3DSOURCE program.

FILE "SCHIEBE.DAT"

This file consists of the headform name, number of headforms, number of panels

on headform, Np, and the list of dimensionless coordinates, xi , ri , for each panel:

Schiebe Headform
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93
0.000000 0.000000
0.000000 0.003640
0.000000 0.007270
0.000000 0.010920
0.000000 0.014650
0.000000 0.018190
0.000050 0.027600
0.000190 0.037500
0.000470 0.050000
0.000840 0.062500
0.001280 0.075190
0.001740 0.087500
0.002280 0.100000
0.002890 0.112500
0.003820 0.128440
0.004400 0.137500
0.005080 0.14 7300
0.006360 0.163540
0.007370 0.175000
0.008570 0.187500
0.009900 0.200000
0.011360 0.212500
0.012720 0.223060
0.014780 0.237500
0.016780 0.250000
0.019080 0.262800
0.021560 0.275000
0.025440 0.291100
0.027950 0.300000
0.031800 0.311480
0.038160 0.326120
0.044510 0.336880
0.050870 0.345220
0.055200 0.350000
0.060270 0.355000
0.066010 0.360000
0.072380 0.365000
0.079420 0.370000
0.087160 0.375000
0.095660 0.380000
0.104930 0.385000
0.115050 0.390000
0.126050 0.395000
0.138020 0.400000
0.144380 0.402500
0.151020 0.405000
0.157980 0.407500
0.165180 0.410000
0.172720 0.412500
0.180600 0.415000
0.188820 0.417500
0.197420 0.420000
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0.206400 0.422500
0.215800 0.425000
0.225620 0.427500
0.235930 0.430000
0.246750 0.432500
0.258120 0.435000
0.270080 0.437500
0.282680 0.440000
0.295980 0.442500
0.310000 0.445000
0.324840 0.447500
0.340580 0.450000
0.375120 0.455000
0.414610 0.460000
0.460340 0.465000
0.486080 0.467500
0.514180 0.470000
0.545060 0.472500
0.579100 0.475000
0.616940 0.477500
0.659710 0.480000
0.708620 0.482500
0.764850 0.485000
0.830180 0.487500
0.909730 0.490000
1.009820 0.492500
1.138260 0.495000
1.379760 0.498240
1.582220 0.500000
1.800000 0.500000
2.050000 0.500000
2.350000 0.500000
Z699990 0.500000
3.100000 0.500000
3.500000 0.500000
4.000000 0.500000
4.500000 0.500000
5.000000 0.500000
10.000000 0.500000
50.000000 0.500000
100.000000 0.50OOOO

FILE "BUBBLE.YKC"

This file is structured in the following way:

Mode PrintCpFile
Stop_time
a_S_incr-print Time-incr-print
Xqo ro
D Uo Ro o
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where the Mode variable is defined as follows:

Mode= 0 calculate normal bubble growth.

Mode= I calculate bubble at time Stoptime.

Mode= 2 calculate bubble at all time increments Timeincr-print.

Mode= 3 calculate bubble at all bubble radius increments aS-incr.print.

The PrintCpFile variable is defined as follows:

PrintCpFile=O do not create Cp files for the pressure field above the headform.

PrintCpFile=l create Cp file with size scaled the bubble radius.

PrintCpFile=2 create Cp file with a standard fixed scale.

PrintCpFile=3 create files for both cases 1 and 2.

PrintCpFile=4 create file which includes Cp, normal and tangential velocities on

the headform surface.

An example of the file is shown as follows:

2 2
10 .01 .02
-1. 0.01
0.508 11.5 lOOe-6 0.45

PROGRAM "3DSOURCE"

Because of the length of the source code file "3DSOURCE.C", we do not include

a listing in this thesis but rather just present a list of the main array variables used in the

program, which should help the user to understand the structure of the program. The

program itself is written in a number of subroutines which should be fairly easy to

comprehend. It also includes a number of comments.

Coord[0][i]=xp, panel points (on body geometry).

Coord[ 1][i]--'rpi

Coord[2][iI=x, control points(normal velocity = 0).

Coord[3][i]--rd
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Coord[4][i]=sin0  sine of angle of panel with U- (i.e. normal to control point).

Coord[5][i]=cosa

Coord[6][i]=Asi length of panel.

Coord[7][i]=x.i center of rotation of the panels (used to locate the image source).

Coord[8][i]---r.

Coord[9][i]=x1, panel for larger headform (at D=1/100 from the headform surface).

Coord[ l0][i]=r1 j

Result[O][i]=p, panel source strength.

Result[l][i]--Cpc pressure coefficient on control point i.

Result[2 ][i]=vNi normal velocity on control point i.

Result[3][iJ=phi,i potential on control point i.

Result[4 ][i]=vTi tangent velocity on control point i.

Result[5][i]--0,i boundary layer thickness at control point i.

Result[6][i]=k + 0.09 shape parameter(if k less than -0.09 we have detachment of the

Boundary Layer).

Result[7][i]='y transition to turbulence parameter

Result[8][i]=k panel source strength from previous time step "p"

Bubble[O][i]=xi bubble node coordinate.

Bubble[I1][i]--ri bubble point node coordinate.


