
ALA2 73 9,o

SN•• CT•C N iNSERTION EFFOR NS FOR TiHi
PIC 1A ISSILE DEFENSE ORGANIZAXIO1N

Bill Brykczynski, Task Leader

Reginald N. Meeson ET
David A. Wheeler D

September 1993

=0

.J Li II P =ST AVAILABLE COPY

Piepared for

Ballistic Missile Defense Organization

'V for I , W O22, •N .

INSTITUTE FOR DEFENSE ANALYSES

UNCLASSIFIED IDA Le it,. N UNo"

DEFINMTONS
IDA peblis hes be elowiu docMUmet to report Oe recaul af its Work.

Reports
Reports wre the most aubaltnratlve mod mast carefully considered products IDA publishes.
They marmaly embody resilla ot major proejcts which (a) kav a direct hearing en
declisios affecting mawo ptograms, (b) address Ismus af significant concern to the
Executive Breach, IM Congress and/or the public, or IQ) address issues that hae"
"signfiant ecanemic Implications. IDA Raperts are reviewed by outside panels of experts
to ensure their Mo"igqulty aod retmuce to lbe problem studied, and May are released
bybte President af IDA.

Group Reports
Group Reports record bhe findings med results at IDA established working groups and
panels composed at senior Inihualks addressing major isses which Maervise wevid he
be subject at on IDA Raport. MDA roup Reports are reviewed by bea sealer indludual
resp Monil for bhe project and~ ab s on$elected by IDA to esur te air high quality and
relevance to bhe problems, studied, usd are released by bhe President af IDA.

Papers
hPe-rsialso saubofltatlve and carefully considered praod-cts ol IDA, address studies bat
are narrower In scope bhan bose coverd in Reports. IDA Papers are reviewed to ensure
beat bhey meet be Nog standards expected at reere papers in professiona jouralsh or
formal Agency reports.

Documenits
MDA Documents are used tor bne coewienlece of bhe sponsors or be analysts in) I* record
substantive work dones In quick reaction studies. (hI to record bhe proceedings of
conlferece and meetlngs. (c) to make wavablhe preliminary 4 tentative results of
analyses, (d)to rcord data develped i be core mof an nestigatison,or (e)l tofoard
Informaion bat ls essentially sunanlyzed sand unvaluate. The review of IDA Doconumnts
is tulked to bheir content and Mantlevandas.

SThe work reported hIn ths document was conducted under conokac UADA OU N C OW for
be Department ot Defense. The publication ot this IDA document does not indicate
endorsement by bhe Department at Dftense. mar should bhe contents he construed as
reletng be official poiti of OiWe Agency.

r© Cg InstItu....e for Defasme Analse

IThe Government ofthbe Vafttd Statas Is granted an unlimited licens to reproduce this
document.

Form Appwrd
REPORT DOCUMENTATION PAGE OM No o7o4019

IN d bqurdgen fr o coscuham otkdoahistm i us :: = e icuding h for ww wag m asudaraesmmdon, surces.
pul~ml ree rnadgt ~ us mpieft m endsia tw 68amo Send coeas oetti burden adru. or urje opad~ of"th

10hiif.mii. mi fwndodug d bhd6toWilngla u1Hauesuters Servau.Direauve fair WarmanOpan gadRm.15irs
Dmvb Highwa. 99ft lIN.Ar=-MAC !2221AS02. endado fice~ of 16emr. udget. Papma won R3da=ctanPoject(44iswutwc2S3

1. AGENCY USE ONLY (LGaM blWnk) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1993 Final

4. TrLE AND SUBTITLU 5. FUNDING NUMBERS

Software Inspection Insertion Efforts for the Ballistic Missile Defense MDA 903 89 C 0003
Organization

Task Order T-R2-597.21
&AUTHOR(S)

Bill Brykczynski, Reginald N. Meeson, David A. Wheeler

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT

NUMBER
Institute for Defense Analyses (IDA) IDA Paper P-2876
1801 N. Beauregard St.
Alexandria, VA 22311-1772

9. SPONSORINGJMONYTORING AGENCY NAMES) AND ADDRESS(ES) I0. SPONSORINGIMONITORING AGENCY

BMDO3/GSI REPORT NUMBER

The Pentagon, Room 1E149
Washingto, D.C. 20301-7100

11. SUPPLEMENTARY NOTES

12& DISTRIBUTION/AVAHABLYFr STATEMENT 12b. DISTIUTInON CODE
Approved for public release, unlimited distribution: October 2Z 1993. 2A

13. ABSTRACT (Mmzrnm 200 woar)

Software inspection is an industry-proven process for improving quality and reducing cost and schedule risks
during software development. Software inspections are highly effective at detecting and eliminating defects,
especially during the early phases of software development. Unfortunately, the software inspection process is
not widely used by DoD contractors. The Ballistic Missile Division Organization (BMDO) tasked IDA to
promote awareness of this defect detection process to several BMD program offices. This report summarizes
information collected, developed, and distributed to those program offices. IDA efforts to insert the process
into BMDO policies, standards, and the Brilliant Eyes software development program are described.

14. SUBJECTTERMIS I5. NUMBER OF PAGES
Software Inspections; BMDO; Software Development; Software Defects. 108

16. PRICE CODE

17.sEcuRiTY CLASFICATION 18. ECURHYCLASSIFICATION 19.SECURITYCLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified ISAR

NSN 7540.01-20-ss50 Samasd Form 298 (Rev. 2-89)
Pesribed by ANSI Si. Z39-18

* 298-102

UNCLASSIFIED

IDA PAPER P-2876

SOFTWARE INSPECTION INSERTION EFFORTS FOR THE
BALLISTIC MISSILE DEFENSE ORGANIZATION

Accesion For

Bill Brykczynski. Task Leader DTICS TAB

Reginald N. Meeson U;•.announced 0
David A. Wheeler Justification.

By

Di-t ibution/

Availability Codes

Avail andIor
* September 1993 Dist Special

I I

DTIC QUALITY INBECTMD 3

AWpvu" ft psi rslem. . h ud' : v aw 22. M2.1

INSTITUTE FOR DEFENSE ANALYSES
Contract MDA 903 89 C 0003

Task T-R2-597.2 I

* UNCLASSIFIED

PREFACE

This paper was prepared by the Institute for Defense Analyses (IDA) for the Ballis-

tic Missile Defense Organization (BMDO), under the task titled "Software Testing of Stra-

tegic Defense Systems." The objective of the task was to assist the BMDO in planning and

monitoring software testing research, development, and practice, with particular emphasis

on the transition and application of software inspection methods.

This paper was reviewed by the following members of IDA: Dr. Dennis W. Fife,

Dr. Michael Frame, Ms. Audrey A. Hook, Dr. Richard J. Ivanetich, Ms. Beth Springsteen,

and Mr. Glen White.

Sl

Table of Contents

SU M M ARY .. S-1

1. INTRODUCTION ... 1

1.1 PURPOSE AND SCOPE ... 1
1.2 BACKGROUND .. 2

2. OVERVIEW OF SOFTWARE INSPECTIONS .. 3

2.1 COST OF SOFTWARE TESTING ... 3
2.2 SOFTWARE INSPECTION PROCESS ... 5
2.3 BASIC INSPECTION STEPS .. 6
2.4 MANAGEMENT PARTICIPATION .. 7
2.5 OTHER TYPES OF REVIEWS .. 7
2.6 BENEFITS FROM SOFTWARE INSPECTIONS .. 7
2.7 COST OF INSPECTION ... 10
2.8 RECENT EXPERIENCE REPORTS FROM INDUSTRY 11
2.9 INDUSTRY INSPECTION USAGE IS INCREASING 12

3. COMPARISON OF REVIEW APPROACHES .. 15

3.1 TAXONOMY OF REVIEW APPROACHES ... 15
3.2 REVIEWS WITH UNIJMITED ATTENDANCE .. 16

3.2.1 MIL-STD-1521B Reviews ... 19
3.2.2 IEEE Standard 1028 Management Reviews .. 21
3.2.3 IEEE Standard 1028 Technical Reviews ... 21

3.3 REVIEWS WITH LIMITED AITENDANCE ... 21
3.3.1 Inspections .. 22
3.3.2 Walkthroughs ... 23
3.3.3 Selected Aspect Reviews ... 24
3.3.4 Other Reviews that Limit Attendance .. 26

3.4 CMM PEER REVIEW KEY PROCESS AREA ... 26

4. INSPECTIONS WrrHIN THE BMD PROGRAM ... 31

4.1 INSPECTIONS IN BMDO AND DOD STANDARDS 31
4.1.1 DoD Directives and Instructions .. 33
4.1.2 BMDO Policy ... 33
4.1.3 Required DoD Standards .. 33
4.1.4 BMDO Implementation Plans and Compliance Documents 35
4.1.5 Trusted Software Methodology ... 36
4.1.6 Other Policies and Standards .. 38

4.2 INSPECTIONS IN BRILLIANT EYES .. 39

V

Table of Contents

4.2.1 Approach .. 39 0
4.2.2 Establishing Commitment .. 40
4.2.3 Insertion Considerations ... 40

5. CONCLUSION AND RECOMMENDATIONS .. 43

APPENDIX A. COMMONLY ASKED INSPECTION QUESTIONS A-1

APPENDIX B. CONTRACTING FOR INSPECTIONS B-1

APPENDIX C. SOFTWARE INSPECTON AND REVIEW ORGANIZA-
TION .. C-i I

APPENDIX D. BIBLIOGRAPHY WITH ABSTRACTSD-1

LIST OF REFERENCES ... References-1

LIST OF ACRONYMS ... Acronyms- 1

vi

List of Figures

Figure 1. Cost of Software Development .. 3

Figure 2. Hidden Cost of Defect Rework .. 4

Figure 3. Distribution of Rework Cost ... 4

Figure 4. Typical Software Defect Profile .. 8

Figure 5. Defect Profile with Inspections .. 9

Figure 6. Raytheon Savings from Reduced Rework ... 10

Figure 7. Software Development Spending Profiles .. ! 1

Figure 8. Number of Inspection-Related Papers .. 12

Figure 9. Taxonomy of Review Approaches ... 15

Figure 10. Key Process Areas by Maturity Level .. 27

Figure 11. Summary of the CMM Peer Review KPA .. 28

Figure 12. Peer Review Resource Requirements .. 28

FI6 ure 13. Peer Review Procedure Description .. 29

Figure 14. Review Effectiveness Factors .. 29

Figure 15. Effectiveness of Software Reviews ... 30

Figure 16. Policies, Standards, and Guidelines Relating to Inspections 32

vii

List of Tables

Table 1. Basic Inspection Steps ... 6

Table 2. Review Characteristics ... 17

Table 3. Review Approaches Defined by IEEE Standard 1028 18

0

ix

0

0

0

0

0

0

9

0

0

0

SUMMARY

The software inspection process is one of the most impressive examples of "best

practice" in the conunercial software industry. Software inspection has proved to be highly

effective at improving: quality, reducing schedule risks, eliminating defects and reducing

development costs in complex systems. Up to 80 percent of all software defects can be

identified and eliminated early during software development by using inspections. When

inspections are combined with normal testing practices (e.g., dynamic analysis, regression

testing), defects in fielded software can be reduced by a factor of 10. By decreasing the

amount of rework typically experienced in development, inspection increases productivity

and reduces costs and delivery time. Cost and schedule reductions for typical applications

are on the order of 30 percent.

The Cost of Defects in Software Development

Figure S- I reflects the high cost of testing in software development.1 It is common-

ly held that at least 40 percent of software development is spent on unit, integration, and

system testing. Upon closer examination, however, a large part of the testing time is not

actually used for testing. The extra testing time is taken up by conecting defects that are

found by tests, as shown in Figure S-2. As much as 40 to 50 percent of typical software

F1g. 8-1. CO of Softwa Det*pmnt Fig. S-2 Hdden Cost of D~ Reworh

MwThe data in Figums S-i and S-2 are frm Boelun, Bauiy W., "Improving Softwar Productivity," IEEE
Computer, Vol. 20, No. 9, September 1987, pp. 43-57.

S-1

development effort is devoted to correcting defects. Such a high level of rework does not

reflect positively on the process and, hence, is not often openly reported.

Many defects found in testing are directly traceable to requirements and design

flaws that could have been detected earlier. Defects detected soon after they are introduced

are relatively easy and inexpensive to correct. When not detected until later in develop-

ment, the cost of correcting these same defects is compounded by having to undo work

based on the incorrect foundations. Finding in the last stages of testing that a requirement
was not correctly understood can easily lead to cost and schedule overruns. The cost of cor-
recting the same problem in the requirements phase is usually negligible. The most effec-

tive process known for finding defects across all stages of software development is

inspection.

The Software Inspection Process

Inspections are detailed examinations of work-in-progress. The objective of inspec-
tions is to identify defects. Co-workers study work products independently and then meet
to review the work in detail. No time is spent during an inspection meeting discussing how

to correct a defect. Corrections are left for the author to make later. Work products are small
but complete chunks of work--on the order of 200 to 250 lines of code. Requirements,

designs, and other work products are inspected in similar-sized chunks (e.g., four to six
pages of text). Work products are considered work-in-progress until the inspection and any
necessary corrections are completed. Inspection teams are formed by four to five cowork-

ers. Each inspector will typically spend one to four hours reviewing the work product and
related information before an inspection, depending on the level of familiarity with the

material.

Responsibilities for several roles are assigned to inspection team members. The
most important role is that of the moderator who runs the inspection meeting and is respon-

sible for keeping the inspection on track. The reader paraphrases the work product while

the author and other inspectors read along and comment on discrepancies. The recorder
records the location and a brief description of all defects encountered. Other roles may exist

depending upon the type of work product.

Inspection meetings are generally limited to a maximum of two hours. It has been
observed that after two hours, the number of defects detected drops off significantly.

The two principal outputs from an inspection are a list of defects for the author to
correct and an inspection summary for management that describes what was inspected, who 0

S-2

the inspectors were, and the number and severity of defects found. In addition, any systemic

defects that are identified are reported for consideration in general process improvement.

Inspections in the Department of Defense and Ballistic Missile Defense Organization

Although the benefits of the inspection process have been widely published, the

process is not often used by Ballistic Missile Defense Organization (BMDO) and Depart-

ment of Defense (DoD) contractors. There are several likely reasons for this state of prac-

tice. Contractors and program offices may be unaware of the inspection process and its

benefits. Contractors may believe they already perform inspections but actually employ

less rigorous and effective walkthrough methods. Contractors and program offices may

overreact to the up-front cost of inspections and ignore the potential value of substantial

downstream cost and schedule reductions. Contractors may also view including the cost of

inspections in their bids as reducing competitive advantage, since competitors may submit

higher-risk but lower-cost bids without inspections. If the program office has not included

* a requirement or evaluation points for the use of inspections in its Request for Proposal, it

may not have grounds to reject higher-risk proposals.

IDA Inspection Activities

During the course of this study, the activities of the Institute for Defense Analyses

(IDA) were concentrated in three areas. First, a comprehensive analysis of the inspection

process was performed. This analysis was based on a review of a wide range of published

information on the inspection process, discussions with DoD and commercial industry con-

tractors on their software review practices, and conversations with people who provide

inspection training. Second, IDA reviewed BMDO software policies, standards, and guide-

lines and suggested improvements regarding their treatment of the inspection process.

Third, IDA assisted in an effort to insert inspections into the software development process

of the Brilliant Eyes program.

Reconmmendations

1. Senior BMD executives should strongly encourage the use of the inspection

process for all BMD software development. The BMDO General Manager and Service

Program Executive Officers can influence element program managers to consider imple-

menting the inspection process. Without senior-level leadership and commitment it will be

much more difficult to convince program managers and their staff to implement the inspec-

tion process. Promoting advanced technology, especially an industry-proven process such

as inspections, is an appropriate function for BMDO senior executives.

S-3

2. Future BMD RFP's should provide explicit incentives for contractors to bid

the inspection process. Evaluation of the proposed inspection process should be a specific

technical criterion in making the source selection decision. By incentivizing inspections in

the RFP, contractors can then reflect the upfront costs of inspection in their bids. It should

be noted, however, that inspection benefits are unlikely if BMDO relies primarily on con-

tract wording to obtain inspection usage. Active interest by BMDO and the program offices

to communicate the importance of the inspection process to the contractor is also necessary.

3. BMDO should provide funding for initial inspection training to all BMD ele-

ment program offices. By specifically allocating training funds, BMDO emphasizes the

importance placed on inspections. This funding should be allocated for two types of train-

ing: full training for all program office staff involved with software development, including 0

program manager, software leads, and acquisition officials, and initial training for existing

contractor personnel. The program office should be encouraged to provide subsequent

training to existing contractors, or to allow the contractor to directly charge inspection

training costs against the contract. For maximum benefit, all contractor development per-

sonnel, and their managers, should receive inspection training.

4. Summary inpection data and results should be collected from software

developers by the program offices. This data is needed to assess the effectiveness of

inspections and to manage the software development process. Benefits from inspections

will be available immediately, quantifiable in terms of defects detected and rework avoided.

Results from "success stories" can be used immediately to increase awareness and adoption

of inspections BMD-wide.

0

S-4

1. INTRODUCTION

1.1 PURPOSE AND SCOPE

The process of software inspection is a highly effective technique for improving

quality and reducing cost and schedule risks during software development. This paper pre-

sents the results of an effort by the Institute for Defense Analyses (IDA) during fiscal year

1993 to increase awareness of the software inspection process within the Ballistic Missile

Defense (BMD) program. This paper provides information on the software inspection pro-

cess that is useful from several perspectives:

a. Program managers will find a concise overview of software inspection that

examines the problems addressed by inspections, the industry benefits reported

from use of the process, and the costs involved in implementing the process.

b. Program office staff will find a detailed examination of Department of Defense
(DoD) and BMD standards, guidelines, and policies with regard to inspection,

and a general approach used by IDA to promote the use of inspections for a
BMD program office. Commonly asked questions about inspections and guid-

ance on contracting for the inspection process will also be of interest to program

office staff.

c. Government contractors will find the comprehensive bibliography useful in

exploring published industry experience and data on the inspection process,

including methods for inserting the process into an organization. The discussion

on differences between the inspection process and less rigorous review process-

es (e.g., walkthroughs) can help contractors determine whether or not they in

fact are using inspections.

Recommendations are provided for increasing the use of the inspection process in

BMD software development.

1.2 BACKGROUND

In the late 1980's, the Strategic Defense Initiative Organization (SDIO) tasked IDA

to examine the technology needed for testing the software for a Strategic Defense System 0
(SDS). An assessment of the state of the art in software testing techniques and their poten-

tial applicability to SDS software was performed [Youngblut 1989]. In 1991, IDA produced

a paper that described an SDIO initiative designed to develop and deploy needed software

testing technology to ensure the development of reliable and cost-effective software for the S
Strategic Defense Initiative (SDI) program [Brykczynski 19921. The SDIO then asked IDA

to identify high-payoff software testing techniques that should be focused upon and empha-

sized by SDI program offices. From the previous analysis of existing software testing tech-

niques, the process of software inspection was found to be, by far the most effective at 0
detecting defects throughout the software development lifecycle.

Even though the benefits of inspections have been verified and documented, and the

process is used by commercial software industry leaders, inspections are not commonly

practiced by DoD contractors. Recognizing the current state of DoD inspection practice, the 0

Ballistic Missile Defense Organization (BMDO) tasked IDA in fiscal year 1993 to increase

the exposure of the software inspection process to BMD program offices.

0

2

2. OVERVIEW OF SOFTWARE INSPECTIONS

In this section we describe what software inspections are and explain how they con-

tribute to eliminating defects and improving the software development process. We start

out with a review of the costs of software development, focusing on the costs of testing and

rework. Next, we describe the inspection process and show how it contributes to defect,

cost, and schedule reduction. We conclude this section with examples of the success of

inspections reported in the literature.

2.1 COST OF SOFTWARE TESTING

Figure 1 shows a pie chart that reflects the high cost of testing in software develop-
ment [Boehm 1987]. Between 45 and 50 percent of the effort is taken up by requirements

- t 0 1" a ob

Figure 1 Cost of Software Development

and design. Other sources indicate coding consumes 10 to 15 percent [Jones 1991]. Rough-

ly 40 percent of software development, therefore, is spent on unit, integration, and system

testing. Upon further investigation, however, we found that a large part of the testing time

3

0

is not actually used for testing. The extra testing time is taken up by correcting defects that

are found by tests. This is shown in Figure 2 [Boehm 1987].
S

URNl T40

Figure 2. Hidden Cost of Defect Rework 0

At least 40 to 50 percent of typical software development effort is devoted to cor-

recting defects. Such a high level of rework does not reflect positively on the process and,

hence, is not often openly reported. Figure 3 shows how the time spent correcting defects S

REWORK
44%

112

merits Design Deig Unit TestS T

Figure 3. Distribution of Rework Cost

4

91 ý , To

is distributed over project phases [Boehm 1987]. Rework grows steadily and by the final

integration and test phase typically consumes two-thirds of the development effort.

Many defects found in testing are directly traceable to requirements and design

flaws that could have been detected earlier. Defects that are detected soon after they are

introduced are relatively easy and inexpensive to correct. When they are not detected until

later in development, the costs for correcting these same defects are compounded by having

to undo work that was based on the incorrect foundations. Finding that a requirement was

not correctly understood in the last stages of testing can easily lead to cost and schedule

overruns. The cost of correcting the same problem in the requirements phase is usually neg-

ligible. The most effective process known for finding defects across all stages of software

development is inspection.

2.2 SOFTWARE INSPECTION PROCESS

Inspections are detailed examinations of work in progress. The objective of inspec-

tions is to identify defects. Co-workers study work products independently and then meet
to review the work in detail. No time is spent during an inspection meeting discussing how

to correct a defect. Corrections are left for the author to make later.

The inspection process can be applied to many different types of work products

found in software development, such as requirements, design, code, test cases, etc. Work

products are small but complete chunks of work-on the order of 10-20 pages of require-

ments, 200 to 250 lines of code, etc. Work products are considered work in progress until

the inspection and any necessary corrections are completed.

Inspection teams are formed by 4 to 5 coworkers. Each inspector will typically

spend 1 to 4 hours reviewing the work product and related information before an inspec-

tion, depending on the level of familiarity with the material.

Responsibilities for several roles are assigned to inspection team members. The

most important is the role of moderator, who runs the inspection meeting and is responsible

for keeping the inspection on track. The reader paraphrases the work product while the

author and other inspectors read along and comment on discrepancies. The recorder, also

called the scribe, records the location and a brief description of all defects encountered.

Other roles may exist depending upon the type of work product.

5

Inspection meetings are generally limited to a maximum of two hours in length. It

has been observed that, after two hours, the number of defects found drops off significantly

[Fagan 1976a].

The two principal outputs from an inspection are a list of defects for the author to

correct and an inspection summary for management that describes what was inspected, who

the inspectors were, and the number and severity of defects found. In addition, any systemic

defects that are identified are reported for consideration in general process improvement.

2.3 BASIC INSPECTION STEPS

As shown in Table 1, the inspection process is composed of six basic steps: plan-

ning, overview, preparation, examination (the group meeting), rework, and follow-up. 0
These basic steps are derived from several published descriptions of the inspection process

[IEEE 1028-1988, Fagan 1986, Gilb 1987). Variations in the process do exist. For example,

Fagan uses the term "inspection" and Gilb uses the term "meeting" instead of the word

examination. Gilb also adds two additional steps: a "third hour" step for ideas suppressed

at the meeting, and a "causal analysis" step in which meeting statistics are analyzed.

Table 1. Basic Inspection Steps

InspecUon Acth Taestop

Planning The author assembles the materials for the moderator. The moderator assures
that the entry criteria are met, and assures that the inspection team is selected,
scheduled, and that materials are distributed.

Overview The author presents a i overview of the product to educate the other inspec-
tom (and possibly othet project personnel who could benefit from such a pre-
sentation). This step is optiona.

Preparation The inspectors individually become familiar with the software element and use
the inspection checklist appropriate to the product type.

Examination The inspectors meet as a group to find defects. The moderator asks for prep- 0
aration times and manages the meeting. The reader, who Is not the author,
presents the material (generally paraphrasing). A defect list is created and
reviewed. The team determines i the material Is to be (1) accepted, (2)
reworked but only the moderator needs to verify the rework, or (3) reworked
and re-inspected.

Rework The author revises the materials, addressing all items on the inspection defect
list.

Follow-up Verify that the rework has been correctly performed. This may be a review with
the moderator, or may involve re-insoection.

6

2.4 MANAGEMENT PARTICIPATION

When managers participate in inspections, the process tends to identify only super-

ficial defects. The inspectors may become worried that identifying a defect in the product

negatively impacts the author's professional evaluation, and may fear later retaliation in

kind. Thus they may choose to only find superficial defects. By finding superficial defects,

inspectors report respectable numbers of defects and authors are not embarrassed by serious

defects in their work. The result is that the inspections are ineffective and serious defects

remain in work products. To avoid this phenomenon, managers should not participate

directly in inspections. Instead, they should monitor inspection summary reports to ensure

that inspections are being conducted effectively and measure the overall quality of work by
* •the number of defects that remain in finished products.

2.5 OTHER TYPES OF REVIEWS

There are several other types of reviews that can easily be confused with inspec-

tions. First are the major MIL-STD-1521B program milestone reviews, such as System
Requirements Review (SRR), Preliminary Design Review (PDR), Critical Design Review
(CDR), and Test Readiness Review (TRR) [MIL-STD-1521B). Although defects may be

exposed in these reviews, milestone products, which represent completion of major stages
of work, are usually much too large to review in detail. The purpose and format of inspec-

tions is quite different from these reviews. Inspections are not intended to substitute for

these reviews.

Walkthroughs and informal peer reviews are similar in many ways to inspections.

Walkthroughs and informal peer reviews are less rigorous and, for example, may skip the
preparation time, eliminate roles, permit the product author to lead the review, eliminate the
follow-up on corrections, and eliminate data collection for measuring effectiveness and

process improvement. These deviations weaken the process, making walkthroughs and
informal peer reviews significantly less effective at finding defects than inspections. More

detail on how to distinguish between walkthroughs, informal peer reviews, and inspections
is presented in Section 3.

2.6 BENEFITS FROM SOFTWARE INSPECTIONS

Figure 4 shows the conventional sequence of software development phases. The

numbers located by the boxes show the numbers of defects that are passed on from one

development phase to the next. The 50 defects per thousand lines of code (KLOC) at the
completion of unit testing and the 10 per KLOC delivered to the field are well-documented

7

industry averages [Jones 1986, Jones 19911. Anecdotal data from individual projects was

20 Defects per KLOC

Unit Troo 50 per KLOC

Rework Costs

Figure 4. Typical Software Defect Profile

used to fill in round numbers for defects in other phases

The width of the arrows in Figure 4 that point back from the testing phases to earlier

construction phases suggest the relative costs of correcting defects that were not detected

earlier. For example, a misunderstood requirement that is not recognized until the final sys-

tem testing phase will typically have the highest cost to correct. It may also delay system

delivery.

Figure 5 depicts the introduction of inspections for requirements, design, and code

into the development process. The objective of these inspections is to find all the defects at

each phase and to proceed to the next phase with a completely correct basis. Even though

the ideal of completely eliminating defects is rarely achieved, success rates of 80 percent

are consistently reported [Fagan 1986, Freedman 1982]. Therefore, the number of defects

passed on to succeeding phases is reduced significantly. Although not shown in Figure 5,

inspections can also be used to ensure that other products, such as test procedures and data,

are correcL

The numbers of defects passed from phase to phase when inspections are used are

dramatically reduced. (The numbers in parentheses in Figure Defect Profile with Inspec-

tions on page 9 show the numbers of defects when inspections are not used.) The cumula-

8

Reduced
Reh5(20) Defects per KLOC

I Deftn 8 (40)

Fielded

Code 5(O0) WOdeecS

Unit Teot 7(5(1

Integr. Teot 3 (20)

[SysternToot 1(10)

Reduced Rework Costs

Figure 5. Defect Profile with Inspections

rive effect of requirements, design, and code inspections along with normal testing, is an

order of magnitude reduction in the number of defects in fielded products. In addition to

this gain in quality, there is a corresponding gain in productivity because the amount of

rework needed to correct defects during testing is significantly reduced. This reduction in
rework is illustrated in Figure 5 by the reduced width, in comparison with Figure 4, of the

arrows pointing back from testing phases

Inspections reduce the number of defects in work products throughout the develop-
ment process. More defects are found earlier, where they are easier and much less expen-

sive to correct. Inspections are also able to uncover defects that may not be discovered by
testing. Examples of this include identifying special cases or unusual conditions where an

algorithm would produce incorrect results. In addition to finding defects, inspections serve
as a training process where inspectors (who are also authors of similar work products) learn

to avoid introducing certain types of defects.

In describing software process improvement activities at Raytheon, Dion uses the

graph shown in Figure 6 to illustrate that they have been able to reduce the cost of software
rework by a factor of four [Dion 1993]. The "Cost of rework" curve in this figure shows a

steady decrease since the start of their process improvement initiative. He attributes the
reduction in rework primarily to software inspections this way: "In our case, the cost of

design and coding rose slightly because formal inspections replaced informal reviews.

However, it was this very change that enabled us to achieve rework savings in uncovering

9

source-code problems before software integration and eliminating unnecessary retesting."

Although more time is now spent fixing defects during design and coding, these small

increases are completely overshadowed by the savings achieved by not having to fix them

later during integration and testing. The cost of fixing coding defects during integration, for

example, has been reduced by a factor of five.

ii!iiiiiiiii •

Figure 6. Raytheon Savings from Reduced Rework

2.7 COST OF INSPECTION

Inspections require an up-front investment of approximately 15 percent of total

software development costs. This investment pays off in a 25 to 35 percent overall increase

in productivity. This productivity increase, as demonstrated by Fagan in industry studies,
can be translated into a 25 to 35 percent schedule reduction [Fagan 1986].

Figure 7 shows typical spending-rate profiles for development projects with and

without inspections. The taller curve shows increased spending early in the project, which •
reflects the time devoted to inspections [Fagan 1986]. This curve then drops quickly

through the testing phases. The broader curve, for projects that do not use inspections,

shows lower initial spending but much higher spending through testing, which reflects the
44 percent rework being done [Boehm 1987]. The area under the inspection curve, which

represents total development cost, is approximately 30 percent less than the area under the

non-inspection curve.

10

With Inspections
(15% higher up front, [from: Fagan, 1986]

8025W% lower overall)

60

Development Without
Expenditure Inspections

Rate 40 I /
(SSS/mo.) om: Boehm, 1987)

20

0
0 6 12 18 24

Development Schedule (months)

Figure 7. Software Development Spending Profiles

2.8 RECENT EXPERIENCE REPOWRS FROM INDUSTRY

Russell gives the following example of the cost effectiveness of inspections on a

project at Bell Northern Research (BNR) that produced 2.5 million lines of code [Russell

1991]. It took approximately one staff hour of inspection time for each defect found by

inspection. It took 2 to 4 staff hours of testing time for each defect found by testing. Inspec-

tions, therefore, are 2 to 4 times more efficient than testing. Later they found that it took,

on average, 33 staff hours to correct each defect found after the product was released to cus-

tomers. Inspections reduced the number of these defects by a factor of 10. For commercial

software developers, all of these costs resulting from defects are paid out of profits.

Inspections are widely used in the commercial software industry where quality and

productivity are critical to a company's survival. There are many published reports on the

use and benefits of inspections from companies such as International Business Machines

(IBM), American Telephone and Telegraph (AT&T), and Bull. The National Aeronautics

and Space Administration (NASA) Space Shuttle Program and Jet Propulsion Laboratory

have also published positive experiences using inspections [Myers 1988, Kelly 1992]. A

II

0

host of other organizations have reported positive inspection experiences: American

Express, AETNA Life and Casualty, and the Standard Bank of South Africa [Fagan 19861,

Shell Research [Doolan 1992], and Hewlett-Packard [Blakely 1991].

2.9 INDUSTRY INSPECTION USAGE IS INCREASING

The interest in software inspection and reports of successful results have been

increasing since the development of the process. One measure of this interest is the number

of published papers relating to inspections, many of which include positive results from

industry use. Figure 8 shows the number of papers on inspections that have been published

each year, based on the set of 77 papers identified in Section D. 1 of Appendix D. Since there

is a great deal of fluctuation in the number of papers published each year, a moving average

is also shown that smooths out some of the fluctuations and makes the trend easier to see.

For each year, the moving average is the average of that year and the two prior years. Since

only a portion of 1993 data was available, the total amount of papers for 1993 was linearly

estimated (based on 5 papers being published by August 1993). As can be seen by the mov-

ing average, there was initially sporadic publication on inspections, then followed by an

increasing number of publications.

16

14
1

12 a Number of published
papers

8S 8 -- Average number of
6 .published papers over 3

i years

2
0 . . . • , , •. . . .

Year of Publication

Figure 8. Number of Inspection-Related Papers

12

There are other indicators of increasing interest and use of inspections. In 1988, the

Institute for Electrical and Electronics Engineers (IEEE) published a standard that defined

an inspection process. Development of such a standard indicates that there was significant

industry interest in the inspection process [IEEE 1028-1988]. A professional organization

of people interested in inspections, the Software Inspection and Review Organization

(SIRO), was recently established. Although the SIRO's influence is not clear at this time,

the simple establishment of such a group indicates an increasing interest in the subject.

Appendix C provides information on SIRO.

13

3. COMPARISON OF REVIEW APPROACHES

There are a number of different software review approaches, each of which has spe-

cific advantages and disadvantages. This section provides an overview and comparison of

many of these review approaches.

3.1 TAXONOMY OF REVIEW APPROACHES

Figure 9 shows a taxonomy of various review approaches that reads from left to

right. Review approaches may be divided into two basic classes: (1) those that have no
, MIL-STD-15218 eiw

attenane
n

attendance
and

IE

material IEE- o.d d 02

Figure 9. Taxonomy
of Review Approaches

S15

InpciosGi

IEE12 Saom

iS

limit on the number of the personnel that participate in the review nor on the amount of the

material, and (2) those that permit only a limited number of reviewers and also limit the

amount of the material reviewed. We consider three types of reviews that do not limit the

number of personnel who attend: those defined in [MIL-STD- 1521 B] (therefore, required

by [DoD-STD-2167A]), and the two types defined in [IEEE 1028-1988], management

reviews and technical reviews. We have grouped the reviews that limit the number of

reviewers into four categories: inspections, walkthroughs, selected aspect reviews, and oth-

er reviews that limit the number of personnel attending the review. In addition, these

reviews can also be grouped together under the term "peer reviews," as described in the

Software Engineering Institute's (SEI's) Capability Maturity Model (CMM). The CMM

peer review will be examined in Section 3.4.

Table 2 shows some of the various differences between these types of reviews.

Table 3 shows more detailed characteristics of the four different review approaches defined

in [IEEE 1028-1988].

Unfortunately, terms for reviews are not universally agreed upon, and this has cre-

ated a great deal of confusion. We have used the terms defined in IEEE Standard 1028 as a

baseline, and added terms to create this taxonomy. An organization may, however, conduct

a review that they term a "walkthrough" but which would fit under the category of an IEEE

Standard 1028 technical review, or inspection, or some other category. Note also that Freed-

man and Weinberg define a review process that they call an "inspection," but it is very dif-

ferent from the inspection process defined in IEEE Standard 1028 [Freedman 1982]. Thus

even if a review process is called an inspection, it may not be one as defined by IEEE Stan-

dard 1028. 0

3.2 REVIEWS WITH UNLIMITED ATTENDANCE

MIL-STD-1521B, IEEE Standard 1028 management reviews, and IEEE Standard

1028 technical reviews are all reviews with unlimited attendance and no constraints on the

amount of material covered. There may be fifty, one hundred, or more reviewers, and the

products reviewed may be hundreds or thousands of pages. These reviews tend to examine

a large amount of product in a relatively short amount of time.

16

c0 0F

*~ c.

*0 -

C 00

zro

0 = .22

2 CO

w- l- -Cl 2 k -2L* EI0iL -- -0
r4 cl=

Ul

E- z 0 - fui E Or71j jC*~H FE-31:). Wue.0 E >

W_ 0
a CL 16 a E

C j8
z- a? 2as -

*
0

0 b

17

Table 3. Review Approaches Defined by IEEE Standard 1028a

Mandmeview Technical Review Soflo Inapec- Walthroughend Reiwtkcn

AttrlbutM

Objealvws Ensure progress. Rec- Evaluate conform- Deted and identify Detect defects.
ommend corrective anceto specifications deteds. Verily reso- Examine altema-
action. Ensure alloca- and plans. Ensure lution. tives. Forum for
tion of resources. change integrity, leaming.

Decision Management team Review team peti- Team chooses from Al decisions made by
making charts course of tions management or predefined product producer. Change is

action. Decisions are technical leadership dispositions. Defects the prerogative of the
made at the meeting to act on recommen- must be removed, producer.
or as a result of rec- dations.
ommendations.

Chiige Change verification Leader verifies as Moderator verifies Change verification
verification left to other project part of review report. rework. left to other project

controls. controls.

Gouep Dynwnioss _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Recommended Two or more persons. Three or more per- Three to six persons. Two to seven per-
size sons. sons.

Attendance Management, techni- Technical leadership College of peers Technical leadership
cl leadership, and and poor mix. meet with document- and peer mix.
poor mix. ad attendance.

Leadership Usually the responsi- Usually the lead engi- Trained moderator. Usually producer.
ble manager. neer.

Pr1e uges

Material Moderate to high, Moderate to high, Relatively low. Relatively low.
volume depending on the spe- depending on the

cific statement of specific statement of
objectives for the objectives for the
meeting, meeting.

Presenter Project representa- Software element Presentation by read- Usually the producer.
tive. representative. erother than produc-

er.

Data As required by appli- Not a formal project Formally required. Not a formal project
collection cable policies, stan- requirement. May be requirement. May be

dards, or plans. done locally. done locally.
Ou"Is

Reports Managrri.Mt review Technical review Defect list and sum- Walkthrough report. •
report. reports. mary. Inspection

report.

Database Any schedule chang- No formal database Defect counts, char- No formal database
entries es must be entered required. acteristics, severity, requirement.

into the project track- and meeting
ing database. attributes are kept.

18

a. (Reprinted from IEEE Sid 1028-1988. IEEE Standard for Software Reviews and Audits, copyright 01988 by the

Institute for Electronics and Electronics Engineers. Inc. This information was written within the context of IEEE Std

1028-1988. The EE takes no responsibility or liability for and will assume no liability for damages resulting from
the placement and context in this publication. Information is reproduced with the permission of the IEEE.)

3.2.1 MIL-STD-1521B Reviews

MIL-STD-1521B defines the requirements for a set of technical reviews and audits

in DoD acquisition. The specific requirements vary depending on the specific technical

review or audit, but in general their purpose is to permit the acquisition agent to evaluate

progress and technical adequacy of products and to determine if they form a satisfactory

basis for proceeding to the next activity. The reviews represent major DoD-STD-2167A

milestones.

Compared to IEEE Standard 1028, many of these reviews are a combination of

management reviews and technical reviews. Technical issues are certainly important in

these reviews, but managerial issues such as schedule and cost are also an important part of

the reviews.

The specific reviews and audits defined in MIL-STD-152 1 B are:

* System Requirements Review (SRR). The objective of this review is to ascer-

tain the adequacy of the contractor's efforts in defining system requirements. It

is to be conducted when a significant portion of the system functional require-
ments have been established.

0 System Design Review (SDR). The objective of this review is to evaluate the

optimization, correlation, completeness, and risks associated with the allocated
technical requirements.

* Software Specification Review (SSR). A review of the finalized Computer Soft-

ware Configuration Item (CSCI) requirements and operational concept. The

SSR is conducted when CSCI requirements have been sufficiently defined to

evaluate the contractor's responsiveness to and interpretation of the system,

segment, or prime item level requirements.

* Preliminary Design Review (PDR). This review is conducted for each configu-

ration item or aggregate of configuration items to (1) evaluate the progress,

technical adequacy, and risk resolution (on a technical, cost, and schedule basis)

of the selected design approach, (2) determine its compatibility with perfor-

mance and engineering speciality requirements of the Hardware Configuration

19

Item (HWCI) development specification, (3) evaluate the degree of definition

and assess the technical risk associated with the selected manufacturing meth-

ods/processes, and (4) establish the existence and compatibility of the physical

and functional interfaces among the configuration item and other items of

equipment, facilities, computer software, and personnel.

Critical Design Review (CDR). This review is conducted for each configuration

item when detail design is essentially complete. The purpose of this review is to

(1) determine that the detail design of the configuration item under review sat-

isfies the performance and engineering specialty requirements of the HWCI

development specification, (2) establish the detail design compatibility among

the configuration item and other items of equipment, facilities, computer soft-

ware and personnel, (3) assess configuration item risk areas (on a technical,

cost, and schedule basis), (4) assess the results of the producibilty analyses con-

ducted on system hardware, and (5) review the preliminary hardware product

specifications.

" Test Readiness Review (TRR). A review conducted for each CSCI to determine

whether the software test procedures are complete and to assure that the con-

tractor is prepared for formal CSCI testing. Software test procedures are evalu-

ated for compliance with software test plans and descriptions, and for adequacy

in accomplishing test requirements.

" Functional Configuration Audit (FCA). A formal audit to validate that the

development of a configuration item has been completed satisfactorily and that

the configuration item has achieved the performance and functional character-

istics specified in the functional or allocated configuration identification.

" Physical Configuration Audit (PCA). A technical examination of a designated

configuration item to verify that the configuration item "As Built" conforms to
the technical documentation that defines the configuration item.

" Formal Qualification Review (FQR). The test, inspection, or analytical process

by which a group of configuration items comprising the system are verified to

have met specific contracting agency contractual performance requirements
(specifications or equivalent). This review does not apply to hardware or soft-

ware requirements verified at FCA for the individual configuration item.

20

Production Readiness Review (PRR). This review is intended to determine the

status of completion of the specific actions that must be satisfactorily accom-

plished prior to executing a production go-ahead decision. The review is accom-

plished in an incremental fashion during the Full-Scale Development phase,

usually two initial reviews and one final review to assess the risk in exercising

the production go-ahead decision.

3.2.2 IEEE Standard 1028 Management Reviews

The objective of management reviews as defined by IEEE Standard 1028 is to pro-
vide recommendations for (1) making activities progress according to plan, based on an

evaluation of product development status, (2) changing project direction or to identify the

need for alternative planning, and (3) maintaining global control of the project through ade-

quate allocation of resources. Project management personnel attend these meetings.

3.2.3 IEEE Standard 1028 Technical Reviews

The objective of technical reviews as defined by IEEE Standard 1028 is to evaluate

a specific software element and provide management with evidence that (1) the software
elements conform to its specifications, (2) the development (or maintenance) of the soft-

ware element(s) is being done according to plans, standards, and guidelines applicable for

the project, and (3) changes to the software element(s) are properly implemented, and affect
only those systems areas identified by the change specification. Project management gen-

erally do not attend these meetings.

3.3 REVIEWS WITH LIMITED ATTENDANCE

There are a number of different kinds of reviews that limit the number of personnel

in attendance, keeping the reviewer group small. The typical number of attendees are three

through seven. The amount of material to be reviewed is also intensionally kept small.

Many review approaches do not specify the amount of review material, but rpnges from five

to fifty pages, depending on the approach, are typical. Many of these approaches also limit

meeting time, typically two hours or less, to keep the participants fresh and alert.

We have grouped these reviews into four categories: inspections, walkthroughs,

selected aspect reviews, and other reviews that have limited attendance.

21

0

3.31 Imnpecto

Inspections were originally developed by Michael Fagan in 1972 at IBM Kingston,

New York [Fagan 1976a]. 1 Since then, a number of variations on Fagan's work have

appeared, including IEEE Standard 1028 inspections, and Tom Gilb's inspection process

[Gilb 19881.

Fagan defines his inspection process in [Fagan 1976a] and [Fagan 1986]. He

describes six steps: planning, overview, preparation, inspection (meeting), rework, and fol-

low-up. He defines the roles of author, reader (who paraphrases the design or code as if they

will implement it), tester (who views the product from the testing standpoint), and a trained

moderator. Fagan limits code inspections to about 125 non-comment lines of code per hour

and the meetings should be at most 2 hours, so approximately 250 non-comment lines of 0
code are the maximum to be permitted in an inspection. In Fagan's approach, the moderator

records all defects.

IEEE Standard 1028 defines minimum requirements for an inspection process and

permits a number of variations from Fagan's original process [IEEE 1028-1988]. The IEEE

process requires that someone have the role of recorder (who records defects found), but

the recorder may or may not be the moderator. IEEE Standard 1028 does not give any spe-

cific quantitative limits on the amount of review material, preparation rate, or inspection

meeting rate, other than saying that the material volume is relatively low and should be

whatever can be comfortably handled with 1.5 hours of preparation and a 2 hour inspection

meeting.

Gilb's inspection approach makes minor additions to Fagan's inspection approach 0
[Gilb 1988]. Gilb adds a "third hour" problem solving step that may be performed imme-

diately after the main inspection meeting or soon afterward. During the main inspection

meeting, participants are not allowed to discuss solutions or improvements, as with Fagan's

method, so that the participants can concentrate on finding defects. Gilb does not want good 0
solution ideas to be lost, so he adds some additional meeting time (the "third hour") where

these other ideas can be aired. Gilb also specifically includes a process improvement task,

termed a causal analysis meeting.

Weinberg and Freedman [Weinberg 1984. pp. 403] deny that any specific review approach was invented
by a specific person or company. It is true that reviews of some kind are as old as software itself, but the
ideas of creating a written review process. measuring results to improve the review process itself, and hav-
ing a reader other than the author paraphrase the work appear to begin with Fagan. S

22

3- Wa~ktbn~g

Walkthroughs are similar to inspections in the sense that they are also reviews of a
product by a small group of people used to detect defects. Usually, however, the person

leading the review meeting and presenting the product is the producer of that product. In

addition, most walkthrough approaches are less formal, since data collection is often not
required and change verification is the prerogative of the producer (i.e., an independent

check might not be made). Walkthroughs also permit suggestions for general improvement

to be made during the main meeting, while inspections concentrate (during the main meet-

ing) on finding defects. Two walkthrough approaches are described below as representa-

tive. First is Edward Yourdon's, and the second is IEEE Standard 1028 walkthroughs.

Edward Yourdon has defined a specific walkthrough approach under the title "struc-

tured walkthroughs" [Yourdon 1989]. Yourdon defines walkthrough as "a group peer

review of a product." The reviewers are to find defects, but suggestions that do not involve
defects are permitted.

The roles in Yourdon's version of walkthroughs include presenter (usually the pro-
ducer), coordinator, secretary (who records comments and is not the same as the coordina-
tor), maintenance, standards-bearer, and user (representative). The preparation time for a
walkthrough should average I hour. A walkthrough should average 30-60 minutes, with 2

hours the absolute maximum and less time (e.g., 15 minutes) perfectly acceptable. The

product size should be 50-100 lines of code, 1-3 structure charts, or 1-2 data flow diagrams
plus a data dictionary. No more than two walkthroughs should be held back-to-back. A

walkthrough begins with a review of any old actions from previous walkthroughs.

A walkthrough can be scheduled at a number of different points for a particular

product-for example, code could be reviewed before compilation, after successful com-

pilation, or after test. Yourdon recommends that walkthroughs be held after successful

automatic syntax checking (for example, by a compiler or CASE tool) but before any kind

of execution testing.

Management is then given a verdict on the product's disposition that is signed by

all reviewers: accepted as-is, revise but no further walkthrough needed, or revise and con-

duct another walkthrough. Management is not given a count of defects or their type, and is

urged not to use this information for performance evaluation (except for the largest outli-

ers). Managers should in general not be present, as they can affect the utility of a walk-

through.

23

IEEE Standard 1028 also defines minimum requirements for a walkthrough [IEEE

1028-1988]. It defines the objective of a walkthrough to evaluate a software element, main-

ly "to find defects, omissions, and contradictions, to improve the software element, and to

consider alternative implementations." Other important objectives include "exchange of

techniques and style variations, and education of the participants. A walkthrough may point

out efficiency and readability problems in the code, modularity in the design or untestable

design specifications." Note that this permits many different subjects to be raised that are

important, but can also reduce the amount of time available for finding defects. The pre-

senter (usually the author) then "walks through" the software element in detail, while

defects, suggested changes, and improvements are noted and written. The roles defined

here are moderator, recorder, and author (who is also the presenter). The author may also

be the moderator.

3.3.3 Selected Aspect Reviews

A selected aspect review confines the review of material to a pre-selected set of

aspects to review. Reviewers look own, at these pre-selected aspects of the product, one at

a time. These aspects are usually further broken down into a specific set of items to look

for, called a checklist. Even if a detailed checklist is not written, the selected aspects are

essentially a higher-level checklist of aspects to cover in the review. Selected aspect

reviews bear a number of similarities to the inspection and walkthrough process defined in

IEEE Standard 1028. Inspections also often use checklists, and selected aspect reviews may

even be called inspections by the creators of the review approach. The key difference of

selected aspect reviews from inspections and walkthroughs is that the reviewers look only

at the pre-selected aspects, one at a time, while inspections and walkthroughs look for all

defects in a product. This distinction has a number of corollaries: defects that are not among

the pre-selected aspects are unlikely to be found, and the fixed agenda means that the role

of moderator does not require much technical ability. Selected aspect reviews do not require 0

paraphrasing of the product, as an inspection generally would.

Freedman and Weinberg define a selected aspect review approach that they call an

inspection [Freedman 1982]. Note that what they term an inspection is very different from

the definition of inspections in IEEE Standard 1028. They note that larger amounts of mate- 0
rial are generally covered than in other reviews, and while sessions may be limited in time

(1-2 hours) the entire review may take weeks.

24

0

John Knight has also developed a selected-aspect review technique called "phased

inspections" (Knight 1991]. A phased inspection2 consists of a series of phases, where each

phase addresses one or a small set of related properties (i.e., aspects) that it is deemed desir-

able for the product to have. Phases are conducted in series, with each depending on the

properties established in the preceding phases. Each phase is carried out by staff whose

training and experience is appropriate for the phase-some phases may only require rudi-
mentary knowledge. Each inspector is required to sign a statement after the phase that the

product possesses the prescribed property to the best of the his knowledge.

There are two basic types of phases in Knight's approach: single-inspector phases

and multiple-inspector phases. In single-inspector phases one person uses a list of unam-
0 Qbiguous checks from a checklist or executes a computer program that checks those selected

aspects. In multiple-inspector phases personnel examine the documentation for complete-
ness, examine the product thoroughly in isolation preparing a defect list, and then a recon-

ciliation step in which the lists are compared (the lists are supposed to be identical).

Multiple-inspector phases bear some similarity to inspections as defined in IEEE
Standard 1028, but there are a number of key differences: there is no verbal overview (all
information must be available in documentation), individual time is spent creating an com-
plete defect list instead of simply preparing for understanding, and the lists created are sup-
posed to be identical before the meeting. Knight does not attempt to use the group's
combined intelligence to find defects missed by the individuals (termed the "phantom
inspector" by Fagan [Fagan 1986]), but instead depends on reconciliation, which provides
the inspectors a challenge and incentive for thoroughness. One important factor in Knight's
phased inspections is that they were designed to be supportable by computers, and proto-
type tools have been developed.

Unfortunately, as Knight himself notes, there is very little experimental evidence of
the utility of phased inspections. They are an interesting approach to reviews and may be

beneficial, and Knight has performed a very limited experiment with a few graduate stu-
dents at the University of Virginia [Knight 1991]. Unfortunately, we are unaware of any

larger-scale experiments that demonstrate the utility of this approach in an industrial set-

ting.

2 John Knight's terminology is different than IEEE Standard 1028 and ours. Knight uses the term "Fagan
inspection" where we use the term "inspection," and uses the term "inspection" where we use the term
"selected aspects review."

25

3.3.4 Other Reviews that Limit Attendance

There are other review approaches that do not fit into the categories above. One is

Bisant & Lyle's "two-person inspection" approach [Bisant 1989]. This is a review approach

for projects that wish to use an inspection-like process but for which larger groups are not

available. This approach is similar to Fagan inspections except that it only requires two

people (including the author) and there is no moderator.

"Desk-checking" reviews take the limit on attendance to the extreme: a single per-

son examines the code in isolation. This approach can certainly find defects, but is totally

dependent on the person's experience and self-discipline.

The defect detection effectiveness of "two-person inspection" and "desk-checking"

is highly dependent upon the personnel experience and skill level.

3.4 CMM PEER REVIEW KEY PROCESS AREA

The Software Engineering Institute has developed a Capability Maturity Model

(CMM) that can be used to assess or evaluate the maturity of a contractor's software devel-

opment process [Paulk 1993a, Paulk 1993b]. The model characterizes an organization in

terms of a maturity level. There are five levels, each comprising a set of process goals that,

when satisfied, stabilize an important component of the software process. Except for Level

1, each maturity level is decomposed into several Key Process Areas (KPA's) that indicate

the areas an organization should focus on to improve its software process. KPA's identify

the issues that must be addressed to achieve a maturity level. Figure 10 shows the five matu-

rity levels and their respective KPA's.
S

Within maturity level 3 there is a KPA named "Peer Reviews" that closely relates

to the inspection process. Figure II presents a summary of the attributes that indicate

whether the implementation and institutionalization of the Peer Review KPA is effective,

repeatable, and lasting. The CMM provides additional detail for each of these attributes.

For example, Figures 12 and 13 describe the resource requirements and the procedure

description of the Peer Review KPA.

A question arises as to whether inspections, structured walkthroughs, etc. satisfy the

criteria of the Peer Review KPA. The current description of the CMM states that: 0

"The purpose of Peer Reviews is to remove defects from the software work
products early and efficiently. An important corollary effect is to develop a
better understanding of the software work products and of the defects that
can be prevented. The peer review is an important and effective engineering

26

0

[Pmk 1993.1

Figure 10. Key Process Areas by Maturity Level

* method that is called out in Software Product Engineenng and that can be
implemented via Fagan-style inspections [Fagan86J, structured walk-

throughs, or a number of other collegial review methods [Freedman90]."
[Paulk 1993a, pp. 35-36]

Informal or ad hoc forms of "collegial review methods" do not satisfy the criteria

set forth by the Peer Review KPA. Implementations of structured walkthroughs vary widely

across industry, so it is impossible to make a blanket statement like "structured walk-
* throughs satisfy the Peer Review criteria." It is certainly possible to implement a rigorous

structured walk'through process that satisfies the Peer Review criteria. A rigorous structured

walkthrough process that focuses on defect detection would look very similar to the inspec-

tion process. Figure 14 suggests a number of factors that can be used to distinguish between
Sthe two.

27

PO AO 4

Goals
Peorm i activits we planned.

SDebects in the software work products are identified and removed.

Commitment to perform
. The project follows a wrintten organizational policy for performing pee reviews.

Ability to perform
Adequate resources and funding are provided for performing peer reviews on each software work product to be
reviewed.
Peer review leaders receive required training in how to lead peer reviews.
Reviewers who participate in peer reviews receive required training in the objectives, principles, and methods of
peer reviews.

Activities performed
Peer reviews are planned, and the plans are documented.
Peer reviews are performed according to a documented procedure.
Data on the conduct and results of the peer reviews are recorded.

Measurement and analysis
- Measurements are made and used to determine the status of the peer review activities.

Verifying implementation
The software quality assurance group reviews and/or audits the activities and work products for peer reviews and
reports the results.

Figure 11. Summary of the CMM Peer Review KPA

i

Adequate resources and funding are provided for performing peer reviews on
each software work product to be reviewed.

Resources and funding are provided to:
Prepare and distribute the peer review materials.
Lead the peer review.
Review the materials.
Participate in the peer review and any follow-up reviews required based on the defects identified in the
peer review.
Monitor the rework of the software work product based on the defects identified in the peer review.
Collect and report dte dea rsulting from the peer reviews.

Figure 12. Peer Review Resource Requirements

28

0L

Peer reviews are perlformed according to a documented procedure.

This procedure typically specifies that:
. Peer reviews we planned and led by trained pee review leaders.
* Review materials we distibuted to he revwewes in advance so Itmy can adequate prepare for te

peer review.
Pevwers have assigned roles in pow reviews
Seadiness and completion criteria for the peer reviews are specified and enformced.
-- lssues in satisfying these criteria awe reported ID the appropriate managers.
Checklists are used to identify criteria for the review of th softwe work products in a consistent
manner.

The checklists are tailored to the specific type of work product and pew review.
-. The checklists ar reviewed by the chocdist developers' peers and potential users.
Actions identified in the peor reviews are tracked uni l they we resolved.
The successful completion of peer reviews, including the rework to address the items identified in the
peer reviews, is used as a completion criterion for the associated task

Figure 13. Peer Review Procedure Description

High/Early
"Focus on finding defects
Moderator controls
Follow-up on corrections
Collect and use data
Preparation time

Defect
Detection

Effectiveness

Focus on information
Author controls
No folow-u on corrections
No data collction
No preparation time

Low/Later

No Informal Structured
Reviews Reviews Walkthroughs Inspections

ad hoc 09 1 rigorous

Figure 14. Review Effectiveness Factors

Most inspections, including the Fagan inspection process specifically mentioned,

closely map to the Peer Review criteria. Figure 15 illustrates defect detection efficiency in

terms of informal reviews, structured walkthroughs and inspections. The Peer Review cri-

29

teria can be satisfied by a rigorous structured walkthrough process or by the inspection pro-

cess.

High/Early

CMM Level-3
PoReviews

Def 9. ..

EffetiveessContractor
Practice

Low/Later

None/Never

No informnal Structured0
Reviews Reviews Walkthroughs PInpction

superficial 44 so rigorous

Figure 15. Effectiveness of Software Reviews

300

0

4. INSPECTIONS WITHIN THE BMD PROGRAM

This section of the document provides an analysis of DoD and BMDO policies,

guidelines, and standards with regard to the inspection process. In addition, IDA efforts to

insert inspections into the software development process of the Brilliant Eyes program is

described.

4.1 INSPECTIONS IN BMDO AND DOD STANDARDS

Current DoD and BMDO software policies and guidelines include inspections as a

recommended or at least acceptable approach. There are no policies or guidelines that

directly impede the use of inspections. However, in general, they also allow less effective

methods such as walkthroughs and informal peer reviews to be used instead. Only the Soft-

ware Engineering Institute's (SEI) Capability Maturity Model (CMM) requires, through the

Level 3 Key Process Area (KPA), more formal peer reviews that approach inspections.

There is DoD standard, DOD-STD-1703 (also known as [NSAM 83-3]), that requires

inspections. However, DOD-STD-1703 is not required for use in most BMDO programs.

Figure 16, adapted from [SDIO 19921, shows the various DoD and BMDO policies,

standards, and guidelines that address inspections. Each rectangle denotes a policy, stan-

dard, or guideline document. SDIO directive 3405 also requires the use of the SEI's CMM.

The relation of the CMM to inspections is covered in the next section.

The following paragraphs discuss how each policy, standard, or guideline addresses

software inspections The purpose of this section is to show that there are no policies or

guidelines that directly impede the use of inspections, and to show how 'IDA has suggested

changes to some standards to promote inspection usage. It is important to note that many

of these documents are currently under revision. Some of the anticipated changes, based on

current draft documents, are noted to show how near-term revisions are likely to relate to

software inspections. IDA has proposed changes to many BMDO documents to encourage

the use of inspections.

31

0

0

Directive & 5

Instructionsdrcts ft use ot

5OOO0.2
................. I °.°......

BMDODiretiveSDIO Directive 3405
BMDO Directive SDIO Software Policy

Il I

Standards is of

S..• •;

requirs use ot

ioDoD-DSTD-

SBeDOk docu~mentsto 115F r

incarpSoftware

re d s Standard s a Ipartto

& OtplermOrenitation Plans 703sted (NS)wa

SpecifMctdocolent

BMDOCRLCP 141- TS0
Figure 16. Policies, St NdadadGieie.eaigt npcin

.....
32dde

i copara int

4.1.1 DoD Directives and Instructions

Inspections are encouraged by the highest-level policies for DoD acquisition pro-

grams, but other less effective methods are also encouraged to the same degree and none

are required. DoD directive 5000.1 is the primary DoD directive for providing policies and

procedures for managing acquisition programs, except where statutory requirements over-

ride and where guidance pertaining to contracting is provided [DoDD 5000.1]. DoD direc-

tive 5000.1 does not specifically mention inspections, but it does establish DoD Instruction

5000.2 as a secondary document to providing such policies and procedures [DoDI 5000.11.

DoD Instruction 5000.2, part 6D attachment 1, states that "Specific practices that should be
used are ... (3) walkthroughs, inspections, or reviews of requirements documents, design,

and code." It also recommends that the "contractor establish[es] a uniform software error
data collection and analysis capability to provide insights into reliability, quality, safety,

cost, and schedule problems. The contractor should use management information to foster

continuous improvements in the software development process."

4.1.2 BMDO Policy

BMDO's software policy, currently SDIO Directive 3405, revision 1 (13 March

1992), does not specifically mention software inspections. This directive's point 15, testing,

does state that "developers shall conduct rigorous software testing... throughout all phases
of the software life cycle." It requires that the software be developed in accordance with the
"Trusted Software Development Methodology" (TSM) as contained in the Global Protec-

tion Against Limited Strikes (GPALS) Software Standards in point 10, and the use of the

SEI's CMM in point 3. Both the TSM and CMM refer to peer reviews of products. It also

requires adherence to DoD-STD-2167A and DoD-STD-2168. BMDO Policy 3405 is under

revision, and current drafts of the new version specifically recommend, but do not require,

software inspections as defined in [IEEE 1028-1988]. IDA provided recommended changes

for this policy to encourage the use of inspections.

4.1.3 Required DoD Standards

DoD standards require various reviews and evaluations during software develop-

ment, but do not specifically require inspections. These include standards DoD-STD-

2167A, MIL-STD-1521B, and DoD-STD-2168.

DoD-STD-2167A establishes requirements to be applied during the acquisition,

development, or support of software systems. DoD-STD-2167A requires software product

evaluations of nearly every development product, but does not specify how those products

33

are to be evaluated-instead, it provides some minimum evaluation criteria. The product

types to undergo software product evaluations are essentially every product developed,

including: the software requirements specification (SRS) for each computer software con-

figuration item (CSCI), the software design document (SDD) for each CSCI, the computer

software component (CSC) test procedures, the source code for each computer software

unit (CSU), and CSU test procedures and test results. The minimum criteria include internal

consistency, understandability, traceability, consistency with specified other documents,

and appropriate analysis, design or coding techniques being used. This information is

spread across the standard (it is in sections 4.4, 5.1.4, 5.2.4, 5.3.4, 5.4.4, 5.5.4, 5.6.4, 5.7.4,

figures 4-10, and appendix D). DoD-STD-2167A does not, however, specify how these

evaluations are to be performed, and thus permits any approach to be used.

DoD-STD-2167A also requires formal reviews during software development and

references [MIL-STD-1521B]. MIL-STD-152 1B, however, only defines the requirements

for the formal (milestone) reviews (using the terminology of IEEE 1028-1988). In particu-

lar, MIL-STD-1521B only defines the requirements for Systems Requirements Review

(SRR), System Design Review (SDR), Critical Design Review (CDR), Test Readiness

Review (TRR), Functional Configuration Audit (FCA), Formal Qualification Review

(FQR), and Production Readiness Review (PRR). Inspections may be used in addition to

these reviews, but these reviews are not inspections.

The purpose ot DoD-STD-2168 is to establish requirements for a software quality

program to be applied during the acquisition, development, and support of software sys-

tems [DoD-STD-2168]. Its section 4.6 requires on-going evaluations of the processes used

in software development and the resulting software and associated documentation, but does

not specify how these evaluations should take place. DoD-STD-2168 does not impede the

use of inspections and requires the use of some evaluation process, but it does not require

any particular approach.

DoD-STD-2167A is in the process of being updated [SDD 1992]. This new stan-

dard has been given the working description of MIL-STD-SDD, Software Development

and Documentation, and is to be an update of the two primary DoD software development

standards, DoD-STD-2167A (used for mission critical systems) and DoD-STD-7935A

(used for automated information systems), as well as DoD-STD-1703(NS) (used by the

National Security Agency (NSA)). The December 1992 draft's appendix D describes soft-

ware product evaluations in a manner similar to DoD-STD-2167A. The draft requires a

34

Ipge number of different products to be evaluated and provides some minimum evaluation

criteria. It does not, however, require any particular evaluation approach.

4.1.4 BMDO Implementation Plans and Compliance Documents

The purpose of the BMDO's Computer Resources Life Cycle Management Plan

(CRLCMP) is to establish the management and support framework for the development,

*O deployment, operation, control, and integration of all computer resources within the BMD

system [CRLCMP 1992]. One of the CRLCMP's annexes is the GPALS Software Standard

[SDIO 1992]. The 29 May 1992 version of this document requires the use of walkthroughs,

but the way the term "walkthrough" is defined would also permit the use of inspections.

This text is inconsistent with the text of the GPALS Software Standard, since the standard
requires peer reviews, not walkthroughs. Specifically, the CRLCMP states: "Walkthroughs

are internal working-level reviews of design and/or code to detect errors and to ensure com-

pleteness, accuracy, and adherence to standards; they shall be scheduled regularly to ensure
that all software design decisions are reviewed as they are made. Walkthroughs shall be

accompanied by evidence and documentation as required by the GPALS Software Stan-

dards (Annex B)" [CRLCMP, pp. 8-13-8-14]. IDA has provided BMDO with suggested
changes to remove this inconsistency in the CRLCMP [Wheeler 1993].

The main text of the 1992 GPALS Software Standard has some basic text about

"peer reviews," which it defines as either walkthroughs or inspections. Unfortunately, its

definition for inspections is not consistent with IEEE 1028-1988, Fagan's, or any other doc-

umented definition for inspections, and this can cause confusion for developers. Instead, the

GPALS Software Standard defines inspections as "a walkthrough... [but] a formal event

with additional formal participants from within the developer's organization such as the

quality assurance and test departments. Results of inspections are always reported to the

developer's internal program management while walkthroughs only require recording in

SDFs and SEFs." It requires a role termed the "monitor," who leads the review. It recom-

mends that the material be limited to that which can be adequately covered in four hours,

twice the length of time recommended by typical inspection processes. On the positive side,

it does require that participants be provided adequate time (preferably 3-7 working days) to
review the material. The document notes that members of management normally do not

participate in walkthroughs, but no guidance on this point is given for inspections. [SDIO

1992, 4-18----4-20].

35

IDA has provided recommended changes to the GPALS Software Standard, which

may be included in its update [Brykczynski 1993]. These changes recommend but do not

require inspections. This suggested text requires peer reviews of all analyses, requirements,

designs, code, test data and procedures, and documentation, and defines "peer review" as

either a walkthrough or an inspection as defined in IEEE Standard 1028-1988. These

changes also provide guidelines that recommend inspections over walkthroughs, especially

for critical software and early phases of development, and note that training is necessary to

achieve full effectiveness. The changes also note that the material covered in an inspection

must be limited (e.g., roughly 200-250 statements for code so it can be addressed in a two-

hour meeting).

4.1.5 Trusted Software Methodology

BMDO's software policy requires the use of the Trusted Software Development

Methodology, now termed the Trusted Software Methodology (TSM). TSM consists of a

set of trust principles that are aimed at increasing requirements compliance by reducing the

number of software flaws introduced during software development and maintenance by

malicious or nonmalicious causes. The trust principles are organized into a hierarchy of

trust classes named TI through T5 that represent increasing amounts of rigor of the tech-

niques required for reducing the number of software flaws.

At the time of this writing the TSM is being updated. Both the version of the TSM

currently being used and the proposed new version give requirements for reviews that are

necessary for inspections but do not specifically require inspections. Either also permits

walkthroughs and other review techniques.

The set of trust principles that are required for use by BMDO software development

projects are defined in an appendix in the GPALS Software Standard. The September 4,

1992 version of the GPALS Software Standard includes a version of the TSM defining four

review principles that relate to inspections: requirements analysis review, design review,

source code review, and test review. For any trust level (TI or higher) this version of the

TSM requires a mechanism or procedure to be in place for a large number of products,

including all software requirements, the entire design, all source code, CSU test cases, and

CSU test results, and all tests. Trust level TI also requires documented review guidelines,

checklists, criteria for determining the frequency of reviews, criteria to ensure that there has

been adequate preparation time, guidelines to ensure completeness, consistency, and cor-

rectness, and that all resulting actions be documented and revisited. Trust level T2 adds a

36

requirement for checking traceability and that these reviews should be used to enforce

source code standards. Trust level T3 adds requirements to define the review process tech-

* niques (such as paraphrasing), that limitations be defined on review rates (pages/hour), that

review members be given roles (including recorder and moderator). A few T3 requirements

specifically mention "inspection," implying that inspections were the intended process for

T3.

The required number of people present varies depending on the trust level. At TI

there must be at least 2 people, the author and one other person qualified in software devel-

opment. At T2 there must be at least 3 people, the author and two other people qualified in

software development, persons qualified in software development. At T3 there must be at

least 4 people: those required for T2 and an independent reviewer. There is no maximum

number of reviewers.

On April 1, 1993, a revised version of the TSM was published [SDIO 1993]. This
version consolidated the trust principles, changing the total number of principles from 44

to 25. The authors' intent is to incorporate this version of the TSM into an update of the

GPALS Software Standard, though the TSM may be modified further before incorporation.
In this new TSM version there is a single review principle, termed the "Peer Review Prin-

ciple." There is little change in the actual requirements; the scope of products to review is
widened slightly, and some of the requirements are moved to higher trust levels.

For all trust levels above TI, the current version of the TSM requires a mechanism

or procedure to be in place for a large number of products, including software requirements

and supporting analysis, all components of the design, all source code listings, all CSU,

CSC, and CSCI test plans, test procedures, cases, results, and reports, verification condi-

tions, and all operation and support documents. Note that this is a larger list than the older

TSM, since it includes such products as supporting analysis, operation, and support docu-
ments. Trust level T2 requires documented peer review guidelines to be in place that define

checklists, the frequency of reviews, criteria to ensure adequate preparation time, criteria
to ensure completeness, consistency, and correctness of the items under review. Trust level

T2 also requires that a record of each review be kept; note that some of these requirements
were formerly in trust level TI. Trust level T3 adds requirements to define the review pro-

cess techniques (such as paraphrasing), that limitations be defined on review rates, that
review members be given roles (including recorder), and that the moderators be trained.

Note that the requirement for moderator training is new. The number of reviewers required

37

varies by trust level in the same way as the older version. The references include a reference

to IEEE 1028-1988.

For both versions of TSM, trust level T3 comes closest to requiring an inspection
process, but it does not require inspections. Even at T3, there is no specific limit to material
size, review rate, or preparation rate (simply a requirement to document a maximum), no
requirement for methods that completely cover the material such as paraphrasing (simply
a requirement to document the method), and the author may do all the presenting.

4.1.6 Other Policies and Standards

There are many different documents specific to the military services, agencies, and
other organizations, and reviewing all of them would require an extensive effort. One doc-
ument that is particularly interesting with regard to inspections is NSAM 81-3, also known
as DoD-STD-1703(NS). This document is required for use in many National Security
Agency (NSA) projects [NSAM 81-3]. DoD-STD-1703(NS) essentially requires a slightly
weakened version of Fagan inspections. Inspections are specifically required for software
detailed designs and code, and [Fagan 1976a] and [Fagan 1976b] are specifically refer-
enced. DoD-STD- 1703(NS) does not require inspections of software requirements specifi-
cations, test plans, test cases, or the user's manual, but suggests that doing so may be
valuable. The purpose of inspection meetings are "to find errors." DoD-STD-1703(NS)
specifies that inspections are normally composed of a moderator, the author, and one or
more inspectors, and a reader and recorder must be appointed. The inspection process in
this document has six steps: planning, overview, preparation, inspection meeting, rework,
and follow-up. Preparation rates are given for detailed design (about 100 lines of Program
Design Language (PDL)/hour) and code (about 125 lines of code/hour). The author's role
in the inspection meeting is usually limited to answering technical questions, although this
is not specifically required by the document. DoD-STD-1703(NS) recommends that the
reader paraphrase, but it allows the reader to read verbatim (which is weaker than Fagan's
approach). Inspection meetings are limited to two hours. Inspection meeting rates are to be
about 130 lines of PDLlhour for detailed design and about 150 lines of code/hour for code.
Sample problem list codes and checklists are provided. The document also notes that data
from inspections should never be used to evaluate software developers [NSAM 81-3 1987,
pp. 4-53--4-63]. This document is to be superceded by MI-STD-SDD [SDD 1992]. This

is of some concern since MIL-STD-SDD will probably not require the discipline of MIL-
STD-1703(NS) [Taylor 1993].

0

38

• . d" i ii iI0

4.2 INSPECTIONS IN BRILLIANT EYES

The BMDO funds the development of a number of weapon systems. One of these
systems, the Brilliant Eyes (BE) satellite, will provide early warning and tracking of ballis-
tic missiles. IDA's inspection insertion efforts during fiscal year 1993 focused on the BE
program. The BE program is a useful candidate for software inspection insertion for two
reasons. First, the BE program is in the demonstration/validation (DEM/VAL) acquisition

* phase with two contractors competing for the eventual Engineering and Manufacturing
Development (EMD) contract. Software production has been determined to be a critical
success factor for BE, and one objective of the DEM/VAL phase is to understand critical
processes. Thus, the knowledge and experience gained by software inspection insertion can

• be applied during the later EMD phase.

The BE program is also a useful candidate for introducing inspections because the
program manager has emphasized the importance of software to his program. He strongly
advocated the use of Software Capability Evaluations (SCE's) as a source selection criteria
for the two DEM/VAL contractors. In addition, a future SCE is expected to help down-
select to one BE contractor. Thus, software process improvement, especially in the area of
inspections, is likely to be of interest to the two BE prime contractors.

* We discussed the inspection process with several other BMD program offices and
provided them with inspection information, such as technical papers and briefings. Howev-
er, due to available funds, we limited our primary insertion efforts to the BE program. This
section of the paper provides a general description of the approach used to encourage

• inspection usage in the BE program. Because of the competition-sensitive nature of the cur-
rent BE contract, specific details of the inspection insertion effort are not included.

4.2.1 Approach

* Two approaches were initially considered for inserting inspections into BE software
development. The first approach involved mandating the use of inspection, either via the
RFP/contract or by later agreement. We rejected this approach for two reasons: First, we
began the insertion effort after the contracts were let. Thus, it would require much effort to

* renegotiate the contracts to mandate the use of inspections. Second, mandating inspections
does not guarantee that the process will be used appropriately. We were concerned that a
contractor could "go through the motions" of software inspection without gaining the ben-
efits.

39

Instead, we sought voluntary adoption of the inspection process by the BE contrac-

tors. We felt that the benefits that result from a rigorous inspection process were sufficient

to convince a large development organization to experiment with the technology. In addi- •

tion, given the future BE down-select, we felt that software process improvement, such as

inserting inspections into practice, would be of interest to both contractors.

4.2.2 Establishing Commitment 0

Senior level management commitment is critical to successfully inserting an

inspection process. For DoD systems, a commitment is needed from both the government

and contractor organizations. We developed a briefing to describe the problem that inspec-

tions address, as well as the cost and benefits reported from industry inspection experience 0

reports. Much of the information found in Section 2 was derived from this briefing. We first

gave the briefing to senior level BMDO officials. We felt it was important for these officials

to have an understanding of the cost impacts of inspections (see Section 2.7). The briefing

was positively received and we were encouraged to discuss the insertion effort with the BE

program office.

We next briefed the BE program manager. The objective of this briefing was to pro-
vide him with sufficient information to make an informed decision to advocate the use of

inspections by the BE prime contractors. This objective was achieved, as he directed us to

give the same briefing to the program managers for each of the BE prime contractors.

We subsequently met with both contractors and discussed their voluntary use of the

inspection process during BE software development. We examined their current software

review procedures and identified areas that would need to be modified to meet the spirit of

the inspection process. A hypothetical example of an area needing modification, but one

that is often encountered in the software review procedures of DoD contractors, involves

the objective of the review. Often, review procedures have multiple stated objectives:

ensure compliance with project standards, promote product understanding, reduce defects, •

etc. In contrast, all aspects of the inspection process are focused primarily on efficiently

finding defects. Thus, many organizations must develop "tighter" versions of existing pro-

cedures in order to implement an inspection process.

4.2.3 Insertion Considerations

The BE inspection insertion effort was based on encouraging the contractors to vol-

untarily adopt the inspection process. We did not want to dictate how inspections were

inserted, but we did provide insertion advice and guidance. Due to the competition sensitive S

40

nature of these discussions, we cannot describe specific suggestions provided to the con-

tractors. We can, however, describe a number of general issues that should be considered

in any inspection insertion activity:

Method of insertion. Some organizations develop pilot or demonstration programs

to introduce the inspection process, while others choose to implement inspections project-

wide. A pilot program can be used to:

a. Verify the benefits of inspection to the organization through actual use.

b. Gain a better understanding of how to implement inspections across the orga-

nization.

c. Encourage inspection adoption by the rest of the organization if the pilot pro-
gram is performed by people whose processes tend to be emulated.

Pilot programs can be implemented on existing work products that are being main-
tained or on products that are separate development items, such as a CSCI. Inspections can

also be initially inserted project-wide. The benefits of this insertion method are that work
product defects are addressed early and project-wide. A pilot program would focus on a

subset of the project's workproducts, the remaining of which would exhibit higher latent

defect rates. Another benefit is that higher insertion leverage may be obtained if senior level

organizational commitment to program-wide inspections is pursued.

Measurement data. The-c are a number of published references available that

describe the data to collect during the inspection process [Grady 1991, Ackerman 1989].

Some even provide sample forms that can be used to collect the data. An organization that

plans to introduce inspections must decide:

a. What data to collect. Typical data includes the number, type and severity of
defects, amount of effort applied to inspection (e.g., preparation, inspection

meeting, and rework), and post-inspection defect data to evaluate the effective-

ness of the inspection process.

b. How the data will be used. It is critical to examine the questions that will be

addressed with inspection data. For example, project or software managers

should examine overall inspection data to identify potential methods for reduc-

ing common defect occurrences. Inspection effort rates should be monitored to

ensure that inspectors devote sufficient time to the inspection process. Higher-

than-average defect rates for properly inspected work products may suggest the
scheduling of additional dynamic testing for that module.

41

c. The process for storing inspection data. This includes developing procedures

for data entry and determining who has access to raw and composite data.

Training. It is essentiui that everyone who participates in an inspection be trained

in the inspection process. Attempts at inserting inspections can fail if proper training is not

provided to all inspection participants. In addition, the managers of inspection participants

must also undergo training to sensitize them in their role (i.e., how not to obstruct the pro-

cess) as well as to describe the benefits/costs of inspections and how inspection data can be

used to better control the software development process.

Training can be obtained from outside sources or provided by in-house staff. Out-

side sources are often experienced in the potential pitfalls in inserting inspections and can

offer support in reducing these risks. In-house staff, if properly trained, may provide a more

flexible training capability.

42

5. CONCLUSION AND RECOMMENDATIONS

In this paper, we have presented a range of information on software inspections.

inspections have been proven in industry to reduce software development costs and sched-

ules and, at the same time, substantially improve product quality and reliability. The inspec-

tion process represents a sound basis from which software engineering and management

process improvement can be instilled in software development. Published experience
reports clearly indicate that inspections are a commercial industry "best practice." Yet,

inspections are not routinely practiced by BMDO or other DoD contractors. Unless there is
a concerted effort by BMDO, it is unlikely that inspections will be used widely in BMD

software development. The following recommendations identify the key activities that
must be performed to implement inspections BMD-wide.

1. Senior BMD executives should strongly encourage the use of the inspection

process for all BMD software developmen The BMDO General Manager and Service

Program Executive Officers can influence element program managers to consider imple-

menting the inspection process. Without senior-level leadership and commitment it will be
much more difficult to convince program managers and their staff to implement the inspec-

tion process. Promoting advanced technology, especially an industry-proven process such

as inspections, is an appropriate function for BMDO senior executives.

2. Future BMD RFP's should provide explicit incentives for contractors to bid

the inspection process. Evaluation of the proposed inspection process should be a specific
technical criterion in making the source selection decisioa. By incentivizing inspections in

the RFP, contractors can then reflect the upfront costs of inspection in their bids. It should

be noted, however, that inspection benefits are unlikely if BMDO relies primarily on con-

tract wording to obtain inspection usage. Active interest by BMDO and the program offices

to communicate the importance of the inspection process to the contractor is also necessary.

3. BMDO should provide funding for initial inspection training to all BMD ele-

ment program offices. By specifically allocating training funds, BMDO emphasizes the

importance placed on inspections. This funding should be allocated for two types of train-

43

ing: full training for all program office staff involved with software development, including
program manager, software leads, and acquisition officials, and initial training for existing

contractor personnel. The program office should be encouraged to provide subsequent
training to existing contractors, or to allow the contractor to directly charge inspection
training costs against the contract. For maximum benefit, all contractor development per-
sonnel, and their managers, should receive inspection training.

4. Summary inspection data and results should be collected from software 0
developers by the program offices. This data is needed to assess the effectiveness of
inspections and to manage the software development process. Benefits from inspections
will be available immediately, quantifiable in terms of defects detected and rework avoided.
Results from "success stories" can be used immediately to increase awareness and adoption

of inspections BMD-wide.

44

D7

APPENDIX A. COMMONLY ASKED INSPECTION QUESTIONS

This appendix provides answers to commonly asked questions about software

inspections.

What prevents contractors from using inspections?

There are a number of reasons DoD contractors are not using inspections. Contrac-
tors may be unaware of inspections or their benefits. Contractors mistakenly believe they
have an inspection process in place, but what they are actually doing is the less formal/rig-
orous walkthrough. Unless walkthroughs are focused on defect detection, they do not pro-
duce dramatic defect detection rates. The inspection process is not called out in the contract,

so there may be less motivation to implement such a process. Bids that include inspection
costs have difficulty claiming rework cost savings and, therefore, may appear less compet-
itive. The up-front costs (e.g., training and front-loading contract spending) associated with
implementing an inspection process may be difficult to "sell" to the contracta. program

manager. Another inhibitor may be the perception of lower profitability resulting from an

effective inspection process: contractors often profit from rework.

Hardware inspection processes have existed for many years. They are used to ensure
that defective products are not delivered to a customer. Hardware inspections are not

the most effective method for improving product quality because they often occur late
in the product lifecyde. How can we avoid the traps we run into with hardware in-

spections?

The use of the term "inspection" is perhaps unfortunate, but the method is very
closely akin to the philosophy of Total Quality Management (TQM) espoused by Deming

and Juran [Deming 1986, Juran 1986]. Software inspections are not merely a check on
product quality. They provide timely feedback for both corrective action and process

improvement. The inspection process works well with products, from all phases of soft-
ware development: requirements, designs, test cases, documentation and code. Defects in

these products are identified very early, allowing a higher quality product to proceed.
Inspections are sometimes called "in-process inspections" to emphasize their early use.

A-I

What type of work products can be inspected? Are all work products of a particular

type inspected or a subset? How much material is inspected at one time?

All types of software development work products (requirements, designs, code, test

plans, documentation) can be inspected. Inspections are particularly valuable in early stag-

es of development because defects that are not found are costly to fix later, and because few

other techniques for finding defects are available.

Unlike statistical sampling techniques used in manufacturing, software inspections
are usually applied to all work products. Until software development methods reduce

human error to significantly lower levels, techniques to find and remove defects in all prod-

ucts are necessary.

An inspection should cover material equivalent to approximately 250 lines of high-

level source code. This may correspond roughly to 20 pages of requirements expressed in
English, or 15 data flow or structure diagrams of design. Attempting to inspect at much

higher rates reduces a team's defect-detection effectiveness.

What data is collected during the inspection process? How is this data used?

A variety of data should be collected during the inspection process. Examples

include defect data (number, type, and severity), inspector preparation and meeting times,

work product size, and estimated correction effort. Detailed reporting of defects by employ-

ee should be avoided for the same reasons that managers are excluded from inspection

meetings. Summary data averaged over the development staff enable managers to judge the

effectiveness of the inspection process. This data can also provide valuable insight into oth-

er parts of the software development process which can be used for process improvement.

What is management goin, •o do with data resulting from the inspection process?

Management uses inspection data to ensure that the process is healthy and effective.

Management should examine what types of defects are being made so that the right part of

the process can be improved on, and check to see if implemented process "improvements"

are making things better or worse.

An example question management might pose is: "I see that memory leakage errors

are occurring frequently--can we buy a tool that will help find these for us?" Or, "We now

have that tool, but we make just as many errors. Why is that?" Perhaps training has not been

provided in the tool, or the tool is not useful. In any case, managers can use inspection data

to improve upon the software development process.

A-2

0

Managers are going to be interested in who makes errors. How do you keep inspection

defect data anonymous?

Collecting data is an important part of the inspection process. Examining the type,

severity and number of defects during the development process can provide managers with
valuable feedback for process control. Some organizations summarize inspection defect
data to mask defect counts for specific work products. Other organizations provide manag-

ers with specific training in appropriate uses of inspection data. Others have managers and

their subordinates co-sign a document where the manager promises not to use inspection

data in this way. It is important for managers to understand that abuse of defect data will

reduce inspection results.

Co-workers participating in inspections routinely help each other learn to avoid

common mistakes.

What happens when defects are discovered during an inspection meeting? What hap-

pens to defects afterwards?

The responsibility of the recorder or scribe is to make a list of all defects found dur-
ing an inspection. In addition to recording the location and a brief description of each

defect, many inspection practitioners also record the severity, type, and estimated effort to

correct each defect.

After the inspection meeting, the author is responsible for correcting all defects.
Other inspection participants may take action items to help resolve issues that cannot be
answered immediately such as unclear specifications or questions about interfaces to other
work products. When major revisions are necessary, the inspection team may decide to re-

review the work product. Otherwise, after making the necessary corrections, the author
reviews the changes with the inspection moderator to verify that all identified defects have

been eliminated. This final verification step completes the inspection process for that work

product.

How many people participate in an inspection? Do managers participate?

Inspections should involve 4 to 6 people. Fewer people find too few defects, and
more people do not find many more. Inspections are labor intensive and must make the best

use of peoples' time. A key aspect of inspections is that it is a review by peers, without man-

agers. Having managers present during inspection meetings distorts the technical team's
defect detection focus. As a defense mechanism, inspectors may report more superficial

A-3

defects so that the inspection appears to be effective, but are less critical of the work product

and report fewer serious defects so that the author does not look bad.

Why do you need inspection training? It sounds pretty straightforward.

Introducing inspections represents a pretty significant process change for most soft-

ware developers. Training provides motivation and indoctrination, as well as explanation

of all the steps in the new process. Training also provides an effective forum for communi-

cating information on how to handle potential interpersonal conflicts that may arise during

the inspection process.

Inspections require participants to fill several important roles. Effective training is
necessary to prepare participants for the responsibilities of these roles. Because it is useful

to understand each of the roles and to rotate roles in different inspections, all roles should
be covered in a general training program. Also, because inspections are often mistaken for
less formal walkthrough methods, training should cover the differences that make inspec-
tions more effective. Inspection moderators typically need additional training to learn how

to guide and control inspections. Managers should also receive training so they understand

the benefits of inspections, what the technical staff does during inspections, and why man-

agers should not attend inspection meetings.

How can inspections be inserted into on-going projects? There are few new starts

where you can do it right from the beginning.

Inspecting code based on uninspected requirements and designs invariably produc-

es long lists of "issues" questioning the meaning of requirements and the completeness and

consistency of designs. This can seriously reduce the effectiveness of inspections because
inspectors cannot directly determine whether or not the code is correct. So this is not the

best approach for introducing inspections into on-going projects.

A more effective approach for the initial introduction of inspections in mid-devel-

opment is to start with a subsystem or major component where the requirements and design
can be inspected before the coding phase is completed. Even though the requirements and

design are "mature", expect to find defects in them when you inspect them. This is not as
effective as starting from the very beginning, but much of the time required to inspect and 0
correct the requirements and design will be recouped by the savings in later rework. Revise

the initial coding, along with any initial test plans and test data, then proceed with inspec-

tion of these work products.

A-4

For mature legacy systems, inspections can be introduced most easily when exten-

sions or enhancements are made. Inspection of all new material can be done "correctly"

from the beginning. Interfaces with the existing system will be the difficult part. To correct

latent defects and to sufficiently understand how the new code must interact with existing

code, you will need to inspect the requirements, design, and code surrounding the interfaces

with the existing system. For older systems, this may amount to reverse engineering to fig-

ure out what the system does. Without a full understanding of the existing system's require-

ments and design, it will be impossible to assure that new code will interact with it

correctly.

What can this approach do if your project is in a turmoil of system requirements

changes?

Unstable system requirements present serious problems for all software develop-

ment methods. We can't claim inspections are immune to such disruptions. The effort

invested in inspecting software requirements, designs, and code that have to be scrapped

because of system requirements changes is lost along with the affected work products.

Losses are likely to be higher for inspected work products than uninspected work, because

changes are more frequently made earlier in a program, before the savings in rework are

realized. Losses will also be higher for the DoD when a program has to be cancelled before

the savings in rework are realized.

Assume that inspections add 15 percent to the cost of development and produce

overall cost and schedule reductions of 30 percent, as described by Fagan. System require-

ments changes would then have to completely obliterate all software requirements, design,

and code twice at the worst possible times before non-inspections would break even on cost

with inspections. The first time we lose 15 percent to inspections. The second time we lose

another 15 percent. The third time-no changes this time, please!-we make it all back by

saving 30 percent. In addition, we still finish the third system well before the non-inspected

approach. This scenario must represent a situation much more severe than mere "turmoil."

The potential for losses due to inspections does not support an argument for devel-

oping lower-quality products at lower initial costs. The quality and reliability achieved by

inspections cannot be added on later to completed systems at any cost.

A-5

APPENDIX B. CONTRACTING FOR INSPECTIONS

Direct reference to the inspection process in the Request for Proposals (RFP) will

allow offerors to reflect the impact inspections may have to their proposal. For example,

training costs may need to be included and the upfront schedule ramifications must be rec-

ognized. By addressing inspections in the RFP, the Government also indicates the impor-

tance of the process.

DoD Standard 2167A, Defense System Software Development, establishes require-

ments that provide the basis for Government insight into a contractor's software develop-

ment, testing, and evaluation efforts [DoD-STD-2167A]. The standard does not provide

explicit support for reporting data commonly collected during the inspection process. How-

ever, a Data Item Description (DID) can be written by the Government to require that the

contractor implement an inspection process and report inspection-related data.

This appendix provides suggestions on how to incorporate inspections into an RFP.

Guidance is given for the type of inspection-related data that should be reported via a DID.

Additionally, an actual example of Government requirements for the inspection process is

given.

B.1 INSPECTIONS IN THE RFP

The Government should encourage or require a contractor to implement processes

that provide for early, efficient, and measurable defect detection and correction. The pro-

cess of software inspection is currently the best known technique Lvailable to address this

objective. DoD-STD-2167A provides only general software process requirements (e.g.,

configuration management, formal qualification testing). In order to promote early and effi-

cient defect detection, the Government should consider augmenting the RFP to include

direct reference to the inspection process. The RFP should reflect the following consider-

ations in the appropriate sections:

a. A statement of the Government's desire to have the contractor use inspections

during the software development process should be included in the RFP. A ref-

B-1

0

erence to the inspection process described in IEEE Standard 1028, IEEE Stan-

dard for Software Reviews and Audits, would ensure that the contractor

understands that a rigorous inspection process is desired, as opposed to the less

rigorous structured walkthrough or informal review [IEEE 1028-1988].

b. A DID should be created to specify the in-process inspection data to be pro-

duced by the contractor. The DID should also specify where the inspection data

will be located (e.g., the Software Development Folder (SDF)). This data is

described in the next section.

c. The Software Development Plan (SDP) should be tailored to have the contractor

describe the proposed inspection process, the types of workproducts that will

undergo inspection (e.g., requirements, design code, test cases) and identify

where the schedule for the inspections will be located (e.g., the SDF).

After contract award and during the development process, the Government should

periodically check to ensure that the inspection process is "healthy" by examining the data

being collected by the contractor (e.g., scheduled inspections are consistently being per-

formed, reasonable rates are being logged for preparation and defect detection, the defect

data is being used for process improvement, etc.). However, the Government should not

micro-manage the process. The contractor will hopefully understand the value of the

inspection process and take "ownership" of that process.

B.2 DATA ITEM DESCRIPTION FOR INSPECTIONS

Many of the examples of successful industry inspection usage describe a common

set of data collected during the inspection process. This data is used by the contractor to

monitor the progress of development and the quality of the product, and to improve the

development process via immediate process improvement feedback. A DID should be

developed to require that the contractor collect and record the following data per inspec-0

tion:

a. Type of inspection

b. Number, type and severity of defects detected

c. Resources

1. Number of inspection participants

0

B-2

2. Number of hours required for the overview, preparation, meeting, and

rework phases

Further detail or refinement of this data is possible (e.g., defect severity can be clas-

sified in different ways), but this activity should be left to the contractor. The Government

should leave room for the contractor to define and implement the finer details of the infor-

mation to be produced.

B.3 EXAMPLE NSA INSPECTION TEXT

The National Security Agency uses NSA Manual 81-2 and 81-3 for managing the

acquisition of software [NSAM 81-2, NSAM 81-3]. NSA 81-3 is also a military standard,

DoD-STD-1703(NS). These manuals have been used on hundreds of projects and explicitly

require the use of design and code inspections. These manual are applicable to both con-

tractual and in-house software developments. Figure B-I provides the inspection-specific

text of NSA Manual 81-2. This text is an excellent example of the Government specifying

the use of inspection during software development.

B-3

r
4.3 SOFTWARE DESIGN AND CODE INSPECTIONS

POLICY

Software developers shall conduct unit design and code inspections to facilitate the early
detection of errors. These inspections shall be accomplished by having the software unit
design and code reviewed by a team of individuals (normally between 3 and 7 people) who
have sufficient technical abilities to review the material. Inspection procedures shall be doc-
umented in a Software Standards and Practices Manual.

REQUIREMENTS.

1. As a minimum, design and code inspections shall be conducted at the unit level as the design
and code of each unit are completed. When the inspections of a software unit have been com-
pleted, the date of completion for each inspection shall be entered on the cover sheet of the
Unit Development Folder for that unit.

2. The inspection team shall be composed of a moderator, the author or developer, and one or
more inspectors. The moderator manages the inspection process and chooses the inspectors
on the basis of special skills or knowledge they can bring to the inspection. At a unit design
inspection, the individuals responsible for programming and testing the unit should be mem-
bers of the inspection team. At a unit code inspection, the individual who designed the unit
and the people responsible for testing the unit should be members of the inspection team.

3. As a minimum, unit design inspections shall include checks for the following:
(a) Responsiveness of design to requirements;
(b) Design completeness and consistency;
(c) Flow of data through inputfoutput interfaces;
(d) Testability;
(e) Compliance with design standards identified in the Software Standards and Practices

Manual;
(f) Other appropriate criteria, such as exception handling and error recovery procedures,

modularity, and simplicity.
4. As a minimum, unit code inspections shall include checks for the following:

(a) Ensure that the code matches the design;
(b) Ensure the correctness of the code;
(c) Compliance with programming standards identified in the Software Standards and Prac-

tices Manual;
(d) Maintainability and Testability;
(a) Other appropriate criteria, such as external linkages, logic, data area usage, and register

usage.
5. The technique used for unit design and code inspections shall consist of six formal steps:

Planning, Overview, Preparation, Inspection, Rework, and Follow-up.

RESPONSIBILITIES

Members of organizations acquiring and developing software are responsible for implement-
ing these policies unless specific policies have been waived by the Acquisition Decision
Authority. Members of other organizations participating in the software acquisition must also
comply with them. Figure 3 depicts the single point of management responsibility for each
activity, review and decisions made during the software acquisition phase. Roles and
responsibilities identified in Figure 3 may be satisfied by designated people within a project
management structure rather than by a single Software Acquisition Manager or Software
Development Manager.

Figure B-1 Actual Text for Inspection Requlrements

B-4

APPENDIX C. SOFTWARE INSPECTION AND REVIEW
ORGANIZATION

The Software Inspection and Review Organization (SIRO) is an informal profes-

sional organization that promotes the exchange of information on group-based software ex-

amination methods. SIRO began as an informal group of industry practitioners interested

in discussing experiences and techniques for software review techniques such as inspec-
tions, structured walkthroughs, peer review, etc. SIRO does not advocate any particular re-

view method, nor does it directly support or endorse any workshops, tutorials or training.
Formal SIRO meetings began in 1992 and are often held in conjunction with conferences

such as the annual Software Testing and Review (STAR) conference and the Applications

of Software Measurement (ASM) conference.

SIRO publishes a newsletter about two times a year. An on-line archive service is

available for SIRO members to examine a variety of software inspection and review infor-
mation. Contact Mike Carny, mike@cray.com, 612-683-5635, for more information on this

service. For SIRO membership information, contact the SIRO Membership Secretary, PO
Box 61015 Sunnyvale, CA 94088-1015. At the present time, there are no membership fees.

C-I

APPENDIX D. BIBLIOGRAPHY WITH ABSTRACTS

This appendix provides a bibliography of inspection-related references. Abstracts

are provided verbatim for many of the references. The bibliography is separated into three

sections. Section D. 1 contains references focusing on the subject of software inspection.

Section D.2 provides additional references relating to software reviews and walkthroughs.

Section D.3 identifies software engineering textbooks that have chapters discussing inspec-

tion techniques.

D.1 INSPECTION REFERENCES

[Ackerman 1982]
Ackerman, A. Frank, Amy S. Ackerman, and Robert G. Ebenau. "A Software Inspections
Training Program," COMPSAC '82: 1982 Computer Software and Applications
Conference, Chicago, IL Nov. 8-12, pp. 443-444. IEEE Computer Soriety Press.

[Ackerman 19841
Ackerman, A. Frank, Priscilla J. Fowler, and Robert G. Ebenau. 1984. "Software
Inspections and the Industrial Production of Software," Software Validation, H.L. Hausen,
ed., pp. 13-40, Elsevier, Amsterdam.

Abstract: Software inspections were first defined by M.E. Fagan in 1976. Since that
time they have been used within IBM and other organizations. This paper provides a
description of software inspections as they are being utilized within Bell Laboratories
and the technology transfer program that is being used for their effective implementa-
tion. It also describes the placement of software inspections within the overall develop-
ment process, and discusses their use in conjunction with otht,; verification and
validation techniques.

[Ackerman 19891
Ackerman, A. Frank, Lynne S. Buchwald, and Frank H. Lewski. "Software Inspections:
An Effective Verification Process," IEEE Software, Vol. 6, No. 3, May 1989, pp. 31-36.

Abbreviated Introduction: This article is an attempt to clarify what software inspec-
tions are, to explain how you can use them to improve both your process and your
product, and to summarize what is known about their effectiveness.

D-1

0

[Ascoly 1976]
Ascoly, Joseph, Michael J. Cafferty, Stephen J. Gruen, and 0. Robert Kohli. "Code
Inspection Specification," IBM Corp., Kingston, NY, Technical Report TR 21.630, 1976.

Abstract: Examination of computer programs by people other than the code is recog-
nized as a tangible method for improving quality in programming. This report is
intended for use as a specification for conducting inspections of program code. Inspec-
tions are considered to be a more rigorous form of examination than walk-throughs.
They stress participant preparation, error detection versus solution hunting and educa-
tion, and accountability for resolution of problems detected. Inspections are applicable
in both systems and application programming environments.

[Bisant 1989]
Bisant, David B., and James R. Lyle. "A Two-Person Inspection Method to Improve
Programming Productivity," IEEE Transactions on Software Engineering, Vol. 15, No. 10, 9
Oct. 1989, pp. 1294-1304.

Abstract: This paper reviews current research and investigates the effect of a two-per-
son inspection method on programmer productivity. This method is similar to the cur-
rent larger team method in stressing fault detection, but does not use a moderator.

The experiment used a Pretest-Posttest Control Group design. An experimental and
control group of novices each completed two programming assignments. The amount
of time taken to complete each program. (rime n, Time2) was recorded for each subject.
The subjects of the experimental group did either a design inspection, a code inspec-
tion, or both during the development of the second program. An analysis of variance
was performed and the relationship between Time l and Time2 was modeled for both
groups. A comparison of the models revealed the experimental group improved signifi-
cantly in programming speed as a result of using the two-person inspection. It also
appeared as though this method was more effective at improving the performance of
the slower programmers.

This two-person method could have its application in those environments where access
to larger team resources is not available. If further research establishes consistency with
this method then it might be useful as a transition to the larger team method.

[Blakely 1991]
Blakely, Frank W. and Mark E. Boles. "A Case Study of Code Inspections," Hewlett-
Packard Journal, Vol. 42, No. 4, Oct. 1991, pp. 58-63.

Abstract: Code inspections have become an integral part of the software development
life cycle in many organizations. Because it takes some project time and because engi-
neers initially feel intimidated by the process, code inspections have not always been
readily accepted. Additionally, there has not always been enough evidence (metrics) to
provide that for the time and effort invested, the process has any value in reducing
defects and improving overall software quality. Since the early days, the process has
become better understood and documented, and recent articles have provided concrete
metrics and other evidence to justify the value of the process.

D-2

0

This paper describes our experiences in bringing the code inspection process to HP's
Application Support Division (ASD). We describe both the positive and negative find-
ings related to using code inspections. Although we only have metrics for one project,
out main goal here is to present how we implemented the inspection process and to
illustrate the type of data to collect and what might be done with the data.

[Bollinger 1992]
Bollinger, Donald E., Frank P. Lemmon, and Dawn L. Yamine. "Providing HP-UX Kernel
Functionality on a New PA-RISC Architecture," Hewlett-Packard Journal, Vol. 43, No. 3,
Jun. 1992, pp. 11-15.

Abstract: Hewlett-Packard Co's HP 9000 Series 700 workstation development goals
required that the HP-UX kernel laboratory change the normal software development
process, the number of product features and the management structure. The laboratory
wanted to change or add the minimum number of HP-UX kernel functions that meet
customer needs and its own performance goals while also adapting to a new I/O sys-
tem. The resulting HP-UX kernel code is called minimum core functionality (MCF).
The management structure was changed to allow small teams of individual developers
and first-level managers to make important program decisions quickly and directly. The
performance team included members from hardware, kernel, languages, graphics and
performance measurement groups; the team's goal was to maximize system perfor-
mance in computation, graphics and I/O. The quality control plan, certification process,
design and code reviews, branch and source management and test setup process are
described.

[Britcher 1988]
Britcher, Robert N. "Using Inspections to Investigate Program Correctness," IEEE
Computer, Vol. 21, No. 11, Nov. 1988, pp. 38-44.

Conclusion: As we develop better tools for recording and compiling software designs
and code, those who think about and practice programming will take greater interest in
the more obscure aspects of a program: its intent, meaning, resilience, and develop-
mental history. Although the problem of writing correct programs, especially those
embedded within large systems or products, remains largely unsolved in practice, the
situation is improving. We can use inspections to further the investigation into how cor-
rect programs are constructed. Several such inspections will be carried out to determine
their usefulness and refine their practice. The purpose of incorporating correctness
arguments into inspections is not to improve inspections, but to improve programming.
This is not a modest objective. Steps will necessarily be small.

[Brothers 1990]
Brothers, L., V. Sembugamoorthy, and M. Muller. "ICICLE: Groupware for Code
Inspection," CSCW 90: Proceedings of the ACM Conference on Computer Supported
Cooperative Work, Oct. 1990, pp. 169-181.

[Brykczynski 1993]
Brykczynski, Bill, and David A. Wheeler. "An Annotated Bibliography on Software
Inspections," ACM Software Engineering Notes, Jan. 1993, Vol. 18, No. 1, pp 81-88.

D-3

[Buck 1981]
Buck, FO. "Indicators of Quality Inspections," IBM Corp., Technical Report TR21.802,
Sep. 1981.

Abstract: Management of a software development effort using the formal inspection
process requires constant monitoring of the quality of those inspections. The number of
errors found during an inspection is not an adequate indicator of a quality inspection.
The number of errors found is just as much a function of the quality of the materials
being inspected as it is a function of the quality of the inspection itself. This report pre-
sents an analysis of the results of many ,:ode inspections on the same materials. With
constant quality materials, the alternative inspection indicators could be more accu-
rately evaluated.

[Buck 1984]
Buck, Robert D. and James H. Dobbins. 1984. "Application of Software Inspection
Methodology in Design and Code," Software Validation, H.L. Hausen, ed., Elsevier,
Amsterdam, pp. 41-56.

[Bush 1990]
Bush, Marilyn. "Improving Software Quality: The Use of Formal Inspections at the Jet
Propulsion Laboratory," 12th International Conference on Software Engineering, 1990,
pp. 196-199, IEEE Computer Society Press.

Abstract: Finding and fixing defects early in the software development life cycle is
much cheaper than finding and fixing the same defects later on. After surveying detec-
tion practices in the best of industry, JPL Software Product Assurance decided that the
most cost-effective early defect detection technique was the "Fagan inspection" proce-
dure. This paper will describe this technique, how it was introduced to JPL, some of the
difficulties involved in "transferring technology" and the first provisional set of results.

[Cbaar 1992J
Chaar, J.K., M.J. Halliday, I.S. Bhandari, and R. Chillarege. "In-process Metrics for
Software Inspection and Test Evaluations," IBM Corp., Technical Report 80725, 1992.

[Christel 19911
Christel, M.G. "A Comparative Study of Digital Video Interactive Interfaces in the
Delivery of a Code Inspection Course," Ph.D. Thesis, Georgia Institute of Technology,
Atlanta, GA, Jun. 1991.

Abstract: Past research into interactive video educational software has focused prima-
rily on comparing the instructional effectiveness of an interactive video course with
more traditional media, such as classroom lecture. Typical effectiveness measures
include recall performance and attitude shifts. While such research generally finds in
favor of the interactive video course, few formal examinations of the course exist to
explain these results, including studies into the contributions of the interface design. An
interactive digital video code inspection course was used to investigate whether the
capabilities of digital video interfaces provide any advantages in an educational com-
puter course.

D-4

Two by two factorial experiments were conducted to determine the effects of a com-
puter course which included motion video versus one which contained no such video,
and the effects of navigating through a series of related still images (surrogate travel)
versus clicking a mouse on predefined areas of a single still image. The effects under
study were recall performance, and shifts in meaning, measured with semantic scales,
toward code inspection-related terms and educational media terms.

The code inspection course, developed at the Software Engineering Institute on a Digi-
tal Video Interactive platform, was used by seventy-two college seniors and master's
students. Each student used one of these four treatments of the course in isolation for
up to three hours.

The findings suggest that the presence of motion video in interfaces can lead to better
recall performance than if no motion video exists in the interface. Material containing
some motion video will be recalled better than if the same material is presented as
audio with still images.

There were also significant differences in the shifts in meaning, calculated by subtract-
ing a pretest score from a post test score, produced by the motion video and navigation
independent variables. After the course, the surrogate travel navigation subjects rated
code inspection-related terms as more powerful and "classroom instruction" as less
powerful than the single still navigation subjects. Subjects receiving motion video
shifted their views of code inspection concepts toward more active than did the subjects
receiving no motion video.

[Christel 1992a]
Christel, Michael. "Virtual Reality Today on a PC," Instruction Delivery Systems, Jul.!
Aug. 1992, pp. 6-9.

Abstract: A digital video course on software technical reviews illustrates how it is
done and offers some lessons learned.

[Christel 1992b]
Christel, Michael G., and Scott M. Stevens. Rule Base and Digital Video Technologies
Applied to Training Simulations. SEI Technical Review '92, Software Engineering
Institute, Pittsburgh, PA, 1992.

Abstract: The Advanced Learning Technologies Project developed a digital video
course on code inspections from 1987 to 1990. The essence of this course is an envi-
ronment in which a student participates in a code inspection as a contributing reviewer
of the code.

The student chooses an inspection role, and later assumes all the responsibilities of that
role while performing in a code inspection simulation. The student is an active partici-
pant in the code inspection, and his or her contributions affect the course of the inspec-
tion dialogue and ultimately the success of the inspection. In addition, the role the
student takes in the inspection is not predetermined but is selected by the student.

To participate effectively in the code inspection, the student needs to recognize and
react to the other reviewer's comments and their emotional states. The importance of

D-5

group process issues necessitates that the inspection simulation be presented as realisti-
cally as possible while still preserving the flexibility of dynamic role selection and
active participation. The code inspection course makes use of digital video for dynamic
scene creation in addressing this requirement.

These techniques are applicable beyond the code inspection course to other instruc-
tional simulations. The synergistic effects of using digital modeling and dynamic scene
creation can significantly improve the utility of low-cost simulators and part-task train-
ers.

[Christel 1992c0
Christel, Michael G. "Experiences with an Interactive Video Code Inspection Laboratory."
Lecture Notes in Computer Science 640: Software Engineering Education SE! Conference
Proceedings, Oct. 1992 in San Diego, CA, C. Sledge, editor. Berlin: Springer-Verlag,
1992, pp. 395-411.

Abstract: Software engineers need practical training in addition to classroom lectures
in order to obtain the knowledge and skills necessary to succeed in industry. This train-
ing is provided by laboratories in other engineering disciplines. Such laboratories have
been implemented as computer-based interactive video courses in the past, with numer-
ous advantages. Based on this success, an interactive video course was created for use
as a "code inspection laboratory", in which the skills of preparing for and participating
in code inspections are learned and practiced. This paper summarizes the anecdotal
feedback and usage data from 120 students who used the course over the past two
years. Lessons learned from these experiences are discussed, with implications for the
development of future interactive video software engineering laboratories.

[Christenson 19871
Christenson, Dennis A. and Steel T. Huang. "Code Inspection Management Using
Statistical Control Limits," National Communications Forum, Vol. 41, No. 2, Chicago, IL,
1987, pp. 1095-1100.

[Christenson 1988]
Christenson, Dennis A. and Steel T. Huang. "A Code Inspection Model for Software
Quality Management and Prediction," GLOBECOM '88. IEEE Global
Telecommunications Conference and Exhibition, Hollywood, FL, 1988, pp. 468-472.

[Christenson 19901 0
Christenson, Dennis A., Steel. T. Huang, and Alfred J. Lamperez. "Statistical Quality
Control Applied to Code Inspections," IEEE Journal on Selected Areas in
Communications, Vol. 8, No. 2, Feb. 1990, pp. 196-200.

Abstract: Code inspections have been used on the 5ESS Switch project since 1983.
Beginning wit ha training program for all the developers involved in the project, code
inspections have improved with each new 5ESS Switch generic. The improvement in
code inspections has been the result of hard work and innovation on the part of the
5ESS Switch software developers, and the use of some "Statistical Quality Control"
(SQC) techniques.

D-6

Variations on a standard SQC technique, the control chart, have been used to track the
metrics indicative of the effectiveness of code inspections. Parameters used in the com-
putation of these metrics include the preparation effort, inspection time, number of
inspectors, the size of the inspected unit of code, and the number of errors found at the
inspection. The exact form that these "control charts" have taken has evolved and
improved with experience.

[Collofello 19871
Collofello, James S. "Teaching Technical Reviews in a One-Semester Software
Engineering Course," ACM SIGCSE Bulletin, Vol. 19, No. 1, Feb. 1987, pp. 222-227.

Abstract: Software technical reviews are essential to the development and mainte-
nance of high quality software. These review processes are complex group activities
for which there exist an abundance of basic concepts evolved over years of practical
experience. In a typical one-semester software engineering course very little of this
information is adequately conveyed to students. Texts supporting this course are also
very weak in this area. This paper provides a practical approach for teaching about soft-
ware technical reviews in a one-semester software engineering course. The contents for
two to three lectures on this topic are described as well as suggested exercises and an
approach for integrating technical reviews with the usual team project An extensive
annotated bibliography is also provided to assist instructors and students.

[Collofello 1988]
Collofello, James S. "The Software Technical Review Process," Software Engineering
Institute, Carnegie-Mellon University, Pittsburgh, PA, CMU/SEI-CM-3-1.5, Jun. 1988.

Capsule Description: This module consists of a comprehensive examin"ation of the
technical review process in the software development and maipaance life cycle. For-
mal review methodologies are analyzed in detail from the perspective of the review
participants, project management and software quality assurance. Sample review agen-
das are also presented for common types of reviews. The objective of the module is to
provide the student with the information necessary to plan and execute highly efficient
and cost effective technical reviews.

[Cross 1988]
Cross, John A., ed. "Support Materials for the Software Technical Review Process,"
Software Engineering Institute, Carnegie-Mellon University, Pittsburgh, PA, CMU/SEI-
SM-3-1.0, Apr. 1988.

[Crossman 1977]
Crossman, Trevor D. "Some Experiences in the Use of Inspection Teams," 15th Annual
ACM Computer Personnel Research Conference, Aug. 1977, p. 143.

[Crossman 1979]
Crossman, Trevor D. "Some Experiences in the Use of Inspection Teams in Application
Development," Applications Development Symposium, Monterey, CA, Oct. 1979. pp. 163-
168.

D-7

[Croemn 1982]
Crossman, Trevor D. "Inspection Teams, Are They Worth It?" Proceedings 2nd National
Symposium on EDP Quality Assurance, Chicago, IL, Mar. 24-26, 1982.

[Deimel 19911
Deimel, LE. "Scenes of Software Inspections. Video Dramatizations for the Classroom,"
Software Engineering Institute, Carnegie-Mellon University, Pittsburgh, PA, CMU/SEI-
91-EM-5, May 1991.

Abstract: This report describes the videotape "Scenes of Software Inspections," which
contains brief dramatizations that demonstrate appropriate and inappropriate conduct
of software inspections. The tape also includes scenes that show other kinds of group
interactions. Any of these scenes can be incorporated into lectures, self-study materials,
or other educational delivery mechanisms, to illustrate how to perform inspections, an
important software engineering technique.

[Dichter 1992]
Dichter, C.R. "Two Sets of Eyes: How Code Inspections Improve Software Quality and
Save Money," Unix Review, Vol. 10, No. 2, Jan. 1992, pp. 18-23.

Abstract: Programmers can detect a large percentage of software bugs by inspecting
code to supplement testing. Testing alone will not determine if code will work on dif-
ferent platforms, if it is written efficiently and whether it adheres to particular coding
guidelines or standards. Inspections and walkthroughs are two kinds of software
reviews. Programmers perform inspections by sequential reading of code to search for
bugs by using an inspection checklist. In walkthroughs, inspectors play the role of the
computer by searching the code for logical errors. Programmers can start improving
code by using advanced linter tools and then inspecting code for errors the linter will
not catch. Code-counting tools are also helpful. Programmers may find that inspections
on code of more than 1,000 lines will help find bugs that testing would not turn up and
which would be more expensive to correct later.

[Dobbins 1967]
Dobbins, J.H. 1987. "Inspections as an Up-Front Quality Technique," Handbook of
Software Quality Assurance, G.G. Schulmeyer and J.I. McManus, eds., pp. 137-177, NY:
Van Nostrand Reinhold.

[Doolan 19921
Doolan, E. P. "Experience with Fagan's Inspection Method," Software--Practice and
Experience, Vol. 22, No. 2, Feb. 1992, pp. 173-182.

Abstract: Fagan's inspection method was used by a software development group to
validate requirements specifications for software functions. The experiences of that
group are described in this paper. In general, they have proved to be favourable.
Because the costs of fixing errors in software were known, the payback for every hour
invested in inspection was shown to be a factor 30. There are also other benefits that are
much more difficult to quantify directly but whose effect is significant in terms of the
overall quality of the software.

D-8

Some pointers are given at the end of this paper for those who want to introduce
Fagan's inspection method into their own development environment.

[Drake 19921
Drake, Janet, Vahid Mashaykhi, John Riedl, and Wei-Tek Tsai. "Support for Collaborative
Software Inspection in a Distributed Environment: Design, Implementation, and Pilot
Study," University of Minnesota Technical Report, TR 92-33, Jun. 1992.

[Ebenau 1981]
Ebenau, R.G. "Inspecting for Software Quality," Second National Symposium in EDP
Quality Assurance, 1981. DPMA Educational Foundation, U.S. Professional
Development Institute, Inc., 12611 Davon Drive, Silver Spring, MD 20904.

[Fagan 1976aJ
Fagan, Michael E. "Design and Code Inspections to Reduce Errors in Program
Development," IBM Systems Journal, Vol. 15, No. 3, 1976, pp. 182-211.

Abstract: Substantial net improvements in programming quality and productivity have
been obtained through the use of formal inspections of design and of code. Improve-
ments are made possible by a systematic and efficient design and code verification pro-
cess, with well-defined roles for inspection pvrticipants. The manner in which
inspection data is categorized and made suitable for process analysis is an important
factor in attaining the improvements. It is shown that by using inspection results, a
mechanism for initial error reduction followed by ever-improving error rates can be
achieved.

[Fagan 1976b]
Fagan, M.E. "Design and Code Inspections and Process Control in the Development of
Programs," IBM Corp., Poughkeepsie, NY, Technical Report TR 00.2763, Jun. 10, 1976.
This report is a revision of "Design and Code Inspections and Process Control in the
Development of Programs," IBM Corp., Kingston, NY, Technical Report TR 21.572, Dec.
17, 1974.

Abstract: Substantial net improvements in programming quality and productivity have
been obtained through the use of formal inspections of design and code. Improvements
are made possible by a systematic and efficient design and code verification process,
with well defined roles for inspection participants. The manner in which inspection
data is categorized and made suitable for process analysis is an important factor in
attaining the improvements. Using inspection results, a mechanism for initial error
reduction followed by ever improving error rates (down to minimum process average
levels) can be achieved.

[Fagan 1977]
Fagan, Michael E. "Inspecting Software Design and Code," Datamation, Oct. 1977, pp.
133-144.

Introduction: Successful management of any process requires planning, measurement,
and control. In program development, these requirements translate into defining the
programming process in terms of a series of operations, each having its own exit crite-

D-9

0

ria. Next there must be some means of measuring completeness of the product at any
point of its development by inspections or testing. And finally, the measured data must
be used for controlling the process.

Design and code inspections have been applied successfully in several programming
projects, both large and small, and including systems and applications programs. They
have not been found to "get in the way" of programming, but instead enabled higher
predictability than other means and improved productivity and product quality.

A process may be described as a set of operations occurring in a definite sequence that
operates on a given input and converts it to some desired output. A general statement of
this kind is sufficient to convey the notion of the process. In a practical application,
however, it is necessary to describe the input, output, internal processing, and process-
ing times of a process in very specific terms if the process is to be executed and we are
to get practical output.

[Fagn 19861
Fagan, Michael E. "Advances In Software Inspections," IEEE Transactions on Software
Engineering, Vol. 12, No. 7, Jul. 1986, pp. 744-751.

Abstract: This paper presents new studies and experiences that enhance the use of the
inspection process and improve its contribution to development of defect-free software
on time and at lower costs. Examples of benefits are cited followed by descriptions of
the process and some methods of obtaining the enhanced results.

Software inspection is a method of static tLsting to verify that software meets its
requirements. It engages the developers and others in a formal process of investigation
that usually detects more defects in the product-at and lower cost-than does machine
testing. Users of the method report very significant improvements in quality that are
accompanied by lower development costs and greatly reduced maintenance efforts.
Excellent results have been obtained by small and large organizations in all aspects of
new development as well as in maintenance. There is some evidence that developers
who participate in the inspection of their own product actually create fewer defects in
future work. Because inspections formalize the development process, productivity and
quality enhancing tools can be adopted more easily and rapidly.

[Fowler 1986]
Fowler, Priscilla J. "In-Process Inspections of Workproducts at AT&T," AT&T Technical 0
Journal, Vol. 65, No. 2, Mar./Apr. 1986, pp. 102-112.

Abstract: In-process inspections are examination meetings held to find defects in
design and development work products, including intermediate versions of the product
or system in requirements and design documents. Because these inspections delimit the
phases of design and development processes, they can prevent the passage of defects
from one phase to the next and significantly reduce the number of defects released to
customers. Software development projects within AT&T's research and development
community have been using in-process inspections effectively for several years to
reduce defects, and hardware projects began using them one and a half years ago. In

D-10

addition, the experience of installing in-process inspections in project organizations has
yielded a wealth of information on technology transfer. This article defines inspections,
describes the installation process, and discussed some uses for inspection data.

[Freedman 1982]
Freedman, Daniel P. and Gerald M. Weinberg. 1982. Handbook of Walkthroughs,
Inspections, and Technical Reviews: Evaluating Programs, Projects, and Products. 3rd ed.
Boston, MA: Little, Brown and Company.

[Giib 19911
Gilb, Tom. "Advanced Defect Prevention Using Inspection, Testing, and Field Data as a
Bpe," American Programmer, May 1991, pp. 38-45.

[Gintell 1993]
Gintell, John, John E. Arnold, Michael Houde, Jacek Kruszelnicki, Roland McKenney,
and Gerard Memmi. "Scrutiny: A Collaborative Inspection and Review System," to be
appear in Fourth European Software Engineering Conference, Garwisch - Partenkirchen,
Germany, September 13-17, 1993.

Abstract: This paper describes a Bull US Applied Research Laboratory project to
build a collaborative inspection and review system called Scrutiny using Conversation-
Builder from the University of illinois at Urbana-Champaign. The project has several
distinct aspects: technology oriented research, prototype building, experimentation,
and tool deployment/technology transfer. Described are the design of the current opera-
tional version of Scrutiny for inspection-only, the evolutionary design of Scrutiny to
handle various forms of review, and some initial thoughts on integration with other
CASE frameworks and tools. The problem domain selected, the development environ-
ment, lessons learned thus far, some ideas from related work, and the problems antici-
pated are discussed here.

[Glass 1993]
Glass, Robert L. "Error Detection: Which is Better, Reviews or Testing?" Journal of
Systems and Software, Editors Corner, Vol. 22, No. 1-2, pp. 1-2.

[Graden 1986]
Graden, Mark E. and Palma S. Horsley. "The Effects of Software Inspections on a Major
Telecommunications Project," AT&T Technical Journal, Vol. 65, No. 3, May/Jun. 1986,
pp. 32-40.

Introduction: Software inspections are a highly formalized and rigorous technique
used for the identification and removal of errors in software products. Faithfully
applied, they have beneficial impact on the productivity and quality of a project. As a
result, software inspections were selected as a critical ingredient in the overall Software
Quality Assurance Plan to guide the development and evolution of a major, real time
telecommunications software project.

This paper describes how the results of software inspections have been used to explain
differences in end-product quality and identifies useful techniques for applying the
results of software inspections to manage the software development process.

D-11

[Hale 19781
Hale, R. M. "Inspections in Application Development-Introduction and Implementation
Guidelines," IBM Corp., Form GC20-2000-0 (Jul. 1977) updated by TNL GN20-3814
(Aug. 1978).

[Hoflocker 1990)
Holiocker, Charles P. 1990. Software Reviews and Audits Handbook, NY: John Wiley &
Sons.

[IBM 19761
IBM. "Code Reading, Structured Walkthroughs, and Inspections," IBM Corp., Report GE-
19-5200, Zoetermeer, Netherlands, 1976.

[IEEE 19881
"IEEE Standard for Software Reviews and Audits," ANSI/IEEE STD 1028-1988, IEEE
Computer Society, Jun. 30, 1989.

Scope: The purpose of this standard is to provide definitions and uniform requirements
for review and audit processes. It does not establish the need to conduct specific
reviews or audits; that need is defined by local policy. Where specific reviews and
audits are required, standard procedures for their execution must be defined.
This standard provides such definition for review and audit processes that are applica-
ble to products and processes throughout the software life cycle. Each organization
shall specify where and when this standard applies and any intended deviations from
this standard.

[Johnson 1993]
Johnson, Philip M., and Danu Tjahjono. "Improving Software Quality through Computer
Supported Collaborative Review," Third European Conference on Computer Supported
C ,operative Work, Milan, Italy, Sep. 1993.

Abstract: Formal technical review (FTR) is a cornerstone of software quality assur-
ance. However, the labor-intensive and manual nature of review, along with basic unre-
solved questions about its process and products, means that review is typically under-
utilized or inefficiently applied within the software development process. This paper
introduces CSRS, a computer-supported cooperative work environment for software
review that improves the efficiency of review activities and supports empirical investi-
gation of the appropriate parameters for review. The paper presents a typical scenario
of CSRS in review, its data and process model, application to process maturation, rela-
tionship to other research, current status, and future directions.

[Jones 1985]
Jones, C.L. "A Process-integrated Approach to Defect Prevention," IBM Systems Journal,
Vol. 24, No. 2, 1985, pp. 150-167.

Abstract: Recent efforts to improve quality in software have concentrated on defect
detection. This paper presents a programming process methodology for using causal
analysis and feedback as a means for achieving quality improvements and ultimately 0

D-12

defect prevention. The methodology emphasizes effective utilization of all error data to
prevent the recurrence of defects.

[Kelly 1992]
Kelly, John C., Joseph S. Sherif, and Jonathan Hops. "An Analysis of Defect Densities
Found During Software Inspections," Journal of Systems and Software, Vol. 17, No. 2,
Feb. 1992, pp. 111- 117.

Abstract: Software inspection is a technical evaluation process for finding and remov-
ing defects in requirements, design, code, and tests. The Jet Propulsion Laboratory
(JPL), California Institute of Technology, tailored Fagan's original process of software
inspections to conform to its software development environment in 1987. Detailed data
collected from 203 inspections during the first three years of experience at JPL
included averages of staff time expended, pages covered, major apr minor defects
found, and inspection team size. The data were tested for homogeneity. Randomized
samples belonging to the various phases or treatments were analyzed using the com-
pletely randomized block design analysis of variance (a = 0.05). The results showed a
significantly higher density of defects during requirements inspections. The number of
defect densities decreased exponentially as the work products approached the coding
phase because defects were fixed when detected and did not migrate to subsequent
phases. This resulted in a relatively flat profile for cost to fix. Increasing the pace of the
inspection meeting decreased the density of defects found. This relationship held for
major and minor defect densities, although it was more pronounced for minor defects.

[Kindl 1992]
Kindl, Mark R. "Software Quality and Testing: What DoD Can Learn from Commercial
Practices," US Army Institute for Research in Management Information,
Communications, and Computer Sciences, ASQG-GI-92-012, 31 August 1992.

Abstract: With regard to software testing in DoD, we can summarize our conclusions
in two fundamental ideas. First, DoD knows how to produce quality software at low
cost. This is because organizations such as DoD STEP, Army STEP, and Software
Engineering Institute have already researched and documented policies for DoD. A few
commercial software developers practice many of the DoD policies and directives now,
and produce quality software (for example, IBM FSC Houston). Second, quality cannot
be tested into software. Only a well-defined, well-disciplined process with a continuous
improvement cycle can ensure software quality. However, testing cannot be underesti-
mated. Systematic testing activities that detect error earliest in the life cycle are neces-
sary to drive process improvement and optimize the development of quality software.
Such testing methods as formal inspection find defects early. This enables cost-effec-
tive error resolution, identification and removal of defect causes, and thus, prevention
of future defect insertion. If practiced with discipline, such methods can evolve a self-
correcting software development process that is stable, modeled, mecasured, and there-
fore, predictable. This development process engineers quality software faster at
reduced cost.

D-13

[Kitchenbam 19861
Kitchenham, B.A., Kitchenham, A.P., and J.P. Fellows. "Effects of Inspections on
Software Quality and Productivity," ICL Technical Journal, Vol. 5, No. 1, May 1986, pop.
112-122.

[Knight 1991]
Knight, John C. and Etheila Ann Myers. "Phased Inspections and their Implementation,"
University of Virginia, Computer Science Report No. TR-91-10. May 12, 1991. Also
published in ACM Software Engineering Notes, Vol. 16, No. 3, Jul. 1991, pp. 29-35.

Abstract: Since the 1970s, non-mechanical review methods have become very popular
as verification tools for software products. Examples of existing review methods are
formal reviews, walkthroughs, and inspections. Another example is Fagan Inspections,
developed in 1976 by Michael Fagan in an effort to improve software quality and
increase programmer productivity. Fagan Inspections and other existing methods have 0
been empirically shown to benefit the software development process, mainly by lower-
ing the number of defects in software early in the development process. Despite this
success, existing methods are limited. They are not rigorous, therefore, they are not
dependable. A product that has been reviewed with an existing method has no quantita-
tive qualities that are ensured by the method used. 0

This thesis presents a new review method, Phased Inspection, that was developed to be
rigorous, reliable, tailorable, heavily computer supported, and cost effective. Phased
Inspection consists of a series of partial inspections termed phases. Each phase is
intended to ensure a single or small set of related properties. Phases are designed to be
as rigorous as possible so that compliance with associated properties is ensured, at least
informally, with a high degree of confidence.

A detailed description of Phased Inspection, and evaluation framework and preliminary
evaluation, and a prototype toolset for support of Phased Inspection is presented.

[Kohli 19751
Kohli, 0. Robert "High-Level Design Inspection Specification," IBM Corp., Kingston,
NY, Technical Report TR 21.601, Jul. 21, 1975.

Abstract: This report is written to be used as a specification for the inspection of high
level design materials. This inspection (called I0) together with the inspections of low
level (detailed) design (11) and code (12) constitute an efficient process for detecting
and removing programming errors prior to any machine testing. The report describes in
detail the process of inspection high level design materials against specific exit criteria.
Satisfaction of the exit criteria constitutes meeting the high level design complete
checkpoint. Thus, 10 provides a checkpoint for management to enable better control of
the programming process. Inspections are applicable in both systems and application
programming environments.

[Kohli 1976]
Kohli, 0. Robert and Ronald A. Radice. "Low-Level Design Inspection Specification,"
IBM Corp., Kingston, NY, Technical Report TR 21.629, Apr. 1976.

D-14

0

Abstract: Examination of program design by people other than the designer is recog-
nized as a tangible method for improving quality in programming. This report is
intended for use as a specification for conducting an inspection of detailed (low level)
design. This inspection (called 11), together with the inspection of high level design (10)
which precedes it and cod (12) which follows it, constitute an efficient process for
detecting and removing programming errors prior to any machine testing. Inspections
are applicable in both systems and application programming environments.

[Koontz 19861
Koontz, W.L.G. "Experience with Software Inspections in the Development of Firmware
for a Digital Loop Carrier System," IEEE International Conference on Communications,
1986 Conference Record, pp. 1188-1189.

[Larson 19751
Larson, Rodney R. "Test Plan and Test Case Inspection Specification," IBM Corp.,
Kingston, NY, Technical Report TR21.585, Apr. 4, 1975.

Abstract: Inspections of design and code have proven to be a valuable part of the
development cycle of a software component. Similar benefits can be derived by apply-
ing inspection techniques to 0"e functional verification test plan and test cases. This
report addresses how to apply an inspection process to the functional verification test
plan and test cases.

[Letovsky 1987]
Letovsky, S., J. Pinto, R. Lampert, and E. Soloway. "A Cognitive Analysis of a Code
Inspection," In Empirical Studies of Programming, G. Olson, S. Sheppard, and E.
Soloway, Eds, Ablex Publishers, Norwood, N.J. 1987, pp. 231-247.

[Martin 1990]
Martin, Johnny, and W.T. Tsai. "N-fold Inspection: A Requirements Analysis Technique,"
Communications of the ACM, Vol. 33, No. 2, Feb. 1990, pp. 225-232.

Abstract: N-fold inspection used traditional inspections of the user requirements docu-
ment (URD) but replicates the inspection activities using N independent teams. A pilot
study was conducted to explore the usefulness of N-fold inspection during require-
ments analysis. A comparison of N-fold inspection with other development techniques
reveals that N-fold inspection is a cost-effective method for finding faults in the URD
and may be a valid technique in the development of mission-critical software systems.

[McCormick 1981]
McCormick, K.K. "The Results of Using a Structured Methodology, Software
Inspections, and a New Hardware/Software Configw'ation on Application Systems,"
Second National Symposium in EDP Quality Assurance, 1981. DPMA Educational
Foundation, U.S. Professional Development Institute, Inc., 12611 Davon Drive, Silver
Spring, MD 20904.

D-15

[McKissick 19841
McKissick, John Jr., Mark J. Somers, and Wilhelmina Marsh. "Software Design
Inspection for Preliminary Design," COMPSAC '84: 1984 Computer Software and
Applications Conference, Las Vegas, NV, Jul. 1984, pp. 273-281.

Abstract: The continuing need for improved computer software demands improved
software development techniques. A technique for the inspection of preliminary soft-
ware designs is described in this paper. Experience and results from the application of
this technique are presented.

[Morakabati 1993]
Morakabati, Reza. "PCTE-based Inspection Tool -Design and Implementation," Bull
USARL Research Report, RAD/USARL/93018, 1993.

[Myers 1978]
Myers, Glenford J. "A Controlled Experiment in Program Testing and Code
Walkthroughs-Inspections," Communications of the ACM, Vol. 21, No. 9, Sep. 1978, pp.
760-768.

Abstract: This paper describes an experiment in program testing, employing 59 highly
experienced data processing professionals using seven methods to test a small PL/1 0
program. The results show that the popular code walkthrough/inspection method was
as effective as other computer-based methods in finding errors and that the most effec-
tive methods (in terms of errors found and cost) employed pairs of subjects who tested
the program independently and then pooled their findings. The study also shows that
there is a tremendous amount of variability among subjects and that the ability to detect
certain types of errors varies from method to method.

[NASA 1983]
National Aeronautics and Space Administration. "Guidelines for Software Inspections,"
NASA Contractor Report 166521, 1983.

Scope: This document describes the application of Software Inspections as a means of
Software Quality Assurance for use on software development projects at NASA/AMES
Research Center, Moffett Field, California. These procedures have been adapted from
original procedures and samples published by IBM in 1976. The procedures and mate-
rials were researched, adapted, tested, and documented for NASA/Ames by Informat- 0
ics Professional Services.

[NSAM 1986]
National Security Agency/Central Security Service Software Acquisition Manual, NSAM
81-2, Fort George G. Meade, Maryland, May 15, 1986.

Abbreviated Foreward: When NSA Manual 81-2 was published in 1978, it estab-

lished Agency policies and procedures for managing the acquisition of software. Since
then, the management methodology described in the Manual has been used on hun-
dreds of projects to improve the manner in which we acquire software systems.

0

D-16

This second edition of the Manual continues our efforts to develop better software
products. It is not a radical departure from the original Manual, but it does bring the
policies up-to-date. During the past seven years, we have received many recommenda-
tions and suggestions for improvement, and we have incorporated many of them in this
second edition.

The policies in this Manual define the roles and responsibilities of Software Acquisi-
tion Managers and Software Development Managers. They require planning prior to
development, specification of software before coding, reviews to assess progress, test-
ing, and formal acceptance of software end products. Most of all, the Manual requires a
disciplined, structured approach to software acquisition management.

[NSAM 19871
National Security Agency/Central Security Service Software Product Standards Manual,
NSAM 81-3/DOD-STD-1703(NS), Fort George G. Meade, Maryland, April 15, 1987.

Abbreviated Foreward: This manual is a companion volume to NSA Manual 81-2,
the NSA/CSS Software Acquisition Manual. For in-house software development, it is
called NSA Manual 81-3, NSA/CSS Software Product Standards Manual. For con-
tracted software acquisition, the document is called DOD-STD-1703(NS), Software
Product Standards. It provides outlines of required documents, programming standards,
and descriptions of recommended software design methodologies. It also identifies
Data Item Descriptions recommended for use in contracted software acquisition.

[O'Neill 1991]
O'Neill, Don. "What is the Standard of Excellence?" IEEE Software, May 1991, pp. 109-
111.

[Peele 1982aJ
Peele, R. "Code Inspections at First Union Corporation," COMPSAC '82: 1982 Computer
Software and Applications Conference, Chicago, IL Nov. 8-12, 1982, pp. 445-446, IEEE
Computer Society Press.

Abbreviated Introduction: During 1980, a task force was formed within the Systems
Development Division of First Computer Services to examine the coding and testing
functions and to recommend ways to increase productivity and improve the quality of
these functions while maintaining high staff morale. The task force evaluated the
Design and Code Inspection process developed by Mike Fagan of IBM and concluded
that this approach offered [several] potential quality assurance benefits.

[Peele 1982b]
Peele, R. "Code Inspection Pilot Project Evaluation," Second National Symposium in EDP
Quality Assurance, DPMA Educational Foundation, U.S. Professional Development
Institute, Inc., 12611 Davon Dr., Silver Spring, MD 20904.

Abstract: At First Computer, a code inspection is conducted after the coding of a pro-
gram or module is complete as indicated by a clean compilation of the program and
prior to unit testing of the program. The completed program specifications and a clean
compilation are the entry criteria for the inspection process. An inspection team at First

D-17

Computer consists of four members: r -e moderator and three inspectors. The modera-
tor is the key person in the process with the responsibility to ensure the best possible
review of the program. The moderator approves the 'team members for the inspection
and makes the necessary decisions related to scheduling and conducting the sessions.
The moderator is the facilitator of the inspection meetings but is also an active partici-
pant charged with finding defects. The moderator must log all defects found during the
sessions, ensure that all defects found are corrected by the author, and decide whether
or not to reinspect the code.

[Reeve 19911
Reeve, J.T. "Applying the Fagan Inspection Technique," Quality Forum, Vol. 17, No. 1,
Mar. 1991, pp. 40-47.

Abstract: This paper asks and briefly explains what Fagan inspection is, and how it
differs from more established techniques. It proposes how the technique may be used as
an integral part of the product appraisal process from initial proposal to release to cus-
tomer. A proven plan of action for establishment of the technique is also proposed,
together with evidence of its success.

[Remus 1984]
Remus, Horst. 1984. "Integrated Software Validation in the View of Inspections/
Reviews," Software Validation, H.L. Hausen, ed., pp. 57-64, Elsevier, Amsterdam.

Abstract: The Software Development Process is being looked at as to the specific con-
tribution of inspections/reviews to the discovery of wrong design directions or imple-
mentations. The benefits are evaluated under the aspects of quality/productivity
improvement and/or cost savings.

[Runge 19821
Runge, B. "The Inspection Method Applied to Small Projects," 6th International
Conference on Software Engineering, 1982, pp. 416-417.

Abstract: The Inspection Method is a quality-control for written material. It is used on
large projects and takes 3 to 8 persons for correct use. This excludes small projects with
less than three persons from proper inspection. This paper shows how the personnel
restriction may be circumvented in small projects. An example of inspection in a small
project (writing a report) is given.

[Russell 19911
Russell, Glen W. "Experience with Inspection in Ultralacge-Scale Developments," IEEE
Software, Vol. 8, No. 1, Jan. 1991, pp. 25-31.

Abbreviated Introduction: ... inspections can be very cost-effective and highly bene-
ficial, even when scaled up for ultralarge projects. Here I present quantitative results
based on a 1988 study of inspection of 2.5 million lines of high-level code at Bell-
Northern Research.

The data represent one of the largest published studies in the industry and confirm that
code inspection is still one of the most efficient ways to remove software defects. In the

D-18

box on pp. 28-29, 1 describe how to successfully introduce inspections in large-scale

production environments.

[Schneider 1992]
Schneider, G. Michael, Johnny Martin, and W.T. Tsai "An Experimental Study of Fault
Detection in User Requirements Documents," ACM Transactions on Software
Engineering and Methodology, Vol. 1, No. 2, Apr. 1992, pp. 188-204.

Abstract: This paper describes a software engineering experiment designed to confirm
results from an earlier project which measured fault detection rates in user require-
ments documents (URD). The experiment described in this paper involves the creation
of a standardized URD with a known number of injected faults of specific type. Nine
independent inspection teams were given this URD with instructions to locate as many
faults as possible using the N-fold requirements inspection technique developed by the
authors. Results obtained from this experiment confirm earlier conclusions about the
low rate of fault detection in requirements documents using formal inspections and the
advantages to be gained using the N-fold inspection method. The experiment also pro-
vides new results concerning variability in inspection team performance and the rela-
tive difficult of locating different classes of URD faults.

[Sherif 1992]
Sherif, Joseph S. and John C. Kelly. "Improving Software Quality Through Formal
Inspections," Microelectronics and Reliability, Vol. 32, No. 3, Mar. 1992, pp. 423-431.

Abstract: The software inspection process was created for the dual purpose of improv-
ing software quality and increasing programmers' productivity. This paper puts for-
ward formal inspections as an alternative to and a better method than technical
walkthroughs in the software lifecycle reviewing process. Examples of benefits gained
in the development of defect-free software by utilizing formal inspections are cited.

[Shirey 1992]
Shirey, Glen C. "How Inspections Fail," 9th International Conference on Testing
Computer Software, Jun 15-18, 1992, Washington DC, pp. 151-159.

Abstract: This paper discusses an experience in the application of inspections in soft-
ware development and how a concentration on the mechanics of the technology rather
than acting on the information it provides failed to improve product quality. In this
paper practitioners will find a comprehensive inspection model used to audit the
inspection practices of the group studied. Managers will find examples of how to inte-
grate the information provided by inspections into their Software Development Pro-
cess.

[Stevens 1989]
Stevens, Scott M. "Intelligent Interactive Video Simulation of a Code Inspection,"
Communications of the ACM, Jul. 1989, Vol. 21, No. 7, pp. 832-843.

Abstract: The need for technical solutions to learning, in the software engineering
field is increasing. The Advanced Learning Technologies Project (ALT) has developed
a highly interactive, high-fidelity simulation of group process communication. The first

D-19

0

course demonstrating these techniques is on the formal technical review known as code
inspection.

[Tomayko 1993]
Tomayko. James E., and James S. Murphy, "'Materials for Teaching Software Inspections,"
Software Engineering Institute, Carnegie-Mellon University, Pittsburgh, PA. CMU/SEI-
93-EM-7, Feb. 1993.

Preface: This educational materials package was developed for instructors of software
verification techniques in graduate and undergraduate software engineering courses,
and for those who teach industrial continuing education courses on the meaning and
methods of software inspections.

Software inspections are a low-tech, highly effective verification technique. Research
has consistently shown that the defect detection rate of inspections is higher than that of
many traditional testing techniques. This package includes materials for demonstrating
how to perform an inspection and also for "selling" students on the effectiveness of
inspections. It complements EM-5, Scenes from Software Inspections, providing addi-
tional background material and exercises for using that set of educational materials.

Materials for Teaching Software Inspections contains the following: 1) Introductory
essay on the history and results of software inspections, 2) Annotated bibliography, 3)
Teaching suggestions for the instructor, 4) Inspection materials: code, report forms, and
actual results, 5) Video: Software Inspections: Utility or Futility, a report on inspection
results on an actual project, and 6) Video: Candid Inspection, which shows portions of
an actual inspection.

[Tripp 19911
Tripp, Leonard L., William F Struck, and Bryan K. Pflug, "The Application of Multiple
Team Inspections on a Safety-Critical Software Standard," 4th Software Engineering
Standards Application Workshop, May 20-24, 1991, San Diego, CA, pp. 106-111.

Abbreviated Introduction: This paper discusses the application of multiple team
inspections to improve the technical review and quality of a safety-critical software
standard. Inspections provide a structured and manageable discipline to an often ad-hoc
technical review process.

The discussion includes material on the background of the standard and its revision, the
inspection process, the application of a multiple team approach to inspections and
results, lessons learned, and conclusions.

[van Emden 1992]
van Emden, Maarten H. "Structured Inspections of Code," Software Testing, Verification
and Reliability, Sep. 1992, Vol 2, No. 3, pp. 133-153. 0

Abstract: Cleanroom programming and code inspections independently provide evi-
dence that it is more efficient to postpone the testing of code to a later stage than is usu-
ally done. This paper argues that an additional gain in quality and efficiency of
development can be obtained by structuring inspections by means of an inspection pro-

D-20

tocol. The written part of such a protocol is prepared by the programmer before the
inspection. It is modelled on 'Floyd's method for the verification of flowcharts. How-
ever, the protocol differs from Floyd's method in being applicable in practice. Struc-
tured inspections gain this advantage by not attempting to be a proof; they are no more
than an articulation of existing forms of inspection. With the usual method of structured
programming it may be difficult to prepare the inspection protocol. On the other hand,
'assertion-driven programming' (of which an example is included in this paper) not
only facilitates protocol preparation, but also the coding itself.

[Weinberg 19841
Weinberg, Gerald M. and Daniel P. Freedman. "Reviews, Walkthroughs, and Inspections,"
IEEE Transactions on Software Engineering, Vol. 12, No. 1, Jan. 1984, pp. 68-72.

Abstract: Formal technical reviews supply the quality measurement to the "cost effec-
tiveness" equation in a project management system. There are several unique formal
technical review procedures, each applicable to particular types of technical material
and to the particular mix of the Review Committee. All formal technical reviews pro-
duce reports on the overall quality for project management, and specific technical
information for the producers. These reports also serve as an historic account of the
systems development process. Historic origins and future trends of formal and informal
technical reviews are discussed.

[Weller 1992a]
Weller, Edward F. "Experiences with Inspections at Bull HN Information Systems," 4th
Annual Software Quality Workshop, Aug. 2-6, 1992, Alexandria Bay, NY.

Abstract: Bull's experiences with the inspection process over the last two years will be
discussed by using four case studies. Several successes as well as one "failure" are
included. Data for requirements, design, and code inspections, and how it has been
used outside the inspection process, are also presented.

[Weller 1992b]
Weller, Edward F. "Lessons Learned from Two Years of Inspection Data," 3rd
International Conference on Applications of Software Measurement, Nov. 15-19, 1992, La
Jolla, CA, pp. 2.57-2.69. Also published in Crosstalk: The Journal of Defense Software
Engineering, No. 39, Dec. 1992, pp. 23-28.

Abstract: Bull HN Information System's Major Systems Division in Phoenix initiated
an inspection program in April 1990. Data collection was crucial to early buy-in to the
inspection process. During the last 2 years, this data has been used to highlight poten-
tial direction for continuing process improvement. The data is also the basis for con-
tinuing development staff and management commitment to the program. Various
metrics and the conclusions we have drawn from them will be discussed. A "case
study" approach will highlight both the "good" and "bad" uses of inspection data for
software process management.

D-21

I 0ir

[Wenneson 19851
Wenneson, G. "Quality Assurance Software Inspections at NASA Ames: Metrics for
Feedback and Modification," Tenth Annual Software Engineering Workshop, Dec.10,
1985, Goddard Space Flight Center.

[Youngblood 1991]
Youngblood, P.A. "Naval Ocean System Center (NOSC) Software Formal Inspection
Process, Version 1.0," Technical Document 2246, December 1991.

Abbreviated Introduction: This document is a detailed presentation of the Naval
Ocean Systems Center (NOSC) software formal inspection process. The inspection
process identifies defects in requirements, design, test plans, software, and user docu-
mentation early in the software development process.

The main text defines each element of the inspection process and discusses an imple-
mentation strategy for the process at NOSC. Appendix A lists references and applica-
ble DoD standards. Appendix B presents detailed formal inspection procedures.
Appendix C gives sample formal inspection checklists. Appendix D gives sample for-
mal inspection forms. Appendix E outlines the formal inspection metrics (FIM) data-
base maintained by the chief moderator, who verifies that projects are implementing the
process correctly and identifies areas for improvement of the inspection process.
Appendix F outlines a suggested project database. Appendix G discussed metric analy-
sis of inspection data. Appendix H outlines an inspection plan for the inspection pro-
cess.

D.2 REVIEW/WALKTHROUGH-RELATED REFERENCES

[Bias 1991]
Bias, Randolph. "Walkthroughs: Efficient Collaborative Testing," IEEE Software, Vol. 8,
No. 5, Sep. 1991, pp. 94-95.

[Hart 19821
Hart, J. "The Effectiveness of Design and Code Walkthroughs," COMPSAC '82: 1982 0
Computer Software and Applications Conference, Chicago, IL Nov. 8-12, 1982, pp. 515-
522, IEEE Computer Society Press.

[Lebman 1976]
Lehman, John H. "Software Engineering Techniques in Computer Systems
Development," Department of the Air Force, Report No.: SM-ALC/ACD-76-04. 15 Dec. 0
1976.

[Lemos 1979]
Lemos, Ronald S. "An Implementation of Structured Walkthroughs in Teaching COBOL
Programming," CACA, Vol. 22, No. 6, Jun. 1979, pp. 335-340.

D-22

I• I I I p i0

[MILS 1995]
Military Standard for Technical Reviews and Audits for Systems, Equipments, and

* Computer Software. United States Department of Defense. 1985 MIL-STD- 152 lB.

[Myers 1988]
Myers, Ware. "Shuttle Code Achieves Very Low Error Rate," IEEE Software, Vol. 5, No.
5, Sep. 1988, pp. 93-95.

[Parnas 1987]
Parnas, David L. and David M. Weiss. "Active Design Reviews: Principles and Practices,"
Journal of Systems and Software, No. 7, 1987, pp. 259-265.

[Remus 1979]
Remus, Horst, and S. Zilles. "Prediction and Management of Program Quality," 4th
International Conference on Software Engineering, Sep. 1979, pp. 341-350, IEEE
Computer Society Press.

Abstract: Techniques such as design reviews, code inspections, and system testing are
commonly being used to remove defects from programs as early as possible in the
development process. The objective of the authors is to demonstrate that predictors can
be devised which tell us how well defects are being removed during the defect removal
process.

[Shelly 19821
Shelly, Gary B. and Thomas J. Cashman. 1982. "Implementation of Structured
Walkthroughs in the Classroom," Section 12 of Handbook of Walkthroughs, Inspections,
and Technical Reviews: Evaluating Programs, Projects, and Products, 3rd ed., pp. 425-
434. Boston, MA: Little, Brown and Company.

[Waldstein 1976]
Waldstein, N.S. "The Walk-Thru--A Method of Specification, Design, and Review," IBM
Corp., Poughkeepsie, NY, Technical Report TR 00.2436, 1976.

[Weinberg 1971]
Weinberg, Gerald M. 1971. The Psychology of Computer Programming. NY: Van
Nostrand Reinhold.

D.3 SOFTWARE ENGINEERING TEXTBOOKS DISCUSSING REVIEWS,

WALKTHROUGHS AND INSPECTIONS

[Dunn 1984]
Dunn, Robert H. 1984. Software Defect Removal. NY: McGraw-Hill Book Co. pp. 102-
125.

D-23

[Dyer 1992
Dyer, Michael. 1992. The Cleanroom Approach to Quality Software Development. NY:
John Wiley & Sons. pp. 96-99.

[Gib 1963]
Gilb, Tom. 1988. Principles of Software Engineering Management. Reading, MA:
Addison-Wesley Publishing Co. pp 205-226, pp. 403-422.

[Grady 19921
Grady, Robert B. 1992. Practical Software Metrics for Project Management and Process
Improvement. Prentice Hall, Englewood Cliffs, NJ.

[Humphrey 1989]
Humphrey, Watts. 1989. Managing the Software Process. Reading, MA: Addison-Wesley
Publishing Co. pp. 463-486.

[Jones 1986]
Jones, Capers. 1986. Programming Productivity. NY: McGraw-Hill Book Co.

[Jones 1991]
Jones, Capers. 1991. Applied Software Measurement. NY: McGraw-Hill Book Co.

[Myers 1976]
Myers, Glenford J. 1976. Software Reliability: Principles and Practices, NY: John Wiley
& Sons. pp. 17-25.

[Pressman 1992]
Pressman, Roger S. 1992. Software Engineering: A Practitioner's Approach. 3rd Edition.
NY: McGraw-Hill Book Co. pp. 558-570.

[Yourdon 19891
Yourdon, Edward. 1989. Structured Walkthroughs, 4th Edition. Englewood Cliffs, NJ:
Yourdon Press. 0

0

D-24

LIST OF REFERENCES

[Ackerman 1989]

Ackerman, A. Frank, Lynne S. Buchwald, and Frank H. Lewski. "Software Inspections:
An Effective Verification Process," IEEE Software, Vol. 6, No. 3, May 1989, pp. 31-36.

[Bisant 1989]

Bisant, David B., and James R. Lyle. "A Two-Person Inspection Method to Improve
Programming Productivity," IEEE Transactions on Software Engineering, Vol. 15, No.
10, Oct. 1989, pp. 1294-1304.

[Blakely 1991]
Blakely, Frank W. and Mark E. Boles. "A Case Study of Code Inspections," Hewlett-
Packard Journal, Vol. 42, No. 4, Oct. 1991, pp. 58-63.

[Boehm 1987]

Boehm, Barry W. "Improving Software Productivity," IEEE Computer, Vol. 20, No. 9,
September 1987, pp. 43-57.

[Brykczynski 1992]

Brykczynski, Bill, Reginald N. Meeson, Christine Youngblut, and David A. Wheeler.
"Software Testing Initiative for Strategic Defense Systems," Institute for Defense Anal-
yses, IDA Paper P-2701, March 1992.

[Brykczynski 1993]

Brykczynski, Bill, Reginald Meeson, and David A. Wheeler. May 4, 1993. "Memoran-
dum for David Harris, subject, GPALS Software Standard."

[CRLCMP 1992]
Department of Defense (DoD) Strategic Defense Initiative Organization (SDIO). May
29, 1992. "GPALS Computer Resources Life Cycle Management Plan (GPALS/CRL-
CMP)." SDI-S-SD-91-000001-01. Washington, DC: DoD SDIO.

[Deming 1986]
Deming, W. Edwards. Out of the Crisis, MIT Press, 1986.

[Dion 1993]

Dion, Ray. "Process Improvement and the Corporate Balance Sheet," IEEE Software,
Vol. 10, No. 4, July 1993, pp. 28-35.

References- I

[DoDD 5000.1]
Department of Defense Directive 5000.1., "Defense Acquisition," 23 Feb 1991.

[DoDI 5000.2]
Department of Defense Instruction 5000.2, "Defense Acquisition Management Policies
and Procedures," 23 Feb 1991.

(DoD-STD-2167A]
Department of Defense Standard 2167A, "Defense System Software Development," 29
February 1988.

[DoD-STD-2168]
Department of Defens Standard 2168, "Defense System Software Quality Program,"
29 April 1988.

[DoD-STD-7935A]
Department of Defense Standard 7935A, "DoD Automated Information Systems (AIS)
Documentation Standards," 31 October 1988.

[Doolan 1992]

Doolan, E. P. "Experience with Fagan's Inspection Method," Software--Practice and
Experience, Vol. 22, No. 2, Feb. 1992, pp. 173-182.

[Fagan 1976a]
Fagan, Michael E. "Design and Code Inspections to Reduce Errors in Program Devel-
opment," IBM Systems Journal, Vol. 15, No. 3, 1976, pp. 182-211.

[Fagan 1976b]
Fagan, Michael E. "Design and Code Inspections and Process Control in the Develop-
ment of Programs," IBM Corp., Poughkeepsie, NY, Technical Report TR 00.2763, Jun.
10, 1976.

[Fagan 1986]
Fagan, Michael E. "Advances in Software Inspections," IEEE Transactions on Software
Engineering, Vol. 12, No. 7, July 1986, pp. 744-751.

[Freedman 1982]
Freedman, Daniel P. and Gerald M. Weinberg. 1982. Handbook of Walkthroughs, In-
spections, and Technical Reviews: Evaluating Programs, Projects, and Products. 3rd ed.
Boston, MA: Little, Brown and Company.

[Gilb 1987]

Gilb, Tom. 1987. Principles of Software Engineering Management, Reading, MA: Ad-
dison-Wesley Publishing Co.

References -2

[Gilb 1991]
Gilb, Tom. "Advanced Defect Prevention Using Inspection, Testing, and Field Data as

* a Base," American Programmer, May 1991, pp. 38-45.

[Grady 1992]
Grady, Robert B. 1991. Practical Software Metrics for Project Management and Process
Improvement. NJ: Prentice Hall.

[IEEE 1028-19881
IEEE Standard for Software Reviews and Audits, ANSI/IEEE STI) 1028-1988, IEEE
Computer Society, Jun. 30, 1989.

[Jones 1986]

Jones, Capers. 1986. Programming Productivity. NY: McGraw-Hill Book Co.

[Jones 1991]

Jones, Capers. 1991. Applied Software Measurement. NY: McGraw-Hill Book Co.

[Juran 1986]

Juran, J.M. Leadership for Quality, 1986.

[Kelly 1992]

Kelly, John C., Joseph S. Sherif, and Jonathan Hops. "An Analysis of Defect Densities
Found During Software Inspections," Journal of Systems and Software, Vol. 17, No. 2,
Feb. 1992, pp. 111-117.

[Knight 1991]

Knight, John C. and Ethella Ann Myers. "Phased Inspections and their Implementa-
tion," University of Virginia, Computer Science Report No. TR-91-10. May 12, 1991.
Also published in ACM Software Engineering Notes, Vol. 16, No. 3, Jul. 1991, pp. 29-
35.

[MIL-STD-1521B]

Department of Defense Military Standard 152 1B, "Technical Reviews and Audits for
Systems, Equipments, and Computer Software," 4 June 1985.

[Myers 1988]

Myers, Ware. "Shuttle Code Achieves Very Low Error Rate," IEEE Software, Vol. 5,
No. 5, Sep. 1988, pp. 93-95.

[NSAM 81-21

National Security Agency Manual 81-2, "NSA/CSS Software Acquisition Manual," 15
May 1986, Fort George G. Meade, Maryland: NSA.

[NSAM 81-3]

References-3

National Security Agency Manual 81-3/DoD-STD 1703(NS), 15 April 1987. Two titles;
the National Security Agency (NSA) refers to this for in-house development as "NSA
Manual 81-3, NSA/CSS Software Product Standards Manual." For contracted software
acquisition the document is called "DoD-STD-1703(NS), Software Product Standards."

[Paulk 1993a]

M.C. Paulk, B. Curtis, M.B. Chrissis, and C.V. Weber, "Capability Maturity Model for
Software, Version 1.1," Software Engineering Institute, CMU/SEI-93-TR-24, February
1993.

[Paulk 1993b]

M.C. Paulk, C.V. Weber, S. Garcia, M.B. Chrissis, and M. Bush, "Key Practices of the
Capability Maturity Model, Version 1.1," Software Engineering Institute, CMU/SEI-
93-TR-25, February 1993.

[Russell 19911

Russell, Glen W. "Experience with Inspection in Ultralarge-Scale Developments,"
IEEE Software, Vol. 8, No. 1, Jan. 1991, pp. 2 5 -3 1.

[SDD 1992]

Department of Defense Standard SDD, "Draft Military Standard: Software Develop-
ment and Documentation," 22 December 1992.

[SDIO 1992]

Strategic Defense Initiative Organization. December 17, 1992 (change pages) and Sep-
tember 4, 1992. GPALS Software Standards.

[SDIO 1993]

Strategic Defense Initiative Organization. April 1, 1993. Revised Software Trust Prin-
ciples.

[Taylor 1993]

Taylor, Carol. August 5, 1993. Personal communication between David A. Wheeler
with Carol Taylor (National Security Agency).

[Weinberg 1984]

Weinberg, Gerald M. and Daniel P. Freedman. "Reviews, Walkthroughs, and Inspec-
tions," IEEE Transactions on Software Engineering," Vol. 12, No. 1, Jan. 1984, pp. 68-
72.

[Weller 1991]

Weller, Edward F. "Lessons Learned from Two Years of Inspection Data," 3rd Interna-
tional Conference on Applications of Software Measurement, November 15-19, 1992,
La Jolla, CA, pp. 2.57-2.69.

References -4

[Wheeler 1993]
Wheeler, David A. August 6, 1993. "Memorandum for Tom Barrett, Subject, GPALS
CRLCMP Walk-through Section."

[Yourdon 1989]
Yourdon, Edward. 1989. Structured Walkthroughs, 4th Edition. Englewood Cliffs, NJ:
Yourdon Press.

[Youngblut 1989]
Youngblut, Christine, Bill R. Brykczynski, John Salasin, Karen D. Gordon, and Regi-
nald N. Meeson. SDS Software Testing and Evaluation: A Review of the State-of-the-
Art in Software Testing and Evaluation with Recommended R&D Tasks. Institute for
Defense Analyses, IDA Paper P-2132, February 1989.

References-5

LIST OF ACRONYMS

ASM Applications of Software Measurement (conference)

AT&T American Telephone & Telegraph

BE Brilliant Eyes

BMD Ballistic Missile Defense

BMDO Ballistic Missile Defense Organization

BNR Bell Northern Research

CDR Critical Design Review

CMM Capability Maturity Model

CRLCMP Computer Resources Life Cycle Management Plan

CSC Computer Software Component

CSCI Computer Software Configuration Item

CSU Computer Software Unit

DEM/VAL Demonstration/Validation

DID Data Item Description

DoD Department of Defense

EMD Engineering and Manufacturing Development

FCA Functional Configuration Audit

FQR Formal Qualification Review

GPALS Global Protection Against Limited Strikes

HWCI Hardware Configuration Item

IBM International Business Machines

IDA Institute for Defense Analyses

IEEE Institute for Electrical and Electronics Engineers

KLOC K (thousand) Lines of Code

Acronyms- 1

KPA Key Process Area

NASA National Aeronautics and Space Administration

NSA National Security Agency

NSAM National Security Agency Manual

PCA Physical Configuration Audit

PDL Program Design Language

PDR Preliminary Design Review

PRR Production Readiness Review

RFP Request for Proposals

SCE Software Capability Evaluations

SDD Software Development and Documentation, or Software Design

Document

SDF Software Development Folder 0

SDI Strategic Defense Initiative

SDIO Strategic Defense Initiative Organization

SDP Software Development Plan

SDR System Design Review

SDS Strategic Defense System

SEI Software Engineering Institute

SIRO Software Inspection and Review Organization

SRR System Requirements Review

SRS Software Requirements Specification

SSR Software Specification Review

STAR Software Testing and Review (conference)

TQM Total Quality Management

TRR Test Readiness Review 0

TSM Trusted Software Methodology

Acronyms-2

• I IIIIIIII0

