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Abstract

The purpose of this study was to investigate and describe the differences

between a one-degree-of-freedom (I-DOF) controller, in which a controller is placed in

a single location in the control loop, and a two-degree-of-freedom (2-DOF) controller,

in which two separate controllers are designed -- one in the feedback loop and the

other as a prefilter in the forward loop. The approach involved summarizing the major

rules governing loop shaping for performance and robustness in the I-DOF case and

then extending the concepts to the 2-DOF case. H2 optimization was utilized to

perform several types of SISO examples and one MIMO example to verify the

concepts. In all cases, the 2-DOF controller exhibited superior tracking performance

over a wide range of plant disturbances and measurement noises compared to the I-

DOF model.

xvii



OPTIMAL CONTROL DESIGN ADVANTAGES
UTILIZING TWO-DEGREE-OF-FREEDOM

CONTROLLERS

I. Introduction

L1 Background

Current linear control system design depends primarily upon the principles of

either cascade or feedback compensation. Employing these methods allows the use of

such design techniques as root locus and other classical design techniques. In any

case, the basic block diagram used in the mathematical model requires that the

compensator be placed in a single location in the control loop, as shown in Figure 1-

l(a). Hence, systems that are modeled by such a block diagram are referred to as one-

degree-of-freedom (I-DOF) systems. The basic control design objective examined in

this thesis is achieving favorable command following performance in the face of plant

disturbances and sensor or measurement noise. In I-DOF systems, the single

compensator is designed to accomplish all of the tasks required for this objective. The

problem typically encountered with this type of system is that there is an inherent

tradeoff between tracking low frequency commands and rejecting high frequency

measurement noise.

A more successful way to deal with this problem is to use a two-degree-of-

1-1



freedom (2-DOF) system, which is shown in Figure 1-1(b). Using this type of setup,

there are now two separate compensators available to accomplish the design

objectives. The idea behind this type of system is that the compensator in the

feedback loop, KI, takes care of the disturbance and measurement noise rejection

objectives, while the prefilter, K2, takes care of command following properties. From

the outset, it is expected that 2-DOF controllers will provide better overall tracking

performance than I-DOF controllers; two of the questions that this thesis proposes to

answer are how much better and under what conditions they are better.

r + !• er- 
U_+• 

+• 
Y

(a)

d

+ n I

K1  Y

(b)
Figure 1-1. (a) I-DOF Control System Block Diagram

(b) 2-DOF Control System Block Diagram
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1.2 Objectives

The primary objective of this thesis is to investigate and quantify the

differences between the I-DOF and 2-DOF design methodologies. This objective is

accomplished by observing the trends in the closed loop frequency and time responses

of both systems as plant disturbances and measurement noises are varied.

1.3 Scope

The approach followed is to first summarize the major rules governing loop

shaping for performance and robustness in the 1-DOF case and then extend these

concepts to the 2-DOF case. Then, several types of examples are examined in order to

illustrate the differences between the two systems. The first set of examples are

single-input-single-output (SISO): a stable, minimum phase system; an unstable,

minimum phase system; a stable, nonminimum phase system; and an unstable,

nonminimum phase system. This first set of SISO examples is explored in detail to

show the basic trends that can be expected from each type of system. The next set of

SISO examples involves designing each system to be a particular system type and

observing its time responses to higher order inputs. The last SISO example examines

the effect of low frequency measurement noise on the tracking performance of both 1-

DOF and 2-DOF systems. Finally, a multiple-input-multiple-output (MIMO) point

design for a missile autopilot system is analyzed to verify the concepts for the MIMO

case.

There are several limitations regarding this thesis that are worth noting here. It

is not the purpose of this thesis to actually perform designs, in either the SISO or
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MIMO case. Representative disturbance and measurement noise sizes are repeated in

all of the examples to show the trends in the frequency response plots and time

responses -- not to provide design data. Also, all of the controllers used in the

examples in this thesis were designed using H2 optimization, which has certain

limitations, such as the two compensators in the 2-DOF system being constrained to

share the same poles. In keeping with thrust of the thesis objectives, however, H 2

optimization represents a consistent design method with which the design

characteristics of 1-DOF and 2-DOF systems can be compared.

1.4 Related Work

In section 1.1 of this thesis, it was stated that 2-DOF controllers are expected

to perform better than 1-DOF controllers. This general conclusion has come about due

to the previous published work of others in this field. While the 2-DOF controllers in

this work are designed simultaneously using H2 optimization, most of the work in this

field has made use of other methods, such as 1-1, optimization, or describes methods of

designing the two compensators separately and parameterizing the class of all

compensators that satisfy some criteria. For references utilizing these techniques, the

reader is referred to [4, 5, 8, 9, 10]. Since the intent of thesis is not to perform actual

designs, but to provide insight into the fundamental differences between 1-DOF and 2-

DOF systems, other optimization techniques were not investigated.

1.5 Thesis Outline

This thesis consists of eight chapters. Chapter I provides general background

information on the potential benefits of the 2-DOF design method and outlines the
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scope of this work.

Chapter 11 covers fundamental design concepts for the I-DOF case, for both

SISO and MIMO cases. Specifically, the attributes which comprise a "good" loop

shape with regard to tracking, disturbance rejection, and measurement noise rejection

are described. System type concepts are also reviewed..

Chapter MI mirrors the previous chapter by extending the ideas of loop shaping

for performance and robustness to the 2-DOF case, emphasizing key differences.

Chapter IV provides an overview of the benefits and limitations of the H2

optimization design method, which is used for all of the examples in this thesis.

The general H2 control problem, as it is applied to the examples in this thesis,

is described in Chapter V. In addition to showing the appropriate transfer function

matrices and state spaces for the 1-DOF and 2-DOF cases, the rationale behind all of

the weight selections used in the examples is provided.

Chapter VI features SISO examples to illustrate the concepts of Chapters H and

M. First, an exhaustive frequency and time response plot analysis is performed for 1)

a stable, minimum phase system; 2) an unstable, minimum phase system; 3) a stable,

nonminimum pb•.• system; and 4) an unstable, nonminimum phase system. Secondly,

the unstable, nonminimum phase example is used in conjunction with altered H2

tracking weights to compare the effects of higher order inputs on different system

types. Finally, the same unstable, nonminimum phase plant is used to illustrate the

effects of low frequency measurement noise on 1-DOF and 2-DOF systems. This last

example represents a prime case where the advantages of utilizing a 2-DOF controller

should be apparent.
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Chapter VII presents a MIMO missile autopilot example and explores the

trends in loop shape and tracking performance as the plant disturbance and

measurement noise are varied.

Chapter VIII provides the overall conclusions for this work, as well as

recommendations for further study.
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II. Fundamental Concepts for 1-DOF Controllers

The purpose of this chapter is to review the basic concepts of feedback control

of linear systems in the I-DOF case (both SISO and MIMO) in order to provide a

basis for comparison to the 2-DOF case. Chapter HI extends these basic concepts to

the 2-DOF case and highlights the key differences. Since the overall objectives in

control system design include command following, disturbance rejection, and

measurement noise rejection, each of these concepts will be examined in detail --

specifically, how the shape of the closed loop system should look in order to achieve

these objectives. In addition, the idea of system type and different types of inputs will

be compared between the two cases. Although the differences between 1-DOF and 2-

DOF systems are best illustrated through the use of examples, this background chapter

lays the groundwork for what should be expected in the examples in the latter

chapters.

2.1 Loop Shaping

One of the most important aspects of control system design is the concept of

"good" loop shaping. In most cases, a control system designer has at least one

objective in mind: to build a set or multiple point tracker, to reject plant disturbances

or measurement noises, or to achieve performance in the face of plant uncertainty.

Often, all of these objectives are important. The shape of a favorable loop for a

closed loop system depends upon what performance criteria are desired. This chapter

is devoted to detailing what characteristics a I-DOF control system must exhibit to
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satisfy each design objective. A more complete treatment of loop shaping is contained

in [7:Ch. 4].

2.1.1 SISO Casue Figure 2-1 shows the standard I-DOF, SISO, unity

feedback, cascade compensation block diagram which is taught in most basic control

system fundamentals courses.

Figure 2-1. I-DOF SISO Control System Block Diagram

where

r= reference command input signal

e = error signal

u = control input signal

d = output disturbance signal

n = sensor noise signal

y = output signal

2-2



Relating the outputs to the inputs in closed loop form yields

(1 1GK )~+ 1d (2.1)Y (TI -+-G-K +KI G

It is appropriate here to define two quantities which will prove important in the design

process. First, the quantity ( + GK (or [I + GK]-' in the NIMO case) is known as

the system's sensitivity. Second, the quantity ( GK ) (or VI + GK]''GK in the

MIMO case) is known as the system's complimentary sensitivity. Denoting the

sensitivity as S and the complimentary sensitivity as T, equation (2.1) can be rewritten

as

y = Tr + Sd -Tn (2.2)

From this equation, the appropriate size of the magnitude of GK (denoted IGK1 ) can

be determined depending on the particular objective desired.

2.LLI Command Following. For good tracking, consider first only

the input r, and the output y. The transfer function from rc to y is simply the

complimentary sensitivity. It is apparent that if 11 + GK1 (and hence IGKI ) is made

"large" over the frequency range where commands are expected, usually low

frequencies, then the transfer function will be close to unity over those frequencies,

and the system will exhibit good tracking characteristics.

2.1.1.2 Disturbance Rejection. Good disturbance rejection is attained

by examining the transfer function from d to y, which is equal to the sensitivity.

Given this, it is clear that when (GKI is large over the frequency where disturbances
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are expected (usually low frequencies), the transfer function becomes very small, and

the disturbance is effectively rejected. Of note is the fact that the requirement that

IGKJ be large applies to both the command following and disturbance rejection

performance objectives.

2.LL3 Sensor or Measurement Noise Rejecdion. Finally, the transfer

function from n to y can be examined in order to achieve sensor noise rejection. From

equation (2.1), this transfer function is equal to the negate of the complimentary

sensitivity. In order to reject measurement noises, this quantity must be made "small"

at frequencies where noises are expected. It is important to note that the output y is

related to the command input r, and the sensor noise input signal n by the same

transfer function, the complimentary sensitivity. In the command following case, IGKI

needs to be made large, and in the sensor noise rejection case, JGKI needs to be made

small, presenting what could be a serious conflict in design objectives. If the

measurement noise has any low frequency content, it will be passed through to the

output since IGKI is large at low frequencies. Measurement noise, however, is

typically a high frequency phenomenon, so as long as there is adequate separation

between the frequency range where most command inputs fall and the range where

measurement noises fall, there is no problem in meeting both design objectives.

2.LL4 Bode Magnitude Plot Analysis. The aforementioned

requirements can be combined together and represented on a Bode magnitude plot that

incorporates all of the objectives by presenting "barriers" that IGKI must avoid. Figure

2-2 represents such a Bode plot. The control system designer then tries to find a

compensator that produces a stable closed loop system whose loop transfer function
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Figure 2-2. Bode Magnitude Plot of a "Good" Loop Transfer Function
for a I-DOF, SISO System

IGRI satisfies the properties shown in Figure 2-2. In addition to a Bode magnitude

plot of the loop transfer function IGKL, it is also beneficial to examine magnitude plots

of the sensitivity function ISI and the complimentary sensitivity function 1I7. These

Bode plots can be judged "good" or "bad" according to the same requirements that

produce good command following, disturbance rejection, and measurement noise

rejection.

In the case of the sensitivity function, there are two barriers that IS1 must avoid

in order to meet all of the objectives. First, since IGKI has high gain at low frequency,

ISI must be sufficiently small at low frequency in order to achieve a small steady state
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error in the step response (other types of inputs will be discussed later in the chapter).

The sensitivity function must also cross the 0 dB line at a high enough frequency that

the system will have a sufficiently fast transient response (the speed of the system's

transient response is proportional to how high the crossover frequency of IGAI is).

Secondly, IjS must not exhibit too much overshoot above the 0 dB line because then

the stability margins begin to deteriorate (stability margins will be discussed more

fully later in this chapter). Combining these ideas yields a Bode magnitude plot like

the one shown in Figure 2-3.

A Bode plot of the complimentary sensitivity function exhibits the same

information contained in the sensitivity plot, but the information is not quite as

explicit. Once again, if IGKI is large at low frequency and small at high frequency,

then the system exhibits good tracking characteristics, disturbance rejection, and noise

dB

Robusbess barrier

Figure 2-3. Bode Magnitude Plot of a "Good" Sensitivity Function
for a s-DOF, SISO Transfer Function
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rejection. On a magnitude plot of 171, the function is unity (0 dB) at low frequency

and "rolls off" at high frequency in order to achieve these characteristics. The real

utility of this plot is in noting the point at which the frequency passes the -3 dB point,

which is known as the system's bandwidth, which will be denoted weo. The bandwidth

is a measure of the frequency range over which the system will track command inputs.

Incidentally, if any measurement noises fall below the system bandwidth, then they

will be passed through to the output y. Additionally, like the sensitivity function, the

complimentary sensitivity function must not exhibit too much oversh, or the stability

margins begin to deteriorate. Thus, there is a robustness, as well as a bandwidth,

barrier on a Bode plot of 171. Figure 2-4 shows a Bode plot of a "good" system

complimentary sensitivity function.

dB

Robustnes barrier

0 ()

Bandwidth barrier for good tracking

Figure 2-4. Bode Magnitude Plot of a "Good" Complimentary Sensitivity Function
for a I -DOF, SISO System
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2.1.2 MIMO Case. Any discussion of system loop shaping would be

incomplete without considering the multivariable case. Problems of this type employ

the same basic principles as in the SISO case, but require some minor modifications.

Figure 2-1 is still applicable to this discussion, with the primary difference being that

all signals are now vector signals, and the plant is a transfer function matrix relating

several inputs to several outputs.

2.1.2.1 Singular Value& The first principle that applies to

multivariable loop shaping is the concept of singular values. In the SISO case, the

"size" of a transfer function is simply its magnitude at the particular frequency of

interest. When the magnitudes are plotted over a range of frequencies, a Bode plot

results. In the MIMO case, however, the plant is described by a transfer function

matrix, whose size cannot be described by so simple a notion. Instead, it is described

in terms of its singular values. The singular values of a given matrix, A, are given by

aY A) (A *A)]2  (2.3)

where

oi (A) = singular values of A

A' = complex conjugate transpose of A

) (AA) = eigenvalues of AA

The minimum singular value of A, denoted a(A), is a measure of the maximum

attenuation of a signal by the transfer function matrix. The maximum singular value,

o(A), is a measure of the maximum amplification of the signal. Hence, if a(A) is
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large, then the matrix A is said to be large; if 6'(A) is small, then A is said to be

small. As frequency changes, each individual transfer function in the transfer matrix

also changes, just as in the SISO case. Therefore, the minimum and maximum

singular values of the transfer function matrix are also functions of frequency and can

be plotted. The resulting plot is called a singular value plot and is the MIMO

equivalent of a Bode plot.

2.1.2.2 MIMO Performance Measures. The concept of singular values

can be used to extend the SISO ideas of command following, disturbance rejection,

and measurement noise rejection to the MIMO case. First of all, the MEMO equation

relating the outputs to the inputs is

y - [I + GK]"GKPr + [I + GK]" d - VI + GKI" GKn (2.4)

Beginning with an analysis of command following performance, the transfer function

from r, to y needs to approach unity over the low frequency range where commands

are expected. This means that for all frequencies below the bandwidth frequency,

I + GK]"GK f I V 0o < c 0) (2.5)

For disturbance rejection, the sensitivity function must be minimized at low frequency,

just as in the SISO case, except now the condition becomes

[V +GK]" -1 0 V CO <O0 (2.6)

Saying that the sensitivity function should be "small" at low frequency, is equivalent

to saying
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[I + GK)'`1 "small" V (0 < 0o (2.7)

Using the singular value identity

(A ) - l(2.8)_(A-)

condition (2.7) becomes

g.[I + GK] "large" V (0 < Co (2.9)

which, in turn, may be simplified to read

El.GK] "large" V Mo < 0o (2.10)

Once again, the measurement noise-to-output transfer function, n to y, is the negate of

the complimentary sensitivity, so for all frequencies above the bandwidth frequency

(where hopefully all of the measurement noises are),

[I + GK]-'GK << 1 V & > coo (2.11)

It can be shown that at high frequency, equation (2.11) holds if

U[GK] "small" V 0 > CDo (2.12)

Putting all of this information together, it follows that a singular value plot of a

"good" MIMO loop shape (a[GK]) can be constructed by satisfying equation (2.10) at

low frequency and equation (2.12) at high frequency, as in Figure 2-5.

2.L2.3 Stability MaWgin& Thus far, little mention has been made

regarding a system's robustness, or ability to maintain closed loop stability in the face

of plant uncertaint, , gain changes, phase changes, or simultaneous gain and phase
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Figure 2-5. Singular Value Plot of a "Good" Loop Transfer Function
for a 1-DOF, MIMO System

changes. To maintain consistency, this thesis will only be concerned with

simultaneous gain and phase changes, which are measured by independent gain and

phase margins. This approach could be considered somewhat conservative, in that the

margins will almost always come out to be less than margins obtained classically or

one-loop-at-a-time. However, in cases where the plant has unstable poles or

nonminimum phase zeros, simultaneous gain and phase changes can sometimes easily

destabilize the system, while gain or phase changes alone could not. The independent

gain margin (IGM) and independent phase margin (IPM) of a system are given by
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IGM- a , 1 J U [I -ao, I +ao]l+ aXo I - ZoJ
(2.13)

1PM = 2si-1!- ±2sn 0

where

o M cmn [I ++L] - max • {[I +L]-') - max as]

(2.14)

min _ max -max-
ao = Ma -L a I[T]

Note that the variable L represents the loop transfer function (GK in the I-DOF case).

From these definitions it is apparent that the shape of the sensitivity and

complimentary sensitivity functions plays a direct role in the determination of stability

margins, in both the SISO and MIMO cases. From Figures 2-3 and 2-4, the extent to

which IS1 and 171 "bubble up" above the 0 dB line indicates the amount that the

margins deteriorate. Thus, the robustness barriers in these two figures ensure that the

closed loop system has reasonable stability margins. Although no singular value plot

is shown for the UMIO sensitivity or complimentary sensitivity functions, the line

representing the maximum singular values will usually exhibit the same sort of "hump"

above the 0 dB line, and equation (2.13) can be used to calculate the independent

margins.
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2.2 System Type

In addition to defining characteristics of a linear system's loop shape, one may

also be interested in quuamtifying its tracking performance to a variety of inputs. One

approach is to approximate the inputs as linear polynomial functions of time. The

steady state error resulting when each type of input is applied to the system reveals

important information about the system. Specifically, for a stable system, the degree

of the polynomial input for which the steady state error is constant is referred to as the

system type. The following discussion is excerpted from [3:125-132].

For the unity feedback, I-DOF setup in Figure 2-1, consider the transfer

function from r, to e, which is equal to the sensitivity function, or, in terms of

Laplace variables

e(s) rs) (2.15)
1 + L(s)

where L(s) is equal to the loop transfer function G(s)K(s). If the reference input is

assumed to be a polynomial of degree k and is represented in the time domain as

r,(t) = (. u1 (t) (2.16)

where u.k(t) represents the unit step function, then the Laplace transform of the input is

written

r(s) = . (2.17)
sk+1

Therefore, if k = 0, then the input is a step of unit amplitude; if k = 1, the input is a
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ramp with unit slope; if k = 2, the input is a parabola with unit second derivative; and

so on.

From the final value theorem, the system steady state error is then defined as

lim 1 lim 1 (2.18)

U S-*0 [1 + L(s)]s I s-+0 [I + L(s)]sk

If the system is type 0, then L has no poles at the origin and setting k equal to zero

(step input) produces the following error:

1 1
e, = I = - 1 (2.19)

1 + L(0) I + K,

where Kp is the position error constant, which is equal to the DC gain of L(s) (for

unity feedback). In other words, if the loop transfer function L has no poles at the

origin, then this error cannot be zero. Likewise, if the system is type I, then L has one

pole at the origin, and if the input is a ramp (k = 1), then the steady state error is

lim I lim 1 1 1e s-o0 [1 + L(s)]s s -+-0 sL(s) K- (2.20)

where K, is the velocity constant. If the system is type 11, L has two poles at the

origin, and if the input is a parabola (k = 2), then the steady state error is

lim 1 lim 1 1eu s--0 [I + L(s)]S 2  $-40 2 L(s) = (2.21)

where K. is the acceleration constant.

It is important to note that although a system of type k produces a constant
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error for inputs whose Laplace transform have a degree of (k + 1), it perfectly tracks

inputs which have a degree of k or lower. If the degree of the input is (k + 2) or

higher, however, the system will produce an infinite steady state error. It is also

important to note that the above results are only valid for the unity feedback case. For

the non-unity feedback case, the error constants must be derived by solving for the

reference command-to-error transfer function from the particular block diagram and

applying the final value theorem as appropriate.
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III. Fundamental Concepts for 2-DOF Controllers

At first it may not seem necessary to provide a separate chapter on the basic

linear system theory behind 2-DOF controllers, since the principles from %hich it is

derived were just described in Chapter 11. However, in keeping with the main thrust

of this thesis, the linear system fundamentals as they apply to 2-DOF systems must be

described in detail so that the expected performance advantages have a sound basis in

theory as well as in practice. This chapter mirrors all of the concepts covered in

Chapter II, except the ideas are extended to the 2-DOF case for comparison and

contrast.

3.1 Loop Shaping

In the 2-DOF case, many of the same principles of loop shaping from the I-

DOF case still apply, but the added flexibility of having two different compensators

manifests itself in several ways.

3.L.1 SISO Case. The basic block diagram for the 2-DOF system is shown in

Figure 3-1. All of the variables are the same as those defined in the 1-DOF setup in

Figure 2-1 except in this figure, the measured output, yi, is shown. Of special note is

the fact that the 2-DOF block diagram is derived from a block diagram manipulation

of the 1-DOF diagram, and the two are equivalent if K, and K2 are equal. If they are

not equal, however, then the equations describing the system become quite different

because K, is in the feedback loop, while K2 is a completely separate compensator,

acting as a prefilter.
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Figure 3-1. 2-DOF SISO Control System Block Diagram

Relating the output to the inputs in equation form yields

y =( 4 ) ( GK,)I (3.1)+K [1G K. d- l
Y =1 +-K, (T+ + GK. l• I

or, more compactly,

y SGK2 rý + Sd -Tn (3.2)

It is immediately apparent that the transfer function from r, to y, which will be

referred to as f, is not equal to the complimentary sensitivity, which is still the

transfer function from n to y. Also, the sensitivity and complimentary sensitivity

functions depend only upon K1 , not K2. The implications of these observations will

become clear as each of the design objectives is explored in detail.
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3.1.1.1 DLsurbance Rejection. To simplify the analysis, the objectives

dealing with the K, compensator will be discussed first. As in the I-DOF case, good

disturbance rejection is attained by examining the d to y transfer function, which is the

sensitivity function. In order to reject a disturbance, the magnitude of GK1 , denoted

IGK1I, must be sufficiently large at low frequency, where disturbances are expected.

3.1.L2 Sensor or Measurement Noise Rejection. Measurement noise

rejection is dependent upon the n to y transfer function, which is equal to the negate of

the complimentary sensitivity function, as in the SISO case. In order to reject

measurement noises, IGK1I must be sufficiently small at high frequency, where noises

are expected.

3.1.1.3 Command Following. Thus far, it has been shown that in

order to attain good disturbance rejection and measurement noise rejection, restrictions

are placed on the size of IGKIJ which are essentially the same as those for the 1-DOF

case. However, favorable tracking of commands is attained through a combination of

requirements on both (GKIJ and IGK 2I, as evidenced by the T transfer function, which

is the product of the sensitivity function, S, and GK2. This transfer function must

approach unity over the frequency range where commands are expected (low

frequencies). It is this characteristic of the 2-DOF model that sets it apart from the 1-

DOF model.

When both IGKIJ and IGK21 are very large and nearly equal to each other, the

system will track commands that are in the frequency range of interest. However, it is

not necessary for IGKIJ to be large at low frequency in order to achieve good tracking
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-- it only needs to be large enough to reject the specific disturbance expected. IGK 21

can be adjusted to have its magnitude be whatever it needs to be to make f equal to

unity.

3.1.1.4 Bode Magnitude Plot Analysis. The requirements just

mentioned present some interesting possibilities in the way of Bode plots. Although

there are countless combinations of different command, disturbance, and measurement

noise sizes, the two cases presented here are low frequency commands with: 1)

moderate-sized high frequency noise with a large low frequency disturbance; and 2)

moderate-sized high frequency noise with a small low frequency disturbance.

The plant in all cases is assumed to be stable and minimum phase.

In the first case, the large disturbance is the driving factor in determining the

shape of the loop transfer functions. At low frequency, IGKII must be large in order to

reject the disturbance, while at high frequency, the measurement noise is large enough

to drive down the size of JGKIJ. Meanwhile, IGK21 matches JGKIJ almost identically at

low frequency, but when IGK1I starts to roll off after it passes the bandwidth

frequency, 0GK21 is able to level out at the 0 dB line in order to maintain near-perfect

tracking out to a much higher frequency. The trends just described for this first case

are shown in Figure 3-2.

In the second case, the disturbance is not so large anymore, but the size of the

measurement noise is still moderately large, so the measurement noise exerts the most

influence on the shape of the loop transfer functions. The overall effect of a dominant

measurement noise is to hold down IGKJI as much as possible over all frequencies,
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Figure 3-2. Bode Magnitude Plot of "Good" Loop Transfer Functions
for a 2-DOF, SISO System (Large Disturbance Case)

especially high frequencies. IGKIJ will still be sufficiently large at low frequency to

reject the disturbance, however. IGK2I accommodates this situation by remaining at or

around 0 dB over as wide a frequency range as possible, thereby keeping f equal to

unity and achieving good tracking. Figure 3-3 shows the trends just described for the

second case.

Another interesting point regarding the 2-DOF setup is the shape of the

sensitivity function. Recall from Figure 2-3 that in the I-DOF case there were two

separate barriers on the sensitivity function Bode plot which corresponded to a steady

state error and speed of response boundary and a robustness boundary. As previously

3-5



dB

0___ IGK21-

- /-

S[~GKII

Low frequency barrier for good High frequency barrier for
disturbance rejection IGKI sensor noise rejection IGK1I

Figure 3-3. Bode Magnitude Plot of "Good" Loop Transfer Functions
for a 2-DOF, SISO System (Small Disturbance Case)

mentioned, there is no low frequency barrier which corresponds to good command

following in a 2-DOF system. Instead, IGK1I must only be large enough to reject the

appropriate size disturbance encountered. In fact, a closer examination of the 2-DOF

sensitivity term, (1 l reveals that if the quantity GK1 takes on a very small (or

negative) value, then (S1 could take on values ranging between 0 and w (or -oo to 00

dB). Most practical or realizable plants and control systems would never utilize many

of these ISI values due to poor stability margins, but if this were not a consideration,

then those values would theoretically be possible. Therefore, the only consideration

remaining for the 2-DOF sensitivity function Bode plot is the robustness barrier on the
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maximum magnitude of IS[. The 2-DOF IS1 plot resembles the 1-DOF ISI plot in that

the curve eventually steadies out at the 0 dB line, but it does not necessarily approach

the 0 dB line from low frequency. Figure 3-4 shows the results of the foregoing

analysis of the 2-DOF sensitivity function.

In a similar fashion, an examination of the 2-DOF complimentary sensitivity

function, 1 GK ], reveals that if the quantity GK1 takes on very small (or

negative) values, then 171 could also take on values ranging between 0 and oo (or -oo

and oo dB). Once again, deteriorating stability margins are the main consideration in

the shape of the 2-DOF complimentary sensitivity function Bode magnitude plot. It

should be noted that even in the 2-DOF setup, disturbance rejection and measurement

dB

Roi ustness barrier

0

Possible Loop Shapes of ISI
(depending on d)

Figure 3-4. Bode Magnitude Plot of Possible "Good" Sensitivity Functions
for a 2-DOF, SISO System
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noise rejection are competing objectives. The plot will still maintain the general shape

of the I-DOF complimentary sensitivity plot and roll off at some bandwidth cutoff

frequency, but the overall magnitude at low frequency is quite variable in the 2-DOF

case. The resulting 2-DOF complimentary sensitivity function from this analysis is

shown in Figure 3-5.

Another idea to reiterate here is the fact that the complimentary sensitivity

function does not provide information about the frequency range over which a 2-DOF

system will track commands. The 2-DOF equivalent to the 1-DOF input-to-output

transfer function is SGK2. This transfer function needs to be equal to unity over as

wide a frequency range as possible to provide favorable tracking. Since GK1 and GK2

ldB Robustness barrier

0

Possible Loop Shapes of ITl
(depending on d and n)

Figure 3-5. Bode Magnitude Plot of Possible "Good" Complimentary Sensitivity
Functions for a 2-DOF, SISO System
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are independent, a decrease in the size of one can be offset by an increase in the size

of the other in order to maintain tracking performance. This is the essence of having

two degrees of freedom. Therefore, a "good" Bode magnitude plot of ISGK21 is

identical to the one shown for the 1-DOF case in Figure 2-4.

3.1.2 MIMO Case. The extension of the 2-DOF SISO loop shaping idcas to

the MIMO case is relatively straightforward, making use of singular values to define

the sizes of transfer function matrices. Starting with the overall r, to y transfer

function, equation (3.1) becomes

y - [I + GK]"GKI2rr + [V + GKI]' d - [I + GK]-'1GK, n (3.3)

Equation (3.3) can also be written in terms of S, T, and T, as in equation (3.2). Good

disturbance rejection requires that the sensitivity function be sufficiently small at low

frequency to accommodate any disturbances expected, which can be expressed as

g_.GK,] "sufficiently large" V CD < oDo (3.4)

Conversely, good measurement noise rejection requires that 17T be small at high

frequency, which can be written as

5 [GKJ "sufficiently small" V C( > Co0  (3.5)

As far as MIMO command following performance goes, once again the output

is dependent upon the behavior of both KI and K2. In the case where the disturbance
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is relatively large, then a_[GKJ] will be large at low frequency in order to reject the

disturbance, and a[GK2] will also be large at low frequency to match 2[GK,]. At

high frequency, however, -[GK,] must roll off in order to reject the appropriate

measurement noise. Tracking is maintained by _o[GK 2] staying at 0 dP out to a

higher frequency. In the case where the disturbance is relatively small and the

measurement noise is relatively large, then F[GK1J may well be below 0 dB over all

frequencies. In that case, a [GK2] must remain at 0 dB from low frequency out to as

high a frequency as possible to provide satisfactory tracking requirements.

The MIMO sensitivity and complimentary sensitivity functions essentially

follow the same rules as they do in the SISO case. Both singular value plots have

only robustness barriers, with no barriers regarding speed of response, steady state

error, or bandwidth. The maximum singular values of both ISI and 171 must stay below

the robustness barrier in order for the system to maintain adequate stability margins.

There are no figures shown for the 2-DOF MIMO loop shapes, but it is hoped that the

foregoing discussion provides adequate insight

Overall, there are several marked differences between the loop shaping

characteristics of a I-DOF and a 2-DOF system, the key one being in the tracking

requirements. In the 1-DOF system, the tracking and disturbance rejection

requirements dictate that IGKI be large at low frequency, while it must be small at high

frequency in order to reject any measurement noise. These two competing

requirements limit how well a 1-DOF system can track because IGK1 can only have a
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large magnitude out to a certain frequency before it must start to roll off. In the 2-

DOF case, there still exists the same conflict between disturbance and measurement

noise rejection requirements (this time with IGKIJ ) but the system's tracking ability is

not exclusively tied to IGK1 I. IGK2I provides the needed flexibility in the system by

being free to be whatever magnitude it needs to be in order to follow commands out to

a much higher frequency. In fact, the example presented in Chapter VI of this thesis

puts that added flexibility to the test by introducing measurement noise falling in the

same low frequency range that commands and plant disturbances do. The 2-DOF

system, therefore, can be considered to have two main parts: an "inner loop", which

takes care of noise and robustness requirements, and an "outer loop" (even though it is

not really a loop at all), which takes care of tracking requirements. These conclusions

apply to both the SISO and MIMO cases, as appropriate.

3.2 System Type

For a 2-DOF system, or any non-unity feedback system for that matter, the

simple rules governing system type and the computation of the error constants in the

I-DOF unity feedback case do not apply. The basic principle is the same, however.

Once again, from the basic 2-DOF block diagram from Figure 3-1, the analysis begins

with the error signal re(s) - y(s). In the I-DOF case, the transfer function between this

signal and the reference command was equal to the sensitivity function, which made

the subsequent calculations more straightforward. In the 2-DOF case, however, there

is no signal directly on the block diagram which represents the quantity re(s) - y(s), so

one must be created. Figure 3-6 is a modified version of Figure 3-1 that shows the
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error signal explicitly.

r+ UK2 IF+uqC y_

Figure 3-6. 2-DOF Block Diagram Showing Error Signal

From this modified block diagram, the error signal e can be shown to be

e(s) = r,(s) - y(s) = r,(s) - ( _)rc(s) (3.6)

or

e(s) = [1 - F(s)] rý(s) (3.7)

where F(s) is defined as

F(s) - GK2 (3.8)
I + GK,

Since F(s) contains both K, and K2, it is clear that the error-to-reference command

transfer function will not have a clean, clear-cut solution like the I-DOF case.
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Instead, the expression for the steady state error becomes

lim [1 - F(s)] lim [1 - F(s)] (3.9)e s--.ýO $ It~ S s->O $t

Once again, the system type is the smallest value of k at which the steady state

error is a nonzero constant (not infinity). The input tracking characteristics for the 2-

DOF system are also the same as the I-DOF case. If a system is type 0 and the input

is a step, then a constant steady state error will result. If the system is type I, then it

will track a step perfectly and produce a constant steady state to a ramp input. If the

system is type HI, then it will track a step and a ramp perfectly and produce a constant

steady state error to a parabolic input. The same logic applies to systems of greater

type and inputs modeled by higher order polynomials. The primary difference

between I-DOF and 2-DOF systems with regard to system type is that in the 2-DOF

case, one cannot necessarily attribute the number of poles or zeros at the origin in

either GK1 or GK2 to the determination of the system type, as in the 1-DOF case.
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IV. H2 Optimization

In comparing and contrasting the single- and two-degree-of-freedom design

methodologies, it is appropriate to use one design technique that is consistent between

the two. H2 optimization represents a relatively straightforward design technique

which, because it is an optimization procedure, produces the "best" compensator for

the particular model specified. It is particularly appropriate here, as the system is

modeled with noises acting on it. It also allows for direct comparison between the

two methodologies under varying input parameters. The following summary of H2

optimization was largely taken from [6] and [2], which should be consulted for a more

detailed description of this method.

The objective of H2 optimization is to produce a compensator which minimizes

the 2-norm of a transfer function or transfer function matrix from exogenous inputs

(commands, disturbances, or measurement noises) to controlled outputs. The standard

H 2 design setup is shown in the diagram in Figure 4-1, with w representing the

exogenous inputs (assumed to be zero mean, unit intensity white Gaussian noises) and

z representing the controlled outputs. P is the plant, which includes all system

dynamics and weights on the exogenous inputs and controlled outputs. K is the

compensator, u is the controlled input to the plant, and y is the measured plant outputs.

P can be partitioned in such a way that

(4.1)
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U yfK
Figure 4-1. H2 Design Diagram

The closed-loop transfer function T. is the transfer function from w to z and can be

written as a linear fractional transformation (LFT) of P and K from Figure 4-1 as

T,, = P,, + PmK(I - PSK)Y'PW (4.2)

The H2 design procedure involves designing a stabilizing compensator K that

minimizes the 2-norm of z, which is equivalent to minimizing the 2-norm of T3,, given

by

inf n1n z12 = ITI (43)o

K adm K adm

where

'(( 1i~ ~ A-) (4.4)

II 2i= ( ,r [T*o) T•,o)] do(.
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Since the H2 algorithms utilized in this thesis employ state space methods, it is

first necessary to represent the plant differential equations in state space form. The

state space representation of the nine matrices that comprise the P matrix are

it = Ax + Bw + B u (4.5a)

z = C x + Dw + D, u (4.5b)

y =Cx +IDw +D u (4.5c)

which can be written in transfer matrix form as

SCz Dw D=. (4.6)

c, D ,w,~

There are several assumptions regarding these nine matrices which are inherent

to the well-posedness and solvability of the H2 control problem:

(i) Dz, = 0

(ii) Dy, = 0

(iii) (A, B.) stabilizable and (C. A) detectable

(iv) DZUTDZU and Dy.DYWT full rank

(v) A jcoI B ] has full column rank for all wC S D im

(vi) joIB 1  has full row rank for all (o
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Condition (i) arises due to the fact that the transfer function 2-norm is also

proportional to the area under the singular value plot of T,, which must be finite. If

D, is nonzero, then the closed loop transfer function will be infinite. Condition (ii),

on Dy., is not necessary but facilitates an easier development of a solution. Condition

(iii) is necessary for stabilizing compensators to exist. Condition (iv) is required so

that there is a penalty on control usage and so that there are no perfect measurements;

otherwise, a singular control problem results. Conditions (v) and (vi) ensure the

existence of stabilizing solutions to the algebraic Riccati equations that appear in the

problem solution. Condition (iv) can be strengthened to DZHDZ = I and DD," =

in order to simplify the final form of the equations by scaling u and y. A detailed

explanation of this scaling process is contained in [7:70-71]. The H2 solution that

follows assumes that u and y have been properly scaled; scaled quantities will be

shown with a tilde (-).

If suboptimal compensators are considered, the family of all compensators that

satisfy ITs,|2 < a., with a. Z N, is given by the LFT of J(s) and the constrained

freedom parameter Q(s), shown in Figure 4-2. In the suboptimal case, the constraints

on Q(s) are Q e RH2 and IQ12 2a2 - a0. RH2 is the space of all stable, strictly

proper transfer functions with real, rational coefficients. For the case where Q(s) is

equal to zero, the transfer function J.Y(s) is equal to the optimal H2 compensator K20,;

a nonzero Q(s) parameter produces suboptimal compensators. The transfer function

J(s) is given by
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K

v 7r

Figure 4-2. (J, Q) Parameterization Diagram for H2 Suboptimal Compensator

Ae, K1 0

where

A~ iii•i -A K i , B~~:!••iiKi•• :,•

-T - Ký = (4.8)Ký =B.X2 +DG '5 1i (

with the scaled matrices given by

-BS Cs -SyC77
1),, =D!i:!•! ,? •,ii(4' 9)

S. and S, are internal scalings such that

SE S J =D.D. s;3 (s;T =D D-¢ T (4.10)
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The X2 and Y., matrices are the real, unique, symmetric positive semidefinite solutions

to the algebraic Riccati equations

-- -r-" -T qfXcee .

(A - ED.c)rx2 + X 2(A B.DC,) Q X 2B1BUX 2 + ,r(: =0 (4.11)

and

(A '4f ')T ,f' rw-Aw (4.12)(A - B,, IýC) Y2 + Y2 (A -B,,lr•) - Y2 y2C Y + B.f,,•r =0(.2

where

/5( r(4.13)

and

B . (I - D1ý:15j ) (4.14)

The resulting reverse scaled optimal compensator state space is given by

K2 = [W I-/ ] (4.15)

where

K1 = KfS (4.16a)

= S -'K, (4.16b)

The final item of interest regarding H2 optimization centers around the order of

the compensators produced by the algorithms. In general, the H2 algorithm produces a

compensator that has the same order as the plant, plus the number of states contained

in the dynamic weights used to shape the closed loop system (weight shapes will be

discussed in Chapter V). It should be noted that in the 2-DOF case, the H2 algorithm
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produces two compensators that share the same A matrix and thus, the same poles (the

zeros of each may be different, however). The fact that K1 and K 2 must share the

same poles could be considered a limitation to utilizing the method of designing both

compensators simultaneously. However, all of the examples in this thesis make use of

the H2 method of designing both compensators simultaneously because this method

still illustrates the advantages of using 2-DOF controllers when tracking is one of the

primary control objectives. Furthermore, under the assumption that the exogenous

inputs are white Gaussian noise and the output energy is to be minimized, this

controller order is optimal.
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V. General Problem Formulation

The purpose of this chapter is to present the setup of the general H2 problem

for the 1-DOF and 2-DOF cases, along with all of the assumptions inherent to the

problem and the rationale for selecting the dynamic weight shapes for the H2

optimization algorithm. The analysis begins with a state space description of each

system, which provides all of the variables necessary for the P matrix. Since H2

optimization minimizes the 2-norm of Ti., or the energy of selected outputs to white

noise inputs, the outputs chosen for the z vector are not arbitrary. These outputs must

be representative of the "errors" to be minimized. In general, dynamic weights reflect

the desired frequency range of an input that gets fed through to the corresponding

output. All of these factors will be discussed in this chapter, and the dynamic weights

chosen to illustrate design trends in the latter examples will be shown.

5.1 1-DOF Case

The I-DOF block diagram used for the H2 formulation is shown in Figure 5-1.

For this figure, Wd is the disturbance signal and %,, is the measurement noise signal.

The governing control law for H2 optimization is u = Ky, with all of the transfer

functions relating the outputs to the inputs being derived from this law. The most

I )ticeable difference between Figure 5-1 and Figure 2-1 is the presence of weighting

blocks in the block diagram of Figure 5-1. As mentioned in the introduction to this

chapter, the weights help in the design of a compensator which produces a system

with a closed loop shape that suits the desires of the control system designer. It is
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S+ W5 Wn

Figure 5-1. I-DOF H2 Optimization Block Diagram

easy to see how the different weights affect different aspects of the system by

examining the transfer function matrix between the outputs (ideal output (z1), control

usage (z2), and tracking error (z3)) and the exogenous inputs (commands (r,),

disturbances (wd), and measurement noises (w.)). It is given by

[z, [WIT W S W4  - W, TW3 1 [r]
z2 = W2KS -W2KSW4 -W2KSW, ,Wd (5.)
Z,] [w3s -w3Sw, W3 TW, Jw..

Incidentally, minimizing the transfer function between r, and z2 is not a control

objective, since it is desired for it to be unity for favorable tracking. However, z, is

included in the H 2 setup so that the Wd to z, and w, to z, transfer functions can be

minimized.

The parameters of interest in most control system designs are the sensitivity, S,
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and the complimentary sensitivity, T. From the given transfer function matrix, S is

affected by WV, W3, and W4, while T is affected by W1 , W3, and W5. At first glance, it

may seem as if these weights would conflict with each other if they were set to

different values, and as it turns out, this is true. However, there is a logical method

for choosing the weights such that their values make intuitive sense and the resulting

compensator produces a good closed loop shape.

The state space representation of Figure 5-1 provides some insight into the

weight selection rationale. The nine matrices comprising the P matrix are given by

A, 0 0 0 0 0

BCs A, 0 0 BC 4  0

0 0 A2 0 0 0
-B 3 Cs 0 0 A3 -B3C4 0 (5.2a)

0 0 0 0 A 4  0

0 0 0 0 0 As

0 0 0 B

o , D4  0 BI,,

0 0 0 B2 (5.2b)B,, = B3 B•DO B = 5.b
-B 3Dg

0 B4 0 0

0 0 B5  0

[D 1C 5 CC 0 0 DI C 4 0O

Cý= 0 0q o20
-DDCS 0 0 C3  -D3 C4 0

C = [-C 00 0 -C4  -C5]
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0 DID4 01
DIv -O 0 0 D,=

D13 -D 3 D4 0 J-D 3D, (5.2d)

DYW=[I -D)4 -51)] v D= [-D8]

The state vector is given by

xý plant states
X1 controlled output weight states

x2 control usage weight states

X3 tracking weight states

X4 disturbance weight states

measurement noise weight states

If the assumptions discussed in Chapter IV regarding H2 optimization are applied to

the above state space, then certain characteristics of some of the weights can be

determined, such as whether they are strictly proper or just proper. To begin with, D.,

must equal zero, so all of the terms in that matrix must be set to zero, including D3

and D1 and/or D4. Since Dy, is equal to zero, then D. = 0, which means that the plant

Tmust be strictly proper. Since D, D., must have full rank, then D2 must be nonzero

(actually D 2TD2 must be full rank). The fact that DyDY T must have full rank

indicates that D4 and D3 may or may not be equal to zero. For all of the examples

illustrated in this thesis, the following assumptions will be made regarding the

dynamic weights:

(i) W, is a constant (DI nonzero, with no x, states and thus no A,, B,, or C,)
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(ii) W2 is a constant (D2 nonzero, with no x2 states and thus no A2, B2, or C2)

(iii) W3 is represented by a strictly proper transfer function (D3 = 0)

(iv) W4 is represented by a strictly proper transfer function (D4 = 0)

(v) W5 is represented by a (nonstrictly) proper transfer function (D5 nonzero)

If these assumptions are applied to the state space given in the equations of (5.2), the

new state space becomes

As 0 0 0 0 0 0 BS

-B3C8 A3 -B3C4 0 B3 00 0 0A- B,, - B -

0 0 A 4  0 0 B4 0 0

0 0 0 AS 0 05 0

[D, C, 0 DC 4 0 [0001 [01 (5.3)c0 oo 0. - o000 P
0 C3 00] 1000. [01

C; = [-C, 0 -C 4 -C,] D).,= [1 0 -D,] D -[0]

Whenever a weight is assigned to be a constant, as in the case of W, and W2, only the

D term remains, and that state can be removed from the original state space. Also, W2

is a measure of the amount of control power used in the system, and it is given the

symbol p (a diagonal matrix) to show that it can be "tuned" to speed up or slow down the

system.

5.2 2-DOF Case

The 2-DOF block diagram used in the H2 optimization algorithm is shown in

5-5



Figure 5-2. All of the weights are located in the same places as the I -DOF system,

although block diagram interpretation yields a slightly different transfer function

matrix relating the z outputs to the exogenous inputs. It is given by

[zl ' WSGK2  WISW4 -WITW5 Fr
z2  W 2[I- KSGIK2 -W2KSW4 -W2KSW5  Wd (5.4)
1  [3 WJ[J - SGK2] -W3SW4  W3TW ]W3

Once again the sensitivity and complimentary sensitivity functions are affected by the

same weights as in the I-DOF case. Thus, the same approach to weight selection will

be used in this case. The primary difference between the I-DOF and 2-DOF cases is

the implementation of the control law u = Ky. In the I-DOF case, there was a single

compensator, K, and only one control input, y. For the 2-DOF system, the control law

must be modified to read

Z2 Wd Z1

Figure 5-2. 2-DOF 112 Optimization Block Diagram
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Ky [-K, K 2 4](55

As discussed in Chapter III, the addition of the second compensator changes the input-

output relationships and accounts for the differences between the 1-DOF and 2-DOF

transfer function matrices in (5.1) and (5.4).

The 2-DOF state space representation of Figure 5-2 is actually quite similar to

the I-DOF state space, the only differences being in the matrices relating to the

control input, y (CY, D,,, and D,.). With all of the assumptions regarding H 2

optimization taken into account, the final 2-DOF state space is given by

A, 0 0 0 0 0 0 Bs

-B3Cg A. -B3C4 0 B3 00 0 0A 3i B,= B,=

0 0 A4 0 0 B4 0 0

0 0 0 A5 0 0 B5  0

C, 0 0 0 D,, - 0 001 D.r = p (5.6)

C, [3 0 0 0 0 0 0]

Since there is no substantial change in the 2-DOF state space regarding the D terms of

the dynamic weights, all of the assumptions regarding whether a weight is strictly

proper, proper, or equal to a constant (assumptions (i) through (v) in Section 5.1) are

still applicable from the 1-DOF case.
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5.3 Weight Selection

As far as choosing actual values for the weights, there are basically two

schools of thought. First, a weight can be viewed as a filter through which only the

frequencies of interest are allowed to pass. This logic is particularly applicable to

noise weights. Since all of the disturbances and measurement noises in H2

optimization are assumed to be white Gaussian noises, it makes sense to only pass

through certain frequency ranges of interest to the system. Second', a weight can be

viewed as a penalty on a signal over a particular frequency range. In other words, the

weight is chosen in such a way that its magnitude plot looks like the inverse of what

the designer wants the signa! of interest to look like. It is possible for these two

weight selection approaches to conflict with each other, but in general, they are not

mutually exclusive. The weights chosen in this section are typical of many aircraft

control problems and will be used in all of the examples in this thesis.

Beginning with the weight selections for the disturbance, it is logical to utilize

the first method described above. If the system is assumed to be that of a typical

aircraft, a disturbance would be a low frequency event with varying magnitude. With

the noise signal itself assumed to be white noise, the disturbance weight will be

approximated by a low pass filter with a pole at s = -2. For comparison purposes, the

magnitudes of this weight were chosen somewhat arbitrarily, corresponding to a small,

medium, and large disturbance. The disturbance weights are given by

T4 _ 0.0002, 20 200 (5.7)s +2 s 7+2 's+ 2

and their Bode magnitude plots are shown in Figure 5-3. For clarity, however, the
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Figure S-3. Bode Magnitude Plot of Disturbance Weights

weights will be described on example plots by their DC gain, which are -80 dB, 20

dB, and 40 dB, respectively.

The measurement noise weights utilize the same logic described for the

disturbance weights, only in this case, measurement noise is a high frequency

phenomenon with varying magnitude. The measurement noise weights will be

approximated by a high pass filter with a zero at -0.01 and a pole at -10. The

magnitudes of this weight were chosen to reflect what would be considered a "small"

measurement noise level versus a "large" noise level. The measurement noise weights

are plotted in Figure 5-4 and are given by
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Figure S-4. Bode Magnitude Plot of Measurement Noise Weights

W5 - 0.001 (s + 0.01) 20(s +0.01) (5.8)S +10 S +10

On example plots, these two noise weights will be referred to as either a "small" noise

or "large" noise to reflect the magnitude of the noise weight.

The only remaining dynamic weight for this system is W3, the tracking weight.

This weight is of the type that should be chosen r a penalty on the signal over the

frequency range of interest. As the name implies, the tracking weight penalizes

deviations of the output signal, y, from the reference command, r,. Therefore, in order

to apply this penalty over the relevant frequency range, the weight should be shaped

like a low pass filter with a low frequency pole. There is another factor to consider,
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however. If the tracking weight is set to be a low pass filter (a constant gain divided

by a single pole near the origin), then the weight actually resembles an integrator over

the frequency range where commands come in. If the tracking weight resembles an

integrator, then the actual error signal will reflect the inverse of the integrator and the

system will exhibit type I behavior. Likewise, if the tracking weight is set to be a low

pass filter with two poles near the origin, then the system will exhibit type II behavior,

and so on. This system type behavior will be examined more closely in an example in

a later chapter. Since most of the illustrative examples in the coming chapters concern

themselves only with step responses, the tracking weight used in those examples is

W3 10 (5.9)

S +0.01

Its Bode plot is shown in Figure 5-5.

70
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Figure 5-5. Bode Magnitude Plot of Tracking Weight
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As mentioned previously, it is not a control objective to minimize the 2-norm

of the r, to y transfer function. Thus, it would not make sense to place a weight on

W1. For simplicity, W, was chosen to be 1.0. Coittrol usage is often a limiting factor

in aircraft control problems, since actuators and control surfaces have limited range

and speed. Since the primary purpose of this thesis is to show trends in the speed and

robustness of 1-DOF and 2-DOF systems as disturbances and measurement noises are

varied, the control usage weight was set to a value which allows these parameter

variations to be seen easily -- W2 = 0.001.

It also bears mentioning here that the weight choices described previously in

this section are applicable to the multivariable case. The primary difference, of

course, is that in the MIMO case, the weights represent transfer function matrices

instead of individual transfer functions. While it is true that it is often desirable to

tailor the weights to each individual element in a vector signal, it is not necessary for

observing trends. For the purposes of this thesis, the SISO weights will be multiplied

by an appropriate sized identity matrix in order to come up with a MIMO weight.

5.4 Evaluadon Model

Once all of the weights have been selected, an H2 algorithm is utilized to

calculate the optimal compensator K2o, as described in Chapter 4. Since the

controller is designed while taking all of the weights into consideration, it would

follow that if a simulation were set up that incorporated disturbances and measurement

noises of intensity and frequency similar to the weights used in the design of the

compensator, then the system with the newly designed controller would perform quite
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well. For the purposes of this thesis, however, it is of greater interest to observe the

effects of weight changes on both I-DOF and 2-DOF systems using a model that

purely tests the performance of the controller.

The evaluation model used throughout this thesis is simply an unweighted

version of the basic feedback setup with no noises or "errors" included. The block

diagrams of the evaluation models for the I-DOF and 2-DOF cases are shown in

Figures 5-6 and 5-7, respectively. These may not be "real world" simulation models

with accurate noises, but they do provide a consistent basis for comparison of different

controllers. The purpose of these evaluation models is not to evaluate the "goodness"

of an H2 design; rather, it is to examine the basic differences between I -DOF and 2-

DOF controllers.

The next two chapters of this thesis illustrate the concepts described thus far

through examples that highlight the differences between the 1-DOF and 2-DOF design

methodologies. All of the weights given in this chapter will be used in each problem

to maintain consistency for comparison purposes.

Figure 5-6. I-DOF Evaluation Model Block Diagram

5-13



K1 -K2

Figure 5-7. 2-DOF Evaluation Model Block Diagram
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VI. SISO Examples

To best illustrate the differences between I-DOF and 2-DOF control systems, it

is perhaps best to explore a simple example that is representative of the types of

problems encountered in control system design. In this chapter, the plant consists of a

transfer function with one zero and two poles. This example can be manipulated to

produce a stable, minimum phase system, an unstable, minimum phase system, a

stable, nonminimum phase system, and an unstable, nonminimum phase system. The

transfer functions used in the examples are as follows:

G(s) ( s + 2 stable, minimum phase (6.1)(s + 1(s +÷5)

G(s) ( s + 2 unstable, minimum phase (6.2)(s - M)s + 5)

G(s) + s -2 stable, nonminimum phase (6.3)
(s -2Ms +5)

G(s) ( s -2 1 unstable, nonminimum phase (6.4)(s - 1)(s + 5)

Although these transfer functions initially appear to be quite simple, it turns out that as

far as general trends are concerned (regarding the effects of stable vs. unstable poles

and minimum phase vs. nonminimum phase zeros), they are representative of the

behavior of each class of transfer function.

For each example type, there are many graphs of loop shapes and time

responses to observe in order to make comparisons between the I-DOF and 2-DOF

model, so it would be prudent here to explain the order in which the graphs will be
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presented. In each class of problem, the I-DOF plots will be presented first, with

plots of sensitivity, complimentary sensitivity, loop transfer function, and step

responses, followed by the same plots for the 2-DOF case. Since the objectives of this

thesis include observing similarities and differences between the two design

methodologies as plant disturbances and measurement noises are varied, each

individual plot will contain three curves, corresponding to the small, medium, and

large disturbances defined in equation (5.7). As mentioned in Chapter V, each curve

will be identified by the appropriate DC gain of the disturbance (-80, 20, and 40 dB,

respectively). Also, the graphs will appear in pairs, with "small" measurement noise

plots (as defined in equation (5.8)) being on the top of the page and "large"

measurement noise plots on the bottom.

The first four sections of this chapter will concern themselves with examining

the frequency response plots and step responses of each of the four classes of example,

making relevant comparisons and contrasts where appropriate. The fifth section of the

chapter will explore the effects of different types of inputs on the time responses of

one of the examples. Specifically, the chosen plant will be given step, ramp, and

parabolic inputs, and the 1-DOF and 2-DOF time responses will be compared. The

final section of the chapter will examine the possible tracking advantages of using a 2-

DOF compensator when the system is subjected to measurement noise which contains

low frequency content.

6.1 Stable, Minimum Phase System

The stable, minimum phase example serves as a baseline for comparison to all
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of the other types of examples, but it is still instructive to analyze all of the plots in

order to reiterate the concepts from Chapters II and Mi.

6.LI I-DOF Case. For the basic I-DOF case, all of the loop shape plots

should closely resemble the plots of "good" loop shapes in Chapter IH. Beginning with

the sensitivity function, Figure 6-1 shows that IS1 is small at low frequency and levels

out at 0 dB at higher frequencies. As the disturbance becomes larger, JGKl also

becomes larger at low frequency. In the large measurement noise case in Figure 6-2,

the shape of [SI is exactly the same, but it does not have as small a magnitude at low

frequency. This is expected due to the fact that with a large measurement noise, IGKl

must be smaller at high frequency to reject it, and the overall magnitude of GK is

lower over all frequencies.

The complimentary sensitivity plots reflect that when IGKI is large at low

frequency, 171 approaches unity, or 0 dB, and rolls off at high frequency. As the

disturbance becomes larger, IGKI becomes larger at low frequency, and the bandwidth

of the system increases. A comparison of Figures 6-3 and 6-4 verifies the effect of a

large measurement noise on the system -- 171 rolls off sooner when the noise is large

because IGKI is smaller at high frequency.

Figures 6-5 and 6-6 illustrate the shape of a "good" loop transfer function, with

high gain at low frequency and low gain at high frequency. Once again, [G/l

increases as the disturbance gets larger. The effect of the large measurement noise is

to shift the magnitude of iGKl downward for each disturbance.

Figures 6-7 and 6-8 feature the step responses of the I-DOF system, utilizing

the evslutinn model from Chapter V, with no plant disturbances or measurement
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noises acting on the system. As the magnitude of the assumed disturbance increases,

so does the magnitude of GK in the resulting controller at low frequency, which makes

the steady state error smaller. Differences in steady state error are not visible in the

figures because they are so small, however. The bandwidth frequency also increases

as IGKl gets larger, which has a much more noticeable effect on the response by

making the rise times much faster. In the large measurement noise case, the same

trends are present, but since IGKI is not as large at low frequency, and the bandwidth

frequency is lower for each disturbance, the settling times are much longer. When the

disturbance is large enough, the system steadies out in less than a second, but the large

noise manifests itself by making the initial overshoot larger than that of the

corresponding small noise case.
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Figure 6-1. 1-DOF Bode Magnitude Plot of ISI for Stable, Minimum Phas
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6.1.2 2-DOF Case. The 2-DOF case also serves as a baseline for the other

types of 2-DOF examples in that the loop shape plots resemble those of "good" loop

shapes as described in Chapter III. Figures 6-9 and 6-10 show magnitude plots of the

sensitivity function. In both the small and large noise cases, IS1 exhibits the

characteristic "good" shape of being small at low frequency and leveling out at 0 dB at

high frequency. As the assumed plant disturbance level is increased, the magnitude of

GK is increased at low frequency; thus, the magnitude of IS! decreases at low

frequency. In the large noise-small disturbance case, IS1 is at 0 dB at virtually all

frequencies because the iarge noise f rces down the size of JGKIJ over all frequencies,

and the disturbance is not large enough to offset this.

Figures 6-11 and 6-12 show plots of the 2-DOF complimentary sensitivity

function. These plots also exhibit the characteristics of a good loop shape, in that

most of the plots are at 0 dB at low freque.. y and roll off at some bandwidth

frequency. In the small noise case, the disturbance is always large enough for 171 to be

0 dB at low frequency. As the disturbance gets larger, the bandwidth frequency

increases. In the large noise case, however, the size of the noise holds down IGKJI

since the disturbance is small, and 171 is not even guaranteed to be at 0 dB at low

frequency. In fact, when the disturbance is at its smallest, the DC gain of 171 is nearly

-100 dB. The roll-off frequencies for all of the disturbances are significantly lower for

the large noise case than those for the small noise case.

Figures 6-13 and 6-14 show plots of IGKIJ and IGK21 for the small noise cise.

The plots of IGKIJ reflect the trends observed in the plots of ISI and 171, with high gain

at low frequency and low gain at high frequency. As the size of the disturbance
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increases, the overall size of IGKIJ also increases. For the two larger disturbances,

IGK2r v•ita-ly matches JGKIJ, but in the small disturbance case, IGK21 must

compensate for t*he effc.cts of the measurement noise by flattening out at 0 dB until

around 10 rad/sec before rolling off. In the large noise case (Figures 6-15 and 6-16),

the overall magnitudes of IGK1I decrease much more rapidly with decreasing

disturbances than in the 1-DOF case, especially in the smallest disturbance case, where

IGKJI has a DC gain of -100 dB. Since the overall system bandwidth of the 2-DOF

system is about 10 rad/sec, IGK21 shapes itself to roll off at this frequency, even if

IGK1I falls below 0 dB before this frequency. If the disturbance is large enough

(relative to the noise), it means that IGKJ will probably match the shape of IGKI[; if

the disturbance `- s,.iall enough, then IGK21 will probably have to stay 0 dB until it

reaches 10 rad/sec. This trend is repeated here because it will recur in all of the

remaining examples in this thesis.

Figure 6-17 shows a plot of the system transfer function from r, to y, given by

ISGK21, which (from Chapter I1) is the 2-DOF equivalent of !71 for the I-DOF case

insofar as evaluating the frequency range over which the system will track commands.

It shows that the 2-DOF system bandwidth for command following is indeed about 10

rad/sec.

The final graph for the stable, minimum phase case, Figure 6-18, is the step

response for the 2-DOF system. It is immediately apparent that there is only one line

on the graph, as there always is for H2 2-DOF controllers. With the flexibility of two

compensators, the 2-DOF system is able to produce the optimal time response,

regardless of the size of the disturbance or measurement noise. In this case, the

6-10



response exhibits the shape of a critically damped system, with the settling time being

as fast as possible without any overshoot.

61L3 Comparison Between I-DOF and 2-DOF Cases. The differences

between the I-DOF and 2-DOF cases for this first basic example are centered around

the different requirements for good loop shapes, as described in Chapters II and InI.

The 2-DOF sensitivity function shows the same trends as in the I-DOF example in the

small noise case, except that for the smallest disturbance, it is not as small at low

frequency as it is in the I-DOF case. The reason for IJS not being as small at low

frequency in the 2-DOF case stems from the idea that [GKIJ is only as large as it needs

to be to reject the appropriate sized disturbance at low frequency. In both the small

and large noise cases, IS1 is at least as small at low frequency as the corresponding 1-

DOF case when the disturbance is at its largest, reflecting the fact that IGK1I must be

sufficiently large at low frequency to reject a large disturbance. The 2-DOF Bode

magnitude plot of 171 differs from that of the I-DOF case in that it is not even

guaranteed to be at 0 dB at low frequency when the measurement noise level is large,

due to the fact that JGKIJ is held down over all frequencies. Since the 2-DOF loop

transfer function, GKI, does not have the same restrictions on command following that

the I-DOF loop transfer function does, the plots of IGKII show the variability in the

magnitudes, depending on the size of the assumed disturbance.

The rise time and settling time of the 2-DOF step response are not as fast as

some of the I-DOF responses in the small noise case, but they are faster than those of

the large noise case (note the time scale differences in the figures). The advantage of

the 2-DOF controller is that although the response is not as fast as some I-DOF
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special cases, it always produces the same response (for a given tracking weight), no

matter what the size of the disturbance or measurement noise is. On the other hand, a

large measurement noise has a detrimental effect on the 1-DOF responses. It should

be noted that the shape of the 2-DOF step response can be altered by changing the

tracking weight. For instance, if the gain of the tracking weight is increased so that its

magnitude plot crosses the 0 dB line at a higher frequency, the resulting step response

will have a faster rise time, but more overshoot. Most of the examples in this thesis,

however, have been completed using the tracking weight mentioned in Chapter V,

since this weight produces step responses in which the differences between the 1-DOF

and 2-DOF case can readily be seen.
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Figure 6-14. 2-DOF Bode Magnitude Plot of IGK21 for Stable, Minimum
Phase System Example (Small Noise Case)
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Figure 6-18. 2-DOF Step Response for Stable, Minimum Phase System
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6.2 Unstable, Minimwm Phase System

6.2.1 I-DOF Case- In this case, the only difference in the plant transfer

function is that now there is an unstable pole at s = +1. Figures 6-19 and 6-20 show

plots of the 1-DOF sensitivity function, I11. In both the small and large noise cases,

there is no significant change from the stable, miniry tun phase example in trends or in

the actual magnitudes of the function. Figures 6-21 and 6-22 show plots of the

complimentary sensitivity function, 171. Again, the same trends are present as in the

stable, minimum phase example, except that the function exhibits a small increase in

magnitude before rolling off, especially in the large noise case. This "bubble"

indicates deteriorating stability margins, which should be expected since the plant is

unstable to begin with, and the stability margins will not be as good as they would be

with a stable plant. The plots of IG/1 are shown in Figures 6-23 and 6-24. They are

virtually identical to the plots of IG/L in the stable, minimum phase case.

The real differences between the stable, minimum phase and the unstable,

minimum phase systems are evident in the step responses, shown in Figures 6-25 and

6-26. In the small noise-large disturbance case, the responses are nearly identical, but

when the disturbance gets smaller, the responses begin to settle out in the

neighborhood of two seconds in the unstable system instead of one second in the

stable system. In the large noise case, the settling times are generally much slower,

ranging from just under a second for the large disturbance case to over 10 seconds for

the small disturbance case. As the assumed plant disturbance gets smaller, the settling

time produced by the resulting compensator gets longer, and the peak overshoot gets

larger.
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Figure 6-26. 1-DOF Step Responses for Unstable, Minimum Phase
System Example (Large Noise Case)
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6.2.2 2-DOF Case. Figures 6-27 and 6-28 show plots of the 2-DOF

sensitivity function. They are virtually identical to the equivalent plots in the stable,

minimum phase system. Figures 6-29 and 6-30 show plots of the complimentary

sensitivity function. These plots show a slight increase in magnitude just before

rolling off in the small noise case, indicating the slight deterioration of the stability

margins compared to the stable case. In the large noise-small disturbance case, the

DC gain of 171 is slightly above 0 dB instead of there being only a slight hump, again

indicating worse margins. In Figures 6-31 and 6-32, the plots of IGK1I and JGKýj for

the small noise case are largely unchanged from the stable example, as are the plots

for the large noise case, in Figures 6-33 and 6-34. Once again, IGK21 shapes itself to

ensure that it rolls off below 0 dB at least 10 rad/sec. The plot of ISGK21 is identical

to Figure 6-17 and shows the 2-DOF system bandwidth for tracking command inputs.

The 2-DOF step response is also identical to that of the 2-DOF stable example in

Figure 6-18.

The primary difference between the stable, minimum phase system and the

unstable, minimum phase case is the shape of the complimentary sensitivity plot. In

the unstable case, the function 171 shows an increase in magnitude before rolling off,

indicating a worsening of the stability margins, which is to be expected when going

from a stable to an unstable plant.

6.2.3 Comparison Between I-DOF and 2-DOF Cases. All of the loop shape

plots for the 1-DOF and 2-DOF systems are virtually the same as they were in the

stable system example, except for the complimentary sensitivity function plots. The 2-

DOF sensitivity function plots again show that since IGKIJ is not required to be large
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at low frequency, ISI is larger at low frequency than the corresponding I -DOF case

when the disturbance is small relative to the measurement noise. In both the I-DOF

and 2-DOF cases, 171 exhibits a rise in magnitude at some point before rolling off,

indicating a decrease in stability margins. In the small disturbance-large noise case,

the DC gain of 1l7 is above 0 dB in the 2-DOF case, which never occurs in the I-DOF

case, due to the requirement for the I-DOF loop gain to be large at low frequency (for

both disturbance rejection and tracking).

Overall, an unstable pole has virtually no effect on the tracking ability of the 2-

DOF system, while it has noticeable effects on the performance of the I-DOF system.

The I-DOF step responses show that an unstable pole generally increases the amount

of overshoot. In the 2-DOF case, IGK21 is shaped in such a way that perfect tracking

is maintained (from the plot of ISGK21) over a larger frequency range than the I-DOF

case.
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Figure 6-27. 2-DOF Bode Magnitude Plot of ISI for Unstable, Minimum
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Figure 6-28. 2-DOF Bode Magnitude Plot of ISI for Unstable, Minimum
Phase System Example (Large Noise Case)
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Figure 6-29. 2-DOF Bode Magnitude Plot of IT for Unstable, Minimum
Phase System Example (Small Noise Case)
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Figure 6.30. 2-DOF Bode Magnitude Plot of 171 for Unstable, Minimum
Phase System Example (Large Noise Case)
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Figure 6-32. 2-DOF Bode Magnitude Plot of IGK21 for Unstable, Minimum
Phase System Example (Small Noise Case)
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6.3 Stable, Nonminimnm Phase System

The next two examples presented represent nonminimum phase systems, which

often pose challenging control problems. Using feedback control, poles in undesirable

locations can be moved to more favorable closed loop locations, but undesirable zeros

are a burden which cannot be directly remedied -- zeros cannot be re-assigned to

different locations.

6.3.1 I-DOF Case. Figures 6-35 and 6-36 show plots of the sensitivity

function, IS1. The most noticeable characteristic of these plots is the large amount of

overshoot exhibited by the functions. The existence of a nonminimum phase zero has

the effect of attracting stable poles toward the right-half plane (on a root locus plot) as

gain is increased; therefore, the stability margins are expected to be lower for this

example than either of the two minimum phase examples described thus far. The plots

of I17 in Figures 6-37 and 6-38 reiterate the decreased stability margins in that they

also show a significant rise in magnitude before rolling off at the appropriate

bandwidth frequency. The amount of overshoot in IS1 and 171 is a bit more pronounced

in the small noise case than it is in the large noise case. This is because in the small

noise case, the size of IGKI is permitted to be larger overall, thereby placing the closed

loop poles in a position where the response is faster, but some pole(s) may be closer

to instability.

Figures 6-39 and 6-40 show plots of the loop shape, IGK1. Both plots still

exhibit high gain at low frequency, but the effect of the nonminimum phase zero is

evident in their shapes. Since zeros cannot be moved under feedback control, the next

best manner in which to handle the situation is to minimize the amount of energy
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placed at the frequency of the nonminimum phase zero. This is shown in the two

figures by the fact that none of the lines is above 0 dB past 2 rad/sec, which

corresponds to the zero at s = +2. In fact, that particular frequency effectively

presents a "barrier" under which the magnitude of GK must pass in order to produce

stable closed loop systems. In the small noise case, IGKJ normally has higher gain at

low frequency and does not cross the 0 dB line until at least 10 rad/sec. For both

noise levels with a nom.ahismum phase zero, however, IGKI passes under the 2 rad/sec

barrier and then stays just below 0 dB out to frequencies beyond 100 rad/sec before

rolling off, thus trying to maintain the highest amount of energy possible over all

frequencies.

Figures 6-41 and 6-42 show the step responses for the stable, nonminimum

phase system. As expected, the initial tendency of nonminimum phase systems is to

initially "go the wrong way." Once again, the general trends are as before -- the

settling times get faster as the disturbance gets bigger in both the large and small noise

cases, but the large noise case produces slower settling times than the small noise case

does. In the large disturbance case, the settling times are about the same for both

noises, but the initial undershoot is much larger in the small noise case. This is in

keeping with the fact that as IGKI is made larger in a nonminimum phase system, the

response gets faster, but some pole(s) may move closer to the imaginary axis, causing

more oscillatory motion. When the disturbances are smaller in the large noise case,

there is not as much undershoot, but the settling times become quite a bit slower.
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Figure 6-35. 1-DOF Bode Magnitude Plot of ISI for Stable, Nonminimum

Phase System Example (Small Noise Case)
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Figure 6-36. I-DOF Bode Magnitude Plot of LSI for Stable, Nonminimum
Phase System Example (Large Noise Case)
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Phase System Example (Small Noise Case)
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Figure 6.38. 1-DOF Bode Magnitude Plot of 171 for Stable, Nowninimum
Phase System Example (Large Noise Case)
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Figure 6-40. 1-DOF Bode Magnitude Plot of IGKI for Stable, Nomninimum
Phase System Example (Large Noise Case)
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63.2 2-DOF Case. The 2-DOF sensitivity functions are plotted in Figures 6-

43 and 6-44. The general shape of the plots is the same as that of "good" loop shapes

(from Chapter III), but there is a significant amount of overshoot in both the small and

large noise cases. The functions in the small noise case have a bit more overshoot

than those in the large noise case, due the fact that the loop gain is higher overall. In

the large noise-small disturbance case, the size of IGK1I is so small that IS is at 0 dB

at virtually all frequencies. Figures 6-45 and 6-46 show plots of the complimentary

sensitivity function. These plots also indicate the decrease in stability margins by the

large increase in magnitude before rolling off. The other trends for these plots are in

agreement with the previous examples.

Figures 6-47 and 6-48 show plots of IGKJI and IGK21 for the small noise case.

In the small disturbance case, IGKIJ exhibits high gain at low frequency and low gain

at high frequency, but since the assumed disturbance level is so low, the plot is not

affected by the barrier at 2 rad/sec. In the two larger disturbance cases, however,

JGKJI is required to be large at low frequency, but it must also pass under the barrier

at 2 rad/sec. Figures 6-49 and 6-50 show plots of IGK1I and IGK21 for the large noise

case. The effect of the large noise, once again, is to drive down the size of IGK1 :,

especially in the small disturbance case The barrier at 2 rad/sec is evident in the plots

of both IGKIJ and lGK2l. Figure 6-51 shows a plot of ISGK2I, indicating the frequency

range over which the system will track commands. Figure 6-52 sho-s the 2-DOF step

response.

6.3.3 Comparison Between 1-DOF and 2-DOF Cases. In keeping with

previous trends, the plots of the sensitivity function show close agreement between the
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I-DOF and 2-DOF cases when the measurement noise level is small. In the large

noise case, the DC gain of IS1 increases more rapidly in the 2-DOF case than it does in

the 1-DOF case as the size of the assumed disturbance decreases. The plots of the

complimentary sensitivity function also follow previous trends, with the bandwidth

frequency increasing as the assumed disturbance gets larger in the small noise case. In

the large noise case, the same trends are present, but in the 2-DOF large noise-small

disturbance case, the DC gain of 171 is -100 dB. In the small noise case, the plots of

IGK1I are very similar to the plots of IGKI in the I-DOF case, but the 2-DOF plot for

the largest disturbance case rolls off at a higher frequency than the corresponding I-

DOF plot. This is because IGK1I is not constrained to any tracking requirement, and

the measurement noise is not large enough to warrant holding down its size. Since the

measurement noise is so small, IGKIJ tends to dominate the system's behavior; thus,

the shape of IGK2I is more or less the same as that of IGKJI. It should be noted that

both IGKIJ and IGK 21 still must fall beneath the barrier at 2 rad/sec to accommodate the

zero at s = +2. In the large noise case, the shape of IGKIJ and IGK2I follow the same

pattern that they do in the other classes of examples.

The 2-DOF step response's settling time of about three seconds is not as fast as

some of the I-DOF responses (in the small noise case), but it does not have as much

initial undershoot or overshoot of the final value as they do. Once again, the 2-DOF

system produces the same step response, regardless of the level of the plant

disturbance or measurement noise level.
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Figure 6-49. 2-DOF Bode Magnitude Plot of IGKI for Stable, Nonminimum
Phase System Example (Large Noise Case)
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Figure 6-50. 2-DOF Bode Magnitude Plot of IGK 21 for Stable, Nonminimum
Phase System Example (Large Noise Case)
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6.4 Unstable, Nonminimum Phase System

6.4.1 I-DOF Case. Figures 6-53 and 6-54 show plots of the sensitivity

function. They are very similar to the stable, nonminimum phase case, but the

functions do not get as small at low frequency, and the overshoot is much more

pronounced. The presence of right-half plane poles and zeros erodes the stability

margins more than in any other case, and the size of IGKI is held down overall as a

result. The graphs of the complimentary sensitivity function, in figures 6-55 and 6-56,

add further evidence of low stability margins, with bigger increases in magnitude

before rolling off. The shape of IGK/ (Figures 6-57 and 6-58) reiterates the

requirement that the function stay below 0 dB at the 2 rad/sec nonminimum phase zero

frequency. In the small noise-large disturbance case, the function "lips up" above 0

dB at 2000 rad/sec in an effort to regain some overall energy before rolling off, even

though it still avoids violating the barrier at 2 rad/sec.

The 1-DOF step responses are shown in Figures 6-59 and 6-60. These

responses exhibit characteristics of both unstable and nonminimum phase behavior, as

expected, and show the same general trends as the stable, nonminimum phase case. In

the small noise case, the initial undershoot increases as the level of the assumed plant

disturbance increases. In the large noise case, the initial undershoot also increases, but

the subsequent overshoot of the final value decreases slightly, as the assumed

disturbance level increases.
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Figure 6-53. 1-DOF Bode Magnitude Plot of ISI for Unstable, Nonminimum
Phase System Example (Small Noise Case)
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Figure 6-54. I-DOF Bode Magnitude Plot of ISI for Unstable, Nonminimum
Phase System Example (Large Noise Case)
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Figure 6-56. 1-DOF Bode Magnitude Plot of 171 for Unstable, Nowninimum
Phase System Example (Large Noise Case)
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Figure 6-57. 1-DOF Bode Magnitude Plot of IGKI for Unstable,
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Figure 6-58. 1-DOF Bode Magnitude Plot of IGKI for Unstable,
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6.4.2 2-DOF Case. The plots of the sensitivity function are shown in Figures

6-61 and 6-62. The primary difference in these plots from the other 2-DOF examples

is that the overshoot above 0 dB is much higher, indicating worse stability margins.

In the large noise-small disturbance case, the DC gain of ISi is about 13 dB, showing

how small IGKJI must be at low frequency to accommodate the large noise. Figures 6-

63 and 6-64 show plots of the complimentary sensitivity function. In the large noise-

small disturbance case, the DC gain of 171 is also above 0 dB (this time at about 18

dB). The other trends are unchanged from the previous examples.

Figures 6-65 and 6-66 show plots of IGK1I and IGK21 for the small noise case,

and Figures 6-67 and 6-68 show plots of IGKJI and IGK21 for the large noise case. The

only significant difference between these plots and those of the stable, nonminimum

phase system is the large noise-small disturbance case of IGK 21. in this case, the DC

gain of the function is at about -15 dB instead of the normal 0 dB, which shows the

flexibility of the shape of IGK2 in taking on whatever magnitude is necessary to track

the command input. In both the large and small noise cases, the plots fall below 0 dB

before they reach 1 rad/sec so that no energy is put into the system at the frequencies

of the unstable pole or zero.

The plots of ISGK 21 and the 2-DOF step response are identical to Figures 6-51

and 6-52, respectively.

6.4.3 Comparison Between I-DOF and 2-DOF Cases. The unstable,

nonminimum phase system example represents the most challenging of the SISO

examples presented. Thus, the loop shape plots exhibit all of the characteristics

associated with right-half plane poles and zeros. Both the I-DOF and the 2-DOF
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systems show a great deal of overshoot above the 0 dB line in the sensitivity and

complimentary sensitivity plots. As in the other types of examples, when the assumed

noise is large compared to the plant disturbance in the 2-DOF case, the DC gain of S

becomes larger (as in the I-DOF case), and in some cases, it is above 0 dB (which

does not occur in the I-DOF case). In the complimentary sensitivity plots, the 2-DOF

case shows that as the assumed noise becomes larger relative to the disturbance, the

rolloff frequency decreases (as in the 1-DOF case), and in the smallest disturbance

case, the DC gain of 171 is above 0 dB (which does not occur in the I -DOF case). The

most noticeable difference between the I-DOF and 2-DOF system is, once again, in

the step responses. In the I-DOF case, the responses exhibit increasing initial

undershoot as the assumed disturbance level increases (due to the nonminimum phase

zeros), as well as significant overshoot of the final value (due to the unstable poles).

The 2-DOF system, however, utilizes the capabilities of the prefilter to maintain

tracking over a wide frequency range and still produces the optimal step response for

the given tracking weight, which, for this case, exhibits minimum initial undershoot

and no overshoot of the final value.
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Figure 6-67. 2-DOF Bode Magnitude Plot of IGK1 I for Unstable,
Nonminimum Phase System Example (Large Noise Case)
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6.5 System Type Examples

In this section, the effects of applying different inputs to both I -DOF and 2-

DOF systems are investigated to find out whether 2-DOF systems offer the same

advantages that they do when the input is only a step. The example to be used is the

unstable, nonminimum phase plant from section 6.4, looking only at the large noise

case. This plant was chosen because it is the most challenging to control, and the

differences between the I-DOF and 2-DOF time responses are the most obvious

(especially in the large noise case).

Recall from Chapters II and Ill that system type is defined as the degree of the

polynomial input for which the steady state error is equal to a non-zero constant.

Furthermore, if the system is type 0, then it produces a constant error to a step input;

if the system is type I, then it tracks a step input perfectly and produces a constant

error to a ramp input; if the system is type U, then it tracks step and ramp inputs

perfectly and produces a constant error to a parabolic input; and so on. These

concepts are repeated here because they have a direct bearing on what is expected in

the time response plots for the aforementioned example.

Also, recall from Chapter V that the tracking weight, W3, in the H2

optimization setup can also be used to shape the tracking behavior of the system with

regard to system type. If W3 resembles an integrator, then the system will exhibit type

I behavior; if it resembles a ramp input, then the system will exhibit type II behavior;

etc. The shaping of W3 is the method that will be used to produce the various system

types in both the 1-DOF case and the 2-DOF case. In both cases, the number of low

frequency poles near the origin used to model W3 is directly proportional to the
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number of low frequency poles near the origin in the resulting compensator. It should

be noted that in the 2-DOF case, the number of poles at or near the origin in either K,

or K2 cannot necessarily be attributed to system type behavior, in general. Since H2

compensators are being utilized, however, K, and K2 share the same poles, and in this

particular case, the number of poles at or near the origin in the compensators has a

direct bearing on the system type behavior. For comparison purposes, the following

values for the tracking weight were utilized to produce the various system type

behaviors (through type El):

W3 = 10 (Type)) (6.5)
S + 0.001

W (3 - 100 (Type fl) (6.6)
(S + 0.00)

W s = 10000 (Type 111) (6.7)(S + 0.001)Y

These weights are plotted in Figure 6-69. Since the only performance characteristic of

interest regarding system type is the ability of the system to track different inputs, the

only plots that will be presented in this section will be time response plots.

6.5.1 7pe I Syslem. The examples presented in this chapter in sections 6.1

through 6.4 were essentially type I systems. In all cases, the tracking weight had a

pole at s = -0.01. In these system type examples, the pole(s) was moved a bit closer

to the origin (to s = -0.00it jugst to illustrate the effect of having the poles of the

compensator very close to the origin.

Figures 6-70 and 6-71 show the step responses of the I-DOF and 2-DOF

systems, respectively. The I-DOF response is almost identical to Figure 6-60, in that
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Figure 6-69. Bode Magnitude Plot of Tracking Weights for System
Type Examples

it exhibits extreme nonminimum phase behavior (initial undershoot) and overshoot of

the final value. The trends in the response for the increasing disturbance are as

previously described - as the disturbance size increases, the initial undershoot

increases and the settling time gets faster. Depending on the disturbance, this system

settles out between 4 and 10 seconds, with its oscillatory motion ranging from -6 to

+4.25. The 2-DOF step response exhibits no overshoot of the final value, settles out

in about 3 seconds, and shows an initial undershoot of -0.5. Clearly, the 2-DOF

system produces a much more favorable step response in this case (note scale changes

to emphasize differences).

The errors to a ramp input are shown in Figures 6-72 and 6-73. These errors
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are expected to reach a constant non-zero value for both systems since they are both

type I. The 2-DOF system steadies out in under three seconds at a value of +1.1. The

I-DOF system steadies out between 6 and 25 seconds, at values ranging from -2 to

-13. The overshoot for all three disturbance sizes is about 1.8.
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6-57



2

0X\

-2

-4

-80dB

-t-0 ----- 20 dM

.... 40 dB

-12

-14
0 5 10 15 20 25

Tnne (aem)

Figure 6-72. 1-DOF Error Responses to a Ramp Input
(Type I System Example)

1.

0.8

10.6

0.4

Time (icc)

Figure 6-73. 2-DOF Error Response to a Ramp Input
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6.12 Type / System. For this case, another pole near the origin has been

added to the tracking weight, producing an additional equivalent pole in the

compensator of both systems. The I-DOF and 2-DOF step responses are shown in

Figures 6-74 and 6-75. In the I-DOF case, the responses all settle out in about 4-5

seconds, which is a marked improvement over the type I case, but the oscillatory

motion is much greater, especially in the large disturbance case. It ranges between -30

and +22. The 2-DOF response shows the same trend by showing a quicker settling

time of 2.5 seconds and more oscillatory motion than in the type I case, ranging from

-4.1 to +2.5.

The ramp error responses are shown in Figures 6-76 and 6-77. Because these

are now type II systems, they now track ramp commands perfectly. Depending on the

disturbance level, the 1-DOF system settles out at zero between 5 and 15 seconds,

with oscillatory motion ranging between -2.1 and +3.2. The 2-DOF system settles out

at zero in about 3 seconds, with an initial overshoot of +0.9.

The parabola error responses are shown in Figures 6-78 and 6-79. As

expected, both systems produce constant errors to a parabolic inputs. The I-DOF

system settles out between 4 and 15 seconds at values between -16.5 and -2.2. The

small disturbance case is significantly slower and has a larger error than the two larger

disturbances. The 2-DOF system settles out in about 3 seconds at a value of 1.3, with

no initial undershoot.
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65.3 Type III System For this final case, there are now three poles near the

origin in the tracking weight, which produce three poles near the origin in the I-DOF

and 2-DOF compensators. Both systems should be able to track step, ramp, and

parabolic inputs with zero steady state error. The 1-DOF and 2-DOF step responses

are shown in Figures 6-80 and 6-81. The settling times continue to get faster, but the

amount of overshoot also increases, especially in the I -DOF case. The 1 -DOF settling

times all fall under two seconds, while the overshoot for the large disturbance is ±130.

The 2-DOF settling time is about one second, with oscillatory motion ranging between

-20 and +16.

The ramp error responses are shown in Figures 6-82 and 6-83. The I-DOF

system settles out between 4 and 10 seconds (depending on the disturbance level),

with the overshoot at ±12. The 2-DOF system settles out in 2.5 seconds with

oscillatory motion ranging between -1.1 and +2.4.

The parabola error responses are shown in Figures 6-84 and 6-85. The two

larger disturbances in the 1-DOF case produced a settling time of about 6 seconds, but

the smallest disturbance case resulted in the system going unstable, due to numerical

errors. If there had been a true triple pole at the origin, then the system would have

produced zero steady state error. However, the W3 tracking weight only contains a

close approximation to a triple pole at the origin, and the truncation error caused by

the approximation eventually affects the system response, especially when the

measurement noise is large relative to the plant disturbance. A better approximation

would also be to make the DC gain of W3 larger. The 2-DOF error response settles out

in three seconds, with an initial overshoot of +1.1.
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It is interesting to note that for the small disturbance case for the type lI

system, the I-DOF step response looks a lot like the 2-DOF step response with respect

to the settling time and amount of oscillatory motion. When the 1-DOF system is

given ramp and parabolic inputs, however, the responses become much worse. The

reason for this goes back to the idea that the tracking weight does not really have a

triple pole at the origin. From Figure 6-69, the type 111 tracking weight does have a

large amount of energy at low frequency, enabling a favorable 1-DOF step response.

As previously mentioned, when the input is higher order, the I-DOF responses rapidly

deteriorate.
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6.6 Low Frequency Measurement Noise Example

In all of the examples presented thus far, both the I -DOF and 2-DOF systems

have been modeled with plant disturbances that contain definite low frequency content

(Figure 5-3) and measurement noises that contain definite high frequency content

(Figure 5-4). One of the basic ideas emphasized in Chapter V is that the system loop

shape, whether I-DOF or 2-DOF, must exhibit certain properties at low frequencies to

deal with commands and disturbances, and other properties at high frequencies to deal

with measurement noises. The idea that the measurement noise may contain frequency

content in the same range that commands and disturbances fall has not been

considered. This section of the chapter will explore the effects of low frequency

measurement noise on system loop shape and the corresponding time responses.

The plant to be used for this example is once again the unstable, nonminimum

phase system from section 6.4. The measurement noise weight from the H2

optimization setup, WS, must be modified to overlap the frequency range that is used

to model the plant disturbances. The modified measurement noise weight is given by

WS = 20(s + 0.0001) (6.8)S + 0.001

The Bode magnitude plot of this weight compared to the medium sized disturbance

weight (with a DC gain of 20 dB) is shown in Figure 6-86. The medium-sized

disturbance weight is shown on the plot only to show the overlap of the frequencies.

All three disturbance weights will be reflected in the loop shape and time response

plots for this example. The frequency and time response plots generated from this
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example are intended to be compared to the large noise plots from the unstable,

nonminimum phase example from section 6.4.

For the 1-DOF case, traditional loop shaping theory states that IGK/ must be

large at low frequency for good disturbance rejection and small at high frequency for

good measurement noise rejection. The previous examples have shown that when the

measurement noise is large relative to the disturbance, the size of IGKI is driven down

over all frequencies. Thus, in the small disturbance case, IGKI is expected to be small

overall, regardless of the frequency range of the noise. When the disturbance is larger,

the size of IGKI is not as predictable. In general, it should be expected that the size of

IGKI will be driven by the low frequency measurement noise; therefore, IGKI should be
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driven down at the frequency where the noise first becomes significant. In any case,

the time responses should be worse than the case where the noise is restricted to the

high frequency region.

For the 2-DOF case, there is still a potential conflict between disturbance

rejection and measurement noise rejection, in that they both depend on the size of

IGKIJ. When the disturbance is small, there should be no problem for the 2-DOF

system to accomplish both objetives because IGK1I does not need to be large to reject

the disturbance, and it should be small to reject the noise anyway. IGK21 compensates

for the reduced size of IGKIJ by shaping itself in such a way that tracking is

maintained over as large a frequency range as possible. For the large disturbance-large

noise case, however, there is still a conflict between the disturbance and noise

rejection objectives. From a logical standpoint, it appears that this could result in a

worse time response than the case where the noise contains only higher frequencies.

6.6.1 1-DOFResuflt Figure 6-87 shows the I-DOF sensitivity function for

the low frequency measurement noise case. It is immediately apparent that in the two

smaller disturbance cases, (Si is at 0 dB between 0.0001 and 0.1 rad/sec, which

suggests that IGK1 is very small in this region. Recalling the steady state error barrier

from Figure 2-3, it does not appear that the functions in the two smaller disturbance

cases resemble "good" sensitivity functions. ISl for the largest disturbance resembles a

more conventional sensitivity function.

Figure 6-88 shows a plot of the complimentary sensitivity function. Again, the

functions for the two smaller disturbance cases exhibit undesirable behavior in that

they "droop" below the 0 dB line at frequencies before rolling off, indicating that (GK!
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is small in that region. Figure 6-89 verifies the fact that JGAl is indeed small in the

frequency region that 171 exhibits the droop (in the small disturbance cases). The DC

gain of IGAI is also very low for those two cases compared to the large disturbance

case.

The step responses in Figure 6-90 indicate that when the assumed disturbance

is large, the response is virtually unchanged from the case where the measurement

noise is only at high frequency (Figure 6-60). When the disturbance is smaller,

however, shape of the response does not change much, but the steady state value does

not even reach unity. The reason for this is that IGKi is very small in the region where

the disturbance and measurement noise frequencies overlap, which is where it needs to

be large to produce a favorable response. It should be emphasized here that in the

large disturbance case, the step response showed perfect tracking performance using

the evaluation model from Chapter V, which has no noises acting on the system.

Since the assumed large disturbance causes JGKl to be large at low frequency, and 171

is at 0 dB in the frequency range where the measurement noise first becomes large,

the system would track both the command input and the noise in that frequency range.

In fact, if the evaluation model were altered so that low frequency measurement noise

acted on the system, then the step response would show the amplified noise in it.
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6.6.2 ?-DOF Result Figures 6-91 and 6-92 show the 2-DOF sensitivity and

complimentary sensitivity functions. For the small disturbance cases, IS1 is at 0 dB

between 0.0001 and 0.1 rad/sec, and 171 exhibits a "droop" in this frequency range. In

the large disturbance cases, IS1 and IT[ more closely resemble respective "good" shapes,

Figures 6-93 and 6-94 show the magnitude plots of IGKIJ and IGK2J. In the large

disturbance case, IGK1I exhibits high gain at low frequency and low gain at high

frequency and is virtually matched by IGK 2I. In the two smaller disturbance cases,

however, IGKJI has the same droop that 171 does, but IGK21 is at 0 dB in this frequency

range. The plot of ISGK 21 in Figure 6-95 shows that the 2-DOF system tracks

commands perfectly up to the bandwidth frequency of 10 rad/sec. The step response

in Figure 6-96 shows that even with a significant low frequency measurement noise,

the 2-DOF system still produces the same step response with the noiseless evaluation

model as the case where the noise contains strictly high frequencies (Figure 6-52).

6.6.3 Comparison Between 1-DOF and 2-DOF Cases. The 1-DOF and 2-

DOF sensitivity and complimentary sensitivity function plots are virtually identical.

The primary difference between the 1-DOF and 2-DOF systems comes in the shape of

the loop transfer functions. IGLI in the 1-DOF system and IGK1I in the 2-DOF system

are almost identical in that the small disturbance cases still have the low frequency

droop. In the 2-DOF case, however, IGK 2I remains at 0 dB throughout the range of

the droop, thereby maintaining its command following bandwidth. As previously

mentioned, the I-DOF step responses in the small disturbance cases are unable to track

commands without producing a large steady state error, while the 2-DOF system does

not show any error. The I-DOF step response in the large disturbance case does not
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show any steady state error, but its initial undershoot is significantly larger than that of

the 2-DOF case. In the large disturbance case, the 2-DOF step response is subject to

the same caveat as the 1-DOF response -- that is, since the system tracks commands

perfectly in the 0.0001 to 0.1 rad/sec frequency range, it will also track measurement

noise in that frequency range. Thus, when the assumed disturbance is large, the

resulting 1-DOF and 2-DOF controllers would show significant amounts of noise in

their step responses if there is low frequency measurement noise in the evaluation

model. When the assumed disturbance is smaller, however, neither type of system

allows the low frequency noise to pass through to the output. The penalty for the I-

DOF system in this case is that it is also unable to track commands and shows a large

steady state error to a step input. The 2-DOF system compensates for the reduced

loop gain by reshaping the K"2 controller to maintain perfect tracking and shows no

steady state error to a step command.
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6.1 Chapter Sumnmary

Although this chapter makes heavy use of graphs to illustrate the similarities

and differences between I-DOF and 2-DOF controllers, there are several generalities

that can be extracted from the information. With regard to stability margins, it is

obvious from the graphs of IS1 and 171 that unstable poles cause a marked decrease in

the margins, but nonminimum phase zeros have an even more detrimental effect on

them. The most important conclusions to draw, however, deal with the ability of the

two systems to track commands. In the 1-DOF cases, the following trends were

observed (using the stable, minimum phase system as a baseline):

i) In all cases, the rise times and settling times improve as the size of the plant

disturbance is increased. These two times become slower when going from a small

measurement noise to a large one.

ii) The effect of unstable poles on the step response is to increase the

overshoot of the final value. In general, the amount of overshoot decreases as the

disturbance increases in magnitude. The settling times are also slightly slower.

iii) The primary effect of nonminimum phase zeros is, of course, to cause the

step response to initially head in a negative direction. The magnitude of this

undershoot increases and the settling time gets faster as the disturbance size increases.

A large measurement noise decreases the magnitude of the undershoot and slows the

settling time.

iv) In the unstable, nonminimum phase system, all of the above trends are

evident in the step responses, showing that the trends are not mutually exclusive. In

fact, this type of example serves as a good model to illustrate the differences between
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the I-DOF and 2- DOF approaches because it is a "worst case" scenario.

In all of the classes of examples, the 2-DOF cases only produced a single step

response. This is because the H2 optimal 2-DOF controller produces the step response

that is the "best" overall for a given tracking weight, no matter what the size of the

plant disturbance or measurement noise is. For the tracking weight given in Chapter

V, the following observations were made regarding the 2-DOF step responses: (1) In

the minimum phase case, it gave the fastest response that does not exhibit any

overshoot; (2) In the nonminimum phase case, it gave the response with the lowest-

sized initial undershoot, fastest settling time, and no overshoot of the final value.

With all of these constraints, the 2-DOF response may not always be the most

practical solution in everyday use. For instance, if restrictions are relaxed to allow a

10% overshoot, then the rise time could become quite a bit faster. If the 2-DOF

tracking weight is adjusted to roll off at a higher frequency, then the resulting step

response would exhibit a faster rise time with more overshoot. The 1-DOF controllers

also allow for this possibility, but the problem with the 1-DOF controllers is that they

are susceptible to changes in disturbance and measurement noise. The 2-DOF

approach guarantees a response with the aforementioned characteristics regardless of

the size of the disturbance or measurement noise.

The system type examples show that even with different types of inputs, the 2-

DOF system still produces better tracking results over the spectrum of plant

disturbance and measurement noise sizes. The 1-DOF system is prone to exhibit more

oscillatory motion with poles near the origin in the compensator than the 2-DOF

system is. The 2-DOF system still exhibits the "best" overall responses with higher
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order inputs.

The low frequency noise example perhaps best shows the advantages of using

2-DOF controllers. The plots indicate that when the measurement noise contains

energy in the same range as the plant disturbance, the noise is more dominant, and the

loop gain will be low to lessen its effects. In the 2-DOF case, the prefilter

compensator makes up for the smaller size of IGK1I by shaping itself to maintain a

high bandwidth frequency for command following. The 1-DOF system simply has no

mechanism to put forth high gain at low frequency, yet avoid the effects of low

frequency measurement noise.

The bottom line to this chapter is that 2-DOF controllers exhibit much better

tracking characteristics than I-DOF controllers for a variety of classes of plants and

system types. The next chapter examines the differences between the two systems ir. i

MIMO example.
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VII. Tail-Controlled Missile Example (MIMO)

As previously mentioned in Chapters 11 and Ill, loop shaping concepts can also

be applied to the multivariable case. The primary change is that restrictions on the

sizes of various loop transfer functions are now placed on the minimum or maximum

singular values of the function. The example presented in this chapter is an autopilot

for a tail-controlled missile and is taken from [ 1:16-17]. It is a point design in the

flight envelope of the missile and is not intended to be a design used for operational

purposes. The purpose of this example is to once again show the differences in loop

shapes and time responses between I-DOF and 2-DOF systems.

The linearized model of the missile plant consists of eight states, given by

8p fin actuator state (rol)

8q fin actuator state (pitch)

8r fin actuator state (yaw)

a pitch -plane angle of attack (7.1)
x 13 aw"-plane angle of attack

p roll rate

q pitch rate

r yaw rate

The inputs consist of roll-fin, pitch-fin, and yaw-fin deflections. The plant state space

matrices are given by
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-4.0000E + 02 0.0000E + 00 0.0000E + 00 0.0000E + 00
0.0000E + 00 -4.OOOOE + 02 O.0000E + 00 0.0000E + 00
0.0000E + 00 O.OOOOE + 00 -4.0000E + 02 0.OOOOE + 00

-8.7349E - 01 1.3044E + 02 -4.5412E - 01 -9.8435E - 01
-2.4611E -01 6.2620E - 01 -1.2753E + 02 -9.2340E - 02

3.3304E + 06 1.2009E + 06 -4.2461E + 03 -2.6737E + 02
-1.0950E + 03 1.2844E + 05 5.8025E + 01 -1.9462E + 02
-1.2044E + 02 5.6387E + 02 1.2598E + 05 6.9673E - 01

(7.2)

0.0000E + 00 0.OOOOE + 00 0.OOOOE + 00 0.0000E + 00
0.0000E + 00 0.OOOOE + 00 0.OOOOE + 00 0.OOOOE + 00
0.0000E +00 0.OOOOE +00 0.OOOOE +00 0.OOOOE +00

-9.2340E - 02 0.OOOOE + 00 1.0000E + 00 0.OOOOE + 00
-9.8435E -01 0.OOOOE +00 0.OOOOE +00 -1.OOOOE +00
2.6737E +02 -1.5949E + 00 0.OOOOE + 00 0.OOOOE + 00

-6.9672E -01 0.0000E +00 -1.5498E +00 0.OOOOE +00
1.9462E +02 0.OOOOE +00 0.OOOOE +00 -1.5498E +00

1 0 0
0 1 0
0 0 1

S100 (7.3)

0 0 0
0 0 0
0 0 0

0 0 0

0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00

0.OOOOE + 00 0.OOOOE + 00 0.OOOOE + 00 0.OOOOE + 00
C - .OOOOE + 00 0.OOOOE + 00 0.OOOOE + 00 0.OOOOE + 00

-5.4953E + 02 1.3982E + 03 -2.8476E + 05 -2.0619E + 02
-1.9504E +03 2.9126E +05 -1.0140E +03 -2.1979E +03

(7.4)

0.OOOOE + 00 1.0000E + 00 0.OOOOE + 00 0.OOOOE + 00
0.OOOOE + 00 0.OOOOE + 00 1.OOOOE + 00 0.OOOOE + 00
0.OOOOE + 00 0.OOOOE + 00 0.OOOOE + 00 1.OOOOE + 00

-2.1979E + 03 0.OOOOE + 00 0.OOOOE + 00 0.OOOOE + 00
-2.0619E +02 0.OOOOE +00 0.OOOOE +00 0.OOOOE +00
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The system has no transmission zeros, and the poles are given by

-1.5949
-1.2209 + 13.922j
-1.2209 - 13.922j

-1.3133 + 13.974j (7.5)
-1.3133 - 13.974j

-400
-400
-400

The plant outputs available for measurement (from the C matrix) are the angular rate

in each of the three axes (p, q, and r) and the acceleration in each of the two lateral

axes (NY and N,). The only outputs of interest in this example are the two

accelerations and the roll rate. Specifically, the control objective is to have the system

track a 10 g N, command, with Ny and p commanded to zero.

Since this is a MIMO example, the loop shapes are now represented by

singular value plots instead of single-line Bode magnitude plots. Thus, it would be

difficult to observe trends with multiple singular value plots on a single graph. To

alleviate this situation, only plots resulting from the smallest and largest plant

disturbances will be presented in this chapter. Furthermore, only the minimum and

maximum singular values for each disturbance will be plotted. The singular values for

each disturbance will be plotted with a single line type, and the disturbances will still

be identified by their DC gain. In this manner, two singular value plots can be plotted

together on one graph, and the trends can still be easily observed. As in the other

examples, the plots in which small measurement noises were used will be on the top

of the page, and the ones in which large noises were used will be on the bottom.
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7.1 I-DOF Setup and Results

The first problem immediately encountered when solving this example is the

fact that there are five outputs available for measurement, but only three commanded

inputs. Since unity feedback theory requires that the number of commanded inputs

equal the number of outputs being fed back, then the problem arises as to what to do

with the remaining two plant outputs. A 5 x 3 selector matrix can be placed in

judicious locations in the 1-DOF H2 optimization block diagram from Figure 5-1 in

order to make maximum use of the outputs in the controller design. As it turns out,

after several iterations of placing the selector matrices in different locations, the two

remaining outputs (q and r) have no bearing on the system's tracking performance. It

is generally not a valid assumption to ignore plant outputs that are not commanded,

but that assumption is valid in this particular case. Therefore, for the purposes of the

1-DOF controller designs in this chapter, the plant C matrix will be truncated to reflect

only the three outputs of interest. This setup also results in the compensator with the

lowest order, which is desirable from a practical standpoint. With the C matrix

modified in this manner, the system has transmission zeros located at s = +28.6, s -

+25.5, s = -30.1, and s = -27.1, indicating that this is a nonminimum phase system.

Figure 5-1 is still valid for use in the H2 algorithm, the only difference being that all

of the signals are now three-dimensional vector signals, and the weight blocks

represent 3 x 3 transfer function matrices. The weights are the same as those

mentioned in Chapter V, except they now have been multiplied by the identity matrix.

Equations (5.1) and (5.2) are also still valid representations of the input-to-output

transfer function matrix and the system state space, respectively.
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Figures 7-1 and 7-2 show plots of the MIMO sensitivity function, ISI, for the

small and large noise cases, respectively. Using the ideas from Chapter IH, it is

expected that the maximum singular value of S, o[S], should be small at low

frequency. As the disturbance gets larger, ii[S] gets smaller. In the large noise case,

these same trends are present, except in the small disturbance case, 5 [S] is not as

small at low frequency as it is in the small noise case. In the large noise-large

disturbance case, F[S] is about the same magnitude as it is in the small noise-large

disturbance case, but the minimum singular value of S, _ [S], is much lower at low

frequency in the small noise-large disturbance. This is because with a smaller noise,

the system could potentially exhibit higher loop gain at low frequency, as in the SISO

case. The "hump" above 0 dB is larger in the small noise cases than it is in the large

noise cases (indicating worse stability margins) because when more gain is put into a

nonminimum phase system, the response gets faster, but the system comes closer to

instability.

The system complimentary sensitivity function, 171, is shown in Figures 7-3 and

7-4 for each noise size. For good noise rejection, o [71 must be small at high

frequency, and the MIMO bandwidth is defined as the frequency where o[T] rolls off.

As the disturbance size increases, the bandwidth frequency gets larger, as expected. In

the large noise case, the trends are the same, but the bandwidths are significantly

lower, as in the SISO case. Once again, in the small noise case, there is a larger

increase in the function magnitude before rolling off than in the large noise case
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because the larger loop gain causes worse stability margins in this system.

Figures 7-5 and 7-6 show plots of the loop transfer function IGK]. As

described in Chapter U, a [GK] must be large at low frequency for good tracking and

disturbance rejection, and ([GK] must be small at high frequency for good

measurement noise rejection. These trends are observed in the figures. As the

disturbance size increases, _[GK] also gets bigger, as does the separation between

_[GK] and i[GIK]. The trends are identical in both the small and large noise cases,

but in the large noise case, the the plots are shifted downward, reflecting the reduced

loop gain.

Figures 7-7 and 7-8 show the N. responses to a 10 g step. In the small noise

case, the response settles out slightly faster in the large disturbance case (0.5 seconds

vs. 0.6 seconds), but there is also higher overshoot (both positive and negative) than

the small disturbance case. In the large noise case, the large disturbance response still

settles out in less than a second (0.7 seconds), but the small disturbance response has a

settling time of over 10 seconds. The overshoot in the large disturbance case is much

higher, however. In both noise size cases, the effect of increasing the disturbance is to

decrease the settling time, but at the same time increase the magnitude of the

oscillatory motion. These exact trends are true of the NY responses (Figures 7-9 and 7-

10) and the roll rate responses (Figures 7-11 and 7-12).
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7.2 2-DOF Setup and Results

Section 7.1 revealed that the I-DOF H2 block diagram setup has some

limitations as far as being able to utilize all of the possible plant outputs in the design

of the compensator. The 2-DOF setup contains a bit more flexibility than the I-DOF

setup does because the K, compensator is located after the plant in the control loop

instead of before it. In this manner, all five of the plant outputs can be fed directly

into K, instead of "throwing away" two states. The K, compensator then becomes a

non-square 3 x 5 transfer function matrix. The modified 2-DOF setup is shown in

Figure 7-13. The M block in the figure is the selector matrix that is used to convert

the plant output signal from five outputs to three and is given by

100001

M 0 000 1 0 (7.6)

000011

rc- 3 2 + U -

Figure 7-13. 2-DOF MIMO H2 Optimization Block Diagram
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The numbers located at various points around the figure represent the number of inputs

or outputs that are contained in the respective vector signal. Equation (5.4) is still a

valid representation of the input-to-output transfer function matrix, except for the last

row, the z3 output, which needs to reflect the addition of the selector matrix. The

modified transfer function matrix is given by

[Z,] W1SGK2  W S W4  -W1 TW5 1[e
1z21 tW2 L -KSGK 2 -W2KSW4 -W 2KSW5  (7.7)

".Z3. [ -MsGK2] -W3MSW4  W3MTW,] [J

The state space has only a few minor modifications from equation (5.6) and is not

shown here.

The 2-DOF MIMO sensitivity function, IS1, is shown in Figures 7-14 and 7-15.

Since the quantity GK1 is the product of a 5 x 3 matrix and a 3 x 5 matrix, the

resulting matrix is 5 x 5, but its rank is only three. Therefore, there are two singular

values that are equal to zero over all frequencies, although they are not shown in the

figures. In the small noise case, i [S] is very similar to the I -DOF case, in that it

decreases as the disturbance size increases. In the large disturbance case, however,

o [S] is much lower than it is in the I-DOF case, indicating the potential for higher

loop gain. In the large noise case, some of the same trends are present as in the SISO

case, such as the singular values all being zero ,hen the disturbance is small, showing

the K, compensator minimizing the effects of the noise.

Figures 7-16 and 7-17 show plots of the MIMO complimentary sensitivity
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function. As in the SISO case, the bandwidth increases as the disturbance size

increases. When the disturbance is large, in both the small and large noise cases,

ii[Tj rises above 0 dB before rolling off, indicating deteriorating stability margins due

to increased loop gain in a nonminimum phase system. In the small noise-large

disturbance case, the singular values do not roll off until after 10,000 rad/sec,

compared to 100 rad/sec in the 1-DOF case. In the large noise-small disturbance case,

F[T] has a DC gain of nearly -100 dB, again showing K, minimizing the effects of

the noise.

Figures 7-18 and 7-19 show a[GKI] and a[GKJ for the small noise case. In

the large disturbance case, the separation between o_[GK,] and o[GKj] is much bigger

than it is in the small disturbance case, which shows the potential for higher loop gain,

as expected from the sensitivity plots. Also, since the noise is so small, the K2

compensator does not really come in to play, and the singular values of GK, and GK2

are almost the same over all frequencies.

Figures 7-20 and 7-21 show a[GK1 ] and a[GK2] for the large noise case. In

the large disturbance case, the trends are the same as they are in the small noise case.

In the small disturbance case, however, a[GK,] is held down by the dominant

measurement noise, and all of the singular values of GK2 are at 0 dB to maintain

tracking performance, as in the SISO case.

Figure 7-22 shows a plot of ISGK2I, which is the same for all of the plant

disturbance and measurement noise combinations, showing the bandwidth frequency
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for tracking commands. Figure 7-23 shows a plot of the N, step response. It has an

initial undershoot of less than -1 and a settling time of about 0.6 seconds, with no

overshoot of the final value. This response is virtually identical to the small noise-

small disturbance case for the 1-DOF system and represents the best response possible

without any overshoot of the final value. The responses of NY and roll rate (Figures 7-

24 and 7-25, respectively) exhibit responses with the same characteristics of

minimizing the over- and undershoot.

Overall, this MIMO example served to reiterate the concepts derived in Chapter

mI and those learned from the SISO examples in Chapter VI. Whenever the

measurement noise is large enough to dominate the system, the 2-DOF system is able

to react by driving down the singular values of GK1 to minimize its effects and

readjusting the singular values of GK2 to maintain favorable tracking. The 1-DOF

system responses are particularly susceptible to the effects of large measurement noise,

which serves to increase the overshoot and settling time. For the given tracking

weight, the 2-DOF system still produces the best overall time responses from the

standpoint of exhibiting no overshoot of the final value and minimizing the initial

undershoot, regardless of the disturbance or measurement noise sizes. For this MIMO

example, the 2-DOF system also proves to make use of all five available

measurements, which the I-DOF system does not. In a more complicated MIMO

example, where knowledge of certain measurements may be crucial to controlling

other commands, the 2-DOF system would be at a distinct advantage.
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VIII. Conclusions and Recommendations

&. Suwnnary and Conclusions

At the beginning of this thesis, it was stated that 2-DOF systems were assumed

to exhibit better tracking qualities than I-DOF systems, and two of the main questions

to answer were how much and under what conditions they were better. The approach

to quantifying the differences between the two systems started out with a summary of

the rules governing loop shaping in the I-DOF case, and through the extension of

these concepts to the 2-DOF case, key differences were identified. Several types of

examples were then completed in order to try to achieve the basic control objectives of

tracking commands and rejecting plant disturbances and measurement noises utilizing

both types of systems.

In the four basic SISO examples, the frequency responses gave the basic closed

loop shapes that could be expected to be encountered in control system design.

Although the nominal plant model was low order and could be considered very simple,

it did allow for the effects of putting a pole or zero into the right-half plane to be

easily observed. It turned out that nonminimum phase zeros had the most detrimental

effect on the tracking ability of both systems, sharply reducing the stability margins

and causing the step responses to initially head in the opposite direction. The fact that

zeros cannot be moved through feedback control is a universal problem in control

theory. Unstable poles also had adverse effects on the systems, particularly by

reducing the stability margins.
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Most importantly, the four SISO examples revealed the conditions under which

2-DOF controllers really have an advantage over I-DOF controllers. In cases where

the plant disturbance was large, the time responses of both systems were very similar.

In fact, the 1-DOF responses often showed faster rise and settling times. The one

variable which brought out the differences was measurement noise. Since the system

reference command and measurement noise are related to the output by the same

transfer function in the 1-DOF system, it is readily apparent that there is always a

potential conflict between command following and noise rejection. The noise level

could be viewed as a "Imob" that cm- be directly tuned to degrade the tracking

performance of the system. In all of the. examples, increased measurement noise

caused more overshoot and longer settling times in the I-DOF step responses. The 2-

DOF controlleres structure effectively decouples the requirements necessary for noise

rejection and command following performance by allowing the feedback controller to

concentrate on attenuating measurement noise and the prefilter controller to adjust

accordingly to maintain tracking over as wide a frequency range as possible.

The effects of measurement noise on tracking performance was made more

clear in the low frequency measurement noise example. When the measurement noise

frequencies dip into the region normally reserved for plant disturbances and command

inputs, the classic tradeoff between tracking and noise rejection in I-DOF systems

begins to break down, as the system must try to simultaneously attenuate the noise

while at the same time place energy into tracking commands -- an impossible task

The I -DOF step response for this example showed that as the noise level increased, so
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did the steady state error in the response, due to the fact that no loop gain could be

applied at the frequencies where high gain is normally required for a low steady state

error. The 2-DOF system alleviated this problem by shaping the feedback controller to

resemble that of the 1-DOF system, thereby holding down the effects of the noise.

Meanwhile, the prefilter controller "picked up the slack" by shaping itself in such a

way as to preserve its tracking characteristics. In fact, the 2-DOF system acted as if it

could not tell the difference between high or low frequency measurement noise.

However, if the evaluation model were changed so that low frequency measurement

noise actually entered the system, then both the I-DOF and 2-DOF systems would

exhibit "noisy" responses in the case where the controllers were designed with both a

large plant disturbance and large measurement noise in mind.

The SISO system type examples demonstrated one of the defining

characteristics of H2 2-DOF controller tracking performance. That is, in each of the

examples, the 2-DOF system produced the response that had the fastest settling time,

subject to the constraint of having no overshoot. In nonminimum phase systems, the

amount of initial undershoot was also minimized. Even the error responses for ramp

and parabolic inputs showed the 2-DOF controller's response to have very little

oscillatory motion. A possible criticism of the limits of the 2-DOF time response for

the given tracking weight is that 1-DOF controllers produce responses which have

faster rise and settling times under certain conditions, such as when the measurement

noise level is low compared to the disturbance level. That perceived drawback can be

dismissed when the fact that the 2-DOF controller produces responses with the

aforementioned constraints regardless of the size of the plant distuioance or
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measurement noise is considered. The tracking weight can be altered to contain more

high frequency content in order to improve the speed of the transient response (and

allow more overshoot). In addition, it is possible to move the poles of the prefilter to

different locations after the optimization algorithm is complete, thereby improving the

response without affecting the disturbance or noise rejection properties of the system.

The tail-controlled missile MIMO example reiterated all of the concepts just

discussed for the SISO case and brought out another area where 2-DOF controllers

may offer possible advantages. When a plant is modeled as a non-square system

(different number of outputs than inputs), as the missile in this example was, 1-DOF

systems are limited insofar as how they make use of all available information. Since

the input to the compensator is the difference between the command inputs and the

measured outputs, then the number of outputs used by the optimization algorithm is

limited by the number of command inputs. In 2-DOF systems, on the other hand, the

feedback controller is located after the plant in the control loop. Therefore, the

feedback controller can be non-square and thus make use of all of the plant outputs yet

at the same time feed back only the appropriate number of outputs to be summed with

thc command inputs.

The concept of a 2-DOF controller has been around for several years, but it is

still relatively new from the point of view that there are virtually no textbooks that

include it as part of a basic discussion of linear control theory. The primary purpose

of this work was to take the concept of a 2-DOF controller and compare it to the basic

1-DOF model as far as what it takes to achieve control objectives. Through the

examples presented, it is hoped that it has become clear that a 2-DOF controller offers
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significant design advantages over the conventionaal I -DOF model over a wide variety

of conditions.

&2 Recommendations for Future Research

The 2-DOF controllers employed in thesis made use of the H 2 optimization

method, which has the limitation of constraining the feedback compensator and the

prefilter to share the same poles. There has been some work done on designing each

compensator separately in an effort to optimize each one without being limited by the

other. One potential research topic would be to investigate the techniques of designing

the two controllers separately and comparing them to designs where the controllers are

designed in a single step. Also, since the 2-DOF system is a basic control system

model, other optimization techniques could be applied to it, such as LQG, H., and

mixed H112/. Finally, it would be interesting to see just what , DOF systems are

capable of in practical applications. If simulations indicate that they produce superior

time responses regardless of any plant disturbances or measurement noises, then 2-

DOF controllers would make excellent candidates for precision control applications.
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