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ABSTRACT

A class of approximation.s {SN,M} to a periodic function f which uses the ideas of Pad6, or

rational function, approximations based on the Fourier series representation of f, rather than

on the Taylor series representation of f, is introduced and studied. Each approximation SNM

is the quotient of a trigonometric polynomial of degree N and a trigonometric polynomial

of degree M. The coefficients in these polynomials are determined by requiring that an

appropriate number of the Fourier coefficients of SN,M agree with those of f. Explicit

expressions are derived for these coefficients in terms of the Fourier coefficients of f. It is

proven that these "Fourier-Pad6" approximations converge point-wise to (f(x+) + f(x-))/2

more rapidly (in some cases by a factor of 1/k2M) than the Fourier series partial sums

on which they are based. The approximations are illustrated by several examples and an

application to the solution of an initial, boundary value problem for the simple heat equation

is presented.
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1. Introduction. Fourier series are used widely in many branches of applied math-
ematics. For example, they are often used together with separation of variables to con-
struct analytical solutions to boundary value problems for differential equations and
with a variety of spectral methods to find approximate solutions to these problems nu-
merically. For practical purposes, approximate solutions to these problems are often
obtained using only a finite number of the terms in a Fourier series. This trunca-
tion procedure often leads to nonuniformly valid approximations. For example, when
the function being approximated has a point of discontinuity, the Gibbs phenomena is
present. The "oscillations" caused by this phenomena typically propagate into regions
away from the singularity, and, hence, degrade the quality of the partial sum approx-
imation in these regions. Even if the function being modeled is analytic, but has a
region of large slope or curvature, there can be significant oscillations in the partial
sums outside these regions, which again degrade the quality of the approximation.

Recently, Gottlieb and Shu [61 and Gottlieb, et.al. [7] have proposed a way of
overcoming the Gibbs phenomena. Their technique involves the construction of a new
series using the Gegenbauer polynomials CA(x). For a function f that is analytic on
the interval [-1, 1], but is not periodic, they prove that their technique leads to a series
which converges exponentially to f in the maximum norm. To do this, they require
that the parameter A, which appears in the weight factor (1 - X2)"- 1/ 2, grows with
the number of Fourier modes considered. As we shall demonstrate below, the family
of approximations we shall introduce can be defined explicitly in terms of the known
Fourier coefficients. This will prove to be particularly useful for certain applications (as
we shall demonstrate) when the Fourier coefficients are themselves functions of one or
more other variables. Although the approximations we shall define do not "eliminate"
the Gibbs phenomena, they do mitigate its effect, as we shall show. This is especially
true outside a "small" neighborhood of a point of discontinuity of f, where, for practical
purposes, the "unwanted" oscillations can essentially be eliminated.

To fix notation, we let f (x) be a piece-wise smooth, 2r-periodic function. Then
we can associate with f(x) its Fourier series S(x) defined by

(1) S(x) = ao/2 + EZ(an cos(nx) + bn sin(nx)),

(2) an = (1/0)L f(x)cos(nx)dx, bn = (1,r) f(x)sin(nx)dx,

n = 0, 1, 2,.... (For some of our formulas below, it is convenient to regard the coefficients
{an, bn} as being defined by (2) for negative as well as positive values of n. Thus, a-n =
an and b_. = -bn for all integers n.) It is well known (see [2], for example) that S(x)
converges to f(x) at each point x where f is continuous and to (f(x+)+f(x- ))/2 at each
point z where f is not continuous. For practical purposes, f(x) is often approximated
by its Fourier partial sum SN,O(z) defined by

N
(3) SN,o(x) = ao/2 + EZ(an cos(nx) + bn sin(nx)).

n=1



We now define a class of approximations to f which uses the ideas of Pad6 approx-
imants (see, e.g., [1]), except that the approximations are based on the Fourier series
representation of f, rather than on the Taylor series representation of f. Thus, for any
two non-negative integers N and M, we define a family of "Fourier-Padk" approxima-
tions SN,M(X) by

(4) SN,M(Z) = Ao/2 + NFI(A, cos(nx) + B, sin(nx))
1 + ~E', (C, cos(mx) + D, sin(mx))

The 2M + 2N + 1 constants {An, B,,, Cm, D.} which appear in the definition of SN,m
are determined by the condition that 2M + 2N + 1 of the Fourier coefficients of SN,M
agree with those of f, i.e.

(5) (1/7r)/.. SN,M(x) cos(jz)dx = ai, 0 < j •_
A. J

(6) (1/7r) J SNM(x)sin(kx)dx = bk, 1 < k < K
W -$r

where J+K = 2M+2N.
The idea of constructing Pad6 approximations based on series representations of

functions other than the classical power series representation has been suggested and
studied by several other investigators. For example, Maehly [9] has suggested an ap-
proach to determine the coefficients in rational approximations based on Chebyshev
series, and this approach has since been described in numerical terms, with examples,
by Ralston[10] and by Fike[5]. An account of the basic theory of such approximations
has been given by Cheney [3], who considered the more general case of expansions in
terms of a basis {lj}, whose elements satisfy relations of the form ýPjwj = Eaij/,Wk.
Clenshaw and Lord [4] have reviewed rational approximations based on Chebyshev series
and present a well-conditioned method for constructing the elements of a "Chebyshev-
Pad6" table. The general form of a Fourier-Pad6 representation, such as equation (4),
has also been suggested by Cheney. He has proven the existence of a rational trigono-
metric function which "best" approximates a continuous function f, but does not discuss
any detailed algorithms for the computation of the coefficients, rates of convergence of
the approximations, etc.

In the sections 2-4 below we consider the special case of equation (4) when M = 1.
In particular, in sections 2-3 we develop explicit formulas for the coefficients which
appear in the definition of SN,1 in terms of the Fourier coefficients of f. Several results
concerning the behavior and convergence of the approximations {SN,1} are presented in
section 4. In sections 5-6, the results of sections 2-4 are generalized to values of M > 2.
In section 7 the approximations are applied to a simple initial, boundary-value problem
for the heat equation. Some observations and insights about this class of approximations
are discussed in section 8.
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2. Odd functions of x. Since f can be expressed as the sum of an even function
of x and an odd function of x, it is sufficient to consider separately the cases when f
is either even or odd. Thus, in this section, we consider the case when f is an odd
function of x, while the case of an even function will be discussed in the next section.
For this case, the Fourier series of f can be expressed as (1) with each a,, = 0, n > 0,
and we define a class of Fourier-Pad6 approximations SN,M(x) of the form

(7) I= B,, sin(nx)(7) SN,M (X) = n_- = • co~ e )
J'AY1~/1 + E.=1C. cos(MX)

In this section we examine in detail the case M = 1. The case M > 2 will be discussed
in section 5. Thus we consider first approximations of the form
(8) SN,I(-) n=- B,, sin(nx)

1 + C+ cos(x)

The constants {B1, B2,... , BN, C1I are determined by conditions (6), which for this
case become

N
(9) dA:dj Bj -bk, k -- 1 .,N + 1,

j--1

where

f: sin(jx) sin(kx). = d,,k.

4,,f= (1 I 1 +C cos(X)

To solve (9), we first use the identity

sin(jx) sin(kx) = (1/2)(cos((k - j)x) - cos((k + j)x)

to express the coefficients {dkj } as

(10) dk =- Ilk-=l,1 - Ik+j,1, where Inj = (1/7r) 1 c"s() dx n > 0.

Assuming that 0 < C2 < 1, we find (see, e.g., [8], p. 113)

1 +_ p2, for n > 0, where p = C1  or C1 = p

1- 2' 1,+ p 2.

Using this result in (10) we can write

dk,, = pk-J(1 + p2)(1 + p2 + ... + p2j- 2 ), for k > j.

Using these expressions, (9) can be expressed in matrix-vector form as( B1

(12) B 2  - 1
) 1 +p 2 (2

BN bN+I



where the (N + 1) x N matrix W is defined by

1 p p2  ... p-

p +p2  p(l+p 2 ) ... pN- 2(l+p 2)
p2  p(1+p) 1 + p2 + .. pN-3 (l + p2 + p4 )

pN- pN- 2 (1+p 2 ) + p2 + + P2-2

pN pNv-(l + p2) p(1 + P2 +'" + P2N-2)

To solve (12), we first note that if we subtract p times the next to last equation from
the last equation we obtain the relation 0 (bN+1 - pbN)/(l + p2), from which we find
(assuming bN 3 0)

bN+1 2p 2bNbN+1
(13) P=-g-Nor C,= 1+.p2 b2N+ PN+1

In a similar manner, subtracting p times the (k - 1)th equation from the kPh equation
we find

B=bk - pbk-i NBk 1+ p2 E pk-JBj, 1l< k_<N.
j=k+l

Using this recursive definition of the {Bk}, we can use induction to show that the {Bk}
are given explicitly by

(14) Bk = bk - p(bk- bk+) = bk + C1 k<N.1 + P2 2•(k1+b+)1< _N

(We note that equations (14) also follow from equating (8) to EN+. bj sin(jx), multiply-
ing by 1 + C1 cos(x), and equating coefficients of sin (nx) on each side of the resulting
expression, for 1 < n < N.) Thus, the coefficients {Bk} and C1, which appear in
the definition (8) of SN,1, are completely defined in terms of the coefficients {b,} by
equations (13) and (14).

Example 1: As an example of these results, we let f(x) = x12, for -7r < x < 7r,
and f(x + 27r) = f(x). Then bk = (-1)&+l/k, for k = 1,2,.... Using the formulas
above, we find p = -N/(N + 1) and hence

S 2N(N + 1) B _3N(N + 1)+2
2N(N + 1) 1 -4N(N+1)+2'

--T- =2N(N +1) k _ 1- kk=2,3, ... ,N.

Explicit values for C1 and B1, ... , BN for a few small values of N are shown in Table I.
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TABLE I (Example 1: M = 1)

N C, B1  B2  B3  B4  Bs B6
1 4/5 4/5
2 12/13 10/13 3/26
3 24/25 19/25 7/50 -2/75
4 40/41 31/41 37/246 -4/123 5/492
5 60/61 46/61 19/122 -13/366 3/244 -3/610
6 84/85 64/85 27/170 -19/510 23/1700 -1/170 7/2550

To illustrate these results, in Figure 1 we have plotted the function f(x) (solid line),
along with the approximations S4,o(x) (dashed line) and S3,1(x) (dotted line). As the
figure illustrates, except possibly in a neighborhood of the discontinuities of f, S3,i is
a better approximation to f than is S4,0. In particular, the oscillations present in S4,0
away from the singularities of f have been virtually eliminated in S3,1. However, near
the points of discontinuity of f, the Gibbs phenomenon is still present in S3,1, although
its effect appears to be somewhat less than the corresponding phenomena present in
S 4,0 . We shall discuss this example further in sections 4 and 8.

Before continuing, we briefly note two special cases. First, if bN+j = 0, then p = 0
and hence C1 = 0. Thus Bk = b&, for 1 < k < N, and SNj reduces to the Fourier partial
sum SN,O, for this case. Second, suppose bk = 0 when k is even. In this case, we modify
the form of SN,j and define

(15) SN,1(X) n =f1 B2.,-. sin((2n - 1)x)1 + C2 cos(2x)

Then equations (6) for this case have the same form as (9) with bl, replaced by b2k-1

and dkj = di,k = Ilk-jl - Ik+j-1, from which we find

4j -pk-j (1 + p2)(1 + p 2 + ... + p2j- 2), fork> j.

Using these expressions and the same type of arguments as presented above, we find
for this case (assuming b2-N1 # 0)

2 2"p,= p - , B6 2-N = b2k-1 + -- (b2k-3 + b2k+1), 1 < k < N.
(16) C2 = 1-2- B 2N- 1

(Recall that we have defined b-1 = -bl.)
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3. Even functions of x. When f is an even function of x, its Fourier series has the
form (1) with each bn = 0. Then we define the family of Fourier-Pad6 approximations

(17) SN,M()= ,Ao/2 + EN=I A. cos(nx)

In this section we consider the case M = 1. The case M > 2 will be discussed in section
5. Thus we consider approximations of the form

(18) SNl(:) = 4Ao/2 + E', An cos(nx)
I + C, cos(:)

The requirement that the first N + 2 Fourier coefficients of SN,1 agree with those of f
leads to a system of equations for the N + 2 unknowns {CI, Ao, ... , AN}, which can be
solved using the techniques of section 2. In particular, we find (assuming aN y 0)

2p -a C1(19) CA 1  .,where aN_ = al + E-(ak• + ak+1), 0 <k < N.(19) +, 1 2' hrp aN 2 - -

In the special case when aN+I = 0, we see that p = 0 and hence C1 = 0. Then each
Ak = ak and SN,I(x) = SNo(x) for this case. Also, in the special case that al = 0 when
k is odd, we redefine

(20) SA ,i(:) = A0/2 + EZ=l A2n cos(2nx)

1 + C2 cos(2x)

and find (assuming a2N $ 0)
_____G2N+2C 2

21wer2p a2N.._+ A2k = a2k + -2(a2k-2 + a2k+2), 0 k < N.(21C+ l•p" hr a2N 2 - -

Example 2: As an application of these results, we let f (x) = 1//1 + a cos(w),
where a 2 < 1. Here f is analytic for -7r < x < 7r, but develops a sharp, narrow peak
near : = 0 as a --+ -1. In Table II we have recorded the Fourier coefficients {an} of f,
as well as the coefficients {C 1, Ao, ... , AN} for a few small values of N when a = -0.95.

Table II (Example 2: a = -0.95, M = 1)

N aN C, Ao A, A2  A3  A4
0 2.94734 -0.68380 2.15059
1 1.16518 -0.85289 1.95357 -0.37012
2 0.65289 -0.89142 1.90867 -0.43948 -0.04495
3 0.40050 -0.90812 1.88922 -0.46953 -0.05802 -0.01235
4 0.25636 -0.91741 1.87839 -0.48626 -0.06529 -0.01657 -0.00452
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To illustrate these results, in Figure 2 we have plotted the function f(z) (solid
line), along with the approximations S4,0(x) (dashed line) and S3,1(z) (dotted line). As
the figure illustrates, S3,1 is a noticeably better approximation to f than is $4,0. In
particular, the oscillations present in S4,0 have been virtually eliminated in S3,1. We
shall discuss this example further in sections 4 and 8.

4. Analysis of the Case M = 1. We now prove certain results which express
the asymptotic behavior of the coefficients C1 and {Ak} or {Bk} as N --+ oo, and which
also allow us to make some statements concerning the convergence of the family of
approximations {SN,1}, as N --+ 0o.

It is well known (see [2], for example) that if f has q continuous derivatives on
-7r <z x< ir and the derivative of f of order q + 1 is piece-wise continuous, then the
Fourier coefficients of f are O(1/kq+2 ) as k --- oo. For such a function, we now show
that the coefficients in SN,1 decay as k - oo at a faster rate than the Fourier coefficients
on which they are based.

THEOREM 1. Let f be an odd, 2r-periodic, piece-wise smooth function and let its
Fourier coefficients {bk} satisfy the condition that bk = 0(1/kP), as k --+ oo, where p is
a real, positive number. Then IC11 = 1 + 0(1/N 2 ) and Bk = 0(1/kP+2) as k, N --. 00.
More precisely, let b, #, and -y be constants (independent of k). Then, if bk = (b/kP)(1 +
il/k + 7y/k 2 + 0(1/ k3)), as k - 0o, it follows that

C = -1 + - + 0(1/N 3), Bk= bp 1 ( + p( - (k/N)2)) + 0(2N2  ( kp+ ''''

as k, N --, oo. If f is an even, 2r-periodic, piece-wise smooth function, then these results
hold with bk replaced by ak and Bk replaced by Ak.

Proof: We shall outline the proof only for the case when f is an odd, 2r-periodic,
piece-wise smooth function, since the proof for the case when f is an even function
follows the same line of reasoning. Using the assumed form of the asymptotic behavior
of the coefficients {bk}, we note first that we can write

bN+j = (bl(N + 1)P)(1 + PI(N + 1) + -y/(N + 1)2 + 0(1/(N + 1)1))
(22) = (b/NP)(1 + :)P(1 +/e/(1 + e) + 72/(1 + c)2 + 0(1/N 3 ))

= (b/NP)(1 + (0 -p)c+ (f - 3(p-+ 1) +p(p+ 1)/2)c2 + 0(1/N 3 )),

where we have defined c = 1/N. Then, using this expression and the definition of p in
(13), we can write

bN+l P p+P- 2P
(23) P =-• -- _- L +•2N + 0(1/N3 ), as N - oo,

and hence

C, = 12p' = -1 + -e-+ 0(11N 3), as N --., oo,
1 1+p2  2N 2

as stated in the Theorem.
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In a similar manner, for large values of k we can use the assumed form of the
coefficients {bk} to write

bk*l = (b/(k ± 1)')(1 + //(k - 1) + -1/(k ± 1)2 + 0(l/k))
= (b/kp)(1 ± C)-p(1 + fe/(l ± C) + ye2/(l ± C)2 + 0(1/k 3 ))
= (b/kP)(l + (,:Fp)e+(-ytF(p+ l)+p(p+1)/2)e2 +O(I/k 3 )),

where we have now defined e = 1/k. Using these expressions, along with an analogous
expression for bk and the asymptotic expression above for C1 , in the definition of Bk in
(14), we find for large values of k and N (with k < N)

Bk = bk + (C1/2)(bk4l + bk+1)
= (b/kP){1 +fl + - 2+ 0( 3)

+(1/2)(-1 + p2 /(2N 2) + 0(1/N 3))(2 + 2/0e + (2-y + p + 9)e 2 + 0(f3))}
= -(bp/2)(1/kp+ 2) (1 + p(l - (k/N)2 )) + O(1/kP+3 ),

which completes our proof.
Thus, Theorem 1 establishes that the coefficients {B,} in the approximations SN,i

decay to zero more rapidly (by a factor of k- 2) than the coefficients in the partial sum
SN,O on which they are based.

Before continuing, we remark that results very similar to those stated in Theorem
1 hold if the coefficients {bk} of f have the same asymptotic form as that stated in the
theorem, except for a multiplicative factor of (-I)k, i.e., if bk = (b/kP)(-1)k(1 +8/1k +
- /k V+ 0(1/k 3 )), as k --+ oo. In this case, it is easy to show that the Fourier coefficients
{bk} of f = f((x + r) are related to those of f by 4i = (-1)kbk. It then follows that
the coefficients {bk} satisfy the conditions of the theorem and hence the corresponding
coefficients (1 and {bk } have the asymptotic form indicated in the theorem. In partic-
ular, it follows from equations (13) and (14) that C, = -C 1 and Bk = (-1)k3k. Thus,
the asymptotic behavior of C1 is the negative of that indicated for C1 in the theorem,
while the asymptotic form of Bk is (- 1 )k times the form indicated for Bk.

To illustrate these results, in Figure 3 we have used the coefficients {Bk} from
Example 1 and have plotted k3jBkI as a function of 1/k, for 3 < N < 20. The figure
clearly illustrates the O(1/k3) decay of the coefficients {Bk}, and also indicates an
interesting asymptotic behavior of BN-q, for a fixed value of q, as N --+ 00.

If the function f is analytic for -7r < x _< r, then (see, e.g., [2]) the Fourier
coefficients of f decay exponentially as k --+ oo. That is, there exists a constant 0, with
0 < 101 < 1, such that {ak, bk} are O(Ok) as k -- o0. The next theorem shows that,
again for this case, the coefficients { Bk } decay to zero more rapidly than the Fourier
coefficients on which they are based.

THEOREM 2. Let f be an odd, analytic, 2t-periodic function and let its Fourier
coefficients {bk} satisfy the condition that bk = 0(IOjk[kP), as k --+ oo, where 0 < 101 < 1,
and p is a real number. Then C1 = 20/(1 + 02) + 0(1/N) and Bk = O(IOjk/kP+1) as
k, N --40 o. More precisely, let b, /, and -y be constants (independent of k). Then, if
bk = (bkl/kP)(1 + //k + '/k 2 + 0(1/k3)), as k -0 oo, it follows that

20 1 _ (1(- 02) + (p-2/0)(1-0 4 )+p 2(1-602-+-04 ) +
1+02 1 N N 1+0 2  2(1+-02 )2N2

8



B ,+bokr1 -o2 1•[°1 _+0
Bk =2 - - k/N) k 2 (2#p + (2 0 + p)(1 + k/N))(1 -k/N)

2(1+ +2)2 ((1 +02)2 - (k/N)(1 - 602 + 04)) (1 - k/N) - 1 +0 - O

as k, N --+ oo. If f is an even, analytic, 2w-periodic function, then these results hold
with bk replaced by ak and Bk replaced by Ak.

Proof: As in the proof of Theorem 1, we shall outline the proof only for the case
when f is an odd function, since the proof for the case when f is an even function
follows the same line of reasoning. Using the assumed form of the asymptotic behavior
of the coefficients {bk}, we note first that bN+1 has the asymptotic form indicated on
the right side of equation (22), multiplied by ON+,. Then, using this expression in the
definition of p in (13), we find that p has the asymptotic form indicated by the right
side of (23) multiplied by 0. Using these expressions in the definition of C1 in (13) we
find

C= 2p = -20 1 - p/N + (p + p2 - 2/0)/(2N 2) + 0(1/N 3)
1 +p 2  1 +02(1 -pIN +(p+ p-2-2)/(2N2)+0(1/N3)) 2

1 +02 N 1 +02 2(1 + 02 )2 N 2  +0(1/N

as N -- oo.
In a similar manner, using the assumed asymptotic form of the coefficients {bk} we

can write

bk:* = (bO'k*/kP)(1 + (3::F p)e + (-7F /p(p + 1) + p(p + 1)/2)f2 + 0(1/k 3 )),

as k - oo, where E = 1/k. Thus, for large values of both k and N we have

Bk = bk + (Cl/2)(bk.-. + bk+1)

Okb + 1 [ p(1-_ 02) (p-22)(1-04)+p2(1-602 +0 4 )

= -+ 1+2 N T N1- - 2  2(1 + 2 )2N2

• 1+ (0 + p)c + (-t +/P(p + 1) + p(p + 1)/2)f 2

+o2 (1 + (P - p + f-(p + 1) + p(p + 1)/2)e )]} + 0(9k/kp+ 3 )

kp+ tfl , 1-2 - k- 1 - 0(#+2# p) + k/N))(1- k/N)

9



2(1+ 92)2 ((1 + 2) - (kiN)(1 - 692 + 04)) (1- k 1 +2 0 +-O +0( )

as k -- 0o. This completes our proof.
We note that the rate at which the coefficients {Bk} decay to zero changes slightly

as k --+ N. In particular, for k < N, Bk = O( 0 k(1 - 92)(1 - k/N)/kP+l, but BN =

O(0N/Np+2), as k, N --+ oo. Thus, while each Bk decays to zero faster than the corre-
sponding Fourier coefficient bk, we see that Bk, decays somewhat faster than Bk2 , when
k2 < k, < N.

To illustrate these results, in Figure 4 we have used the coefficients {A/} from
Example 2 and have plotted k2IAkI/IakI as a function of l/k, for 3 < N < 20. The
figure clearly illustrates that the coefficients {Ak} decay at a faster rate (asymptotically
by a factor of k- 2) than the coefficients {ak}, and also indicates, as in Example 1, an
interesting asymptotic behavior of AN-q, for a fixed value of q, as N -+ oo.

Finally, we use the results of the previous two theorems to show the manner in
which the approximations { SNI(x)} converge to the original function f(x).

THEOREM 3. Let f be an odd, 27r-periodic, piece-wise smooth function and let
its Fourier coefficients {bk} satisfy the conditions of Theorem 1. Then the sequence of
approximations {SN,I(x)} converges to (f(x+) + f(x-))/2, as N -ý 00, for all -7 <
x < 7r. Moreover, the sequence {SN,1(x)} converges like a Fourier series whose terms
are O(1/NP+2). These results also hold if f is an even, 2r-periodic, piece-wise smooth
function, if the Fourier coefficients {ak} off satisfy the conditions stated above with bk
replaced by ak.

If f is an odd, analytic, 2r-periodic function and its Fourier coefficients satisfy the
conditions of Theorem 2, then the sequence of approximations {SNI(x)} converges to
f(x), as N -- oo, for all -wr < x < wr. Moreover, the sequence {SN,1(x)1 converges like
a Fourier series whose terms are O(ON/NP+1). These results also hold if f is an even,
analytic, 2w-periodic function, if the Fourier coefficients {ak} off satisfy the conditions
stated above with bk replaced by ak.

Proof. As in the proofs of the previous theorems, we shall outline only the proof
for the case when f is an odd, 2r-periodic, piece-wise smooth function.

To begin, we note that, since f is an odd function, we can restrict our attention to
values of x in the open interval 0 < x < r (since SNi(0) = (f(0+) + f(0-))/2 = 0 =

SNl(r) = (f(7r+) + f(r-))/2, and hence convergence is assured at x = 0 and x = r in
a trivial way). Consequently, we let x be any fixed number in the interval 0 < x < i
and let c > 0 be any fixed positive number. We then define

(24) ENl(X) = (f(x+) + f(x-))/2 - SN,I(x) = EL()(x) + E(2)(X),

(25) E+•(x) = (f(x+) + f(x-))/2 - SN,o(x), E(2)(x) = SN,o(X) - SN,,(X).

By the hypotheses of the theorem concerning f, the Fourier partial sums SN,o(x)
converge to (f(x+) + f(x-))/2, as N -- oo. Hence, there exists a positive integer

10



Ni = NI(z, e) such that

(26) IEN)(z)I =(f(z+) + f(x-)/2 - SNo(x)f < 2' for all N> N1.

Also, using the definitions of SNo and SjvN, we can write
EN(x) = SNO(X) - SNA(Z) = E Bk sin(nz)

n=1 1 + C, cos(z)

7C bN sin((N + l)z) - bN+j sin(Nz)
(27) lCcsx

2 1 + C, cos(X)

Using the assumed asymptotic form of the coefficients {b3 }, there exists a positive
integer N2 = N2(x, c) > (4 IbI /(e(1 - cos(x)))1 1 P such that 1b,31 < 2 IbI /NP and C1 > -1
for all N > N2 . Then, using equation (27), we can write

[ (2)X = ISN,(- SN,l(x)I < IC1 IIbNI + IbN+lIE- 2 1 - cos(z)

(28) 41b1
(28)2(1 - os(z))N < 2 for all N > N2 .

Using the bounds (26) and (28), from equation (25) we find

(29) I(f(z+) + f(x-))/2 - SN,(z)I !5 IEN()(x)l + IEN()(I)l < f + = C',

for all N > N3 = Max(N1 , N2 ). Thus, the sequence of approximations {SN,I} converges
to (f(x+) + f(x-))/2 as N --, oo.

To demonstrate the manner in which these approximations converge, we write SN,.
as

N
(30) SN,1 = rk, where ri = S1,, and rk = Sk,1(x) - Sk-.1,1(x), 2 < k < N,

k=1

and then examine the quantities rk for large values of k. Using the definition (8), we
can write

(31) rk(X) - 1 B+(k) sin(n,) - - Bj--) sin(nA)
1 + C Tk) cos(r) 1 + Clk-l) cos(X)

where we have placed a superscript on the coefficients B, and C1, to remind us of the
dependence of these quantities on the parameter k. Combining the terms on the right
side of equation (31) and using various trigonometric identities, we can write

(32) rk(z) = n '

11



where

Num 2 sin((k l)z)0 k + C2b • b(_ + bk+l)

+snk bk + bk- +o Elb) _,
++2 ci22

+ sin((k + l)z) cl(k.-) bk + -k)-(bk-, +b )

and

(33) Den = (1 + C1k) cos(X))(1 + Ck0l) cos(z)).

Using the asymptotic form of the coefficients B$%k) and CIk) from Theorem 1, we find

Num +3)
2 = p2(1 - cos(x)) sin(kx) + 0(1/0"'3),

(34) Den = (1- cos(X)) 2 + -•(l - cos(x))cos(x) + 0(1/k 4 ), as k --+ oo.

Using the estimates (34) in (32), we find

(35) rk = bp 1 sin(kx) + 0(1/kp+3 ), as k -- 00.
2 1 - cos(z) kP+ 2

This completes the proof of our theorem.
To illustrate some of these results, in Figure 5 we have plotted log IEN,1I/ log INI

for Example 1, as a function of 1/log IN1, for 3 <_ N < 50, with z = ir/2. We note that,
if EN,1 - aN-P, as N -+ oo, then log IEN,11/log INI - -p+ log lai/log INI, as N -+ o0.
Thus, the plot should be approximately linear for small values of 1/log IN1, with an
intercept of -p. L'he value of p = 3, as predicted by Theorem 3, is clearly suggested by
the figure. In this figure we have also plotted the corresponding error for the Fourier
partial sums, corresponding to M = 0. For M = 0, the figure suggests a value of p = 1.
Thus, the improvement in the rate of convergence suggested by the figure is consistent
with the increase predicted by Theorem 3, i.e., an increase in p of 2.

5. Case M > 2. We now generalize the results of the previous sections. In par-
ticular, when f is an odd function of x, we consider the family of approximations

EZ NI B,, sin(nx)
(36) SNM(x) - 1. r sn

E+ =, Cm cos(mx)'
12



where M is any positive integer. The constants {B,, C,.} are determined by the con-
ditions (6), which for this case become

N

(37) E dkjBj = bk, k =1,...,N + M,
j=1

where

(38) ( )Ji+ sinx) sin(kx) dX = dj,k = Ilk-jl,M - Ik+jM,
T sin Cm cos(mx)

(39) d'IM = (1191 ) V cos(nx) n > 0.
Jo 1 + E , C cos(mx )

To evaluate l.,aw, we denote the denominator of the integrand by P and express cos(mx)
as a polynomial of degree m in cos(x). Then P becomes a polynomial of degree M in
cos(x) and, assuming CM # 0, we can write

M M
(40) P = 1 + E C,. cos(mx) = 2 M-ICM lI(cos(x) + z,),

m=1 i=1

and hence

(11 - 1a M
(41) 1+ -- =I Cm cos(mX) 2M-1CM E. cos(X) + zi, a, k=1,k-,

Here {- zi } are the roots of the polynomial P, when P is regarded as a polynomial in the
variable z = cos(x), and we have assumed that the {z,) are all distinct. Substituting
(41) into (39) and using (11), we can write

2 M ,nl

(42) nM 2-MAO+I

M
fl3 M PiPk;

S(Pk - pi)(1 pk) - -'

Using this result in (38) we find

2 M i-i
(43) dkj 2 C E~p-~ Zp?, k > j.

i=1 1=0

To solve equations (37), we first define the quantities

(44) 8o = 1, 8, = (-1)• E Pi,""Pi,,, 1 <_ M <_ M1
1<_il<i2<-..<im<_5M

13



(We note that s. is just the coefficient of pMm in the polynomial ['[!,(p - pi).) We
then denote the kVh equation in (37) by eq(k) and form the linear combinations

M

m=O

Here we define eq(O) to be the trivial equation 0 = 0, and eq(n) = -eq(-n), for n < 0.
For k = N + M, N + M - 1,..., N + 1, we find that the left side of each lc(k) vanishes.
This leads to the relations

M
(46) , SmbN+M+l-p-m = -bN+M+1-p, p = 1, ... , M,

M=1

which are a system of M linear equations for the M quantities s m,...,st. We shall
assume that the determinant of the matrix of coefficients in (46) is nonzero so that
these equations can be solved uniquely for .51, ... , sm. Once these quantities have been
determined, we can use equations (44) and (42) to express each sm in terms of the
quantities zi, and then use equation (41) to express each of the coefficients C. in terms
of the zi. We write out these equations for a few small values of M and then use induction
to show that the coefficients {Cn} can be expressed explicitly in terms of the known
quantities {si} as

2 M-m M(47) C = - E sksm+k, I <m < M, D = sP.
k=O j=O

To determine the coefficients {Bk}, for k = N, N - 1, ... , 1, we solve Ic(k) for Bk
and then use induction to show that the coefficients {Bk} are given explicitly by

1M
(48) Bk = bk + 2 E C,(bk+, + bk-m), 1 < k < N.

(Equations (48) also follow from equating (36) to .,M bi sin(j x), multiplying by 1 +
EM

=1 C,. cos(mx), and equating coefficients of sin (nx) on each side of the resulting
expression, for 1 < n < N.) Thus, the coefficients {C.} and {B,} are completely
determined by equations (48), (47), and (46).

Example 3: As an application of these results, we consider the odd, 2r-periodic
function f defined by f(x) = Cz(r - X)/(C2 + (x - 6) 2(z - ir + 6)2)11/ for 0 <x <w r,
where e and 6 are real, positive parameters. For this function, we find bk = 0 when k is
even and hence SN,0 = ENfI b2h-I sin((2k - 1)z). Then, for M = 2, we define

N
E B2A- sin((2k - 1)z)
k=1

SN, -- 1 + C, cos(2x) + C2 cos(4x)'

where the coefficients {B21-1} and {C,.J are defined by equations (46)-(48), with bj
replaced by b~j-1. Explicit values for {C1, C2 , B1, ... , B2N-1} are shown for a few small
values of N in Table III when e = 0.1 and 6 = 0.5.

14



Table III (M = 2)

N b2N-1 C, C2  B, B3  Bs BT B9

1 0.41814 -. 99477 0.29067 0.43574
2 0.31809 -1.3981 0.46568 0.43655 -. 16521
3 0.09684 -1.3559 0.54610 0.42554 -. 17564 0.02412
4 -. 11150 -1.3462 0.58487 0.42077 -. 18343 0.02989 0.00716
5 -. 17153 -1.3539 0.59107 0.42047 -. 18703 0.02987 0.00817 0.00234

In Figure 6, we have plotted S6,0, Ss5 , (using equation (15)), and S4,2, as well as f, for
0 < x _< . From the figure it is clear that S4,2 is a better approximation to f than
either Ss,1 or S6,0. In fact, for this example, Ss,1 and S6,0 lie close to each other and
are each a "poor" approximation to f. We shall comment further on this example in
section 8.

If f is an even function of z, then results very similar to those above hold with each
bk replaced by ak. In particular, for approximations of the form

SNM(X) = Ao/2 + F- 1 An cos(nx)
1 + == 1 C. cos(mx)

we find
I M

Ak= ak + j E Cm(ak+m + ak-m), 0 < k < N,
M=1

2 M-m M

Cm- , sks.+k, 1<m_<M, D-=- s?,
k=O j=O

where the {sm} are now determined from the equations

M

(49) E smaN+M+1-p-,m -- aN+M+1-P, p- 1, ... , M.
W1P

6. Analysis of the ease M> 2. In this section, we prove some results analogous
to those proved in section 4 for the case M = 1.

THEOREM 4. Let f be an odd, 2r-periodic, piece-wise smooth function and let its

Fourier coefficients { bk} satisfy the condition that bk = 0(1/k1), as k -+ oo, where p is a
real, positive number. Then, for any positive integer M > 1, Cm = Cm,M + 0(1/N 2 ), for

1 <_m < M, where cm,M are certain constants independent of N, and Bk = 0(1/kP+2M),
as k, N --+ co. More precisely, let b, #, and -y be constants (independent of k). Then if

bk = (blkP)(1 + Olk + -tlk2 + 0(110)), as k -- oco,( Om (,.2M) {, ( + M"- )(p + 2(M'- 1))} 3)
(,2M ) 2(2M - 1)N 2 + 0(1/N
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Bk ( + 1) ... (P + M - I)(X .iM 0 1 )i '[ fl p2MBk E(ii(p+ 2M -j#-i)(k/N)2

+O(11kP1+2+1),

as k, N --+ oo. Here (i) is the usual binomial coefficient. If f is an even,
2w-periodic, piece-wise smooth function, then these results hold with bk replaced by ak
and Bk replaced by Ak.

Proof: As in the proof of Theorems 1-3, we shall only outline the proof for the case
when f is an odd, 2w-periodic, piece-wise smooth function.

To see that the coefficients {Cm} have the stated form as N -- co, we first use the
assumed form of the asymptotic form of the coefficients {bk} to write

(50) bN+j = (b/(N + j)') (1 + 3/(N + j) + -/(N + j)2 + 0(1/N 3))
= beP(1 +'(/-jp)e+(-y-j1(p+ l)+j 2p(p+ 1)/2)e2 + 0(c)),

where we have defined e = 1/N. Next, we examine the behavior of the quantities {s,,}
as N -- oo. Using the linear equations (46), we solve for {Sn} explicitly in terms of the
coefficients {bkJ for a few small values of M (see the Appendix). We then insert the
expansions (50) into these explicit expressions for the {s,,j and expand the resulting
expressions for small values of c. In this way we obtain an expansion for each sa which
is valid as f -+ 0, i.e. as N -. co. We then use induction to show that these expressions,
for any positive integer M, can be written as

5m = &4)m{( I M(M 1) P+ M-1+

(51) M M -1) (p-+-M-1)(-20+-(M-+ 1 +-m(M - 2))p0+ mpP).+ O(1/N 3 ),

(1 M(M )(P1 2pN2 I2)~P)

for m = 1,2,..., M, as N -- oco. Inserting equations (51) into (47) and expanding the
resulting expressions for large values of N, we find that each coefficient Cm has the
asymptotic form indicated in the statemeut G bhe theorem.

In a similar manner, using the expressions (50) with N replaced by k, along with
the asymptotic form of the {C,,,, in equations (48), -4 e %d that the coefficients {Bk}
have the asymptotic form indicated in the statement of the theorem, as both k, N --* oo.
This completes the proof of our theorem.

To illustrate these results, in Figure 7 we have plotted log IBkI/log k vs. 1/log k
for Example I with M = 1,2,3, and 4, for N = 20. The figure clearly illustrates how
much more rapidly the coefficients Bk decay to zero (especially with increasing values
of M) than the coefficients bk, which decay only like 1/k.

The results of Theorems 2 and 3 generalize to the cose when V > 2 in a straightfor-
ward manner. Using the results of Theorem 4, the proois OL Lhe following two theorems

16



follow closely the proofs of Theorems 2 and 3, respectively, and, hence, we state them
without proof.

THEOREM 5. Let f be an odd, analytic, 2w-periodic function and let its Fourier
coefficients {bk} satisfy the condition that bk = (bok/kp)(1 + P/k + y/k 2 + 0(1/k1)), as
k -+ co, where b, /, and -j are constants (independent of k), p is a real positive number,
and O < 101 < 1. Then

Cm = 2(-1)'0'•-k M+1°
1 o (0k) + 02k

and Bk = O(10 1k(1 - 02)(1 - k/N)/kP+M) + 0(IOIkNP+M+1), as k, N --+ oo. If f is an
even, analytic, 2wr-periodic function, then these results hold with bk replaced by ak and
Bk replaced by Ak.

THEOREM 6. Let f be an odd, 27r-periodic, piece-wise smooth function and let
its Fourier coefficients {bk} satisfy the conditions of Theorem 1. Then the sequence of
approximations {SN,M(x)} converges to (f(x+) + f(x-))/2, as N ---* oo, for all -7 <
x < 7r. Moreover, the sequence {SN,M(x)} converges like a Fourier series whose terms
are 0(1/Np+2M). These results also hold if f is an even, 2r-periodic, piece-wise smooth
function, if the Fourier coefficients {ak} off satisfy the conditions stated above with bk
replaced by ak.

If f is an odd, analytic, 2r-periodic function and its Fourier coefficients satisfy the
conditions of Theorem 2, then the sequence of approximations {SN,M(x)} converges to
f(x), as N -- 0o, for all -r < x < 7r. Moreover, the sequence {SNM(x)} converges like
a Fourier series whose terms are O(ONINP+M). These results also hold if f is an even,
analytic, 27r-periodic function, if the Fourier coefficients {ak} off satisfy the conditions
stated above with bk replaced by ak.

To illustrate Theorem 6, in Figure 5 we have also plotted log IEN,MI/ log INI for
Example 1, with M = 2 and 3, as a function of 1/log INI, for 3 < N :< 50, with
x = r/2. Here EN,M(X) =_ (f(x+)-+ f(x-))/2--SN,M(x). Using the ideas discussed after
Theorem 3, the results presented in Figure 5 are consistent with the convergence rates
of p = 5 (for M = 2) and p = 7 (M = 3), as predicted by Theorem 6 for the function
considered in Example 1.

7. Application. Applications of the results presented above to several classes of
problems usually solved by Fourier series alone will be presented and discussed else-
where. In this section, we present an application to a simple heat conduction problem
to illustrate some of the potential of the method to improve the accuracy of approximate
solutions obtained by partial sums of Fourier series.

We consider the problem of determining the transient behavior of the temperature
u(x, t) which satisfies the conditions

(52) ut = U,,, for 0 < x < 7r and t > 0,

with

u(O,t) = 0 = u(ir,t), for all t > 0, and u(x,0) = x/2, for 0 < x < 7r.
17



(In equation (52), the subscripts denote partial differentiation.) Using separation of
variables, the solution is found in a straightforward manner to be

N
(53) u(z,t) = lim u(v'O)(z,t), where unN'°)(x,t) e-"23sin(nz).

N---oo n-=1

This solution obviously has a discontinuity at z = ir when t = 0.
Using the formulas of section 2, we define a new class of approximate solutions

{u(N,1)} by

(54) u(N.1)( X, t) - In-_1: B,(t) sin(nx)
1 + Ci(t)cos(z)

where the coefficients B,(t) and C1(t) are defined by equations (13) and (14) with bk

replaced by (--1)k+le-kt/k. Thus, we find

C,(M = 2N(N + 1)e-( 2N+1)t B, = et C 4t
(N + 1)2 + N2e-(4N+2)t' 4

(55) Bkt + (-)+ 2 < + ek i < IcN.

In Figure 8 we have plotted U(4,0) (dashed line) and u(3') (dotted line), along with the
exact solution u(00,0) (solid line) for t = 0.01 and t = 0.05. As the figure illustrates, 0,)

is consistently a better approximation than U(4,) to the exact solution, and the quality
of this approximation improves as t becomes larger. The corresponding comparison at
t = 0 is the same as shown in Figure 1 for 0 < x < 7.

8. Conclusions and Discussion. We now make a few observations about the
family of Fourier-Pad6 approximations discussed above, and tUso comment on several
of their properties that need further investigation.

First, we note that, using only the "information" contained in the first few Fourier
coefficients of a function f, the functions SN,M appear to provide new approximations
to f which are consistently "better" than the Fourier partial sums SN,o on which they
are based. The sense in which these approximations are "better" can be interpreted in
at least three different ways. First, Theorems 3 and 6 show that these approximations
converge point-wise to (f(x+) + f(x-))/2 at a faster rate than the original sequence
{SNo}, as the parameter N increases. Secondly, although the Gibbs phenomena is
still present in the family {SN,M}, the amplitude of the oscillations near a point of
discontinuity of f appears to be mitigated, when compared with the oscillations present
in SNO. Finally, oscillations in SN,O, which lie outside a neighborhood of a point of
discontinuity of f (or outside a region of large curvature of f), are noticeably damped
in SNyM, for M >_ 1, especially as N increases. These last two interpretations are
illustrated in Examples 1 and 2.

The fact that explicit expressions were derived for the coefficients A., Bn and C,.,
which appear in the definition of SN,M, should be emphasized. (From a practical point
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of view, it should be noted that it might be possible to develop an efficient, recursive
algorithm, similar to algorithms presented by Baker [1], to compute these coefficients,
since the equations which ultimately determine these quantities are recursive in nature.
See, especially, equations (46)-(48), as well as the Appendix.) These explicit expressions
not only facilitate the proofs of the stated theorems, but also illustrate some of the
potential use of these approximations to construct approximate solutions to problems
involving differential equations, especially partial differential equations. In particular,
the Fourier coefficients {an, b, } may be functions of one or more "other" variables, such
as t, as in the example of section 7. The application of the basic ideas presented here to
problems involving several different classes of partial differential equations is currently
under investigation and will be reported elsewhere.

As far as the mathematical properties of the family {SN,M } are concerned, only the
most elementary properties have been investigated here. Many other questions, which
are of both theoretical and practical importance, should be addressed. For example, for
a fixed value of N+M, which approximation SN,M is "best"? In Figure 9 we have plotted
S6-.,q, for q = 0, 1,..., 5 for Example 1. In this case, the figure seems to suggest that
perhaps S3,3 is "best" in some appropriate integral norm, although the improvement of
the quality of the approximation of S3,3, say, over S5,1 is not dramatic. For this example,
the function has essentially only one point of discontinuity (at x = 7r) and hence SN,j

appears to provide a "good" approximation. By contrast, the function considered in
Example 3 has essentially two pointi of large curvature (near x = b and x = 7r - 6).
For this example, SN,1 provided a poor approximation to f, while SN,2 yields a much
improved approximation. More generally, the "best" SN,M will undoubtedly depend on
both the general "shape" and smoothness properties of the function f, as well as on
the particular norm used.

From a practical point of view, a related issue concerns how best to represent a
function with a discontinuity interior to [-Tr, 7r]. For example, consider the odd, piece-
wise continuous, 27r-periodic function f defined by f(x) = rx/2, for -7r/2 < x < 7/2,
and f(x) = 0, otherwise, in [-7r, 7r]. The Fourier coefficients {bn} of f are given by
bn = (-1)(n- 1)/2/n 2, if n is odd, and bft = (r/(2n))(-l)(n+2)/2 , if n is even. The Fourier
partial sum S10 ,0 associated with f is plotted in Figure 10. To approximate f by one of
the functions SN,M, one possibility is to use the formulas above "blindly" and construct
an approximation, say $9,1, in a straightforward manner. This approximation is also
plotted in Figure 10. As the figure clearly illustrates, neither Sjoj nor S9,1 is a "good"
approximation to f. However, we now observe that we can decompose S2N+2.o into the
sum of two other partial sums, i.e.

s2N+2,0 = C(1) 1,0 + S(2) 1,0 1 where

"N+1,0= sin(z)- sin(3x) + sin(5x) -... ,
9 25

S(2) sin(2x) - 1 sin(4x) + 1 sin(6x) -
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We can now apply our formulas to each of these sums, separately, and construct two new
approximations S(1) and S(2). We then use C(1) + S(2) as a new approximation to f.

The approximation 4.1 + S4,1 is also shown in Figure 10 and is clearly an improvement
over either Sl0,1 or S9,1 .

This example also serves to illustrate a possible advantage of the more general form
of SN,M defined in equation (4). In particular, the only approximations that have been
investigated here correspond to setting each D,,, = 0 in equation (4). More generally, the
inclusion of both sine and cosine terms in the denominator of SN,M allows the possibility
of "shifting" the location of an approximate "pole" of SN,M from either x = 0 or x = ±r
to an arbitrary point interior to the interval (-ir, ir). For example, when M = 1, the
denominator of SN,1 can be expressed as 1 + C1 cos(x) + D1 sin(z) = 1 + C1 cos(x - 6).
Thus, if Cil - -1, for example, then the denominator will be small when x is near 6
and, hence, SN,1 could potentially better simulate a function which has a singularity
(or a "near" singularity) at x = 6.

We also note that, while Theorems 3 and 6 establish the convergence of the sequence
of approximations {SNM} for a fixed value of M as N --. oo, the Gibbs phenomena
has not been eliminated, although its effects seem to be mitigated. Thus, the rate of
convergence of this sequence in regions near a point of discontinuity of f needs further
study. For example, in the proof of Theorem 3, equation (35) establishes that, for any
fixed value of z, with -7r < x < ir, the terms rk are O(1/kP+ 2) as k --+ oo. However, the
"practical" rate of convergence of the series is mitigated somewhat, especially near x =
0, by the presence of the factor (1 - cos(x)) in the denominator of the expression for rk.

This factor, in combination with the terms sin(kx) in the numerator, also foreshadows
the Gibbs phenomena that does remain. However, the fact that an explicit form for these
terms is available should assist in the investigation of ways to improve convergence in
these regions. This observation, as well as the other observations, questions, and several
related issues raised here, are the subject of some current investigations and the results
of these investigations will be reported elsewhere.
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A. Appendix. In this appendix we present some explicit expressions for the quan-
tities {s,,} defined in section 5 in terms of the coefficients {bk} by equations (46) and
(49) when f is an odd function of z. Analogous expressions hold when f is an even
function of x, with each bk replaced by ak. For M = 1, 2, and 3, these quantities are
given by

M = 1 s1 = -bN+1/bN;

M=b2: l bN+lbN - bN+2bN.-1 bNbN+2 - -N2+.

bN+lbN-1 - bN2 bN+lbN-1 - b2N

M=3:

=bN+I(N -- bN-lbN+1) + bN+2(bN+IbN-2 - bN-6bN) + bN+3 (b2N-l - bNbN-2)
81 =det

bN+l(bN+2bN-1 - bNbN+l) + bN+2 (bN2 - bN+2bN- 2 ) + bN+3(bN+1bN-2 - bNbN-1)
82 =det

S3 = bN+l(b2N+l - bNbN+2) + bN+2(bN+ 2 bN-1 - bNbN+l) + bN+3 (b2 - bN+lbN-l)
det

det = bN_ 2 (-b2N+l + bNbN+2) + bN-1(-bN-.lbN+2 + 2bNbN+l) + bN(-bN2).
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Figure 1: A plot of the function f (x) (solid line), the approximations S4,o(z)
(dashed line) and S3,1(x) (dotted line) for Example 1. Note that the oscillations present
in S4,0 away from the singularities of f have been virtually eliminated in 53,1.

22

I /l m n In n • m a I l II I E



5

S3,1

$~4,0I

I

0 ,

Figure 2: A plot of the function f(x) (solid line), the approximations S4,o(z)
(dashed line) and $3,1(x) (dotted line) for Example 2. Note that the oscillations present
in S4,0 away from the regions of large curvature of f have essentially been eliminated
in S3,1.
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Figure 3: A plot of k3IBkI (circles) for Example I as a function of I/k, for 2 < k <
N, with 3 < N < 20. The O(1/k 3 ) decay of the coefficients {Bk} is clearly illustrated,
as is an interesting asymptotic behavior of BN.q, for a fixed value of q, as N --+ oo.
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Figure 4: A plot of k2 IAk/Iait (circles) for Example 2 as a function of l/k, for
2 < k !< N, with 3 < N <_ 20. The figure illustrates that the coefficients {Ak} decay
faster than the coefficients {ak), asymptotically by a factor of k-2, as predicted by
Theorem 2. As in Example 1, an interesting asymptotic behavior of AN-,q, as N -• oo
for a fixed value of q, is also predicted.
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Figure 5: A plot of log IENm/ log INI for Example 1 as a function of 1/log INI for
3 < N < 50, at z = w/2, for M = 0,1,2, and 3. Here EN,M(x) =- (f(x+) + f(x-))/2 -
SN,M(x). We note that an intercept of 2M + 1, as predicted by Theorems 3 and 6, is
clearly consistent with these plots.
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Figure 6: A plot of the function f(x) (solid line), the approximations S,o(z)
(longer dashed line), Ss,i(x) (shorter dashed line), and S 4,2(z) (dotted line) for Example
3. Note that the oscillations present in S6,0 away from the regions of large curvature
of f have essentially been eliminated in S 4,2 , while Sr,1 is not much of an improvement
over SsO.
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Figure 7: A plot of log IBkIl/log k vs. 1/log k for Example 1 with M 1, 2,3,
and 4, for N = 20. The increased rate of decay to zero of the coefficients Bk with
increasing values of M is clearly evident, especially when compared with original Fourier
coefficients bk, which decay only like 1/k.
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Figure 8: A plot of the exact solution u(°,°) (solid line), as well as the approxima-
tions u(4,O) (dashed line) and u( 3 ,1) (dotted line), for the simple heat conduction problem
of section 7, when t = 0.01 (upper set of curves) and t = 0.05 (lower set of curves). The
corresponding comparison at t = 0 is the same as shown in Figure 1 for 0 • x _ <r.
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Figure 9: A comparison of the approximations S6._q,q, for q - 0,1, ... , 5 for Ex-
ample 1. In this case, the figure seems to suggest that perhaps S3 ,3 is "best" of the
approximations SN,M, with N + M = 6.
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Figure 10: For the 27r-periodic function f defined by f(x) = rx/2, for -ir/2 <_

X _< T'/2, and f'(x) = 0, otherwise, in [-wr, •r], a plot of f (x) (solid lines) and the

approximations $1o~o (longer dashed line), $9,1 (shorter dashed line), and S41•'1) ÷ I,.n's

(dotted line) for 0 < x < 7r. The improved quality of the approximation S4(1 + C (2)

- -

j L1,

over either S1o.1 or SSI, is apparent.
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