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1. Introduction

Conventional methods for discriminating between earthquakes and explosions at re-

gional distance have concentrated on extracting specific features from the waveforms of

the P(usually P.) and S (usually Lg) phases. The specific features considered generally

are amplitude ratios, measures of waveform complexity or various kinds of spectral ratios,

suggesting that the main characterization of the differences between earthquakes and ex-

plosions reduces to differences between the spectra or differences between the waveforms.

Our objective here is to compare some of the classical discriminants in the literature with

two methods based on statistical optimality criteria. We consider first an optimal nonpara-

metric discriminator, derived under the assumption that the earthquake and explosion P

and S phases are uncorrelated stationary Gaussian processes with unequal spectra. The

likelihood criterion that obtains displays the optimal statistic as the result of comparing

spectral matches between the observed series and the average earthquake spectrum against

a comparable match with the explosion spectrum. Two variations based on information

theoretic principles are also investigated. A parametric discriminator models the P phase

as a modulated autoregressive process, where the modulating function is consistent with

models for earthquake and explosion waveforms found in the literature. The nonparamet-

ric method is obviously tuned to spectral differences whereas the parametric method is

closely allied with notions relating to complexity and amplitude ratios.

Numerous investigators have pointed out that the logarithms of Pg/L, amplitude

ratios tend to be lower for earthquakes than for explosions (see, for example Blandford.

1981, Bennett and Murphy, 1986, Taylor et al, 1989). This idea has been extended to

include a consideration of spectral ratios involving the P and S groups. Bennett and

Murphy (1986) note that for western U.S. events, earthquake L. spectra contained more

high frequencies, and that the ratio of the logarithms of low frequency (.5-1 Hz) Lg to

higher frequency Lg (2-4 Hz) tend to be larger for explosions. Taylor et al (,i989) also use

this ratio over the frequency bands (1-2 Hz) and (6-8 Hz) and extended the consideration

to the P. phase. Dysart and Pulli (1990, 1992) have also considered various spectral ratios

P/S for Scandinavian events and have developed neural networks as an alternative to

simple linear combinations of features for discrimination. They note that the P/S spectral

ratios are generally higher for explosions than for earthquakes. Finally, Kim et al (1992)

note that for eastern U.S. events the ratios of Pg to Lg spectra are generally higher for

explosions. Some early results using the three coefficients in an third-order autoregressive

model for the coda as features are available in Tjostheim (1974).
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The spectral methods discussed above generate features that can differ for earthquakes

and explosions in certain specific data bases. Such features as P to S amplitude ratios

or spectral ratios within phases or between phases can then be put into a vector and

transformed (usually, logarithms are taken for a better approximation to normality) in

order to apply one of the standard linear or quadratic discriminant analysis techniques.

Examples are Shumway and Blandford (1974), Taylor et al (1989), Dysart and Pulli (1990),

Pulli and Dysart (1992) and Kim et al (1992). Two features at a time are often plotted in

various combinations for earthquakes and explosions to show graphically the separation of

the two populations (see the above references and also Bennett and Murphy, 1986).

Shumway and Blandford (1974) introduced an optimal method combining optimal

linear and quadratic discriminant functions. The criterion was based on modeling the

underlying short period teleseismic P waveforms as Gaussian processes differing in both

the mean value signals and the spectral densities. For regional events, it is clear that the

notion of a fixed mean P or S waveform which differs for earthquakes and explosions is

not a relevant comparison but that the notion that the earthquakes and explosions differ

only in their spectra does make a lot of sense. This implies that the quadratic part of the

optimal detector used by Shumway and Blandford (1974) (see also Shumway, 1982, 1988)

will have the lowest misclassification rate of any function based on the spectra, including

those given in the preceding paragraph. Such a detector has been applied several times

in the literature to seismic discrimination, by other investigators as well (see, for example

Dargahi-Noubary and Laycock, 1981, Alagon, 1989). We develop and apply a modified

version of such a detector to P and S phases from population of regional Scandinavian

earthquakes and explosions given in Blandford (1993). Since the model depends only on

stationarity of the series and not on a specific parametric model for the spectrum, we refer

to it as the optimal nonparametric discriminator.

Modifications to the nonparametric version of the likelihood detector can be made

based on information theoretic principles. For example, the optimum quadratic detector

has an information theoretic interpretation in terms of the minimum discrimination infor-

mation statistic (MDI), of Kullback (1978). Such a discriminant, defined as the difference

of the discrepancies between the sample spectrum of the event to be classified and the the-

oretical earthquake and explosion spectra, has excellent theoretical properties as discussed

by Zhang and Taniguchi (1992, 1993). They suggest an alternate discriminant that is ro-

bust to peak contamination which is based on the Renyi index of index a as discussed by

Parzen (1990) (see Renyi, 1961). Zhan and Taniguchi call the discriminant the a-entropy.

We will apply the MDI and Zhang-Taniguchi (ZT) discriminants to the earthquake and
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explosion populations and show that the ZT discriminant offers several advantages over

the conventional likelihood discriminant.

Blandford (1993) discusses a notion of complexity as a discriminant and shows that

it has potential for discrimination of the events in the Scandinavian database. The idea

relates to the often quoted statement by analysts that complexity is a strong component

of their visual procedure for discrimination. Blandford proposes a notion of complexity

related to the observation that explosions generate usually an impulsive signal whereas

earthquakes tend to generate a more emergent signal. We develop here a parametric

discriminator by assuming that the earthquake and explosion populations can be expressed

as uniformly modulated autoregressive process; parameters of the modulating function

characterize separately the emergent and impulsive properties of the signal. Our underlying

model for complexity is taken directly from a suggestion of Dargahi-Noubary (1992) that

is based on standard source theory.

2. Data Compilation

For our test data, we use a subset of stations recording 8 earthquakes and 8 explosions

in Scandinavia from the arrays NORESS, ARCESS and FINESS as described in Blandford

(1993). According to Blandford, "The events were selected with consideration for having

sufficient SIN at single elements so that all phases could be clearly seen on all components

of a single instrment --. ". From Table 1 in Blandford, we took explosions three through

ten and from Table 2, we used all eight earthquakes. All events chosen by Blandford

were on or near land and were distributed uniformly over Scandinavia to minimize the

possibility that discriminators might be keying on location or land-sea differences. Figure

1 shows portions of typical earthquakes and explosions (sampled at 20 Hz) along with the

portions of the record that we visually determined as the P and S phases. We did not

identify specific phases through velocity computations but simply chose fairly broad (25

second) windows that seemed to include the P and S phases.

Qualitatively, we note that the earthquake has a much smaller amplitude P/S ratio

than the explosion and we note the relatively complex P phase which tends to be emergent

for the earthquake as compared with the generally impulsive P phase signals from the

explosions. These comparisons, if universal, would make discrimination quite easy but a

casual inspection of Figures AI-A16 in the Appendix shows that this is not universally

true. For example Earthquakes 4 and 5 in Figures A4 and A5 have relatively large P/S

amplitude ratios, more like that of an explosion although they still display the emergent
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P phases. For explosions in Figures A9-A16 the P/S amplitudes are generally higher than

for earthquakes although Explosion 1 in Figure Al is an exception. Explosions 4 and 5
have slightly more emergent P phases although the distinctly high single peak in Explosion

5 indicates that the event may be an explosion. The earthquakes in Figures A1-A8 do not

display such sharp initial pulses.

The autoregress',.e (based on a third order AR model) spectra were computed for the

P and S phases for all earthquakes and explosions. This assumption is not inconsistent

with source models assuming a decay inversely proportional to v3 where v is frequency.

Fitting a low order AR spectrum also tends to de- emphasize spurious peaks and values

due to ripple firing of the mine explosions. The AR spectra shown in Figures Al-A8 for

earthquakes tend to have stronger low frequencies in the S phases (0-5 Hz) and higher

frequency content in the P phases (5-8 Hz) for earthquakes. Explosions generally tend to

have peaks at roughly the same frequency which varies over the 5-8 Hz range. Explosions 1

and 8 in Figure A9 and A16 have low to high frequency behavior consistent with that just

mentioned for earthquakes so the spectral discriminant is not absolutely reliable either.

To make overall qualitative assessments it is easiest to look at the average spectra

of the earthquake and explosion groups separately. Figure 2 shows these average spectra
where all traces have been scaled by dividing by the maximum amplitude of the P phase.

We have plotted on a linear scale since this emphasizes spectral differences in the high signal

to noise parts of the earthquake and explosion processes. The top left panel shows the

average spectra plotted on different scales indicated on the left and right ordinates. This

display scales out amplitude differences and allow us to see the spectral shape contrasts.

For the P phases, we notice a broader spectrum with both high and low frequencies; the

main differences appear to be in the low (0-6 Hz) band. We note that in the top right

panel, which plots the spectra on the same scale, the differences seem to be characterized

by a stronger low frequency (0-6 Hz) component for earthquake P than one sees in the

high frequency (6-15 Hz) band. The S components shown in the bottom panels are more

narrow band and relatively higher for earthquakes in the interval (0-3 Hz) and higher for

explosions in the (3-12 Hz) band.

It seems clear that the process of guessing spectral ratios by looking at separate or

average spectra will lead to a number of possible discriminants as can be seen by examining

the literature. In the next section, we consider some amplitude and spectral discriminants

that have been proposed in the seismic literature and show that features extracted from
the amplitude characteristics do best for the small sample of earthquakes and explosions

given above.
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3. Discriminants Based on Amplitude and Spectral Features

For feature extraction, we consider a number of classical measures related to the

spectrum. They are logarithms of (1) P and S amplitudes, (2) P and S mean square

error, (3) combinations of P and S spectra (0-3 Hz, 3-6 Hz, 6-9 Hz) and (4) autoregressive

coefficients of the P and S phases for a third order model. The frequency ranges were not

exactly comparable to those used in the literature (.5-1Hz, 2-4 Hz in Bennett and Murphy,

1986, 1-2 Hz, 6-8 Hz in Taylor et al, 1989, 2-5 Hz, 5-10 Hz, 10-20 Hz in Pulli and Dysart,

1993, 5-25(5) Hz in Kim et al, 1992) but were chosen by visually inspecting the separate

spectra and the average earthquake and explosion spectra shown in Figure 2. A further

comment is that we have avoided taking ratios of spectra which tend to assume a-priori that

the best discriminator will be the simple difference of the form log(P/S) = log P - log S.

It is clear from our results that the log ratio is nearly the best discriminant and it is also

reasonable that taking logarithms improves the approximations to multivariate normality.

The best discriminators of this group were the classical amplitude and mean square

error measures (1) and (2); (1) is plotted in Figure 3 and the scatter diagram of the mean

square error (2) hardly differs from this top panel. A linear discriminant analysis with

equal prior probabilities tended to confirm the ratio procedure. For example the optimal

linear discriminant functions for P and S amplitudes and mean square errors were

d(1) = -20.59 log P + 15.97 log S + 14.32

and

d(2) = -15.02log P + 13.30log S - 25.40

respectively. Both (1) and (2) had perfect classification in the test sample and classified

the first explosion as an earthquake in the holdout-one procedure.

Note that the hold-out procedure (see Lachenbruch and Mickey, 1968) gives reasonable

approximations for the misclassification rates that would obtain when classifying a new

observation not in the training sample. The holdout procedure estimates the discriminant

function for each observation with that observation held out of the training sample. The

linear discriminant function obtained is then applied to the observation that was held

out. The misclassification rates for all methods using the original sample and the hold-out

procedure are shown in Table 1.

The best of the spectral group (3), also plotted in Figure 3, focusses on the (0-3 Hz)

frequency band where differences were noted in Figure 2. Of course, this is bound to be
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closely related to P/S amplitude (1) and the mean square error (2) which are both closely

related to the low frequency power. It is not surprising that it has the same performance

as (1) and (2), leading to a linear discriminant function of the form

d(3) = -13.07log P + 12.99 log S - 10.94.

Note that all discriminant functions are essentially of the form - log P/S. This confirms

the intuitive use of measures of the form log P/S which is common in the seismology

literature. The A)ther techniques in (3) (see Figures 4 and 5) gave inferior performances

and Method (4), suggested by Tjostheim (1975) had the worst performance with almost no

discrimination capability. This is surprising because the third-order AR spectra in Figures

A1-A16 seem to do a reasonable job of characterizing the spectra and because one might

expect from standard source theory arguments that such a process would fit the data. In
general, the third-order AR predictions miss the impulsive excursions of the explosions. We

have not investigated combining more than two spectral discriminants because of the small
training samples ( 8 earthquakes and 8 explosions) involved in the comparisons. Global

frequency discriminants have been considered in the literature for larger samples by Pulli

and Dysart (1992), Taylor et al (1989) and Kim et al (1992). Such global discriminants

(see, for example, Kim et al, 1992) can often lead to linear combinations with both positive

and negative coefficients. One is hard put to develop an intuitive rationale for using such

combinations.

A comparison of performances on the small test sample of Scandinavian events is
given in Table 1. We include the measures based on likelihood and information theoretic

arguments given Section 4 and the complexity approach given in Section 5. We note the

slight overall superiority of the global optimality measures and the general satisfactory

performance of the P/S amplitude based discriminants considered in the literature. The

specific spectral ratios do less well although it is clear that the optimal tuning to the

spectra represented by the likelihood and information theoretic methods can do very well

indeed.
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Table 1: Misclassifications ( = Holdout)

Method EQ EXP EQ* EXP*

Amplitude

log10 P, log1 0 S 0 0 0 1

Spectral Discriminant3

MSE (log1 0 P, loglo S) 0 0 0 1

log10 P(O-3), log1 o S(0-3) 0 0 0 1

loglo P(6-9), log10 S(6-9) 1 2 2 3

loglo S(0-3), log10 S(3-6) 1 4 0 4

Optimal Quadratic 0 0 0 0

MDI 0 0 0 0

ZT 0 0 0 0

Complexity

01,02 2 2 2 2

4. Optimal Spectral Discriminants

For our optimal nonparametric classification procedure, consider the classical approach

to discriminating between two stationary bivariate Gaussian processes (H1 : Earthquakes

and 12 : Explosions) with unequal matrix covariance functions (spectra). An approxi-

mation (see, for example, Shumway, 1988) to the optimal test statistic is related to the

match between the Fourier spectrum of the series of unknown origin and the spectrum of
the earthquake or explosion process. Consider the likelihood or matching function under

H,,j = 1, 2, given by

1 logf,.(L~k) + fX.(k) } (1)dj. = 2 1:19fj-(k)+o -(k

where we replace - by P or S depending on the phase to be considered, X.(k) is the

discrete Fourier transform of the data xt. and fj.(Vk) denotes the spectrum for phase •

under hypothesis H,. The frequencies are of the form Vk = kIT, k = 0,..., T - 1. The

optimal statistic for testing whether the sampled bivariate series is from H, : EQ or from

112 EXP is given by

Q = (dip - d2 p) + (dis - d 2 s), (2)
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where we accept H, (earthquake) if Q > 0 and 112 (explosion) if Q < 0. Note that the P

and S phases need to be uncorrelated processes for this detector to be optimal. We have

computed cross spectra and coherence functions of the paired phases for every event and

they are not significantly greater than zero.

We may also look at information theoretic approaches to discriminating between two

processes. It is known (see Shumway and Unger, 1974) that the discrimination information

for two Gaussian processes differing only in the spectra is approximately

I(fl, f2)=1 = fl.(Vk) _ log fl.(vk) _-1 (3)
2 E I f 2.(vk) f 2 .(Vk) .

Generally, it is convenient to regard the quantity given above as a measure of the dis-

crepancy between the two spectral densities fl.(vk) and f2.(Vk) since I(fl.,f2.) Ž_ 0 with

equality if and only if fl.(vk) = f2.(vk) for all k. Kullback (1978) has developed the

minimum discrimination information (MDI) criterion as a means for classifying a new ob-

servation into H1 or H2. Under this principle, one compares the discrepancy of a spectral
estimator computed from the sample realization xt., say fT.(Vk) with fl.(vk) and f2.(vk)

using

I(f.,f2.; fT.) = I(fT.,f 2.)- I(fT.,fh.), (4)

where

,,=0T- '(V) log fT.(Vk) (5)
f.,f) = fj.(Vk) fj.(Vk)

Since we want the discrepancy between the sample spectrum and the true density to be

minimized, it is clear that we should accept H, when I(fi., f2.; fT.) >_ 0 and accept H2

otherwise. In terms of the overall criterion, expressed in terms of both phases we would

choose H' (earthquake ) when

I(f1., f2.; fTP) + I(fl., f2.; fxs) > 0. (6)

Note that for fT.(vk) = IX.(k)12, the periodogram estimator, the above criterion reduces

exactly to the quadratic criterion defined in Equation (1). Zhang and Taniguchi (1992)

have shown the asymptotic normality of the MDI criterion and that the misclassification
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errors converge to zero. They have also shown that the criterion is robust to departures

from normality.

Zhang and Taniguchi (1993) have also suggested the a-entropy

e,(f,-If 2 ) T- ( fl.(Vk) alog fl.(Vk) } (7)
E f2log1-Vk)) - fo 2-(V'k)

S= 5 k=o

0 < a, 1) as an alternative and show that it is robust to both non-Gaussian departures and

peak contamination. Under this suggestion, we would accept H1 when Ba(fl., f2.; fT.) > 0,

where

B. (fl., f 2 .; fT.) = e.,(f 2 ., fT.) - ea (fi., fT.) (8)

,and

1T-1 f,.(Vk) f, (Vk)
e(fj.,fT.)= 2 flog -a+a .k alog . (9)

In terms of the overall criterion involving both phases, we would accept H1 when

B.(flp, f2P; fTP) + Ba(fis, f2s; fTs) > 0. (10)

In order to apply the discriminant functions defined above, we need to have estimators

for the earthquake and explosion spectra, say fi.(v) and f2 .(v). These can be taken as

predefined values if no training sample is available or as the averages of the earthquake

and explosion spectra respectively if a training sample is available. We take the values

here of the average earthquake and explosion spectra shown in Figure 2. The spectra were

computed for each series (no taper) over a fairly broad band (2 Hz) and then averaged

separately for earthquakes and explosions. Note that the P and S components were scaled

by dividing by the maximum of the P component. For the quadratic and information the-

oretic detectors, small values of the theoretical spectra can cause potential distortions, so

several cutoff frequencies in Equations (1), (5) and (9) were tried; overall best performance

seemed to be attained with a cutoff of about 8 Hz. In Figure 1, we see that real differences

in the earthquake and explosion spectra are small after this point.

The P and S components of the quadratic detector are plotted in Figure 6 and we

see that both the test sample and the holdout procedures achieve perfect classification.

Note that the performance of the holdout procedure emulates the performance that a
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discriminant function defined from a training sample would have on a new observation.

One computes the average of the spectra holding out one observation at a time and then

using the test statistic to classify the held out observation. The events that are somewhat

-narginally classified since they lie somewhat close to the decision line in the hold-out

sample are Earthquake 4 (Figure A4) and Explosions 1 and 8 (Figures A9 and A16).

The P and S components of the information theoretic based discriminants are shown

in Figure 7 for a = .7 and we see that the separation is slightly better for the robust ZT

a-entropy than for the MDI detector whose performance is similar to that of the ordinary

likelihood discriminant shown in Figure 6. Experimenting with lower values of a showed

a slight degradation. It would appear that the ZT a-entropy discriminant, which is robust

to peak contamination, is doing a better job in this case. Note also that the distribution of

the ZT discriminant is less skewed than that of the MDI or likelihood detectors where the

explosions tend to be clustered in a small region and the earthquakes tend to be distributed

over a large dynamic range. The holdout performance of both detectors, shown in Figure

8, is perfect and we note that one explosion in the MDI holdout population moves quite

close to the discriminant line. The marginal events might be taken as Earthquakes 4 and

5 although they are quite far from the decision line.

5. Parametric Discriminants Based on Complexity

In order to define an optimal parametric discriminant, consider a model for the earth-

quake or explosion P phase specified as a stationary autoregressive series modulated by a

time varying function sometimes used for earthquake and explosion sources. That is, we

assume the observed P phase is generated by

Yt = (,(e)x, + vt (11)

where at(O) is some modulating function depending on t and the parameter vector 9 =

(01, 92,. ., 0p)'. The process xt is an underlying signal and its reflections and vt is an

additive white noise process. Dargahi-Noubary (1992) has suggested such a model where

the modulating function might be taken as

at(0 1 ,02) = O1t exp(-0 2t) (12)

One may motivate such modulating functions by appealing to standard source theory

models such as Harkrider (1976) or Von Seggern and Blandford (1972) whose model implies
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a source time function of the form

at(01, 0 2, 03)) = (01t + 02 t2 )exp(-0 3t).

The modulating function (12), suggested by Dargahi-Noubary (1992), has a shape which

depends on the parameters 01 and 02. Small values of 01 and 02 should be associated

with earthquakes since they produce emergent modulating functions; large values of these

two parameters would characterize explosions since these larger values will produce rather

impulsive waveforms. Some families of typical modulating functions obtained with this

data are shown in Figure 9.

Since the modulating functions are rather smooth, the underlying process should

be modeled by a random series with a fairly well defined peak spectrum. Second-order

autoregressive series are useful for fitting these kinds of series and accordingly, we take the

modulated process xt as

Xt = :4'-X.t-I + 4)2 xt-2 + Wt, (13)
2 ad2. 2o dniiblta

where the noise processes errors have variances o and ua; for identifiability, a, should

be fixed at a constant value. The second-order model implies a fall off in frequency that

is inversely proportional to v 2 which is consistent with the Von Seggern Blandford theory.

In order to get an indication as to how the model defined in (12) and (13) might work,

we developed a maximum likelihood procedure for estimating the parameters 01, 02, ac2 and

01, 02. The model is highly nonlinear in all parameters but we can write the log likelihood

function of the complete data as in Shumway (1988) and then use the EM algorithm. The

basic procedure is to update 01, 02 and av using the EM algorithm and to update 01 and

02 by Newton-Raphson interations nested within the EM algorithm.

The above procedure is quite sensitive to start points and the families of modulating

functions shown in Figure 9 for earthquakes and explosions are not clear emergent and

impulsive as they should be. The scatter plots of the parameters 02, 02 and 01,02 are

shown in Figure 10 and again there is a clear separation only relative to 01 which is

proportional to the P/S amplitude ratio. This happens because the amplitudes of the

P is scaled by dividing by the maximum amplitude of the S phase for that event. A

discriminant analysis using the parameters 01 and 02 lead to misclassifying Earthquakes 2

and 8 and Explosions 4 and 5. Note in Figure 5 that these are the events that one sould

expect to misclassify on the basis of the estimating modulating functions. Looking at the

original events, it is reasonable that Explosions 4 and 5 would be fitted well by emerging

modulators but the emergent behavior of Earthquakes 2 and 8 would seem to contradict
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their fitted waveforms. It is plausible that the estimation procedure could be tuned to the

process by comparing against envelope functions starting from a fixed time point for the

maximum excursion and we are in the process of testing this method.

5. Conclusions and Recommendations

We conclude that the optimal nonparametric procedures based on spectral differences

discriminate significantly better than those based on extracting simple features of the

process or on fitting the amplitude modulated model for complexity. Of course, these

results are only for the very small and carefully selected learning sample of Scandinavian

earthquakes and explosions considered in this study. Hence, the data are not sufficient

to give confidence from a discrimination point of view but they are adequate to indicate

the potential of the new statistical methods. It is of potential interest also to develop a

method for incorporating a third noise-only hypothesis into the decision procedure in order

to decide whether there is significant signal/noise to justify a discrimination.

The advantage of the nonparametric procedures based on likelihood, minimum dis-

crimination information and a-entropy essentially relate to their ability to tune against all

differences present in the earthquake and explosion spectra and not to specific frequency

bands or phases. Furthermore, the a-entropy modification seems to be a promising robust

technique in this case where there can be interfering or slightly offset peaks in the sample

spectrum associated with the event to be classified. In addition, for more realistic larger

samples and more than one station used per event, the procedure can work even better.

The application of the nonparametric procedure to larger data bases should provide some

standard baseline statistics for comparison with more esoteric nonlinear methods such as

classification trees or neural nets as applied to specific feature vectors.

The modeling of complexity using the waveform model proposed here may also add

discrimination capability for the cases where the spectral matching function given by the

nonparametric procedure is not enough. We will continue to refine the properties of the

waveform comparison test and apply it to the small test sample of Scandinavian events.
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