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Abstract

Digital image reconstruction tasks currently require human intervention for a

subjective evaluation of image quality. A method for un-supervised measurement

of digital image quality is desired. This research investigated various parameters

(metrics) that can be automatically extracted from a digital image and tested how

well they correlated with image quality. Specifically, images of orbiting satellites

captured by a partially compensated adaptive optics telescope were dealt with.

Two different types of quantities were investigated: 1) Fourier spectral pa-

rameters, based on the spatial-frequency sensitivities of the HVS; and 2) Histogram

shape parameters (i.e image statistical moments) giving quantitative insight into the

structural content, information content, and brightness distribution of an image.

An atmospheric imaging simulator was used to generate a test database of im-

ages. The use of simulated imagery allowed precise control of the imaging parameters

directly relating to image quality: 1) Root Mean Square Error; 2) Seeing conditions

(Fried Parameter, rt); and 3) Target magnitude. This in turn allowed quantitative

'besting of candidate image quality metrics. Metrics could also be tested against

the user defined parameters of the reconstruction process, as a proof-of-concept for

totally un-supervised image reconstruction. Finally, based on this testing, two suc-

cessful image quality metrics are recommended.

Applications that require automatic evaluation of relative image quality should

prove feasible. Applications of interest to the thesis sponsor include: 1) "sifting"

large numbers of image frames to exclude "bad" images from further processing;

and 2) selecting the best reconstructed image to forward to customers.

viii



OBJECTIVE IMAGE QUALITY METRICS:

APPLICATIONS FOR PARTIALLY COMPENSATED

IMAGES OF SPACE OBJECTS

I. Introduction

1.1 Background

This research is concerned with the measurement of the "quality" of a digital

image, specifically the digital images captured and processed at the Air Force Maui

Optical Station (AMOS), the sponsor of this thesis. As background and motivation,

this section will present an outline of the theory and principles of AMOS operations

which are relevant to the problem of image quality measurement.

1.1.1 Imaging of Orbiting Satellites. AMOS is located atop Mt Haleakala

on the island of Maui in the state of Hawaii. The station operates a 1.6 meter

telescope used to obtain high resolution imagery of space objects, especially low

earth orbit (LEO) satellites. [13).

Since AMOS is interested in imaging versus merely tracking a satellite, the

resolving power of the telescope is all-important. A 1.6 meter telescope, in a vacuum,

has a diffraction limited (or theoretical) resolution, 0, of about 0.08 arc seconds or

about .39 microradians (if we use Rayleigh's criterion, 0 = 1.22A/D where A is the

wavelength of light being detected, say 500 nanometers, and D is the 1.6 meter

diameter of the telescope). For a satellite 500 kilometers away from the telescope,

this means that one could not expect to discriminate any feature smaller than 19

centimeters from any adjacent feature on the satellite.
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The resolving power of the telescope is further limited by the intervening at-

inosphere between target and telescope. Due to the thermodynamics of the Earth,

the atmosphere, and their interaction, the atmosphere is not thermally uniform and

isotropic. Atmospheric turbulence in the line of sight of the telescope causes the

index of refraction of the atmosphere to vary randomly at different points across the

field of view of the telescope. This in turn leads to random phase and amplitude

aberrations in the pupil of the telescope [5].

There are regions of relatively constant index of refraction at random positions

in the field of view of the telescope, lasting for a random length of time (on the order

of microseconds). The view is filled with these regions, known as turbulent eddies, and

the statistics of the sizes and durations of these eddies have the effect of limiting the

effective diameter (for resolving purposes) of the telescope. This effective diameter,

known as the Fried Parameter or atrn spheric coherence diameter, r,, depends only

upon atmospheric conditions, regardless of the physical diameter of the telescope [5].

At the AMOS location, ro can typically vary from 5 to 12 centimeters.

Even though the telescope has an actual diameter of 1.6 meters, and can gather

photons moie effectively than a smaller telescope, with conventional optics it can only

resolve space objects as well as an rt-diameter telescope. Since r, is an order of mag-

nitude smaller than 1.6 meters (say 10 centimeters), the denominator of Rayleigh's

resolution formula becomes smaller and 0 becomes larger by the same factor. For

our example satellite at 500 kilometers slant range, we can now only resolve objects

on the order of a meter or more in size.

Another complicating factor is that LEO satellites move rapidly across the sky,

so the target is constantly being viewed through different parts of the atmosphere

and different sets of turbulent eddies, each with different statistical properties. Also,

the aspect angle between the sun, satellite, and telescope is constantly changing, and,

if the satellite is tumbling, spinning, or tracking the earth, it presents a constantly

1-2



changing aspect to the telescope. This limits the length of exposures, and limits the

number of exposures which can be averaged together for post-processing [16] [18].

1.1.2 Hybrid Imaging. There is nothing that can be done about the trans-

lation and rotation of a target satellite. But there are two possible approaches to

tackling the problem of atmosphere-induced aberrations when imaging space objects:

"* the incoming distorted wavefront can be physically corrected by an adaptive

optics system

"* the raw telescope images can be digitally reconstructed

1.1.2.1 Adaptive Optics. An adaptive optics system (Figure 1.1) at-

tempts to physically correct the phase aberrations induced by the atmosphere. It

uses a wavefront sensor which measures the deformations that the wavefront has

experienced while traveling through the atmosphere. The controlling computer uses

this data to generate commands to the deformable mirror, which ideally should in-

duce the exact conjugate of the phase aberrations in the wavefront, thereby removing

the deformations, in real time.

STILT MCOR.REMTR PHTNSMAGING

7VInMCOPE oPTICS AN'D

DEPO ABLE kMIROR

CON0AD PHOTONS

CONTROUL.iG DATA WAVWERONT

COMPrRR SENSOR

Figure 1.1 Adaptive Optics Concept

The AMOS Compensated Imaging System (CIS) (Figure 1.2) is a typical ex-

ample of such a system [13]. The CIS consists of a closed-loop system with wavefront
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sensor, wavefront computer, wavefront corrector, and image sensor. The wavefront

sensor uses two shearing interferometers to measure the slope of the wavefront in two

orthogonal directions at 152 discrete subaperture positions. The wavefront computer

then uses these slope measurements to calculate the corrections necessary to remove

the phase distortions.

The wavefront corrector consists of a tilt corrector mirror and a deformable,

monolithic, piezoelectric mirror (DM) with 168 actuators [13]. The tilt corrector

mirror uses commands from the wavefront computer to remove gross wavefront tilt

error, "centroiding" the image (keeping it centered on the image plane). The DM

actuators receive commands from the wavefron, computer and deform the shape of

the mirror to at least partially cancel out the estimated higher order errors. A slow-

scan charge-coupled device (CCD) camera then captures the compensated image and

records it on a computer disk and then digital tape for eventual digital processing

and shipment to customers.

Target Distorted 1.6m telescom
Satelbitt, wavefront

Fige 1 AliSmtipsg
Mirror

SWavefrontesrCrete d efral irr m'o
Wavefront Sensorbl Corffcor

S~correction

commands

feedackImas ' or Tm
data Computer Controller

Figure 1.2 AMOS Compensated Imaging System
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The adaptive optics reconstruction process does not provide perfect correction

of an image. The adaptive optics process is limited in its effectiveness by:

* Spatial density of wavefront sensor subapertures

* Spatial density of deformable mirror actuators

* Errors and noise in wavefront sensor measurements (sensitive to low light levels)

e Time lag between wavefront sensor measurements and deformable mirror ac-

tuation

* Amplitude perturbations, which cannot be corrected [1]

* Errors in telescope construction such as fixed aberrations, optical misalign-

ment, and actuator misplacement.

These facts leads one to consider supplementing the adaptive optics process with

image reconstruction via digital post-processing. 1

1.1.2.2 Digital Image Reconstruction. Optical imaging with discrete

detectors can readily be treated as a two-dimensional linear systems/discrete signal

processing problem. Linear, shift-invariant systems are completely chaicterized by

Sh(x,y) g(x&,y)
Input i 1 Output

"Actual" Intensity Impulse Response of Intensity Function
Function of Target Atmosphere/Telescope System at Telescope Detector

Figure 1.3 Linear System Model

their impulse response or point spread function (PSF) h(x, y). The output of such

'Some terminology: an adaptive optics system that has less than one WFS subaperture and
DM actuator pair per atmospheric coherence diameter r., such as the AMOS CIS, is said to be
partially compensated.
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systems, g(x, y), is related to the input, f(x, y), by the convolution sum [61:

g(x, y) = F Ff (i, j)h(x - i,yV- j) f f(z,y) * h(x, y),(.1

and also by the Fourier Transform 2 frequency domain filtering property or convolu-

tion theorem:

(g(x,y) = .f(x,y) * h(x,y)) €=:€ (G(u,v) =" F(u,v)H(u,v)), (1.4)

where the asterisk denotes convolution and "4=*" denotes a Fourier Transform pair.

The following terminology is adopted.

"* H(u, v) ==* Optical Transfer Function (OTF)

"* IH(u,v)l ==, Modulation Transfer Function (MTF)

"* G(u, v) ==* Image Spectrum

"• IG(u,v)! ==, Magnitude Spectrum

* IG(u,v)12 I Spectral Density.

Note that in this formulation the frequency variables refer to spatial frequency, and

high spatial frequency generally corresponds rapid changes in image gray levels spa-

tially across the image. This in turn often corresponds to the highly resolved features

of the image.

2 The 2-Dimensional Discrete Fourier Transform is:
IN-i N-i -~~(- Y

F(u, v) = Y E f2(u x+ yP)) [6) (1.2)
*=0 y•0

(for square arrays), and its inverse becomes

I-1 N-1 +j2w(ux + vy) (1.3)f (x,y) = -• E 1: flu, v)exp(+ N(13

ii=O v'=O

u and v are spatial frequency variables.
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The imaging process can be viewed as a linear system. The actual intensity

function f(x,y) of the target satellite can be viewed as the input. The intensity

function at the image plane of the telescope (as sampled by the detectors) is the

output g(x, y). The diffraction effects of the telescope and the "degradation" effects

of the atmosphere are characterized by a point-spread function, h(x, y).

If we knew the PSF of the imaging process, h(x, y), we could ideally find the

original target f(x, y) by F(u, v) = G1v) This concept is known as inverse filtering.

There are three problems with this simple approach:

1. If HI(u, v) approaches zero at any point the calculated F(u, v) would be theoret-

ically unbounded and numerically wrong, a manifestation of the fact that there

is no information available from the spatial frequencies where H(u, v) = 0.

2. Random noise is always introduced in the detection process, adding uncertainty

to the measurement of g(x,Y ) (See Figure 1.4).

3. The OTF is actually a random variable, changing with time, because of noise

and the constantly changing atmospheric turbulence. The best that can hoped

for is knowledge of the statistics of the OTF.

Additive DetectionNoise

f(x,y) h.~y &,••-• gxY)

Inp ut Intheny)sity F InOutput

"Actual" Intensity • Impulse Response of I t Telescope Detector

Function of Target Atmosphere/Tefescope System

Figure 1.4 Linear System Model With Detection Noise

Problems with noise and amplitude aberrations can be partially overcome by

averaging large numbers of short exposures together. Intuitively this makes some

sense since a sudden random change (i.e. noise) in one sample of a random variable
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would be partially averaged out by other samples taken at different times. The net

effect would be a. "smoothing" of noise effects. An estimate of F(u, v) can be obtained

by F(u,,v) - where (...) denotes ensemble averaging. An example ensemble-

averaged satellite image3 , or (g(x, y)), is shown in Figure 1.5. The magnitude of the

Figure 1.5 Ensemble-Averaged Satellite Image

Fourier Transform of this image, or magnitude spectrum, is shown in Figure 1.6.

Figure 1.6 Modulus of FFT of Satellite Image

"3Since AMOS images are captured on a two-dimensional CCD array, it is customary to view
an image as a two-dimensional array of gray levels. AMOS images are generally processed as 128
by 128 matrices of gray levels with 14 bit quantization. In other words, the minimum element
(0) is black and the maximum element (16383) is white, with integer gray levels linearly scaled
in between these two extremes. The value of a gray level corresponds to a measured integrated
average intensi~y at a corresponding area in the image plane of the telescope.
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An estimate of the impulse respons(. (PSF) of the imaging process is also

sought. In optical signal processing, a point source of light can serve as an impulse

function. The sky is full of stars which serve as excellent point sources. An ensemble

average of images of a star taken immediately before or after a target satellite pass

provides (h(x,y)), an estimate of the PSF. See Figure 1.7 for an example.Taking

Figure 1.7 Ensemble-Averaged Star Image (Point Spread Function Estimate)

the Fourier Transform of the average PSF gives us the average OTF of the imaging

process (estimated) [5]. See Figure 1.8. The origin is in the center of the 2-D surface

plot.

Figure 1.8 Magnitude of the Ensemble-Averaged OTF

The satellite FFT is divided by the OTF estimate above. This has the effect of

amplifying the higher spatial frequencies of the satellite image. Notice, however, that
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the OTF gets smaller with increasing spatial frequencies. While it is true that the

presence of Fourier coefficients at higher spatial frequencies generally implies higher

resolution, the telescope has a fundamental limit on its resolution. Therefore, it is

band-limited in the Fourier domain. Any Fourier coefficients beyond this frequency

can only be the result of noise since this information could not have possibly been

captured by the band-limited telescope system.

The higher spatial frequencies of the telescope passband contain valid image

information, but also contain noise energy as well. Consider, for example, if the

OTF, H(u,v), is known exactly, but G(u,v) is detected in the presence of additive

noise. Applying the inverse filtering relation, F(u, v) = this equation would
- (UNVuI

reduce to F(u, v) = F(u, v) + ± where N(u, v) is the image noise spectrum. If

the OTF ever approaches zero in the telescope passband, which it does (Figure 1.8),

the E term would take on large values and amplify the noise in the image.
H(u,i•)

It is reasonable to suppose that if a second filter is applied, one which attenuates

the effects of these noise-dominated higher frequencies, acceptable results might be

obtained. AMOS personnel prefer a triangular cross-section (conical) lowpass filter

Figure 1.9 Inverse Filtering Noise Filter
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for reconstruction noise attenuation [18] (Figure 1.9). This modified approach to

inverse filtering is commonly used for reconstructing AMOS images. The spectrum of

the inverse filtered, triangle filtered example image is shown in Figure 1.10. Compare

this spectrum to the original ensemble image spectrum (Figure 1.6). Note that the

new inverse filtered spectrum has energy content in the higher spatial frequencies.

The inverse Fourier Transform of this spectrum is shown in Figure 1.11. Compare

this reconstructed image to the original ensemble in Figure 1.5

Figure 1.10 Reconstructed Image Spectrum

Figure 1.11 Reconstructed Satellite Image
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1.2 The Image Quality Problem

It is generally accepted that the ultimate arbiter Lf image quality is the sub-

jective opinion of the user of an image. This fundamentai axiom implies several

problems for the automatic processing of large amounts of AMOS digital imagery:

* Ensemble Sifting

During a particular AMOS satellite imaging session, hundreds of raw image

frames are ingested into the postprocessing system for reconstruction. Experi-

ence has shown that some image frames are of noticeably poorer quality than

others in the ensemble [22]. It may be desirable to exclude these lower quality

images from the reconstruction ensemble [21].

a Reco.structed Image Selection

Recall the triangular cross-section noise filter of the modified inverse filtering

reconstruction method. The optimum width that this filter should have is not

readily apparent. The actual bandwidth of the optical system is changing ran-

domly with ro and the performance of the adaptive Ol)ics system. If the filter

is too wide, noise wvill be let in which will detract from the image restoration

goal. If the filter is too narrow, legitimate resolution detail from the target

satellite will be excluded from the final product. Which filter width should be

used? Also, several reconstructed images are produced during one observing

session. The customer usually requires only a subset of these images.

These two classes of problems could be handled in an un-supervised fashion if some

sort of "quality number" could automatically be assigned to the images. This number

could be thresholded for rejection or acceptance of images, based on quality.

1.3 Research Objective

The goal of this research is to firnd a way to objectively and automatically

measure the quality of an AMOS digital satellite image. This research will inves-
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tigate if there exist certain quantities which can be extracted from digital images

of space objects that correlate with perceived image quality. These parameters will

be obtained using the Interactive Data Language (IDL), a commercially available

data processing software package which is used to process imagery operationally by

the thesis sponsors at AMOS [14] [15]. Any of these parameters which prove to be

successful may eventually be integrated into AMOS operational image processing

software wherever some indication of relative image quality is required.

1.4 Scope

This thesis deals with quantitative post-processing algorithms for monochrome

digital images of extended objects against "dark" backgrounds, as gathered by an

adaptive optics system similar in concept to the AMOS system. The actual per-

formance and design of the adaptive optics system is not treated here. Advanced

applications of Artificial Intelligence, Pattern Recognition, Neural Networks and

other advanced computer science techniques are not treated here. Due to the se-

curity classification of the bulk of AMOS imagery, experimentation was limited to

unclassified, simulated imagery (see Chapter 3). Subjective evaluation of imagery

by experienced Photo-Interpreters is beyond the scope of this thesis.

1.5 Summary of Key Results

This research supports the hypothesis that automatic objective image quality

measurement is possible for digital images of space objects. The two recommended

image quality metrics (IQMs) presented here are

P*Ppe'

IQM = E IF(p,O)I (1.5)
t9

and

IQM = var[fo1(x,1y)] (1.6)
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where F(p, 0) is the discrete Fourier Transform of an image, plo,,w and PUn. are the

practical band limits of the human visual system, fob(x, y) is a Sobel edge enhanced

image and var[ .. ] is sample variance. These algorithms were implemented in the

IDL software package.

The metrics were tested and validated against a database of raw images gen-

erated by a software simulation of an atmospheric imaging adaptive optics system.

Since the simulator allows precise control (and knowledge) of seeing conditions and

target brightness, which directly impact image quality, changes in image quality

metric values could be directly and objectively compared to changes in these simu-

lation parameters. As simulated brightness or seeing conditions were quantitatively

improved, a successful IQM should give a quantitatively higher image quality rating.

Also, recall that the modified inverse filtering operation discussed above re-

quires the user to select the optimal noise suppression filter width. The image qual-

ity metrics were tested against a database of images reconstructed with a variety

of noise suppression filter widths to give some indication of the feasibility of using

these metrics for totally un-supervised image reconstruction.

In all test cases the metrics performed consistently, detecting absolute changes

in image quality simulation parameters and noise filter widths. An operational eval-

uation of metric performance was not performed in this research. Such evaluation

would necessarily include comparing photo-interpreter assessment to automated im-

age quality metric rating, on actual imagery instead of simulated imagery.

1.6 Document Organization

Chapter 2 will discuss the current knowledge concerning un-supervised objec-

tive image quality assessment as found in the image processing and optics literature,

and present the candidate Image Quality Metrics that were successfully tested.

Chapter 3 will discuss how the Image Quality Metrics were tested on "raw"

image ensembles using simulation software.
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Chapter 4 will discuss the results of the testing. A feasibility argument is also

presented regarding the use of the Image Quality Metrics to automatically select the

optimum width of the triangular reconstruction noise filer, mentioned previously in

this chapter.

Chapter 5 will discuss conclusions and any further research that may be indi-

cated.
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11. Image Quality Metrics

Since the goal of this research is measuring relative image quality, a reasonable

first step would be to obtain two different quality images of the same object and

compare and contrast various quantities associated with the images. If there are any

differences found, the next step would be to determine if these differences appear

consistently for all images of different quality, and then determine of this effect is

consistent for a variety of different targets. Choosing quantities to be tested is the

subject of this chapter, and the testing of those quantities is covered in Chapters 3

and 4.

In the image processing literature, images are generally analyzed in the spatial

domain (i.e. analysis of characteristics and distribution of the actual pixels) or in

some transform domain, where the image is represented as the coefficients of some

linear combination of orthogonal basis functions (or basis images) [6). Section 1

discusses image quality measurement with the most commonly used of these trans-

forms, the Fourier Transform, mentioned in Chapter 1. Section 2 discusses Image

Quality Metrics derived from spatial domain quantities of the image.

2.1 The Fourier Transform and Image Quality

In Chapter 1 the Linear Systems/Fourier Optics model of image propagation

waW discussed. It was mentioned in passing that the u and v frequency variables

are .patil frequency variables. This implies that the higher the spatial frequency,

the faster things are changing in the image. This alone might intuitively lead one

to think that a "good" (i.e. highly resolved, good detail) image could have a larger

amount of spectral content in the higher spatial frequencies than a "bad" image,

since "detail" implies that gray levels are changing rapidly across the image as the

structure of the target is revealed 131.
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Also, spectral content in the very low frequencies would generally imply simple,

large-area changes in background level [3]. Therefore, the very low spatial frequencies

might not have a serious impact on the amount of target detail that an image reveals.

The working hypothesis in this section is that "good" image spectra differ in

some quantifiable and consistent manner from "bad" image spectra. The intuitive

arguments presented above lead to the specific hypothesis that

(high frequency spectral content) -== ("good" image). (2.1)

If this hypothesis can be supported, then an Image Quality Metric (IQM) such as:

j2rf f'Ppr IF (p, 0) 1dpd9 (2.2)

is implied (F is the image Fourier Transform discussed in Chapter 1, where u and

v Cartesian frequency coordinates have been changed to p and 0 polar frequency

coordinates, p = ,/2 +Tv2 or the Euclidean distance from zero frequency). There is

support in the literature for such a hypothesis, as discussed next.

2.1.1 Human Visual System Transfer Function. The idea that the human

visual system (HVS) is more receptive to some spatial frequencies and less receptive

to others, as implied above, is widely accepted [6] and can be readily translated into

a linear systems vocabulary. Specifically, the underlying hypothesis is that the HVS

can be modelled as a spatial frequency transfer function [101 [11] [12] [19].

Under certain simplifying assumptions1 , a relatively simple first order approx-

imation of the Human Visual System as a magnitude transfer function (MTF) has

been developed. The relevant research involved experimentation with human ob-

servers who evaluated images with periodic patterns of different fundamental fre-

'Assumptions such as: the gray level differences are limited to the approximately linear portion
of HVS dynamic range; the observer can look at the image for as long as is preferred; the observer
is at the optimal distance from the image representation.
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quencies. By noting the observers' sensitivity across a variety of spatial frequencies,

an approximation to the frequency response of the HVS could be estimated [11].

The researchers found that the HVS is insensitive to all but gross changes at

very low spatial frequencies. Also, like all optical systems, the HVS is band-limited,

and insensitive to higher frequency structuie in an image. (Note that there would

also be bandwidth constraints imposed by the optics and sampling of the imaging

system.) Taken together, the conclusion is that the HVS transfer function can be

approximated as a iotationally symmetric bandpass system, with one possible cross

section shown in Figure 2.1. Analytical fits to this curve such as:

HVS Trcnsfer Function
1.0 . . .

C:
(j7
0)

•:
0 02

0.0

Sampled Frequency Axis

Figure 2.1 Frequency Response of HVS

IH(p)I = (A + Bp)ecP (2.3)

are often used, where A,B,and C are determined empirically for each application,

and depend on image display, observer distance from display, image sampling and
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array size [11]. This idea that the HVS can be modelled as a bandpass filter will

feature prominently in the effort to measure image quality, as discussed next.

2.1.2 Spectral Image Quality Metric. How can this model be applied to

image quality measurement? Observe the two images of a Russian Okean satellite

shown in Figure 2.2. These images were obtained from di adaptive optics simulation

Figure 2.2 Okean Satellite, ro =5 (left) and 15 (right) cm respectively

described in Chapter 3. The imaging conditions are alike in every respect except

seeing conditions: r, = 5 cm on the left and 15 cm on the right. It is clear that the

second image reveals more detail about the target.

How do the spectra of the two images compare? First of all, to make a mean-

ingful comparison, the energy of the two images must be normalized:

fo)m f(,Xg(Y, y) (2.4)

where f,,g.(x,y) is the original image. Also, since depicting the comparison of 2

two-dimensional surface plots is difficult, it would be convenient (at least for the

purpose of presenting the concepts) to radially average the modulus the two spectra:

.v F(p,O) (2.5)
nub= n er of pixel at distance p

where (F(p,(9)I is the modulus of the discrete two-dimensional Fourier Transform of

fmor(x, y) (again in polar coordinates with p = vf7 , the Euclidean distance
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in pixels - rounded to the nearest integer - from the zero frequency origin). Now

F,.&j,,g(p) is a real one-dimensional array which can be plotted as a curve instead of

a surface.

The radially-averaged spectra of the two example images are shown in Figure

2.3. Note that the curve corresponding to the good image spectrum is greater than

the curve corresponding to the bad image spectrum for a specific midrange band of

frequencies. Chapter 4 will show that this effect occurs consistently for a wide variety

0.40 -- . . . . . ..

-5

V)

0 0.30

i, I Bad Image

S0Spectrum0• 20

Good Image
> Spectru

0.10

0.00 , -

0 5 10 15 20

Normalized Radiol Frequency

Figure 2.3 Spectral Comparison of Different Quality Images

of targets and image degradation effects tested in this research, a vitally important

result. The same result is documented in [10]. This result is consistent with our

model of the HVS as a bandpass system, since:
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"* the AMOS mission involves the high resolution imaging of space objects for

consumption by human analysts;

"* the Fried Parameter ro is a direct indication of the quality (resolution) of an

AMOS image for this application.

Therefore a larger-ro image should have higher frequency content in the HVS band-

pass frequencies.

Since the the area (or volume in the non-radially averaged spectrum) under the

curve is different for images of different quality (within a certain frequency range),

the following candidate spectral Image Quality Metric (IQM) is suggested:

pupper

IQM = E E IF(p,8)I (2.6)
0 P=Pw*,.

where the Plower and PM' are determined empirically. The selection of these limits

will be discussed in Chapter 4. Note that this formulation is in effect integrating

(summing) the magnitude spectrum after filtering by a rectangular cross-section

bandpass filter. This rectangular bandpass filter could be regarded as a simpler

approximation of the HVS bandpass shown in Figure 2.1.

A similar quantity to the above IQM is suggested in [12]. The major difference

there is that instead of using the rectangular filter approximation as above, the image

is filtered with an analytical curve-fit of Figure 2.1 as well as a filter to deal with

oblique-angle effects in aerial remote sensing (which doesn't apply to this thesis).

The Interactive Data Language (IDL) software package implements the so-

called "Fast" Fourier Transform (FFT) algorithms, facilitating easy implementation

of this metric. This metric was tested (see Chapter 3) and its performance is dis-

cussed in Chapter 4.
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2.2 Histograms and Image Quality

The histogram of an image is a common spatial domain image processing and

analysis tool. The histogram of an image is simply a tally of the number of pic-

ture elements (pixels) that have a certain gray level, plotted against gray level:

histogram = n(k) where n(k) is the number of pixels with gray level - k. The bis-

togram bin sizes are generally the same as the gray-level quantization of the imaging

system, making the histogram a discrete array of integers. Normalizing the curve

n(k) to unit area yields a first order estimate of the probability density function

(PDF) of the image: p(k) = ! V (for N X N array) [6] [4].

The working hypothesis here is that images of different quality have consistent,

quantifiable differences in their histograms.

2.2.1 Histogram-Based Image Quality Metrics. Consider again the two

satellite images in Figure 2.2. After normalizing the energy of the first image to be

the same as the second image2, or

A=Fy , f,(x, y) (2.7)
S IV

B = Z 2(x, y) (2.8)

f, (X,•Y) -Bf(x, y) (2.9)
A

(where fi.2(x, y) are the respective images in Figure 2.2) the histograms of both of

these images are calculated (Figures 2.4.

A distinct difference in the shape of the histogram curves is evident. Observe,

for example, that the good image histogram has entries at the higher gray levels,

while the bad image histogram does not. This indicates that, even though both

2This allows energy normalization, while keeping convenient integer histogram bin sizee, as
opposed to n-irmalizing to unit energy, where all gray levels and bin sizes would be fractional.
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Figure 2.4 Histograms of Good and Bad Images, (normalized to the same energy)
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images have the same total energy, the better image has some brighter pixels. Also

note that the better image has more zero pixels. This is because the bad image,

which is of poorer resolution, has its image energy "smeared out" across the image,

yielding non-zero (gray) pixels in the worse image that were (zero) black in the better

image.

2.2.1.1 Histogram Features and Image Quality. The above obser-

vations are all somewhat subjective. The goal is to somehow extract parameters

from these histograms that captures these observations in a way that correlates with

image quality. As a starting point, note the following common parameters, called

histogram features, which are often used to characterize image histograms [6]:

HISTOGRAM PARAMETERS:

Moments m, = 1:9- k'p(k)

Absolute Moments ?h, = E-_'o" Ikl'p(k)

Central Moments Y, = --o(k- mi)'p(k)

Absolute Central Moments 4, = -"z k - mil'p(k)
Entropy H F - * • p(k)log 2 p(k)

where gmaz is the maximum gray level in the histogram. These quantities are not

unique to image processing, but are also used in general statistics applications. As

such, some of these parameters are better known by other names:

first absolute central moment, ft dispersion

second central moment, Y2 variance

second moment, m2  mean square value

third central moment, P3 skewness

fourth central moment, 44 kurtosis

Note that some of these features can be measured without explicitly determining the

histogram:

m.= f'(x2,y) (2.10)
2 -
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Pi= E(f (X, y) - mi(2.11)
z V

Ai= E EIf(X, Y) - mi I (2.12)

Consider again the two example histogram curves. Obviously, the shapes of

the curves are significantly different. It is plausible that the moments of these curves

can provide a quantitative indication of the aspects of histogram shape that may

be relevant to image quality. Variance, for example, as mentioned in [6] can give

an indication of "activity", in the gray level amplitudes . This is the same intuitive

argument mentioned in the previous section of this chapter as a motivation to inves-

tigate spatial frequency quality metrics. The working hypothesis here is that some

or all of these histogram features correlate with AMOS image quality.

2.2.2 Histogram Features as Structure Factors. Linfoot [8] presents similar

intuitive arguments when he redefines some of the above histogram features as follows

for an energy normalized image:

second moment, m2  structural density factor

variance, 4 2  normalized mean structural density

dispersion, ' f.,, c(x, y)dxdy

such that c(z, y) = "structure function" or "contrast function"

= f_(X___)_- mi

He relates these factors to the "peakiness" or variability of image amplitudes, and

the amount of structure or "fine object detail" an image contains. Thus, support for

the hypothesis exists in optics literature.

2.2.3 Histogram Features as Sharpness Functions. Buffington and Muller [2]

also present some of the histogram features given above, but from an entirely dif-

ferent context, using an idea they call image sharpness. The authors' goal was

to derive algorithms (called sharpness functions) that produce a maximum output
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when phase distortion at the telescope image plane is at a minimum. Their eventual

goal is to use image "sharpness" measurements to drive adaptive optics hardware

in a feedback loop, providing real-time maximization of the sharpness function, and

therefore, real-time correction of image phase distortion.

Consider one sharpness function given in [2]:

S= J M(r, y)f(x, y)dxdy (2.13)

where f(x, y) is the received image and M(x, y) is the target image, known a pr-iori.

Now, since it assumes prior knowledge of the target, it cannot be used operationally

at AMOS, but it is instructive to consider it for illustration purposes.

The sharpness function above is similar to the correlator/mratched- filter concept

in digital communication theory. Consider a digital communications receiver which

receives a waveform that has been corrupted by noise or other propagation effects.

The receiver's purpose is to find out which symbol was sent. One common approach

is to cross-correlate the received waveform with a collection of stored symbols, and

select the symbol that gave the highest cross-correlation value 3 . Buffington and

Muller are using nearly the same concept in their scheme of image correction.

Now, if the target is not known a priori (e.g. AMOS operations), then the

target function M(z, y) in S3 can be replaced with f(x, y), the received image, as in

the Buffington-Muller sharpness function given by

S - J f(x,y)f(xy)dxdy (2.14)

or

S, - JJ f 2 (Xz y)dxdy (2.15)

3 For two real one-dimensional functions f(x) and f(x), cross-correlation is defined as rfM(x) -
f f(a)M(x + a)da and the autocorrelation of /(z) is defined as rff(x) = fa f(a)f(x + a)da.
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which is the second moment, and also the autocorrelation peak rf(O,0), of the

image. Buffington and Muller prove that this function is also maximized when

telescope phase aberration is minimized. Similar conclusions are reached for the

third and fourth moment functions.

Three different arguments have now been cited as motivation for investigating

various statistical moments of an image with respect to image quality. Of all the

moments mentioned above, only the second central moment will be given further

consideration here. This is due to its intuitive connection to the idea of variance,

where variance of image amplitudes generally imparts image information. Prelimi-

nary testing early in this research effort concluded that the first, third and fourth

moment performed nearly the same as variance regarding the relative measurement

of image quality.

Also note that there is no real basis, other than convenience, for choosing

betweeit the second moment (sharpness) and the second central moment (variance)

as a measure of relative image quality when the images have been energy-normalized.

This is because vat[f] = E[f2] - (E[f]) 2 (where var[ ... ] is the variance operation

and E[... ] is the expectation operation) and if the image f is always normalized

to the same value, E[f] and therefore (Efjf) 2 will always be the same value, so

the variance and sharpness will always differ by the same constant. Image sample

variance is therefore arbitrarily chosen here for further investigation as an image

quality metric.

2.2.4 Histogram Features, Information Theory, and Entropy. Entropy is

an important concept in many areas of digital signal processing, and since it is often

intuitively related to the information content of a signal, it is a natural choice for

a candidate image quality metric. As will be seen in Chapter 4 however, it did not

prove to be a consistent indicator of image quality. As a rule, unsuccessful image

quality metrics are not discussed in this thesis, but it was felt that entropy is an
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important enough quantity that it's testing and failure in this research effort should

be explicitly noted.

Entropy, as originally introduced in the field of statistical mechanics, is a mea-

sure of the number of microscopic states by which a given macroscopic state can

be realized. If there are N possible, equally likely microscopic states, the entropy is

given by
1

H = InN -In -= -lnp (2.16)
N

where p would be the probability of each state. If the states are not equally likely,

but each have probability p(k), then the entropy is an average [9]:

(-lnp(k)) - - p(k) lnp(k). (2.17)
k.

Shannon provided the mathematical basis for modern communications theory

when he applied the entropy concept to messages and information, replacing thermo-

dynamic micro-states with message symbols [20]. In this formulation, information

imparted by a symbol in a message depends on the number and probability of each

particular symbol. For image processing applications, the gray level of a pixel plays

the role of a symbol. Typically, in information theory applications to digital data,

the above natural logarithm is usually replaced by log 2 which is accomplished by

simply dividing by In 2.[20]

Consider a 256 X 256 pixel eight bit image, where there are 65536 elements

which can each take on 256 values. If the pixels were all the same value, the image

would convey little information, since, practically speaking, there would be no image.

Only one bit of information per symbol, versus 8 (28 = 256 gray levels), would be

needed to coiavey the information in the image. An image with 8 gray levels could

reveal quite a bit moie detail about different brightnesses at different parts of the

target. This image might require at least three bits per symbol (2' = 8 gray levels)

to convey the information in the image. The trend that these examples are meant to
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show here is that an image with more "information content", or entropy, has a wider

and flatter histogram. In fact, entropy is maximized for a "flat" or uniform PDF,

or histogram. More generally, entropy provides some measure of histogram shape.

Also, since entropy gives a quantitative indication of the "uncertainty" of a message

there an intuitive argument for investigating entropy as an Image Quality Metric.

2.2.5 Histogram-Based Image Quality Metrics with Spatial Filtering. Con-

sider the second moment image quality metric mentioned previously:

s, = I f i(xy2(X •dxdy = rff(0, 0) (2.18)

By Parseval's Theorem this quantity is equal to

J F(u, )Idudv (2.19)

or in discrete form:

Z IF(u, v)12. (2.20)

This expression is similar in concept to the spectral image quality metric from the

first section of this chapter:

Pupper

IQM = - J F(p,0)1. (2.21)
a PýPlowcr

In both cases the two preceding equations are adding the modulus (or modulus

squared) of Fourier coefficients of an image.

Notice however, that the second moment is the sum of all image energy regard-

less of spatial frequency. This ignores the idea presented previously that energy in

very low spatial fiequencies is relatively unimportant to image quality. This leads to

the following question: given that the human visual system (HVS) acts as a band-

pass filter, would it be desirable (and possible) to also "filter" the images in the
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spatial domain before applying the histogram/image moment-based IQMs, as was

done with the spectral IQM?

Part of the answer to this question lies in the fact that histograms (and image

moments derived from them) contain no pixe' position information. Ope could take

"a nearly perfect image of the highest quality and randomly rearrange the pixels into

"a meaningless jumble and the histogram and the IQMs based on it would remain

unchanged. Another aspect to consider is that noise manifests itself as random

variations in image pixel values. The worst-case scenario is that one of the candidate

spatial IQMs could possibly indicate that an image with high noise was of higher

quality than an image with low noise, just the opposite of what is desired.

It is possible to approximate the effect of a frequency-domain filter in the

spatial domain. This is known as spatial filtering. The basic approach is to replace

a pixel value with some linear combination of the value of itself and it's neighbors.

This can be visualized as sliding a mask: (Figure 2.5) across the image and replacing

W1 W2 W3

W4 W5 W6

W7 W8 W9

Figure 2.5 Spatial Filter General Mask

the pixel at the center of the mask with, for example, the sum of the products of

the mask values and the pixel values under the mask. In Figure 2.5, for example, if

the values of the pixels under the mask are P1,P2,"- ,r 9, then the pixel p5 becomes

P5.ncw = U'iPi + w2p2 + "" + wgpg. Note that pixel position information now plays a

factor in the new, spatially-filtered image. Note also that the Fourier Transform of
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the image is not needed to perform the filtering, implying a significant computational

savings in most cases [4].

One of the most important categories of spatial filters are known as edge de-

tection operators [4]. The mask of the Sobel edge detection operator is shown in

Figure 2.6. These two masks are both applied to the image, one after the other.

-1 0 1 .1 -2 .1
-2 0 2 0 0 0

-1 0 1 1 2 1

Figure 2.6 Sobel Operator Masks

There are two masks because of the nature of the gradient operation upon which the

Sobel Operator is based:
9f Of

grad(f) = + (2.22)

The Sobel Operator is known as a gradient filter because it replaces the original image

with an estimate of the gradient of the image. See Figure 2.7 for two examples of

Sobel edge-enhanced images.

The gradient provides an indication of the location and intensity or sharpness

of the edges, or discontinuities, in an image, which usually impart the only useful

information in an image to the observer. The Sobel Operator produces low output for

uniform image regions (i.e. low spatial frequencies), and is also somewhat insensitive

to noise effects (i.e. random high frequency content) [4] . Also, the HVS itself

provides a form of edge detection [6]. This implies that the Sobel Operator acts aq a

type of spatial HVS filter. This research will investigate whether or not the variance
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SOBEL OPERATOR

SOBEL OPERATOR

Figure 2.7 Sobel Operator Examples - Left: Original Images - Right: Sobel Filtered
Images

image quality metric presented above will perform better if the image is first Sobel

filtered.

Note that this idea has some support in the literature. One of the proposed

sharpness functions proposed in [2] is the second moment of a partial derivative of

the image, or: I" "'+ (Zd' Y) 12 (2.23)a ayl z ny-- --

where f(x,y) is the image. This formulation is another approach to finding the

variance of the edge information of an image. Another source [7] suggests analyzing

the histogram shape of a Sobel-filtered image as a method of automatically detecting

flaws in .brasive diamond film as it is being fabricated.

2.3 Summary

The following IQMs are to be tested, with results presented in Chapter 4:

1. Spectral Content (Band Limited) of Image
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2. Variance of Original Image

3. Variance of Sobel Filtered Image
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III. Research Approach

This chapter will discuss the methods used to test the various in ige quality

metric candidates.

3.1 Adaptive Optics Simulation Software

Michael Roggemann of the Air Force Institute of Technology has developed

FORTRAN software which simulates a general adaptive optics imaging system [16].

The user provides a "true" image as input to the system, say a CAD drawing of a

satellite, such as the Russian Okean satellite model shown in Figure 3.2, and defines

the simulation imaging parameters. The parameters, and some typical values used

in this research are shown below:

SIMULATION PARAMETERS:

number of frames 100

density of WFS detectors 10 across diameter

telescope mirror diameter 1.0 meters

wavelength of light 500 nanometers

target distance 500 kilometers

average number of photons per image varied, 4th to 8th magnitude

average number of photons per WFS subaperture varied, 4th to 8th magnitude

actuator spacing 11 centimeters

atmosphere coherence diameter, r,, varied, 7 to 13 cm

RMS detector read noise 15 photons per pixel

The astronomical magnitude scale mentioned above is defined such that the if the

total radiation flux between two stars is given by the ratio slls2, their magnitudets

differ by m, - m2 = -2.512 log10(sl/s2), with a previously agreed upon flux level for

m = 0. For example, the star Vega has an apparent magnitude of 0.14. If two objects
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differ in absolute magnitude by 1, the number of photons leaving the objects differ

by a factor of 2.512. If they differ by 5 magnitudes, the number of photons differs by

a factor of 100. Roggemann [17] has numerically calculated the number of photons

reaching an earth-bound adaptive optics telescope (through a typical atmosphere):

MAGNITUDE No. Photons at Wavefront Sensor No. Photons at Image Plane

4 207 10654

5 83 4262

6 33 1705

7 13 682

8 5 273

A block diagram of the major software simulator functions is shown in Figure 3.1.

SETL P IZ

DEFORMATION

(.WFS MEASUREMENT

ACTUATOR COMMANDS ENSEMBLE AVERAGE

APPL CORRECTION and

Figure 3.1 Block Diagram Description of aptive Optics Simulation Software
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Two set, of output ensemble averages are shown below, first with magnitude

held constant and r0 varying, then with ro held constant and magnitude varying

(Figures 3.3 and 3.4), and all other simulation parameters held constant throughout

both cases. Note the different effects of the atmosphere and light level on resolution

and quality.

Figure 3.2 Okean Satellite CAD Drawing

Figure 3.3 Okean Satellite, 4th magnitude, r. = 13, 10, and 7 cm respectively

Figure 3.4 Okean Satellite, ro = 13cm, 4th, 5th, and 6th magnitudes respectively

Besides the Okean satellite image, two other test objects were used in the sim-

ulation: (Figure 3.5) This variety of shapes, structures, and periodicities is assumed
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I
Figure 3.5 Eorsat and Rorsat Imaging Target CAD Drawings

to provide a reasonable test of image quality measures as applied to space object

imagery.

3.2 Testing Parameters

The optical propagation simulator gives the user direct control over three very

important factors which have a direct bearing on AMOS image quality, but which

cannot be known in advance in real-world operations:

1. Target Magnitude (light level);

2. Seeing Conditions (Fried Parameter); and

3. The original target irradiance function.

Since the goal is to detect differences in image quality, the actual values of the other

parameters are somewhat unimportant, provided they are held constant while light

level and seeing conditions are varied. For testing of raw imagery, the most straight-

forward procedure is to generate a large number of images for all three targets,

varying magnitude and r0 , calculate the various IQMs for these images, and plot the

IQM values against both magnitude and ro.

As noted above, ro is a direct indication of image resolution. Therefore, a

valid IQM should increase monotonically as a function of ro. Also, object magnitude

impacts image quality through its effect on the performance of the adaptive optics
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system (WFS measurement errors), and through its effect the image signal-to-noise

ratio. A valid IQM should decrease monotonically as a function of magnitude.

One other test parameter will be considered in this research. When deal-

ing with image coding, compression and transmission, fidelity parameters are com-

monly used, which provide a measure of how closely some "original" image, f0 9(x, y)

matches a "final" image f(x, y) after undergoing some process. One common fidelity

measure is root-mean-square error.

I

ers= -ý _ E forig(x, y) - f(x, y) gray levels. (3.1)

It is well known that such fidelity measures are not good indicators of image quality

as evaluated by the HVS. In other words, the HVS is known to be more toler-

ant of certain types of errors, and more sensitive to others [4]. For instance, in

Figures 3.3 and 3.4 two different types of image corruption effects are noticeable,

depending on the parameter being varied, yet e,., would provide no information on

which type was more or less objectionable to a human observer. However in both

cases, e,,, would still increase with decreasing image quality. Therefore it may be

instructive to parameterize IQMs against etm, to provide a coarse validity check of

the results. It would be expected that valid IQMs should be a generally decreasing

function of erm..

IQM performance on reconstructed (inverse filtered) imagery can also be pa-

rameterized against the triangular noise filter width. However, this filter width does

not have a simple, easily quantifiable effect on image quality. If the filter is too

narrow, the reconstructed image will be a low quality, low resolution "blob". If the

noise filter is too wide, noise effects will lower the image quality. One possible test

approach would be to reconstruct a single ensemble with a variety of filter widths,

calculate IQMs for these various output images, and plot IQM versus noise filter

width. One would expect a convex curve with maximum corresponding to the opti-
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mum filter width. It would fall to the observer to determine subjectively if this filter

width is indeed optimum.

The results of this testing are discussed in Chapter 4.
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IV. Results

4.1 Introduction

This chapter investigates the hypothesis that the Image Quality Metrics (IQMs)

presented in Chapter 2 correlate with atmospheric seeing conditions (r,), target mag-

nitude, and image fidelity (root-mean-square error), as controlled by the adaptive

optics simulator discussed in Chapter 3. A key assumption is that these parame-

ters are indeed indicative of Image Quality as experienced by AMOS operators and

customers using real-world data. Key illustrative results are shown here, with the re-

mainder in the appendix. This chapter also examines the idea of using the IQMs for

reconstructed image selection, specifically, selection of a reconstruction noise filter.

In all cases a successful IQM will consistently and monotonically change with a

quantifiable change in r, or target magnitude, as controlled by the image simulator.

The two dimensional surface plots shown in the following two sections of this chapter

will plot r, on one axis, target magnitude on the second axis, and the IQMs as a

function of the two. The IQMs should give the high-resolution, high brightness

images represented by one corner of the plot domain the highest quality rating and

the low-resolution, low brightness images represented by the opposite corner of the

plot domain the lowest quality rating. Similarly, any cross section taken parallel to

the r, or magnitude axes should give a monotonically increasing quality rating curve

as either ro goes up or magnitude goes down.

Metrics were also parameterized against RMS error. Recall from Chapter 3

that RMS error only correlates approximately with image quality as perceived by

the human visual system. However, observing the relation between IQMs and RMS

error should prove to be an instructive, qualitative, overall check on the validity of

the other results.
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4.2 Spectral Image Quality Metrics

Recall from Chapter 2 that the band limits for the spectral metric axe best

determined empirically. This is because the display, image frame size, and the spatial

bandwidth of the particular telescope system in use are all system dependent and

all effect the image spectra as sampled by the FFT algorithm. Figure 4.1 shows

an example of how this was accomplished for the simulated imagery used in this

research. A simple, practical approach for band limit selection is adopted here:

since the goal is discrimination between images based on quality, observe where

the radially averaged spectra of different quality imagcs intersect. As mentioned in

Chapter 2, the area under the curie segments between these two intersection points

is sensitive to image quality, so these two intersection points are a practical indication

of the HVS passband. This passband can be determined by inspection.

The radially averaged magnitude spectra (normalized to unit area) are shown

for 5 images of the Okean satellite (Figure 4.1). In this case, the Fried Param-

eter was held constant, and the target magnitude was varied. Note that for this

image format, for radial frequency distances of about 1 to 15 samples of normal-

ized frequency, the curves corresponding to any particular image are greater than

the curves corresponding to a lower quality image. A similar effect is found for

the second plot, where the magnitude was held constant and the Fried Parameter

was varied (Figure 4.2). Determining the frequencies at which the radially averaged

magnitude spectra of different quality images overlap seems to be a reasonable func-

tionaJ method of determining the HVS passband. For this particular image format

and (simulated) telescope system, the band limit was therefore chosen to go from 3

to 11 pixels radial frequency distance. This type of empirical determination would

have to be accomplished by inspection for any different image format or telescope

system. The IQM algorithm merely adds up the magnitude spectrum pixels falling

within this distance range from the zero frequency origin.
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Figure 4.1 Radially Averaged Magnitude Spectra, r, = 10 cm, 5 Different Magni-
tudes, Okean Satellite Image
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A representative surface plot from the Okean target spectral IQM experiment

is shown in Figure 4.3. Cross-sections of this surface plot are shown in Figures

150

100

50

Figure 4.3 Spectral IQM Parameterization, Okean Satellite Image

4.4 and 4.5.

This IQM gives similar results for the other two test objects, as shown in

the appendix. The metric is monotonically increasing with r, and with brightDess

(decreasing with magnitude). This appears to be a successful Image Quality Metric.

As a validity check, the Quality metric is plotted vs. RMS error. Note the

approximate trend of decreasing quality rating with increasing RMS error. This lends

weight to the hypothesis that this is a valid quality metric. Recall, as mentioned

previously, that fidelity metrics like RMS error correlate only approximately with

HVS-perceived image quality.
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Figure 4.4 Spectral IQM vs Fried Parameter, Okean Satellite Image
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Figure 4.5 Spectral IQM vs Target Magnitude, Okean Satellite Image
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Figure 4.6 Spectral IQM vs RMS Error, Okean Satellite Image

4.3 Histogram-Based Image Quality Metmcs

A representative surface plot from the Okean target Variance IQM experiment

is shown in Figure 4.7. Cross-sections of this surface plot are shown in Figures

4.4 and 4.5.

The metric performs reasonably well for brighter objects, but as the objects

get dimmer that 6%h magnitude, the performance curve slope changes sign. Observe

Figure 4.10, which shows the Okean satellite with ro = 7cm and magnitudes of 6,7,

and 8 respectively. Judging from the curve in Figures 4.7 , 4.8 and 4.9, the two

lower quality images have "spoofed" the varian,-e metric into categorizing them as

better than the higher qualit, 6th magnitude image (Figure 4.7). As discussed in

Chapter 2, pixel position information is not captured by the histogram moments.

The 7th and 8th magnitude images shown do ixideed have more "variance" than

the 6th magnitude image, but this increased variance is not due any higher detail

4-7
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Figure 4.7 Variance IQM Parameterization, Okean Satellite Image
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Figure 4.8 Variance IQM vs Fried Parameter, Okean Satellite Image

4-8



01

a0 4

20

20

4 5 6 7 8

Magnitude

Figure 4.9 Variance IQM vs. Target Magnitude, Okean I-Atellite Image
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Figure 4.10 Okean Satellite, r. 7cm and magnitudes of 6,7, and 8 Respectively
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or meaningful structural content of these images. It is instead due to the lower

signal-to-noise ratio of the dimmer images.

Observe how the two lower icuality images in question have little in the way of

edges or discontinuities. It seems reasonable that if a Sobel operator were applied to

these images and then the variance were calculated, relative variance-based quality

rating of these images would be reduced, since there is less energy content in these

images that would survive the Sobel operation. A parameter plot of the Sobel-

Variance IQM is shown in Figures 4.11, 4.12 and 4.13, verifying this hypothesis.

120-

110

100

90

80

70

60

Figure 4.11 Sobel-Variance IQM Parameterization, Okean Satellite Image

AMOS users cou!d determine whether the Sobel extension of the variance met-

ric is necessary. If the signal-to-noise ratio rarely drops low enough to spoof the

variance IQM, the Sobel operation may be unnecessary. However, it costs little in

the way of computation time, and the algorithm exists in "canned" form in the IDL

software package.
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Figure 4.12 Sobel-Variance IQM vs Fried Parameter, Okean Satellite Image
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Figure 4.13 Sobel-Variance IQM vs Target Magnitude, Okean Satellite Image
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Although there are now indications that variance alone is not a consistent

indicator of image quality, it is instructive to include it in discussions which follow,

for comparison with the Spectral and Sobel-Variance IQMs.

The RMS parameter plots for the regular and Sobel variance IQMs are shown

in Figures 4.14 and 4.15 An interesting feature of these plots is the two "arms" that

80.............. I" ........ I ......... |..... €''"I......

8)

o 60
U30) Degradation due to low light lvvel

V)

.2 40
> 0

*0

20 Degradatbon due
to e~ingoond.

30 40 50 60
RMS Imoge Error

Figure 4.14 Variance IQM vs. RMS error, Okean Satellite Image

split off from the curve at high RMS error levels. The upper arm corresponds to the

low signal-to-noise ratio as the images get dimmer and dimmer. The lower arm of the

plot corresponds to the image blurring as r, gets smaller and smaller. Notice that if

the degradation were only related to seeing conditions, the Sobel extension to this

metric would not be necessary. The implication is that degraded seeing conditions

do not increase variance.
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Figure 4.15 Sobel-Variance IQM vs. RMS error, Okean Satellite Image
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The final histogram based metric discussed was entropy. This metric would be

expected to give a lower number as image quality increased [2] [1. This turned out

to be the case when only seeing condition were varied (Figure 4.16).

6.5

0 0

00-Q.

0

C5.5
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0 0
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,.. I •I .. .. I . , * _ 0 1

4 6 8 10 12
Fried Parameter

Figure 4.16 Entropy vs. r, (cm), Okean Satellite Image

However the entropy metric responded in the opposite manner as the magni-

tude of the image increased (became dimmer). Figure 4.17 shows this for ro, = 10

and 13 cm.

The conclusion is that entropy is not a consistent metric, since it gives higher

quality ratings for lower SNR images. Since image degradations caused by low

magnitude (low SNR) do not occur separately from degradations caused by seeing

conditions, this metric is operationally unacceptable. Although entropy is function-

ally related to histogram shape, this relationship is apparently not reliable in terms

of passing image quality information. Preliminary investigations into measuring the

entropy of edge-enhanced images also also showed the same inconsistency as above,

showing higher quality for lower SNR.

4-14



500 o -1

4.90

>, 4.80
0

4.70

4.60

4 5 6 7 8
Target Magnitude

Figure 4.17 Entropy vs. Magnitude, Okean Satellite Image

Although all unsuccessful metrics are not presented in this thesis, entropy is an

important theuretical concept throughout a wide variety of engineering disciplines.

It is also a logical candidate to consider for quality measurement, since it intuitively

relates to "information content" of signals, which is itself one possible definition of

"quality". For this reason, it merits special mention.

4.4 Reconstructed Image Selection

From an observing session of a low earth orbit space object, AMOS customers

usually require two images as the object climbs from ascending horizon to zenith,

one image captured as the object is approximately near zenith, and two more as

the object ascends to the other horizon. This means dozens of 50 to 100 exposure

ensembles (each of which is reconstruct od to form a single output image) to choose

from.
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Furthermore, each image reconstruction via inverse filtering is reconstructed

with a number of triangular noise filter widths. As noted in Chapter 1, since the

OTF of the telescope system is a random variable through time, the optimum width

of this filter is best determined empirically. This means reconstructing the image

with a number of filter widths and subjectively selecting the best product. This last

aspect of image product selection is investigated here. Any conclusions drawn could

also be applied to the selection problem mentioned in the previous paragraph.

It is expected that very narrow filter widths would result in output images

that were low-resolution, low-quality "blobs", since the high frequency detail would

be filtered away. Very wide filter widths, on the other hand, could be expected to

allow in high frequency noise content, also lowering image quality. Therefore, some

intermediate filter width would be desired. The hypothesis to be examined here is

that plotting an IQM as a function of noise filter width would produce a convex

curve, with the maximum of the curve corresponding to the optimimum filter width.

First consider the reconstructed satellite images shown in Figure 4.18. The

source ensemble is 100 exposures of the Okean target, with an ro of 5 centimeters

and practically infinite (one million photons per frame) brightness. This means high

signal-to-noise-ratio. The IQM values in this experiment for the Spectral, Variance,

and Sobel Variance IQMs are shown in Figure 4.19. In this experiment, the Spectral

IQM rates the third inmage, with filter radius 12, as the best. The Sobel-Va.-iance

IQM rates the fourth image, with filter radius 16 as the best. The Variance IQM

rates the 6th image, with filter radius 20, as the best.

The next experiment is with the same target, but with ro = 10 centimeters,

and a target magnitude of 6 (Figure 4.20). The IQM values in this experi-nent for

the Spectral, Variance, and Sobel Variance IQMs are shown in Figure 4.21. Again,

the peaks of each of the three curves can be picked off the graph. The Spectral

IQM picked the third image, with noise filter radius of 12, as the best image. The

Sobel-Variance Metric picked the second image, with noise filter radius of 8, as the
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to Right, Top to Bottom
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IQM Response as a Function of Reconstruction Noise Filter Width
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Figure 4.19 IQM Selection of Noise Filter Radius, Okean Target Reconstructed
Images, High SNR, ro = 5cm
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Figure 4.20 Okean Target Reconstructed Images, 6th magnitude, r, = 10cm, Noise
Filter Base Radii = 4,8,12,16,20,21,28, and 32 Pixels Respectively,
From Left to Right, Top to Bottom
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IQM Response as a Function of Reconstruction Noise Filter Width
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Figure 4.21 IQM Selection of Noise Filter Radi, Okean Target Reconstructed Im-
ages, 6th magnitude, r, =l10cm
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best image. Notice this time that the Variance IQM ' es a result significantly

different from the other two IQMs, selecting the image with noise filter radius of

28. This is because noise effects i. ve been introduced into the experiment, due to

the low target magnitude. As mentioned earlier in this chapter, the Variance IQM

is "spoofed" by high lvels of noise in the image. This may be anl explanation of

the result shown in Figure 4.21, where the Variance IQM is selecting reconstructed

images with significantly higher noise levels than the other two IQMs. Notice also,

that even though r0 has increased from its value in the first experiment, which

wouli effectively increase the bandwidth of the image, the optimal filter radius for

the Spectral and Sobel-Variance metrics decreased, because of the need to keep out

the noise that was not present in the first experiment.

The third and final experiment presented in this section is a 5th magnitude

Forsat target, with r, = 7 centimeters. The reconstructed iinages are shown in

Figure 4.22, and the ItM results are shown in Figure 4.23..

Notice in Figures 4.20 and 4.21, for example, wheýn significant noise is present,

that the variance mctric is again fooled by noise. In all the cases shown above,

Spectral and Sobel Variance IQMs react quite similarly, and appear to not be spoofed

by noise artifacts. Surface plots parameterizing these two IQMs (Spectral and Sobel-

Variance) against ro and noise filter width are shown below. Notice that these plots

show that when magnitude (and signal-to-noise-ratio) is changed, optimum filter

width is changed. Optimal filter width also changes when r, (and the effective

tlescope bandwidth) is changed.

Notice that the performance of the metiics compared to r0 and magnitude on

reconstructed images is similar to the performance on "raw" ensembles, so these met-

rics are equally valid for comparing either raw or reconstructed imagery, assuming

in reconstiucted image case that comparisons are only between images that used

triangular noise filters o he same width. This conclusion can be drawn immedi-
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IQM Response as a Function of Reconstruction Noise Filter Width
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Figure 4.23 IQM Selection of Noise Filter Radius, Eorsat Target Reconstructed
Images, 5th magnitude, ro = 7cm
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Figure 4.27 Sobel-Variance IQM vs. Target Magnitude and Noise Filter Radius,
Okean Satellite Image, ro = 10 cm
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ately since it is agreed that ro and magnitude are themselves immediate, monotonic

indicators of image quality.

However when using the IQMs for reconstructed imagery with different noise

filter widths, such as in the plots above, notice that different metrics select different

filter widths as "best". The user of the IQM will have to decide which, if any of

these metrics are to be used when comparing imagery of different noise filter widths.

4.5 Summary of Results

On all images tested, the Spectral and Sobel-Variance Image Quality Met-

rics give indications of being successful Image Quality Metrics for both raw and

reconstructed images. The Spectral IQM cannot be implemented in a particular

system until the appropriate band limits are empirically determined, as discussed

above. The Sobel-Variance IQM requires no such analysis, and provides practically

the same capability for un-supervised discrimination of images based on quality.

The Spectral and Sobel-Variance IQMs have been conceptually validated on a

database of raw satellite imagery. A feasibility argument has also been presented for

using these two IQMs to select optimum reconstruction noise filter bandwidth. The

two IQMs can give slightly different results, in which case a subjective assessment is

required to decide which IQM to use for this purpose.
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V. Conclusions and Recommendations

5.1 Thesis Summary

This thesis project has dealt with the problem of "measuring" the quality of a

digital image, specifically a digital image of an orbiting satellite, as observed from a

ground-based, adaptive-optics telescope, through the Earth's atmosphere.

The challenge of this problem lies in the well-established fact that "image

quality" is very much in the eye of the beholder. It is often taken for granted that

the best assessment of image quality necessarily includes a subjective evaluation by

the person who will be using the imagery. This is a very serious restriction if a

quality assessment is required in an image processing application.

Consider, for example, the thesis sponsor, the Air Force Maui Optical Station,

AMOS, which captures high resolution imagery of orbiting space objects. During

a particular observing session, hundreds of raw image frames may be gathered for

post processing. Some of these images are of lower quality than others, and it is

assumed desirable to exclude them from post processing. In order to do this, the hu-

man operator must manually observe each of the raw image frames and subjectively

decide which images to exclude. Similarly, when using post processing to digitally

reconstruct the imagery, there are a variety of post-processing techniques available,

and the techniques all include user defined variables to be adjusted based on trial-

and-error and subjective judgement. The user must subjectively select the optimum

reconstruction technique and parameters.

If there were a way for the computer to assign a "quality number" to the

images, the above processes could conceivably be fully automated. The selections

of best and worst images could be reduced to a simple .hresholding the the quality

number.
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This thesis investigated a variety of quantities which a computer could au-

tomatically extract from a digital image, testing whether they correlate with image

quality, as defined for AMOS imagery. The two most successful image quality metrics

(IQMs) were

1. A spectral IQM which involved measuring the spectral (Fourier domain) content

of the image within the passband of the human visual system; and

2. A Sobel Variancc IQM which involved finding the sample variance of a Sobel-

enhanced image.

It was shown that through Parseval's theorem these two metrics are conceptually

related.

It is important to recall that metrics can only be meaningfully compared if

* all images are of the same object

* that object is at relatively the same orientation (i.e. from the same short

time-span during an AMOS pass

* all images are normalized to the same total energy.

Also, the human visual system passband is most easily and practically determined

by inspection as discussed in Chapters 2 and 4.

These metrics were tested against a database of satellite images which were

created by an adaptive optics software simulation. This computer simulation allowed

the user to quantitatively specify the two parameters which physically determi,'e

AMOS image quality: target brightness and atmospheric seeing conditions. A library

of images for three typical space objects was created, while systematically varying

these two simulation quality parameters. Any prospective IQM could then be tested

against this image library. A successful IQM would be expected to give consistent,

quantifiable changes in image quality ratings as these simulation parameters changed
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value. The Spectral and Sobel-Variance IQMs gave consistent and reasonable results

for this test database of images.

After the validity of the IQMs was tested on raw imagery, the problem of

reconstructed image selection was examined. One of the most common image recon-

struction techniques used at AMOS is a modified inverse filtering approach, requiring

a user-specified noise attenuation filter. Some of the above library images were re-

constructed with a variety oi noise filter widths and then evaluated with tie Spectral

and Sobel-Variance IQMs. The results show that these IQMs might reasonably be

used to automatically select the optimum reconstruction parameters. Since the two

metrics sometimes gave different results, the user might best determine which of the

two acquires the best track record on actual, operational imagery, in the course of

adopting these concepts into a fully automated image reconstruction system.

5.2 Further Research

The inverse filtering reconsti Ct:on process can often cause noise "artifacts" to

be introduced into the final image. ' :,me sort of texture-based segmentation of these

noisy reconstructed images, to remove these artifacts might increase the validity of

the IQMs in reconstructed image selection. Using the IQMs themselves on small

subregions of the image might even prove to be a good method of segmentation. Of

course, with segmentation there is always the risk of accidentally eliminating valid

image information.

It has also been suggested that instead of approximating the human visual sys-

tem MTF as a simple rectangular bandpass, the more exact exponential formulation

shown in Chapter 2 might be adopted, to give more satisfactory results in recon-

struction parameter selection. The task of determining the human visual system

MTF for a particular imaging and display system would necessarily become more

problematic in this case.
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Another source, [10], has aiso suggested calculating the geometric moments the

band-fimited power spectrum of an as an image quality measure:

IQM = j j=O pnF(p, O)dp (5.1)

or in discrete form
Pppetr

IQM E pnF(p,G) (5.2)
9 p.-0

where n is 2,3, or 4. This could also prove to be a valid metric, judging from

Figure 2.3 in Chapter 2, since the "mass distributions" of a good image spectrum

and a bad image spectrum are distinctly different. Note that if this turned out to be

a valid IQM, it would not have the complication of requiring the user to determine

the actual human visual system MTF. This IQM formulation was not tested in this

thesis.

Another possible avenues of research could involve modifying the Sobel-Variance

IQM by using other common edge enhancement filters such as the Roberts or Prewitt

operators.

5.3 Conclusion

On all images tested, the Spectral and Sobel-Variance Image Quality Metrics

give indications of being successful Image Quality Metrics for both raw and recon-

structed images. Of course, the hypothesis that the Spectral and Sobel-Variance

IQMs are valid measures of image quality can never be absolutely proven per se,

but this thesis has lent weight to the hypothesis by showing that it has not been

disproven for raw and reconstructed imagery for an interesting variety of satellite

shapes. Therefore, the objectives of this research have been satisfied.
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Appendix A. IQM Results for RORSAT and EORSAT Ra~w Imagery
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Figure A. 1 Spectral IQM vs Fhied Parameter, RORSAT Image
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