
ri --7 • ,• ,. -•,... . a ..

AFIT/Gh/MNY/93D-7 AD- A273 828

MODELING OF A LARGE UNDAMPED SPACE

STRUCTURE USING TIME DOMAIN TECHNIQUES

THIESIS D TIC

Anthony R. Nash
Captain, USAFLECTE S 1DEC 1993,

"AFIT/GA/MN/93D- 7 II

93-30476
IlI,."',

Approved for public release; distribution unlimited

93 12 15080

AFIT/GA/ENY/93D- 7

MODELING OF A LARGE UNDAMPED SPACE STRUCTURE

USING TIME DOMAIN TECHNIQUES

THESIS

Presented to the

Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Astronautical Engineering

Accesion For
NTIS CRA&I
DTIC TAB
Unannounced 0

Anthony R. Nash Justification
........................ -.....

Captain, USAF By
..

Dist ibution I
Availability Codes

Dist Avail aindior
November 1993 Spvcial

Approved for public release; distribution unlimited

Acknowl dent s

The completion of this thesis would not have been

possible without the assistance of several people. Dr.

Bradley Liebst's direction helped to keep me focused on the

goals of this project. Thanks also goes to Mr. Jay Anderson

of the AFIT labs for his assistance with the PACOSS

hardware. I also need to thank Captain Rich Cobb for his

assistance and ideas throughout the experimental portion of

this program. Finally, thanks go to Dr. Joseph Hollkamp who

wrote the MATLAB script files which performed the actual ERA

and BLS routines, and who helped me learn how to use them.

Anthony R. Nash

Table of Contents

Page

Acknowledgments ... i

Table of Contents ... ii

List of Figures ... iv

List of Tables .. v

List of Symbols ... vi

Abstract ... vii

I. INTRODUCTION .. 1

DTA Background 2

System Identification Background 3

II. THEORY .. 6

Equations of Motion 6

Eigensystem Realization Algorithm 8

Backward Least Squares 12

Prediction Error Method 14

Method Comparison and Combination 15

III. METHOD VALIDATION 18

Truth Model 18

Truth Model Identification 21

IV. EXPERIMENTAL PROCEDURE 25

Data Generation 25

Model Generation 28

V. PACOSS IDENTIFICATION 31

ERA Identification 31

BLS Identification 34

Sources of Error 36

VI. CONCLUSIONS AND RECOHMENATIONS 39

Conclusions 39

Recommendations 41

Bibliography ... 48

Appendix A. Truth Model 45

Appendix B. PACOSS State Space Model 52

Appendix C. Truth and Model Transfer Functions 55

Appendix D. MATLAB Script Files 72

Vita .. 108

Hi

List of Figures

Figure page

1. Diagram of the PACOSS DTA 3

2. Truth Model Physical System 19

3. ERA/PHAmMagnitude Plot 23

4. ERA Magnitude Plot 23

5. BLS/Pz4 Magnitude Plot 24

6. ERA Magnitude Plot for

Actuator #1/Accelerometer #1 33

7. ERA/PEM magnitude Plot for

Actuator #1/Accelerometer #1 33

8. BLS Magnitude Plot for

Actuator #1/Accelerometer #1 36

iv

List of Tables

Table page

1. Truth Model Modes 20

2. Identified Truth Model Modes 22

3. ERA/PEM Identified PACOSS Modes 32

4. BLS/PEM Identified PACOSS Modes 35

V

V

List of Symbols

A - State Space Plant Matrix
S- Least Squares Discrete Summation Input Matrix
B - State Space Input Matrix
% - Least Squares Discrete Summation Output Matrix
C - State Space Output Matrix
C, - Backward Least Squares Summation Input Matrix
D - State Space Feedforward Matrix
D, - Backward Least Squares Summation Output Matrix
Do - Diagonal Singular Value Matrix
E - Block Identity Matrix

fe - System Sampling Frequency
G - Damping Matrix
F - Least Squares Data Matrix
G(s) System Transfer Function
B(jw) - Frequency Response
H.(k) Hankel Matrix
K - Stiffness Matrix
K - Mass Matrix
P - Left-Hand Isometric Singular Value Decomposition Matrix
Q - Right-Hand Isometric Singular Value Decomposition

Matrix
q(t) - Truth Model State vector
9 - Least Squares Unknown Parameter Vector
U(t) - Imput Vector
wd - System Damped Natural Frequency
,- System Undamped Natural Frequency

3E(k) - Discrete Time State Vector
R(t) - Continuous Time State Vector
Y(k) - Markov Parameters (Impulse Response Output Vector)
Y(k) - Discrete Time Output Vector
y(t) - Continuous Time Output Vector
z - System Eigenvalue

- System Damping Factor

11

AFIT/GA/ENY/93D- 7

The primary objective of this research was to develop

an accurate mathematical model in state space form for the

Passive and Active Control of Space Structures (PACOSS)

Dynamic Test Article (DTA), so that active control

techniques can be effectively applied to the system in the

future. To accomplish this goal, accurate system

identification techniques had to be found which would solve

a multi-input multi-output system. The system

identification methods chosen, the Eigensystem Realization

Algorithm (ERA) and a Backward Least Squares (BLS)

technique, were compared to a truth model with a known state

space system, to determine the accuracy and applicability of

each method. With this completed, PACOSS DTA data was

generated and a state space model was developed. Finally,

Bode plots of the system model and the actual PACOSS system

were compared to determine the accuracy of the models

developed. The BLS method did not develop an adequate

model. The ERA method developed an accurate plant matrix,

but the input and output matrices were inaccurate, resulting

in a good match of system poles, but a poor match of system

zeros.

VUI

MODELING OF A LARGE UNDAMPED SPACE STRUCTURE

USING TIME DOMAIN TECHNIQUES

I. Introduction

Future space systems are going to be much larger and

require much more accurate pointing and vibration

suppression systems. These systems will push the state-of-

the-art in control system technology. But a control system

cannot be designed without an accurate model of the system

to be controlled. This leads to the need for system

identification techniques which accurately model large space

structures with multiple, low frequency, closely spaced

modes (1:463). The Passive and Active Control of Space

Structures (PACOSS) Dynamic Test Article (DTA) was designed

to simulate a large undamped space structure (2:1). It will

allow testing of system identification techniques and active

control systems, on an accurate, but inexpensive, earth

based test bed.

The objective of this thesis is to develop a state

space model for the PACOSS DTA to enable the development of

active control systems. This will be done using time domain

techniques and will result in a evaluation of each

technique's effectiveness in developing models of large

space structures.

DTA Background

One of the most demanding tasks of a spacecraft control

system is the vibration suppression of the spacecraft after

maneuver or impact with space debris. In addition, accurate

pointing of weapon or sensor platforms may require not only

micro radian accuracy, but settling times under a second.

For a large space structure (LSS) with flexible body

appendages, this will require extremely advanced control

systems. The PACOSS DTA has proven to be an effective earth

based test bed to for researching the implementation of both

passive and active vibration control techniques for LSS

(2:3).

The PACOSS DTA was designed and built by Martin

Marietta to simulate a large flexible spacecraft for the

purpose of control system design. It has multiple, closely

spaced, low frequency modes (most under 10 Hertz), eight

inertial mass actuators with collocated accelerometers, and

is isolated from the environment by an air bearing system

(2:1). Physically, it is shaped like a primary and

secondary mirror assembly with two solar panels (Figure 1).

2

ACTUATOR 6-6 -.- ACTUATOR #5

ATITR#10

A
"--R W-"2.95

a

ZSRM ATTATCEAMENR
POINT

ACnMATOR #2 "• ACtIUkTOR #3 _

, STEEL APEX PLATE

TRI PO[

3.05m

Figure 1: Diagram of the PACOSS DTA

This gives it the shape and modal characteristics of typical

large space structures: closely spaced, low frequency

modes, as well as low damping ratios.

System Identification Background

Before control systems can be designed, an accurate

model of the system must be developed. Several previous

attempts have been made to model the PACOSS DTA. Martin

Marietta, the developers of PACOSS, used several types of

finite element modeling (2). Specifically, they had

difficulty identifying the modes in the 1 to 10 Hz range,

and found that mode locations and damping factors varied by

as much as 20 percent about the average depending upon the

3

particular routine used. These difficulties were attributed

to the closely spaced nature of the model, and to the

difficulty in acquiring accurate data on such a complex

system (11:1). This demonstrates the need to develop new,

and more accurate system identification techniques for LSS.

In addition, AFIT students Captain Scott George used a

modal analysis technique (7) and Lieutenant Chad Matheson

used a frequency domain analysis technique (8) to identify

the system modes. Although both were successful at

identifying the system modes, Captain George did not attempt

to develop a state space model, while the state space model

developed by Lieutenant Matheson included only the

collocated input/output pairs.

With both frequency domain and finite element

techniques already applied to the PACOSS, one set of

identification techniques which have not been attempted are

the time domain methods. These involve curve fitting a

transfer function to a set of actual input disturbance

signals sent to the PACOSS DTA and their corresponding

output signals received from the DTA. Specifically the

Eigensystem Realization Algorithm (ERA) and the Backward

Least Squares (BLS) method will be used to determine the

system modes, from which the plant matrix (or A matrix) and

input matrix (or B matrix) will be formed. A third method,

called the Prediction Error Method (PEM) will be used in

conjunction with the above methods to determine the output

matrix (or C matrix).

4

The ERA method is based upon a singular value

decomposition of the Hankel matrix formed from the Markov

parameters. The Markov parameters are the system impulse

responses (6:621). The Backward Least Squares method uses a

reversed least squares technique to separate the system

modes from the computational, or noise, modes (10).

The ERA and BLS methods are specifically designed to

identify the system modes and mode shapes of large undamped

space structures given time domain data. The ERA method was

used by Juang and Pappa at NASA Langley Research Center to

accurately identify 34 modes of the Galileo space craft

(2:624). Also, Hollkamp was able to accurately identify 10

modes of the 12 meter truss located at Wright Laboratory,

Wright-Patterson AFB, Ohio, using both the ERA and the BLS

methods (10:553). Although no attempts were made to create

state space models of the structures, both were very

successful at identifying system modes, damping factors,

mode shapes, and modal amplitude participation factors, on

large undamped structures similar to the PACOSS DTA. Given

the system modes and damping factors, the plant matrix can

then be developed.

Finally, PEM is based upon an iterative least squares

numerical technique to model the system parameters as well

as the errors associated with the system output (4:75-6). A

computer coded version of the Prediction Error Method can be

found in the NATLAB System Identification toolbox (3:1-1).

S

The development of the equations used in this project

are divided into four phases. First is the development of

the discrete state space model of any system and how it

applies to the PACOSS. This is followed by a development of

the techniques which were used to identify the specific

state space model of the PACOSS. These techniques were ERA,

BLS and PEM. The final section is a development of the

method used to combine these techniques in order to improve

the accuracy of the system model.

Equations of Motion

The first step in the modeling of any dynamic system is

to determine the equations of motion for that system. Any

continuous system can be modeled as a lumped parameter

spring-mass-damper system. For the PACOSS, with force

inputs, the equation of motion is:

3Q(t) + 04(t) + Xq-(t) = -P(t)

6

where:

K - Mass Matrix (n x n)

G - Damping Matrix (n x n)

K - Stiffness Matrix (n x n)

•(t) - displacement vector (n x 1)

q(t) - velocity vector (n x 1)

!(t) - acceleration vector (n x 1)

n - number of degrees of freedom

This can then be expressed as the first order continuous

system:

X(t) -- AR(t) + B•u(t) (2)
Y(t) = C'R(t) + VU-(t)

where:

X - State Displacement Vector (2n x 1)

x - State Velocity Vector (2n x 1)

A - State Transition Matrix (2n x 2n)

B - State Input Matrix (2n x m)

C - State Output Matrix (p x 2n)
D - Feedforward Matrix (p x m)

n - Number of Identified Modes

m - Number of Inputs

p - Number of Outputs

In discrete format, this equation becomes:

3(k+l) = AR(k) + Zu(k)

y(k) = CR(k) + Dti(k) (3)

7

where k is the discrete time increment variable.

The goal of system identification when applied to

control system design is to identify the A, B, C and D

matrices which exactly describe the system motion. However,

for a continuous system, the number of states, n, is

infinite. So, an approximation for a finite value of n,

must be made, and the motion can therefore only be

approximated. The required accuracy of the approximation is

a key factor in the system identification process.

For a large flexible space structure like PACOSS, the

primary concern is with the low frequency, non rigid body

modes, primarily those under 10 Hz. So, 10 Hz will be the

cut-off value for the determination of the number of modes.

Higensystem Realization Algorithm

The Eigensystem Realization Algorithm was developed in

1985 as a method to determine the modal parameters of large

flexible multi-input multi-output space structures. The ERA

produces a minimum-order realization given dynamic test data

(7:620). This algorithm is based upon the singular values

of the Hankel matrix. To create the Hankel matrix, the

Markov parameters must first be generated. The Markov

parameters are defined in discrete time by:

Y(k)=CAk 4 3 (4)

The Hankel matrix is:

Y(k) Y(J k+ t) Y(kJ + t..1)

Y(j,.1+k) Y(j.,+k+tj) Y(j.1 +k+tt.-,)

[Y(jrjl + k) Y(jr.. +ik + tj) "I(jr-1 + k + t-)

where j 1 (i=1,...,r-1) and tj(i=i,...,s-1) are arbitrary

integers defined such that r is the number of modes to be

determined (both system modes and computational, or noised

derived, modes), and s is larger then r (generally 3-5 times

the value of r).

The first step to compute the Hankel matrix is to

determine the velocity impulse response given the transfer

function generated from acceleration data. This transfer

function is defined as:

Ga(s) = Y(S) (6)
U(s)

where:

Y(s) = ansn + a.sn-1s-+ + + als' + a0 (7)

U(s) = b.sn + a,_,sn'1 + + bis1 + b 0 (8)

which is a rational transfer function. However, in state

space form, a rational transfer function will have a non-

zero D matrix. The ERA method assumes a zero D matrix.

9

But, by integrating the transfer function (which is

multiplying by 1/s in the Laplace domain), the transfer

function becomes non-rational and the D matrix becomes zero.

Numerically, this integration is:

H,(jW) = Ha(Jw) (9)jW

Then the impulse response, hb(t), is found by taking the

inverse Fourier transform of the frequency response, Hv(jw).

From this data, the Markov parameters, and hence the Hankel

matrix, can be formed.

Once the full order Hankel matrix is determined, the

next step is to achieve a minimum realization by determining

the order of 3,,(0). This is done by using the singular

value decomposition, defined as:

H, (o) = PD"Q T (10)

where D is a diagonal matrix of the singular values of

l.t(O) in descending order, and P and Q are isometric

matrices. The order of 11(0) is determined by the rank of

D. Unfortunately, for a real system which has noise

present, the singular values may never be zero. In this

case, it is necessary to determine some cutoff value below

which all the singular values are small relative to the rest

10

of the singular values, and can be assumed zero. This then

becomes the rank of a,,(0).

The minimum realization for the system is then:

x(k+l) = DW-/2pTHr.(I)QDv--/2X(k)+D...jl/ 2 QTEU (11)

y(k) = ETPDS1/ 2x(k) (12)

where ET=[II, 0p, f...0] (6:622).

The final step is to determine the validity of each of

the modes, and remove the noise created (computational)

modes, leaving only the actual (system) modes. This will

result in a minimum order system of purely system modes.

This order reduction is done by defining the parameter

called the Extended Modal Amplitude Coherence (EMAC). This

is a combining of the controllability and observability of

each mode, presented as a percent of completely controllable

and observable. The EMAC is a function of the singular

values, the modal participation factors and the mode shapes

(6:623) and is used to help separate the computational modes

from the system modes. The primary assumption behind the

EMAC is that only system modes will be controllable and

observable. Therefore, the computational modes will have

significantly lower values for the EMAC. This allows for

quick and easy separation of the system and computational

modes. Additionally, each system mode has a different level

of controllability and observability, resulting in different

value of the EMAC for each mode. Given a limit to the

11

number of system modes which can be kept, this provides a

quantitative measurement to determine which modes should be

kept and which modes can be discarded.

Backwards Least Squares

The second method used for system identification was a

multi-input, multi-output Backwards Least Squares technique

developed by Hollkamp (10:549). The forward least squares

method is based upon the fact that a time-series model can

be expressed in the form:

y(k) = -Ajy(k-l)-A2y(k-2)-...-A~y(k-p)

+Bou (k) +Bu (k- 1) +. . +BMu (k-p) (13)

where y(k) is the kth output response, u(k) is the kt input,

p is the order of the model, the Ak, A2 , ... , A and D1, 22,

... ,I B matrices are the matrices of model parameters

(10:549). Then, for an over determined system, the solution

is:

Y = ro (14)

where Y is the vector of output data, r is a matrix of

output and input data, and 6 is the vector of unknown

parameters (10:550). For the forward least squares

technique, the solution to this problem will be a system

12

model, but it will not be minimum order. That is because 0

will include both system (actual) and computational (error

created) modes. Order reduction of the system can be

simplified by performance of the Backward Least Squares

technique (10:550).

Any time-series system can be written in a backwards

manner of the form:

y(k) = -Cly(k+1)-C 2y(k+2)-...-Cy(k+p)

+D•u(k) W +D, (k+1) +. . . +Du•(k+p) (15)

where the C1 , C2, ... , C, and D1, D2, ... , Dn matrices are the

backward parameter matrices. The solution for the unknown

parameters, 0, is found the same as for the forward method,

using equation 14. Unlike the forward least squares method,

the backward method will force all the computational

eigenvalues inside the unit-amplitude circle (10:550). This

means that only the eigenvalues outside the unit-amplitude

circle need be kept, as they are the system modes. In this

way, a reduced order system is found. The conversion back

to forward least squares (to create a stable system with

eigenvalues less than one) is:

Ai = CP-'CP- (16)

Di = %-'Dp~i (17)

13

The new, reduced order Ai and Bi matrices can now be used to

solve for the new reduce order system modes.

Prediction Error Method

The ERA and BLS methods were developed primarily to

develop natural frequencies, damping factors, mode shape

matrices and modal participation matrices, (e.g. a modal

model of the system) not a state space model. Therefore, an

additional technique had to be added to enable development

of an accurate system in state space form. If one assumes

that the ERA and BLS methods are able to obtain accurate A

and B matrices, then the PEM has the ability to compute the

C matrix given the A and B matrices.

The Prediction Error Method is found in the system

identification toolbox created by Math Works Inc. for MATLAB

(3). This method attempts to minimize the error gradient

between the model generated output and the actual system

output. Given a set of input-output data, and a model

format, with a set of fixed parameters and a set of unknown

parameters, this program attempts to vary the unknown

parameters along the gradient direction to fit the model

results to the known set of data. The accuracy and

computation time for this routine vary with model size and

the number of unknown parameters.

14

This technique uses an iterative Gauss-Newton algorithm

to solve the equation:

k,ý(q)y(t) = B______~ - n)+C,(q) (t) (18)
F,(q) Dý(q)

where e(t) is the measurement error, u(t-nk) is the input

data, y(t) is the output data and Ap.(q), 3p(q), Cpm(q),

Dp.(q), and Fp.(q) are of the form:

Amm(q) =I+akq-'+. .+eq-n (19)

This method solves for a particular

O=[a... kb, .bn~, C1 .,.ndl..d'f1.. fn (20)

which minimizes the square of the error between the output,

Ya (t) , of the actual system and the output, y, (t) , of the

model (3:1-7) using a gradient minimization technique. The

actual system is assumed be a constant coefficient system.

Method Comparison and Combination

The BRA and the BLS methods were the primary techniques

used to compute the system parameters. in addition, since

they are different methods which use different types of data

to generate the same solution, their results were compared

to help determine the validity of the final system model

developed.

The plant matrix was created by generating the discrete

eigenvalues using the equation:

z = exp[(-rWn + jWd)/f.] (21)

where z is the eigenvalue, r is the damping factor, w is

the undamped natural frequency, Wd is the damped natural

frequency, and f. is the sampling rate (2:622). The

discrete eigenvalues then become the diagonals of the plant

matrix in discrete time. Since this is a complex matrix, it

must be transformed into the real 2x2 block diagonal form.

This is then the real A matrix which can be used in control

system design. The complex modal participation matrix is

the continuous time form of the a matrix. This B matrix

must be transformed to real, discrete time form, to be

consistent with the A matrix.

That leaves only the C matrix as an unknown. PEM was

used to compute an accurate C matrix. This technique

becomes more effective the fewer the parameters there are to

estimate, since PEM computes a gradient for each unknown

parameter and searches along that direction in an attempt at

minimization. So with the A and B matrices as known

parameters, all that PEM needs to approximate is the C

matrix. By approximating the PACOSS as a linear system,

then each output is independent of the other outputs. Then,

16

PACOSS can be approximated as multiple single output

systems. The number of parameters PEM needs to estimate is

then equal to a single row of the C matrix. So, PEM was

performed 8 times for each of the 8 outputs, then recombined

into a single C matrix of the form:

c2

C = 2(22)

c8-

This reduced the number of parameters PEM needed to

estimate, while providing an accurate C matrix of the

system. The combined methods of ERA A and B determination

and PEM C determination will be termed ERA/PEM in the

remainder of the thesis. The combined method of BLS A and B

determination and PEM C determination will be termed BLS/PEM

in the remainder of the thesis.

17

III. Method Validation

Before attempting to identify the PACOSS DTA, the

accuracy of the identification methods selected were

validated on a known truth model. This required a spring-

mass-damper system with known plant, input and output to be

created. ERA/PEM and BLS/PEM were then applied to this

known system and the models developed were compared to the

truth system to determine the accuracy of each method.

Truth Model

To determine the accuracy and applicability of the

system identification techniques selected, it was decided to

apply them to a low order "truth" model first. This would

allow a comparison of each model against known A, S, C, and

D matrices. To accurately determine the applicability of

the system identification techniques selected, the truth

model must contain the same characteristics as the system to

be identified, in this case, the PACOSS DTA. These

characteristics include multi-input multi-output and

closely spaced poles at or below 10 Hz with low damping

(2:15). As a result, a spring-mass-damper system of the

form of equation (1) was developed (Figure 2). This was a 2

input, 2 output system with masses of:

Is

ml = 0.61743 kg

m2 = 0.19957 kg
m3 - 1.6582 kg

damping of:

cl = 0.031633 kg/sec
c2 = 0.32738 kg/sec
c3 = 0.32918 kg/sec
c4 = 0.019153 kg/sec

and spring constants of:

k1 = 52.058 N/m
k2 = 0.89183 N/m
k3 = 19.756 N/m
k4 = 178.08 N/m

u2 u3

M m 2 m 3

zl z2 z3

Figure 2: Truth Model
Physical System

The outputs were position measurements of each mass.

They were combined into discrete time state space format

19

(Equation 3). The natural frequency and damping factors for

a sampling rate of 14.2 samples per second are presented in

Table 1.

Table 1: Truth Model Modes

Wn (Hz) r (

1.4414 2.0162
1.4537 9.9314
1.8817 8.0431

From which the following discrete time, state space system

was developed:

0.7999 0.0005 0.0026 0.0639 0.0012 0.0001

0.0022 0.7766 0.1950 0.0036 0.0575 0.0084

0 0.0255 0.7250 0 0.0010 0.0630A=
-5.4780 -0.0279 0.1048 0.7647 0.0305 0.0045

-0.0542 -5.8419 4.6834 0.0944 0.5910 0.2881

0.0015 0.6453 -7.4133 0.0017 0.0347 0.7134

"0.0001 0

0.0109 0.0001

0.0001 0.0014B =
0.0059 0.0001

0.2881 0.0051

0.0051 0.0.380

[0 1 0 0 001
La 0 1 0 0 0]

20

Which are the A, B, and C matrices defined in Eq. (3). The

D matrix is zero.

Truth Model Identification

The identification of a known truth model was the first

step in analyzing the effectiveness of the system

identification techniques chosen. For the ERA method, an

impulse response of the truth model was generated. A zero

mean Gaussian measurement error (RMS value of 0.1) was added

to the output. The ERA method used a 20 column (10 modes)

and 60 row (58 data points for 4.06 seconds of data) Hankel

matrix. Only the 18 largest singular values of the Hankel

matrix were retained, with the two remaining singular values

discarded due to there relatively small value.

In a similar manner, the BLS method had a random signal

of zero mean Gaussian noise which had an RMS value of 1,

used as an input to the truth model. A measurement error of

zero mean Gaussian noise with an RMS value of 0.01, was

added to the output. The resulting natural frequencies and

damping factors computed by each method are shown in Table 2

along with the actual natural frequencies and damping

factors of the system.

From these results, it is evident that the ERA method

was able to identify the actual modes of the system with a

great deal of accuracy, despite having fairly high

measurement errors (approximately 10% of the input). It was

21

even able to separate and identify the closely spaced modes.

Table 2: Identified Truth Model Modes

Actual ERA BLS

Cn (Hz) r (%) Wn (Hz) • (t) Wn (Hz) • (%)

1.4414 2.0162 1.4414 2.0162 1.4063 6.4529
1.4537 9.9314 1.4537 9.9314 - -

1.8817 8.0431 1.8817 8.0431 1.9066 3.4481

The BLS technique did not identify the modes or damping

factors as accurately as the ERA technique, despite having

considerably lower measurement error noise. This is

discouraging since the PACOSS DTA has several closely spaced

poles, and a considerable amount of noise.

Next, the A and B matrices generated by each method

were inserted into PEM to compute the C matrix. This gave a

complete state space model of the truth system (Appendix A).

Now, the time and frequency response outputs for each model

were compared to those generated by the truth model

(Appendix A). Figure 3 shows that the ERA/PEM method

produces a virtually identical frequency response (dashed

line) to the truth system (solid line) below 5 Hz, with some

error entering into the system between 5 and 10 Hz. What is

important to note is the accuracy with which the poles and

zero were identified.

22

ERA Input #1/Output #1

-so

-100-
0 5 10 15 20

Frequency (Hz)

Figure 3: ERA/PEM Magnitude Plot

It is also important to note that the ERA method without PEM

did not identify the zeros of the system correctly. As can

be seen in Figure 4, the ERA method alone added a zero not

found in the actual system. The PEM routine was needed to

accurately identify the system zeros.

ERA Input #1/Output #1

20

"--40

-60
0 2 4 6 8 10 12

Frequency (Hz)

Figure 4: ERA Magnitude Plot

The results of the BLS/PEM method were not as

encouraging. By examining the frequency response plots, it

is evident that the BLS/PEM model identified two closely

23

spaced poles as a single pole (Figure 5). The poles and

zeros of the ELS model (dashed line) did not match up well

with those of the true system (solid line), and the BLS

model added a zero at 6 Hz, and failed to identify the pole

at 1.4537 Hz. The resulting magnitude plot shows

significant error. This was with only 1% measurement error.

BLS Input #1/Output #1

.0-50

-100
0 5 10 15 20

Frequency (Hz)

Figure 5: BLS/PEM Magnitude Plot

Appendix A contains the state space model developed by

both ERA/PEM and BLS/PEM, as well as all 8 bode plots.

Once the system identification techniques had been

tested on the truth model, the next step was to use these

techniques to compute a state space model for the PACOSS

DTA.

24

IV. Experimental Procedure

The identification of the system model for the PACOSS

DTA was divided into three phases. The first phase was to

evaluate different time domain system identification

techniques to determine which was the most appropriate. The

results of phase one are detailed in Chapter III. The

second phase was to actually acquire the input and output

data from the PACOSS system. While the third phase was to

run the actual data through the chosen system identification

techniques to determine the system model for the PACOSS DTA.

Data Generation

Once the accuracy of each identification technique was

determined, the actual PACOSS input/output data was then

generated. First, all equipment (in particular the

accelerometers) had to be calibrated to identify any bias

allowing the generation of accurate and consistent data. A

Techtronix Digital Analyzer 2642 was used to generate the

random input signals and to record the output from the

PACOSS. It also computed and recorded frequency response

functions for individual input/output pairs of the PACOSS

DTA. One limitation of the Digital Analyzer is that it can

only simultaneously record 2 channels of data. The PACOSS

system is 8 input and 8 output, therefore this causes some

25

difficulty in acquiring the data. Since the BLS and PEM

techniques require knowing the input corresponding to each

output, 1 input and 1 output (velocity) channel were

recorded, requiring 64 separate data runs. This allowed the

combination of all 64 data samples to be combined into a

single 8 input 8 output model.

The next critical decision was to determine the

sampling rate. Sampling rate is important because it

determines the maximum frequency of the system which can be

identified (4:378). In addition, a high sampling rate is

necessary to distinguish between closely spaced poles.

However, it is important to remember that the higher the

sampling rate, the more data there is generated. This is an

important trade-off since there are 64 input/output

combinations for which data must be generated. In order to

generate sufficient data yet maintain a Nyquist frequency in

the 10 Hz region, the random input response data was

acquired at 25.6 Hz for 20 seconds of data. The frequency

response function plots were generated for data from 0 to 10

Hz, using the Sweptsine sub function on the 2642 Analyzer

with a step size of 0.025 Hz collecting 401 points of data.

This data was collected by Lieutenant Chad Matheson as part

of his thesis, in 1992 (8).

Since the data collected by Lieutenant Matheson was a

set of frequency response functions created from

acceleration data, and the ERA method requires impulse

response data, with output measurements of velocity, not

26

acceleration, a transformation of the data had to be made.

The first step was to integrate the frequency response

function data. In the frequency domain, this becomes:

Ha(jW)
Hv(jw) = (23)jW

The primary problem encountered was to determine Hv(jw) at

S= 0 Hz (DC). Since most of the data below 1 Hz was not

very accurate, and the modes below 1 Hz include primarily

rigid body and pendulum modes which will not be controlled,

it was decided to make Hv(0) = 0. This is the same method

used by the MATH subroutine on the Techtronix Digital

Analyzer 2642.

Once the frequency response functions with respect to

velocity were created, the inverse fourier transform of the

data, could then be taken, again using a MATLAB script file

(see Appendix D). This script file used the IFFT function

in MATLAB for 2048 points, and multiplied the results by the

time scaling factor, which is 2048. This then provided the

velocity impulse response which the ERA method requires.

The other set of data required was the random input

data. This data was generated by sending a random input

signal to the proof mass actuators to excite the DTA. The

acceleration output signal thus generated was sent through

the analog integrator located in the motor control units,

and was recorded by the Analyzer. However, only the

27

collocated velocity data was valid since the velocity signal

for the non-collocated measurements was so small as to be

indistinguishable from the ambient noise of the system.

This was true only for velocity data gathered from the

Analyzer. This is because although the accelerations are

large, they occur for only a short time in each direction,

resulting in small velocities. The accelerations for the

collocated data are an order of magnitude larger than for

non-collocated data, resulting in collocated velocity data

which is distinguishable from the ambient noise of the

system. For this reason, the data inserted into PEM to

generate the C matrix only included the collocated rate

data.

Model Generation

With the data generated, the next step is to identify

the system model. The impulse response data was inserted

into the ERA software while one set of random input

responses (and corresponding input signals) were inserted

into the BLS software. Both methods generated natural

frequencies, damping factors, mode shape matrices and modal

participation matrices. The plant matrix was generated from

the natural frequencies and damping factors while the input

matrix was generated by taking the discrete transformation

of the modal participation matrix. These matrices were then

28

transformed to real matrices (2x2 block diagonal form for

the A matrix).

The only matrix left to identify was the output matrix.

This was were the PEM method was employed. Another set of

random input response data was inserted into the PEM routine

(see Appendix D). The elements of the A and B matrices were

fixed, while the PEM routine was allowed to determine the

elements of each row of the C matrix (given the real form of

the mode C matrix derived by the ERA or BLS procedure as an

initial condition). By fixing the A and B matrices, the PEM

routine was able to accurately determine the C matrix

because of the relatively few numbers of variable parameters

it had to determine.

The final step in the system identification process was

to test the accuracy of the model. Since the numerous

errors associated with time domain data make comparison in

the time domain difficult, and because small errors in the

frequency domain (such as not identifying one pole or zero)

translate to large errors in the time domain, it was decided

that only a comparison of the system transfer functions, and

no comparison of time domain output would be made. A

comparison of the frequency response of each model was

compared to the frequency response functions of the DTA.

The PACOSS system frequency response functions were the same

velocity transfer functions which were used earlier in the

generation of the impulse response data for the ERA. The

29

results of the PACOSS identification are presented in

Chapter V.

With this identification accomplished, there is a

plant, input, and an output matrix describing the motion of

the PACOSS DTA. This state space model can be used to

design an active control system for the PACOSS.

Additionally, there is a comparison of two system

identification techniques for their accuracy in modeling

large, multi-input multi-output, undamped space structures

with multiple, closely spaced, low frequency modes.

30

V. PACOSS IDENTIFICATION

With the model identification techniques selected, and

a validation of their ability to generate accurate state

space models, the final step is to generate a state space

model for the PACOSS DTA. Both the ERA/PEM and BLS/PEM

methods were used, and the results were compared to the

frequency response of the PACOSS DTA to determine the

accuracy of model thus developed.

ERA Identification

Since the ERA method produced an extremely accurate

model of the truth system, it was the first method employed

to identify the PACOSS DTA. The impulse response data was

inserted into the ERA/PEM software, using a Hankel matrix

that had 90 columns (45 modes) and 400 rows (79 data points

for 1.66 second of data). The singular value cutoff was at

the 8 6 th singular value. The A and B matrices thus created

were inserted into PEM and a C matrix was computed. Appendix

B contains the state space model, in discrete time form,

developed by ERA/PEM.

As can be seen in Table 3 ERA/PEM identified 10 modes

under the 10 Hz cutoff. These modes were closely space and

they all had low damping ratios.

31

Table 3: ERA/PEM Identified
PACOSS Modes

ERA! PEM

n (HZ) r (%)
1.5258 5.1503
2.8969 2.0358
3.9228 1.2975
4.7210 1.7325

4.9421 0.9926
6.9764 5.3497
7.2674 0.4309
9.1699 0.4153
9.2688 4.0237
9.6443 1.8441

In order to test the accuracy of these modes, a

comparison was made to the experimentally obtained frequency

response function plots from the PACOSS. Figure 6 is a

comparison of the PACOSS frequency response plots (solid

line) and the model developed using the C matrix generated

by ERA only (dashed line). It can be noted that few zeros

were identified and many of the poles were canceled out by

the zeros that were identified.

32

0 - Actuator #1/Accelerometer #1

50

-100
0 2 4 6 8 10

Frequency (Hz)

Figure 6: ERA Magnitude Plot for
Actuator 1/Accelerometer 1

Figure 7, is a comparison of the PACOSS frequency response

plots (solid line) and the model which results from the PD(

developed C matrix (dashed line). This is a more accurate

match with no poles canceled by zeros. Appendix C contains

the graphs of all the actuator/accelerometer pair

comparisons between each PACOSS frequency response plot and

its corresponding ERA/PEM model frequency response plot.

Actuator #1/Accelerometer #1

"4 -50 /___. -_.

-100
0 2 4 6 8 10

Frequency (Hz)

Figure 7: ERA/PEM Magnitude Plot for
Actuator 1/Accelerometer 1

33

The ERA/PEM method shows a good correlation

between 1 Hz and 10 Hz for the system poles, but not for the

system zeros. The ERA/PEM method identified almost all the

poles, and many of the zeros. Which specific poles and

zeros it identifies accurately varies with the

actuator/accelerometer pair being examined. As can be seen

in Figure 7, for the actuator I/accelerometer 1 pair, most

of the poles are identified by ERA/PEM quite accurately, but

4 significant zeros are not identified. This is typical of

the system model developed (see Appendix C for other

actuator/accelerometer pairs).

What this signifies is that the A matrix for the system

model is accurate and could be used in control system

design. The 2 and C matrices, however, are not accurate.

They do identify some zeros, but they miss several

significant zeros. Overall, the ERA/PEM method does a good

job of modeling a very complex system, but the model

developed would not be accurate enough to enable control

system design.

BLS Identification:

Although the BLS method was not as accurate as the ERA

method in identifying the truth model, in particular when

there was a large measurement noise, it was thought that BLS

could help to confirm some of system modes developed by ERA.

For this method, the set of random input data was used to

develop the system model. As before, the A and B matrices

34

were inserted into PEM to compute a C matrix and provide a

complete state space model of the PACOSS DTA.

As can be seen in Table 4, the BLS method identified 10

modes. These modes were grouped around 1.5 Hz and 12 Hz,

with most having damping ratios in excess of 30%.

Table 4: BLS/PEM Identified
PACOSS DTA Modes

BLS/PEM

Wn (HZ) r (%)

0.7202 81.3024
1.2406 58.2258
1.5165 62.8178
1.4941 59.9581
1.5001 53.0558
1.3518 30.8457
1.4993 40.9521

12.6124 3.5030
12.6761 1.6485
12.8435 8.2277

These modes are very different from the actual system

response as seen in Figure 8, where the modes are spread out

from 2 Hz to 10 Hz with damping ratios under 5%. As can be

seen, there is almost no correlation between the BLS/PEM

frequency response (dashed line) and the actual PACOSS DTA

frequency response (solid line).

35

Actuator #*/Accelerometer #1

4 0

-0)

-100
0 2 4 6 8 10

Frequency (Hz)

Figure 8: BLS Magnitude Plot for
Actuator #i/Accelerometer #1

This lack of correlation leads to the conclusion that

the state space model developed using the BLS/PEM method was

not accurate enough to enable the development of a control

system.

Sources of Error

The primary reason the model did not exactly match the

PACOSS DTA in the frequency domain was because of the

numerous errors inherent in the system identification

process, in addition to the errors particular to this

specific experiment. Inherent in the attempt to identify

any real world system is the fact that any real world system

is a continuous system with an infinite number of modes.

However, a model is approximated by a system of discrete

point masses and can only have a finite number of modes.

The attempt is made to retain the modes which have the most

36

effect on the system behavior. But, the fewer modes

retained, the less accurate the model. The ERA/PEM method

generated a model with 10 modes. This is far from an

infinite number of modes, but most of the power is located

in these modes.

Another set of errors inherent in any system

identification process is the noise introduced into the

response measurements. This noise can come from a number of

sources and includes accelerometer noise and bias, errors

measuring the inputs, air currents, modes introduced by the

attachment points between the experiment and the

environment, and rigid body or pendulum modes. These noises

all very in magnitude, and are not always zero mean

Gaussian. This makes them difficult to predict and remove

from the data before processing. Since most system

identification models attempt to account for zero mean

Gaussian noise, noise which does not fit this description

will effect the system model. The result is that system

identification techniques model this non-zero mean non-

Gaussian noise as additional system modes, therefore

creating a model with more modes than the actual system.

For this particular experiment, there were several

known sources of noise. The first, and probably the most

significant, was accelerometer noise and bias. For velocity

data, the accelerometer ambient noise level was on the order

of 10 mVolts, with a steady state bias ranging from -100

mVolts to -400 mVolts. This was significant because the non

37

collocated velocity data had velocity values on the order of

10 mVolts. This meant that none of the non collocated

velocity measurements could be used because the data could

not be distinguished from the noise. Additionally, the

PACOSS air bearing isolation system has a known natural

frequency of 0.6 Hz, which was accounted for, and an unknown

number of additional frequencies which introduce noise into

the output response. Additionally, there were low frequency

pendulum modes which effected the data. For this reason,

the data below 1 Hz was viewed with skepticism.

3R

VI. Conclusions and Recommendations

The final result of this research is that the system

identification methods used were unable to create a state

space model with sufficient accuracy to enable the design of

an active control system for the PACOSS DTA. They were,

however, able to accurately identify the system modes and

damping factors, from which the plant matrix was created.

Conclusions

The ERA method appears to be a accurate method for

determining system modes. It accurately predicted the

system poles, as is evident in the frequency domain plots in

Appendix C. This is, after all, what it was designed to do.

One reason this method had difficulty identifying all the

modes at all the sensor locations was due the difficulty it

had in identifying the system zeros. For the most part,

ERA/PEM failed to identify the system zeros, resulting in a

state space model with far fewer zeros than were found in

the actual system. The result of this may be that at

certain actuator/accelerometer pairs, the ERA/PEM method did

not identify a zero, which in the actual system canceled a

pole. The model frequency response would then show a pole

where the PACOSS frequency response does not, due to pole-

zero cancellation.

39

The inability of the ERA/PEM method to accurately

identify all the system zeros was disappointing, but not

unexpected, since the method was designed as a modal

identification technique, not a state space model

development technique. But, for control system design, the

location of the zeros is as iL..ortant as the location of the

poles. For this reason, to develop a truly accurate active

control system for the PACOSS, some other method will have

to be used, instead of, or in conjunction with, the ERA

method.

This thesis attempted to supplement the ERA's zeros

finding capabilities with the PEM method. For the small

truth model, this worked well. But for the larger, and more

complex PACOSS system, this method did not work very well.

PEM did identify several zeros, but it missed several

others. Poor performance in the larger system is most

likely due to the method PEM employs in finding zeros. It

uses a gradient search to identify unknown parameters of the

A, B, and/or C matrix. For this thesis, the parameters of

the C matrix were identified one row at a time. This means

PEM was trying to minimize the gradient for 20 unknown

parameters, as opposed to the 6 unknown parameters in the

truth model.

To help verify that this set of zeros was the best

result PEM could achieve, the C matrix was held constant and

the B matrix was identified one column at a time. The

results were that the same set of zeros were identified and

40)

were not identified as before. Finally, when both B and C

were inserted into PEM and allowed to vary, the results were

worse. In this case, most of the zeros that were

identified, were identified incorrectly. This is because in

this case, a gradient search on 40 parameters was performed.

This once again leads to the conclusion that another method

of zero identification is needed.

The BLS method did not create an accurate state space

model for either the truth model, or the PACOSS DTA. Even

in the fairly simple 2 input/2 output, 3 mode truth model,

it was only able to identify 2 of the modes, and those modes

were not identified very accurately. Additionally, the BLS

method demonstrated in the truth model a vulnerability to

measurement errors of as small as 1% RMS. This, and the

fact that it was unable to identify any of the PACOSS DTA

modes accurately suggests that this method may not be

suitable for identification of systems of the magnitude of

the PACOSS.

Recommendations

The primary recommendation is to continue working with

the ERA and other time domain methods to develop an accurate

system model of the PACOSS. The system identification,

literature as well as the truth model in this thesis,

demonstrate that the ERA method is very capable of

accurately identifying the system modes. However, for

41

control system design, one needs the input and output

matrices as well. The ERA method is not very accurate at

predicting these matrices. Additional work should be done

to identify a method that will identify the A, B, and C

matrix independently, or in conjunction with ERA, but more

accurately than PEM.

42

Bibliography

1. Rajaram, S. and Junkins, J.L., "Identification of
Vibrating Flexible Structures", Journal of Guidance and
Control Vol 8, Jul-Aug 1985, pp 463-465.

2. Gehling, R.N., Morgenthaler, D.R., Richards, K.E.
Passive and Active Control of Space Structures: Final
Rport, November 1988 - April 1991. CDRL 14, Contract
#F33615-82-C-3222. Denver, Co: Martin Marietta
Astronautics Group, 5 June 1991.

3. Pro-Matlab User's Guide. The Math Works Inc. Sherborn,
MA, 1987.

4. Ljung, Lennart. System Identification: Theory for the
User. New Jersey: Prentice-Hall, Inc, 1987.

5. Franklin, Gene F. and Powell, David J., Digital Control
of _Dynamic Systems. Addison-Wesley Publishing Company:
Reading, MA, 1980.

6. Juang, Jer-Nan, and Pappa, Richard S., "An Eigensystem
Realization Algorithm for Modal Parameter Identification
and Model Reduction" Journal of Guidance and Control.
Vol 8, Jul-Aug 1985, pp 620-627.

7. George, Scott E., A Modal Analysis and Modelling of a
Lightly Damped Large Space Structure, MS thesis,
AFIT/GA/ENY/92J-01. Graduate School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson
AFB OH, June 1992.

8. Matheson, Chad T., Vibration Suppression in Large
Flexible Space Structures using Active Control
Technigue9, MS thesis, AFIT/GAE/ENY/92D-13. Graduate
School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFE OH, December 1992.

9. Craig, Roy R. Jr., Structural Dynamics: An Introduction
to Comuter Methods. New York: John Wiley & Sons, 1981.

43

10. Hollkamp, Joseph J., "Multiple-Input, Multiple-Output
Time-Series Models from Short Data Records" Journal of
Guidance and Control. Vol 16, May-June 1993,
pp 549-556.

11. Gehling, R.N., Passive and Active Control of Space
Structures: Volume 2 Test and Analysis Results,
September 1987 - November 1988. CDRL 14, Contract
#F33615-82-C-3222. Denver, Co: Martin Marietta
Astronautics Group, 30 Sep 90.

Appendix A. Truth Model

This appendix contains the time domain and bode plots

for both the ERA/PEM and the BLS/PEM generated models for

the truth system. On all graphs, the truth system is the

solid line while the model is the dashed line.

45

0.2 -ERA
output #1

0.15

0.1

0

-0.05 I

-0.1

-0.15

-0.2

-0,25-
0 2 4 6 8 10 12 14 16 18 20

seconds

ERA output #2

0.08

0.06 I

0.04-A

-0.02-w~

-0.04

-0.06
0 2 4 6 8 10 12 14 16 18 20

seconds

46

ERA/PEM Input #1/Output #1

- 0 .

-10-

-20

.•30 •

-40

-50

-60
0 2 4 6 B 10 12

Frequency (I-FI)

ERA/PEM Input #1/Output #2

-20

-40 -

~-60 .

-8o

-100

-1201
0 2 4 6 8 10 12

Frequency (fi)

47

ERA/PEM Input #2/Output #2-20

-30.

-40

a-50 -

-60

-70

"-801
0 2 4 6 8 10 12

Frequency (Hz)

ERA/PEM Input #2/Output #1

-20

-80

-100

-120,,

0 2 4 6 8 10 12

Frequency (Hz)

48

0.3S Output *1

0.2

0.1 &

0/

-0.1

-0.2

-0.3-
0 2 4 6 8 10 12 14 16 18 20

seconds

BLS Output #2

0.04

0.04 -

0.02

0

-0.02

-0.04

-0.06-

-000 2 4 6 8 10 12 14 16 18 20

seconds

49

BLS Output#I/lnput#l

10-1

10-

101100 10, 102

Hertz

~oo...............BLS Output#2/Input#1

10-1

10-2

10-

10-5

10-1 10, 10, 102

Hertz

so

100 BLS Qutput#1/Input#2

10.1

10-4

10-5

101100 10l 102

Hertz

10.1 BLS Output#2/Input#2

10.2

10.11050 102

Hertz

Appendix B. PACOSS State Space Model

The ERA/PEM method was able to generate a state space

model for the PACOSS DTA. The model is in discrete block

diagonal form, and contains real plant, input, and output

matrices. The plant matrix is expressed in real, block

diagonal form.

52

A 0.9731 0.18411[0.9307 0.34551] 0.8808 0.46011[0.8285 0.5419]
[-0.1841 0.9731J'[-0.3455 0.9307'[.-0.4601 0.8 8 08J'L -0.5419 0.8285'

[0.8167 0.56651r0.6269 0.72071r 0.6256 0.77521r 0.4289 0.8982]-0.5665 0.8167J'L-0.7207 0.6269J'L-0.7752 0.6256J'L-0.8982 0.4289.]

[0.4019 0.86661[0.3697 0.90591
-0.8666 0.4019J'L-0.9059 0.3697J

-0.1839 -0.0858 -0.0148 0.0166 -0.0666 -0.1587 0.0433 0.0256

0.1422 0.0448 -0.0389 -0.1230 -0.0963 -0.1788 0.0253 0.0049
-0.1659 0.2568 0.2017 -0.1319 0.3584 0.4355 -0.0207 0.2876

0.1066 -0.0856 -0.1994 0.1220 -0.4463 -0.2985 0.0626 -0.3602

-0.0727 -0.1196 0.1221 0.0924 -0.1249 0.0462 0.4333 -0.0051

-0.0220 -0.0166 0.0142 -0.0172 0.0177 0.0620 -0.1860 0.0365

-0.0653 -0.0619 0.0779 0.0954 -0.0802 -0.0389 0.0400 -0.1021

0.2431 0.2337 -0.1498 -0.1560 -0.0935 -0.1230 0.0213 -0.1312

-0.0396 -0.1732 -0.2710 -0.1368 0.3347 0.2970 -0.0419 0.4921

-0.0290 -0.0541 -0.0089 -0.0254 0.0581 0.0999 0.0021 0.05973-
-0.0827 -0.0363 -0.0561 0.1177 0.0739 0.0057 -0.3922 -0.0341

0.1434 -0.0283 -0.0146 -0.01478 -0.1046 -0.1193 -0.1772 0.0006

0.1438 -0.2087 -0.1740 0.1546 -0.0977 -0.1131 -0.0175 -0.0832

-0.1213 0.1627 0.1766 -0.1335 0.0942 0.0819 0.0124 0.0772

0.0540 0.0120 -0.0760 0.1462 -0.0790 -0.1703 -0.1739 -0.1717

-0.0211 -0.0118 0.0596 -0.1210 0.0617 0.1249 0.2033 0.1472

0.0741 -0.0963 0.0577 -0.0767 -0.0329 0.0619 0.2585 -0.0064

0.0427 -0.0596 0.0597 -0.0784 -0.0343 0.0859 0.2697 0.0146

-0.0174 0.0079 0.0008 -0.0244 0.0087 0.0452 -0.0278 0.0556

0.0202 -0.0266 0.0041 -0.0151 0.0123 -0.0039 0.0164 0.0173

53

-0.0729 -0.0351 0.3088 0.1679 0.1361 0.0579 0.6896 2.1689

-0.0691 -0.0585 -0.2660 -0.0256 -0.1183 -0.0431 0.4115 -0.7177

-0.1235 0.0305 0.0610 -0.1052 0.0442 0.0643 0.0113 0.0941

-0.0096 0.0026 -0.0119 0.0144 -0.0103 0.0008 0.3421 0.1181

-0.01454 -0.0289 0.0715 0.0839 -0.0743 0.1312 0.0037 -1.1872

0.0391 0.0134 -0.0212 -0.0662 0.0599 0.0081 -0.0215 0.5127

0.0607 0.0369 -0.0472 -0.0275 -0.2812 -0.2208 0.4714 0.1425

0.1203 0.0372 -0.1486 -0.1580 -0.0031 -0.0186 -0.4291 0.0504

-0.0611 -0.0241 -0.0363 -0.0613 0.0364 0.0363 -0.3400 -0.0427

-0.3156 -0.0214 -0.0402 -0.0914 0.0333 0.0257 -0.0805 -0.0072

-0.0195 -0.3803 -0.7671 0.0800 0.0603 -0.1987 -0.1103 0.4800

0.3328 -0.0176 0.0539 -0.2555 -0.4385 -0.2449 0.0299 -0.1354

0.0242 -0.0050 -0.0138 0.0193 -0.0319 -0.0217 -0.1942 -0.0144

0.0114 -0.0022 -0.0082 0.0112 -0.0144 -0.0083 -0.0817 -0.0103

-0.0880 -0.0679 0.0441 -0.0235 0.0497 0.0134 0.0152 -0.0162

0.0110 0.0546 -0.0137 0.0090 -0.0248 -0.0106 -0.0142 0.0718

0.6202 -0.1401 0.4226 -0.3691 -1.0326 0.3141 0.1365 -0.2453

0.2901 -0.0494 0.4162 -0.3517 -0.6825 0.2415 0.0803 -1.9738

-0.4932 0.2255 -4.4244 0.5451 -1.4755 0.0061 -0.3389 0.3047

-0.6307 0.0718 -0.5193 -0.4821 0.5788 0.3518 -0.5922 0.0118

54

Appendix C. Bode Plots

This appendix contains the bode plot comparissons of

the actual PACOSS system and the ERA/PEM developed model.

All plots are from I to 10 Hz, and are frequency response

functions of velocity output to force input. In all plots,

the dashed line represents the ERA/PEM model derived

transfer function, while the solid line represents the

actual PACOSS DTA derived frequency response function.

55

Act #1/Accel #1 0 Act #1/Accel #2

S-50
-5 Ix / ,, J/ - _• 4a

-100

-100, -150,
0 5 10 0 5 10

Hz Hz

Act #1/Accel #1 Act #1/Accel #1500 .1000,

.. o

-500 -1000

-10001 -2000,
0 5 10 0 5 10

H ziz

Act #1/Accci #3 Act #1/Accel #4
0 0

""5 -5 ca.' . ,.,•

-100

-100' -150-
0 5 10 0 5 10

Hz Hz

Act #1/Accel #3 Act #1/Accel #4
1000 500

0- 00

-1000 -5000

-2000 -1000-
0 5 10 0 5 10

Hz Hz

56

Act #1/Accel #5 Act #1/Accel #6

"•'50 •-I - -0 -0

-100

-1001 -1501
0 5 10 0 5 10

Hz Hz

500 Act #1/Accel #5 500 Act #1/Accel #6

'• 0 g • 0 • •

-500 -500

0 5 10 0 5 10

Hz Hz

0 Act #1/Accel #9 0 Act #1/Accel #10

mV i
m-50. •" "' "M -50.

-100 - -100
0 5 10 0 5 10

Hz Hz

Act #1/Accel #9 Act #1Accel #10

-50 -a
-1000-

-1500 -1000"
0 5 10 0 5 10

HIz Hz

57

Act #2/Accel #1 Act #2/Accel #2

S-50 K -

-100 -100.

0 5 10 0 5 10

Hz Hz

Act #2/Accel #1 Act #2/Accel #2
1000 500

too

-1000 -500-

-20001 -10001
0 5 10 0 5 10

lHz Hz

0 Act #2/Accel #3 Act #2/Accel #4

5 -5-
1-00

-100 -1501
0 5 10 0 5 10

Hz Hz

Act #2/Accel #3 Act #2/Accel #4
50 500

0-

-500 -- -500

-1000 . -1000.
0 5 10 0 5 10

Hz Hz

58

0 Act #2/Accel #5 0 Act #2/Accel #6

-50 Z.. .j< -��, -50 --

-100

-150 -100
0 5 10 0 5 10

Hz HIz

Act #2/Accel #5 Act #2/Accel #6500 ,1000,

-500 -1000

-1000 . -2000'
0 5 10 0 5 10

Hz Hz

Act #2/Accel #9 0 Act #2/Accel #100_ 0

-100' -100'
0 5 10 0 5 10

Hz Hz

Act #2/Accel #9 0 Act #2/Accel #10

-500
Si si 500

-1000

-1500. -1000,
0 5 10 0 5 10

Iz IIz

59

Act #3/Accel #1 Act #3/Accel #2

10

-1001 -100,
0 5 10 0 5 10

Hz Hz

Act #3/Accel #1 Act #3/Accel #2
1000 l1000'

0- 0 •

-1000 -1000 -

-2000. -2000,
0 5 10 0 5 10

Hz H-z

Act #3/Accel #3 Act #3/Accel #4
0 0

-, 50 - ..A', -50 ' ",-'

-100 -100
0 5 10 0 5 10

Hz Hz

Act #3/Accel #3 Act #3/Accel #4s00o 1000,

0 0

-500- -1000

-1000 -2000
0 5 10 0 5 10

Hz Hz

60

0Act #3/Accel #5 Act #3/Accel #6

-_50 -•@ .. _• / •

-100

-100, -150 1
0 5 10 0 5 10

Hz Hz

10t__31__ cel ____Act #31Accel 061000 Soo

-1000 -500

-2000. -1000
0 5 10 0 5 10

HI Hz

Act #3/Accel #9 Act #3/Accel #10

0 0"-50 -• '- "" 50 ' _A . '-"• •

-100. -100

-150 -1501
0 5 10 0 5 10

Hz Hz

Act #3/Accel #9 Act #3/Accel #10

50lo

-500 - -1000-

-1000. -2000.
0 5 10 0 S 10

Hiz H

61

Act #4/Accel #1 Act #4/Accel #2

-5 0 -50 50

-100 -100

-150 -150
0 5 10 0 5 10

Hz Hz

0 Act #4/Accel *1 50Act #4/Accel #2

0 00

-1000. -500-

-ISOO -1000
0 5 10 0 5 10

0c 4~cl# Act #4/Accel #4

-100 -100
0 5 10 0 5 10

Hz Hzt

500 500Ac /Ael#

-500 -- 500

-10001 -10001
0 5 10 a 5 10

liz

62

Act #4/Accel #5 Act #4/Accel #6

m m -50 -

-100

-150. -100
0 5 10 0 5 10

Hz Hz

Act #4/Accel #5 Azct #4/Alcc1- #61000 1000.

S~DO

-1000"

-2000 -1000
0 5 10 0 5 10

Hz Hz

Act #4/Accel #9 Act #4/Accel #10

-50 -50

-100. -100
0 5 10 0 5 10

Hz -z

Act #4/Accel #9 Act #4/Accel #101000 1000,

-1000. -1000

-2000. -2000.
0 5 10 0 5 10

Hz -hz

63

Act #5/Accel #1 Act #5/Accel #2

-50- -50

-100 -100

-150• -150,
0 S 10 0 5 10

Hz Hiz

Act #5/Accel #1 Act #5/Accel #21000 .1000.

0- 0

-1000- -1000

-2000 ,-- -2000,
0 5 10 0 5 10

Hz Iz

Act #5/Accel #3 Act #5/Accel #4

-50 CA•',e,>.

-100

-100 -150
0 5 10 0 5 10

Hz Hz

Act #5/Accel #3 Act #5/Accel #4
1000 0

-1000

-2000' -2000,
0 5 10 0 5 10

Hi Hz

64

Act #5/Accel #5 Act #5/Accel #6
0 0

-50 ,-50 ,

-100. -100.
0 5 10 0 5 10

H-z Hz

Act #5/Accel #5 Act #5/Accel #6500 .500.

0- 0-

-500 - -500-

-1000 .- -1000.
0 5 10 0 5 10

HI- Hz

0 Act #5/Accel #9 Act #5/Accel #10

S-50 - -50

-100 -100
0 5 10 0 5 10

Hiz Hz

500 Act #5/Accel #9 500 Act #5/Accel #10

-500

-1000. -500
0 5 10 0 5 10

Hz Hiz

65

Act #6/Accel #1 Act #6/Accel #20 0

-50

-100

-150. -100
0 5 10 0 5 10

Hz Hz

Act #6/Accel #1 Act #6/Accel #2500 1000.

0 - 0
-500 -1000,

-1000 -2000,
0 5 10 0 5 10

Hz Hz

Act #6/Accel #3 Act #6/Accel #4

-50 - -

-a-50
-100

-150 -100.
0 5 10 0 5 10

Hz Hz

Act #6/Accel #3 Act #6/Accel #4
500 -1000

-100 -1000-\ •

-1000 -2000
0 5 10 0 5 10

Hz Hz

66

Act #6/Accel #5 Act #6/Accel #6

m -50 -

-100' -100,
0 5 10 0 5 10

HIz Hz

Act #6/Accel #5 Act #6/Accel #6
1000 500

0 - " - -. _ 0 . "'-

-1000 -500.

-2000 , -10001
0 5 10 0 5 10

Hz -z

0Act #6/Accel #9 0 Act #6/Accel #10

I-50 -5 0 - -50 -*~ -

-100 -100
0 5 10 0 5 10

HIz Hz

Act #6/Accel #9 Act #6/Accel #101000 Soo

41 0
ba 0 ' . . "• • - -

-1000 -500

-2000 , -1000 1
0 5 10 0 5 10

Hz Hh

67

0Act #9/Accel *1 Act #9/Accel #2

M-50 - -5 -

-1001 -1001
0 5 10 0 5 10

Hz Hz

Act #9/Accel#*1 Act #9/Accel #2

500

-1000 10

-1500, -1500,
0 5 10 0 5 10

Hzt Hz

0Act #9/Accel #3 0Act #9/Accel #4

~-0

-100-

-150' -100,
0 5 10 0 5 10

HIz Hz

500 Act #9/Accel #300 Act #9/Accel *4

-500 -1000-

-1000, -2000'
0 5 10 0 5 10

Hz Hz

68

Act #9/Accel #5 Act #9/Accel #6
0 0

-50 c\ -*50 -

-100 -100
0 5 10 0 5 10

Hz Hz

Act #9/Accel #5 Act #9/Accel #61000 1000,

0- 0-

-1000 -1000

-2000 -2000
0 5 10 0 5 10

Hz Hz

0 Act #9/Accel #9 0 Act #9/Accel #10

rA
'•-so0." -50 •

-100
-100

0 5 10 0 5 10

Hz Hz

Act #9/Accel #9 Act #9/Accel #10500 ,20001

0- 10001

-500 0:[-

-1000 -1000,
0 5 10 0 5 10

Hz Hz

69

0 Act #10/Accel #1 Act #10/Accel #2

0 0~

-$0 -" -50

-100 -100

-150 -150.
0 5 10 0 5 10

H-z Hz

Act #10/Accel #1 Act #10/Accel #2
50 500

-500-

-1000 j -500
0 5 10 0 5 10

Hz Hz

Act #10/Accel #3 Act #10/Accel #4

-50 ' -50 -

-100 -100

-150. - 150
0 5 10 0 5 10

Hz Hz

100Act #10/Accel #3 Act #10/Accel #4
100 0

.• - .•000

-1000

-2000. -2000,
0 5 10 0 S 10

Hz Hz

70

Act #10/Accel #5 Act #10/Accel #6
0 0

-50 -- 50 -

-100 -100

-150 -1501
0 5 10 0 5 10

Hz I-z

Act #10/Accel #5 Act #10/Accel #6
1000 1000

0 r0.

-1000 - -1000-

-2000 -2000'
0 5 10 0 5 10

Hz Hz

Act #10/Accel #9 Act #10/Accel #10
/0 0.

-50 - -
~-50 /

-100

-150 -100'
0 5 10 0 5 10

Hz Hz

Act #10/Accel #9 Act #10/Accel #10
1000 1000

0~0-

-1000 -1000"

-2000 -2000
0 5 10 0 5 10

Hz Hz

71

Apendix D. MATLAB Script Files

This appendix contains the 6 MATLAB script files used

in this thesis. The first file was used to determine the

accuracy of the ERA model by computing system modes and

comparing the results to those of the truth system. The

second file performed the same analysis using the BLS method

to determine the system modes. The third file used the ERA

method to compute the PACOSS system modes. The fourth file

used the BLS method to compute the PACOSS system modes. The

fifth computed the output matrix given the plant and input

matrices from either the ERA method or the BLS method. The

final file computed and compared the transfer functions from

the PACOSS and the model developed by either the ERA or the

BLS method.

72

eral
V This file generates the truth information
% for a 2 input - 2 output system with known
V A, B, and C matrices, and then
I identifies that system using the
% ERA technique.
I

t generate input
rand('normal,);
T = 0.07;
t = [0:T:20];
A = 1;

% generate mesurement errors
E = 0.15;
for 1 = 1:length(t),

e(1,1) = E*rand;
e(1,2) = E/2*rand;

end;
I Define actual system TF

I Truth Model
t Mass coefficients
mi=0.61743; m2=0.19957; m3=1.6582;
% Damping coefficients
cl=0.031633; c2=0.32738; c3=0.32918; c4=0.019153;
t Stiffness coefficients
k1=52.058; k2=0.89183; k3=19.756; k4=178.08;
% Inverse mass matrix
minv=diag([l/mi I/m2 I/m3]);
* Stiffness matrix
kk=[kl+k2 -k2 0;-k2 k3+k2 -k3;0 -k3 k3+k4];
t Damping matrix
cc=[cl+c2 -c2 0;-c2 c3+c2 -c3;0 -c3 c3+c4];
% The AB,C,D matrices for the truth system
ag=[zeros(3,3) eye(3) ;-minv*kk -minv*cc];
bg=[O 0;0 0;0 O;minv*[0 0;1 0;0 I1];
cg=[O 1 0 0 0 0;0 0 1 0 0 01;
dg=zeros (2, 2) ;
% Convert to a TF
[numgl,dengl] - ss2tf(ag,bgcg,dg,1);
[numg2,deng2] = ss2tf(ag,bgcg,dg,2);

71

twn, z I =damp (ag);
W generate bode plot of truth system
w=logspace(-1,2,15o);
(magl,phasll~bode(ag,bg,cg,dg,l,w);
(mag2,phas2]~bode(ag,bggcg,dg,2,w);
W Now change to discrete state space form
fad,bd,cd,dd] = c2dm(ag,bg,cg~dg,T, 'zohl);

% generate truth output (impulse response for ERA)
[yl,x) = imrpulse(ag,bg,cg,,dg,,1,t);
[y2,x] impulse(ag,bg,cg,dg,2,t);
yl(l:length(t)-1,:) =yl(2:length(t),:);
y2(1:length(t)-1,:) = yl(2:length(t),:);

W add measurement error to truth output signal
for 1 = 1:length(t),

yl(1,2) = yl(l,2) +e1,)

y2(l,1) = y2 (1,1) + e (1,1) ;
y2(1,2) = y2(1,2) + e(1,2);

end;
y =yl+y2;

yi yl';
y2 =y2';

W now begin system identification
ncols = 20;
nrows = 60;
inputs = 2;
[Y] = weave(y1, Y2);
(fdk,zrnk,shapesk,partfac,EMAACk,sv,at,bt,ct]

erat (Y, l/T, ncols, nrows, inputs);
cut =10;

dt =zeros (2, 2);
Vi evaluate model

wdm=2*pi*fdk;
for 1 = i:length(fdk),

wnm(l) =wdm(l) /sqrt (i-zmk(l) /100*znlk(l) /100);
end;

W generate random input for PEM
for 1 = 1:length(t),
u(1,1) = A*rand;
u(1,2) = A*rand;

end;
t generate truth output from random input
* for PEM

[y,x] -lsim(ag,bg,cg,dg,u,t);
y = y + e;

74

[junk, ninput] =size (bt);
[noutput, junk] =size (ct);
dm~zeros (noutput, ninput);
%- convert bm from continuous to discrete
[atemp, Bm] = c2d (at, bt, T) ;

%ý now use PEM to improve C one row at
W a time to determine zeros

[rowa,colal = size(Axn);
[rowb,colb] = size(Bm);
ai. = at;
bi = bt;
ci = nan*ones(1,rowa);
di = zeros(1,colb);
ki =zeros(rowa,l);
x~i = zeros(rowa,1);
msi = modstruc(ai,bi,ci,di,ki,xoi);
parval = c~,)
parva2 = c(,)
lambdi =[I
thij. = ms2th(msi,'d'.,parval,lambdi,T);
thi2 = ms2th(msi, 'd',parva2,lambdi,T);
index =[1:length(parval)];

%perform system ID
thi = pem([y(:,1) uJ,thil,index,-1,le-1O,-1,-1,T);
th2 = pem([y(:,2) u],thi2,index,-1~le-10,-1,-l,T);

W convert theta to SS format
[AmBm,cml,dm,kml,xOl] = th2ss(thl);
[Am,Bm,cm2,dm,kml,xOll = th2ss(th2);

t combine c matrices to get NMIM C matrix
Cm = (cml;cm2];
Dm =dt;
for 1 = 1:length(t),

u (1, 1) = A*rand;
u (1, 2) =A* rand;

end;
[ya,x] =lsim(ag,bg,cg,dg,u,t);
[ym,x] = dlsim(Am,Bm,Cm,Dm,u);
W generate bode plot of mode].
[magml~phasml]=dbode(Am,Bm,cml,dml,T,1,w);
(magm2,phasm2] =dbode (Am,Bm, cm., dml,T, 2,w);

75

tist
This file generates the truth information
for a 2 input - 2 output system and then

%; identifies that system using a backward
%; batch least squares technique. The results
W are then run through PEM to determine the C
%- matrix

W

% generate input
rand ('normal');
T = 0.08;
t = [0:T:20];
A = 1;

W generate measurment error
E = 0.01;
for 1 = i:length(t)-1,

e(1,1) = E*rand;
e(l,2) = E/2*rand;

end;
V Define actual system TF

9% Truth Model
% Mass coefficients
ml=0.61743; m2=0.19957; m3=1.6582;
W Damping coefficients
cl=0.031633; c2=0.32738; c3=0.32918; c4=0.019153;
W Stiffness coefficients
k1=52.058; k2=0.89183; k3=19.756; k4=178.08;
% Inverse mass matrix
minv=diag([I/ml I/m2 I/m3]);
% Stiffness matrix
kk=[kl+k2 -k2 0;-k2 k3+k2 -k3;0 -k3 k3+k4];
W Damping matrix
cc=[cl+c2 -c2 0;-c2' c3+c2 -c3;0 -c3 c3+c4];
% The A,B,C,D matrices for the truth system
ag=[zeros(3,3) eye(3);-minv*kk -minv*cc];
bg=[o 0;0 0;0 O;minv*[O 0;1 0;0 1]];
cg=[0 1 0 0 0 0;0 0 1 0 0 0];
dg=zeros (2,2) ;
% Convert to a TF
[numgl,dengl] = ss2tf(ag,bg,cgdg,i);

76

(nuing2,deng2] = SS2tf(ag,bg,cg,dg,2);
[wn, z] =damnp(ag);
%generate bode plot of truth system

w-logspace(-1,2,150);
[magl,phasl]=bode(ag,bg,cg,dg,i,w);
[mag2,phas2]=bode(ag,bg,cggdg,2,w);
% Now change to discrete state space form
[ad,bd,cd,dd] c2dm(ag,bg,cg,dg,T, 'zoh');

W generate random inputs
for 1 = 1:length(t),
u (1,1) =A* rand;
u(1,2) =A*rand;
e(1,1) =E*rand;
e(1,2) =E/2*rand;

end;
W generate truth system response to
%- random input

[y,x] = lsim(ag,bg,cg,dg,u,t);
W add measurement error into the system

% now to identify the system
p = 6; %model order
ffd, zm, zpoles, shapes,partfac] = mimo(u,y,p, lIT);
% find the undamped natural freqencies
wdm=2*pi*fd;
for 1 = i:length(fd),

end;
wnm = wnm;
% create the state space model
n=length(fd);
nc=1;
for jh=1:n,

wdl=2*pi*fd(jh);
wnl=wdl/sqrt (1-zm(jh) /100*zm(jh) /100);
zl(nc)=exp((-zm(jh)/1o0*wn1+j*wd1)*T);
zl(nc+l)=conj (zl(nc));
bm(nc, :)=partfac(jh,:);
bm(nc+1,:) =conj (partfac (jh,:));
cm(:,nc)=shapes(:,jh);
cm(: ,nc+1) =conj (shapes (:, jh));
nc=nc+2;

end;
am=diag(zi);
[junk, ninput]I = s ize(bm);

77

[noutput, junk] =si ze (cm);
dim= zeros (noutput,nfinput);
W convert bin from continuous to discrete
[atemp~,Bi] =c2d(am,bm,T);
96 convert am, Bin, and cm to real element matrices
TI ([1 ;j -ji;
T2 T1;
[ri,cl]= size (am);
for k =4:2:rl,

[r,c] = size(T2);
T2 = [T2 zeros(r,2);zeros(2,c) Ti];

end;
Tiny = inv(T2);
Am = T2*ain*Tinv;
Bin = T2*Bin;
Cm =cm*Tinv;
Dm = din;
9% now use PEM to improve C
[rowa, cola] = size (Am) ;
(rowb,colb] = size(Bm);
(atemp,Bt] c2d(Am,Bin,T);
ai =Am;
bi = Bt;
ci =nan*ones(l,rowa);
di =zeros(1,colb);
ki = zeros(rowa,1);
x~i = zeros(rowa,1);
insi =modstruc(ai,bi,ci,di,ki,x~i);
parval = C~,)
parva2 = C(,)
lambdi =[1

thil = ins2th(msi, 'd',parval,laxnbdi,T);
thi2 = ms2th(msi, 'd'parva2,laxnbdiT);
index = [l:length(parval)];

W perform system ID
thi = pem([y(:,1) u],thil,index,-l,le-1O,-1,-i,T);
th2 = pem([y(:,2) u],thi2,index,-1,le-lO,-1,-1,T);

W convert theta to SS format
[Am,Bm,cml,dm,kml,xOl] = th2ss(thl);
[Am,Bm,cm2,dm,kml,xOl] = th2ss(th2);

W combine c matrices to get MIMO Cm matrix
in = [cmi;=i2];
Wgenerate bode plot of system model

w=logspace(-l,2,150);

[magml,phasml]=dbode(Am,Bt,Cm,Dm,T,1,w);

78

[magm2,phasin2] =dbode (Amn, t,CQn,tu, T 2,);
%~ compare results
for 1 - i:length(t),
u (1, 1) - A* rand;
u(1,2) - A*rand;

end;
[ya~x] - laim(ag,bg,cg~dg,u,t) ;+

(yn, xl - dlsim(Ain,BDi, O,Din, u);

plott~y(:,),tym(,lN

teral
This file computes the system model for
the PACOSS DTA using the ERA technique
It uses swept sine data to generate acceleration
transfer functions, then integrates those values
to obtain velocity TFs, and then takes
the inverse fourier transform to obtain
the impulse response. The impulse response

!W is then inserted into ERA to obtain the system
modes.

% load the response data and create the y vectors
% input #1

load alml
load aIm2
load aim3
load alm4
load almS
load alm6
load alm9
load aImlO

% input #2
load a2ml
load a2m2
load a2m3
load a2m4
load a2m5
load a2m6
load a2m9
load a2mlO

% input #3
load a3ml
load a3m2
load a3m3
load a3m4
load a3m5
load a3m6
load a3m9
load a3mnlO

% input #4

go

load a4ml
load a4m2
load a4m3
load a4m4
load a4m5
load a4m6
load a4m9
load a4mlO

W input #5
load a5ml
load a5m2
load a5m3
load a5m4
load a5m5
load a5m6
load a5m9
load a5mlO

W input #6
load a6ml
load a6m2
load a6m3
load a6m4
load a6mS
load a6m6
load a6m9
load a6mlO

% input #9
load a9ml
load a9m2
load a9m3
load a9m4
load a9m5
load a9m6
load a9m9
load a9mlO

% input #10
load alOml
load alOm2
load alOm3
load alOm4
load alOm5
load alOm6
load alOm9
load alOmlO
w define the frequency vector

81

freq = 0:0.025:10:
W now the transfer function data must be recommbined into
9% complex numbers.
for 1 = 1:401,

W input #i
all(l) =alml(l) + j*alml(1+801);
a12(l) = alm.2(l) + j*alm2(1+801);
al3(l) = alm3(1) + j*alm3(1.i8O1);
a14(l) =alm4(l) + j*alm4(1+801);
a15(l) =alm5(l) + j*almS(l+BO1);
al6(l) = alm6(l) + j*alm6(l+801);
a19(1) = alm9(1) + j*alm9(1..801);
allo(l) =almlO(l) + J*almlO(1+801);

% input #2
a2l(l) = a2ml(1) + j*a2m:l(1+B01);
a22(1) = a2m2(l) + j*a2m2(1+801);
a23(l) = a2nt3(1) + j*a2m3(l+8O1);
a24(l) = a2m4(1) + j*a2m4(l+BO1);
a25(l) = a2m.5(1) + j *a2MS5(1+801) ;
a26(l) = a2m6(1) + j*a2m6(l+BO1);
a29(l) = a2rn9(1) + j*a2m9(1+801);
a210(1) = a2mlO0(1) + J*a2mlO(l+8O1);

% input #3
a31(1) = a3ml(1) + J*a3ml(1+801);
a32(l) = a3m2(l) + J*a3m2(l+801);
a33(l) = a3m,3(l) + J*a3m3(l+8O1);
a34(l) = a3M4(l) + j*a3m4(l.8O1);
a35(l) = a3mS5(l) + J*a3m.5(1+801);
a36(1) = a3m6(l) + J*a3m6(l+801);
a39(l) = a3m9(l) + j*a3m9(l+801);
a310(1) = a3mlO0(l) + J*a3mlO(l+801);

% input #4
a41(1) = a4ml(l) + J*a4ml(l+801);
a42(l) = a4m2(1) + J*a4m2(1.801);
a43(l) = a4m3(l) + J*a4m3(l+8O1);
a44(1) = a4m4(l) + J*a4m4(l+801);
a45(l) = a4m.5(l) + j *a4mS (1+801) ;
a46(l) = a4m6(l) +g J*a4m6(l+B801);
a49(1) = a4m9(l) + j*a4m9(l+801);
a410(1) = a4mlO(l) + J*a4mlO0(l+801);

W input #5
a51(l) = a5ml(l) + j*aSml(l+801);
a52(l) = a~rn2(l) + J*aSm2(l+801);
a53(l) = a5m,3(l) + J*a5m3(l+801);
a54(l) = aSm4(l) + J*a5m4(l+801);

82

as5(l) = asm5(l) + j*asm5(l+801);
a56(l) = a5m6(1) + j*a~m6(l+801);
a59(l) = a~m9(l) + j*a~m9(l+801);
aSlOMl = a~mlO(l) + J*a~mlO(1+B01);

W input #6
a~l(l) = a~ml(l) + j*a~ml(1+801);
a62(l) = a~m2(l) + j*a6m2(l+801);
a63(l) = a6m3(l) + j*a~m3(l+801);
a64(l) = a~m4(l) + j *a~m4 (1i801) ;
a65(1) = a~m5(l) + j*a6m5(l+801);
a66(l) = a~m6(l) + j*a6m6(l+801);
a69(l) = a6m9(l) + j*a~nl9(l+801);
a~lO(l) = a~mlOMl + j*a~mlO(l.,801);

%input #9
a91(l) = a9ml(l) + j*a9ml(l+8031);
a92(l) = a9m2(l) + j *a9m2 (l+801) ;
a93(l) = a9m3(l) + j*a9m3(l+801);
a94(l) = a9m4(l) + j *a9m4 (l+801) ;
a95(1) = a9mSMl + j*a9m5(l+801);
a96(1) = a9m6(l) + j*a9m6(l+801);
a99(l) = a9m9(l) + j*a9n9 (l+801) ;
a9l0(l) =a9mlO(l) + j*a9mlO(l+801);

W input #10
aIOI(l) = al~min(l) +- J*alOml(l+801);
a102(1) = alOm2(l) + J*alOIT2(l+801);
a103(l) = alOm3(l) + J*alOm3(l+801);
a104(l) = a10m4(i) + j*alOm4(l+801);
a105(l) = alOmS(l) + j*alOm5(1+BO1);
a106(1) = al0m6(l) + J*alOm6(l+801);
a109(l) = alOm9(1) + J*a10nm9(1+801);
al0lO(1) = alOrniO(l) + j*alOmlO(l+801);

end;
W integrate to get velocity

set 0 Hz value to zero (no rigid body modes)
W input #1

vl~l() = O;vI2(1), = 0;v13(1) = 0;
v14(1) = 0;vI5(1) = 0;v16(1) = 0;
v19(1) = 0;vllO(l) = 0;

* input #2
v21(1 = 0;v22(1 = 0;v23(1 - 0;
v24(1) = 0;v25(l) = 0;v26(l) = 0;
v29(1) = 0;v210(1) = 0;

% input #3
v31(1) =0;V32(1) = 0;v33(1) - 0;
V34(1) = 0;V35(1) = 0;v36(1 - 0;

93

v39 (1) = O;v3l0(l) = 0;
* input #4

v4l(l) =0;V42(1) = ;V43(1) = 0;
v44(1) - 0;v45(1) 0;V46(1) = 0;
V49(1) = 0;v410(1) = 0;

*~ input #5
v51l() - 0;V52(1) = ;v13(i) = 0;
v54(1) = 0;v55(l) 0;v16(1) = 0;
v59(1) = 0;v510(i) = 0;

t~ input #6
V61(1) - 0;V62(1) -0;v13(1) - 0;
v64(1) = 0;v65(l) =0;v16(1) -0;
v69(1) - 0;v610(1) w 0;

% input #9
v91(l) = 0;v92(1) -0;vl3(1) . 0;
v94(l) = 0;V95(1) =0;v16(1) - 0;
V99(1) =0;v910(1) =0;

0 input #10
vlOIl() - O;v102(i) - 0;vl3(1) . 0;
V104(1) w 0;vlO5(i) - 0;v16(1) w 0;
V109(1) -0;v1010(1) a 0;
% divide by jv to integrate
for 1 - 3:401,

-J*2*pi*freq(l);

Sinput #1

v12(1,1) - a11(1)/s;
vl3(1,l) ifa13(1)/a;

vl3(1,l) -a14(1)/s;
v'l4(l,l) ifal4(1)/S;

v16(1,1) -a16(1)/S;

v19(1,1) .a19(1)/g;

vllO(1,1) .allO(1)/s;
I input #2

v2l(19 1) aa21(l)/s;

v22(l,1) .a22(1)/@;

V23(1,1) ma23(1)/s;

v2S(l,1) -a2S(1)/s;

v26(1,l) -a26(1)/s '
v29(1,l) -a29(1)fa-

I input 03

vl2(1.1) *a~ll)/s,

V32(l l) 83 (1)/4

v33(l,l) = a33(1)/s;
V34(1,1) = a34(1)/S;
v35 (1, 1) = a35 (1)I/S;
V36 (1, 1) = a36 (1) /S;
v39 (1, 1) = a39 (1)I1s;
v3l0(1,l) = a310(1)/s;

t. input #4
V41(1,1) = a4l(1)/S;
v42(1,1) = a42(1)/S;
v43(l,1) = a43(1)/s;
V44(1,1) = a44(1)/s;
V45(1,1) = a45(1)/s;
V46(1,1) - a46(1)IS;
v49(1,1) = a49(1)/s;
v410 (1, 1) - a410 (1) /s;

t input #5
V51(1,1) a a5l(1) iS;
v52(1,1) - a52(1) /s;
v53(1,l) -a53(1)/s;
V54(1,1) - a54(1) /8;
v55(1,1) - a55(1) /8;
v56(1,1) - a56(1)/s;
v59(l,1) - a59(1)/s;
v5lo0(1, 1) - &510 (1) /9;

% input #6
v6l(1,1) -a61(1)/s;
v62(11l) a62(1)/u;
v63(1,l) -a63(1)/s;
v64(1,l) -a64(1)IS;

v65(l.1) -a65(1)/m;

v66(1,11 a66(1)/s;
v69(l,l) a69(1)/n;
v6l0(1,1) *a6l0(1)/s;

% input 09
v91(1,1) - 91(1)/B;

V93(1,X) *a9311)/u.

V94(1,1) aa94(1)/i;

v9Si1,1) -a95(1)/s,.

v99(l.1) .a99(1)/s,

-V910 (1. 11 a91 (I) /5.,
I input 010

viOl(I,1) e alol(1)/*,

vio2(~v -a10211/9

v103 (1,1) = a103 (1)/s;
V104(l,l) = a104(l)/S;
v105(l,l) = al05(l)/s;
v106(l,i) - al06(l)/s;
v109(l,l) = al09(1)/s;
vl0lO(1,1) =a1lOMOl/s;

end;
% find 0.025 Hz value (set to small number so it does not

t interfere with results)

W input #1
vll(2,1) -vll(3,1);vj2(2,1) = v12(3,1);v13(2,1) = v16(3,I);

V14(2.1) -V14(3,1);v15(2,1) = vl5(3,1);V16(2,1) = v16(3,1);

v19(2,1) = v19(3,1);v110(2,1) - V110(3,1);

W input #2

v21(2,1) -v21(3,1);v22(2,1) = v22(3,1);v23(2,1) = v26(3,1);

V24(2,1) = v24(3,1);v25(2,1) = v25(3,1);v26(2,1) = v26(3,1);

v29(2,1) -v29(3,1);v210(2,1) = V210(3.1);

% input #3

v3l(2,1) -v31(3,1);v32(2,1) = v32(3,1);v33(2,1) = v36(3,3.);

v34(2,1) -v34(3,1);v35(2,1) = v35(3,1);v36(2,1) = v36(3,I);

v39(2,1) -v39(3,1);v310(2,1) - v310(3,1);
% input #4

V41(2,1) -V41(3,1);v42(2,1) - v42(3,1);v43(2,1) = v46(3,3);

v44(2,I) av44(3,1);V45(2,1) - v45(3,1);v46(2,1) = V46(3,I);

v49(2,1) - v49(3,1);v410(2,1) - v410(3,1);
W input #5

v51(2,1) -v51(3,1);v52(2,I) - v52(3,I);v53(2,1) = v56(3,1);

v54(2,I) -v54(3,1);v55(2,1) -v55(3,1);v56(2,1) = v56(3,1);

v59(2,1) -v59(3,1);v5I0(2,1) - v510(3,1);
% input #6

v61(2,1) - v61(3,1);v62(2,1) -v62(3,1);v63(2,1) = v66(3,1);

v64(2,1) - v64(3,1);v65(2,1) - v65(3,1);v66(2,1) = v66(3,1);

v69(2,1) -v69(3,1);v610(2,1) -v6l0(3,1);

I input 09

v9l(2,1) -v91(3,.1);V'92(2,1) - v92(3,1);v93(2,1) - v96(3,I);

V94(2,1) - v94(3,I);v95(2,1) - v95(3,1);v96(2,1) = v96(3,1);

% input 010

vi01(2.1) - vl01(3,1);v102(2,1) -vl02(3,1);vl03(2,1) =

V104(2.1) -v104(3,1);VIO5(2.1) a vl05(3,1);vl06(2,1) if

V106 (3.*1),
v109(2,1) - v109(3,1);v1010(2,1) - v101O(3,1);

I due to poor data, reduce influence of 2nd and 3rd point

for I - 2A3,

V11(1,1) = O.O1*v1l(1,1);v12(l,l) = 0.01*v12(l,I);v13(l,1)
=O.O01*v13 (1,1) ;
v14(l,1) = O.O1*v14(l,1);v15(l,1) =O.O1*v15(l,1);v16(1,1)

= 0.O01*v16 (1,1) ;

V19(l,1) = O.O1*v19(l,1);vllO(l,1) = .O1*vllO(l,1);

v2l1(,1) = O.O1*v21(1,1);v22(1,1) = O.Ol*v22(l,1);v23(1,1)
= 0.O01*v23 (1,1) ;
v24(1,I) -= O.O1*v24(1,I);v25(l,1) = O.O1*v25(l,1);v26(l,1)

= 0.O01*v26 k-, 1) ;

v29(l,1) = O.O1*v29(1,1);v210(l,1) =O.O1*v2l0(1,1);

v3l1(,1) =O.01*v31(l,1);v32(l,1) = O.O1*v32(1,1);v33(l1l)
= 0.O01*v33 (1,1) ;
v34(l,l) = O.O1*v34(l,1);v35(1,1) = O.O1*v35(l,I);v36(1,1)

= 0.O01*v36 (1,1) ;

v39(l,l) = O.O1*v39(l,1);v310(l,1) =O.O1*v3I0(l,1);

V41(1,1) = O.O1*v41(l,1);v42(1,1) = O.Ol*v42(l,1);v43(l,a-)
= 0.O01*v43 (1,1) ;
V44(1,1) =O.O1*v44(11 1);v45(1,1) = O.O1*v45(l,1);v46(l,1)

= 0.O01*v46 (1,1) ;
V49(1,1) = O.O1*v49(l,1);v410(l,1) =,O.O1*V410(l,1);

v5l1(,1) = 0.01*v51(l,1);v52(1,1) = O.OI*v52(l,1);v53(1,1)

= 0.O01*v53 (1,1) ;
V54(1,1) = O.O1*v54(l,1);v55(l,1) = O.O1*v55(l,1);v56(1,1)

= O.O1*v56(l,1);
V59(1,1) = O.Ol*v59(l,1);v510(l,1) = .O1*v510(l,1);

v~l(1,1) = O.O1*v61(l,1);v62(l,I) = O.O1*v62(l,1);v63(1,1)

= 0.O01*v63 (1, 1) ;
v64(l,I) = O.OI*v64(l,1);v65(l,l) = O.O1*v65(l,1);v66(l,l)

= 0.O01*v66 (1,1) ;

V69(1,1) = O.O1*v69(l1l);v6lO(1,1) =O.O1*v610(l,1);

v91(1,1) = O.Ol*v91(1,1);v92(l,l) = O.Ol*v92(l,1);v93(l,1)

- O.O1*v93(l,1); -

V94(1,1) = O.O1*v94(l,1);V95(l,1) = O.O1*v95(l,l);v96(l,I)

= 0.O01*v96 (1,1) ;
v99(l,1) =O.O1*v9q(1,1);v910(1,1) = .Oi*v%910(l1i);

viOl(l,1) 0 .01i*v101(l,1);v1O2(l,1) =

0.01*v102(l,I);v103(l,1) = O.Ol*vl03(11l);

v104(1,1) = O.O1*v104(l,1);V10O5(l,l)=
O.O1*v105(l,1);vlO6(l,1) = 0.01*v106(l,l);

v109(1,1) = 0.01*v109(l,1);v1O1O(l,1) = O.O1*vl0lO(l,1);

end;
W save the velocity TF's
save tfvl.mat v1i v12 v13 v14 v15 vi6 v19 vi1O

save tfv2.mat v2i v22 v23 v24 v25 v26 v29 v210

save tfv3.inat v3i v32 v33 v34 v35 v36 v39 v3iO

87

Save tfv4.Mat V41 v42 v43 v44 v45 v46 v49 v410
save tfv5.mat v51 v52 v53 v54 v55 v56 v59 v510
save tfv6.mat v61 v62 v63 v64 y65 v66 v69 v61O
save tfv9.mat v91 v92 v93 v94 v95 v96 v99 v910
save tfvlO.mat v101 v102 v103 v104 v1O5 v106 v109 v101O
% take the inverse fourier transform to get the
W impulse response (2048 point of data were gathered)

W input #1
y11 = 2048*real(ifft(vll,2048));
Y12 = 2048*real(ifft(vl2,2048));
Y13 = 2048*real(ifft(vl3,2048));
y14 = 2048*real(ifft(v14,2048));
y15 = 2048*real(ifft(vl5,2048));
Y16 = 2048*real(ifft(v16,2048));
Y19 = 2048*real(ifft(v19,2048));
y11O 2048*real(ifft(vllOg 2048));

Sinput #2

y21 = 2048*real(ifft(v21,2048));
y22 = 2048*real(ifft(v22,2048));
Y23 = 2048*real(ifft(v23,2048));
Y24 = 2048*real(ifft(v24,2048));
y25 = 2048*real(ifft(v25,2048));
y26 = 2048*real(ifft(v26,2048));
y29 = 2048*real(ifft(v29,2048));
y210 =2048*real(ifft(v2l0,2048));

%input #3

Y31 = 2048*real(ifft(v31,2048));
Y32 = 2048*real(ifft(v32,2048));
y33 = 2048*real(ifft(v33,2048));
Y34 = 2048*real(ifft(v34,2048));
y35 = 2048*real(ifft(v35,2048));
y36 = 2048*real(ifft(v36,2048));
Y39 = 2048*real(ifft(v39,2048));
y310 = 2048*real(ifft(v310. 2048));

% input #4
Y41 = 2048*real(ifft(v41,2048));
y42 = 2048*real(ifft(v42,2048));
y43 - 2048*real(ifft(v43,2048));
y44 = 2048*real(ifft(v44,2048));
y45 = 2048*real(ifft(v45,2048));
y46 = 2048*real(ifft(v46,2048));
y49 = 2048*real(ifft(v49,2048));
y410 = 2048*real(ifft(v4l0,2048));

t input #5
ysi = 2048*real(ifft(v51,2048));

y52 = 2048*reai(ifft(v52,2048));
Y53 = 2048*real(ifft(v53,2048));
y54 = 2048*real(ifft(v54,2048));
y55 = 2048*real(ifft(v55,2048));
Y56 = 2048*real(ifft(v56,2048));
Y59 = 2048*real(ifft(v59,2048));
Y510 = 2048*real(ifft(v510,2048));

W input #6
y61 = 2048*real(ifft(v61,2048));
y62 = 2048*real(ifft(v62,2048));
y63 = 2048*real(ifft(v63,2048));
y64 = 2048*real(ifft(v64,2048));
Y65 = 2048*real(ifft(v65,2048));
y66 = 2048*real(ifft(v66,2048));
y69 = 2048*real(ifft(v69,2048)');
y610 = 2048*real(ifft(v610,2048));

W input #9
y9l = 2048*real(ifft(v9l,2048));
Y92 = 2048*real(ifft(v92,2048));
y93 = 2048*real(ifft(v93,2048));
y94 = 2048*real(ifft(v94,2048));
y95 = 2048*real(ifft(v95,2048));
y96 = 2048*real(ifft(v96,2048));
y99 = 2048*real(ifft(v99,2048));
y91O 2048*real(ifft(v9l0,2048));

Iinput #10
y101 2048*real (ifft (vi~l, 2048));
y102 =2048*real(ifft(vl02,2048));

y103 =2048*real(ifft(v103,2048));

y104 =2048*real(ifft(v104,2048));

y105 =2048*real(ifft(v105,2048));

y106 =2048*real (ifft (vl06, 2048));
y109 =2048*real(ifft(vl09,2048));

y1OlO =2048*real(ifft(vlO1O,2048));

W remove uneeded vectors to clear memory space
clear v1I v12 v13 v14 v15 v16 v19 v11O
clear v21 v22 v23 v24 v25 v26 v29 v210
clear v31 v32 v33 v34 v35 v36 v39 v310
clear v41 v42 v43 v44 v45 v46 v49 v410
clear v51. v52 v53 v54 v55 v56 v59 vSlO
clear v61. v62 v63 v64 v65 v66 v69 v610
clear v91. v92 v93 v94 v95 V96 V99 V910
Llear v101 v1O2 v1O3 v1O4 v105 v1O6 viO9 v101O
% combine the impulse response vectors into matrices
zi = [yIi yi2 y13 y14 y15 y16 y19 y110];

89

z2 = [y21 y22 y23 y24 y25 y26 y29 y2101;
z3 = [y31 y32 y33 y34 y35 y36 y39 y310];
z4 = [y41 y4 2 y43 y44 y45 y46 y49 y410];
z5 = [y51 y52 y53 y54 y55 y56 y59 y510];
z6 = [y61 y62 y63 y64 y65 y66 y69 y610];
z9 = [y91 y92 y93 y94 y95 y96 y99 y910];

zlO = [y101 y102 y103 y104 y105 y106 y109 y1010];
% remove uneeded vectors to clear memory space
clear yll y12 y13 y14 y15 y16 y19 y110
clear y21 y2 2 y23 y24 y25 y26 y29 y210
clear y31 y32 y33 y34 y35 y36 y39 y310
clear y41 y42 y43 y44 y45 y46 y49 y410
clear y51 y52 y53 y54 y55 y56 y59 y510
clear y61 y6 2 y63 y64 y65 y66 y69 y610
clear y91 y92 y93 y94 y95 y96 y09 y910
clear y101 y102 y103 y104 y105 y106 y109 y1010

W change from row to column form
yl = Zi';
y2 = z2';
y3 = z3';
y4 = z4';
y5 = zS,;
y6 = z6';
y9 = z9';
yl0 = z10';

W begin system identification

ncols = 90;
nrows = 400;
inputs = 8;
W set sample rate
fs = 51.2;
[Y] = weave(yl,y2,y3,y4,y5,y6,y9,ylO);
[fd, zn, shapes, partfac, EAC, svl =

era(Y, fs,ncols,nrows, inputs);
cut = 0.0;
* eliminate undesired modes
keep - input('how many modes will you keep ');
for 1 - 1:keep,

k - input('keep mode #: ');
fdk(1,1) = fd(k);
zmk(l,1) = zm(k);
shapesk(:,l) = shapes(:,k);
partfak(l,:) = partfac(k,:);

90

ACk (1, 1) MA Nm(k,1);
end;
t evaluate model
vdm=2*pi*fdk;
for 1 = l:length(fdk),

end;
wrm = vnm/2/pi;
t Create state space model (A,B,C, and D matrices)
[am,bm,cm,dm] =
erastate(fdk, zmk, shapesk,partfak,EiACk, fs, cut);
* convert bin from continuous to discrete
latemp,Bm] = c2d(am,bin,i/fs);
t convert am,Bm, and cm to real element matrices only
Ti [Lii;j -J];
T=T1;

[rl,ci] = size(am);
for kc w 4:2:ri,

[r,c] = size(T);
T = ET zeros(r,2);zeros(2,c) Ti];

end;
Tiny - inv(T);
A = T*am*Tinv;
B - T*Bin;
C = CM*Tinv;
D -dm;
save tabc.mat A B C D
save tresui.mat fd zm shapes partfac EMAC sv
save tkept.mat wrm fclk zmk shapesk partfak EMCk

91

pera
t This file computes the systemn model for
t the PACOSS DTA using the BRA technique

t load the bias for each accelerometer
load noml2;
bias(l, = mean(Timei3);
bias(2) = mean(Timei4;
load nom34;
bias(3) = mean(Timei3);
bias (4) = mean (Timei4);
load noms6;
bias(5) = mean(Timei3);
bias(6) = mean(Timei4);
load nom9lO;
bias(9) =mean(Timei3);

bias(lO) =mean(Timei4);

W load the response data and create the y vectors
W input #1

load ranll.mat;
Ul(:,l) = TiMeil;
y1(:,1) = TiMei2;
load ranl2.mat;
U10:,2) = TiMeil;
yl(:,2) = TiMe12;
load ranl13.mat;
ul(:,3) = Timeil;
yl(:,3) = TiMei2;
load ranl4.mat;
ul(:,4) - Timeil;
yl(:,4) = TiMei2;
load ranl5.mat;
ul(:,5) = Timeil;
yl(:,5) - Timei2;
load ran16.mat;
ul(:,6) - Timeil;
yl(:,6) = Timei2;
load ran19.mat;
ul(:,7) = Tirneii;
yl(:,7) - Timei2;

92

I input #2
load ran2l.mat;
u2(:,l) = Timeil;
y2(:,l) = Timei2;
load ran22.mat;
u2(:,2) = Timeil;
y2(:,2) = Timei2;
load ran23.mat;
u2(:,3) = Timeil;
y2(:,3) = Timei2;
load ran24.mat;
u2(:,4) = Timeil;
y2(:,4) = Timei2;
load ran25.mat;
u2(:,5) = Timeil;
y2(:,5) = Timei2;
load ran26.mat;
u2(:,6) = Timeil;
y2(:,6) = Timei2;
load ran29.mat;
u2(:,7) = Timeil;
y2(:,7) = Timei2;
I input #3
load ran3l.mat;
u3(:,l) = Timeil;
y3(:,1) = Timei2;
load ran32.mat;
u3(:,2) = Timeil;
y3(:,2) = Timei2;
load ran33.mat;
u3(:,3) = Timeil;
y3(:,3) = Timei2;
load ran34.mat;
u3(:,4) = Timeil;
y3(:,4) = Timei2;
load ran35.mat;
u3(:,5) = Timeil;
y3(:,5) = Timei2;
load ran36.mat;
u3(:,6) = Timeil;
y3(:,6) - Timei2;
load ran39.mat;
u3(:,7) w Timeil;
y3(:,7) - Timei2;
% input #4

93

load ran4l.mat;
u4(:,1) = Timeil;
y4(:,l) = Timei2;
load ran42.mat;
u4(:,2) = Timeil;
y4(:,2) = Timei2;
load ran43.mat;
u4(:,3) = Timeil;
y4(:,3) = Timei2;
load ran44.mat;
u4(:,4) = Timeil;
y4(:,4) = Timei2;
load ran45.mat;
u4(:,5) = Timeil;
y4(:,5) = Timei2;
load ran46.mat;
u4(:,6) = Timeil;
y4(:,6) = Timei2;
load ran49.mat;
u4(:,7) = Timeil;
y4(:,7) = Timei2;
t input #5
load ran5l.mat;
u5(:,1) = Timeil;
y5(:,1) = Timei2;
load ran52.mat;
u5(:,2) = Timeil;
y5(:,2) = Timei2;
load ran53..mat;
u5(:,3) = Timeil;
y5(:,3) = Timei2;
load ran54.mat;
u5(:,4) = Timeil;
y5(:,4) = Timei2;
load ran55.mat;
u5(:,5) - Timeil;
y5(:,5) = Timei2;
load ran56.mat;
u5(:,6) = Timeil;
y5(:,6) = Timei2;
load ran59.mat;
u5(:,7) - Timeil;
y5(:, 7) = Timei2;
t input #6
load ran6l.mat;

94

U6 (:, 1) = Timeil;
y6(:,1) = Timei2;
load ran62.mat;
u6(:,2) = Timeil;
y6(:, 2) = Timei2;
load ran63.mat;
u6(:,3) = Timeil;
y6(:,3) = Timei2;
load ran64.mat;
u6(:,4) = Timeil;
y 6 (:,4) = Timei2;
load ran65.mat;
u6(:,5) = Timeil;
y6(:,5) = Timei2;
load ran66.mat;
u6(:,6) = Timeil;
y6(:,6) = Timei2;
load ran69.mat;
u6(:,7) = Timeil;
y6(:,7) = Timei2;

input #9
load ran9l.mat;
u9(:,l) = Timeil;
y9(:,1) = Timei2;
load ran92.mat;
u9(:,2) = Timeil;
y9(:,2) = Timei2;
load ran93.mat;
u9(:,3) = Timeil;
y9(:, 3) = Timei2;
load ran94.mat;
u9(:,4) = Timeil;
y9(:, 4) = Timei2;
load ran95.mat;
u9(:,5) = Timeil;
y9(:,5) = Timei2;
load ran96.mat;
u9(:,6) = Timeil;
y9(:, 6) = Timei2;
load ran99.mat;
u9(:,7) = Timeil;
y9(:,7) = Timei2;
1; input #10
load ranlOl.mat;
ulO(:,1) -- Timeil;

95

y1O (:, 1) = TiMei2;
load ran1O2.mat;
ulO(:,2) = Timeil;
ylO(:,2) = Timei2;
load ranlO3.mat;
ulO(:,3) = Timeil;
ylO(:,3) = TiMei2;
load ran.1O4.mat;
ulO(:,4) = Timeil;
ylO(:,4) = Timei2;
load ran1O5.rnat;
u10(:,5) = Timeil;
ylO(:,5) = Timei2;
load ran.1OE.mat;
ulO(:,6) = Timeil;
yIO (:, 6) = Timei2;
load ranlO09.mat;
ulO(:,7) = Timeil;
ylO(:,7) = Timei2;
W remove accierometer bias form each measurment
Er,c] = size(yl);
for 1 = 1:r,

for k = 1:7,
yl (1,k) = yl(l,k) - bias(k);
y2 (1,k) = y2 (1,k) - bias(k);
y3 (1,k) = y3 (1,k) - bias(k);
y4 (1,k) = y4(l,k) - bias(k);
y5 (1,k) = y5(l,k) - bias(k);
y6 (1,k) = y6 (1,k) - bias(k);
y9(l,k) = y9(l,k) - biaB(k);
y1O(l,k) = y1O(l,k) - bias(k);

end;
end;

Icombine the y and u values to get a MI?4) system
Y =yl+y2+y3+y4+y5+y6+y9+ylO;

U1 C ul(:,1) u2(:,1) u3(:,1) u4(:,1) uS(:,1) u6(:,1)

U2 = [ul(:,2) u2(:,2) u3(:,2) U4(:,2) u5(:,2) u6(:,2)
u9(:,2) ulO(:,2)];
U3 = [ul(:,3) u2(:,3) u3(:,3) u4(:,3) u5(:,3) u6(:,3)
u9(:,3) ulO(:,3)];
U4 = [ul(:,4) u2(:,4) u3(:,4) u4(:,4) u5(:,4) u6(:,4)
U90:,4) ulO(:,4)];
U5 = [ul(:,S) u2(:,5) u3(:,5) u4(:,5) u5(:,5) u6(:,5)
u9(:,5) ulO(:,5)];

L9

U6 = [ul0 , 6) u2(0, 6) u3(0, 6) U4(0, 6) u(0:, 6) u6(0, 6)
u9(:,6) u100:,0);
U9 = [ul (: ,7) u2 (:, 7) u3(0, 7) U4(0, 7) U5(0, 7) u6(:7)
U9(0,7) u10(:,7)];
U = U1+U2+U3+U4+U5+U6+U9;

W now begin system identification
p = 10;
% [fdl, zmi, shapesl,partfal,EMAC1] =
MiMo(U1,Y(:,1) ,p,Fsample);
%[fd2,zm2,shapes2,partfa2,EMAC2] =
mimo(U2,Y(:,2) ,p,Fsample);
t (fd3, zm3, shapes3,partfa3,EMAC3] =
mimo(U3,Y(:,3) ,p,Fsample);
t [fd4, zm4 ,shapes4, partfa4, EMAC4] =
MiMo(U4,Y(:,4) ,p,Fsample);
% [fd5, zm5, shapess,partfa5,EMACS] =
MiMO(U5,Y(:,5) ,p,Fsample);
% (fd6, zm6, shapes6,partfa6,EMAC6] =
mimo(U6,Y(:,6) ,p,Fsample);
I (fd9, zr9, shapes9, partfa9, EMC9] =
MiMO(U9,Y(:,7) ,p,Fsample);
[fd,zm,poles,shapes,partfac] = MiMO(U,Y,p,Fsaxnple);
cut = 0.001;
W compute natural frequency
% evaluate model
wdM=2*pi*fd;
for 1 = 1:length(fd),

wnm(l) =wdm(l) /sqrt(i-zm(l) *zmln());
end;
W Create state space model A matrix
k = 1;
for 1 = 1:length(wnm),

z(k) =exp((-zm(l) *wnm(l) +j*wdm(l))/Fsample);
z(k+l) =conj (z(k));
B(k,-) =partfac(l, :);
B(k+1, :) =conj (B(k, :));
cm(: ,k) =shapes(: ,l);
cm: ,k+1) =conj (cm(: ,k));
k = k + 2;

end;
am = diag(z);
[ri,cll = size(am);
(atemp,bm] = c2d(am,B,1/Fsample);

dm = zeros(7,8);
Itransform to real matrices

97

Ti = [1 1;j -j];
T= Ti;
for k = 4:2:rl,

[r, c] = size (T);
T =[T zeros(r,2);zeros(2,c) Ti];

end;
Tiny inv(T);
A = T*am*Tinv;
B = T*bm;
C = cm*Tinv;
D =dm;
save tmabc.mat A B C D
save txnresui.mat wmn fd zm shapes partfac

98

tmdl

t This file creates the model C
t matrix for the PACOSS. The A
t and B matrices are computed from
t either the ERA or BLS methods.
t This script file uses PEM to
t approximate the C matrix one row
t at a time. It only uses the data from
t the colocated actuator/accelerometer
t pairs.

% input the PACOSS data needed to generate
V the C matrix
t Input #1
load tranhl.mat;
ul(:,1) = Timei4(45:512);
yl(:,l) = Timeil(45:512);
t input #2
load tran22.mat;
u2(:,2) = Timei4(45:512);
y2(:,2) = Timeil(45:512);

W input #3
load tran33.mat;
u3(:,3) = Timei4(45:512);
y3(:,3) = Timeil(45:512);
t input #4
load tran44..mat;
u4(:,4) = Timei4(45:512);
y4(:, 4) = Timeil(45:512);
t input #5
load tran55.mat
u5(:,5) = Timei4(45:512);
y5(:,5) = Timeil(45:512);

t input #6
load tran66.mat;
u6(:,6) = Timei4(45:512);
y6(:,6) = Timeil(45:512);
f input #9
load tran99.mat;

99

U9(:,7) = Timei4(45:512);
y9(:,7) = TiMeil(45:512);

I& input #10
load tranlOlO.mat;
ulO(:,8) = Timei4(45:512);
y1O (:, 8) = Timeil (45:512) ;
t subtract out the accelerometer bias
P6 the mean is used because the actual system
t has no net motion, so the mean is zero
yl(:,1) = yl(:,l) - mean(y1(:,1));
y2(:,2) = y2(:,2) -mean(y2(:,2));
y3(:,3) = y3(:,3) - mean(y3(:,3));
y4(:,4) = y4(:,4) -mean(y4(:,4));
y5(:,5) = y5(:,5) - mean(y5(:,5));
y6(:,6) = y6(:,6) -mean(y6(:,6));
y9(:,7) = y9(:,7) -mean(y9(:,7));
Y10(:,8) = ylO(:,8) - mean(ylO(:,8));
t use PEM to estimate C matrix
t load the A, B, and C matrices
load tabc.mat
tload tmabc.znat
T = 1/25.6;
frowa,coaila = size(A);
[rowb,colb] = size(B);
[rowc,colc] = size(C);
ai =A;

bil B(,=
bi2 B(,)

bi3 B(,)
bi4 =B(:,4);

bi5 =(,)

biE B(,)
b19 B(,)
biIb B(,)
ci = nan*ones(1,rowa);
di = zeros(1,1);
ki = zeros(rowa,l);
x~i =zeros(rowa,l);

msij. = modstruc(ai,bil,ci,di,ki,xOi);
msi2 = modstruc(ai,b12,ci~di,ki,xOi);
ms13 = modstruc(ai,bi3,ci,di,ki,xOi);
ms14 = modstruc(ai,bi4,c'.,di,ki,xoi);
ms15 = modstruc(ai,bis,ci~di,ki,xOi);
msi6 = modstruc(ai,bis,ci,di,ki,xOi);
ms19 = modstruc(ai,bi9,ci,di,ki,xOi);

msilO -modstruc(ai,bilO~ci,di,ki,xoi);
t initial guess for the C matrix
parval=C1,)
parva2 =C(:)

parva3 =C(,)

parva4 =C(,:;

parva5 = C(5,:);
parva6 - (,)

parva9 =C(,)

parvalO =C(,)
lambdi =[];
thul = ms2th(msil,'d',parval,lambdi,T);
th12 = ms2th(msi2,'d',parva2,lambdi,T);
thi3 = ms2th(msi3,'d',parva3,lambdi,T);
thi4 = ms2th(MSi4,'d'~parva4,lambdi,T);
thi5 = rns2th(MSi5,'d',parva5,lambdi,T);
thi6 = ms2th(msi6, 'd',parva6,lazubdi,T);
thi9 = ms2th(msi9,'d',parva9,lambdi,T);
thilo = Ms2th(msilO, 'd',parvalO,laznbdi,T);
index = [1:length(parval)];

t perform system ID

thi = pem([yl(:,i) ul(:,1)],thil,index,-l,le-1O,-i,-i,T);
th2 = pem((y2 (: ,2) u2 (: 2)] ,thi2, index, -1,le-O, -1, -l,T);
th3 = pem((y3 (:,3) u3(:,3)] ,thi3,index, -l,le-O, -1, -i,T);
th4 = pem([y4(:,4) U4(:,4)],thi4,index,-l,le-1O,-1,-l,T);
th5 = pem([y5(:,5) u5(:,5)],thi5,index,-l,le-1O,-1,-l,T);
th6 = pem((y6(:,6) u6(:, 6)] ,thi6, index, -1,le-O, -1, -l,T);
th9 = pem([y9(:,7) U9(:,7)],thi9,index,-i,le-lO,-l,--i,T);
thlO = pem([ylO(:,8) ulO(:,8)],thilO~index,-l,le-1O,-l,-

t~ convert theta to SS format
(am,bm.l,cmi,dm,kml,xO1] = th2ss(thl);
[am,bm2,cm2,dm,kmi,xOl] - th2ss(th2);
Eam,bmn3,cm3,dm,kmid,xoll - th2ss(th3);
[ambbm4,cm4,dm,kml,xOl] = th2ss(th4);
[am, bm.5, cms,d(m, lc=,,xOI I = th2as(th5);
[am,bm6,cm6,dm,kml,xOlJ th2ss(th6);
[am,bm9,cm9,dm,kml,xol] th2ss(th9);
(am,kxnlO,cmlO,dm,Jcml,xOl] - th2ss(thlO);

% combine c matrices to get HMIW C matrix
am w A;
bm. = B;
cm - Ecmi;Cin2;cm3;Ciu4;CM5;cm6;CM9;CMaO];

101

dm= D;
save tmodl .mat am bm cm dm
%save tmmodl.mat am bm cm dm

102

W tfcompl

t This file compares the TF of the truth system
Ik and the model system. Magnitues plots are in
1; db, and phase plots are in degrees. The TF's

are from 1 to 10 Hz

%load the PACOSS TF data and
%generate TF plots from PACOSS data

FreqV = 0:0.025:10;
W input #1

load tfvl
TF11 = 20*loglO(abs(vI1(41:401)));
TF12 = 20*loglO(abs(vl2(41:401)));
TF13 = 20*loglO(abs(v13(41:401)));
TF14 = 20*loglO(abs(vl4(41:401)));
TF15 = 20*log1O(abs(v15(41:401)));
TF16 = 20*loglO(abs(v16(41:401)));
TF19 = 20*loglO(abs(v19(41:401)));
phasell =

(180/pi)*unwrap(atan2(imag(vll(41:401)) ,real(v11(41:401))));
phasel2 =

(180/pi)*unwrap(atan2(imag(v12(41:401)) ,real(v12(41:401))));
phasel3 =

(180/pi) *unwrap(atan2 (imag(v13 (41:401)) ,real (v13 (41:401))));
phasel4 =

(180/pi)*unwrap(atan2(imag(v14(41:401)),real(v14(41:401))));
phasel5 =

(18C/pi) *unwrap(atan2(imag(v15(41:401)) ,real(v15(41:401))));
phasel6 =

(180/pi) *unwrap(atan2(ixnag(v16(41:401)) ,real(v16(41:401))));
phasel9 =

(180/pi) *unwrap(atan2(imag(v19(41:401)) ,real(v19(41:401))));

Ik input #2
load tfv2

TF'21 = 20*loglO(abs(v2l(41:401)));
TF22 = 20*logIO(abs(v22(41:401)));
TF23 = 20*log1O(abs(v23(41:401)));
TF24 - 20*log1O(abs(v24(41:401)));

103

TF25 = 20*loglO(abs(v25(41:401)));
TP26 = 20*log1O(abS(v26(41:401)));
TF29 = 20*loglO(abs(v29(41:401)));
phase2l =

(180/pi)*unwrap(atan2(imag(v21(41:401)) ,real(v21(41:401))));
phase22 =

(180/pi) *unwrap(atan2 (imag (v22 (41:401)) ,real (v22 (41:401))));
phase23 =

(180/pi)*unwrap(atan2(imag(v23(41:401)) ,real(v23(41:401))))
phase24 =

(180/pi) *unwrap(atan2(iznag(v24(41:401)) ,real(v24(41:401))));
phase25 =

(180/pi)*unwrap(atan2(imag(v25(41:401)),real(v25(41:401))));
phase26 =

(180/pi) *unwrap(atan2 (imag(v26 (41:401)) ,real (v26 (41:401))));
phase29 =

(180/pi) *unwrap(atan2(ixnag(V29(41:401)) ,real(v29(41:401))));

% input #3
load tfv3
TF31 = 20*log1O(abs(v31(41:401)));
TF32 = 20*log1O(abs(v32(41:401)));
TF33 = 20*loglO(abs(v33(41:401)));
TF34 = 20*loglO(abs(v34(41:401)));
TF35 = 20*loglO(a~bs(v35(41:401)));
TF36 = 20*loglO(abs(v36(41:401)));
TF39 = 20*log1O(abs(v39(41:401)));
phase3l =

(180/pi) *unwrap(atan2(ilnag(v31(41:401)) ,real(v31(41:401))));
phase32 =

(180/pi) *unwrap(atan2(iznag(v32(41:401)) ,real(v32(41:401))));
phase33 =

(180/pi)*unwrap(atan2(imag(v33(41:401)) ,real(v33(41:401))));
phase34 =

(180/pi) *unwrap (atan2 (imag (v34 (41:401)) ,real (v34 (41:401))));
phase35 =

(180/pi) *unwrap(atan2 (imag (v35 (41:401)) ,real (v35 (41:401))));
phase36 =

(180/pi) *unwrap(atan2 (imag(v36 (41:401)) ,real (v36 (41:401))));
phase39 =

(180/pi)*unwrap(atan2(ixnag(v39(41:401)) ,real(v39(41:401))));
%I input #4

load tfv4
TF41 = 20*loglO(abS(V41(41:401)));
TP42 - 20*loglO(abs(V42(41:401)));

104

TF43 = 20*loglO(abS(v43(41:401)));
TF44 = 20*loglO(abs(V44(41:401)));
TF45 = 20*log1O(abS(v45(41:401)));
TF46 = 20*log1O(abs(v46(41:401)));
TF49 = 20*loglO(abs(v49(41:401)));
phase4l =

(180/pi)*unwrap(atan2(imag(v41(41:401)),real(v41(41:401))));
phase42 =

(180/pi) *unwrap(atan2 (imag(v42 (41:401)) ,real (v42 (41:401))));
phase43 =

(J.80/pi)*unwrap(atan2(imag(v43(41:401)) ,real(v43(41:401))));
phase44 =

(180/pi)*unwrap(atan2(imag(v44(41:401)) ,real(V44(41:401))));
phase45 =

(180/pi)*unwrap(atan2(imag(v45(41:401)),real(v45(41:401))));
phase46 =

(180/pi)*unwrap(atan2(imag(v46(41:401)) ,real(V46(41:401))));
phase49 =

(180/pi)*unwrap(atan2(imag(v49(41:401)),real(v49(41:401))));
It input #5

load tfv5
TF51 = 20*log1O(abs(v51(41:401)));
TF52 = 20*loglO(abs(v52(41:401)));
TF53 = 20*log1O(a~bs(v53(41:401)));
TF54 = 20*loglO(abs(V54(41:401)));
TF55 = 20*log1O(abs(v55(41:401)));
TF56 = 20*1og10(abs(v56(41:401)));
TF59 = 20*loglO(abs(v59(41:401)));
phasesi =

(180/pi)*unwrap(atan2(imag(v51(41:401)) ,real(v5l(41:401))));
phase52 =

(180/pi)*unwrap(atan2(imag(v52(41:401)) ,real(v52(41:401))));
phase53 =

(180/pi)*unwrap(atan2(iznag(v53(41:401)),real(V53(41:401))));
phase54 =

(180/pi) *unwrap(atan2(imag(v54(41:401)) ,real(v54(41:401))));
phase5s -

(180/pi) *unwrap(atan2(imag(v55(41:401)) ,real(v55(41:401))));
phase56 =

(180/pi)*unwrap(atan2(imag(v56(41:401)) ,real(v56(41:401))));
phase59 -

(180/pi)*unwrap(atan2(imag(v59(41:401)),real(v59(41:401))));
% input #6

load tfv6
TF62 - 20*logIO(abs(v61(41:401)));

105

TF62 = 20*loglO(abs(v62(41:401)));
TF63 = 20*log1O(abs(v63(41:401)));
TF'64 = 20*loglO(abs(V64(41:401)));
TF65 = 20*log1O(abs(v65(41:401)));
TF66 = 20*loglO(abs(v66(41:401)));
TF69 = 20*log1O(abs(v69(41:401)));
phase6i =

(180/pi)*unvrap(atan2(imag(v61(41:401)) ,real(v61(41:401))));
phase62 =

(180/pi)*unwrap(atan2(imag(v62(41:401)),real(v62(41:401))));
phase63 =

(180/pi) *unwrap(atan2 (imag(v63 (41:401)) ,real (v63 (41:401))));
phase64 =

(180/pi)*unwrap(atan2(iznag(v64(41:401)),real(v64(41:401))));
phase65 =

(180/pi)*unwrap(atan2(imag(v65(41:401)),real(v65(41:401))));
phase66 -

(180/pi)*unwrap(atan2(imag(v66(41:401)),real(v66(41:401))));
pkiase69=

(180/pi)*unwrap(atan2(imag(v69(41:401)) ,real(v69(41:401))));

1w input #9
load tfv9

TP91 = 20*loglO(abs(v91(41:401)));
TF'92 = 20*log1O(abs(v92(41:401)));
TF93 = 20*log1O(abs(v93(41:401)));
TF94 = 20*log1O(abs(v94(41:401)));
TF95 = 20*loglO(abs(v95(41:401)));
TF96 = 20*loglO(abs(v96(41:401)));
TF99 = 20*log1O(abs(v99(41:401)));
phase9l =

(180/pi)*unwrap(atan2(imag(v91(41:401)),real(v9l(41:401))));
phase92 -

(180/pi)*unwrap(atan2(imag(v92(41:401)),rea1(v92(41:401))));
phase93 =I

(180/pi) *unwrap(atan2 (imag(v93 (41:401)) ,real (v93 (41:401))));
phaue94 =

(180/pi)*unwrap(atan2(imag(v94(41:401)),real(v94(41:401))));
phase95 -

(180/pi)*unwrap(atan2(imag(v95(41:401)),real(v95(41:401))));
phase96 -

(180/pi)*unwrap(atan2(imag(v96(41:401)) ,real(v96(41:401))));
phase99 -

(180/pi)*unwrap(atan2(imag(v99(41:401)) ,real(v99(41:401))));

106

input #10
load tfvIO

TF101 = 20*log1O(abs(V1Ol(41:401)));
TF102 - 20*loglO(abs(v102(41:401)));
17103 = 20*loglO(abs(v103(41:401)));
TF104 = 20*loglO(abs(v104(41:401)));
TF105 = 20*10910 (abs (V105(41:401)));
TF106 = 20*loglO(abS(v106(41:401)));
TF109 = 20*10910 (abs (V109(41:401)));
TF1010 = 20*loglO(abs(vlOlO(41:401)));

phaselol=(180/pi)*unwrap(atan2(imag(vl~l(41:401)) ,real(vl~l(
41:401))));
phaselo2=(180/pi)*unwrap(atan2(imag(vlO2(41:401)) ,real(vl02(
41:401))));
phaselo3=(180/pi)*unwrap(atan2(imag(vl03(41:401)) ,real(v103(
41:401M)))
phasel04=(180/pi) *unwrap(atan2(imag(vl04(41:401)) ,real(vl04(
41:401))));
phasel05=(180/pi)*unwrap(atan2(imag(VI05(41:401)) ,real(vl05(
41:401))));
phaselO6=(180/pi) *unwap(atan2(imag(v106(41:401)) ,real(v106(
41:401)));
phaselo9=(l8o/pi)*unwrap(atan2(imag(v109(41:401)) ,real(vl09(
41:401))));
phaselOlO=(180/pi)*unwrap(atan2(imag(vlolO(41:401)) ,real(vlO
10(41:401))));

*~ load model A, B, C, and D matrices
load tmodl
*load tnunodl
%~ generate bade plot of system model
wrad = 2*pi*FreqV;
*~ reduce gain of system
cm - 0.01*cm;
(magmi. phasi] =dbode (am,bm,ncm,din, 1/51. 2, 1,wrad) ;
(magm2 ,phas2] =dbode (am, bi, cm, dn, 1/51. 2,2, wrad) ;
(magm3,phas3] =dbode(an,bn, cin,dn, 1/51.2,3,wrad);
[inagm4,phas4] =dbode(ain,bn, ci,dn, 1/51.2,4,wrad);
(magms,phas5l =dbode(ain,bn, cm, dn, 1/51.2,5,vrad);
(znagm6, phas6] -dbode (am, bi, ci,dm, 1/51. 2, 6,wrad) ;
(inagm9,phas9] -dbode(ain,bn, cm,dm, 1/51.2, 7,wrad);
(inagm~l0,phasiloudbode(amnbin,cm,dm,1/51.2,8,wrad);
% comupare truth and model
plot(FreqV(41:401), [TF11,20*loglO(Maginl(41:401, 1))])
save tfinal.mat am bin cm dmn

107

Anthony R. Nash was born on 24 Dec 1966 in Salem, OR.

After graduating from Douglas McKay High School in Salem, OR

in May 1985, he attended the United States Air Force

Academy. He graduated in May 1989 with a Bachelor of

Science degree in Astronautical Engineering. His first

assignment was Deputy Program Manager for the Space Based

Laser and then as the Deputy for System Engineering and

Integration for the Air Force Strategic Defense Initiative

Program Office at Los Angeles AFB, CA. In May 1992, he

entered the School of Engineering, Air Force Institute of

Technology, Wright-Patterson APB, Ohio to pursue a Master of

Science degree in Astronautical Engineering.

Permanent Address:

4566 Shawn Ct. N.E.

Salem, OR 97305

108

REPORT DOCUMENTATION PAGE OMB No oo.oved
Publc olll re •tngbre fo, this cotllecion Of iflforistOii is estitlnled to averagle 1 hour pler retpone , Including the time I Or reneiwingl Instructions, searching existing data sour 0

gat g and maintaining te date needed. and comleting and reviewing h collection of in=;ormatiOn. e conment r•earding ts burden esti or anyect o of this
collection of information, including wge ti for r•edIn• this burden, to Washington Hieadquarters ServiceL. Directorate for information Operations and Reports, 12 1I Jeffrso
Davis Highway, Suite 1204, A2lingtonVA222l032.4302. and to the Office of Management and Budget, Paperwork Rteduction Project (07040196), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I Dec 1993 Master's Thesis
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

MODELING OF A LARGE UNDAMPED SPACE
STRUCTURE USING TIME DOMAIN TECHNIQUES

6. AUTHOR(S)

ANTHONY R. NASH
CAPT, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology AFIT/GA/ENY/93D-7
WPAFB OH 45433-6583

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

Kevin Slimak
OL-AC PL/VTS
9 Antares Rd. Edwards APB, CA 93524-7620

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution un im[ted

13. ABSTRACT (Maximum 200 words)

The first phase of this project was the selection of
accurate time domain state space modeling techniques by
comparing the models generated by various methods, against a
known system. The techniques selected were the Eigensystem
Realization Algorithm and the Backward Least Squares method.
These modeling techniques were applied to the vibration data
from the PACOSS dynamic test article. The resulting model
transfer function was then compared to the frequency
response function of the actual system, and was found to be
an accurate match for the system poles, but not for the
system zeros.

14. N Tei ce Structures, Dynamic Control, System Mode 01,5 NUNMIOF PAGES

Structural Vibration, Flexible Spacecraft, System 16. PRICE CODE
Identification

17. SECURITY CLASSUICATION 1t. SECURITY CLASSIFICATION 19. SEC,.;RITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

ffiffT&Vif ied CH1WILWif ied 0¶MOYAS~sif ied U

NSN 7S40-01-280-5500 Standard Form 298 (Rev 2-89)
Presc iWed by ANSI Std M3-518

