
AD-A273 656linllll||WHO1-93-35

Woods Hole Oceanographic Institution

Massachusetts Institute of Technology

Joint Program
I in Oceanography/ lr

Si)Applied Ocean Science
San d E n g in e e r in g

DOCTORAL DISSERTATION

Analysis of Modal Evolution Caused by a Weakly
Range-Dependent Seabed in Shallow Water and Its Application

to Inversion for Geoacoustic Properties

DTIC
ELECT by0EC7 1993 +

A Kazuhiko Ohta

September 1993

Thsdoctzen ba enppo4Ifor Public release ~n cz e t
dsribution is15 mie

93-29731
f93g 2 6 00 9 nllll



Best
Available

Copy



WHOI-93-35

Analysis of Modal Evolution Caused by a Weakly
Range-Dependent Seabed in Shallow Water and its Application

to Inversion for Geoacoustic Properties

by

Kazuhiko Ohta

Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

and

The Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

September 1993

DOCTORAL DISSERTATION

Funding was provided by the Office of Naval Research under
Contract N00014-91-J-1379

Reproduction in whole or in part is permitted for any purpose of the United States
Government. This thesis should be cited as: Kazuhiko Ohta, 1993. Analysis of Modal

Evolution Caused by a Weakly Range-Dependent Seabed in Sbhllow Water and its
Application to Inversion for Geoacoustic Properties. Ph.D. Thesis. MIT/WHOI, WHOI-93-35.

Approved for publication; distribution unlimited.
Accesion For

Approved for Distribution: NTIS CRA&I
DTIC T148
Ulnainoul~c;2d 3
Justificaton

Ama~t V.By
" B y ~~ ~................................ . .. . .

Geo k, Char Dist, ibution I

Department of Applied Ocean Physics and Engineering Availaailitv Coe's

Aval zij ' 1,'orS~~~Dist ',•CJ

-,j
John W. Farringt@

Dean of Graduate Studies Dint QUALITY INSPECTD



Analysis of Modal Evolution Caused by a Weakly
Range-Dependent Seabed in Shallow Water and

its Application to Inversion for Geoacoustic Properties

by

Kazuhiko Ohta

B.S. Kyoto University, Japan (1977)
M.S. Massachusetts Institute of Technology (19M3)

Submitted in Partial Fulfillment
of the Requirements for the Degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

and the

WOODS HOLE OCEANOGRAPHIC INSTITUTION

September 1993

C Kazuhiko Ohta (1993)

The author hereby grants to MIT and WHOI permission to reproduce
and distribute copies of this thesis document in whole or in part.

Signature of Author u to r
Department of Ocean Engineering, MIT

Department of Applied Ocean Physics and Engineering, WHOI

C George V. FriskThesis Supervisor

Accepted by G ~
Arthur B. Baggeroer

Chairman, Joint Committee for Applied Ocean Science and Engineering,
Massachusetts Institute of Technology - Woods Hole Oceanographic Institution



Analysis of Modal Evolution Caused by a Weakly
Range-Dependent Seabed in Shallow Water and

its Application to Inversion for Geoacoustic Properties

Kazuhiko Ohta

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
and the

WOODS HOLE OCEANOGRAPHIC INSTITUTION

September 1993

ABSTRACT

In a shallow water ocean environment, the range-dependent variation of the geoacous-
tic properties of the seabed is one of the crucial factors affecting sound propagation. Since
the local modes of propagation depend on the spatial changes in the bottom sediments, the
local eigenvalues of these modes are useful as tools for examining the range dependence of
the sediment properties. In order to extract the local eigenvalues from measurements of the
pressure field in a laterally inhomogeneous waveguide, the zero-order asymptotic Hankel
transform with a short sliding window is utilized. The local peak positions in the output
spectra differ from the local eigenvalues due to both the range variation of the local modes
and the interference of adjacent modes. The departure due to the former factor is evaluated
analytically by using the stationary phase method. In order to reduce the error induced by
the latter factor, mode filtering is utilized by incorporating data from a fixed vertical array
of receivers.

The use of the above zero-order Hankel transform in a three-dimensionally varying
waveguide results in an underestimate of the local eigenvalues due to the effect of horizon-
tal refraction. Thus a general asymptotic Hankel transform with a 2-D sliding window is
used to correct for the underestimated amount. By expanding the latter transform with
respect to the azimuthal angle, it can also be shown that the first term in the Taylor series
corresponds to the former transform; the rest of the terms account for the value difference
between the underestimated and actual local eigenvalues.

In order to obtain the spatial variation of the sediment properties from the range-
dependent variation of the extracted local eigenvalues, the analytical relationship between
these two variations is derived by using a perturbation method in a horizontally varying,
multi-layered bottom model. Upon use of the n2-linear profile in each layer, the relation-
ship can be obtained in closed form. As a result, the range variation of the local eigen-
values may be separated into terms that depend on each geoacoustic parameter. Based on
this relation, an inversion method for determining the range-dependent geoacoustic
parameters is developed.

The methods developed in this thesis are applied to simulated pressure field data as
well as experimental field data. It is shown that the evolution with range of the local modes
as well as the range-dependent geoacoustic properties can be successfully estimated.

Thesis Supervisor. Dr. George V. Frisk, Senior Scientist, Woods Hole Oceanographic
Institution
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Chapter 1

Introduction

Ll Background

In ocean acoustics, it is well known that the geoacoustic properties of the seabed play

an i.portant role and in shallow water especially become a crucial factor affecting sound

ropagation in the oceanic waveguide [1-31. Thus knowledge of these goacoustic

propertie is essential not only for acoustic analysis of phenomena in the ocean but also

for the design of sonar instrmentation.

A number of studies have been carried out theoretically and experimentally to

incorporate the effect of bottom interaction on the acoustic pressure field in the water

column (e.g., Refs. 4-16). In the case of the deep ocean, the plane wave reflection

coefficient of the bottom is useful for chg the acoustic features of the seabed,

since bottom-interacting sound can be isolated and interpreted in terms of individual

plane wave interactions [17-21). On the other hand, in shallow water, the reflection

coefficient is less appropriate, because the measured field is constructed of many bottom-

interacting, multipath arrivals, and individual bottom interactions cannot be readily

distinguished. In fact, the reflection coefficient and the depth-dependent Green's function

are nonlinearly related in shallow water, which leads to an ill-posed problem for

determining the reflection coefficient from the measured field (22,23]. Thus, instead of

using the reflection coefficient, we utilize the normal modes of propagation, which are

synthesized frm the multipath arrivals, to characterize the effect of the bottom on sound

propagation in shallow water.

In general, normal modes can be detected by using vertical or horizontal array [9,22-

33]. In a horizontally stratified waveguide, the modal eigenvalues can be estimated
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accuaely from the peaks in the FFT beam-formed output of a horizontal army, which is

an approximation to the zero-order Hankel transform relationship between the spatial part

of the pressure field and the depth-dependent Green's function [22].

When the sediment properties vary not only vertically but also horzontally, the

modal eigenvalues are accordingly subject to change with range. This phenomenon has

been confirmed in some measured data from Nantucket Sound (Figure 1-1) [301. Frisk et

aL [30] showed that the splitting of modal spectral peaks suggests the presence two

different bottom sound speed profiles (Figure 1-2), which may be associated with

different seabed parameters over the surveyed range; the lateral inhomogeneity of this

region is assumed to consist of two different range-independent portions in order to apply

the modal inverse method. This observation, however, suggests that the information

contained in the range-dependent evolution of the local modes can provide a clue to

resolving the spatial change of the bottom environment in a continuous manner [32].

'I~~~ J))))) RADAR RANGINGSYSTEMO(( t.

-. ,-PRESSURE RELEASE SURFACE SURAE BUOY-

SOURCE ................ SYNTHETIC APERTURE RECEIVER 2
z o s 6 .1 m a - * - - * " . . . . . . .. . .. ..* * * *. . . . . . . . . . . . . .. . . . .. . . . . . . . z 8 • 7 .1 m

f, -140Hz Q41•

f2 220HZ c 8 1503m/S afz~~~~ "201 .0 Q/cm
S• ~RECEIVER I25

z - 12.5 m
ANCHOR

HORIZONTALLY STRATIFIED BOTTOM

Figure 1-1: Expenmental configuration for the Nantucket Sound expenment
(from Ref. 30).
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As an approach for estimating the local modM, Prmy's method was applied to a

laterally varying shallow water waveguide by Diemer [33]. This method is one of several

nonlinea spectral estimation methods developed in the last decade. The application of

Pwa's method was succesSful to some degree with simulated data, but had only limited

success with experimental dat.

In this thesis, instead of employing a nonlinear spectral estimation method, a mode

separation technique is used as a prt-processing method for the effective use of the

Hankel transmfom with a short sliding window, which is relatively robust to noise. Thus

the first half of this thesis is devoted to developing a method for estimating local modes

from the pressure field in a shallow water environment having a weakly range-dependent

seabed. Then the range-dependent evolution of the local modes will be analyzed to

characterize the acoustic features of the waveguide.

Once the local modes are accurately estimated, the next objective is to obtain the

spatial variation of the sediment properties from the range-dependent variation of these

local modes. Namely, the sediment properties ame obtained as a solution of this type of

inverse problem. Here it would be worthwhile to review some of the existing inverse

methods [34-51].

The iteration of forward models method [34-36] calculates the pressure field by

using a numerical model that changes the geoacoustic parameters repeatedly until it best

fits the measured pressure field. Although the performance of this method depends on

the ability of the numerical model to simulate the field, this method is effective to

implement on real experimental data because the results are generally stable with rSPc

to noise. One of the problems with this method has to do with distinguishing local

minima from global minimum associated with the best-fit solution. This uniqueness issue

becomes significant, when the number of geoacoustic parameters to be determined

increases. In order to cope with this higher-dimensional problem, the simulated

annealing method [37-40], which is also categorized as an iteration of forward models

10



method, is useful and has been applied recently to the measured data at Corpus Qr=

[40]. This method is a Monte Carlo optimization procedure that numerically imitates the

cooling process associated with crystal fomation and has become operational practically

with the deelimn of high-speed computers. However, these iteration of forward

models methods are computatdonay intensive and dime-consuming as compared to other

methods.

In contast, analytic inverse methods do not repeatedly solve a forward problem.

Rather, they ty to solve a Fredholm integral equation of the first kind, which arises in

different forms, depending on the quantities used for the input and output data [41-43].

In exact methods [441, this integral equation may be solved by resorting to the trace

method [451 or the Gelfand-Levitan method [46]. which was originally developed for

inverting the SchrOdinger equation [47] for the potential in quantum mechanics. These

methods do not require an approximation in the initial stage, so no initial assumptions

such as a background model for the gcoacousuc parameters am required. But they do

involve difficulties in application to real data.

On the other hand, perturbative inversion methods [48-51] linearize the Fredholm

integral equation wound an initially assumed background model, usually based on the

Barn approximation [47]. Then the problem becomes tractable, and results established in

linear inverse theory can be applied. Thus these perturbative inversion methods have

been successfully exploited to determine geoacoustic parameters [12,29,30]. Specifi-

cally, in the horizontally stratified case, the modal eigenvalues can be utilized in the

perturbed Integral equation, and they are also robust as input data for the inverse problem

(50.511.

In a range-dependent shallow water environment, we first need to clarify the

relationship between the range-dependent modal evolution and spatial changes in the

genacoustic properties. To do this, we can expect to utilize the perturbation approach. In

11



the latter half of this thesis, an inversion method for obtaining the range-dependent

geoacoustic properies will be developed on the basis of this relationship.

L2 Theds Outline

A primary thrust of my research is to develop a method for extracting the local

modes from measurements of the pressure field in a laterally varying waveguide. In

addition, concern must be naturally extended to the case of a threedmensionally (3-D)

varying waveguide, where the effect of horizontal refraction has to be taken into

consideration. Next, in order to use these extracted local modal eigenvalues in

pera•bative inversion methods, the relationship between the range-dependent modal

evolution and the spatial change in the acoustic properties of the bottomn also has to be

clarified. Based on this analysis, an inversion method for determining the range-

dependent geoacoustic parameters can be established. This thesis deals with these two

steps of the inversion problem in an effort to obtain the local geoscoustic propertes in a

range-dependent shallow water environment.

Chapter 2 reviews the basic features of normal mode theory for a horizontally

stratified waveguide and adiabatic mode theory for a range-dependent waveguide. In

addition, in order to cope with a 3-D varying waveguide, two methods based on adiabatic

modes, i.e., the Nx2D method and the horizontal ray method, are also briefly reviewed.

The techniques discussed in this chapter provide the analytical and computatonal

foundation for the remaining of chapters.

In Chapter 3, the asymptotic Hankel transfoim with a short sliding window is applied

to extract the local eigenvalues from measurements of the pressure field in a range-

dependent, but cylindrically symmetric, waveguide. A theoretical analysis of the effect

of range-varying local eigenvalues in the transform is presented. In an attempt to reduce

the error in the transform that is caused by the interference of different modes, mode

filtering is employed by incorporating data from a fixed vertical array of receivers.

12



Chapter 4 is devoted to detecting the local eigenvalues in a 3-D shallow water

environment. We explore the general asymptotic Hankel transform with a sliding

window so that we may grasp the effect of horizontal rfrwti In particular, this effect

is thedoretically analyed in connection with the eor that occuwv when using the o-

order asymptotic ael transfom with a sliding window in non-cylindrical symmeic

wavesuides.

In Chapter S, the reladonship between the range-dependent variation of the local

algenvalues and the spatial changes in the bottom pqeties is studied by using a linear

perturbation method. Use of an n2-linear proffil in a multi-layered sediment model

enables us to express the above relation in closed form. Based on this relaton, the

inversion for range-dependent geoacoustic parameters is pursued.

Chapter 6 presents the results obtained by applying the asymptotic Hankel transfrm

with a sliding window to experment dat. Mode fitering is also applied to the pres-me

field measured by using a fixed vertical array of receives. Based on the estimated anp

evolution of the local modes, we discuss the range-dependence of the goscoust

In Chapter 7, the conclusions of this research and future work are presented.

13



Chapter 2

A Review of Modal Representations of the Acoustic Field

As introduced in Chapter 1., no1mal modes are a useful concept to apply to a

shallow water environment not only for synthesizing the pressure field In a forward

problem but also for analyzing the medium in an inverse problem. In a range-dependent

environment. local modes an uniquely determined by the local properties of the medium,

including the bottom sediments. Thus it is natural to expect that one can make use of

local modes to infer the range-dependent properties of bottom sediments from measure-

menus of the piure field.

The purpose of this chapter is to review the normal mode and adiabatic mode

theod for describing the acoustic pressure field in shallow water. The analytical

representations for the pressure fields based on these theories are useful for development

of the modal charcterization of the waveguide as well as the theoretical basis for an

inverse scheme. The pressure fields simulated by these theoi will also be used for

computational analysis in the remainder of this thesis. In addition, the Nx2D method and

the horizontal ray method are reviewed below. Both methods are used in the simulation

of pressure fields for a 3-D varying waveguide in Chapter 4.

2.1 Nomal mode themy

Normal mode thewy in underwater acoustics is one of the principal methods used to

provide a full wave solution for sound propagation in a horizontally matifed waveguide

and is well suited for shallow water applications [4,13,16,52-54].

14
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As shown in Figure 2-1, we set the coordinate system so that z is measured vertically

downward from the surface and a point souce is located at xz, n (0,0,o); then the

Helmholtz equation for a time-harmonic source with unit strength is expressed as

p(x)V. I-V p(x)] +k (x)p(x)=--4xS(x-x,) . (2-1)

where p(x) is the spatial pat of the acoustic pressure, p(x) is the density, and k(x) is

dhe wavenumber defined by k(x) = 0lc(x) with sound speed c(x) and cixcular frequency

w. Here, and throughout this thesis, we assume an e"' time dependence. Sediment

attenuation can be accommodated by adding the attenuation coeffient of sediments,

a(x, w), to the imaginary part of k(x); i.e., k(x) -+ k(x)+ la(x,w) [53,54J.

When the medium is horizontally stratified, the Helmholtz equation can be solved by

means of conventional normal mode theory. Based on the separation of variables, the

solution can be expressed in terms of a sum over a set of eigenfunctions u. of discrete

modes plus a branch line integral I, [55,56]:

p(r.z.z.) = . ! .(zo)ua(z)Ho°"(J.r)+Ia , (2-2)
;RZo) a

in which Ho"I represents the zero order Hankel function of the first kind. Here, owing to

the symmetry of the pressure field around the source, a cylindrical coordinate system

such that r a +y has been used.

The nth mode eigenftnc. c-i, u,(z), satisfies the depth equation

p(z)-I + [k Z .].=0(2-3)
dr (p(z) ! J LP)~ )C~I

together with the prescribed boundary conditions. The eigenfunctions are normalized so

as to satisfy the orthonormality condition:

16



-)(*).Wdz (2-4)

where 5. is the Krnecker-delta and the inverse of the density soves as a weighting

funtion. In Eq.(2-3), r, stands for the eigenvalue of the nth mode, which is detrmined

uniquely by solving a chaacit equation subject to the boundary conditions. Physi-

cally, the real part of r. is identified as the horizontal component of the wavenumber and

its imaginary par characterizes the attenuation rate of mode energy in the propagation

process.

The branch line integral, 1,, arises when the bottom structure is terminated with a

fast isovelocity half-space. Since Is usually decreases rapidly with range, its contribution

to the far-field pressure in Eq.(2-2) is often neglected [55,561.

In this range of interest, Ho') ( rr) can generally be approximated by its asymptotic

form [57]:

H•"(wr) ~ ---- e'1'6F- 4e , (2-5)

so that Eq.(2-2) can be expressed as

p(r()~ e -. ».I)U,(Z)ej" ( rr>>) , (2-6)lr ,, 7.q,

where the density in the water has been set to I s/cm?, p(z,) =1. This assumption will

not incur a large erm in shallow water.

As mentioned before, the normal mode representation is applicable only to the

horizontally stratified waveguide. Thus let us consider an approximate mode theory

applicable to range-dependent waveguides in the next section.

17



22 Adiabatk mode theery

When the ocean environment, including the bottom sediment, varies gradually in the

horizontal direcdon, adiabatic mode theory is effective in representing the acoustic field.

Thr r•st to point out the adiabatic propagation process in underwater acoustics was

Weso [58], and then Milder [591 demons•rted elegantly, from an analogy with classical

mechanics, that the adiabatic invariant corresponds to the mode number. In waveguides

for which the range-dependext variation is gradual enough to apply adiabatic mode

theory, the acoustic energy is trans ted in the horizontal direction separately by non-

interacting modes [60]. In other words, the coupling between different modes that is

induced by the range variation of the medium has to be small enough to be neglected in

adiabatic mode theory [59].

In this method, we first assume that the solution of the Helmholtz equation in Eq.(2-

1) can be expanded in terms of local eigenfunctions u.(x,y,z) as

p(x,y,z) -- R.(xy)u.(x,yz) , (2-7)

where R.(x,y) is an unknown range function to be determined and u,(xyz) are defined

so as to satisfy the following depth equation ý 16,61,621:

P(X.Y,Z)1(ýT1) .&IjL)+[k2(x.y.z)- A.(.x~y)]u.= 0(28,Y ) +[ (2-8)

with given boundary conditions at each range. Here, K'(xy) is called a local eigenvalue,

which is a function of horizontal position. In a manner similar to conventional mode

theory, the u,(x,y,z) satisfy an orthonormality condition:

(Xyz) u(x,y.z)u(xyz)dz = J.. (2-9)

18



TM r oomlity ot the l igenfuncoes provides te foundation omode

filtring as will be discussed in Chapter 3.3.

SbtutnEq.(2-7) into the Helmholtz equation and utilizing the ortooaity

¢oditin Sq.(2-9) yield a coupled equation for the range function R. [5,62]. Coupling

r appearing in this equation are induced by the horizmtl vaiation of the medi

and reflect the fact that the redistribution of modal energy evolves in the propagation

process [601. Due to the current assumption of weak range dependence, these coupling

torms may be dropped out of the coupled equation, yielding a range equation for R. for

each mode:

2V3R.(x,y)+ e•(x~y)R.(,x,y)=-2-u.(o.,o, z)6(r) ,(2-10)

Wh~iere U This procedure is commonly called the adiabaticaprimto

[59.61].

If the waveguide medium is cylindrically symmetric around the source, i.e., the

horizontal variation of the medium only depends on the range from the source, then it is

found immediately from Eq.(2- 10) that the pressure field also depends on the range only.

In this case, a cylindrical coordinate system is more manageable to describe the range

equation, giving

1 rAr))+ xe.(r) R.(r)-U. (o. 7) 8(r) (ajr»1>) .(2-11)

r4r ( r Jr

At this point, by exploiting the WKBJ approximation method and matching the boundary

condition close to the source, we obtain an adiabatic mode solution in the following form

[62,63]:
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TLx 1 40Ir,7*p(r,z, zo)- L u.(0,z,)u(r,z)e (wr >> 1) . (2-12)

As aen from a comparison of the field given by normal mode sum in Eq.(2-6) and the

field given by adiabatic mode sum in Eq.(2-12), the major distinction between them

arises principally firom the difference in the phase factor associateid with each mode. Ths

is also a key factor when detecting the eigenvalue from the pressure field in the invese

process, as will be discussed in Chapter 3.2.

When the waveguide is not cylindrically symmetric, we have to start from Eq.(2-10)

to obtain the pressure field. The next two sections deal with this problem.

2.3 NX2D method

In order to develop a method for extracting local eigenvalues in a 3-D varying

environment in Chapter 4, we need to simulate the pressure field in this environment; the

Nx2D method [64,65] is one of the methods for realizing it.

If the cylindrical symmetry of the waveguide breaks down, then Eq.(2-12) is no

longer a solution of Eq.(2-10). To describe the field correctly in this 3-D, yet adiabati-

cally varying medium, we have to solve Eq.(2-10) or, equivalently, the equation

incorporating the azimuth angle into Eq.(2-1 1) such that

1ia 61(R,(r,)•) L+a2R R(rO) +2•(rO)k(rO)=_2u.(OO,)S(r)

But this is not so straightforward. Instead of doing this, the Nx2D method tries to solve

Eq.(2-13) by treating the medium as if each medium sliced in the 0 direction were

cylindrically symmetric. To be explicit, the Nx2D method approximates Eq.(2-13) by the

following equation:
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G- ____ (2-14)

and. c quly. provides an approximate solution for p(r,6.z):

P(r,,S Zo) , (r)u,(.u, $IF)L.ir, uz)e . (2-15)

Namely, the Nx2D method takes into account the azimuthal dependence of the field when

deriving the local eigenfunctions in the first stage, but neglects the cross-angle variation

for R, when solving the range equation in the next stage. It should be noted, however,

that R, still keeps the azimuthal dependence through w,(r,G) as an outcome. Thus, the

azimuth angle e simply plays a role a a parameter in Eq.(2-14). This can also be

ecognized by a comparison of Eq.(2-12) and Eq.(2-15).

In spite of no direct interaction between the different azimuth directions, as indicated

in Eq.(2-14), the azimuthal variation of p(r,O,z) in Eq.(2-15) produces the same effect as

if the phase front wen redirected in a different direction from 9. Hence, we can see that

the effect of horizontal refraction is included to some extent in Eq.(2-15), although it is

not completely correct.

The Nx2D approach was also employed successfully by Perkins et aL. [64] to apply

the parabolic equation method to a 3-D varying waveguide, which has stronger variation

than that dealt with here. He demonstrated the effectiveness of this approach in both an

analytical and numerical manner.

When simulating the pressure field in a 3-D varying environment in Chapter 4, the

Nx2D method will be compared to the horizontal ray method, which is briefly reviewed

in the next section.

21



24 Hrzkontal Ray mthod

As an alernative approach for representing the pressure field in a 3-D varying

waveguide, one can employ the horizontal ray method. In this approach, adiabatic mode

theory is first applied to the vertical direction in order to obtain local cigenfunctiou at

each range. Then, in the next stage, the ray method is utilized in the horizontal plane to

grasp the evolution of local modes. This idea was originally employed by Pierce [61],

then was further developed in a more general manner by Weinberg et at. [66], by

exploiting asymptotic series. To implement the horizontal ray method, the horizontal

variation of the medium has to be small, especially compared to the vertical variation.

The advantage of this approach is that it affords a clear picture of the horizontal

refraction for each mode. In shallow water, this refraction is caused not only by

bathymetric change but also by the variation in sediment properties and layer structure;

the degree of this refraction also depends on the mode and frequency of interest. Hence,

the effect of horizontal refraction cannot be neglected in the inverse problem for the 3-D

varing bottom environment.

If we confine ourselves to the zero order term of the asymptotic series in horizontal

ray theory, the phase 0. in R. (z Ae)has to satisfy an eikonal equation, which

subsequently leads to a ray equation:

ds dx'

(2-16)

(r, sin 0

where dr is an increment of length along the horizontal ray path of the nth mode and 0.

indicates the direction perpendicular to the phase front ( 0. = constant) at the position

(x,y). A set of these equations clearly indicates that the horizontal refraction of the mode

is characterized by the spatial variation of its local eigenvalue. Based on both the ray
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equatio in Eq.(2-16) and the tansport equation for the amplitxlu A., the pressrwe field

can be represented to the lending ordr as [61,67]

p(X, 7 ,:Z.;)=ie 4-12-S #Waa(O.Oz.;)1d.(X.yZ)e~" ,(-7

where the integral in the phase term is taken along the horizontal ray path determined

from Eq.(2-16) and D. a - is the Jacobian for transformaion from Cartesim

coordinates to ray coordinates (s, 6). In the cylindrically symmetric case, D, Vr and

d = dr, so that Eq.(2-17) reduces to Eq.(2-12).

The effect of horizontal refraction on the inversion process for detecting the local

eigenvalues will be discussed in Chapter 4. Also, the pressure field in Eq.(2-17) will be

utilized to synthesize the acoustic field for the numerical study.

2.5 Summary

In this chapter, the basic features of the conventional and adiabatic mode theory were

reviewed as were the Nx2D method and the horizontal ray method.

Conventional mode theory is of considerable utility in shallow water but can be

applied exactly only to the horizontally stratified case. On the other hand, adiabatic mode

theory can be applied to a range-dependent waveguide as long as the waveguide medium

changes gradually in the horizontal direction. In the case of a cylindrically symmetric

waveguide. the most prominent difference in the representation of the pressure field in

these two theories is the phase factor associated with each mode; the former is provided

simply by the eigenvalue multiplied by the range, whereas the latter is given by the

integration of the local eigenvalue with respect to range.

Both the Nx2D method and the horizontal ray method are designed to cope with a
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3-D varying waveguide. In the Nx2D method, the waveguide is treated as if cu

medium sliced in the azimuthal direction were cylindrically symmeic, then, for each

direction one can make use of the results of the adiabatic mode sum that is derived for the

radially inhomogeneous waveguide. On the other hand, the horizontal ray method can

deal with the phase factor more exactly by tracing the modal evolution on a horizontal

plane after obtaining local modes at each range.

The methods reviewed in this chapter will provide the analytical and computational

foundation in the remainder of this thesis.
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Chapter 3

Detection of Local Eigenvalues in a Laterally

Inhomogeneous Wavegulde

The purpose of this chapter is to extract the local cigenvalues from a given pressur

field in a laterally inhomogeneous waveguide. Before doing this, we will first review the

Hankel transform, whose asymptotic form can provide exact ¢igenvalues of normal

modes in a horizontally stratified waveguide [16,22]. Then. a sliding window is

introduced into an asymptotic Hankel trsform of order zero in order to cope with a

laterally inhomogeneous waveguide. The effect of range variation in the local

eigenvalues on this transform is examined in an analytical manner in Section 3.. In an

attempt to improve the processing in this transform in a multi-mode environment, the

application of mode filtering is explored in Section 3.3 by incorporating data from a fixed

vertical array of receivers. These results are studied in Section 3.4 by using pressure

fields that are simulated with the use of adiabatic mode theory. Note that the waveguide

is assumed to be cylindrically symmetric about the z axis throughout this chapter. A non-

cylindrically symmetric case will be dealt with in Chapter 4.

3.1 A review of the Hankel Transform

In a horizontally smatified waveguide, eigenvalues of normal modes can be

accurately detected by an asymptotic Hankel transform of order zero. In this section, the

Hankel transform is first reviewed and then its relationship to the depth-dependent

Green's function is presented in connection with the eigenvalues of conventional mode

theory.
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To begin with, we will take a two4imensional (2-D) Fourier transfom of the spatial

part of the acoustic pressure p(x.y,z) such that

wtere (ka.,k) are the horizontal components of the wavenumber and & (k.,k,;z) is

genemlly referred to as a wavenumber spectrum. Note that this specuum s retains its

dependence on the depth variable z and, therefore, must be distinguished from the

wavenumber spectrum that is defined by a three-dimensional (3-D) Fourier transform,

which is completely independent of spatial coonrinates. The inverse Fourier transform

associated with Eq.(3-1) is given by

p(XyZ) 1 If E(kk,;z)e'*'7'dkdk, . (3-2)
(2x?

Here we may rewrite the above transform pairs in terms of cylindrical coordinates in

both the space and the wavenumber domains through

x=rcosO y=rsinO r: 4y

(3-3)
k,=k,cos9 k,=kmsin 4p k, -k.2

It follows that

j(k•,,q;z) =.f'drrj 'D! p(rOz)e"•U('P , (3-4)

and

p(r,8, Z) ( 3 )2 f'dkrkr £dfr ~,~ze"' (3-5)
(2Z2
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A Vneral Hmnkel ransform can be deduced from this form, but in this chapter let us

onfine ourselves to cylindrically symmetric fields only. In Chapter 4, we will discuss

rte application of the general Hankel transform to non-cyindrically symmetric fields in

cnnection with horizontal refraction effects.

When the pressure field p is cylindrically symmetric, we can take p out of the

integral with respect to 9, giving

I(k;)= .r',r .z)j E (3-6)

Use of the following integral representation for the zero-order Bessel function [57]

J,(c)2 (3-7)

in Eq.(3-6) yields

j(k,;z) = 2xfp(r.z)Jo(k~r)rdr , (3-8)

or, alternatively,

o(k,;z)= fp(r~z)J.(k,r)rdr , (3-9)

in which we have introduced the new wavenumber spectrum g(k,; z) that is defined by

) --g(k,;z) . (3-10)

Eq.(3-9) is commonly called a zero-order Hankel transform [16].

Likewise, due to the cylindrical symmetry of g in the wavenumber domain, Eq.(3-5)

is reduced to an inverse zero-order Hankel transform:
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p•r,z)= - f(k,;z)4.(k)k•do . (-11)

Tb. conjiugate transform pain in Eq.(3-1O) and Eq.(3-1 1) czhibit that the Hank.!

6sfonM and its inverse have th same form. h is also obs•elv that both p(r.z) and

g(/,;z) become even functions in terms of r and A,, respectively, since J,(kr) is an even

funci on•

The tranorm pairs described above can also be expressed using the Hankel

fTo do this, the following identity [57] is substituted into Eq.(3-1 i):

. 2()= [H,)(k,)+ (kr)] (3-12)

yieldng

p(r, z) = .!.f(k,; z)H4("(k,r)k,dk, + f.g~(k,; z)HI4 2 1(k,r)k~dk, *(3-13)

Letting A, = -• in the second integral leads to

POrz =.f g(k,;z)HO(j)(k~r)k~dt, +! g-4zH 4d (3-14)

Using g(4; z) = g(-C; z) and H.~-r -H,'D(4r) [57] in the second integral in Eq.(3-

14) results in

pOr,z) = 1iS(k,;z)H .)(kr)kA (r>O) (3-15)

As detailed in Ref. 23, this representation is valid only for r > 0. In the same manner, we

can obtain the conjugate transform:
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P~zA1Mkrr (k 0)(-16)

Nf the at aIWoD range couespood ID k r» 1. dme we can employ the asymptotic

form o(the Hankel function [M in Eq0-) and 4q.(0-16):

Roo)(M r) (3-17)914

Therefore a pair of asymptotic Hankel transforms can be expressed as

P(r, z) - rg(k,;z)4k-,e"'dk., (3-19)

e if/4

2(k,;)- £p(r,z)4re .rdr (3-20)

These integral forms enable us to utilize the Fast Fourier Transform (FFT), which is

useful when numerically evaluating the integrals in Eq (3-19) and Eq.(3-20). Equation

(3.19) is the basis of Fast Field Programs (FFP) for computing the sound field [68,69]

In order to use Eq.(3-20), the only assumption we have made about p(raz) is that it

be cylindrically symmetric. Hence, even in a laterally inhomogeneous waveguide,

g(k,;z) can be clearly defineA by" upplying the above asymptotic Hankel transform

(Eq.(3-20)) to the pressure field in this waveguide, as long as the field is cylindrically

symmetric.

Here it is of particular interest to examine the wavenumber spectrum g(k,; z) in

Eq.(3-20) for the case of a horizontally stratified waveguide.
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3.LI The borizontally grmaified cae

At this point, lot us demonstrate that g(k; z) given by Eq.(3-20) corresponds to a

depth-dependent Green's function if, and only if. p(r,z) is the pressure field obtained in a

horizontally stratified medium (16]. In that cae, p(rz) satisfies the inhomogeneou

Helmholtz equation described in terms of cylindrical coordinates as

r- (r-•p(r.z) )+,p(z)-I[-.) ,~r~z)] + k(z)P(r,z)

=-4-6()(z- z) . (3-21)
r

By applying the zero-order Hankel transform operator J&rJ.(kr)r to both sides of

Eq.(3-21) and employing the following relation in the first term

JfrJO(k~r){i;'(r4ip(r~z))]=-k,21(k,;z-) ,(3-22)

we obtain

p(ZY± -- g(k,;z)]+ [k2(z) - kg(k,;z) =-25(z - z) ,(3-23)

where the spectrum g defined in Eq.(3-l0) has again been used instead of 5.

For a fixed value of the wavenumber k,, the spectrum g(k,;z) is the solution which

satisfies the differential equation for a point source (Eq.(3-23)), subject to p y posed

boundary condidons. Therefore, g(k,;z) is called a depth-dependent Green's function

and is conventionally expressed by g(k,;z,z.) to emphasize its dependence on the source

depth zo as well.
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Oace I(k;z.,) is obtained by solving Eq.(3-23). we can consamct tde pesswu field

by s titutignS 8(k;z.4z) into Eq.(3-l1). This integral sepresentatio can also be
ansforned into ft modal seprentatios in Eq.(2-2) by using Canchy's residue thmem.

To do this. we allow k to beone complex and deform the integrtd path in the

comple-4 plaM so as to enclose die poles athe Gren's function j(k;z,z.), which

s to the eigenvalues of the discrete modes. Owing to Cauchys residue dteum

[70, the integral in Eq.(0-15) becomes a sum of residue contributions, each of which is

expessed as a modal e uncon. Furtheor, if a branch cut exists, then a

contribution from the integral around the branch cut must be added. As a result, the

pressure field can be expressed as a sum of discrete modes plus a branch line integral as

Siven by Eq.(2-2) in OCapter 2.1 [16.52,55,.561.

Conversely, let us apply the asymptotc Hankel transform to the pressure field

p(rz) that was synthesized in Eq.(2-6) for kr >> 1, as explained in Chapter 2.1. When

p(r,z) Is obtained over a finite range (Ocr<R), as is the case in actual experimnts, the

asymptotic Hankel rasform in Eq.(3-20) has to be computed over a finite aperture R:

T(k.; z) - .p(r, z)e•4 ''dr ( (3-24)

Equivalently, by using a window function w%(r) that is defined as

wI(r) M (r<,R <r) ' (3-25)

Eq.(3-24) can be rewritten as

"",Z) - £w,(r)p(rz)-4rre'•dr . (3-26)
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usting the pesum field given by Eq.(2-6) inlo Eq.(3-24) ad changing the order of

die ir ntegaion and the mode summation leads Wo

- .. (3-27)

By executing the integral, Eq.(3-27) rsults in

- -R (3-28)t(•; Tz,) a.z).z k- W..

This result shows that the Green's function has peaks at k, - R W(mR[ .D, i.e., the meal

part of the mode eigenvalues, which are, however, finite in width and amplitude. This is

due to the effects of the finite aperture R and the modal attenuation ,. n Wr.]. The

amplitudes ae also proportional to the values of the eigenfunctions at the source and

rceiver depths. Thus one can accutely determine the eigenvalues of the normal modes

ftrm the FFr beamformed output of a finite-apermre houizontal ay, as long as the

source and receiver depths an not close to the null of modes and the eigenvalues of

adjacent of modes am not too close. The equivalent result can also be obtained by

applying Eq.(3-26) to the same press=e field Eq.(2-6), yielding

g~kz~r - fr 4~.(r~u.z)S~L~r) *S~eA * ~e") ,(3-29)

wher S(e) 0_ fdre" rpresents a Fouier transform operator and * indicates a

convolution operation.

Thus, in a bhizotaUfly stratified environment, we can obtain acurate estimates of

modal eigenvalues by identifying peaks in the wavenumber spectrum which is obtained

by taking the zero-order asymptotic Hankel transform of the pressure field obtained over

a finite spertue.
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32 The Hankd transform for a r ende t medium

In dtoborizontally stratified case, as demonstrated in Ut previous section. te modal

eienvalues can be obtained accurately from the peaks in te FF beamformed onpt of

a ls-apetrm horiontal way. In Rd. 30, this aproach was extended to a wakly

rg-dependent case by discretizing a laterally inbhxogeneous wavegulde into a finite

aumber of segments whose properties are range-independenL This scheme may be

SPneralized fWther by introducing th technique o the Short-7ime Fourier Transform

(STFI) with a short sliding window wl(r.F), in which P and L indicate Center
ponsio and window length of the sliinS window, respectively [32,71,721. Thw

spectrum S.(k,;P, z,z,) is thus defined below to obtain the local character of Ut

wavenumber spectrum 1(k,) in the asymptotic Hankel transform in Eq.(3-20):

ifr

S.k;~.) e rwLrPprzz)"4d (3-30)

The ranp-varyinS peaks in 41,. (k,;P. z, zA then reflmc Ut modal evolution of Ut

waveguide. These peak positions, however, do not exactly co-espond so the local

eigenvalues in the range-dependent case because the eigenvalues do not remain constant

over the range covered by the short window. Shortening the window length further to

localize their behavior gives rise to anodter type of en=r when evaluating Eq.(3-30). This

103r orginates from the so-called "uncertainty principle," in which both wavenumber

and range cannot be determined with arbitrary precision [47,71,72J.

In order to evaluate quantitatively the output of the above STFr, let us utilize Uh

pressure field expressed by Eq.(2-12) in Chapter 2.2, which is derived from adiabatic

mode theory with the assumption of a gradually changing medium in the lateral direction.

Before proceeding. a remark should be made on the choice of the coordinate system.

Namely, in a range-dependent medium, it is essential to choose a coordinate system fixed
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SURFACE

RECEIVER
................................................................ (r,z)SYrNTET APERTURE

SOURCE

(o.z.)

Z (a)

SURFACE

SOURCE
............................................................... 0 (r,z)

SYNTHETIC APERTURE

RECEIVER

Z (b)

Figure 3-1: Geometry of the reciprocity relation between source and receiver positions.
(a) Source and (b) receiver are fixed in space.
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in spac for describing both the pressue field and the environmental paramets as a

fction a posidtio. In Figure 3-1(a), given a fixed point source, the z axis is chosen so

as I pas tmrgh the source positin (0, z.). The pressur field due to this sorce,

p(r,z.), can be measured by the receiver placed at (rz). In cotrast, if the receiver is

fixed and the point source changes its position, then th z axis is chosen so as to pas

through the receiver posito (0, zq). By virtue of the reciprocity principle, the prsue

due to te source at (r,z) which is measured by the receiver at (0,z) in Figure 3-1(b) is

identical to the pressure due to the source at (0, z) which is measured by the receiver at

(rz) in Figure 3-1(a). Therefore, in either case, we can use Eq.(2-12) by choosing the

coordinate system as shown in Figure 3-1.

Substitution of the pressure field p(r,z,zo) in Eq.(2-12) into Eq.(3-30), followed by a

change of the order of Fourier integration and mode summation, yields

Alternatively, rewriting Eq.(3-31) with the use of a Fourier operatr, a I{ e- -p.

yields

.(k,;Pr,z,) -7• - ,, (O, zo)g, (k,,rz) (3-32)

with

M {wL ;r) Mrz) jlw.(,,w (3-33)

where 8. represents the spectrum associated with the nth mode. It is then immediately

seen that the departure of the peak position in I,(k;Pz,z,) from Re[jr(r)] originates

from the following two factors: One is the range dependence of S.; the other is the
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inerfere~nce with the sidelobes of the adjacent mode (,,). First, we will examine the

peak shift due to the first factor, then in Section 33 we will examine the peak shift due to

the second factor.

3&1 Peak shift due to ranr dependence In the local eigmnvale

In this subsection we will confine oielves to the spectrum L given by Eq.(3-33)

and examine the effect of range dependence in the local eigenvalue on this specuum.

Since the local eigenvalues vary slowly with range in the framework of adiabatic

mode theory, the phase term in Eq.(3-33) may be expanded in a Taylor series around the

center position P of the window. The expansion to the fourth order yields

£k. (r)dr . k.(r)dr + k.(PXr - P) + d1  (r - P)2 +-I d2I(r-P)' (3-34)

where k,(r) represents the real part of the local eigenvalue, i.e., k.(r) a Re[ r.x(r) ], and

<<d'_k ,I/d'k
this approximation is valid within the range f- P < 4 -da2,/ r d I"

dr2  dr3

Then substituting Eq.(3-34) into Eq.(3-33) along with a new variable r" r - P yields

XS :l~le 'V(r ei lk 3-5

where the window function is assumed to be given as a function of T. i.e.. wL(r.P)

= wL(r). In executing the Fourier transform of the f-dependent functions, it is

convenient to integrate with respect to -r rather than r. Hence, frm the relation of

rar-F, we may replace 3(9) aJdre"-V with e"W 3,(*), where ,{oJ& e-C"'. Use

of this replacement after deconvolution in Eq.(3-35) yields
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Since both r.(r) and u.(rz) vary slowly with range r due to the adiabatic assumption,

the Spectumn i~.4 s mainly concentrated in a region that is extremely close to

z=ro in wavenumber. Thus, this transform behaves in a mannr similar to 8(k,) and is

not a dominant factor that causes the shift of the peak in Eq.(3-36). As for the second

Fourier transform in Eq.(3-36), its major role is to broaden the peak as expected from the

result in the horizontally stratified case, where P,(r) is constant. Thus the shift in peak

poition in kgJ is primarily influenced by the last transform in Eq.(3-36), which, for

convenience, we denote by F,(k,).

In order to evaluate F,(k,), let us examine it by furth decomposition as

FO (k,) -1, ) • w2 A, J VP

- 5wL('r)) * SW.(F)t * 53{e'I4')}) * S,(e'') . (3-37)

where d.I mk.k(P) and d k((P). ThecFourier transform of each member on tewa ,dr It dra l

right hand side of Eq.(3-37) can then be evaluated in an analytical manner and these

results are described below.

The Fourier transform of each member in Eg.(M-37)

1. The first transform ShwL(r)) in Eq.(3-37) takes on a functional form which depends

on the type of window. For example, the rectangular window
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WL f=L :12(3-38)

1| 
i

S~wL~))uunc(4~) ,(3-39)

and the Hanning window

WL (r) L 12 (3-40)

0 4A >1>42)

yields

2 * (kr) { 2ic~k 2 3)+ic Lj(k +LL))] . (3-41)

In Eq.(3-41) the first sidelobe can be decreased by 33 dB as compared to 13 dB in Eq.(3-

39) at the cost of discarding some information in the field data by the Hanning taper. In

other words, the field data close to the edge of the Hanning window are weighted weakly,

while the field data at the center of the window are emphasized. This situation is,

however, suitable to our purpose if we recall the fact that the local eigenvalue at the

center of the window, k.(P), is the target we want to detect Namely, our interest lies in

the peak position of the range-varying spectrum rather than in its correct shape; therefore

the Hanning window is preferable to the rectangular window in the current scheme.

2. The second Fourier transform Se",, •} in Eq.(3-37) is immediately obtained fom

the definition of the Dire delta function [47,70], yielding
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•,1+•')' = ~k,-g,(P) .(3-42)

We noa that thw local eigenvalue k.(F) is constant in Eq.(3-42) as long as f is fixed.

3. "Th thidI transform S,ie{'dI )IO in Eq.(3-37) can be rewritten as

me e V' C d d" (3-43)

Use of the identity [57]

FC'dx =(3-44)

in Eq.(3-43) gives

=~ tvn (3-45)

wheae sgn represents the sign of its argument.

4. The last tmsform 5,{(e5•Ip('}) in Eq.(3-37) may be rewritten as

$,je{e o) = CeA 6 *dr

(d ) ,(3-46)
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wher the integration variable r has been changed to v as / (- 4k."()). Here we

notice that the integral in Eq.(3-46) is equivalent to the integral form defining the Airy

function [57]:

Ai(x) a -Lre -"(JV ")dV (3-47)

Thus we can represent the integral in Eq.(3-46) as 2xAi(x) with replacement of

X uik./(-jk*k(F))1, yielding

.13,{!e {.l*. 2z Ai(. (3-48)

The results of our analysis of the terms in Items 1-4 indicate that the peak in Fo(k, I

forms near k,= k.(P), primarily due to Eq.(3-42) and the rest of the terms serve to shift

the peak position or broaden the peak shape in the spectrum as explained below. In order

to determine the departure from k,(P), the convolutions in Eq.(3-37) must be executed.

Convolution of each member in Eq.(3-37)

1. Convolution of SAL(O)) and Sfic(P)I}

Fmrst, we will convolve 34WL(')) and 3,e in Eq.(3-37). As shown above,

SJwL(r)} for the rectangular and Hanning windows are given by Eq.(3-39) and Eq.(3.41),

respectively ,- e dF} is given by Eq.(3-48) using the Airy function. To facilitate

the expression, let !S.(jw()) be denoted by W(Lk,), in which the window length L plays

the role of making the argument dimensionless, as seen in Eq.(3-39) and Eq.(3-41). In a

similar fashion, (-½k.j;))-i in Eq.(3-48) has the dimension of length, so that denoting it

as I represents the tight-hand side of this equation as 2ztAi(lk,). Thus, it follows that

F,(k,) = 2xt Ai(tk,)* W(Lk,) (3-49)
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ar. 2ltrnatively, using the nondimensionalparameters ; a 1k, and e a L/1

,(;)= 2xtIA(C).W(e;) (3-50)

Figure 3-2 shows the result of F,(C) for a set of positive e, which are obtained by

numerically executing the convolution in Eq.(3-50); the Hanning window given by Eq.(3-

41) is here used for W(L,). In this figure, F,(,) are normalized so that their maximum

values take one. Note that, from the defntions I a (-Ik'•W1))"i and e L/ 1, ft

positive e corresponds to a negative k.VF). If < 0, that is, kP) > O, then we may

simply obtain a symmetric result about the ordinate in Figure 3-2.

As wen from comparison of the results in Figure 3-2, the peak position shifts from 0 to

-I when 1t takes larger values, which correspond to 14 < L or, equivalently, I.'t)I > 2/IL.

This is because the substantial contribution to F,(;) by the convolution in Eq.(3-50) occurs

around the range whenr Ai(;) takes a maximum, i.e., C- -1 (Ai'(ro) w 0). since W(C) has

a narrow width for a large W (the first null =2x/e = 2x./L). Figure 3-3 shows an example

for this case, ie., W(C) for kI=16, whose bandwidth is small compared to that of Ai(;) at

C- -1. In an extreme case such as 14>>l or I~k.P)(>>I, the peak position in F,(;) is

located at C- -1, that is, k, - -1/1w (jk.kP))I. This value corresponds to the actual

departure from k.(;) and the peak position shifts to the positive direction for kF) > 0 and

negative for k.jP) < 0, respectively.

In contrast, it is seen from Figure 3-2 that for small 1e, that is, j.JP) < 21V), the

peak position gets close to zero even though the peak width broadens. This is because the

effective range in the convolution process becomes large, so that the contribution from

the positive and negative loops in AI(C) for ; < 0 tends to mutually cancel each other

out. As an example of this case, W(;) for 1l4-1 is compared in Figure 3-3 with At(;).
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2.. Convoluflon of3e"'1 an F, (k,) ( JL')

The next $tep for determining FO(k,) in Eq.(3-37) is to take a convolution of F,(k,)

in Bq.(3-50) and ZJOA ')I, which is represented by 6(k,- kI(P)) as shown in Eq.(3-42).

Fwm the sifing property in the Delta function [47,70], it fodows that

F,(k 1)i5(k,-k.(P))=aF,(k-k.(F)) . (3-51)

Thus it is see that ; a 0 in Figure 3-2 corresponds to k, =k,(P). Therefore, as discussed

above, the departure of the peak position from k.(P) depends on both the window length

L and lk.fPj, and its shifting direction is determined from the sign of k.'t;).

3. Convolution of 3.{e44("') and F1 (k, -k . (P)) (u $,(L(r)) * ,(e.'(#') ',e))

As a final step for obtaining F,(k,), we have to take a convolution of F,(k, - k . (P))

in Eq.(3-50) and S,{e'4"ý'O), which is evaluated in Eq.(3-45), giving

Fq(k,) = 4FI71-2 (3-52)

In order to evaluate the above integral, one may utilize the method of stationary phase

[70,73] such that

1(x) =,fq(q)e.'d,) C. (3-53)

where C, is a stationary point which satisfies 9i'(C,) a 0. Accordingly, for Eq.(3-52) we

can set x- k.(r). q(;)= F,(;-k.(P)) dand Since 1(2-,issmaU

within the framework of the adiabatic approximation, 4>>1 is satisfied. It is also found

fom V'(;,) -,-k, that C, . Hence, we can finally obtain
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Fe(k,)- 4 x,(- .()) .(3-54)

As a closing rem.k, the spectrum amplitude k.(k.;;)A, that is proportional W

KM -*4has a peak whfed, from k.(;), and its depaure is Primarily determnined by the

re~latinsip between the window length L and the second derivative of fth local

eigenvalue kj;). As L4kl. ' increa,. the departure Aom k.(P) becmes lawr.

Depending upon whether k ) is positive or negative, the peak is shi in the positive

or negative direction in the wavenumber k, respectively. For Ljk.tP)>>, do shift

distance approaches jk()2. For Ik.F)I -4 0. the peak position approaches k,,(F).

3.2= Analysis of simulated data

By taking a simple example of a single mode situation let us numerically

demonstrat that the departure of the estimated peak position from the local eigenvale is

related to the second derivative of the local eigenvalue and the length of the sliding

window, as discussed above.

In order to facilitate the numerical analysis, we will initially specify a local

eigenvalue k,(r) as a function of range rather than set up an ocean environment to

provide k,(r), which requires solving Eq.(2-8) at each range. Thus we can specify the

values of k,(r) and compute k.(r) whether or not there actually exists a waveguide for

accommodating this mode. The solid line in Figure 3-4 is chosen for k.(r) so that it has

a variable k.(r) with range. At 900m and 1l0Om, k.'(r) has its eatest magnitude but

opposite sign. Between these points, k,(r) changes almost linearly with range and k.(r)

has its maximum value in this ranp. In providing these values for k,(r), the cubic

spline was utilized, so that the continuity of this curve is ensured up to the second

derivative kjr). ITh factor (*kftr)), discussed in Section 3.2.1, can then be
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calculaed; its absolute value is shown in Figure 3-4 with a differnm sc indicated on

tdo right aide of die figure.

Now, in onler to obtain the shift of die peak position in the spectrum • (*,;z) in

Zq.(3-33), the prsure field p(r) has to be constructed by using the k.(r) specfed in

FIg. 3-4. As sme from Eq.(2-12) the phase term is calculated simply fium

Zk.(r') ' wheas the amplitudequires the computationofthe local igefunction

u,(r). Since the effect of the range-dependent variation in efunctionsis small when

compared to the phase variation, we may fix u,(r) to be a constant C. As a rsult. the

pressure field is represented in the form of a WK3BJ solution as pQr) - ~'*eF.r

Then in Eq.(3-33) we can numerically compute the STFr of this p(r) by using the

FWT. RFgure 3-5(a) shows the range evolution of this output spectrum when using a

Hanning window with a 400 m length and shifting its center every 20 m. Figure 3-5(b)

also shows the result obtained by using an 800 m length Hanning window, hebe the

spectrum at about 1000 m demonstrates that the SFT pmcessing does not track k(r)

well due to its strong variation over the range covered by the 800m length window.

In Figure 3-6 the mjectcy of the peak in the output spectrum in Figure 3-5(a) is

compared with the exact local cigenvalue k.(r) along with the trajectories for different

window lengths. The departure of these peaks from the exact value k.(r) is greatest at

about 900 m and 1I00 m, where k.' has its largest value. In addition, Figure 3-6

shows that the longer the window length, the larger the departure from kj(r). For

comparison, these departures and (*k,(r)) an shown together in Figure 3-7. 71i figure

indicates that the direction of departure coincides with the sip of k"(r), as discussed

previously.

In cder to extract local eigenvalues in a laterally varying waveguide, the asymptotic

Hankel transform with a sliding window is applied to the range-dependent pressure field.

The error in the cigenvalue estimation can be studied by applying the transform to the
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Figure 3-5: Range-dependent evolution of the output spectrum obtained by
applying the STFT with a sliding Hanning window to a laterally inhomogeneous
pressure field, which is simulated by using a single local eigenvalue shown in
Figure 3-4: (a) the window length-400 m and (b) the window length=800 m.
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adiabatic mode field. For a single mode situation, a numerical analysis confirms that the

degree of the departure of the peak position from the exact local cigenvale is propor-

tional to Lk•Pt. Multi-mode effects associated with the estimation esor in this

UnMcxm will be dealt with in Secdion 3.3.

3.3 Application of mode filtering

In multi-mode environments, the interference with the sidelobes of adjacent modes

may induce another type of peak shift in the spectrum in addition to the shift due to the

range-dependence of the local eigenvalue as discussed in Section 3.2. This kind of shift

can be reduced by choosing a proper type and length of window, which depends on the

difference in the eigenvalues for two adjacent modes.

If the distance of the adjacent modes in the wavenumber domain, however, is too

small, then even an optimal window cannot separate two adjacent peaks in the spectrum.

To overcome this difficulty, the separation of modes prior to the STFT is desirable. This

separation can be realized by using mode filtering applied to data obtained on a fixed

vertical amy of receivers, if the environment at the array position is known a priori

[74,75]. With the use of a coordinate system such that the z axis lies along the vertical

array (see Figure 3-8), the position of the jth receiver (lj-J) is described by (0,z), and

the pressure due to a point source at (rz) and measured by the Jth receiver is defined as

p,. Owing to the reciprocity principle, as discussed in Section 3.2, each p1 is theoret-

ically identical to the pressure p(r,z, z,) which is generated by a single point source at

(Oz,), and so Eq.(2-12) for the adiabatic mode sum can be rewritten for a set of

observations Pi as

A ,. q,(r.z) U .. l (3-55)



SURFACE

SOURCE
.*.............................................................. O (r~z)

SYNTHETIC APERTURE

RECEIVER

ARRAY

z

Figure 3-8: Geometry of a fixed vertical array of receivers and moving source
with a constant depth.
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with

%, =,.(OZ.) , (3-56)

q.(r,z)=14-"xe (3-57)

As seen from this definition, each q(r,z) is a range-dependent quantity associated with

an individual mode. On the other hand, u* is a range-independent coefficient obtained by

solving the depth equation for the local eigenfunction, Eq.(2-8), with use of the known

environment at the array site. If the number of receivers is equal to or more than the

number of trapped modes, i.e., J 2 N, then Eq.(3-55) can be inverted as described below,

and qj(r, z) can be expressed in terms of both the measured pressures pj and calculated

eigenfunctions uj,, thereby representing the signal carried by individual modes. Eq.(3-

55) can be rewritten in matrix form as

p=Uq , (3-58)

in which p= (p%) and q= (q.) are vectors with J and N elements, respectively, and

U1,= [u,a] is a JxN matrix. If the vertical array is constructed of many receivers, thus

enabling us to sample the field densely enough to write

17Lu.(Oz)u.(O~z)dz -.- u.(O,zj)u.(oz) , (-59)

then it follows from the orthonormality condition for the local modes in Eq.(2-9) that

( M z) u.(O, z1) . (3-60)
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or, equivalently, in matrix form

v• =I,, , (3-61)

where 1. i an NxNV identity matrix and 1,.=[ua(O,ZQlp(zj)J is a JxN' matrix, 7bis

matrix is also expressed using U as

V=RU , (3-62)

where R is a JxJ diagonal matrix

- 0

R "(3-63)

p(z,)J

Keeping the relation in Eq.(3-60) in mind, we can apply the so-called generalized inverse

to Eq.(3-58). Namely, by multiplying both sides of Eq.(3-58) by the transpose matrix of

V, that is, V'. followed by further multiplication by (V' U)-l, we can obtain the desired

result:

q, = (V )' u Vp .(3-64)

Therefore, q,(r,z) can replace p(r.zzo) in the asymptotic Hankel transform with the

sliding window (Eq.(3-30)) in order to obtain the wavenumber spectrum for the nth local

mode, yielding

g. (k,; P, z) - 25(
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or, equivalently, using Eq.(3-57):

i " LwL(r. . (r,) ) d.(,' .Ze_ (366)

From the peaks of f/?-g obtained above, we can determine the local cigenvalues with

the precision discussed in Section 3.2.

We recall, however, that the assumption of knowledge about the environment at the

array position was made. In general, the sound speed in the water column as well as the

water depth are readily measurable, but the bottom geoacoustic data are not. If there

exists an isobath in some direction near the array site and also the bottom properties are

constant over this range, then the bottom environment could be obtained by applying the

inverse method, which was developed for the range-independent case, to the pressur

measured over this range. For example, for a wedge-type environment, the water depth is

constant in the direction perpendicular to the sloping bottom. As will be shown in

Chapter 4, due to the effect of horizontal refraction, the pressure along this direction is

not completely equivalent to that in a horizontally stratified medium with the same water

depth, or more precisely, the same bottom environment. Practically, however, this effect

will be negligible, because our interest here lies only in the bottom at the array site, and

so the pressure field required for this inversion is limited to ranges relatively close to the

source (but rr >> I). This problem will be discussed again in Chapter S.

In deriving Eq.(3-64), a conventional least-mean-square (LMS) method has been

applied to obtain (V' U)". When V'U, however, is close to being a singular matrix such

that the eigenvalues of this matrix are near zero, its inverse becomes unstable and, conse-

quently, the output of Eq.(3-65) becomes affected by this processing error. As inferred

from the approximation in Eq.(3-61), this problem is associated with the following two

factors: One is the shape of the modes of interest and the other is the vertical array
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configuration, i.e., the "oud number and positions of the receivers. The former factor is

In haracter7zdby the acoustic frequency and the depth-directional variatim of the medium

at the arnay site. In shallow water, the turning point depth of the ray associated with the

maximum mode, which is often located in bottom sediment, would be of the most

concern in connection with the lowest receiver. On the other hand, the latter factor is

associated with the experimental design and, in general, the array spans only the water

column or at best covers a few wavelengths below the bottom surface. Depending on the

combination of these two factors, the above matrix V U has a possibility of singularity,

which leads to the unreliable output of the mode filter.

To overcome this problem, several improved methods are available. Yang used an

eigenvector decomposition method (EDM) to estimate source location in the deep ocean

in the North Arctic Sea [76]. It was demonstrated that this method can resolve mom

modes than the conventional least-mean-square (LMS) method. In EDM, one may

discard the eigenvectors whose eigenvalues are smaller than a given threshold, whereas

the stabilized least-mean-square (SLMS) method keeps those small eigenvalues by

adding some small number such as one tenth of the trace of V'U to the diagonal

components of this matrix [48,49]. The latter approach is one of the regularization

methods for inverting a singular matrix. By employing these methods, we can improve

the operation for obtaining q, in Eq.(3-64) and expect reliable separation of the modes.

Here we will describe these methods by using the well-known, singular value

decomposition (SVD) method.

As proved in Ref. 43, the SVD method can decompose a JxIJ matrix U in the

following form:

U= AAIBI (3-67)

with
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A(lM,....A., >0) . (3-68)

AWjA, ,= 1, 4.-,r = Sir O It, L....O 019(-69)

B,, =I, 4 .b, = Sir (=- 1....,) . (3-70)

whee A,[n [al (I SIS) i an Nxl matrix (a is a untit ih dimensiom N) and

B = --[b,](l: 1SI1) isa JxI mrix (bis a unt vector with dimensio J). In addition.a

and b are eigenvectmo satisfying

UU' di,=aV (i 0 1.,...,VI) , (3-71)

U'Ub, = V?, b, 0•=1 ,...0) 1 (3-"72)

respectively, and so j are non-zwro eigenvalues, which have to be distinguished from

the mode eigenvalues r..

f the receivers are placed in the water column and the water density is equal to one

all around the receiver positions, which may be assumed without great risk in shallow

water, then R in Eq.(3-63) becomes av "dentity matrix. Employment of this R in Eq.(3-

62) leads to V =U. Hence, by using Eq.(3-67) with this relation, we have

U'U=B, AIB , (3-73)

ar using the vector b:

Ut, U=± b4b. (3-74)
jai
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1Ek since ,. are not ao, the inverse Matrix A: exists. Thus it follows frm Eq.(3-73)

hat [43]

MW = B, ^ o(3-75)

Or using vectart b and Aa/-

(U'U'b bi . (3-76)

Substitution of q, in Eq.(3-64) into Eq.(3-58) with the use of Eq.(3-67) and Eq.(3-75)

yields the following identity

pa=AjAjp , (3-77)

where p is the observed field data and p, is the predicted field data obtained by using the

molution 4h. In general, AA, is not equivalent to an identity matrix and represents the

resolution of p,. As the rank of the resolution matrix AA, ie., I decreases, we have

lower resolution of p,.

Theoretically Eq.(3-75) and Eq.(3-76) can hold for any A, (>0). but numerically

becomes unstable if there exists A,.- 0. If we use the EDM, these eigenvalues are

excluded from Eq.(3-76), yielding

qW( bb•IU'p (1-I): , (3-78)

if the following condition is met:
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qc<- (U p)) (3.-U9p

,ber 1, is a typical eigenvalue after excluding A,..

On the other hand, in the SLMS method [48]. one may add a small value e in the

diagonal term of U'U, yielding

q =(UU+d,Y"U'p. +-SO)U

By adding eb, to both sides of Eq.(3-72), it is seen tha the set of eigenvectors b also

satisfy the following eigenvalue system

(U'U+ di, )b, -=(A, + e),, (+- *,...*I) (41)

with different eigenvalues. Based on ¢igenvecto analysis, the inverse matrix of

U U + d, results in

(U'U + djr)- =BEEB3 ( (3-82)

with

When ).,>> . we may drop C/.%2out of the denominator in Eq.(34-3) and so obtain the

same diagonal terms as those in Eq.(3-76 ). On the other hand, when A,-c.< C, the
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digonal terms become ose IDo 1,2/e and so becomes negligible. As a result, this added

mall C erm has the same effect as that in the eigenvalue decomposition approach.

In this way, by aranging the small eilgevalues in the singular nmarix with the use of

the EDM or the SLMS, we can obtain a stable output fom dt mode filter. The effec-

tiveness of this method in mode filtering will be shown numerically in Section 3.4.

The generalized inverse used in the above methods leads to miimizing the vecomr

norm 0.- Uqj' or 0- Uqf + zZ(q) [ Z(q): measure of smoothness and Z:Lagrange

multiplier]. If the measured presure p consists of a set of signals with noise, which

obeys the Gaussian distribution with the covariance r, then we need to minim!

(p - Uq)'r'(p - Uq) in order to maximize the following probability density function for

p [43]:

/7(p) (3-84)

As detailed in Ref. 77, the so-called maximum-likelihood inverse can be executed by a

generalized inverse in transformed coordinates.

In this section, to reduce the error caused by the interference with other modes when

using the asymptotic Hankel transform with a sliding window, we exploited mode

filtering by incorporating data obtained with a fixed vertical array of receiver. When

this filtering process becomes unstable due to the effect of a singular matrix, we may

utilize the EDM or the SLMS for inversion of the singular matrix in order to provide

reliable mode separation. In the next section, the asymptotic Hankel transform with a

sliding window will be applied together with mode filtering to the pressure field for a

laterally inhomogeneous medium; the field will be synthesized numerically using

adiabatic mode theory.
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3.4 Andlyss ot dmulated data

h this section, we demonstate through a simulated example that the mnehods

discussed in the previous section to detect the local eigenvalues are effective. "Ihesn

methods ae applied here to the pressure field in a laterally inho-ogeneous waveguide,

which is numerically simulated by using the adiabatic mode theory explained in Chapter

22.

3U4.1 Ocean and seabed environment

The tmelly inomnogenous shallow water model used henr is shown in Figures 3-9

to 3-14. h is based on a range-dependent, multi-layered sediment model, which we will

detail in Sections 5.1 and 5.4. As assumed in the previous two sections, the environment

is taken to be cylindrically symmetric around the z axis, where either the soure or

receiver army will be placed.

The bottom consists of three sediment layers, whose properties at r-O are indicated

in Figure 3-9. The density and the attenuation coefficient take on different values in

different layers but remain constant within each layer. Also, the sound speed varies

continuously in the vertical direction in each layer, but becomes discontinuous across the

layer interfaces. The sound speed profile in each layer is described by an n2-1inear curve:

c(r,() = cj(ril- F[ -hJ(0)]• (hj(r),z<hj÷,(r)) (3-95)

where hj(r) is the depth of the layer interface, cj(r) a c(rI (O)) is the somd speed at

,=kj(O), and •(r) is the sound speed gradient in the Jth layer. Not that the curve in

Figure 3-9 shows the proffie at r-O, but becomes different at other ranges due to its range

dependence. Her the first two sediment layers are subject to lateral variation, but the

lowest layer (subbottom) is taken to be range-independenL
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Figure 3-9: Sediment sound speed profile at r=O and other geoacoustic parameters
in the shallow water bottom model.
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Figure 3-10: Lateral variation of the layer interfaces in the shallow water bottom model.
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Fwgure 3-10 FLows the variation with range of the layer interface and the bathymetry.

These interfaces, including the water-bottom interface, are set so that they vary smoothly

with range to meet the adiabatic condition. The sound speed in the sediment also has

lateral variation, which is provided through range-dependent coefficients c,(r) and gj(r)

in the n2-linear curve. Figures 3-11 and 3-12 show the lateral variation of the smnd

speed at the interface depths and the sound speed gradient in each layer, respectively.

The geoscoustic parameters in the subbottomn are constant due to its range independence.

The sound speed profiles in the sediment at various ranges ae shown in Figure 3-13,

while a 3-D picture of the profiles is exhibited in Figure 3-14. For simplicity, the sound

speed in the water column is taken to be constant such that c=1500 m/s, and the water

density is fixed to be lg/cmn. Thus, we can simulate the pressure field by employing

adiabatic mode theory in this laterally inhomogeneous waveguide.

3.4.2 Acoustic environment

Here, we will consider a point source with a frequency of 75 Hz; the water depth at

r40 corresponds to 2.51, where the wavelength X=20 m in the water column. Figure 3-15

shows the first nine modes at this range (rwO). The local eigenfunctions I.(z,O) am

plotted versus depth z and are individually normalized so that their maximum absolute

values ae unity. Also, the local eigenvalues of these modes are indicated in the complex

wavenumber domain in Figure 3-16. As seen from this figure, the real parts of the

eigenvalues of the first five modes are greater than the wavenumber at the depth of the

subbottom surface k4 and less than Ai = 2x/A, so that these modes are trapped between

the sea surface and the subbottom interface. The modes with eigenvalues that ae smaller

than this wavenumber are similar to leaky modes because of the small sound speed

gradient in the subbottom layer. As this gradient goes to zero, the distance of these

adjacent modes in the k,-plane decreases and eventually they become part of the modal

continuum when p4=0.
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In order to examine the effect of these higher modes, let us temporarily consider a

horizontally stratified environment having the same properties as that at r-0. The

pressure field p(r, z, z9) is then represented by the sum of those modes based on Eq.(2-6)

in the normal mode theory. Thus we can compare two kinds of fields: One is a sum of

the lowest five modes and the other is a sum of the lowest nine modes which includes the

higher modes. These two results are compared in Figure 3-17, where we have plotted the

relative amplitude, 20 log,,p(r,z, z0 ), due to a point source of unit amplitude at rnl m.

As seen from a comparison of these results, we cannot recognize substantial differences

in the relative amplitudes. Thus we will basically use the lowest five modes to simulate

the pressure fields. When the effect of the higher modes, however, is examined, these

higher modes will be used in simulating the fields.

Now in the case of the range-dependent environment specified above, the local

modes vary with range so as to satisfy the depth equation in Eq.(2-8). Since the local

eigenvalues K,(r) must be used as a measure for evaluating the results, which will be

obtained from the output spectrum of the Hankel transform with the sliding window, we

need to have highly accurate values of r.(r) for comparison. We obtained these

eigenvalues every 5 m in range by solving the range-dependent characteristic equation.

In this process, we first obtained the approximate values for the local cigenvalues by

utilizing Eq.(5-23), which will be derived for the purpose of relating the perturbed local

eigenvalues and the perturbed geoacoustic parameters in an inverse problem in Chapter 5;

these approximate values can then be converged to highly accurate values by using the

Newton-Raphson method iteratively (54,78]. The local cigenvalues thus found for modes

one through nine are shown as a function of range in Figure 3-18.

As seen from this figure, the range variation of the local eigenvalues of modes three

through five is relatively large, because these three modes are strongly affected by the top

two range-dependent sediment layers. This fact can also be inferred from the mode

shapes in Figure 3-15. Of particular interest here is that the range variation of the local
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lgenvalue of the third mode shows a different behavior. Namely, as the water depth

decreases with range, the local sigenvalues of the other modes decrease mIn ically

with range, whereas the local eigenvalue of the third mode first decreases, and then at a

rap of about 2500 m, begins to increase. Apparendy the third mode is affected more

intensely by the variation in sediment properties than by bathymetric change.

Let us check the effect of the higher modes in this range-dependent environment.

Figure 3-19 compares the pressue fields with and without those higher modes (modes

6-9) in the adiabatic mode sum in Eq.(2-12). Again we cannot recognize substantial

differences between the two results.

In this way, we can make use of the pressure field that is synthesized by a sum of

adiabatic modes. Once again, the objective in this chapter is to recover the range-

dependent local eigenvalues from the given pressure field.

3.43 Application of an asymptotic Hankel transform with a sliding window

First let us apply a conventional asymptotic Hankel transform to the simulated

pressure fields. In this transform, the rectangular window is used to truncate the field at 5

kIn, so that all range-dependent components are weighted equally. For the horizontally

stratified case in Figure 3-17, the output spectrum shown in Figure 3-20 clearly indicates

that each peak corresponds to an individual mode. Note that several small peaks around

the dominant ones are sidelobes caused by using the rectangular window in the transform.

In contrast, as seen from Figure 3-21 for the range-dependent case in Figure 3-19, the

peaks in the output spectrum are not distinctive except for the first mode. The peak of the

second mode is split and the third mode peak is very hard to distinguish. As expected

from the variation of K.(r) in Figure 3-18, the latter result for the third mode is due to

the interference with the adjacent fourth mode, which actually shares the same

wavenumber at a different range.
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Next let us examine the local character of the above spectrum by using a sliding

Hanning window. Figures 3-22(a) and (b) show the output spectrum of Eq.(3-30) when

using a Hmnning window with a length (L) of 1000 m and 2000 m. respectively. Here the

center position of this window is slid every 50 m. In the case of L.1000 m. the spectum

became unstable due to the interference of adjacent modes; this result stems ftom a short

window length. The result for L=2000 m improves this situation at the cost of losing the

local character, but even in this case we cannot distinguish clearly the peak of mode 3

through mode 5 in the region around r-1500 m.

In order to improve this result, let us utilize a mode filter by incorporating data from

a vertical receiving amy at r-0. The array considered here consists of 10 receivers

placed in the water column every 5 m as shown in Figure 3-23. On use of Eq.(3-64) the

pressure field can be separated by modes and then the above asymptotic Hankel

ransform with the Hanning window may be applied to the output of this mode filter.

Figurt 3-24 shows a set of range-dependent spectra for each mode when using L=l000 m.

Figures 3-25(a) and (b) show the peak positions of mode 3 and mode 5 in Figures 3-24,

respectively, and these peak positions are compared with the local eigenvalues. We

chose only to show the peak positions of modes 3 and 5 because they are representative

of the peak positions for the other modes. It is observed that the departure from the exact

values is noticeable at the range where the curvature of the local eigenvalue is large. To

effect comparison, the difference of these two curves, i.e., the amount of the departure

flor the local eigenvalue, is plotted again in Figures 3-26. This difference is further

amplified for the case of L=2000 in as shown in Figures 3-27, which we discussed in

Section 3.2. Namely, as the window length increases, the departure from the exact

eigenvalue becomes larger.

In order to study the effect of the higher modes on the performance of the mode

filtering operation, let us apply the same method to the pressure field that is synthesized

by including those higher modes. In this case, some of the eigenvalues in Eq.(3-68)
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Figure 3-22: Range-dependent evolution of the wavenumber spectrum obtained by
applying the asymptotic Hankel transform with a sliding Hanning window to the
pressure field which is simulated for the model of a laterally inhomogeneous
shallow water waveguide shown in Figures 3-9 to 3-14. Source depth is 8m and
receiver depth is 15 m: (a) window length=1000 rn and (b) window length=2000 m.
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Figure 3-23: Geometry of a vertical array of receivers fixed at r=O in the shallow
water model.
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Figure 3-24: Range-dependent evolution of the individual modal spectra obtained
by mode filtering with use of the vertical arry in Figure 3-22.
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Figure 3-24, continued
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Figure 3-25: Comparison of local eigenvalue and modal peak trajectories in the
spectrum in Figure 3-24: (a) mode 3 and (b) mode 5.
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Figure 3-27: Comparison of the departures from the local eigenvalue for three
different Harming window lengths.
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Figure 3-28: Comparison of exact local eigenvalue and modal peak trajectories in
the spectrum separated by mode filtering with EDM. The pressure is simulated by
using the first nine local modes in the model of a laterally inhomogeneous shallow
water waveguide shown in Figures 3-9 to 3-14: (a) mode 3 and (b) mode 5.
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Figure 3-29: Comparison of the departures from the local eigenvalue for the field con-
sisting of five modes and the field consisting of nine modes: (a) mode 3 and (b) mode 5.
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Table 3-1 . Eigenvalues of the matrix in Eq.(3-68), which were used for the EDM.

LI Eigenvalue (A)

1 0.4507
2 0.4460
3 0.4357
4 0.1552
5 0.0158
6 0.O0O5

become extremely small, so that the generalized inverse matrix becomes unstable. (Note

that these eigenvalues must be distinguished from the modal eigenvalues in Figures 3-16

and 3-18.) Hence, we utilized the EDM with T=6 in Eq.(3-77) to obtain the stable

generalized inverse matrix (Table 3-1). This result is shown in Figures 3-28(a) and (b)

for modes 3 and 5 in the same manner as above. In Figure 3-29, the departure from the

local eigenvalue is compared with the departure in Figure 3-26, which is obtained for the

field without those higher modes. These results show that in the case of mode 3, the

effect of the higher modes can be eliminated by using EDM, whereas the fifth mode

closest to the higher modes suffers from the interference with those modes.

At the end of this section let us study the effect of noise. In order to simulate the

noisy data, we simply add white noise to the real and imaginary parts of the pressure field

produced in Section 3.42. The white noise can be generated by using a Gaussian normal

distribution routine. Note that the noise added at different receivers was taken to be inde-

pendent from each other. Figure 3-30 shows examples of synthesized noisy pressure

fields. The signal-to-noise ratio (SNR) was defined by using the range-averaged signal

intensity. Here let us use the same mode filtering and Hankel tansform as those used in
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Figure 3-24. Figure 3-31 shows examples of the resulting modal evolution. In Figures 3-

32 the peak traectoies and the departure from the local eigenvalues an compared for the

diffeent SNR's. These figures indicate thaz mode 3 is the most sensitive to the noise and

we cannot recognize the peak beyond a range of 3000 m for a SNR of 10 dB. This is due

to the fact that the attenuation of mode 3 is the largest in the present model (see Figure 3-

16). so that mode 3 decreases most rapidly with range and has a larger influence from the

noise.
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Figure 3-30: Synthesized noisy pressure fields. White noise has bec-i added to the
pressure field in Figure 3-19.
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Figure 3-3 1: Range-dependent evolution of the wavenumber spectrum (mode 5)
obtained by applying the same mode filtering and Hankel transform as those in
Figure 3-24 to the noisy pressure fields.
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Figure 3-32: Comparison of local eigenvalue and peak trajectories for different
SNR's (upper), and departure from the local eigenvalue (lower). (a) mode 2,
(b) mode 3, and (c) mode 5.
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Figure 3-32, continued.
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M Summry

In an anempt to extract local eigenvalues from the pressure field in a laterally

inhocmogeneous waveguide, the asymptotic Hankel Utasform with a sliding window is

utilized in this Chapter.

In Section 3.1, we reviewed the definition of the Hankel transform and then, in the

case of a horizontally stratified waveguide, it was shown that the eigenvalues of the

normal modes can be accurately detected by applying a zero-order asymptotic Hankel

mmasfonm to the pressure field in the waveguide.

In Section 3.2, a sliding window was introduced into the zero-order asymptotic

Hankel transform to detect the local eigenvalues in a laterally varying waveguide. In

order to analyze the erron in this method, we applied the asymptotic Hankel transform

with a sliding window to the pressure field expressed by the adiabatic mode sum and

examined analytically the effect of range dependence on the local eigenvalue estimates.

In a single mode situation, it was found that the departure of the peak position in the

output spectrum from the local eigenvalue depends on both the second derivative of the

local eigenvalue and the window length and type.

In addition to this error, another type of departure from the local eigenvalue is

induced by the interference with the sidelobes of adjacent modes. To reduce the latter

type of error, the separation of modes prior to the application of the Hankel transform

with a sliding window is desirable. In order to accomplish this, we exploited mode

filtering by incorporating data from a fixed vertical array of receivers in Section 3.3.

When this filtering process becomes unstable due to the involvement of a singular matrix,

it was demonstrated that the eigenvector decomposition method (EDM) and the stabilized

least-mean-square method (SLMS) are useful in providing reliable mode separation.

In Section 3.4, we applied the asymptotic Hankel transform with a sliding window

and mode filtering to a pressure field which was simulated numerically by using adiabatic

mode theory in a model of a laterally inhomogeneous shallow water waveguide. The
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Isults indicated that the use of mode •itering improved the detection of the local

cigenvalues. When the field includes higher modes, it is confirmed that the EDM is

useful in providing a stable results for mode separation.

In order to address the case of a 3-D varying environment, results obtained in this

chapter will be extended in the next chapter.
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Chapter 4

Analysis of the Effect of Horizontal Refraction

on the Hankel Transform

In the previous chapter, we assumed the waveguide to be cylindrically symmetric

around a fixed source or receiver array, so that the sound propagates in the radial

direction and does not suffer from horizontal refraction. In general, however, we must

take into consideration the effect of horizontal refraction when a medium with bottom

sediments varies arbitrarily but gradually in the horizontal direction so that the pressure

field does not remain symmetric.

In this chapter, we will explore a method for determining local eigenvalues for non-

cylindrically symmetric fields. In the first section, the problem of horizontal refraction is

raised. In Section 4.2, we explore the use of a general Hankel transform with a sliding

window based on the scheme discussed in Chapter 3. In Section 4.3, an alternative

representation of a 2-D Fourier transform with a sliding window is derived and we

examine the effect of horizontal refraction. In Section 4.4, the results obtained in

Sections 4.2 and 4.3 are numerically studied by applying them to a pressure field that is

simulated by using the horizontal ray method. In Section 4.5, a way for effective

measurement in a 3-D varying environment is considered.

4.1 Problem definition

When we utilize the Nx2D method in a 3-D varying waveguide, the pressure field

can be synthesized by using only the sound speed profile and bottom sediment conditions

along a radial, just as if the medium were symmetric. The simulated field can provide a
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good approximation o the pressure field and actually includes horizontal refraction to

some extent. This is due to the following approximate relation:

t w.(x(s),y(S))ds- twr.(r,.O)d. . (4-1)

where the integral on the left-hand side is executed along the horizontal ray path s of the

mode propagating from the origin to (Xy), whereas the integral on the right-hand side is

taken simply along the fixed radial (6, direction).

In the inverse problem for detecting eigenvalues from a given pressure field,

however, we are not able to take advantage of Eq.(4- 1); that is, to apply the asymptotic

Hankel transform with the sliding window in Eq.(3-30) to a non-cylindrically symmetric

field along some fixed radial by assuming Eq.(4- 1). If we do this, then the wavenumber

of the peaks detected by this transform is only the component projected on to this radial

direction (Figure 4-1) and, consequently, we would always underestimate the local

eigenvalues. This is because what is accounted for by the transform is the rate of spatial

change of phase along the radial, not the accumulated phase shown in Eq.(4-l).

Thus the key to this problem is how to invert for the horizontal refraction angle at

each observation point. If this angle were known a priori, tht-i we could compensate for

the underestimated wavenumber discussed above by using this angle. For example,

assume a 3-D varying waveguide such that the horizontal refraction of modes is

dominated only by bathymetric change. We can then predict the refraction angle by

means of the horizontal ray technique. In shallow water, however, this assumption does

not always bold, especially for higher modes in the lower frequency region. Namely,

those modes are often more sensitive to the variation of the sediment structure and

properties rather than the bathymetric change in the propagation process [79].
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"Thereore, in order to obtain accurat local eigenvalues in a non-cylindrically

symmetric environment, we must use a 2-D Fourier transforn or general Hankel

Since the region of the pressue field to be examined is an intermediate range (eg.,

r<R,-10 ian), the phase front associated with a mode is primarily spreading out in the

radial direction. Also this phase front does not change its direction suddenly due to the

adiabatic assumption. Thus if we use a cylindrical coordinate system, the direction of

this modal evolution can be described along a radial plus a per-urba- o. With this

viewpoint, the measurement along the radial direction, as carried out in the cylindrically

symmetric case, can be the most effective way to provide the pressure data for

determining the dominant variation in the local eigenvalue. Hence, based on this notion,

we will continue to use a cylindrical coordinate system in the following sections.

4.2 General Hankel transform with a sliding window

In this section, we will explore a method for obtaining local eigenvalues for a non-

cylindrically symmetric field. In this case, we have to start from the 2-D Fourier

transform in the form of Eq.(3-5) to obtain the spatial spectrum in terms of the cylindrical

coordinates (k,, V). As discussed in Chapter 3, a window function may be incopornted

into Eq.(3-5) in order to obtain the local character of the waveinwiber spectrum:

g(kqf•;P.6,z)-= 2s.drw,(r;.)rtdev0(G;)p(r,9.,)e"'' . (4-2)

where j in Eq.(3-5) has been replaced by g with the use of the relation in Eq.(3-10).

Here, as shown in Figure 4-2, the window is given by the product of wL(rP) and

V8(6,, 6); the former is a window function for the range direction with a center position

of F and a length of L (as in the symmetric case), and the latter is a window function for

the azimuthal direction with a center direction of 0 and an angular width of D. By

98

I- MENNENtl I l ll



y

0- X

Figure 4-2: Schematic illustration of the 2-D window defined

by wL(r;P)X v,(O;O).
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choosing a small width for 0, we can reduce the variation in the propagation diredton of

the phase brnt associated with r. inside this window, as long as the range of interest is

in r<R1. On the other hand, the minimum length of L is restricted in order ID attain dte

required resolution in the ouput spectrum in k,.

4.1 Derivation of the general Hankel transform with a liding window

Now, in order to derive a general Hankel transform, the exponential term in Eq.(4-2)

can be rewritten using the generating fincton for the Bessel function [57J:

-= • (k,r) e" , (4-3)

where J,(kr) is the nth order Bessel function. After converting the sine function to a

cosine function by adding x/2 to its argument, we substitute Eq.(4-3) into Eq.(4-2),

which yields

a j,,1 fdrwL(r.,)rIod gva(&,6)p(r, z) ( eE(-)]

(4-4)

By changing the order of summation and integration with respect to 0, it follows that

(r., f;? 6,z d j ) r LC.(r. 6.z) J.(k,r) C~1  (4-5)

where Ca(r) represents the Fourier coefficient at range r, which is defined by

C3 (r6,z = d 'b 9 ;9 )p~r6,z)' .(4-6)
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Owing to the window function v(Ul ,9) the pressure field required for Eq.(4-6) is limited

in the azimuthal width D2. Here attention should be paid to the size of £. Namely, this

cannot be reduced as much as desired, depending on the type of the window va(8, 9). If

voa(0. ) has a discontinuity such as a rectangular window, then the Fourier ies

representation for this function has an arro due to the Gibbs phenomenon [70]. Hence,

in this sense, the -anning window is preferable to a rectangular window.

Since the range of interest is far enough to satisfy r >> 1, we can employ the

asymptotic form for the Bessel function as done in Chapter 3. To do this, we use the

identity:

J,(kr) = ![H.0H(kr) + H(2)(kr)] (4-7)

with the asymptotic form for the Hankel function [57]:

H - o(k, + -W []P-+ ,

(4-8)

H.2)(kr) - F2 -P 2]e-i 4 "

where

P, =1I(4n 2 - 12 X4n 2 _ 32)
21(8kr)"

(4-9)
42 - P1 (4n2 - 12 X4n 2 -3 2X4n2 52)

Az Skr" 31(8kr)s

In the case of cylindrically symmetric fields, we used only the initial term in the

asymptotic form of the zero-order Hankel function as shown in Eq.(3-17) and Eq.(3-18),
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while hem the highe order terms in Eq.(4-9) cannot be simply neglected because n goes

to infinity in the summation in Eq.(4-5).

The pressue field due to a point soure at r=0 is dominated by an outgoing wave in

the tegion of interest (r<R), even when subjected to horizontal refraction. Thus, when

we substitute Eq.(4-7) with Eq.(4-8) and Eq.(4-9) into Eq.(4-5). the terms including e,,

do not substantially contribute to the integral in Eq.(4-5) and can be dropped out of this

equation, which yields

1-[ (4n2 -12) (4n2 - 12 X4n2 - 32)
X c.(i)•[ 8kr 21(8kr)2

+i(4n2 - 12X4n2 - 32X4n2 - 52) +(e .. (4-10)
+5 ~~31(8k,r)3 ~ ]~.(-0

For simplicity, the functional notation for depth is omitted in Eq.(4-10) and also in the

following equations.

By keeping the leading term in the numerator of each fraction within the bracket

when summing over n, Eq.(4-10) can be approximated by

S(k,, q);, e) - w.r F) 4 e'

X C. (r,)[+ +~j . + !- k{ -r) +*. (4-11)

Noticing that the inside of the bracket is a form of a Taylor series for e we obtain

the following form:
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- 7rwPr)N4reC*' jC 5 (r98)e ''e" (4-12)

"MW right-hand side of Eq.(4-12) can be evaluated numerically in principle, but

realistically this requires too much computational effort. This is due to the factor kr

located in the denominator in e" , so that we cannot simply make use of the FFT when

perfoming the integral with respect to r, as done in Chapter 3.

Therefore we will examine Eq.(4-12) analytically in order to evaluate it in an

approximate manner. In Section 4.2.2, we expand Eq.(4-12) by using a differential

oPerator with respect to the azimuthal angle in order to study the relationship between the

zmro-order Hankel transform in Eq.(3-30) and the general Hankel transform in Eq.(4-12).

On the other hand, in Section 4.2.3, we derive an approximate form of this transform by

resorting to the stationary phase method. Based on the analysis of the horizontal

refraction effect with the use of this approximate form, we will explore a method for

determining the horizontal refraction angle.

4.2.2 Relationship to the zero-order Hankel transform
.1B

Unless the term e- 'is included in Eq.(4-12), the sum over n stands for the Fourier

series for p(r, V), so that this representation reduces to the asymptotic form of a zero-

order Hankel transform given by Eq.(3-30) with replacement of 0 by V. As a special

case, if p(r, 0) has no angular dependence such as in the cylindrically symmetric case, we

have C. =p(r, 0) and C. = 0 (n * 0) from Eq.(4-6) and thus Eq.(4-12) again reduces to
AS

Eq.(3-30). Therefore we see that the term e 20 is a key factor for resolving the

horizontal refaction effect in this transform. Actually, as observed from the fact that
60

e'2 has both n- and k,-dependence, this term contains the interaction of transforms in

the radial and angular directions.
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It is well known that the index n in the Fourier series corresponds to the operator

-W/da, ie., in rgnewal:

=tIa.C ýc.e" (Q: arbitrary inter) . (413)

a a

If one applies thee properties in Eq.(4-13) to Eq.(4-12), then it follows that

i(k.;•.")I- ,e)., (4-14)

or, using Eq.(4-1 1),

e'tae.

g(k,.V; P.i) - ---. jrw,(. r ,
42xk, 

(r-)-r

Here, considering the condition wL(rr) = 0 for k - I > L, the integration range has been

formally extended from 0 to -co in order to facilitate a comparison with the zero-order

Hankel transform.

It can be observed that Eq.(4-15) will again reduce to Eq.(3-30) if we keep only the

first term in the bracket and set Vp = 0. As a matter of fact, this situation corresponds to

the cylindrically symmetric case because d2p/lele = 0 (n > 1). Accordingly, the rest of

the terms represent the effect of horizontal refraction and can be considered to be small if

these derivatives are smalL Therefore Eq.(4-15) shows that the general Hankel transform

can be represented by a zero-order Hankel transform as a primary term plus additional

terms which account for horizontal refraction, as expected in Section 4.1.
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42.3 Analysis of the horizontal refraction erect

In this section, based on the general Hazkel transform with a sliding window that

was obtained in Section 4±.21, we explore an approximate method for detecting the

horizontal refraction angle in order to determine local eigenvalues.

First, in order to clarify the role of qP in Eq.(4-12), let us replace it with a new angle

5 defined by

SWmO-i . (4-16)

If the phase front launched from the source in the direction 6 passes through the

observation point at the angle i, then 8 represents the horizontal refraction angle at this

point. On use of this angle, Eq.(4-12) becomes

9(k,. 8;F,6) - 4xk, £ L (r.P) "' 4 " eQC.(r. 8) e
an-

(4-17)

where the integration range has been extended from 0 to --i owing to wL(r;P). From

this form we can interpret Eq.(4-17) by dividing it into the following two stages:

1. By rescaling k, as k,---(1-I82 )k,, where 1I-1$2 is the scaling factor, the

integral with respect to r can be considered to represent a zero-order asymptotic

Hankel transform with the new wavenumber (1-I62)k,. Note that this scaling factor

approximately stands for cos 8 since 11c << 1.

2. This transform then operates on the range-dependent function F(r,$;6) defined by

F(r.8 a ) C,(r 6) (4-1)
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Figure 4-3: Wavenumber and its components projected in the radial and

azimuthal directions.
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where e" "a'' may be regarded as the weight of the Fourier coefiients in this
aeres. Inside this weighting function, 5 plays the role of a parameter controiling this

function.

In order to have more insight into Eq.(4- 1S), let us express this equation using k,,

•e., the horizontal wavenumber component perpendicular to k, (see Figure 4-3). As r

and k,, and as 0 and n are both pairs of conjugate variables, the arc length t is also

conjugate to kt. In the Fourier transform, k, co•rrsponds to -- i alat in the same manner

as n corresponds to -.id/a. On the other hand, we have the following relation from

1-O= r:

= (4.19)

Thus, by combining these two relations, it is immediately seen that k, and n are related

by kt =ur. Using this relation, F(r,6;0) can be rewritten in terms of k, and 1, instead

of'n and O, as

F(rB;9)u 7,C,,(r.) ' ("" ;t , (4-20)

where C#,(r. ) E Qr.

Since kr» 1 IIs satisfied, the weighting function e"~ with Q = -J(k4./k, -8f

becomes a rapidly oscillating function except for its stationary points. These points,

denoted by k., can be easily determined by solving [70,73]

0 -a L = . 1Lk 5j* (4-21)akk k, ~k-,
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Thus k is relaed to 8 as

ki.= k, ,(4-22)

and the primary contribution to F(r, 8; e) occurs around these points. Hence, if we fix 8

as .Le., fix V as + 9, in Eq.(4-20). then this weightng function filter out

components only around E4(" k), which yields

F(r,;•C)-C(•(r, i) , (4-23)

where C,(r. ) is the Fourier coefficient for kL - E4 (see Figure 4-4). If this component

of the given pressure is small, i.e., Cr, (r, 8) - 0, then we have F(r,;6) - 0 from Eq.(4-

23) and, consequently, it follows that we have g(k,, ;&,A) - 0 for this specific .

The above approximation holds, even when using n instead of k,, and so Eq.(4-22)

and Eq.(4-23) are rewritten as

n. = 6kr , (4-24)

and

F(r,;O) - ,(r0) e41 4 (4-25)

respectively. We see that, when deriving Eq.(4-25) from Eq.(4-18), kr is placed in the

denominator in the exponential term as compared to being placed in the numerator in

Eq.(4-20). But, recalling that n = kr, the term n is of order r and consequently the

exponential term in Eq.(4-18) turns out to be proportional to kr in the same way as

Eq.(4-20). Thus we can utilize the stationary phase method in using n.

When changing the value of 8, F(r,86; 0) varies approximately in accordance with

Eq.(4-25) and has its maximums at 8,,, where CQ(r,) is maximum. Physically this
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Figure 4-4: Schematic illustration of the Fourier coefficient K.(r;b), which has its

local maximum at n,. This can also be represented in terms of k, by using k, - rin.
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means that each 6N matches the propagating direction of the major phase front associated

with the modes at the observing point (;,9). Thus each &a represents the horizontal

refraction angle of the local•modes at (P,). In order to nd those 6,, F(r,, 0;) in

Bq.(4-1S ) or (kS.,-PV) in Eq.(4-17) has to be evaluated by changing ,. but it is not

suraightforward as mentioned in Section 4.2.1.

Instead, let us take the variation of F(r,8;G) with respect to S. To do this in a

simple, approximate manner, one can differentiate F(r,8;0) in Eq.(4-18) with respect to

5 after a Taylor expansion of the weighting function and then keep the leading term:

M i i (n-•kr)C.(r;.8)e" . (4-26)

The above 5,, may be approximated then by the angle satisfying pF/las = 0. In this

process, however, 5,, cannot be determined independently of k,, since this variable is

involved in Eq.(4-26). To represent this condition in terms of k,, as well as 5, one can

apply the zero-order Hankel transform with the same window wL to Eq.(4-26), after

dividing it by kr, yielding

rwL(nnr)Fe-(, 6- 5)CJr .-0 .(4-27)

Owing to this approximation, the FFT is now available for use in Eq.(4-27). Frm this

result, we can approximately determine the horizontal refraction angles 6, in connection

with the local eigenvalue or local mode. As presented in Item I on page 105, we changed

the scale of the wavenumber by a factor of 1- J 82 when operating with the zero-order

asymptotic Hankel transform; therefore, the k,-scale of its output spectrum has to be

multiplied by the reciprocal of this factor. By this process, we can correct the
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underestimated peak position obtained by using the zme-order asymptotic MAk

transfrm with a sliding window.

In this section, we applied the general Hankel trandorm with a sliding window to

non-cylindrically symmetric fields in an attempt to determine the local eigenvalues in a 3-

D varying waveguide. By expanding the general Hankel transform in a Taylor series, we

found that the first term corresponds to the same form as that obtained for the

cylindrically symmetric waveguide in Chapter 3; the rest of the terms take on a form

given by applying the zooorder Hankel transform with a sliding window to the pressure

field differentiated with respect to the azimuthal angle. Therefore, if these terms are

small enough to neglect, then the effect of horizontal refraction is negligible. If it is not

so, we have to take into consideration the horizontal refraction effect by evaluating the

general Hankel transform with a sliding window.

Since we cannot use the FFT when executing the general Hankel transform, we tried

so evaluate it analytically in an approximate manner. By resorting to the stationary phase

method, we derived an approximate form for this transform. It was then found that the

Fourier coefficients play the role of a filter for 8 or go to match the direction of the major

phase front. Based on this analysis, we found a method for determining the horizontal

refraction angle approximately by taking the first-order variation of this transform with

respect to V. Finally, by utilizing a scaling factor, 1- 8/2, we can compensate for the

deficit in wavenumber that is obtained when using the zero-order Hankel transform in a

--D varying waveguide.

In the next section, by exploiting an alternative form of the 2-D Fourier transform,

we will examine the effect of horizontal refraction on the zero-order asymptotic Hankel

transform with a sliding window when employing it in a non-cylindrically symmetric

waveguide.
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43 Study of the horimnt reraction defe using an alterative reprOentatIam

In Section 4.2,, we studied the effect of horizontal refrction by applying the general

Hankel transform with a slidins window to the pressure field in a 3-D varying waveguide.

In this section, we will re-examine this effect but will un an alternative rer

a 2-D Fourier transorm with the same sliding window in a Cylindrical codnau sytem

The purpose of this section is to afford a beter understandin of the role of the variab

p (or 5) in the 2-D Fourier ansform in connection with the horizontal rection ffmct.

To do this, let us first separate the prssmu field into its constituent modes Wi de

us of the vertical receiver array fixed at rwO as discussed in ataper 3.3. The outpunt a

the mode filter q.(rO,z) for the nth mode can be expresed as

q5(r,9,z) = •(r,O,z)e"'•' 3 , (4-28)

where te phase S, represents the accumulated phase along the horizontal ray path s for

the nth mode on the x-y plane:

S,(r, 9) --J- tds . (4-29)

Recalling the relation in Eq.(4-l), we can define the average eigenvalue K,(r,9) as

S.(rO) n rK.(rO) , (4-30)

because the range r dc,, rot rpresent the exact integration path length s. A Taylor

expansion of K,(Q,) with respect to the azimuthal angle around 6, which is the center

diriectio of the window v. (A,), *'As

K,(rO) - a6(r; ) + P.(r;6) (0- i)4."'" (4-31)
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With

ao(r;)n K.(r, = -S(r ,9 (4-32)
r

( )) as0(T I% " (4-33)

Hen let us assume that ,8. can also be obtained approximately by using the phase

differeace between two output signals of the mode flte.

rIa. S.(r,6+ AO)-S.(r,)A~.)-MO (4-34)

when the pressure fields corresponding to each signal are separated by AO in the

azimuthal di on. Thus substitution of Eq.(4-30) and Eq.(4-31) into Eq.(4-28) yields

q.(r,. 9) - A.(r, 0,z) ei"'('÷') . (4-35)

Now let us operate on Eq.(4-35) with a 2-D Fourier ransform with the same window

used in Eq.(4-2):

a(k.,9;?, 9)- = fTwL(rr) re*•(')J•'td6 'b(G0) A (r, 9) ei&`Px~l) le"•'('-'

(4-36)

wher the functional notation of: has been omitted for simplicity. For conveicnce, let

us express the phase term inside the 0-integral in Eq.(4-36) as krOQ with Q(8) defined

by

(4-(r) -(37)
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Then. owing %D kr >> 1, we can utilize a stationary phase method [70,73] for dhs inegrI

md deftrmine the stationary point 0, ftom the conditwon us yg

-L =&(r) + sn(G, - ,) = 0 (4-38)

By solving this equation for 0., we have

(4-39)

JrQ
Use of 0, along with 1= in the formula of the stationary phase method given by

Eq.(3-53) yields

2-x
g(k,.P;f.,O)-e 4 jj/J..Ltr, ) vt S.;b) A.(rO, O)

x ejd6 (P)+A'. 04"b"lI"• ,, (4-40)

Since .0,(r)I << k,, due to the assumption of gradual variation of the medium, we may

uso te following approximation in Eq.(4 40):

sin-(p.r) P(r)(4-41)

and

,,-I &(AQ))m - {a f (4-42)

As a result. Eq.(4-40) becomes
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- 41-(,eL'ir r.(,)ed4. , ..

(4-43)

where we changed the Integration g inp ine same way as in Section 42.2 and approx-

imated th amplitude trm as % (0,;6) - % (V;,6) and A,(r,,) - A.(r,9) by dropping

P5(r)I k in Eq.(4-39) because of its negligible effect. But we cann neglect it in the

Phanerm. As discussed in the previous section, if we can match fi to the propagation

direCti of the phase front associated with the #t mode at the observing point (P,;),

then dte exac wavenumber for the local eiSenvalue may be obtained from Eq.(4-43).

"nerefore, let us study the effect of horizontal refraction by specifying the values of

V in the form of a 2-D Fourier transform given by Eq.(4-43).

By setting M 0 in Eq.(4-43), we have

t(k,,0;;,) - &z .L (r'p,)A,(r,) dre (4-44)

or, using the definition q(r)= (r.)''

_.2e - ,(rf)q.(r.i)e e l-*rdr . (4-45)

Where V.0.61) w I has been employed. It is observed that Eq.(4-45) differs from the

wordr asymptic Hankel transform In Eq.(3-30), which was obtained for the

cylindrically symmetric case, by a factor of e 2. If the sig of the exponential term is

positive, then we can obtain the peak position close to the local eigenvalue as will be
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detailed in Item 3. But, in this case, we obtain an underestimate value rom the peak

position in the output spectrmm of Eq.(4-45) as explained in Item 3 again

2 .. of q- 9" +p,(r)/.k,

Ufwe set

v,. -+Pa(r) (4-46)
2k,

then it follows from Eq.(4-43) that

J'W

g(k,,i+ - ;F,G) - 4__w_447
2k, 42 ,. ,_r

where P.12k, in the argument for v% and A,. has been neglected in the same manne as in

deriving Eq.(4-43). If we rewrite Eq.(4-47) by using q,(r, 0), it follows that

2k, r 42k, 3) (r.F)q.(r,6)e' "4rrdr (4-48)

Here we notice that the right-hand side of Eq.(4-48) is equivalent to the zero-order

asymptotic Hankel tMnsform with the sliding window in Eq.(3-30), which was obtained

in the cylindrically symmetric waveguide. As stated in Section 4.2, the peak position

determined from this spectrum is always underestimated due to the horizontal reftaction

effect.

3. cs of f = 0+ .(r)/k,

By noticing that P. corresponds to k,(= n/r), the wavenumber component in the

azimuthal direction defined in Section 4.2, we can predict the refraction angle $ m ip-

from Eq.(4-27) as:
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,=+. ((r) .(449)k,

Thi relation can also be understood from a physical point of view if k, -r.. As

illustrated in Figues 4-1 and 4-3, if the phase front associated with the nth mode passes

through the observation point (;, 9), then 6 ma -- is related to the wavenumbers k, and

P. as P,/k, - n- 6. -lHem the horizontal refraction angle 6 is considered relatively

small. Thus employment of this relation in Eq.(4-43) yields

g(kl,• +_P, ;.-) .e ' 4 f.WL(rr.)A.(r6)e 446(p J'% dr , (4-50)

k, 42xrk,

or, equivalently by using q.(r. ) = A.(r, )eb'(),

9(k,. i + ;rL 8) - f wL(r'.)q.(re)e 2 e- N' dr .(4-51)

kxk 2k 4-

As pointed out in Section 4.2.1, we cannot evaluate Eq.(4-5 1) using the FFT due to the

term e 24 . But Eq.(4-51) can be evaluated in an approximate manner as follows. FMs

let Eq.(4-51) be rewritten as

8(k,,6 + L;;,)- e4 2 . (4-52)

If we replace 6./k, with 5 in Eq.(4-52), then the resulting form can be identified with

the integral with respect to r in Eq.(4-17). Thus, following the description in Item 1, page

105, we can consider Eq.(4-52) as a zero-order Hankel transform with a sliding window
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bychanging the scale of k, by•afactr ofI-5 2 . Since 5 is a fu on ofk, the bove

stasement is not completely correct; but. we can fix k, in $ (-.B./k ) by giving some

q umt value (T,(r)) that is close to the exact local eigenvalue ac.(r). For

eample, we can use the peak position in the output spectrum of Eq.(4-48) for IF.(r). Of

courtse ds is anot an exact local eigenvalue, but w,(r) - F(r) is of second odnr, so this

choice does not affect I-.-*52 much to leading order. Mon simply, if we fix .8.(r) in

Eq.(4-52) as A1(P), then th scale factor abo, - can be immediately calculated and the

local eigenvalue at the observation point P is approximately given by

K.(F)- +,(P)+ (4-53)2'.(r)"

Thus the above procedure can be summarized as follows: (1) Farst we apply the zero-

order asymptotic Hankel tansform with a sliding window to the output of the mode filter

even in a horizontally refracting environment; and (2) We compensate for the

underestimated output by using p.(r) as shown in Eq.(4-53) to obtain the local

eigenvalues.

Of particular interest is that, as seen from a comparison of Eq.(4-46) and Eq.(4-49),

the zezo-order asymptotic Hankel transform in Eq.(4-48) corresponds to the 2-D

transfonn obtained when adjusting V by one-half of the deflection angle, i.e., P./2K.

The deficit in adjustment for qp results in an underestimate for the local eigenvalue as

shown in Eq.(4-53).

As noted in Item I (page 115), i.e., the case of f= 0. the underestimated amount

becomes P,./r,, because of the factor e 2 , which differs from e 'k by g,9/w'. in

the exponent. So this factor serves to increase the deficit in the peak position in the

Output spectrum.
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In the next section, the result in Eq.(4-53) will be compared numerically to the

results obtained using the general Hankel utansfocm in Section 4.2. The method used in

this section would not be practically applicable to real data, because we cannot expect to

obtain the stable phase difference .0(r) due to the effect of noise. In this section, we

focused rather on the analytical description of horizontal refration by deriving an

alternative representation with the use of the phase difference P,(r) in the different

azimuthal angles. We also compared the resulting transform to the b -order• aymptoc

Hmnkel transform with a sliding window and found that the underestimated amount for

the local eigenvalue in the latter transform can be expressed in terms of the phase

difference P.(r).

4.4 Analysis of simulated data

In this section, we will examine numerically the methods obtained from the previous

sections to determine the local eigenvalues in a 3-D varying waveguide. Here we will

utilize a non-cylindrically symmetric pressure field which is simulated by using the

horizontal ray method.

"4.4.1 Bottom environment and field simulation

We will use a wedge-type bottom as shown in Figure 4-5. The range-dependent

parameters characterizing the bottom sediment are given as a function of the x-coordinate

only, so that the ocean environment does not change in the y-direction. As for the bottom

change in the x-direction, we set the same variation used for the bottom model in Chapter

3.4. Hence Figures 3-9 through 3-14 hold true for the current bottom model by replacing

the variable r with x. If we employ the same source whose frequency is 75 Hz, then we

have the equivalent local modes at r=O as shown in Figures 3-15 and 3-16. In this ocean

environment, the local modes also depend on the range x only and remain unchanged in

the y-direction. Thus the local eigenvalues ir(x) take on the same values as those in
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Figure 3-18. The pressure field, however, is different from that in Chapter 3.4 due to the

efict of horizontal refraction, as explained in Chapter 2. To accommodate this effect in

the field simulation, we can use the horizontal ray theory that was described in Chapter

2.4.

Since r,(x) has already been given along the x-axis by wiving the depth equation

for each local mode, the horizontal ray path associated with this mode can be easily

determined by applying wr,(x) to the ray equation defined by Eq.(2-16). Then we can

calculate the phase by integrating I'.(x) along this ray path and thus obtain the pressure

field by using Eq.(2-17).

Figure 4-6 represents the contour map for the horizontal refraction angle 6. of the

third mode with respect to the range r and azimuthal angle 0 of the observation point.

Here we chose only to show the third mode because it is representative of the other

modes. From this figure it can be seen that horizontal refraction takes place most

strongly around 0=70' from the x-axis. When we fix the azimuthal angle to be 70,

Figure 4-7 shows the refraction angle 8, for different modes. As seen from this result, in

general, the higher the mode, the stronger the horizontal refraction. The angle of

horizontal refraction is one of the unknown variables that we have to infer by applying

the general Hankel transform with a sliding window to the pressure field.

Before proceeding, it would be of interest to compare the field obtained by the

horizontal ray method with the field given by the Nx2D method, because the difference in

the results of these two methods is due to_ the horizontal refraction as discussed in Chapter

2. Figure 4-8 compares these two fields, which are simulated using the first five modes,

in the azimuthal direction of 70. The overlap of the two curves demonstrates that the

pressure field is almost equivalent, and thus the Nx2D method can provide a good

approximation, as far as the amplitude of the pressure field is concerned. In the present

example no substantial difference occurs because the pressure field is dominated by the
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Figure 4-6: Contour map for the horizontal refraction angle of the third mode.
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Figure 4-8: Comparison of the pressure fields simulated by the horizontal ray
method and the NX2D method when setting the azimuthal direction at 70".
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Figure 4-9: Comparison of the phases of the third mode simulated by the horizontal
ray method and the NX2D method when setting the azimuthal angle at 0 - 70'. Both
phases are modulated as O(r, 0) --P 45(r, 0) - kor with k0 - co/co and c0 =1660 m/s.
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lowest two modes, which have relatively weak horizontal refraction as seen from Figure

4-8.

If we choose the third mode alone and compare its phase as obtained from the

hcrizop-' ray method and the Nx2D method, then the difference in these two phases can

be clearly observed for ranges over 3000 m, as shown in Figure 4-9. Norw that both

phases '•(r,9)I.. are modulated as O(rG).-+ O(r, )-k r with k, = lc. and

c,=1660 mis, in order to effect the comparison. As discussed in Section 4.1, the

differelce in the phase, or more specifically, the spatial frequency (horizontal wave-

number), plays an important role in describing the horizontal refraction accurately for a

particular mode.

4.4.2 Application of the general Haniel transform with a sliding window

Now, we will try to determine the local eigenvalues in this horizontally refracting

environment by applying the general Hankel transform with a sliding window to the non-

cylindrically symmetric field simulated above.

In the first stage, let us assume that, due to measurement limitations, the pressure

field p(r,8) is given only in the radial direction at selected azimuthal angles, i.e.,

azimuthally every A0 (see Figure 4-20(a)). Thus, when calculating the Fourier

coefficient C.(r,0) in Eq.(4-6) using the FFT, the sampling interval in azimuthal angle is

automatically limited to AG. Consequently, the sample distance rAO in the azimuthal

direction increases with increasing range r, and at some range violates the spatial Nyquist

criterion (80]. As a result of aliasing errors, the general Hankel transform based on C.

does not work properly beyond this range. Therefore, for this transform to perform

cornctly, there must exisv a maximum range, which depends on AG and also the degree

of horizontal refraction of the field. This problem will be discussed in the next section.
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Since horizontal refraction occurs most strongly in an azimuthal direction around

7W, as een from Figure 4-6, we will examine the performance of the general Hankel

transform by setting the center of the azimuthal window in this direction.

Before doing this, let us show that we have a deficit in the peak position of the

output spectrum due to the effect of horizontal refraction if the zrro-Iader Hankel

transform with a diding window is applied to the pressure field in this direcdo. igure

4-10 compares the local eigenvalue of the third mode and the peak positio obtained by

using the Hanning window with L =1000 m that is slid every 50 m. Hen the pressure

field for the third mode has been separated by mode filtering with the use of a vertical

array of receivers that is placed at r= 0 as shown in Figure 3-23. We observe that the

deficit in the horizontal wavenumber increases in accordance with the increase of the

horizontal refraction angle. To confirm this, the deficit is plotted in Figure 4-1.1 and is

compared with r. - r cos 6., where 8. is the horizontrefracidon angle shown in

Figure 4-7.

As discussed in Section 4.1, what is required in the first place is to determine the

horizontal refraction angle 6. for each mode at various ranges. When setting the center

of the window as 0-=-70* and P-=4250m, the window length as 0 =10* and

L = 1000 m, and AOR = 1, Figure 4-12(a) shows the value of the left-hand side in Eq.(4-

27) with respect to both the horizontal wavenumber k, and the refraction angle 8. As

long as the ridge corresponding to each mode is separated far enough apart to avoid

interference from each other, the propagation direction of the phase front associated with

each mode can then be determined from the angle S at which the value in Eq.(4-27)

takes a local minimum. In Figure 4-12(a), we can find 8,, for the first and second modes

but it is hard to locate the angle 8,, for the third through fifth modes due to interference.

In particular, the ridge associated with the fourth mode is completely buried in the tail of

adjacent modes and cannot be recognized. In order to improve this situation, we can

increase the window length L. Figure 4-12(b) shows the result for L = 1500 m.

126



0.290- . . J . . -

mode 3
local eignvalue

S0.286 peak position

0.284--

0.282-"

0.280--

1 .71

0.276"

0 1000 2000 3000 4000 5000

Range (m)

Figure 4-10:, Comparison of local eigenvalue and peak position that is obtained by applying
the zero-order Hankel transform with the sliding Hanning window with length L= 1000 m to
the pressure field in the azimuthal direction 6 - V70. The pressure field for the third mode
has been separated by mode filtering with the use of the vertical array in Figure 3-23.

. 0.8-* *. 1

E

0 .-x 0.6 exact

b. ° ...... .d e i iI 0.4-

0.2-
C
0

•'" 0 .0 . . . . " " ,'
0 1000 2000 3000 4000 5000

Range (m)

Figure 4-11: Comparison of the deficit in the wavenumber in Figure 4-10 and the exact
value( Kc. - K' cos6j).

127



|9,

(a)

Figure 4-12: Left-hand side versus k, and 6 of Eq.(4-27) when setting the

center of the Hanning window as (Fb) - (4250 m,70"), the width of window
as Q - 0", and the sampling width as AO - 1': (a) window length L=1000 m
and (b) window length L=1500 m.
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Figure 4-12, continued.
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Although we could improve the precision of the angle 8. for the third and fifth modes,

8z for the fourth mode is still hard to locali .

Thus, as we had shown previously in Chapter 3, we need to separate the pressure

field by modes befcor applying the above tasform. By incorporating data ftom the

vertical ay shown in Figur 3-23, we can perform mode filtering. Figures 4-13(a) and

4-13(b) show the results for the second and third modes, respectively, when applying the

transform with L =1000nm after the separation of modes; these two modes are

representative of ows having relatively strong and weak refration, respectively, as

shown in Figure 4-7. As een from the results in Figure 4-13(a) and 4.13(b), we can

easily find ,5, in the single mode situation.

Her it would be of interest to examine the value of the Fourier coefficient C.(r, i).

In accordance with Eq.(4-24) and Eq.(4-25), as discussed in Section 4.2.3, this coeficient

takes on its maximum value at 6,N found above, where the spectrum of the general

Hankel transform takes its maximum. Figure 4-14 shows the absolute value of CQ(r,9)

at the same range (r = 4250 m) after the separation of modes. In this figure, the

coefficients at the other ranges are also compared, where each Kr, )i is normalized so

that its maximum value becomes one. In the same manner, Figure 4-15 shows the range

evolution of .(rij in the azimuthal direction i= 700. htcan be observed that n,, at

which K. (r 0) takes on its maximum value, varies with range.

Let us next examine the maximum range for the general Hankel transform to work

propery when changing the sampling distance AG in the azimuthal angle. Figure 4-16

shows this result for the different AG and. also compares with the exact refraction angle

of the horizontal ray (8.). As discussed in the beginning of this subsection, the

maximum range for this transform to hold true decreases with increasing AG. From the

spatial Nyquist rate that is given by x/lr sin ,, , we can see that the results in Figure 4-16

match roughly this condition.
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(a)

Figure 4-13: Left-hand side of Eq.(4-27) versus k, and 6 after separation of
modes when setting the center of the Hanning window as (P,0) - (4250 m,70"),
the window length as (1, Q) - (1000 m,10"), and the sampling width as A0 - I':
(a) mode 2 and (b) mode 3.
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(b)

Figure 4-13, continued.
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Figure 4-15: Range evolution of the Fourier coefficient IC,,(r;6)I along the radial

with the fixed azimuth 08- 70'. The pressure field for the third mode has been

separated by mode filtering.
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In Figure 4-17 we compare the results for different window widths with a fixed

AI(=2"). We cannot find a substantial difference among them at the range which

satisfies the Nyquist criterion. On the other hand, when the range gets close to the

maximum, the result shows that the narrow window width loses its precision faster than

the wide window.

As discussed in Chapter 4.2.3, we can compensate for the underestimated peak

position by using a scale factor 1- I 8, where the refraction angle has been obtained

above. Figure 4-18 shows a comparison of the compensated amount in a wavenumber

using 8, and the exact wavenumber, i.e., w. - j'. cos 8. In the same figure, the results

for different A0 are also compared. Due to the failure in the determination of 8, as seen

from Figure 4-17, we have an incorrect result beyond the maximum range which depends

on A1.

In the final stage, we apply the alternative method discussed in Chapter 4.3 to the

simulated field. In this method, it is assumed that we can obtain the phase difference of

the output signals of the mode filter which is applied to the pressure field along adjacent

radials separated by the azimuthal width AO. Figure 4-19 shows the results of Eq.(4-53),

i.e., ,.(P)- W.(P), for the different azimuthal widths A8. In this figure, the exact

wavenumber K. - K. cos 8. is also compared. It can be observed that the error increases

with increasing width A9. As seen from a comparison of the two curves of A0=55"-70"

and 85"-70", the error has a different range dependence even for the same width I A 0.

This is due to the fact that the modal phase front has a different behavior in accordance

with the local characteristics of the ocean environment, as shown in Figure 4-6.

As seen from a comparison of Figure 4-18 and Figure 4-19, both methods provide

close results for determining the deficit in the wavenumber, as long as the observation

range is within the maximum range associated with the Nyquist criterion.

In the next section, let us examine the relation between this maximum range and the

sampling width in the azimuthal direction.
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45 -ExeImnAlI Design

In this section, we will present an experimental design for measuring effectively the

pressure field in a 3-D varying environment that also copes with the horizontal refraction
effeoL

As discussed in Section 4.2, unless the horizontal refraction is negligibly weak in a

3-D varying environment, we need to take into consideraton this effect by using the

general Hankel transform with a sliding window. In this transform, we first need to

calculate the Fourier coefficients CQ(r, ) in Eq.(4-6), which is given by executing the

integral with respect to 6. ThIus if the pressure field p(r, 6) is given in the azimuthal

direction in addition to the radial direction, then the coefficient can be imme y

calculawe.

The pressure p(r, 6), however, cannot be provided continuously as a function of

both range r and azimuthal angle 6 due to limitations in measurements made in the

ocean. Namely, we can measure the field only along some transect sampled by a moving

ship or a buoy. As discussed in the beginning of this chapter, since the phase front of

pressure propagates mainly in the radial direction in the region of interest, the

measurement should basically be carried out in the radial direction at selected azimuth

angles OG (Figure 4-20(a)).

We have to then calculate C.(r; 8) using only the discrete values of the pressure

field p(r,98) (1 = 1,...,/) in the azimuthal direction. Since we can, however, execute the

integration for C(r-,9) in Eq.(4-6) by using the FFI, the issue to resolve lies in the

sampling distance rAOG. In order to avoid aliasing errors, this distance has to be less than

one-half of the wavelength A,/2, where A, is defined as

- 2s 2z (4-54)
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NIIO is the maximum refactim angl in the region of intermst and io. is do lcal

eigeavalue of the oith mode (Figwur 4-3) 7We above spatial Nyquist condition is

expressed then as

A9, < X (4-55),r.sn 6•,,

Here we assume that we can incorporate damt frm the veutical amy of receivers at raO in

order to separatthe pressure field by modes. If this is no so, r. has to be replaced with

w/c., where c. is the minimum sound speed in the profile. In general, we can safely use

the minimum sound speed in the water column, yielding

40, < C( (4-56)
2rf sinJNm

where / is an acoustic frequency. In Eq.(4-56), we do not know the exact 8N, but we

can estimate it by using the horizontal ray method along with an assumed sedimentary or

rigid botom.

As seen from these results, we have to decrease AOG while increasing the range r.

For example, we can set the measurement transects in the ocean as shown in Figure 4-

20(b).

In general, the higher the mode, the srongcr the horimntal refracti Namely, 5K

has a lre value for the higher modes in Eq.(4-55). Thereore, we have to use smaler

AO, for those modes at long ranges. Since, however, the higher modes attenuate faster

than the lower modes, we do not have to design the measurement suatgy for the higher

modes at long ranges.

As an alternative method with respect to the issues discussed above, but in a more

approximate way, we first calculate C.(r,;6) at selected ranges r, by using the pressue

fd p(rG) ( =l,....J) measured along an arc at the ranges; the C,(r,9) can be

141



y

(a) (b)

(c)

Figure 4-20. Design of transects for measuring the sound field in the ocean.
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lewrolaed between those ranges as shown in Figure 4-20(c). To employ this approch,

the single mode environment based on mode filtering would be preferable to increase the

precdsion of the interpolationL

Finally, If the horizontal refraction angle is negligibly small, i.e.. 5v << 1, then we

do not have to use the general Hankel tranform and can apply the zero-order Hankel

transform to the field in the radial direction of interst in the same way as shown in

Chapter 3.

4.6 Summary

In an attempt to detect the local cigenvalues in a 3-D varying shallow water

waveguide, we introduced a sliding window in a 2-D Fourier transform based on a

cylindrical coordinate system and then studied the effect of horizontal refraction on the

detemination of the local eigenvalues.

In Section 4.1. we discussed issues arising from horizontal refraction in a 3-D

varying waveguide. When applying the zero-order Hankel transform with a sliding

window to the pressure field measured along a radial, the wavenumber determined from

the peak position in the output spectrum has a deficit due to horizontal refraction.

In Section 4.2, we derived the general Hankel transform with a sliding window from

the 2-D Fourier transform. By expanding it in a Taylor series, we found that the first

term corresponds to the zero-order Hankel transform with a sliding window, which was

obtained for the cylindrically symmetric waveguide in Chapter 3; the rest of the terms

correspond to the zero-order Hankel transform of the pressure field differentiated with

respect to the azimuthal angle.

In order to analyze the effect of horizontal refraction on the Hankel transform, we

utilized the stationary phase method and evaluated the transform in an approximate

manner. It was then found that the Fourier coefficients play the role of a filter for the

variable qp to match the direction of the major phase front associated with a mode. Based
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a this analysis, we can determine the horizontal refraction angle approximately by

taking the variation of this transform with respect top. T-e. by changing the scale of

the wavenmber with the use of the determined refraction angle, it was shown tha we

can cotmnpsat for the deficit in he wavenumber obtained when umg the zeroorder

Hanke transom with a siding window in a 3-D varying waveguide.

In Section 4.3, in order to re-examine analytically the effect of horizontal refraction,

we derived an alternative representation for a 2-D Fourier transform by using the phase

diffence between the outputs of the mode filter which was applied to the pressure field

in the different azimuthal directions. By comparing the resulting transform with the zer-

order asymptotic Hankel transform, we demonstrated that the compensated amount for

the local eigenvalue in the latter transform can be determined by using the phase

difference in mode filtering.

In Section 4.4, we examined numerically the horizontal refration effect by applying

the transforms obtained in Section 4.2 and 4.3 to the pressure field that is simulated using

the horizontal ray method. It was shown that we can determine the horizontal refraction

angle by using the general Hankel transform, as long as the pressure field is sampled in

the azimuthal direction so as to satisfy the spatial Nyquist criterion. We also showed that

the deficit in the wavenumber can be determined by using these transforms.

In Section 4.5, we considered a method for the efficient measurement of the pressure

field in a 3-D varying shallow water waveguide to deal with the horizontal refraction

effect. Based on the spatial Nyquist criterion, the sampling width in the azimuthal angle

for the general Hankel transform to work properly was determined in connection with the

maximum range.

So far we have tied to detect the local eigenvalues in horizontally varying

environments in Chapter 3 and Chapter 4. In the next chapter, we will use those local

eigenvalues as input data to a method for determining the range-dependent geoacoustic

propties.
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Chapter 5
Inverse Method for the Local Bottom Properties

The purpose of this chapter is to develop a method for determining the local bottom

properties from the local eigenvalues, which were estimated by using the Hankel

mansform with a sliding window in ahapters 3 and 4.

In the first place, we will uty to understand how the range variation of the local

bottom properties in the horizontal direction affects the range variation of the local

eigenvaluCe In order to analyze the relation between these two variations, we begin by

setting up the bottom sediment model in the following section. Based on this bottom

model, we derive the relation between the pertnbed. local eigenvalue and the perturbed

geoacoustic parameters in Section 5.2. To verify this perturbation relation, we apply it to

a range-dependent Pekeris model in Section 5.3. In Section 5.4, by representing the

sound speed profile in each sediment layer as an n2-linear curve, we express the

perturbation relation more explicitly in terms of sediment parameters. In section 5.5,

based on the perturbation relation, we develop an inverse method for determining the

bottom parameters from the local eigenvalues. In Section 5.6, we apply the inverse

method to the shallow water model used in Chapter 5.3. We show that the geoacoustic

parameters can then be numerically obtained by solving the perturbation equation

iteratively with range.

5. Geowcoustlc modd

From past studies, it is well known that the ocean bottom is multilayered structure

and some experiments show the range-dependent variation of the geoacoustic properties

in the sediment [81,82]. With these studies in mind, we set up a shallow water bottom
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model composed of a range-dependent, multilayered fluid medium, as shown in Figure

5-1. We use this bottom model throughout the chapter and develop an inverse method

based a it.

In this bottom nodel, the sediment in each layer (L : j 5 M) is assumed to have

different physical properties, so that the sound speed, the density, and the attenuation

coefficent may be discontinuous across each layer interface. Within each layer,

however, the sound speed is assumed to vary in a continuous manner with respect to

space. This variation is arbitrary in the vertical direction but gradual in the horizontal

direction to meet the adiabatic condition. On the other hand, both the density and

attenuation coefficient are assumed to be constant in each layer, but they may take on

different values in different layers.

Since the local eigenvalues are provided along the radial as discussed in Chapter 4,

the geoacoustic properties determined inversely from these eigenvalues ane limited to

ones along this radial only. Hence the azimuthal angle is only a parameter for

distinguishing the radial direction and so the functional notation regarding an azimuth

will be omitted throughout this chapter.

The layer interface h,(r) (1 5 j . M), therefore, is expressed as a function of range

only. In particular, the sea surface interface hk is always set to be zero in our model, and

h. (r) corresponds to the bottom interface. Thus the layers j = I through j = L- I are

located in the water column. Since the physical properties in the water column are

considered to vary continuously, we do not need a layered structure in the water column

in general. If we use these criteria, we can set L = 2. If there exists, however, a water

body with different densities, then it would be convenient to represent it using a layered

structure. In any case, the density must be constant in each layer in the modeL

For the same reasons mentioned above, the sound speed is expressed as a function of

range and depth only, i.e., c(z,r). In order for the adiabatic condition to be met, dc/am

as well as 0,hj/d have to be small enough to make the mode coupling coefficients small.
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As stated in Section 2.1, the branch line integral stems from the assumption of

constant sound velocity in the lowest layer (half-space), i.e., the gradient gu, 0 . If a

mall, positive number is assigned to g., then this branch line does not emerge and all

modes become discrete; tiemfort, to avoid the difficulty arising figm conversion between

discrete and continuous modes in the propagation process, we assume g,>0 in this

modeL

Based on this multilayered sediment bottom model, we will develop a method for

determining the geoacoustic properties in the remaining sections using a perturbative

approach.

5.2 Relation between perturbed local eigenvalues and perturbed local bottom properties

In this section, we will derive a relationship between perturbed local eigenvalues and

perturbed geoacoustic parameters by using linear perturbation theory [43,47].

With the geoacoustic model described in the previous section, we can utilize

adiabatic mode theory, as long as the sound speed in the water column varies gradually.

Since the density is assumed to be constant in each sediment layer, it is immediately seen

from Eq.(2-8) that the local eigenfunctions u. satisfy

a2UL [k2 (r. Z) 2(r)]u8 (r,z) = 0()

The local eigenfunctions u. also satisfy the orthonormality condition

I u. (r.z)u8 (r, z) dz = 8 (5-2)p(r,z)a

and the following boundary conditions:

U.,(r, zI..o =0 (5-3)
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and

Urn 0 - (5-4)

Eq,(5-3) represents a simple pressure-release condition at the sea surface. Thus surface

roughness is ignored hem, which should not incur a large error for low-frequency modes.

On the other hand, the boundary condition at infinite depth is based on the assumption of

a positive gradient in the lowest layer. If gjw) instead, then we confine ourselves to

trapped modes only, so that the condition in Eq.(5-4) is still satisfied.

In addition to the above conditions, both pressure and vertical particle velocity must

be continuous across each layer interface:

u,[. U.o -- P.A.0 (5-5)

and

1 (5-6)
Pj-i dz awj- p, hj-

where h, -0 and h, + 0 refer to the limit approaching the layer interface z = h, from

above and below, respectively. Although the continuity of particle velocity is originally

defined in the direction normal to the interface in Eq.(5-6), the approximation made here

leads to accurate results, as long as the interface varies gradually within the framework of

the adiabatic approximation.

First, let us derive an integral version of Eq.(5-1), which is the basis for deriving the

perturbation relation between the local eigenvalues and the geoacoustic properties (43].

Multiplying Eq.(5-1) by u.1p, integrating over the entire depth, and integrating by parts in

the first term yields

149



U. -- t'~udz fet-u2dz=O .(5-7)

Since the first term vanishes due to Eq.(5-3) and Eq.(5-4), we obtain the following form:

1 kole d -
dz (5-8)

Ths form also provides a foundation for representiang the group velocity associated with

the nth mode in an integral form.

To accommodate the variation in interface depth hi (1 • j: M) in Eq.(5-8), let us

rewite theintegration in Eq.(5-8) as rdz -, dz,th

d a J2-J- -dz=o (59)

where h,,l = o has been set for notational convenience. Noting that each integration

interval corresponds to a layer (h, : z!5 h,÷,), we have placed P9z outside of the integral

in Eq.(5-9), because the density is assumed to be constant within each layer in the model.

In an attempt to derive a perturbation relation between the local eigenvalues and the

geoacoustic parameters, we will perturb Eq.(5-9). When the medium (both water and

bottom) changes with range, i.e., k -+ k+ Ak and h,-+ hj +Ah, as r-+ r+Ar, the local

eigenvalues and local eigenfunctions are also subject to change, i.e., r.---+ .+AI. and

u.-+ u.+Au., thereby making Eq.(5-9) change as described below.

In order to avoid confusion in the mathematical development, we will derive the

perturbation of Eq.(5-9) term-by-term and present each perturbation separately. Later we

will combine all the perturbations.
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1. Range variation of the first integral in Eq.(5-9)

Taidng a perturbation of the first term in Eq.(5-9) yields

. ip .,(u, + Au. Jf

= ,+,•MJ )-b+ (5-10)

If we confine ourselves to first order perturbation, then it follows that the left-hand side of

Eq.(5-10) becomes

J-iPj ",+ az

oaqq 2 zau hO(&L 2 z
j p L A h j 1•h j+ , + f,, i ? 4A•dJ

(5-11)

If we rewrite the second term on the right-hand side of Eq.(5-1 1) using j'sj+I as

a-)j Ltj~ =1 s ,, r, hk• , (5-12)

where the (M+1) term has dropped out due to 0 in Eq.(5-4), then the first two

terms in Eq.(5-1 1) become

+ +I - - l-Ah . (5-13)7.1' Pi 11 5z r" (, & L I

Here the Ah -term has dropped out due to A/A =0.
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The third term in Eq.(5-11) can be integrated by parts:

-. P -J 4 2 • z o: dzihau

2.1,o -u.Lo= -AuLjo -&-P'LI - -j,= m •

Appendie Eq.(5- 4 has theenuen rerthe lasteuto.Athspiltusalyhefowg- u.t.= J-2-pj ) t; J ,-hj

Th ther b•( n has bon thed inht-hand lastd inq.(5-16)A ths prooi nt.5- le uelds pplyited fi

toth irt em n h rgt-handsd Jin E.(5-14 Th proof o Eq..5 1) is pr "ddi

Appendix A. Eq.(S- 14) is then rewritten as

Nj- Pj a J-2 d-1 N(j Gha2
L

Thbus substitution of both Eq.(5-13) and Eq.(5-16) into Eq.(5-1 1) yields:

-- (P,..i - Pj(i P fJLk.
(5-17)
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2 Ranp variatio of the second integral in Eq.(5-9)

By taking a peuraon of the second integral in Eq.(5-9), we find to first order that

I- t r•"' [(k + Ak) 2(u. + A,,.)2ldz

(5-18)

Use of Eq.(5-5) after replacement of the index (1 + 1 -+j) in the second term on the right-

hand side of Eq.(5-18) yields

Ji-,iki4, (k + Ak) 2 (U" + ] - k -.

Jul3 hjAijJ4 j-• , j

+12kAk udz+.2kudz + z + e' udz) (5-19)

3. Range variation of the third integral in Eq.(5-9)

By taking a perturbation of the third integral in Eq.(5-9), we find to fiust order that

(~ Jr.2 i" + A ,1 = + q. Ah1, 1)

,A, (2n.u., +:)dJ . (5-20)

By using Eq.(5-5) after replacement of the index (j + 1 -+ j) in the first term on the right-

hand side of Eq.(5-20), it follows that
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(+ ÷,+2+,I-W+ "A(u. + Au.)2d,]

Ah +j 2,÷,1C +[2

Josf Pij- L- Pi

(5-21)

Now, by substituting Eq.(5-17), Eq.(5-19) and Eq.(5-21) to Eq.(5-9), we obtain

+ (Pa-, -,A

-j-2 2 _i

+[ -!j-k,,.2d - aj: + k u.dJ01P J-1 hjýII

d,- k2u2dz + W$2 udz]=O (-2

where ,.= (k 2- 2)* is the vertical wavenumber, and '.1,,.o and ., astand for the

wavenumbers on the upper and lower sides of hj, respectively. The discontinuity in 7. at

these interfaces h, originates from the discontinuity in the sound speed at hj. At this point

we find that the terms in the last two brackets in Eq.(5-22) become zero owing to Eq.(5-1)

and Eq.(5-8), respectively. Both density and sound speed in the water column can be

considered generally to change continuously, so that each coefficient of Ah, from J=2

through J= L -1 in Eq.(5-22) becomes zero. By splitting the integrals that include Ak

into the water region and the bottom region and dividing both sides of Eq.(5-22) by 2 r.,

we can finally obtain
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Air. A __

+• Mkedz+±[±• •k.kudz, (5-23)

when p. stands for the waterdensty. fwe use 2wK.-A- . and 2Aik-4k 2 . then

Eq.(5-23) can be rewritten as

plt +-P,, l.,.P_ V J 1

+±r A1~.d+mJ-r4 'Ak2u.2d. (5-24)
P. or JeiP A ",

Both Eq.(5-23) and Eq.(5-24) show how the range variation of the local eigenvalue

depends on the range variation of each sediment interface depth and the range variation of

the wavenumber (sound speed) in each sediment layer. Thus these equations can reveal

which layer interface and which portion of the sediment contributes to the range variation

of the local modes. In the next section, we will apply Eq.(5-24) to a range-dependent

Pekeris waveguide and will demonstrate that it provides an accurate result.

53 Range-dependent Pekeris wavegulde

In this section, to check the validity of the resulting equation for Ax" (Eq.(5-24))

obtained in the previous section, we will apply Eq.(5-24) to a range-dependent Pekeris

waveguide [16,52], which can be regarded as the simplest case of the multilayered model

we described in Section 5.1 except that here we assume gu =0. If we, however, confine
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ourselves to trapped modes only, then the boundary condition in Eq.(5-4) is .&sdfied as

seen from Eqs.(5-31) and (5-33), so that Eq.(5-24) is applicable to the Pekeris waveguide

a weiL

The advantage of using a Pekeris waveguide is that the characteristic equation is

provided in a simple, analytical form and, consequently, the range variation of the local

eigenvalues A4. can be obtained in closed form by directly differentiating the charac-

teristic equation. This enables us to comparp the two analytical forms for At., which are

derived in different ways.

Before deriving those forms, let us summarize the features of a range-dependent

Pekeris waveguide. As illustrated in Figure 5-2, the sound speed in both the water

column and bottom is taken to be constant vertically but is allowed to change in the

horiznml direction such that

c(r,z) = C (r) (09z5h(r)) (5-25)S1c.(r) (it(r) •5 z < --).

Since we are interested in trapped modes only, the following condition has to be met at

each range:

< Re[ ,.(r)] <-s- . (5-26)
r2(r) •c(r)

The bathymetry is also range dependent. but the density in both regions remains constant:

Ara) = {• (05• z:5; h(r)) (527
(h(r) 5 z <-)

In this Pekeris waveguide, the local eigenvalues satisfy the following characteristic

equation obtained by using the boundary conditions at the sea surface and the water-

bottom interface.
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1 .cot(7e.h) (5-28)

whCMer eA/P2; and yr1 and r2. awe the vertical wavenumbers in ftb water column and

boTomal respectively, and ane defined by

(5-29)

(5-30)

wihki a /c and k2 uO/ 2 Inthe case of trapped modes, k< Yc.s satisfied fromn

Eq.(5-26), so that Eq.(5-30) can be rewritten as

72..-(3)

The local eigenfunction can also be determined so as to satisfy the boundary condition at

the sea surface and fth radiation condition at infinite depth, yielding

aa0(r, Z) = ihil(ih 2A1 yr, sfl2(yhiJ
yl. - sin(y,.h) cos(y,.h)- e tan(y,.h) sin2(,,.h)

(0<2-4h) , (5-32)

u~~~(r,2 z)= -uij 1 h) ~ Va Bsl(~, in(71.h) COW(8&)
rih sinTIAcos(y1ih) - e2 tan( y18h) sn(l)

(h<z) , (5-33)

where the u. satisfy the orthonormality condition Eq.(5-2) along with Eq.(5-5) and Eq.(5-

6)at z =h(r).
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Figure 5-2: Range-dependent Pekeris waveguide.
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5.3.1 Derivation d A w. by differentiation of the characteristic equation

In this subsection, we will derive the analytical form for A w. directly from the

c etic equation given by Eq.(5-28).

Differentialing both sides of Eq.(5-28) with respect to r gives

1-cot(yAh)+ - (_ 34)
41"001h + I s s2(yT'h)k M h+ Y1.) (5 d

Rearrangement of this equation yields

y sml(yh)J di 2(r) dr" (5-35)

In order to represent dy. /dr in Eq.(5-35) in terms of dw./dr, let us also differentim

both Eq.(5-29) and (5-30) with respect t Ir:

,.d (5-36)

and

-k=I dt w2i a (•dk? dq (5-37)

dr 2y2. di" dr )2 y,.cot(y,.h) ,dr d)

where Eq.(5-28) has been used in (5-37). Thus substituting both Eqs.(5-36) and (5-37)

into Eq.(5-35) yields

2r .drdij * 2(yh) Yih+2y,.cot(yijh)( dr - d)

At,. . (5-38)
sin2(,15h) dr
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Rearrangement after multiplying both sides of Eq.(5-38) by 2yj sin2 (y1 .h) yields

[yiah - sifl(yah)cos(yah) - et~fl(yljsh)sif2(ymh)] -rLI

2 21, + [ 7jh - in(TIah) cos'Iah)] d~ _ C2 tanQyh)sin2(y,.h)~ *~ .(5-39)

Multiplying both sides of Eq.(5-39) by Ar leads to the following form:

ra.h - sin(r11h)cos(y,.h) - e tan(y(.h)5sin2 (yY.h)

+ Iah - sin(&1 h)cos(y1~h)

ylh-si~n(rih)evos(riah) - et2an(yiah)sin2(Va,,h)~

+ -e2 tan(y13h)sin 2 (y',h) _,_ _ A . (5-40)
Y 5h •-sin(7iah)cos(Yi.h)- 2 tan(y,.h)sin'(y,.h)

This resulting form reveals the dependence of A '. on Ah, Akj, and Ak 2.

53.2 Derivation of A K. by using the perturbation equation (Eq.($.24))

In this section, we demonstrate that we can derive the same form as Eq.(5-40) by

utilizing Eq.(5-24) obtained in Section 5.2.

The range-dependent Pekeris model corresponds to the case L = 2, M = 2, p, = P,

and hk = h(r) in our shallow water model in Figure 5-1 except that ,u=0 . As discussed

in the beginning of this section, however, Eq.(5-24) is applicable to the Pekeris

waveguide as long as we deal with trapped modes only.

By using Eq.(5-28) through Eq.(5-32), we can express oL, uk2L. and (uja/dz)21 4

as follows:
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e2. n~jr.2(5-42)

2A y, sn2(y.h) (5-43)

4-(ylh - sin(y,.h) cos(yh) -e tazi(yih) (5-43)ý.))

2 yj si2(7.hICos 2 (y
AL(~ Tia - sin(Yuh) COS(Yiak) - e1 tmn(Yi-h) hn (ih

(5-44)

Putting Eqs.(5-41)-(5-44) into the first term in Eq.(5-24) yields

+(Pj..i P (iaý j ?/

- [(-e p'L A Sii 2(y18h) + (A -p 2)j'-cos(rah)]

r1.~h - sin(Y18h) cos(yr1 h) - £~taf(yah) snyh)) (-5

Ile members in the bracket on the right hand side of Eq.(5-45) may be further rearranged

by using Eq.(5-28) as

[ =[(yvt - y.)Sin2(r1.h) +(I_ - y1)22(

2 yl VaC~ 2Oih)) Sin 2(y1 h I~ y12c5(h

(5-46)
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Itus the first term ini Eq. (5-24) finally becomes

J + +(pirl -pi Jj M Ak

2y~ ~ Ah (5-47)

Yjuh - sin(y,.h) co. Tiak) - e tany,') sin2(y,.'a)

In the sam,- way, the second term in Eq.(5-24) becomes

_p~1~ ySinz(rz)dz
Ai Yiah - sin(y18h) cos(yaII) - e2 zan( yh) sin2(y,8h)

ylph - sin(y1 ,h) cos(y,8h) -g(548)
ylh- sin(y1~h) cos( y18h) - e2 tan(y,.h) Sin2(yi.h)~

Similarly the third term in Eq.(5-24) becomes

±rAk2 .2u d.

.49 2A y18  Sin 2(yh '718kd
p2 r1,,h - sin(r1,h) cos(r1.h) - e2tan(fl(ih) sin2(r15h) 7~)fi7(hd

Si(ia) 2ey13  2 mn2 (y) A9
YI~ -sinyh)cos(y, 8h) - e2tmn(y,.h) sinlth -2iy2.

e ~2 tan(y13h)Sin 20'13h)

YIah -sin(r 18h) cos(r13h) - e2an(yiah) Sin2(y18h)Ag(-9

Subsequently, the three results in Eqs.(5-47), (5-48), and (5-49) areadded in accordance

with Eq.(5-24), yielding
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ylh - sin(y 1 .h)cOs(y1.h) - t ,an(y,Ah)Si2(yi.h) M

+ ylh - sin(y.-h)cos(y-h)

yiah _ &ini(yiah)C05(yih) _ C2 tafl(yiah)Sin2(yiah)'~

-e2 tan(y1,h)sin 2(y1 .h) ' (5-50)

+ ~- vn(Y ~h)cos(y Ah) - 2 tSI(yiah)5Wn2(yiah)

Therefore it is immediately seen that Eq.(5-50) is completely equivalent to Eq.(5.40),

which we obtained independently ir- Section 5.3.2.

In this section, we demonsrated that the perturbation equation (Eq.(5-24)) derived in

Section 5.2 provides an accurate result when applied to the range-dependent Pekeris

waveguide. In this simple waveguide, we represented the range variation of the local

¢igenvalues A i,, explicitly in terms of Ah, A/k, and Ak 2.

In the next section, by representing the sound speed profile in our multilayered

model with the use of the n2-linear profile, we will express A4w explicitly in terms of the

perturbed geoacoustic parameters.

5.4 Range-dependent n2 -linear profile

Section 5.2 showed how the range variation of the local eigenvalues depends on the

range variations of both the interface depth and the wavenumber in each sediment layer.

But, as seen from Eq.(5-24), the resulting equation includes integrals having the range

variation of the wavenumber inside the integrals. In order to express the range variations

explicitly, we need to execute the integrals in Eq.(5-24) by specifying the sound speed

profile in each sediment layer. Here we use the n2-linear profile to represent the sound

speed profiles.
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$.4.1 Defition of a range-dependent n 2-linear profile

In this subsection, we will approximate the sound speed profile in each sediment

layer by using the n2-Iinear curve with range-dependent coefficients, which are defined

by

c(rz)=c,(rfl-cr) (z-iK)J (h,(r):5z;hj,,(r)) , (5-51)

where cj(r) uc(r,X) is the sound speed at zzh,, o9r) is the sound speed gradientin the

jth layer, and K a h, (r.) stands for the sediment interface depth at some reference range

point r. (eg., r.= 0). Note that K, is a constant (see Figure 5-3). Due to the relation

k()I< C,W (5-52)

Eq.(5-51) can be related approximately to the following linear profile:

c(r. z) -" c, (r) + gj(r) (z - Fj) (h,(r) • z • h,+(r) ) . (5-53)

Thus we see that the difference in the sound speeds represented by Eqs.(5-51) and (5-53)

increases with increasing I- ht" It should be noted that g,(r) can take either a positive

or negative value except for the lowest layer I= M, where only a positive gradient is

allowed to meet the boundary condition given in Eq.(5-4).

To accommodate attenuation, Eq.(5-51) may be extended to the following form of

the wavenumber:

k2(r,z) = K,2(r) + (r) (z- h) (h,(r) <z Shj÷(r)) , (5-54)

with

K1(r) a k,(r) + iaj : complex wavenumber at z= h,, (5-55)
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Figure 5-3: Range-dependent n2-linear profile.
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2go(r) d~r) k
p/ur) a - I0j(r) ) gradient of k2 in the Jth layer, (5-56)c1(r)

where k,(r) .a-' is the real par of the wavenumber at z- K, and a, is the atenuation

cj (r)

coefficient in the jth layer.

From Eq.(5-54) it is immediately seen that the lateral variations of k2 and the range-

dependent parameters are related as

Ak2(r~z) = 2K,(r)Ak, (r) +(z -1,)Apsr) (h, (r):5z:5h,+, (r)) , (5-57)

where AK• = 2KjAkj has been used since a, is assumed to be range-independent. In

addition, Akj and Ap, are uniquely related to Ac, and Agj as

[Ak,0 ][Ac.
__(1)2o JAO: (5-58)

S2o 
/

Since r,, << C- due to Eq.(5-52), the contribution of the Ac,-term to Aj;i is

substantially smaller than the contribution of the A9, -term. Hence Ap, is nearly

proportional to Ag,; but when Ag - 0, then the Acj-tern cannot be ignored. Conversely

Ak, is simply proportional to Ac,.

Here it would be of interest to compare Eq.(5-54) with another representation given

by

k2(r~z) = kj2(r) + uj(r) [z - h, (r)] (, h(r)-5 z:5 h,+,6(r)) (5-59)
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when k~j~rnjr,+iaa with 4(r)sW and !j(r)u c(r~h,(r)), which stands forsw e rk)

sound speed at the interface depth h,(r). Thus the range dependence of 4(r) and E(r)

comes from the variations of both the medium itself and the interface depth. This can

easily be checked using the following identity:

kr)(r)r= K +(r)+p/r)[hj(r)- 1] . (5-60)

which can be obtained by comparing Eq.(5-54) and Eq.(5-59) rewritten as

k2(r~z) = {kj2(r) -p/r) (hj(r)-h,4 +pj(r) (z-4j) .(5-61)

Recalling that K,(r) represents the wavenumber at the fixed depth K, it is seen that Kj(r)

includes the effect of the sediment interface variation in the second term on the right-hand

side of Eq.(5-60). Therefore Eq.(5-54) is more convenient than Eq.(5-59) in representing

the range variation of the wavenumber.

In order to understand the role of the parameters in Eq.(5-54) further, let us consider

the special case below. If the medium in some layer is range independent, i.e., Ak,(r) = 0

and Ap;j(r)= 0, but has the layer depth variation AJ.(r) * 0, then we have

2k/ (r)Aki (r) = pj,(r)Ah,(r) from Eq.(5-60); the wavenumber k,(r) at the sediment

interface varies in accordance with the depth variation of the interface itself. Let us refer to

this as Case A. On the contrary, if we keep 4(r) constant (range-independent) at h4(r),

i.e., A4(r) = 0, then the medium in this layer has to be range-dependent and varies with

range so as to satisfy 2K,(r) Ak,(r)+[h,(r)- K, p,(r)=-1M,(r) Ah,(r). This is Case B; the

medium and layer interface vary so that two kinds of range variations cancel out each other

at 4(r).

Now, assume a simple waveguide consisting of a single-layer bottom and a water

column with constant sound speed as shown in Figure 5-4. Case B, then, corresponds to
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Figure 5-4: Single sediment layer with constant sound speed gradient.
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die waveguide having a range-independent plane-wave reflection coeficient, although

the acoustic properties of this bottom medium vary with range. In contrast, for Case A,

the reflection coefficient varies with range due so the bathymetric change, irrespective of

the range-inde•pendent properties of the bottom medium itself.

5.4.2 Evaluation of integ'ab In the perturbation equation (Eq.(S-24))

In this subsection, let us evaluate the intepgals in Eq.(5-24) by employing the range-

dependent n2-1inear profile in Eq.(5-54). To do this, we first represent the local

eigenfunction in terms of the parameters of this profile.

It is well known that, given the n2-linear profile, the eigenfunctions u, can be

expressed in terms of the Airy functions Ai and Bi [54,62,63]. Namely, by inserting

Eq.(5-54) in place of k2(rz) in Eq.(5-1), this equation is converted to the following

Stokes equation:

-4U ••,= (h,(r) 5•:5<h,÷,(r)) ,+j = (5-62)

with
g,(r,Z):• -=L(k2_-

- 1I) (5-63)

1IJ

and

i, (r) = Iii ,(5-65)

where r,(r,z) is the vertical wavenumber. Since Ai(-4) and Bi(-4) are independent

solutions satisfying Eq.(5-62), u. can be represented by

u,(r,z) = CAi(-4j)+C 2Bi(-4j) (hj(r) < z 5 h,÷,(r)) , (5-66)
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wben C,, and Ca ate the range-deenen coefficients deteriined by the boundary

conditions in Eqs.(5-3) and (5-4) and the norinalizaiion condition in Eq.(5-2).

Now let us subsumnt Eq.(5-57) into Eq.(5-24) and evaluate the integrals in Eq.(5-

24). Each integral is then split into two integrals:

.Imu2A2dz2K,Ak,J+4dzj Ap'u:( ...1--)dz - (5-67)

By changing the variable z to 4 in each integral on the right-hand side of Eq.(5-67), it

follows that

K h I Asedz _6) A Ud4.(5-68)OJZ'aad, = lJA,)

and

U2U. 2 4j d4.LA-h se d4, (5-69)

Each integral on the right-hand side of both Eq.(5-68) and Eq.(5-69) can then be

evaluated in closed form by virtue of the following identity for the Airy function:

S02d4 = 402 + •'2 (5-70)

and

J02d4 = (g202 + 44p#2 - 04') , (5-71)

3

where 0(g) is the Airy function or a linear combination of the solutions of Eq.(5-62),

and the prime denotes the derivative A!. Hence, we employ Eq.(5-70) to evaluate Eq.(5-

68) and then use of the relation 4, = y./rj7 given by Eq.(5-63) to obtain
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d, (5-72)

In Eq.(S-72), use of the relation Ij a q,3 given by Eq.(5-65) and by. l

B.1(5-64) yields

fuz zufui ( mt2 f (5-73)

In dt same way, we can evaluate the first integral on the right-hand side of Eq.(5-69); we

can also evaluate the second integra by using EQ.(5-7 1) as

2 U&

"(z 'I ) L" t,,) d ) l

£ýe+ a (5-74a)

where F. a i(r.h).e.. Y.2 n2 - e. has been employed in the step fom Eq.(5-74a) to

Eq.(5-74b). As a result of the substitution of both Eq.(5-73) and Eq.(5-74b) into Eq.(5-

67), we can finally obtain

tu.2&2 d = L[2 K & k + 3'~ IP3 y .2JvU.2 +(?.. 2jJ
(5-75)
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FUrther. if we make use of the relation given by Eq.(5-58). then Eq.(5-75) can be

ewrn in terms of Ac, and Ag, instead of Aand Au..

Thus, by substituting Eq.(5-75) into Eq.(5-24), the range-dependent variation of the

local eigenvalue can be expressed as

N T AL• z

4J-1~ +(J)7j2KJAk,

yP . .32(,v (5-76)

N we approximate the profile in each layer including the water layer by a sequence

of n2-linear curves, then each integral in Eq.(5-76) can be evaluated and expressed in the

same way. It should be noted, however, that the sound speed in the water column is

continuous across layer interfaces, so that k, and jL1 cannot be chosen independently of

each other.

If the sound speed profile in some sediment layer cannot be approximated by a single

n2-linear curve, then we can divide this layer into sublayers with single sound speed

gradients. This treatment is often required for modeling sand layers, because the sound

speed gradient of sand decreases rapidly with depth [84], and thus a single n2-linear curve

cannot fit this profile. Again attention has to be paid to the dependence of k, and p, on

each other for the same reason as above; the sound speed has to be continuous across the

various sublayers.

By using an n2-linear curve for the sound speed profile in each sediment layer, we

showed that the range variation of the local eigenvalue can be related to the range

variation of the geoacoustic parameters in each layer in closed form. We can make use of
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this perturbed relation (Eq.(5-76)) to analyze how the local eigenvalues are affected by

the range-varying sediment structue and geoacoustic parameters in the current model.

Conversely this equation can be used in an inverse method to determine the sediment

y-opeaties fotm the local cigenvalues, a topic which will be pursued in the next section.

5.5 Inversion method to determine range-dependent geoscoustic parameters

In this section, let us assume that we do not know the range-dependent gioacousuc

parametes in our shallow water model except for those near r-O. Local eigenvalues,

however, are known as a result of applying the Hankel transform with a sliding window

to the measured pressure field as shown in Chapters 3 and 4. The objective here is to

determine these unknown geoacoustic parameters by inverting the perturbation relation

given by Eq.(5-76). We use the local eigenvalues as input data in this equation.

5.5.1 Formulation of the inverse problem

In the first place, we need to formulate an equation for the unknown geoacoustic

parameters in our shallow water model Suppose that we know the local eigenvalues of N

modes. If the bottom environment can be modeled as described in the previous sections,

then each cigenvalue varies with range so as to satisfy Eq.(5-76) and, consequently, the

set of these equations for N modes forms a set of simultaneous equations, which can be

rewritten in vector form:

A. =AV a .+H.jAh, +S.jAkj +T.japj (5-77)

where H, S and T are NX(M-L+l) matrices defined by

2 p[-j (1+(pd-) LI (5-78)
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2rj = + '(5-79)

Both Ar.u(AV.) aid

Av, I( l-pt• re J k .2 dz) (5-81)

an vectors with N elements; and Ah, a (Ah,), A•j a (Akj), and Apjl (AlL 1) am vectors

with M-L+l elements. Although N is the total number of modes to be incorporated in the

inversion, these modes are not necessarily in sequence. We could choose the modes

which are most sensitive to the variation of the geoacoustic parameters to be determined,

as long as those modes are measurable. Moreover, it is possible to uduirt the modes of

different frequencies for A i. in Eq.(5-77) at the same time, because the bottom

parameters to be inferred are assumed to be independent of the acoustic frequency.

Here A r, are immediately provided by taking the difference between two local

eigenvalues separated by Ar:

AK.(r)= Re[(r+Ar)]-Re[K.(r)] , (5-82)

where only the real part is taken, because the measuement of ir,(r) is limited to the real

part in the method used in Chapters 3 and 4. In order to obtain the imaginary part, we

would have to measure the amplitude of the output specrum of the Hankel transform

[83]. This however is beyond the scope of the present research. Thus in implementing

Eqs.(5-78)-(5-80), only the real part of the eigenvalues is taken into account. As a matter
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of fact, the effect of the imaginary part is negligibly small in this inversion proces, since

we deal with first order perturbation of the local eigenvalues in Eq.(5-77).

In addition, we can expect that the sound speed in the water column is generally

measurable with range in shallow water, so that Ak(r,z) (0! z:5 k) in Eq.(5-81) is

known in advance. As a consequence, Av. can be dealt with as input data as long as the

lcal eigenfunction u.(r) is provided. Therefore, we may rewrite Eq.(5-77) as

Air.-Av.=[H.,, S•,T.]'A, ] .I (5-83)
S rAkj

or, equivalently,

y=Dx , (5-84)

where y 7 . -A v. and x.I Ak, arn vectors with N and 3(M-L+l) elements,
Au,.

respectively; and D a [ Hý, S,, , TJ] is a NX3(M-L+1) matrix. Hence y is a known

factor given as input data whereas x is an unknown factor to be determined.

3.3.2 Solution of the inverse problem

In order to obtain the range-dependent geoacousdc parameters h,(r), k,(r), and

ju(r), we have to solve Eq.(5-84) for x at different ranges.

To begin with, let us assume that the bottom environment is known at some range

point r, near r=0, that is, h, (r,), k, (r,) and p, (r.) anm known; then, the local

eigenfunctions u4(r4) at this range can be determined by solving Eq.(5-1). Upon use of

those parameters and eigenfunctions in Eqs.(5-79)-(5-81), each component of H, S, and T

can be evaluated along with A v. at the range r,.
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If we have enough modes to satisfy N=3(M-L+I), then Eq.(5-84) can simply be

inverted, yielding

x=D-'(A",-Av.) . (5-85)

By using this x , we can then determine the range-dependent geoscoustic pameter at a

new range point r, + Ar, as

hý (r, + Ar,) - k, (r,)+ Aik (r,)

k (r, + Ar,)- k(r)+Akj(r,) .

tj(rt+ Ar,) -~pj(r4 )+ A.t,(r4 ) (5-86)

These results are correct to the first order, since the acoustic properties are assumed to

vary gradually with range.

The validity of the results in Eq.(5-86) may be confirmed by comparing the

measured local eigenvalues at r4 + Ar., that is K.(r, + Ar,), and the calculated ones

determined by solving Eq.(5-1) with the new bottom environment given by Eq.(5-86).

When they do not agree closely, then we can repeat the same process after reducing the

range step Art.

The next step is to use the geoacoustic parameters obtained above at r4 + Ar4 as a

background for determining the parameters at the following new range point. Namely, by

setting I -+ I + 1, we can repeat the same process as above. Note that Ar4 ÷1 is not

necessarily equivalent to Ar1 . In general, Ar may be chosen so that the linearity of

Ata.(r) is satisfied, at least in an approximate sense. The determination of Ar will be

discussed again when dealing with a numerical example in the next section.

Thus, given the known geoacoustic parameters as initial values at some range, we

can determine them successively by repeating the inversion process at different ranges.
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One of the issues arising from this inversion process is how to provide these initial

parameters. We had a similar problem when using a mode filter that required the values

of sediment properties at the site of the vertical array, as discussed in Chapter 3.3. As one

of the ways of addressing this problem, we may make use of results obtained by other

methods such as ones based on the travel times of broadband signals. For example, if we

chose a locally, horizontally stratified region as an initial range point, the geoacoustic

parameters in this region could be determined by resorting to inverse methods developed

for the horizontally stratified case [34,50]; then we can employ the results obtained in this

region as initial values for the current inverse scheme. Thus we can extend the inversion

process from a locally, horizontally stratified region to a range-dependent region. Once

this approach works well and the geoacoustic properties are determined along this

extended range, then we can choose a new receiving point for the next array site from the

points in this range, where the geoacoustic parameters for an initial value have been

established (see Figure 5-5).

5...3 Reducing the number of unknown parameters

When deriving Eq.(5-85), we assumed that the total number of measurable modes is

equal to the number of unknown geoacoustic parameters, but this cannot always be

expected.

In general, the inverse problem for determining the geoacoustic parameters tends to

be an underdetermined problem due to the limitations of real input data. Hence we must

try to either increase the number of modes to be measured or decrease the number of

unknown parameters to be determined. Concerning the former approach, we can employ

the modes at different frequencies in the same simultaneous equations, Eq.(5-84), as

mentioned in Section 5.5.2. However the maximum bottom depth which the current

inversion method is capable of examining is automatically determined by the highest

mode of the lowest frequency in use. In general, a mode is less sensitive to changes in
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the medium below its turning point depth; thus %e experimental frequency imposes limits

on the lowest sediment layer to be examined by the inversion process.

As for the latter approach of decreasing the number of unknown parameters, we can

make use of information about the unknown parameters provided by other geophysical

methods. For example, the interface depths of sediment layers could be inferred by using

conventional seismic travel time analysis. The output data of these other methods do not

have to be any of the parameters to be determined by our method, but can be information

which relates to the desired unknown parameters. For instance, the travel time of

broadband signals reflected or refracted from lower sediment layers serves to relate the

sound speed profile and layer depth [43]. Or, if the sediment type of a particular layer is

known along with other environmental information such as its depth, then the values

taken by the geoacoustic parameters of that layer can be inferred within some range by

referring to Hamilton's research results [84]. By using Lagrange multipliers [78], the

information from the other methods can be combined with the inverse method considered

presently.

Taking these methods into consideration, let us assume that some of the geoacoustic

parameters are provided a priori. Then we can shift those parameters, which are denoted

by -. below, from the right-hand side to the left-hand side in Eq.(5-83):

S 1:[,.,. 1-(5-7

Rewriting the left-hand side as j, and rewriting the unknown vector on the right-hand

side as i, Eq.(5-87) leads to

y=Di . (5-88)
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Thus if the total number of these known parameters is F, then 1 becomes a [3(M-L+1)-

FIXI vector and D becomes a Nx[3(M-L+1)-F] matrix. For example, if the bathymetry is

measured using an echo sounder and h,(r) is known, then the following amount can be

subtracted from Ar. as a part of Hfh, in Eq.(5-87):

HE.LhL = A 14(i)U..) '+(P'w-PJLa(u-"L (5-89)2 i.L p. A(

where PL-1 =P,, is set. If the sediment layer depths are determined using travel time

analysis, then we could reduce the unknown parameters further by using Eq.(5-87).

$.5.4 Solution of the underdetermined problem

Even if we take advantage of the methods described in Section 5.5.3, when N<3(M-

L+l)-FJ, then unfortunately we have to solve for an underdetermined problem. An

effective method of dealing with this problem is to make use of the SVD method [43,501,

which was also utilized for the overdetermined problem in Chapter 3.3. This method can

decompose the matrix D as

S= A A , B1 , (5-90)

where A, is an/W/diagonal matrix with non-zero elements (>,...,A, >0), A, is anNx/

matrix, and B, is a [3(M-L+I)-F]XI matrix. As defined in Eqs.(3-69) and (3-70), A, and

B, are constructed from normalized eigenvectors, which should be distinguished from

the local eigenfunctions. Then using the generalized inverse matrix defined by

61= BA-W~, (5-91)

we have a solution:
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- y (DA;'AJ .(5-92)

In this process, the non-uniqueness of the solution arising from the underdetermined

system is dealt with so that the norm of the resulting vector, I, becomes minimal.

The relation between the estimated value i, and the exact value x can be obtained

by substituting Eq.(5-88) into Eq.(5-92), yielding

.1, = B,ex , (5-93)

where Eq.(3-69) has been used. If BJB = I, then •, = x and the solution can be uniquely

determined. In the underdetermined case, however, we have generally BBl" * I, so that

i, *x; the matrix BBIB forms weighting coefficients with which 1, is linearly related to

X. Thus it is seen that the resolution of the solution i, can be characterized by the so-

called resolution matrix BBI [43]. As the rank of BB;, I, decreases, we have lower

resolution for the solution i,.

As seen from Eq.(5-92). the solution includes a component proportional to i/;A

(1 5 i I) and thus small eigenvalues induce instability in the solution. This can be

easily confirmed by examining the relation between the variances of f and Y. Given the

error 6y- in the measured data, then the error observed in the solution U, is expressed as

&i, =_ f)' 83. Thus the covariance matrices for . andj are related by

&1< . >= - 1< 8-6,> (iy= V.2 -; , (-94)

where 6Y is assumed to be statistically independent and has the same variance.

Therefore the variance of the solution can be characterized by the matrix A,. We see

from Eq.(3-68) that if A1 is small, then the variances of i is amplified as a result of the

relation given by Eq.(5-94). To obtain a stable solution, one can introduce a threshold for

those eigenvalues and discard the eigenvalues smaller than this threshold as detailed in
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Reft. 48 and 77. This procedure, however, results in a decrease for the resolution of the

solution due to the decrease in the number of the cigenvalues, ie.. the rank. As is well

known, in general, reducing the variance leads to degraded resolution in the solution of

the underdetermined inverse problem.

In connection with the stability problem, there exists a sensitivity problem among the

geoacoustic parameters. Namely some parameters are extremely sensitive to variations in

the input data Aic. and some are not. In view of Eq.(5-88), one can immediately notice

that the range variation of the parameters (output data) as well as A c. (input data) are

highly dependent on their magnitudes. For example, Ap, is generally much smaller than

Ahj, because ;J1 itself takes on a smaller value. To avoid this problem, a weighting

function can be introduced into Eq.(5-88) [77]. Suppose that X and Y are the weighting

matrices for x and y, respectively, in Eq.(5-88), which is then transformed to

Y"= YDX-'x' , (5-95)

where x' s Xx and y' uYy are a new data set. Eq.(5-95) may then be solved in the

same manner as Eq. (5-92). Note that this normalization operation should be made in

Eq.(5-84) rather than in Eq.(5-88), because each member on the left-hand side in Eq.(5-

87) has a different magnitude. Generally we can make use of the covariance matrix as

the weighting matrix. Namely, each X and Y is defined by the square root of the

corresponding covariance matrix. If the data are uncorrelated, then the weighting matrix
is represented by a diagonal matrix with its standard deviation such that X. = %, 6, and

Yo = % 6,. Actually a, is proportional to the magnitude of the corresponding data.

Thus, by utilizing the weighting matrix, we can adjust the different sensitivity of each

parameter to the input data.

In this section, we developed an inverse method for determining the geoacoustic

properties based on the perturbation equation for the local eigenvalues obtained in
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Section 5.4. When the total number of modes is less than the number of unknown

parametem we may make use of the SVD method to solve the underdetermined problem.

In the next F-,ctdon, we will apply the methods derived in this chapter to the

simulated example discussed in Chapter 4.

5S6 Analysis of simulated data

The objective of this section is to invert for the geocoustic parameters in our

shallow water model using the local eigenvalues which were estimated by using the

Hankel transform with a sliding window in Chapter 4. Before doing this, we will first

examine numerically the relation between the range variation of the local eigenvalues and

the geoacoustic properties by using the perturbation relation in Eq.(5-76), Section 5.4.

5.6.1 Dependence of the local elgenvalues on the range variation of the geoacoustic
paranmetrs

The purpose of this subsection is to understand how the range variation of the

geoacoustic parameters affects the range variation of the local eigenvalues in the shallow

water model used in Chapter 4.4. To do this, we examine numerically the range variation

of ir(x) by employing the perturbation relation in Eq.(5-76). Note that here we deal

with this problem in the framework of a forward problem; we are therefore in the position

of knowing a priori the bottom environment for this ocean model

Since the local eigenvalue a'.(x) varies with respect tox only in the present model,

let us examine the range variation Ar.(x) along the x axis, i.e., along the radial with the

azimuthal angle 0 = 0. Figure 5-6 shows Atc.(x) when setting Ax=l. As seen from the

variation of a. (x) in Figure 3-18, the IAic.(x, of the two lowest modes is relatively

small Since most values of ir(x) decrease with increasing range x, Aw.(x) takes on a

negative value except for mode 3, whose A r.(x) has a positive value between about

2500 and 4500 m. Hence the local eigenvalue in this region increases with x as noted in

Chapter 3.4.2.
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Next, by using Eq.(5-76), we can break AK. (x) into terms dependent on A,, Mk,

and Ail, (1 S jS 4) (see Section 5.4). In the present model, the water column and the

lowest sediment layer are set to be range-independent and the upper two sediment layers

vary with range as shown in Figures 3-10 through 3-14. Thus the terms associated with

jwl and j=4 become zero and only the terms associated with j=2 and j=3 are left in Eq.(5-

76). In Figures 5-7 through 5-9, we show the results obtained by using Eq.(5-76) for

modes 2, 3, and 5; mode 2 is representative of a relatively weak range variation and mode

5 corresponds to a maximum mode in the trapped modes between the sea surface and the

subbottom interface (see Figure 3-15). Figures 5-7(a), 5-8(a), and 5-9(a) show the terms

in Eq.(5-76) along with the A ',(x) for each mode, where the Ak,- and Ap,-terms are

added and the result is labeled by Akj. The Ak,-term represents the component of

A cK(x) due to the variation of the medium in the jth layer, whereas the Ahi-term

represents a component due to the variation of the sediment interface. Note that Ah2(x)

corresponds to the bathymem-ic variation. In Figures 5-7(b), 5-8(b), and 5-9(b), we break

the Akj-term into Ac,- and A g, -terms, instead of Ak,- and Ap,-terms, by using the

relation given by Eq.(5-58). We will show below which parameters have a strong

influence on A . (x) for each mode.

1. Case of mode 2

In the case of mode 2 in Figure 5-7(a), we find from the curves A 2 and Ak 2 that the

variation in the first sediment layer (j=2) contributes primarily to the variation of the local

eigenvalue A K2(x). This result can be inferred from the fact that the amplitude of the

eigenfunction u2(xz) decreases exponentially with depth below the interface h3(x), as

shown in Figure 3-15; therefore, mode 2 is less sensitive to the second sediment layer.

Figure 3-15 also indicates that du2/dzI%, which stands for the vertical particle

velocity at the water-bottom interface, comes close to zero. The cu2,!'9z[-term in Eq.(5-
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76) also comes close to zero, so that the coefficient of AbW(x) takes on a negative value

in the present case becaue of these two reasons:

I. A- < p2, i.., the water density is smaller than the density in the first sediment layer.

2. y2-8> hL+8 due to c <c2,.i., the sound speedin the wateris smallerthan that

in the first sediment layer.

Recalling the condition that the water depth increases m ay with x, we see that

Ahk(x) > 0 and so the Ah-term takes on a negative value. As a result, the 4h -trm

contributes to Ai 2(x) so that the local eigenvalue w2(x) decreases with range x.

The A k-term changes its sign at about x=2900 m and 4300 m. This occurs for two

reasons: (1) the Ak2 -term is dominated by the Ac2-term as shown in Figure 5-7(b), and

(2) ci(x) changes from a decreasing value to an increasing one at about x=2900 m and

again changes at about x=4300 m, as seen from Figure 3-11. Thus, in this range, the 4Ak-

term contributes to AK2(x) so that the local eigenvalue w1(x) increases with range X.

In particular, at about 3500 m, the Ahk- and Ak2-terms have the same order of

magnitude but have opposite signs, so that A K2(x) comes close to zero. As a result,

K2(x) remains constant around this range.

2. Case of mode 3

As for mode 3, we can see from Figure 5-8(a) that its local eigenvalue is more

strongly affected by the second sediment layer (j=3) as compared to the local eigenvalue

of mode 2; the Ak/-term has an amplitude comparable to the Ak2-term for ranges less

than x=2000 m. Also, we observe that the amplitude of the Ah3-term is larger than that

of the Ah-tcrm. This mode, therefore, is more sensitive to the variation of the sediment

interface than to the bathymetric variation.

Figure 5-8(b) shows that the Ak2 -tern depends on the variation of both c2(x) and

g,(x), whereas the A k3-tern depends on the variation of only ci(x). Namely, mode 3 is

less sensitive to the variation of the sound speed gradient g,(x). On the other hand, the
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Ag2 -term changes its sign at about x=2400 m because g2 (x) changes from an increasing

value to a decreasing one at that range, as seen from Figure 3-12.

I 3I Case of mode 5

As for mode 5. the effect of the A k-term is amplified, which can be expected from

the mode shape u%(x,z) in Figure 3-15. It is found from Figure 5-9(a) that the 4k3-team

domin Ates (x) for ranges less than 2200 m. As seen from Figure 5-9(b), the Ak,-

term is dominated by the Ac.-term. We can see, therefore, that mode 5 is most sensitive

to the variation of c,(x) in this range.

In this subsection, we demonstrated with an example how the range variation of the

sediment properties affect the range variation of the local eigenvalues in our shallow water

model. In the next subsection, by assuming that the geoacoustic parameters in this model

are unknown, we will use the inverse method developed in Section 5.5 to determine the

parameters from the local eigenvalues.
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Figure 5-6: Perturbed local eigenvalue Aic.(x) in the shallow water model.
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5A.2 Inversion for the geoacoustic parameters

In this subsection, let us assume that the gcoacoustic parameters are unknown in the

shallow water model used in Chapter 4 except for the region close to the array of

receivers. The purpose of this section is to estimate numerically those parameters by

using the inverse method developed in Section 5.5.

For input data, we can use the local eigenvalues, which were estimated in Chapter

4.4 by applying the Hankel transform to the pressure field in a wedge-type bottom

environment. In that chapter we also focused on the azimuthal direction of 0=70" and

tried to detect the local eigenvalues along a radial in this direction. First we estimated the

local eigenvalues by using the zero-order Hankel transform with a sliding window

(Figure 4-10); then we compensated for the deficit in the estimated values by using the

general Hankel transform with a 2-D sliding window (Figure 4-18). In the current

section, we estimate the geoacoustic parameters by using these uncompensated and

compensated values as input data, then we compare these two sets of estimated

parameters.

In order to utilize the inverse method given by Eq.(5-83) or Eq.(5-87), we need to

provide the range variation of the local eigenvalue A.,(r) as input data. When taking

AK3 (r) in accordance with Eq.(5-82), we have to choose the distance Ar so that Ax.(r)

is within the range of linear variation. This is due to the fact that the inverse method

developed in Section 5.4 is based on linear perturbation theory. But too small a step for

Ar leads to an inefficient calculation. Therefore let us first approximate Jr.(r) by a

linear curve fitting every mode. Figure 5-10 shows these results for the estimated local

eigenvalues. The dots ( • ) represent the compensated peak positions in wavenumber,

which were obtained by using the general Hankel transform with a sliding window in

Chapter 4.4; the segmented straight lines stand for the linear fits to those data, where the

portion between the points ( o> ) has a constant gradient (odcjdr). These points are

determined in accordance with the variation of K,(r); i.e., when it changes nonlinearly,
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we need to repmsent it by shorter line segments. We can then sample r. (r) at rt on

each linear segment at a suitable interval Ar,. Here we set Ar,, so that Ar. does not

exceed lOOm. Note that ,r, is not necessarily constant and can vary depending on the

variation of it,(r).

The input data Ajr(rj) determined in this way are then used in Eq.(5-87). Since the

water column Yj=)) and the subbottom (1=4) are assumed to be range-independent in the

present model, we can set AM, Ac4, Ag,, and Av. defined in Eq.(5-81) to be zero.

Besides, we can assume that the bathymetric variation is known a priori and so A, is

placed on the left-hand side of Eq.(5-87). Hence we have a total of five unknowns: A4

and A in the first sediment layer, and 443, A4, and AM in the second sediment layer.

Since the total number of given modes is five, 6 in Eq.(5-88) becomes a 5X5 regular

marix. Here let us apply the normalization procedur in Eq.(5-95) to f in order to

reduce the difference in the magnitudes of those variations and to obtain a reliable
numerical solution. Then, by solving Eq.(5-88) at each r1, we can determine those

unknown parameters at each range. Figures 5-1 1(a)-(d) compare these inverse solutions

with exact ones, which were provided in Chapters 3.4 and 4.4. In Figures 5-1 l(c)-(d),
note that 4 and E. represent the sound speeds at the sediment interface depth h(r) and

hi(r), respectively, instead of c2 and c, at fixed depths defined in Section 5.4; Ej (-=2,3)

can be calculated by using Eq.(5-51) since we have estimated c. along with the gradient

gj in each layer. It can be observed that the estimated parameters take on values close to

the exact values. The difference between the two curves is due to the approximation of

the input data AK,(r,). The 3-D pictures of the sound speed profile in the sediment are

also compared in Figures 5-12(a) and (b) and are almost identical.

Case of uncompsated local eigenvalues

Here let us examine the case where we use the uncompensated, estimated values for

the local eigenvalues as input data for the inverse method; these were obtained by using
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Table 5-1: Matrix component in Eq.(5-94)

parameter (diagonal term)

ka 6.83
92 13.66
93 3.86
C2 5.83
C3 4.62

the zero-order Hankel transform in Chapter 4.4, as shown in Figure 4-10. By following

the same procedure as above, we can determine the unknown geoacoustic parameters.

The results are shown in Figure 5-13. As compared to the above compensated case, we

observe that the difference between the estimated and exact parameters has increased

noticeably. This difference increases with range as the error in the estimate of wr(r)

increases with range. In particular, the difference in the gradient of the first sediment

layer, g2., is prominent. This can be understood from Table 5-1, where the square root of

the diagonal term in the matrix in Eq.(5-94) is listed. The variance of the estimated

parameters is proportional to this component; the value for g2is the largest, which

accounts for the prominent difference.

Underdtermiin case

Next we will study the case of an underdetermined problem, in which the total

number of modes is less than the number of unknown parameters. Suppose that the

compensated value of the local eigenvalues is given, but only four modes are available in

total. As shown in Eq.(5-92), we can make use of the SVD method to solve this
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underdetermined problem. Here let us consider the following two cases: one is the case

where modes 1-4 are employed and the other is the case where modes 2-5 are employed.

Figures 5-14 and 5-15 show the results of applying the SVD method to each case. Figure

5-16 also compares the 3-D pictures of the sound speed profile in the sediment bottom in

each case. In the former case, we have a relatively large error, especially for ranges

greater than 2000 m. On the contrary, in the latter case, we obtain almost the same result

as for the determined case in Figure 5-10. As seen from a comparison of thme two

results, we can deduce that mode 5 carries more information about the sediment
properies of the second layer than mode 1. This is because the turning point depth of

mode I is located inside the first sediment layer and so this mode is less sensitive to the

range variation of the second sediment layer.

In this subsection, we demonstrated through simulated examples that we can

accurately estimate the unknown parameters in our shallow water model by using the

inverse method developed in Section 5.5. Next we observed that the error in the

estimated parameters increases when using the underestimated local eigenvalues as input

data, which were obtained by using the zero-order Hankel transform with a sliding

window in Chapter 4.4. Finally, we showed that the SVD method works well for the

underdetermined case as long as we choose the modes properly.
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Figure 5-11: Comparison of the exact and estimated geoacoustic parameters in the shal-
low water model. The compensated local eigenvalues are used for the estimation of
parameters. (a) Sediment interface depth hk, (b) sound speed gradients g2 and g3 ,
(c) sound speed E. at interface depth h2 , and (d) sound speed 4 at interface depth h3 .
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Figure 5-11, continued.
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Figure 5-14: Comparison of the exact and estimated geoacoustic parameters in the shal-low water model in the underdetermined case. The local eigenvalues of modes 1-4 areused in the SVD method for the estimation of the parameters. (a) Sediment interface
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V7 Summary

In this chapter we explored a method for determining the local properties of the

bottom sediment from the local eigenvalues; these eigenvalues were estimated by

applying the Hankel transform with a sliding window to the pressure field in a horizon-

tally as well as vertically vanring waveguide.

In Section 5.1, in order to provide a basis for the development of an inverse method

for determining the range-dependent g:oacoustic parameters, we set up a horizontally and

vertically varyg, multilayered model for the bottom sediment in shallow water.

In Section 5.2, based on the bottom model set up in Section 5.1, we derived the

relation between the perturbed local eigenvalues and perturbed geoacoustic parameters by

utilizing linear perturbation theory.

In order to confirm the validity of the result obtained in Section 5.2, we applied it to

a range-dependent Pekeris model in Section 5.3. We showed that the resulting

perturbation relation from Section 5.2 yields a result which is equivalent to that obtained

by directly differentiating the characteristic equation.

In Section 5.4, by representing the sound speed in each layer by an n2-linear curve, we

showed that the integral in the perturbation relation can be executed in closed form. As a

result, we revealed that the variation of the local ¢igenvalues can be separated into terms

that depend on the range variations of the sediment interface depths, the sound speed and

gradient in each sediment layer, and the sound speed profile in the water column.

Based on the perturbation equation derived in Section 5.4, we developed an

inversion method for determining the geoacoustic parameters in Section 5.5. We then

demonstrated that we could obtain the range-dependent behavior of these parameters by

solving the simultaneous perturbation equations at successive ranges. When the number

of local modes is less than the number of unknown geoacoustic parameters, we showed

that we can apply the singular value decomposition (SVD) method to this under-

determined problem.
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In Section 5.6, to check numerically the methods derived in this chapter, we applied

them to the shallow water model used in Chapter 4.4. Frst, we decomposed the

peturbed local eigenvalue into terms associated with the perturbed geoacoustic

parameters by using the perturbation equation derived in Section 5.4. Then we

determined which geoacoustic parameters have the strongest influence on the range

variation of each local mode. We observed that, in this shallow water model, mode 2 is

less affected by the range variation of the second sediment layer, whereas mode 5 is

strongly affected by the range variation of the first and second interface depths.

Second, by assuming that these geoacoustic parameters were unknown, we vied to

determine them by applying the inverse method developed in Chapter 5.5 to the

compensated local eigenvalues estimated in Chapter 4.4; these eigenvalues were obtained

by using the general Hankel transform with a 2-D sliding window. As a result, we

showed that we can estimate accurately these unknown range-dependent parameters.

Next, we used the underestimated values for the local eigenvalues as input data; these

eigenvalues were obtained by using the zero-order Hankel transform with a sliding

window in Chapter 4.4. As a result, we observed that the error in the estimation for the

geoacoustic parameters increased; in particular, the error in the sound speed gradient of

the first sediment layer is prominent. This was accounted for by the stability relation

between the input and output data in the perturbed simultaneous equations. Moreover,

we tried to determine the five unknown parameters by using four modes. We applied the

SVD method to this underdetermined problem and consequently could obtain geoacoustic

parameters close to the exact ones when we chose the modes properly (modes 2-5). It

was seen that these results are related to the location of the turning point depth of each

mode and its connection to the depths of the unknown parameters.

In the next chapter, we will analyze some experimental data by using the methods

developed so far.
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Chapter 6

Analysis of Experimental Data

We studied the mo-order and general Hankel transform with a sliding window in

Chapters 3 and 4, respectively, and also applied each transform to numerically simulated

fields. In this chaputr, we will analyze some experimental data by using the Hankel
ransform with a sliding window and estimating the local eigenvalues of the discretf

modes. Then, by using these local eigenvalues, we will find a geoacousdc model whose

local eigenvalues agree satisfactorily with the estimated ones. Based on ti inferd

model, we will examine the effect of range-dependent viatdon of the sediment bottom

on the range variation of the local modes.

6.1 Nantucket Sound experiment

In this section, we will examine experimental data measured in Nantucket Sound by

Frisk and his co-workers. Figure 1-1 shows the configuration of this experiment; the

details can be found in Ref. 30. The acoustic pressure due to a CW source towed away

from r-0 to 1320 m was recorded by receivers at two different, fixed depths (7.1 m and

12.5 m). Here the z axis is fixed at the receiver position as in Figure 3-8. The

bathymet-y observed over this range has a noticeable, but small, change at a range of

about 660 m. The sound speed in the water column is confirmed from temperatue

measurements to be isovelocity with c=1503 m/s.

Since these field measurements were taken azimuthally in one direction, we cannot

use the general Hankel uransform with a sliding window, which requires a field with

different azimuths as we discussed in Chapter 4. Here, by assuming that the field is

cylindrically symmetric about the receivers, we use the zero-order Hankel transform with
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a di* g window. The output of applying the Hankel transfom in Eq.(3-30) to the

pressre data at 140 Hz is shown in FIgwuc 6& in the form of 4.jg.(k,,r)I vmus both

,eand r. In this P`an& a Hanning window with a 500 m length was applied by

Idn its centr poddso every 5 m. Figure 6-I indicates that two peaks associated with

the first and second modes evolve with range and their peak positions in k, experience a

relatively strong shift at about r=500 in. This result can account for the splitting of the

spectrl peaks when the Hankel transform is applied over the entire 1320 in aperture (see

Figure 1-2). Of paricular interest is the fact that the range where the peak shift occus is

different from the range of the pronounced bathymetric change (r-660 in). Reference 30

assumed that the sediment bottom also changes its geoacoustic properties at r=660 m and

divided the waveguide into two sections at this range; the Hankel masform was then

applied to each section of this waveguide in order to obtain eigenvalues for each section.

In order to examine the range of this shift further, let us elucidate the range evolution

of the second mode, whose amplitude is weak compared to the first mode and is

especially difficult to recognize for the near-bottom receiver. This is due to the fact that

the location of the near-bottom receiver (z-12.5 m) is close to the null of the second

mode. To enhance the spectral component associated with the second mode, the utility of

mode filtering is desirable. As discussed in Chapter 3.3, knowledge about the bottom

environirent at the array site (r=0 m) is then required to execute mode filtering. This

bottom environment was inferred by resorting to the iteration of forward models method.

Namely, we calcuiatul he pressure field including its phase by changing the geSocoustic

parameters repeatedly until it best fit the measured pressure field near the site (r<200 m).

By using the inferred bottom environment at the array site, the matrix U in Eq.(3-58) was

calculated. Figure 6-2 shows the range evolution of the first and second modes after the

application of mode fidtering. As seen from the spectrum of Mode 2 in Figures 6&2, the

first mode is not completely eliminated and prevvils over t.t. second mode at ranges

where the second mode fully -.. y- 'ue to its stronger modal attenuation. This is partly
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Figure 6-1: Range-dependent evolution of the modal spectrum obtained by applying the
zero-order asymptotic Hankel transform with a sliding Hanning window of 500m, length
to the Nantucket Sound data at 140 Hz. The midcolumn receiver (left) and the near-
bottom receiver (right).
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Figure 6-2: Range-dependent evolution of the modal spectrum obtained by applying the
zero-order asymptotic Hankel transform with a sliding Hanning window of 500m length
to the mode-filtered Nantucket Sound data at 140 Hz. Mode 1 (Tight) and mode 2 (left).
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because of the error in the estimation of the bottom properties at the wray site and &s

partly because of inadequaw synchronization in the phases measured at fhe two receivers.

From the enhanced. mode-filtered amplitude of the second mode, however, we can

cofirm that the peak shift of the second mode also occurs at a range less than 66 m.

Figure 6-3 shows the peak positions of the first and second modes from each

spectrun in Figure 6-2; these peak positions are also compared with those obtained by

applying the same processing to the simulated pressure field. This field was generated

using adiabatic mode theay (Eq.(2-12)) with a geoacoustic model having the nu2-1iuea

profiles shown in Figures 6.4(a)-(d). This model was inferred by trial and error, Le., by

changing the values of the geoacoustic parameters until the measured and computed

modal peak trajectories produced the level of agreement shown in Figure 6-3. By

comparing the inferred sound speed and its gradient with the results of Hamilton [84], we

assumed that the bottom consists of silt and sand layers. This geoscoustic model was

also checked by comparing the measured and simulated pressure fields. Figures 6-5(a)

and (b) show the comparison of the relative amplitudes and modulated phases,

respectively.

Since the sound speed gradient of sand takes on a large value near the water-bottom

interface and decreases rapidly with depth [84], the sound speed profile in the sandy

portion was partitioned into four layers having different gradients as shown in Figures 6-

4(c) and (d). Note that the gradient and the sound speed at each sand layer depth are not

independent of each other in order to satisfy the condition of continuous sound speed

across the layer interfaces. In spite of this, we have a total of thirteen unknown

parameters and so we could not effectively use the inverse methods fron Chapter 5.5. As

indicated in Figure 6-4, however, we were able to estimate that the geoacoustic properties

in the sediment change significantly at about r=500 m rather than r-660 m.

At this point, by using the inferred geoacoustic model, let us examine the effect of

the enn that has originated from the finite length of the window in the Hankel transform.
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Figure 6-5: Comparison of the measured and simulated pressure fields.

(a) Relative amplitude and (b) modulated phase. Both phases in (b) are
modulated as O(r) --- O(r) - kor with ko - uco and c.s=m1550 m/s.
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Figure 6-5, continued.
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In Figure 6-6, we compare the modal peak trajectories obtained by using the 100 m and

50 m length Hanring windows after the application of mode filtering; in this figure, the

exact eigenvalues are also shown. As also detailed in Chapter 3.2, the peak position

obtained using the 500 m length window has a larger departure than that obtained using

the 100 m length window at ranges where W 2 './drI is large; we can observe, however,

that both trajectories have a relatively strong shift at about the same range (r=500 m).

Therefore, from this result, we can see that the finite length of the window is not

associated with the difference between the two ranges (500 m and 660 m).

Finally, based on the inferred bottom model in Figure 6-4, we may study the

influence of the lateral changes in bottom properties on the range-dependent evolution of

the modal eigenvalues by using the perturbation relation in Eq.(5-76). Figure 6-7 shows

that AK. is decomposed into terms associated with fe variation in bathymetry, the depth

of the sediment interface between the silt and the sand layers, and the sound speed in the

silt and sand layers. From these results, it is seen that the lateral change in the interface

between the silt and the sand layers contributes most significantly to the range variation

of the local cigenvalues in this inferred model.
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Figure 6-7: Decomposition of perturbed local eigenvalues into the terms associated
with the perturbed geoacoustic parameters. (a) The first mode and (b) the second
mode of the simulated field data.
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6.2 Hudson Canyon experiment

In this section we will analyze a subset of experimental data measured in Hudson

Canyon on the New Jersey continental shelf (FRgure 6-8) by Carey and his co-workers

[85,861. In this experiment the field measurement were carried out with a vertical array

of 24 equally spaced hydrophones as shown in Figure 6-9. Here we focus on the

separtion of modes by using mode filtering applied to the output of the vertical aray.

Th field data we chose to analyze here are the acoustic pressure due to a CW source

of 50 Hz, which was towed firom about rm4000 m to 100 m along a track parallel to the

shelf (TM). This track was designed to have a uniform water depth. The bathymetry

was measured using a UQN- 15 fathometer and the water depth along this track has a

mean value of 72.0 m. The sound speed in the water column was also obtained by using

both a Sound Velocity Profiler (SVP-16) and a Conductivity Temperature and Depth

(CMD) system: the former measures sound speed directly, whereas the lat measures

conductivity and temperature from which sound speed is calculated. Figure 6-10 shows

the SVP and CTD sound speed profiles for the TU2 run.

The wavenumber spectrum can be obtained by applying the zero-order asymptotic

Hankel transform in Eq.(3-26) to this pressure field over the entire 4000-m range. In this

transform we can use a rectangular window (Eq.(3-25)) to truncate the pressure field at

4000 m and no weight is employed in order to handle equally the wavenumber

components at each range. Figure 6-11(a) shows the wavenumber spectrum obtained by

using receiver HIS (z-57.5 m). Each spectrum has a different shape, depending on the

receiver depth as shown in Figure 6-12(a), since the eigenfunction of each mode varies

with depth. These spectra, however, have peaks at the same positions in wavenumber.

Figure 6-11 (b) shows the spectrum averaged for all receivers and Table 6-1 lists the peak

positions in this spectrum.

If the sediment properties are range-independent along the track TL2 and horizontal

refraction is small enough to be negligible, then we can determine the eigenvalues of the
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normal modes frm the peak positions in the average spectrum. From the narrow

bandwidth around the spectral peaks of the first and second modes, we can expect that the

sedin nea the water-bottom inteface is almost horizontally statified. On the other

hand. it is observed in Figure 6-12(a) that for the receivers H17 through H24 the spectral

peak of the fourth mode is split. From this result only, we cannot determine if the split is

due to range-dpendence in the.lower portion of sediment or due to other effects such as

noise interfemnce.

Based on the assumption that the medium along the track '112 is range-independent,

the sound speed in the bottom can be inferred by applying a perturbative inverse method

[Rajan, 50 to the peak positions in Table 6-1. The dots in Figure 6-13 show the sound

speed obtained by Rajan using this technique. The segmented lines in the same figure

represent a sequence of n2-linear fits to this profile.

Table 6-1: Peak positions of the spectrum in Figure 6-11 and mode cigenvalues
of the simulated field.

mode peak position (m-1) eigenvalue (m-1)
(measure field) (simulated field)

1 0.2086 0.2086
2 0.1992 0.1992

0.1852 0.1850
4 0.1735 0.1735
S0.1634 0.1628
6 0.1518 0.1513
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Figure 6-11: Wavenumber spectrum obtained by applying the asymptotic Hankel
transform to the pressure field over the entire 4000 m range. (a) Receiver HI8
and (b) average for all receivers.
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By using this n2-1inear profile in the depth equation (Eq.(2-3)), we can calculate the

normal modes. The resulting eigenvalues are listed in Table 6-1 and are compared with

the peak positions of the spectrum. It can be confirmed that both values agree well.

Figure 6-14 shows a set of eigenfunctions for these modes. By substituting these

eigenvalues and eigenfuncdons into Eq.(2-6), we simulated the ptessure field and

compared it with the measured one in Figure 6-15. Again it can be confirmed that both

pressur fields agree very well. We can also observe in Figures 6-15(a) and (c) a bimodal

interference pattern in the output of receivers -18 (z=32.5 m) and HI8 (z=57.5 m),

respectively. This arises because the pressure at these depths is dominated by the first

and second modes, which can be seen from the two strong peaks in Figure 6-12(a). The

interference distance, or so-called "skip distance", is given by 2x/A , where Ar is the

difference between eigenvalues of adjacent modes. From Table 6-1, we have

A r a'r - r2 -0.0094 and thus the skip distance becomes 668 m, which agrees well with

the interference distance shown in Figures 6-15(a) and (c). In contrst, we do not observe

a regular interference pattern in Figure 6-15(b). This is due to the fact that the depth of

receiver H14 (z-47.5 m) is close to the node of the second mode (see Figures 6-12(a) and

6-14) and this mode contributes less to the pressure.

We can obtain the wavenumber spectrum for the simulated pressure by using the

same Hankel transform operation as that used for the measured pressure. Figure 6-12(b)

represents a set of wavenumber spectra for the simulated field at the receiver depths

shown in Figure 6-9. As discussed in Chapter 3.1, these spectra correspond to the depth-

dependent Green's function because of the horizontally stratfied assumption. Both

spectra agree very well with small differences in the behavior of the third and fourth

modes only. This difference could be due to errors in the geoacoustic model including

the assumption of range independence for the lower portion of the sediment column.
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Next, in order to examine the range dependence of the eigenvalues, let us first try a

sliding window in the asymptotic Hankel transform. Since the field measurements in this

experiment were executed in two directions, i.e., parallel and perpendicular to the slope

(Figure 6-8), we cannot utilize the general Hankel transform due to a lack of field data for

varying azimuths. Thus, on the assumption of weak refraction in the horizontal direction,

we will use a zero-oder asymptotic Hankel transform with a sliding window. Figu 6-

16 shows the output of this transform when using the Hanning window with a length of

1000 m. As seen from the interference pattern, the first and second modes interfere with

each other in the output spectrun. Also we cannot recognize the spectral peaks corr-

sponding to the third and fourth modes. Thus we cannot determine the local eigenvalues

from this resulting spectrum.

Hence, let us separate the pressure by individual modes with the use of mode

filtering. By assuming that the sound speed profile at the array site is the same as that in

Figure 6-13, we may use the mode eigenfunctions shown in Figure 6-14 in Eq.(3-58).

Here we set N=6 in this equation because the sixth mode is the largest one whose phase

velocity does not exceed the maximum sound speed (2070 m/s) in the profile in Figure 6-

13. To solve Eq.(3-58), we have to execute the general inverse shown in Eq.(3-64). In

the present problem, however, Eq.(3-64) results in an unstable solution. This arises

because one of the eigenvalues of the matrix in Eq.(3-67) takes on a small value as shown

in Table 6-2. (Note that these eigenvalues in Table 6-2 must be distinguished from the

modal eigenvalues in Table 6-1.) Therefore we can use the EDM with 1=5 in Eq.(3-76)

to execute the generalized inverse. As a result, the output of mode filtering is shown in

Figure 6-17, where it has been transformed into the spectrum by using the same Hankel

transform as that used in Figure 6-16. As seen from a comparison with Figure 6-16, the

first and second modes are separated well. The third mode, however, is not completely

isolated. This could be due to an error in the eigenfunction for the third mode, which
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Table 6-2: Eigenvalues of the matrix in Eq.(3-68).

4 eigenvalue (14)

1 0.6351
2 0.6041
3 0.5166
4 0.2864
5 0.0353
6 0.0012

is confirmed by a comparison of the spectra of the measured and simulated data: the

depth of the second null in the measurement is closer to the water-bottom interface than

that in the simulation (see Figure 6-12). To improve this result, we need to know mome

exactly the sound speed at the arry site.

In order to examine modal evolution further, the peak trajectories in Figure 6-17 are

plotted in Figure 6-18. The trajectories of the first and second modes are relatively stable

as was previously expected from the spectra in Figures 6-11 and 6-12. Since the tuning

point depth of the second mode is located at about 15 m below the water-bottom interface

(see Figure 6-14), we can infer that the sediment in this region is nearly horizontally

stratified. Although the local eigenvalue of the fourth mode is not as precise as those of

the first and second modes as seen from Figure 6-17, we can see in Figure 6-18 that the

trajectory fluctuates around a wavenumber of 0.1755 for ranges less than 2000 m whereas

it fluctuates around a wavenumber of 0.1735 for ranges greater than 2000 m; these

wavenumbers correspond to the peak positions of the split peak of the fourth mode as

observed in Figures 6-11 and 6-12.

As compared to the Nantucket Sound result, we find that the local eigenvalues along

the track TL2 in the Hudson Canyon area are relatively stable with range and the

sediment bottom in this direction can be inferred to be nearly horizontally stratified.
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Figure 6-16: Range-dependent evolution of modal spectra obtained by applying
the zero-order asymptotic Hankel transform with a sliding Hanning window of
1000 m length to the experimental data.
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Figure 6-17: Range-dependent evolution of modal spectra obtained by applying
the zero-order asymptotic Hankel transform with a sliding Hanning window of
1000 m length to the mode-filtered output.
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Chapter 7

Conclusions

In this final chapter we summari the results obtained in Chapte 2 through 6 and

briefly discuss some thoughts on future work.

In this thesis we focused on the analysis of the range evolution of local modes caused

by horizontal variation of the sediment bottom in shallow water, the variation dealt with

hem is weak so as to allow us to utilize adiabatic mode theory. Since the local modes an

subject to spatial changes of the sediment geowoustic properti we first tried to detect

the local eigenvalues by using the asymptotic Hankel transform with a sliding window

togethr, with mode filtering. Next, in an attempt to obtain the spatial variation of the

sediment properties from the range variation of the local eigenvalues, we derived an

analytical relationship between these two variations by using a linear perturbation

method. Based on this relation, an inversion method for determining the range-dependent

geoacoustic parameters in the sediment was developed.

In Chapter 2 we reviewed the normal mode and adiabatic mode theories for

describing the acoustic pressure field. In order to cope with a 3-D varying waveguide, we

also reviewed briefly the Nx2D method and the horizontal ray method.

In Chapter 3, in order to detect local eigenvalues in a range-dependent but

cylindrically symmetric waveguide, we utilized the zero-order asymptotic Hankel

ransform with a short sliding window. The effect of the range-dependence of the local

eigenvalues on the Hankel transform was examined analytically by expanding the phase

term of the adiabatic mode field to fourth order. In a single mode situation, it was found

that the departure of the peak position in the output spectrum from the local eigenvalue

depends on both the second derivative of the local eigenvalue with respect to range and
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the window length and type. In addition to this er=. another type of departu from the

local Cigpevalue is induced by the intefeence with the sid"lobes of adjacent modes. In

order to attain separation of the modes prior to the Hankel transform, we used mode

filtering by inop, g data from a fixed vertical amy of receivers. When this fileriag

process becomes unstable due to the involvement of a singular matrix, we can use the

eigenvector decomposition method (EDM) and the stabilized least-mean-square method

(SLMS) for reliable mode separation. At the end of Chapter 3, we applied the methods

discussed in this chapter to the preurM field simulated numerically by using adiabatic

mode theory in a model of a laterally inhomogeneous shallow water waveguide. The

result indicated that the use of mode filtering improved the detection of the local

eigenvalues. When the field included higher modes, it was demonstrated that the EDM

was useful in providing a stable result for mode separation.

Chapter 4 was devoted to detection of the local eigenvalues in a 3-D varying shallow

water environment. When we apply the zero-order asymptotic Hankel transform with a

sliding window to the pressure field measured along a radial in a 3-D varying

environment, then we underestimate the local eigenvalues due to the horizontal refraction

effect. In order to deal with this problem, we explored the use of a general asymptotic

Hankel transform with a 2-D sliding window in a cylindrical coordinate system. By

expanding this transform with respect to the azimuthal angle, we demonstrated that the

first term in the Taylor series corresponds to the zero-order Hankel transform used in the

cylindrically symmetric waveguide; the rest of the terms account for the difference

between the underestimated and actual local eigenvalues. Next, we analyzed the effect of

horizontal refraction by evaluating the general Hankel transform with the use of the

stationary phase method. Based on this analysis, it was shown that we can determine the

horizontal refraction angle and corect for the underestimated value of the local

eigenvalues by using the refraction angle.
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In onk&: to re-examine analytically the effect of horizontal refraction, we also derived

an alternative representation for the 2-D Fourier transform by using the phase difference

between the outputs of the mode filter, which was applied to the presswu field in the

different azimutha directions. By comparing the resulting transform with the wo-Or

asymptotic Hankel transform, we demonstrated that the underestimated amount for the

local eisenvalues in the latter transform can be determined by using the phase difference

in mode filtering.

At the end of Chapter 4 we examined numerically the horizontal refrction effect by

applying the method discussed in that chapter to the pressure field simulated using the

horizontal ray method. It was shown that we can determine the horizontal refrawon

angl by using the general Hankel transform, as long as the pressure field is sampled in

the azimuthal direction so as to satisfy the spatial Nyquist criterion. This issue was also

discussed in connection with the design of experiments for measuring pressure fields in a

3-D varying, shallow water environment

In Chapter 5, we discussed a method for determining the range-dependent properties

of the sediment bottom from the local cigenvalues. First, by utilizing a linear

perturbation method, we derived the analytical relationship between the range variation of

the local eigenvalues and the spatial change in the bottom properties in a horizontally and

vertically varying, muldlayered bottom model. This relation was checked analytically by

using the range-dependent Pekeris waveguide, for which the identical relation can be

obtained by differentiating the characteristic equation. Next, by representing the sound

speed in each layer by an n2-linear curve, we showed that the integral in the perturbation

relation can be executed in closed form. As a result, we saw that the range variation of

the local eigenvalues can be separated into terms that depend on the range variations of

the sediment interface depth, the sound speed and gradient in each sediment layer, and the

sound speed profile in the water column. Finally, based on this pernubation relation
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between the local eigenvalues and the geoacoustic parameters, we demonsraxed that we

can invert for the poacoustic parameters at successive ranges.

In order to check numerically the methods derived in this chapter, we applied them

to the shallow water model used in Chapter 4. As a result, we showed that we can

accurately estimat the unknown range-dependent geoscoustic parameters in this model

as long as the local eigenvalues me precisely provided. When the number of local modes

is less than the number of unknown geoscousic parameters, we can employ the singular

value decompositio (SVD) method and observe that the proper choice of modes can

reduce the crr=" in the estimation of the parameters.

In Chapter 6 we analyzed some experimental data by utilizing the asymptotic Hankel

transform with a sliding window and mode filtering. In the Nantucket Sound experimen-

tal data, we found that the range variation of modes is dominated by the lateral variation

of the geoacoustic parameters rather than by the bathymetric change. In the Hudson

Canyon experimental data, we observed that the two lowest modes can be separated very

well by mode filtering. We found that the range variation of modes along the track

parallel to the shelf in the Hudson Canyon area is small compared to the Nantucket Sound

result.

7.1 Suggestions for future work

In this thesis, we examined the effect of range variation of the sediment bottom on

the local cigenvalues in a framework for which adiabatic mode theory holds. If, however,

the sediment properties have strong variations in the horizontal direction, then we have to

take into account the effect of mode coupling. To do this, we would first have to simulate

pressure fields which accommodate mode coupling in the propagation process. An

analytical study of the Hankel transform of this field would also be required in order to

understand the output of this transform.
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In the inversion method discussed in this thesis, we assumed range independence for

the attenuation coefficient in each sediment layer. In order to acquire the local character

of the attenuation coefficient with respect to range, we would have to measure the

amplitude of the local spectrum. Also we would need to develop the theoretical

relationship between the range variations of the spectral amplitude and the attenuation

coefficient

The bottom model used here to relate the range variations of the local modes and the

sediment properties is based on the assumption of a fluid medium. In general, we need to

include geoacoustic parameters associated with shear waves as well. Also, attention has

to be paid to the effect of conversion between the shear and compressional waves due to

the range variation.

If we use a broadband signal as the source, then we can make use of group velocity

dispersion curves as tools for estimating the geoacoustic properties. In a range-dependent

shallow water environment, the modal group velocity becomes a function of range and

could be measured for individual modes by applying mode filtering to data obtained on a

fixed vertical array of receivers from a source whose position is changing with range.

By taking into account the effects stated above, we could deal with more general

problems associated with the horizontal and vertical variation of the sediment bottom.
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Appendix A

In this appendix, we prove Eq.(5-15), which was used when deriving the peturbation

of the local eigenvalues in Chapter 5.2.

Let us consider Eq.(5-5), evaluated at slightly separated positions on the sediment

interface, i.e., (r~h(r)) and (r+4r, h(r+Ar)):

u.(r, z$i.,*,*-o = uj(r, z)A.hs,(,)4o (A-i)

and

+ z -= u.(+Ar~z)Ia..,).o . (A-2)

Subtracting Eq.(A-I) from Eq.(A-2), dividing both sides by Al ( {(Ar) 2 + [h(r + Ar)

- h(r)]?}), and takng the limit as Al -+ 0 yields

li uj(i*&rý , ZImA(.I4)-O - U.(r, Z)aA-(,w-o

( az.o 
(A-3)U lira ,(Arz,.A•,(,+)4.o-u,(r~z.),,

A-,0 Al

a
Eq.(A-3) is thus expressed using the derivative tangential to the sediment interface, -, as

= ?!I. . (A-4)
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H at 1 + h,(thw. becomes

a + at(r (A-5)~(r

G.zJlw•/" L& o, za+

where i+ h,2(r) has been dropped because it takes on the same value on both sides.

Rearranging Eq.(A-5) leads to

&*I [~i- - &A(J. = (ý - , (A-6)

At this point, use of the relation in Eq.(5-5) on the right-hand side of Eq.(A-6) results in

~pjsmacr~ grI -~P-Pj (A._j 7)ar I,,A , Oj_ i a- : ,(

Multiplying both sides of Eq.(A-7) by Ar and utilizing Au. -- 'rAr and Ah. -- Ar,
ar 'dr

we can finally obtain Eq.(5-15):

AuaL,. 0 - Aujk, = -(p,-i -P,)(.Iý1Ah2 (A-8)
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Appendix B

In this appendix we will apply the simulaWd annealing method to the Nantucket

Sound experimenta data in order to estimate the local eigenvalues, which will then be

compared with the local eigenvalues estimated by using the asymptotic Hankel transform

with a short sliding window as well as mode filtering in Chapter 6.1.

As introduced in Chapter 1, the simulated annealing algorithm is one of the iteration

of forward models methods for estimating the unknown parameters of interest. In this

algorithm, we iteratively change the values of these parameters until the energy function

£ takes a value close to its global minimum; the energy function measures the difference

between the observed and simulated data and may take different forms depending on the

type of data [39]. At each iterative step, we calculate the change in the energy AE in

accordance with the changes in the values of the parameters and accept these values

always if AE < 0; if, however, AE > 0, we may then accept them with the probability

5 = exp(-AE/T). Owing to this process, we can avoid being trapped in the local

minimums of E. Here T is called the temperature and plays the role of a parameter

controlling the probability function. Namely, we decrease T gradually at each iteration of

the calculation so as to reach the global minimum of E.

Since the energy function E has to be calculated many times in this algorithm, we

need an efficient means for computing the simulated field. Here we can set the local

eigenvalues at selected ranges K. (r,) (1 9 j J .) as unknown parameters to be estimated.

Then, after interpolating the local eigenvalues between these selected ranges with the use

of '.(r1 ), we may simulate the pressure field po(r) based on adiabatic mode theory

(Eq.(2-12)). If we also treat the local eigenfunctions in the amplitude as unknown

parameters in the manner described above, then they can be estimated as well by using
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the annealing method; here we treat them to be range-independent in order to save

putation time.

By using the measured field p(r) and the simulated field p,(r), we here define the

energy function as

where (r) and P,(r) are normalized pressures as

^(r) a p(r) (B-2)

p(rF) (B-3)
4i'I,(r'f dr'

Now let us apply the simulated annealing method to the Nantucket Sound experi-

mental data and estimate the local eigenvalues. We use the pressure data which was

measured by the midcolumn receiver (z, = 7.1). By referring to the result in Figure 6-3,

a set of ranges rj(j = 1,...,J) and initial values of i',(rj) are selected as shown in Table

B-I(a). In order to keep the parameter values within the interval shown in Table B-I(b),

we may use the effective method described in Ref. 40. As for a cooling schedule, it is

generally desirable to start with a high temperature and cool very slowly, but this requires

a large amount of computation time. If we, however, use too low an initial temperature

or a fast cooling rate, then we run the risk of being trapped in one of the local minima. In

the process of decreasing the temperature, in general, the energy function falls off

suddenly at some temperature (T,). Therefore if T, is known, we may start with the

temperature slightly higher than T, with a very slow rate. Thus, we first find the
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temperanuu Tu with a relatively fast cooling rate; and then we rent the initial

mpeture and itea the process with a relatively slow cooling rate.

(1) Figure B-1 shows the result for the energy function E in terms of the temperatme T

when decreasing the tempeu as T= 0.1 x (0.99)' (kiteation number, see Figure

B-2). From Figure B-i, we can observe that T, exists between 0.02 and 0.03.

(2) Based on the result obtained in (1), we set the initial temperatur to be 0.03 and the

cooling schedule as T= 0.03 -0.00001 x I (l:iteration number).

As a result of the cooling schedule in item (2), we obtain Figures B-3 through B-5. In

Figure B-3, we again observe that T, exists between T=0.03 (1-0) and 0.02 (1-1000).

This figure shows that the energy function does not get close to zero, which is due to the

approximation in representing the local eigenvalues with the use of segmented straight

lines and also due to the fixed modal and attenuation (Table B-I(c)). Figure B-4 shows

the convergence of the parameters &r.(rj) (j = 1,...,J) with iteration number. Since the

SNR for the second mode is lower than the SNR for the first mode as seen from Figure 6-

1, w2(rQ) shows slower convergence than , (r,). Also, as seen from the comparison of

parameters with lower j and higher j, the latter has slower convergence. This is due to the

fact that the variation in the parameters with higherj changes the simulated pressure field

only for ranges close to the maximum range. For example, the variation of ic*(r,) affects

the pressure field only in the range r,_ -r < r!, whereas the variation of K.(r1) affects

the pressure field in the entire range. Finally, in Figure B-5, the local eigenvalues

estimated by using the simulated annealing method are compared to those obtained by

using the Hankel viansform with a short sliding window. This figure reveals that both

results agree with each other fairly welL. The disagreement in the second mode for ranges

greater than 1000m is due to slower convergence described above.
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Table B- I (a) The selected ranges and initial values for the parameters t.(r,).

(b) The upper and lower limits of r.(rd). (c) The relaive amplitudes and mode
anenuations used for the simulation.

(a)

J r(r,) r 2(r,)
(M) (m-1) (m-1)

1 0.0 0.56 0.49

2 250.0 0.56 0.49

3 400.0 0.56 0.49

4 600.0 0.57 0.51

5 900.0 0.57 0.51

6 1050.0 0.57 0.51

7 1320.0 0.57 0.52

(b)

Kj(rj) r2(rs)

(m-1) (m-1)

Lower limit 0.55 0.47

Upper limit 0.59 0.55

(c)

Model Mode2

Relative amplitude 1.0 1.0

Mode attenuation (dBhm) 0.23Xi0"3 1.5XlO"3
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Appendix C

Thrmghout this thesis, the ocean and seabed environment is assumed to vary

gpadually in the horizontal direction, so that we may utilize adiabatic mode theory. In

this appendix, we will check that the range variation in the Nantucket Sound case satisfies

the above assumption.

As demonstrated by Milder [591, the criterion for adiabatic mode theory is given by

I<< I (M = n-± 1) , (C-I)

where B, is the coupling coefficient defined by

B -" -(',ua•r~z)A.- (,z)dz .• (C-2)

In order to evaluate the right-hand side in Eq.(C-2) numerically, let us use the approx-

imation &./&[r [u.(r+ Ar~z)-u.(rz)VAr, which yields

B .- l r 1u.(rz)u.(r+Ar,z)dz , (C-3)

where the orthonormality condition in Eq.(2-9) has been used and H-40 m.

Figure C- I shows the values of the left hand side in Eq.(C-1) for the bottom model

(Figure 6-4) inferred from the Nantucket Sound experimental data. From the result in

Figure C-1, it can be seen that the adiabatic criterion, Eq.(C-1), is satisfied for this bottom

model.
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In a shallow water ocean environment, the range-dependent variation of the geoacoustic properties of the seabed is one of the
crucial factors affecting sound propagation. Since the local modes of propagation depend on the spatial changes in the bottom
sediments, the local eir-nvalues of these modes are useful as tools for examining the range dependence of the sediment properties.
In order to extract the local eigenvalues from measurements of the pressure field in a laterally inhomogeneous waveguide, the
zero-order asymptotic Hankel transform with a short sliding window is utilized. The local peak positions in the output spectra
differ from the local eigenvalues due to both the range variation of the local modes and the interference of adjacent modes. The
departure due to the former factor is evaluated analytically by using the stationary phase method. In order to reduce the error
induced by the latter factor, mode filtering is utilized by incorporating data from a fixed vertical array of receivers.

The use of the above zero-order Hankel transform in a three-dimensiopally varying waveguide results in an underestimate of the
local eigenvalues due to the effect of horizontal refraction. Thus a general asymptotic Hankel transform with a 2-D sliding window
is used to correct for the underestimated amount. By expanding the latter transform with respect to the azimuthal angle, it can also
be shown that the first term in the Taylor series corresponds to the former transform; the rest of the terms account for the value
difference between the underestimated and actual local eigenvalues.

In order to obtain the spatial variation of the sediment properties from the range-dependent variation of the extracted local
eigenvalues, the analytical relationship between these two variations is derived by using a perturbation method in a horizontally
varying, multi-layered bottom model. Upon use of the n?-linear profile in each layer, the relationship can be obtained in closed
form. As a result, the range variation of the local eigenvalues may be separated into terms that depend on each geoacoustic
parameter. Based on this relation, an inversion method for determining the range-dependent geoacoustic parameters is developed.

The methods developed in this thesis are applied to simulated pressure field data as well as experimental field data. It is shown
that the evolution with range of the local modes as well as the range-dependent geoacoustic properties can be successfully
estimated.
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