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We consider preconditioning methods to accelerate convergence to a steady state for the
incompressible fluid dynamic equations. The analysis relies on the inviscid equations. The
preconditioning consists of a matrix multiplying the time derivatives. Thus the steady state
of the preconditioned system is the same as the steady state of the original system. We
compare our method to other types of pseudo-compressibility. For finite difference methods
preconditioning can change and improve the steady state solutions. An application to viscous

flow around a cascade with a non-periodic mesh is presented.
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1 Introduction

One way to solve the steady state incompressible equations is to march the time dependent equations
until a steady state is reached. Since the transient is not of any interest one can use acceleration
techniques which destroy the time accuracy but enables one to reach the steady state faster. Such
methods can be considered as preconditionings to accelerate the convergence to a steady state.
For the incompresible equations the continuity equation does not contain any time derivatives.
To overcome this difficulty, Chorin [3] added an artificial time derivative of the pressure to the
continuity equation together with a multiplicative variable, 8 . With this artificial term the resultant
scheme is a symmetric hyperbolic system for the inviscid terms. Thus, the system is well posed
and and numerical method for hyperbolic systems can be used to advance this system in time..
The free parameter 8 is then chosen to reach the steady state quickly. Later Turkel ([8], {9}, [10])
extended this concept by adding a pressure time derivative also to the momentum equations. The
resulting system after preconditioning is no longer symmetric but can be symmetrized by a change
of variables.
Thus, we will consider systems of the form

wt+fz+gv=o'

This system is written in conservation form though for some applications this is not necessary. OQur
analysis will be based on the linearized equations so the conservation form does not appear in the
analysis though it does appear in the final numerical approximation. This system is now replaced
by

P-lu’g+fz+gy =0, (1)

or in linearized form
P~'w; + Aw, + Bw, =0, (2

with A and B constant matrices.

For this system to be equivalent to the original system, in the steady state, we demand that
P! have an inverse. This only need be true in the flow regime under consideration. We shall
see later that frequently P is singular at stagnation points. Thus, we will temporarily consider
strictly flows without a stagnation point. We also assume that the Jacobian matrices A = %
and B = g;"; are simultaneously symmetrizable. In terms of the ‘symmetrizing’ variables we also
demand that P be positive definite. We shall show later, in detail, that it does not matter which
set of dependent variables are used to develop the preconditioner. One can transform between any
two sets of variables. Thus, when we are finished we will analyze a system which is similar to (2),
where the matrices A and B are symmetric and P is both symmetric and positive definite. Such
systems are known as symmetric hyperbolic systems. One can then multiply this system by w and
integrate by parts to get estimates for the integral of w?, i.e. energy estimates. These estimates
can then be used to show that the system is well posed . We stress that if P is not positive then
we may change the physics of the problem. For example, if P = —I then we have reversed the time
direction and must therefore change all the boundary conditions. Keeping the right signs for the
eigenvalues is a necessary but not sufficient condition for well-posedness.

With this assumption the steady state solutions of the two systems are the same. Assuming
that the steady state has a unique solution, it does not matter which system we march to a steady
state. We shall later see that for the finite difference approximations the steady state solutions are




not necessarily the same and usually the preconditioned system leads to a better behaved steady
state.

2 Incompressible Equations

Consider the incompressible inviscid equations in primitive variables.

tz+v, = 0
U+ us+vu,+p. = 0
vtuv+ovo,+p, = 0

We generalize Chorin’s pseudo-compressibility method [3]. Using the preconditioning suggested in
[8] (with a = 1) we have

1
F,'P:+u,+v, = 0
u
b‘f?:+u¢+uuz+vu,+l’z = 0
v
Zi‘z'P¢+v¢+uv,+vvy+py = 0 3)

or in conservation form

il
o

1

2u
Fabtut (P +p)z+(uv), = 0

]
)

2v
FiP vt (wv)z + (v* + p),

We can also write (3) in matrix form using

1/62 0 0
P'l=|wup® 10},
v/p* 0 1

P=] -u 10
1

Multiplying by P we rewrite this as
wy + PAw; + PBw, = 0.
Let

D=wA+wB -1<w,w <1




where wy,w; are the Fourier transform variables in the x and y directions respectively. The speeds
of the waves are now governed by the roots of det(A\] — PAw, — PBuw;) = 0 or equivalently
det(AP~! — Awy — Buwy) = 0. Let

g = ww + vwy.

Then the eigenvalues of PD are

do=gq (4)
dy =1

and so the ‘acoustic’ speed is isotropic.

The spatial derivatives involve symmetric matrices, i.e. D is a symmetric matrix but P is not
symmetric. Thus, while the original system was symmetric hyperbolic the preconditioned system
is no longer symmetric. In [8] it is shown that as long as

ﬂz > (uﬁ + 02)

the equations can be symmetrized. On the other hand the eigenvalues are most equalized if 8% =
(u3 +v?) [8]. So, we wish to choose 32 slightly larger than u? + v?. However, numerous calculations
verify, that in general, a constant 3 is the best for the convergence rate. The reasons for this are
not clear.

We wish to stress that 3 has the dimensions of a speed. Therefore, 8 cannot be a universal
constant. There are papers that claim that 8 = 1 or § = 2.5 are optimal. Such claims cannot be
true i general. It is simple to see that if one nondimensionalizes the equation then 3 gets divided
by a reference velocity. Hence, the optimal ‘constant’ # depends on the dimensionalization of the
problem and in particular depends on the inflow conditions. In many calculations the inflow mass
flux is equal to 1 or alternatively p + (42 + v3)/2 = 1. Such conditions will give an optimal S close
to one.

We next define the Bernoulli function

H=p+ (v +v?)/2.

Bernoulli’s theorem states that when the flow is steady and inviscid then H is constant along
streamlines. We now multiply the second equation of (3) by u and the third equation of (3) by v
and add these two equations. If 83 = u? + v2, the result is

Hi+uH. +vH,=0. (5)

Thus, by altering the time dependence of the equations we have constructed a new equation in
which H is convected along streamlines. Furthermore, if H is a uniform constant both initially and
at inflow then H will remain constant for all time. On the numerical level this will usually not be
true because of the introduction of an artificial viscosity or because of upwinding. For viscous flow,
(5) is replaced by

Hi+uH: +vH, = -ée—(uAu + vAv)




We note that these relationships for H follow from the momentum equations and do not depend
on the form of the continuity equation. Hence, we consider the following generalization of (3)

1
3'2'3"+°H‘+"=+”V =0
au

Fpt+u¢+ws+vug+pz =0

%;’-p:+v,+uv,+vv,+p,, =0 (6)

where, a,a and ( are free parameters. When w? + w3 =1 the eigenvalues of PD are

s+ /83 +4p%d
2d

w1t + wyv,
where 2
¢ =u? + 07, d=l+a-—a-;—2-, s = (1 - a)(w1u + wyv).

Hence, the ‘acoustic’ eigenvalue is isotropic if @ = 1. Furthermore, d = 1 if either a = 0 or
B? = u? + v2. For @ = 0 we recover our original scheme. For a = —1 the time derivative of the
pressure no longer appears in the continuity equation. For general a, 8 we have

1 (a+1) au av
Pl=— au B 0 |,
B av 0 p?
33 —-au —av
_ 1 —au l+a-9% aauy

If we write the equation in conservation form (1) we have

(a+1) ay av
P;;uerm:ﬁve = (l +a+ a)" ﬂz + au? auvy s
A (1+4a+a)y auwv % +av?

1 ﬁ2+a(u2+02) -au —ay
Poonceruative=1 3 . —(l+a+a)u 1-{*—(1—%,"1 Q%,“-’i )
, +a—¢m"ﬂ§‘ﬁ -(1+a+a)y oy 1+a- 2

In [9] an analogy to the symmetric preconditioning of van Leer, Lee and Roe was constructed
for the incompressible equations. If we choose a = 1 P is symmetric. If we also choose 3% = u2 + v?
then we get the preconditioning of van Leer et.al. .

ud 4 v? -u -v
P=| -v 4+ 4%

-v ;’%ﬁ 1+u’+;’




These examples show that preconditioning is not unique. If fact, since the determinant of the
transpose of a matrix is equal to the determinant of the original matrix it follows that the transpose
of P is also a preconditioner with the same eigenvalues for the preconditioned system. These various
systems will have the same eigenvalues but different eigenvectors for the preconditioned system.
Numerous calculations show that the system given by P in (3) is more robust and converges faster
than with the transpose preconditioner. This shows that it is not sufficient to consider just the
eigenvalues but that the eigenvectors are also of importance. The eigenvectors are given in ([10]).

We next consider the preconditioner considered by de Jouette, Viviand et. al. ([4]). Define:

§ = Uz +0uy+p;— (Tox + Tay)
= 4Oy + 90y + Py — (Toy + Tyy)

8 = ug+tor

U? = wl4o?

Then they consider the following extension of the incompressible Navier-Stokes equations.

petdv(vz+v)+ays=0
u + avg + Bve(uy + v)) +evus =0 )
v + ayr + Byv(ue + vy) + eyvs =0

In the steady state ¢ = 7 = s = 0 and u,; + v, = 0 and s0 we recover the usual incompressible
equations. ay,dv,ev,av,fv are free parameters that satisfy the following conditions

ayfy = dvey
ay 20 dy >0
(dv + avU?)(dv + BvU?) 2 0

In addition, in order for the speed of the convective wave to remain unchanged we add the condition
ay = 1. From the momentum equations we obtain

5= [uwt+ oo+ ByU%(xs +vy)]
1+eyU?
Hence we can rewrite (8) as
_1_1-_:_;_,0_"‘ - %(u: + voy)
+u:+v,= 0
-p:—'n tutqg= 0

-Evd—vp‘-'.g'-{-r: 0

Comparing this with (6) we see that the two approaches are identical if




g4

¥ = GIDF _eal?
ay = -—a?dv
B
Bv = --;-,-dv
ey = %—a‘-dv

Choosing @ = 1 and 8 = U? we get the standard preconditioning (3). The Viviand parameters
become ay = —a, fy = —1,ay = 1,dy = U3, ey = a. Then a = 0 gives the Turkel preconditioner
and a = 1 gives the van-Leer {symmetric) preconditioner.

3 Difference equations

Until now the entire analysis has been based on the partial differential equation. We now make
some remarks on important points for any numerical approximation of this system. When using
a scheme based on a Riemann solver this solver should be for the preconditioned system and not
the original scheme. When using a central difference schemes there is a need to add an artificial
viscosity. Accuracy is improved for low Mach number flows if the preconditioner is applied only
to the physical convective and viscous terms but not to the artificial viscosity. The use of a
matrix artificial dissipation ([7]) should be based on the preconditioned equations as for Riemann
solvers. difference scheme. Hence, both for upwind and central difference schemes the Riemann
solver or artificial viscosity should be based on P~?|PA| and not |A4| i.e. in one dimension solve
w; + Pf, = P(P~!|PA|w;); . When using characteristics for extrapolation at the boundaries
it hould be based on the characteristics of the modified system and not the physical system.
Preconditioning is even more important when using multigrid than with an explicit scheme. With
the original system, the stiffness of the eigenvalues greatly affects the smoothing rates of the slow
components and so slows down the mulitigrid method, [6]. We conclude that the steady state
solution of the preconditioned system may be different from that of the physical system. Thus, on
the finite difference level the preconditioning can improve the accuracy as well as the convergence
rate,

We next consider adding artificial viscosity to the system (3). We first rewrite this system
eliminating p; from the velocity equations. This gives

Pt B (ua+v) = 0
e+ pr+ovuy—uyy, = 0
vtuvz—vu.+p, = 0

J ()7 G
u +| 0 v -u U =0 (8)
v/, 00 1 v/,

or in matrix form

—
I - |
\—-/
+
———
Q= O
Leow
-3 -

or




wy + PAw; + PBuw, = 0.

We next consider the use of a matrix valued viscosity. Let D = wj A + wy B with w +wd = 1.
The non-preconditioned matrix viscosity is given by |A| in. the x direction and | B} in the y direction.
Then

2¢% q R? qRS
ID| = C\_—IA—)__’ g (M? +25*) B+ (M= X3)S?|R| RS (A + 257 = (A2 = Xs) |RY)
2T GRS RS (WP 407 - (= X)IR)  (M? +267) 57+ (Aa - Xs) B[R

with
R-VR*+4

_R+VR +1
-2
R=wn +ovwy, §=ww;-—ovw,

For the preconditioned artificial viscosity we consider instead P~1|PA| and P~1|PB| (see [7]).
We consider the case a = 1 with 3 and a arbitrary. Then

Vii Via Vs
PUPD|=| Van Vo Vis

Va Va2 Vas
with
14a aS?¢*X
Vin = +
u RS(#-¢*)vX
Viz = S2uX +
12 "[Na* ¢ 7
u RS (A -ag®) vX
Vir = — + §7
21 ﬂ\/a+S v X + 7
v RS(B-¢)uX
Viz = 20X -
13 a[ﬂﬁ+5 v 7
v RS (*-ag®) uX
Vi = —=+ 520X —
3 ﬂﬁ+3v p?

: g AS3X 242 R (B2 -dg®) v*X
V22=%+T—RS 1+a—?- uvX + .

N Y (l+a_2q£;f) vox s F (ﬂ’_;q’) B X

7




Viu = (B2Sv+ Ru(q?—p%) (B°Su+ Rv(A’ —ag®)) X
B= Big?

Ve = (B*Sv+ Ru (ag® - B%)) (B*Su+ Rv(f°-¢%)) X
33 = Bl g3 )
where
potatws o wn-w
q q

d=1+a-a§:—- = ud + 03
_|Rava-5
X=""4z—

7 B =B =) (B - o) B
53

By inspection the matrix is symmetric when & = 1. For the special case ¢ = 1 and B?=ut+0?
the formulas simplify and we get

R+1

V“.;L
q

Vo = Viz = R-

Va1 = Vi3 = R-

q

+ w¥(R-1) v+ Re?
9 q

Vaa=4¢

v (R-1) w«?+ro?

V2 +
u=yq q .
Vis = Vag = ww(R-1)
q

For the equations in comservation form we multiply the coatinuity equation by u and add to
the x velocity equation. We also multiply the continuity equation by v and add to the y velocity
equation.




4 Computational Results

We now present a calculation for two dimensional flow around an cascade to demonstrate the
previous theory. The discretization is based on the multistage time method coupled with a central
difference approximation as described in ([5], [7]). The basic scheme is accelerated by using a local
time step, residual smoothing and multigrid. This code was further developed to consider czscade
configurations in which the grid is not necessarily continous across the wake ([1), [2]). We compute
the flow about a NACA0012 with periodic external boundaries. The flow is turbulent and we use
a Baldwin-Lomax turbulence model, with Re = 500,000, Pr = 0.7, Pr; = 0.9 At inflow the angle
of attack is specified as well as the Bernoulli constant, p + # = 1. The mesh is 192 x 32 and
is shown in figure 1. We use a four stage Runge-Kutta method as a smoother for a full multigrid
iteration. We choose a = 0 and §2 = maz(K(u? + v?),8,,) with K = 1.1,8,, = 0.4, see (6). In
figure 2 we plot the convergence rate for different values of . We see that the fastest convergence
occurs when a = 1 followed by a = 0 and finally a = —1. We also considered viscous flow about
a VKI cascade (figure 3). In this case the convergence of all the methods slowed down. a = 1 was
still the most efficient method but the differences were less dramatic than in the previous case. In
other cases in was necessary to choose § almost constant. The symmetric preconditioner, a = 1
was more robust but not faster than a = 0.

5 Conclusions

A three parameter preconditioning matrix has been introduced for the incompressible inviscid
equations. This is equivalent to the pseudo- compressibility methods considered by de Jouette et.
al. When a = 1 the ‘acoustic’ speeds are symmetric. Furthermore, one can choose the parameter
a so that the preconditioning matrix is symmetric. For the inviscid case considered computed a
considerable increase in the convergence rate was achieved.

In addition the incompressible equations offer a theoretical advantage over the compressible
equations for the theoretical study of preconditioning methods. This is because of the simpler
nature of the equations and the fact that the original method of Chorin is already symmetric.
Nevertheless, a central difference scheme coupled with a Runge-Kutta time advancement suffers
from lack of robustness. In particular 8 needs to be bounded away from zero at a relatively
high level for many of the cases. Using the symmetric preconditioner @ = a = 1 yields a more
robust scheme though it does not seem to converge faster than the nonsymmetric preconditioner.
Furthermore, changes of the physical inflow boundary condition can greatly affect the choice of the
optimal a and 8. The major increases in the convergence rate are for the Euler equations. For the
Navier-Stokes equations it is necessary to reformulate the preconditioning matrix to account for
the viscous effecrs.

References

(1] Arnone, A., Liou, M.S., Povinelli, L.A., Navier-Stokes Solution of Transonic Cascades Using
Non-Periodic C-Type Grids, AIAA Jourmal of Propulsion and Power, 8 (1992), 410-417.

(2] Arnone, A. and Swanson, R. C., A Navier-Stokes Solver for Turbomachinery Applications
ASME Journal of Turbomachinery, 115 (1993) 305-313.

[3] Chorin, A.J., A Numerical Method for Solving Incompressible Viscous Flow Problems, Journal
of Computational Physics, 2 (1967), 12-26.




(4] de Jouette C., Viviand, H., Wornom, S., Le Gouez, J.M., Pseudo-Compressibilty Methods for
Incompressible Flow Computation, Fourth Inter. Symp. CFD, Davis, pp. 270-275, 1991.

[5) Jameson, A., Schmidt, W. and Turkel, E., Numerical Solutions of the Euler Equations by
a Finite Volume Method using Runge-Kutta Time-Stepping Schemes, AIAA paper 81-1259,
1981.

[6] Lee, D. and Van Leer, B., Progress in Local Preconditioning of the Euler and Navier-Stokes
Equations, 11th AIAA CFD Conference, AIAA paper 93-3328, pp. 338-348, 1993.

[7] Swanson, R.C. and Turkel, E., On Central Difference and Upwind Schemes , Journal of Com-
putational Physics, 101 (1992), 292-306.

(8] Turkel, E. Preconditioned Methods for Solving the Incompressible and Low Speed Compressible
Equations , Journal of Computational Physics, 72 (1987), 277-298.

[9] Turkel, E., A Review of Preconditioning Methods for Fluid Dynamics, Applied Numerical
Mathematics, 12 (1993), 257-284.

[10] Turkel, E., Fiterman A., van Leer, B., Preconditioning and the Limit to the Incompressible
Flow Equations, submitted to Siam J. Applied Mathematics.

10




0¢

St

ot

G0

00

S0- 0l

JRRRERgIsfsRRILINIL NS

T

T T

s H)IEER)RERNIEIEEIIILLL;

fpgpatiafraisdititisees)

(1E8020800K800121;

gii1sid

11

ALLLLLLEY
SLUITITIIY

T 0V

G0-

l\ 1 \\ 1 ‘\L '] ‘\\l

00

LULLATETRLITTRTRLENNNY

LLULLLTIETLLTILLININNY

LLLELARLTITLETITNNY

LLUALLLTRLTEA NIV

LLTLLLLILILIAAAY

LUATTRTLLAALN

TLETITTITLINANANY

TTETITTRTLLANGY

TEDTLTTIRALAN
111

o
et

1l
111

18300000101
11841
T

S0

ALV T T

SNOJSIA - 2100 YOVN .

0t

1. Mesh for turbulent flow around a NACAO0012 cascade.
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