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ABSTRACT

In a shallow water ocean environment, the range-dependent variation of the geoacous-
tic properties of the seabed is one of the crucial factors affecting sound propagation. Since
the local modes of propagation depend on the spatial changes in the bottom sediments, the
local eigenvalues of these modes are useful as tools for examining the range dependence of
the sediment properties. In order to extract the local eigenvalues from measurements of the
pressure field in a laterally inhomogeneous waveguide, the zero-order asymptotic Hankel
transform with a short sliding window is utilized. The local peak positions in the output
spectra differ from the local eigenvalues due to both the range vanation of the local modes
and the interference of adjacent modes. The departure due to the former factor is evaluated
analytically by using the stationary phase method. In order to reduce the error induced by
the latter factor, mode filtering is utilized by incorporating data from a fixed vertical array
of receivers.

The use of the above zero-order Hankel transform in a three-dimensionally varying
waveguide results in an underestimate of the local eigenvalues due to tiie effect of horizon-
tal refraction. Thus a general asymptotic Hankel transform with a 2-D sliding window is
used to correct for the underestimated amount. By expanding the latter transform with
respect to the azimuthal angle, it can also be shown that the first term in the Taylor series
corresponds to the former transform; the rest of the terms account for the value difference
between the underestimated and actual local eigenvalues.

In order to obtain the spatial variation of the sediment properties from the range-
dependent variation of the extracted local eigenvalues, the analytical relationship between
these two variations is derived by using a perturbation method in a horizontally varying,
multi-layered bottom model. Upon use of the n2-linear profile in each layer, the relation-
ship can be obtained in closed form. As a result, the range variation of the local eigen-
values may be separated into terms that depend on each geoacoustic parameter. Based on
this relation, an inversion method for determining the range-dependent geoacoustic
parameters is developed.

The methods developed in this thesis are applied to simulated pressure field data as
well as experimental field data. It is shown that the evolution with range of the local modes
as well as the range-dependent geoacoustic properties can be successfully estimated.

Thesis Supervisor: Dr. George V. Frisk, Senior Scientist, Woods Hole Oceanographic
Institution
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Chapter 1
Introduction

L1 Background |

In ocean acoustics, it is well known that the geoacoustic properties of the seabed play
mupauntmleandin:halbwwwapechuybeoomeaaudalfmaﬁecﬁngmmd
propagation in the oceanic waveguide [1-3]. Thus knowledge of these geoacoustic
properties is essential not only for acoustic analysis of phenomena in the ocean but also
for the design of sonar instrumentation.

A number of studies have been carried out theoretically and experimentally to
incmpmmtheeffectofbominmﬁonmthemﬁcptesmﬁeldintheww
column (e.g., Refs. 4-16). In the case of the deep ocean, the plane wave reflection
coefficient of the bottom is useful for characterizing the acoustic features of the seabed,
since bottom-interacting sound can be isolated and interpreted in terms of individual
plane wave interactions [17-21]. On the other hand, in shallow water, the reflection
coefficient is less appropriate, because the measured field is constructed of many bottom-
interacting, multipath arrivals, and individual bottom interactions cannot be readily
distinguished. In fact, the reflection coefficient and the depth-dependent Green's function
are nonlincarly related in shallow water, which leads to an ill-posed problem for
determining the reflection coefficient from the measured field [22,23]. Thus, instead of
using the reflection coefficient, we utilize the normal modes of propagation, which are
synthesized from the multipath arrivals, to characterize the effect of the bottom on sound
propagation in shallow water.

In general, normal modes can be detected by using vertical or horizontal array [9,22-
33). In a horizontally stratified waveguide, the modal cigenvalues can be estimated




accurately from the peaks in the FFT beam-formed output of a horizontal array, which is
an approximation to the zero-order Hankel transform relationship between the spatial pant
of the pressure field and the depth-dependent Green's function [22].

When the sediment properties vary not only vertically but also horizontally, the
modal eigenvalues are accordingly subject to change with range. This phenomenon has
been confirmed in some measured data from Nantucket Sound (Figure 1-1) [30). Frisk et
al. [30] showed that the splitting of modal spectral peaks suggests the preseace two
different bottom sound speed profiles (Figure 1-2), which may be associated with
different seabed parameters over the surveyed range; the lateral inhomogeneity of this
region is assumed to consist of two different range-independent portions in order to apply
the modal inverse method. This observation, however, suggests that the information
contained in the range-dependent evolution of the local modes can provide a clue to

resolving the spatial change of the bottom environment in a continuous manner [32].
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Figure 1-1: Experimental configuration for the Nantucket Sound experiment
(from Ref. 30).
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Figure 1-2: Splitting of modal spectral peaks observed in the Nantucket Sound
experimental data. This is compared to the Green's function obtained by applying
the IFFP to the theoretical pressure fields (from Ref. 30).




As an approach for estimating the local modes, Prony’s method was applied to a
laterally varying shallow water waveguide by Diemer [33). This method is one of several
noalinear spectral estimation methods developed in the last decade. The application of
Prony's method was successful 10 some degree with simulated data, but had only limited
success with experimental data.

In this thesis, instead of employing a nonlinear spectral estimation method, a mode
scparation technique is used as a pre-processing method for the effective use of the
Hanke] transform with a short sliding window, which is relatively robust to noise. Thus
the first half of this thesis is devoted to developing a method for estimating local modes
from the pressure field in a shallow water environment having a weakly range-dependent
secabed. Then the range-dependent evolution of the local modes will be analyzed to
characterize the acoustic features of the waveguide.

Once the local modes are accurately estimated, the next objective is to obtain the
spatial variation of the sediment properties from the range-dependent variation of these
local modes. Namely, the sediment properties are obtained as & solution of this type of
inverse problem. Here it would be worthwhile to review some of the existing inverse
methods [34-51].

The iteration of forward models method {34-36] calculates the pressure field by
using a numerical model that changes the geoacoustic parameters repeatedly until it best
fits the measured pressure field. Although the performance of this method depends on
the ability of the numerical model to simulate the field, this method is effective to
implement on real experimental data because the results are generally stable with regpect
to noise. One of the problems with this method has to do with distinguishing local
minima from global minimum associated with the best-fit solution. This uniqueness issue
becomes significant, when the number of geoacoustic parameters to be determined
increases. In order to cope with this higher-dimensional problem, the simulated
annealing method [37-40], which is also categorized as an iteration of forward models

10




method, is useful and has been applied recently to the measured data at Corpus Christi
[40). This method is a Moate Carlo optimization procedure that numerically imitates the
cooling process associated with crystal formation and has become operational practically
with the development of high-speed computers. However, these iteration of forward
models methods are computationally intensive and time-consuming as compared to other
methods.

In contrast, analytic inverse methods do not repeatedly solve a forward problem.
Rather, they try to solve a Fredholm integral equation of the first kind, which arises in
different forms, depending on the quantities used for the input and output data [41-43).
In exact methods [44], this integral equation may be solved by resorting to the trace
method [45) or the Gelfand-Levitan method [46], which was originally developed for
inverting the Schrtdinger equation {47] for the potential in quantum mechanics. These
methods do not require an approximation in the initial stage, 0 no initial assumptions
such as & background mode] for the geoacoustic parameters are required. But they do
involve difficulties in application to real data.

On the other hand, perturbative inversion methods [48-51] linearize the Fredholm
integral equation around an initially assumed background model, usually based on the
Born approximation [47). Then the problem becomes tractable, and results established in
linear inverse theory can be applied. Thus these perturbative inversion methods have
been successfully exploited to determine geoacoustic parameters [12,29,30]. Specifi-
cally, in the horizontally stratified case, the modal eigenvalues can be utilized in the
perturbed integral equation, and they are also robust as input data for the inverse problem
{50.51].

In a range-dependent shallow water environment, we first need to clarify the
relationship between the range-dependent modal evolution and spatial changes in the
geoacoustic properties. To do this, we can expect to utilize the perturbation approach. In

11




the latter half of this thesis, an inversion method for obtaining the range-dependent
geoacoustic properties will be developed on the basis of this relationship.

1.2 Thesis Outline

A primary thrust of my research is to develop a method for extracting the local
modes from measurements of the pressure ficld in a laterally varying waveguide. In
addition, concern must be naturally extended to the case of a three-dimensionally (3-D)
varying waveguide, where the effect of horizontal refraction has to be taken into
consideration, Next, in order to use these extracted local modal eigenvalues in
perturbative inversion methods, the relationship between the range-dependent modal
evolution and the spatial change in the acoustic properties of the bottom also has to be
clarified. Based on this analysis, an inversion method for determining the range-
dependent geoacoustic parameters can be established. This thesis deals with these two
steps of the inversion problem in an effort to obtain the local geoacoustic properties in a
range-dependent shallow water environment.

Chapter 2 reviews the basic features of normal mode theory for a horizontally
stratified waveguide and adiabatic mode theory for a range-dependent waveguide. In
addition, in order to cope with a 3-D varying waveguide, two methods based on adiabatic
modes, i.e., the N\)2D method and the horizontal ray method, are also briefly reviewed.
The techniques discussed in this chapter provide the analytical and computational
foundation for the remaining of chapters.

In Chapter 3, the asymptotic Hankel transform with a short sliding window is applied
to extract the local eigenvalues from measurements of the pressure field in a range-
dependent, but cylindrically symmetric, waveguide. A theoretical analysis of the effect
of range-varying local eigenvalues in the tnnsfo;m is presented. In an attempt to reduce
the error in the transform that is caused by the interference of different modes, mode
filtering is employed by incorporating data from a fixed vertical array of receivers.

12




Chapter 4 is devoted to detecting the local eigenvalues in a 3-D shallow water
eavironment. We explore the general asymptotic Hankel transform with a sliding
window $0 that we may grasp the effect of horizontal refraction. In particular, this effect
is theoretically analyzed in connection with the error that occurs when using the zero-
arder asymptotic Hankel transform with a sliding window in non-cylindrical symmetric
waveguides.

In Chapter 5, the relationship between the range-dependent variation of the local
cigenvalues and the spatial changes in the bottom properties is studied by using a linear
perturbation method. Use of an n2-linear profile in & multi-layered sediment model
enables us to express the above relation in closed form. Based on this relation, the
inversion for range-dependent geoacoustic parameters is pursued.

Chapter 6 presents the results obtained by applying the asymptotic Hankel transform
with a sliding window to experimental data. Mode filtering is also applied to the pressure
field measured by using a fixed vertical array of receivers. Based on the estimated range
evolution of the local modes, we discuss the range-dependence of the geoacoustic
properties.

In Chapter 7, the conclusions of this research and future work are presented.

13




Chapter 2
A Review of Modal Representations of the Acoustic Field

As introduced in Chapter 1.1, normal modes are & useful concept to apply to a
shallow water environment not only for synthesizing the pressure field in a forward
problem but also for analyzing the medium in an inverse problem. In a range-dependent
eavironmeat, local modes are uniquely determined by the local properties of the medium,
including the bottom sediments. Thus it is natural to expect that one can make use of
local modes to infer the range-dependent properties of bottom sediments from measure-
ments of the pressure field.

The purpose of this chapter is to review the normal mode and adiabatic mode
theories for describing the acoustic pressure field in shallow water. The analytical
representations for the pressure fields based on these theories are useful for development
of the modal characterization of the waveguide as well as the theoretical basis for an
inverse scheme. The pressure fields simulated by these theories will also be used for

computational analysis in the remainder of this thesis. In addition, the Nx2D method and

the horizontal ray method are reviewed below. Both methods are used in the simulation
of pressure fields for a 3-D varying waveguide in Chapter 4.

2.1 Normal mode theory

Normal mode theory in underwater acoustics is one of the principal methods used to
provide a full wave solution for sound propagation in a horizontally stratified waveguide
and is well suited for shallow water applications [4,13,16,52-54).

14
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As shown in Figure 2-1, we set the coordinate system so that z is measured vertically
downward from the surface and a point source is located at x, = (0,0,2,); thea the

Helmholtz equation for a time-harmonic source with unit strength is expressed as

p(x)Ve [p('x) Vp(x)]+ B (x)p(x)=-4x8(x-x,) , 21
where p(x) is the spatial part of the acoustic pressure, p(x) is the density, and k(x) is
the wavenumber defined by k(x) = @/c(x) with sound speed c(x) and circular frequency
@. Here, and throughout this thesis, we assume an ¢ time dependence. Sediment
attenuation can be accommodated by adding the attenuation coefficient of sediments,
a(x,®), to the imaginary part of k(x); i.e., k(x) = k(x) +ia(x,®) [53,54].

When the medium is horizontally stratified, the Helmholtz equation can be solved by
means of conventional normal mode theory. Based on the separation of variables, the
solution can be expressed in terms of a sum over a set of eigenfunctions u, of discrete

modes plus a branch line integral 7, [55,56):

p:: DLICAICTIC T A @-2)
0/ a

p(r.z,2,)=

in which H{" represents the zero order Hankel function of the first kind. Here, owing to

the symmetry of the pressure field around the source, a cylindrical coordinate system
such that 7 = 4/x* +y* has been used.
The nth mode eigenfunc ¢, u,(2), satisfies the depth equation

d( 1 du
P(l)z[;(-;)'z‘)*'[kz(l)‘ "':]“. =0 (2-3)

together with the prescribed boundary conditions. The eigenfunctions are normalized so
as to satisfy the orthonormality condition:

16




fp—(!z—;u.(z)u.(z)dz =8, ., 24)

where &_, is the Kronecker-delta and the inverse of the density serves as a weighting
function. In Eq.(2-3), &, stands for the eigenvalue of the ath mode, which is determined
uniquely by solving a characteristic equation subject to the boundary conditions. Physi-
cally, the real part of x;, is identified as the horizontal component of the wavenumber and
its imaginary part characterizes the attenuation rate of mode energy in the propagation
process. '

The branch line integral, I,, arises when the bottom structure is terminated with a
fast isovelocity half-space. Since I, usually decreases rapidly with range, its contribution
to the far-field pressure in Eq.(2-2) is often neglected [55,56).

In this range of interest, H{"(x,r) can generally be approximated by its asymptotic
form [57):

) - 2 Hxr-x/4) -
H{(x,r) xx,re , (2-5)
30 that Eq.(2-2) can be expressed as
= Rxe 1 s
pr.z)~e ¢ 5 ;Ru_(z.)u.(z)e (x,r>>1) , (2-6)

where the density in the water has been setto 1 gfom®, p(z,) =1. This assumption will
not incur a large error in shallow water.

As mentioned before, the normal mode representation is applicable only to the
horizontally stratified waveguide. Thus let us consider an approximate mode theory
applicable to range-dependent waveguides in the next section.

17




22 Adiabatic mode theory

When the ocean environment, including the bottom sediment, varies gradually in the
horizontal direction, adiabatic mode theory is effective in representing the acoustic field.
The: first to point out the adiabatic propagation process in underwater acoustics was
Weston [58], and then Milder [59] demonstrated elegantly, from an analogy with classical
mechanics, that the adiabatic invariant cosresponds to the mode number. In waveguides
for which the range-dependeut variation is gradual enough to apply adiabatic mode
theory,ﬂlewousﬁcewgyismspawdintbehaimnnldhecﬁmwpmclybynm-
interacting modes [60). In other words, the coupling between different modes that is
indmedbytbemngevaﬁaﬁonofthemediumhastobesmallenoughtobeneglectedin
adiabatic mode theory [59].

In this method, we first assume that the solution of the Helmholtz equation in Eq.(2-
1) can be expanded in terms of local eigenfunctions u,(x,y,z) as

Px.y.2) =Y R(x.y)u(x,y.2) , (v X))

where R,(x,y) is an unknown range function to be determined and u,(x,y,z) are defined
30 as to satisfy the following depth equation | 16,61,62]:
9

1 du 2 _ < .
p(x,,2) az( D) -5;)+[k (x,5,2) = K3(x,))]u, =0 2-8)

with given boundary conditions at each range. Here, x,(x,y) is called a local eigenvalue,
which is a function of horizontal position. In a manner similar to conventional mode
theory, the u,(x,y,z) satisfy an orthonormality condition:

u(x,y,2)u (x,y,2)dz=4,_, . (2-9)

1
‘[‘. p(x,y,2)

18




The orthonormality property of the local eigenfunctions provides the foundation of mode
filkering as will be discussed in Chapter 3.3.

Substituting Eq.(2-7) into the Helmholtz equation and utilizing the orthonormality
condition in Eq.(2-9) yield a coupled equation for the range function R, [5,62). Coupling
terms appearing in this equation are induced by the horizontal variation of the medium
and reflect the fact that the redistribution of modal energy evolves in the propagation
process [60]. Due to the current assumption of weak range dependence, these coupling
terms may be dropped out of the coupled equation, yiclding a range equation for R, for
each mode:

VIR (5.3)+ DR (59) == 21,00.2)8¢) @-10)
where V, -(%,;%) This procedure is commonly called the adiabatic approximation

[59.61].

If the waveguide medium is cylindrically symmetric around the source, i.e., the
horizontal variation of the medium only depends on the range from the source, then it is
found immediately from Eq.(2-10) that the pressure field also depends on the range only.
In this case, a cylindrical coordinate system is more manageable to describe the range
equation, giving

14 Qsﬁ'_)) =2 .
-~ dr(’ " +x2(r)R.(r) . u,(0,2)8(r) (xr>>1) . (2-11)

At this point, by exploiting the WKBJ approximation method and matching the boundary

condition close to the source, we obtain an adiabatic mode solution in the following form
[62,63):
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p(raz)= ¢*"er-; Zva%m(awu.(r.z)el‘c“’w (x,r>>1) . (2-12)

As seen from a comparison of the field given by normal mode sum in Eq.(2-6) and the
field given by adiabatic mode sum in Eq.(2-12), the major distinction between them
arises principally from the difference in the phase factor associated with each mode. This
is also a key factor when detecting the eigenvalue from the pressure field in the inverse
process, as will be discussed in Chapter 3.2

When the waveguide is not cylindrically symmetric, we have to start from Eq.(2-10)
to obtain the pressure field. The next two sections deal with this problem.

2.3 Nx2D method

In order to develop a method for extracting local eigenvalues in a 3-D varying
environment in Chapter 4, we need to simulate the pressure field in this environment; the
Nx2D method [64,65] is one of the methods for realizing it.

If the cylindrical symmetry of the waveguide breaks down, then Eq.(2-12) is no
longer a solution of Eq.(2-10). To describe the field correctly in this 3-D, yet adiabati-
cally varying medium, we have to solve Eq.(2-10) or, equivalently, the equation
incorporating the azimuth angle into Eq.(2-11) such that

19( oR (r.G)) 1 3*R (r,6) __2 i
. ar(r—-la’ + - 490’ +2(r,0)R (r,0)= > 4,(0,0,2,)8(r) . (2-13)
But this is not 3o straightforward. Instead of doing this, the Nx2D method tries to solve
Eq.(2-13) by treating the medium as if each medium sliced in the & direction were
cylindrically symmetric. To be explicit, the Nx2D method approximates Eq.(2-13) by the
following equation:




19(, R (1.6) ==2 .
p a_(r > )+r.’.(r.0)R.(r.0) ’u.(0.0.z.)G(r) . (2-14)

and, consequently, provides an approximate solution for p(r,6,2):

[siroe

,(0,0,2)u,(r,0,2)e’ (2-15)

s
=
Namely, the Nx2D method takes into account the azimuthal dependence of the field when
deriving the local eigenfunctions in the first stage, but neglects the cross-aagle variation
for R, when solving the range equation in the next stage. It should be noted, however,
that R, still keeps the azimuthal dependence through X,(r,6) as an outcome. Thus, the
azimuth angle @ simply plays a role as & parameter in Eq.(2-14). This can also be
recognized by a comparison of Eq.(2-12) and Eq.(2-1S5).

In spite of no direct interaction between the different azimuth directions, as indicated
in Eq.(2-14), the azimuthal variation of p(r, 6, z) in Eq.(2-15) produces the same effect as
if the phase front were redirected in a different direction from 6. Hence, we can see that
the effect of horizontal refraction is included to some extent in Eq.(2-15), although it is
not completely correct.

The Nx2D approach was also employed successfully by Perkins et al. (64] to apply
the parabolic equation method to a 3-D varying waveguide, which has stronger variation
than that dealt with here. He demonstrated the effectiveness of this approach in both an
analytical and numerical manner.

When simulating the pressure field in a 3-D varying environment in Chapter 4, the
Nx2D method will be compared to the horizontal ray method, which is briefly reviewed

in the next section.
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24 Horizontal Ray method

As an altemnative approach for representing the pressure field in a 3-D varying
waveguide, one can employ the horizontal ray method. In this approach, adiabatic mode
theory is first applied to the vertical direction in order to obtain local eigenfunctions at
each range. Then, in the next stage, the ray method is utilized in the horizontal plane o
grasp the evolution of local modes. This idea was originally employed by Pierce [61],
then was further developed in a more general manner by Weinberg ez al. (66}, by
exploiting asymptotic series. To implement the horizontal ray method, the horizontal
variation of the medium has to be small, especially compared to the vertical variation.

The advantage of this approach is that it affords a clear picture of the horizontal
refraction for each mode. In shallow water, this refraction is caused not only by
bathymetric change but also by the variation in sediment properties and layer structure;
the degree of this refraction also depends on the mode and frequency of interest. Hence,
the effect of horizontal refraction cannot be neglected in the inverse problem for the 3-D
varying bottom environment.

If we confine ourselves to the zero order term of the asymptotic series in horizontal
ray theory, the phase @, in R, (= A.e*) has to satisfy an eikonal equation, which

subsequently leads to a ray equation:
d oK
smel)=3
(2-16)
4 (x sing)=2%
df(x. ol) ay ’

where ds is an increment of length along the horizontal ray path of the nth mode and 6,
indicates the direction perpendicular to the phase front ( @, = constant) at the position
(x.y). A set of these equations clearly indicates that the horizontal refraction of the mode
is characterized by the spatial variation of its local eigenvalue. Based on both the ray




equation in Eq.(2-16) and the transport equation for the amplitude A,, the pressure field
can be represented to the leading order as [61,67)

P(x.y.z.z.)=¢"':'J2_327-1D-u.(0.0.z.)u.(x.y.z)e‘ﬂ ‘., 2-17)

where the integral in the phase term is taken along the horizontal ray path determined

from Eq.(2-16) and D, = %5; is the Jacobian for transformation from Cartesian
coordinates to ray coordinates (s,6). In the cylindrically symmetric case, D, = x,r and
ds = dr, so that Eq.(2-17) reduces to0 Eq.(2-12).

The effect of horizontal refraction on the inversion process for detectiné the local
eigenvalues will be discussed in Chapter 4. Also, the pressure field in Eq.(2-17) will be
utilized to synthesize the acoustic field for the numerical study.

2S5 Summary

In this chapter, the basic features of the conventional and adiabatic mode theory were
reviewed as were the Nx2D method and the horizontal ray method.

Conventional mode theory is of considerable utility in shallow water but can be
applied exactly only to the horizontally stratified case. On the other hand, adiabatic mode
theory can be applied to a range-dependent waveguide as long as the waveguide medium
changes gradually in the horizontal direction. In the case of a cylindrically symmetric
waveguide, the most prominent difference in the representation of the pressure field in
these two theories is the phase factor associated with each mode; the former is provided
simply by the eigenvalue multiplied by the range, whereas the latter is given by the
integration of the local eigenvalue with respect to range.

Both the Nx2D method and the horizontal ray method are designed to cope with a
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3-D varying waveguide. In the Nx2D method, the waveguide is treated as if each
medium sliced in the azimuthal direction were cylindrically symmetric; then, for each
direction one can make use of the results of the adiabatic mode sum that is derived for the
radially inhomogencous waveguide. On the other hand, the horizontal ray method can
deal with the phase factor more exactly by tracing the modal evolution on a horizontal
plane after obtaining local modes at each range.

The methods reviewed in this chapter will provide the analytical and computational
foundation in the remainder of this thesis.




Chapter 3
Detection of Local Eigenvalues in a Laterally
Inhomogeneous Waveguide

The purpose of this chapter is to extract the local eigenvalues from a given pressure
field in a laterally inhomogeneous waveguide. Before doing this, we will first review the
Hankel transform, whose asymptotic form can provide exact eigenvalues of normal
modes in a horizontally stratified waveguide [16,22]. Then, a sliding window is
introduced into an asymptotic Hankel transform of order zero in order to cope with a
laterally inhomogeneous waveguide. The effect of range variation in the local
eigenvalues on this transform is examined in an analytical manner in Section 3.2. In an
attempt to improve the processing in this transform in a multi-mode environn.ent, the
application of mode filtering is explored in Section 3.3 by incorporating data from a fixed
vertical array of receivers. These results are studied in Section 3.4 by using pressure
fields that are simulated with the use of adiabatic mode theory. Note that the waveguide
is assumed to be cylindrically symmetric about the z axis throughout this chapter. A non-
cylindrically symmetric case will be dealt with in Chapter 4.

3.1 A review of the Hankel Transform

In a horizontally stratified waveguide, eigenvalues of normal modes can be
accurately detected by an asymptotic Hankel transform of order zero. In this section, the
Hankel transform is first reviewed and then its relationship to the depth-dependent

Green's function is presented in connection with the eigenvalues of conventional mode

theory.




To begin with, we will take a two-dimensional (2-D) Fourier transform of the spatial
part of the acoustic pressure p(x,y,z) such that

ki =[ [ pryn)e™™ Y auty | G-1)

where (%,,4,) are the horizontal components of the wavenumber and §(k,,k,;2) is
generally referred to as a wavenumber spectrum. Note that this spectrum still retains its
dependence on the depth variable z and, therefore, must be distinguished from the
wavenumber spectrum that is defined by a three-dimensional (3-D) Fourier transform,
which is completely independent of spatial coordinates. The inverse Fourier transform
associated with Eq.(3-1) is given by

Py )= [ [ B k0™ e, (3-2)

Here we may rewrite the above transform pairs in terms of cylindrical coordinates in
both the space and the wavenumber domains through

x=rcos® y=rsiné r={2+y
' (3-3)
k.=kcosp  k =ksing k,=\k2+k .
It follows that
Ek.@:0)=[drr[ " p(r.6,)e =" (34)
and
1 ® p 3k - 7)™ -9
P80 = s [k b, ["dp §4,.0:00¢ : (3-5)
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A general Hankel transform can be deduced from this form, but in this chapter let us
confine ourselves to cylindrically symmetric fields only. In Chapter 4, we will discuss
the application of the general Hankel transform to noa-cylindrically symmetric fields in
connection with horizontal refraction effects.

When the pressure field p is cylindrically symmetric, we can take p out of the
integral with respect to @, giving

gk:0)= f drr p(r,2) f "B (3-6)

Use of the following integral representation for the zero-order Bessel function [57)

J,({)=2—lz- [ e=cetag G
in Eq.(3-6) yields

Bk =2xf plr. o (kryrar 3-8
or, alternatively,

g(k:2)= [ p(r. 2k )rdr (39

in which we have introduced the new wavenumber spectrum g(k,; z) that is defined by
ISR NPT
8(k,;2) 2”8(k,.2) . (3-10)
Eq.(3-9) is commonly called a zero-order Hankel transform [16).

Likewise, due to the cylindrical symmetry of g in the wavenumber domain, Eq.(3-5)
is reduced to an inverse zero-order Hankel transform:
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pir) = [gh:) I (b, . 311

The conjugate transform pairs in Eq.(3-10) and Eq.(3-11) exhibit that the Hankel
transform and its inverse have the same form. It is also observed that both p(r,z) and
g(k,; 2) become even functions in terms of r and £,, respectively, since Jo(%,7) is an even
function. -

The transform pairs described above can also be expressed using the Hankel
function. To do this, the following identity [57] is substituted into Eq.(3-11):

Jo(kf)=%[”§”(k,’)+11§z’(k/)] . (312
yielding
pir.) =2 [ gt HO Gk db, + 2 [ 8060 PGk, (3-13)

Letting &k, =-¢ in the second integral leads to
1
pr2)=3 j;' g(k ;2) HS (k r)k, dk, + %j:‘ 8(=&:2)HP(-§r &ds . (3-14)

Using g(&;2) = g(-&;2) and HP (—&r)=—H(§r) [57] in the second integral in Eq.(3-
14) results in

pr=2[ sk HP®NRS,  ¢>0) . (315)

As detailed in Ref. 23, this representation is valid only for 7 > 0. In the same manner, we

can obtain the conjugate transform:
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g(k,;z)g-;- [ prou@anrer  ,>0) . (3-16)

Ktheot ration range comresponds w k7 >> 1, then we can employ the asymptotic
form of the Hankel function [57] in Eq.(3-15) and Eq.(3-16):

2 Ar-g/4)

Hi"(t,r)w;,—e“ . (3-17)
”5’"""*1%_;:"‘“""" . (3-18)

Therefore a pair of asymptotic Hankel transforms can be expressed as

oM
p(r.2)~ T Lg(k,;z) JE vk, (3-19)
el '
8(k,.z) ~ 72—;1:?(’.2) Nre¥dr . (3-20)

These integral forms enable us to utilize the Fast Fourier Transform (FFT), which is
useful when numerically evaluating the integrals in Eq.(3-19) and Eq.(3-20). Equation
(3.19) is the basis of Fast Field Programs (FFP) for computing the sound field [68,69]

In order to use Eq.(3-20), the only assumption we have made about p(r,z) is that it
be cylindrically symmetric. Hence, even in a laterally inhomogeneous waveguide,
g(k,; z) can be clearly define by 4pplying the above asymptotic Hankel transform
(Eq.(3-20)) to the pressure field in this waveguide, as long as the field is cylindrically
symmetric.

Here it is of particular interest to examine the wavenumber spectrum g(k,;2) in
Eq.(3-20) for the case of a horizontally stratified waveguide.
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3.1.1 The horizontally stratified case

At this pgint. let us demonstrate that g(k,;z) given by Eq.(3-20) corresponds to a
depth-dependent Green's function if, and only if, p(r,2) is the pressure ficld obtained ina
borizontally stratified medium [16]. In that case, p(7,2) satisfies the inhomogencous
Helmholtz equation described in terms of cylindrical coordinates as

13 gren ot sgmenoromes

4xﬂ96(z-z.) . @G

By applying the zero-onder Hankel transform operator [drJ(k,r)r 10 both sides of

Eq.(3-21) and employing the following relation in the first term

fdrlo(k.r)f[ -- r—p(r.z) ]-- 23(k,:2) (3-22)
we obtain
p(z )—[ &\ () dzg(k. z)]+[k’(z) -k g(k,:2) =-28(z-2,) , (3-23)

where the spectrum g defined in Eq.(3-10) has again been used instead of §.

For a fixed value of the wavenumber £ , the spectrum g(%,;2) is the solution which
satisfies the differential equation for a point source (Eq.(3-23)), subject to properly posed
boundary conditions. Therefore, g(k,:2) is called a depth-dependent Green's function
and is conventionally expressed by g(k,;2,2,) to emphasize its dependence on the source
depth z, as well.




Once g(k,:2,2,) is obtained by solving Eq.(3-23), we can construct the pressure field
by substituting g(k,:2,2,) into Eq.(3-11). This integral representation can also be
transformed into the modal representation in Eq.(2-2) by using Cauchy's residue theorem.
To do this, we allow &, 10 become complex and deform the integration path in the
complex- &, plane 30 as to enclose the poles of the Green's function g(k,;z,2,), which
correspond to the eigenvalues of the discrete modes. Owing 1o Cauchy’s residue theorem
{70), the integral in Eq.(3-15) becomes a sum of residue contributions, each of which is
expressed as a modal eigenfunction. Furthermore, if a branch cut exists, then a
contribution from the integral around the branch cut must be added. As a result, the
pressure field can be expressed as a sum of discrete modes plus a branch line integral as
givea by Eq.(2-2) in Chapter 2.1 [16,52,55,56].

Couversely, let us apply the asymptotic Hankel transform to the pressure field
P(r,2) that was synthesized in Eq.(2-6) for k7 >> 1, as explained in Chapter 2.1. When
P(r.2) is obtained over a finite range (0<r<R), as is the case in actual experiments, the
asymptotic Hanke! transform in Eq.(3-20) has to be computed over a finite aperture R:

in/4

gk ;z)~ 7‘5;,‘- [rovFevar (3-24)

Equivalently, by using a window function w),(r) that is defined as

1 (0sSrs<R)

wy(r) '{o (r<O,R<r) ' 3-23)

Eq.(3-24) can be rewritten as

O Jre®
z(k,.z)~72-ﬂ—'£w,(r)p(r.z) revdr . (3-26)
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Substituting the pressure field given by Eq.(2-6) into Eq.(3-24) and changing the order of
the Fourier integration and the mode summation leads to

gk :2,2)~ 7%214,(1.)14.(:) fe""“"" dr . (3-27)

By executing the integral, Eq.(3-27) results in

KR _ g

:(k,:z.z.)~vi-'-2u.(z.)u.(z) T (3-28)

This result shows that the Green's function has peaks at k = k, (= Re[x,]), i.e., the real
part of the mode eigenvalues, which are, however, finite in width and amplitude. This is
&nmtbeeﬁ'ecsoftbeﬁnimapemkmdtbemodalmnuaﬁonﬁ.ulmix,]. The
amplitudes are also proportional to the values of the eigenfunctions at the source and
receiver depths. Thus one can accurately determine the eigenvalues of the normal modes
from the FFT beamformed output of a finite-aperture horizontal array, as long as the
source and receiver depths are not close to the null of modes and the eigenvalues of
adjacent of modes are not too close. The equivalent result can also be obtained by
applying Eq.(3-26) to the same pressure field Eq.(2-6), yielding

:(k,:z.z,)~V%Zu.(zo)u.(z)stw‘(r»‘S(e“""}‘sle"‘"} : (3-29)

where S(e) = [ dre®” represeats a Fourier transform operator and # indicates 8
convolution operation.

Thus, in a horizontally stratified environment, we can obtain accurate estimates of
modal eigenvalues by identifying peaks in the wavenumber spectrum which is obtained
by taking the zero-order asymptotic Hankel transform of the pressure field obtained over
a finite aperture.
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3.2 The Hankel transform for a range-dependent medium

In the borizontally stratified case, as demonstrated in the previous section, the modal
eigeavalues can be obtained accuraiely from the peaks in the FFT beamformed output of
a finite-aperture horizontal array. In Ref. 30, this approach was extended to a weakly
range-dependent case by discretizing a laterally inhomogeneous waveguide into a finite
nsumber of segments whose properties are range-independent. This scheme may be
generalized further by introducing the technique of the Short-Time Fourier Transform
(STFT) with a short sliding window w, (r;7), in which 7 and L indicate the center
position and window length of the sliding window, respectively [32,71,72). The
spectrum g, (k,:7,2,2,) is thus defined below to obtain the local character of the
wavenumber spectrum g(k, ) in the asymptotic Hankel transform in Eq.(3-20):

Fid
8. (k,i7.2,2,) ~ 7%;_*"‘[..”‘(':;) prizz)e ' Vrdr . (3-30)

The range-varying peaks in /%, |g. (k,:7.2.2,) then reflect the modal evolution of the
waveguide. These peak positions, however, do not exactly correspond to the local
eigenvalues in the range-dependent case because the eigenvalues do not remain constant
over the range covered by the short window. Shortening the window length further to
localize their behavior gives rise to another type of error when evaluating Eq.(3-30). This
enor originates from the so-called "uncertainty principle,” in which both wavenumber
and range cannot be determined with arbitrary precision [47,71,72]).

In order to evaluate quantitatively the output of the above STFT, let us utilize the
pressure field expressed by Eq.(2-12) in Chapter 2.2, which is derived from adiabatic
mode theory with the assumption of a gradually changing medium in the lateral direction.

Before proceeding, a remark should be made on the choice of the coordinate system.
Namely, in a range-dependent medium, it is essential to choose a coordinate system fixed
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Figure 3-1: Geometry of the reciprocity relation between source and receiver positions.
(a) Source and (b) receiver are fixed in space.




in space for descriding both the pressure field and the environmental parameters as a
function of position. In Figure 3-1(a), given a fixed point source, the z axis is chosen so
as 10 pass through the source position (0,z,). The pressure field due to this source,
P(r.2,2,), can be measured by the receiver placed at (7,z). In contrast, if the receiver is
fixed and the point source changes its position, then the z axis is chosen 30 as to pass
through the receiver position (0,z,). By virtue of the reciprocity principle, the pressure
due to the source at (7,2) which is measured by the receiver at (0,2,) in Figure 3-1(b) is
identical to the pressure due to the source at (0,2,) which is measured by the receiver at
(r,2) in Figure 3-1(a). Therefore, in either case, we can use Eq.(2-12) by choosing the
coordinate system as shown in Figure 3-1.

Substitution of the pressure field p(r,z,z,) in Eq.(2-12) into Eq.(3-30), followed by a
change of the order of Fourier integration and mode summation, yields

8. (k,i7,2,2,) ~ #ZLWL(HF) 5(9’x.(': )("') o ey (3-31)

Alternatively, rewriting Eq.(3-31) with the use of a Fourier operator, S{e) = Idr e,

yields
x.(k,:F.z.z.,)~ﬁ-Zu.(O.z.)g.(k,.F.z) 3-32)
with
8.(k:7.2) = S{wrif) T—“-"”’ cheowl (3-33)
' L n(’)

where g, represents the spectrum associated with the nth mode. It is then immediately
scen that the departure of the peak position in [g,(k,:7,2,2,)] from Re[x,(r)] originates
from the following two factors: One is the range dependence of g,; the other is the
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interference with the sidelobes of the adjacent mode (£,,)- First, we will examine the
pukahiﬁdnetoﬂwﬁntflcmdlenin&cﬁm33wewiﬂeuminemepukshiﬁduew
the second factor.

3.2.1 Peak shift due to rang~ dependence in the local eigenvalue
In this subsection we will confine ourselves to the spectrum g, given by Eq.(3-33)

andeuminetheeffemofnngﬁdependeweinthebaleigenvdwonthh:pecm

Since the local eigenvalues vary slowly with range in the framework of adiabatic
mode theary, the phase term in Eq.(3-33) may be expanded in a Taylor series around the
center position 7 of the window. The expansion to the fourth order yields '

1kl e-r . @3

[k )ar = [l (r3dr + ke (X7 - r)+ |( PP+

where k() represents the real part of the local eigenvalue, i.e., k,(r) = Re[x(r)], and

2 3
this approximation is valid within the range |r - r|<<4d X I /d ak
Then substituting Eq.(3-34) into Eq.(3-33) along with a new variable t=r— T yields

-£p,d: il «'"
8.(k,:7) ~ ,f"-‘ J{&({’]’L‘_—wﬂ) e A , (3-35)

x,(r)

where the window function is assumed to be given as a function of 7, i.e., w (:7)
= w, (7). In executing the Fourier transform of the t-dependent functions, it is

convenient 10 integrate with respect to ¢ rather than . Hence, from the relation of

t=r-F, we may replace 3{e} ljdre"" with e S _{e}, where S (¢} !dee"'". Use

of this replacement afier deconvolution in Eq.(3-35) yields
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8.(k,:7)~ L
n@{v-—“’z'(:)) }oa{{f"‘}-[e‘" 3,{\0;(1) em,c«;_ﬁ'm%%'a}] . (3-36)

Since both x,(r) and ¥, (r,2) vary slowly with range 7 due to the adiabatic assumption,
the spectrum 3{u,/ﬁ-} is mainly concentrated in a region that is extremely close to

zero in wavenumber. Thus, this transform behaves in a manner similar 1o §(k,) and is
not a dominant factor that causes the shift of the peak in Eq.(3-36). As for the second
Fourier transform in Eq.(3-36), its major role is to broaden the peak as expected from the
result in the horizontally stratified case, where B, (r) is constant. Thus the shift in peak
position in g, is primarily influenced by the last transform in Eq.(3-36), which, for
convenience, we denote by F,(%,).

In order to evaluate F,(%,), let us examine it by further decomposition as

O o 16k
Fy(k,)= s"{wl-(‘t) ’m' W;;“{"' ;71"’}

= 3w, (1)) « SLM"7) # 3 (D7) 0 g (ARO7) (3-37)

2
where—l-l s kl( )andd—kl-| = k(7). The Fourier transform of each member on the

right hand side of Eq.(3-37) can then be evaluated in an analytical manner and these
results are described below.

The Fousi ! f cacl ber in Ea.(3-31)
1. The first transform 3w, ()} in Eq.(3-37) takes on a functional form which depends

on the type of window. For example, the rectangular window
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W m-{ (dsL/2) (3-38)

0 (d4>L2)
yields
S, w0} =sind Z1.) . (339)
and the Hanning window
wL(z)={%°°"(“;:) (s L/2) . (340)
0 44> L2)
yields

8,{wb(t)}=:im(-zl-'-k,)+;[ nc( k _ix ) uu{— k +-- )] (341)

In Eq.(3-41) the first sidelobe can be decreased by 33 dB as compared to 13 dB in Eq.(3-
39) at the cost of discarding some information in the field data by the Hanning taper. In
other words, the field data close to the edge of the Hanning window are weighted weakly,
while the field data at the center of the window are emphasized. This situation is,
however, suitable to our purpose if we recall the fact that the local eigenvalue at the
ceater of the window, Kk, (7), is the target we want to detect. Namely, our interest lies in
the peak position of the range-varying spectrum rather than in its correct shape; therefore
the Hanning window is preferable to the rectangular window in the current scheme.

2. The second Fourier transform S,(e'"‘" *} in Eq.(3-37) is immediately obtained from
the definition of the Dirac delta function [47,70], yielding
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S (% )= S(k~ Kk (7)) .

(342)

We note that the local eigenvalue k, (7) is constant in Eq.(3-42) as long as 7 is fixed.

3. The third transform S, {¢*“"*} in Eq.(3-37) can be rewritten as
3'{,%(»", = r SR 4
e O r‘ Past (c &m)
Use of the identity [57)
Ec”' dx=x

in Eq.(3-43) gives

s (e‘*m')’;} = ’ "%ﬁ““‘(m’»-
€ v lk. (;x ’

where sgn represents the sign of its argument.

4. The last transform S,{e"*”*} in Eq.(3-37) may be rewritten as

3 P P Ee(g‘ﬂa-“)dt

= E e-{ 0N ]

k"(r))
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(3-43)

(3-44)

(345)

(3-46)




where the integration variable t has been changedto v as t= v/(-ik,’,'(F))’ . Here we
potice that the integral in Eq.(3-46) is equivalent o the integral form defining the Airy
function [57]):

_1_ (i +av)
Ai(x)m 23[.:‘ dv . (3-47)

Thus we can represent the integral in Eq.(3-46) as 27 Ai(x) with replacement of
x=k[(~4k7)), yielding

g, (N7 o 2% Ai[ L ) . © (3-48)
~ik®) (k)
The results of our analysis of the terms in Items 1-4 indicate that the peak in |F, (%, )
forms near k= K,(7), primarily due to Eq.(3-42) and the rest of the terms serve to shift

the peak position or broaden the peak shape in the spectrum as explained below. In order
to determine the departure from K,(7), the convolutions in Eq.(3-37) must be executed.

Convolution of cach member in Ea (37
1. Convalution of 3:#%()) apg 347
First, we will convolve S {w,(7)) and S (e**”°} in Eq.(3-37). As shown above,

8 {w,(t)} for the rectangular and Hanning windows are given by Eq.(3-39) and Eq.(3-41),
respectively; S,{e#"%} is given by Eq.(3-48) using the Airy function. To facilitate
the expression, let S,{w,(7)} be denoted by W(Lk, ), in which the window length L plays

the role of making the argument dimensionless, as seen in Eq.(3-39) and Eq.(3-41). Ina
similar fashion, (—4k%7))? in Eq.(3-48) has the dimension of length, so that denoting it

as { represents the right-hand side of this equation as 2x£ Ai(¢k,). Thus, it follows that

Fi(k,)=2xL Ai(Lk, > W(LE,) (349)




or, sltematively, using the nondimensional parameters ¢ = £k, and €= L/{
Fi(Q)=2xLAi(grW(eg) . (3-30)

Figure 3-2 shows the results of F,(¢) for a set of positive €, which are obtained by
numerically executing the convolution in Eq.(3-50); the Hanning window givean by Eq.(3-
41) is here used for W(Lk,). In this figure, F,(¢) are normalized so that their maximum
values take one. Note that, from the definitions £ = (~3kV7)) ¥ and £ L/¢, the
positive € corresponds to a negative kX7). If £ <0, thatis, kX7)> 0, then we may
simply obtain a symmetric result about the ordinate in Figure 3-2.

As seen from comparison of the results in Figure 3-2, the peak position shifts from 0 to
-1 when |¢] takes larger values, which correspond to | < L or, equivalendy, kX#)>2/L’.
This is because the substantial contribution to F,(¢) by the convolution in Eq.(3-50) occurs
around the range where Ai(g) takes a maximum, i.e., Go= =1 (Ai’(¢,) = 0), since W(¢) has
a narrow width for a large |¢] (the first null =22/ = 2x¢/L). Figure 3-3 shows an example
for this case, i.e., W(¢) for |e]=16, whose bandwidth is small compared to that of Ai(g) at
¢~ —1. In an extreme case such as |g]>>1 or lejti")[*»l. the peak position in F,(g) is
located at ¢ = 1, that s, £, = ~1/¢ = ($4k717))!. This value corresponds to the actual |
departure from Kk, (7) and the peak position shifts to the positive direction for kX7) >0 and
negative for k17) <0, respectively.

In contrast, it is seen from Figure 3-2 that for small g}, that is, kX7) < 2/, the
peak position gets close to zero even thouéh the peak width broadens. This is because the
effective range in the convolution process becomes large, so that the contribution from
the positive and negative loops in Ai(g) for ¢ <0 tends to mutually cancel each other
out. As an example of this case, W(¢) for |e}=1 is compared in Figure 3-3 with Ai(¢).
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HEVI)

2. Convolution of 3de™™") g9 F,(k) (= 6w () » Sle
The next step for determining Fy(k,) in Eq.(3-37) is to take a convolution of F,(k,)

in Eq.(3-50) and S{e™"*}, which is represented by 8(k,~ K,(F)) as shown in Eq.(3-42).
From the sifting property in the Delta function [47,70], it follows that

Fi(k ) 5(k, ~ k(7)) = Fy(k, -k (F)) . @3-51)

Thus it is seen that ¢ =0 in Figure 3-2 corresponds to k, =k (7). Therefore, as discussed
above, the departure of the peak position from K,(7) depends on both the window length
L and [kX7)|, and its shifting direction is determined from the sign of kX7).

W s'{eW')!’) and Fl(k, - k.(;)) (= Sgb";(r)] . s'(el&(’)tl .-8'(8*‘(')(")
As a final step for obtaining F,(k,), we have to take a convolution of F,(k, -k (F))
in Eq.(3-50) and S,{e**"*}, which is evaluated in Eq.(3-45), giving

Fyk Chaliid RPN =} 3.52
o "‘WE (e-k(PNe ®7d; . (3-52)

In order to evaluate the above integral, one may utilize the method of stationary phase
[70,73] such that

2% {socrmn(ric)f]

’ 3-53
xl wlv( c.‘ q(Ca y ( )

F(x)= [q(g) €7 —

where ¢, is a stationary point which satisfies ¢’(¢,) = 0. Accordingly, for Eq.(3-52) we
can set x = I/k,(F), q(¢) = F,(¢-k,(7)), and ()= %(C‘ k,)z Since V‘:(;‘ is small

within the framework of the adiabatic approximation, [xj>>1 is satisfied. It is also found
from @’(g,) = ¢, — &, that ¢, = k,. Hence, we can finally obtain




Fk) =" E @, -k ) (3-54)

As a closing remark, the spectrum amplitude |g, (k,:7)]. that is proportioaal to
IFy(k,)]. has a peak shified from k(7), and its departure is primarily determined by the
relationship between the window length L and the second derivative of the local
cigenvalue k7). As LkX7) increases, the departure from k,(7) becomes larger.
Depending upon whether kX7) is positive or negative, the peak is shifted in the positive
or negative direction in the wavenumber &,, respectively. For L|k,’,(r"'f»l. the shift
distance approaches [k7)/2}!. For [kX7)| - 0. the peak position approaches k(7).

3.2.2 Analysis of simulated data

Bynkinguimpleenmplcofuinglzmodetituaﬁon.letmnumuicany'
demonstrate that the departure of the estimated peak position from the local eigenvalue is
related 1o the second derivative of the local eigenvalue and the length of the sliding
window, as discussed above.

In order 1o facilitate the numerical analysis, we will initially specify a local
eigenvalue k, (r) as a function of range rather than set up an ocean environmeat to
provide k_ (r), which requires solving Eq.(2-8) at each range. Thus we can specify the
values of k,(7) and compute kJ(r) whether or not there actually exists a waveguide for
accommodating this mode. The solid line in Figure 3-4 is chosen for k,(r) so that it has
a variable kX(r) with range. At900 m and 1100 m, k(r) has its greatest magnitude but
opposite sign. Between these points, K, (r) changes almost linearly with range and k;(r)
has its maximum value in this range. In providing these values for k,(r), the cubic
spﬁnewuuﬁlized.sothntheconﬁnuityofthiscmveisensﬁedupwtbemond
derivative k%(r). The factor ($kXr))}, discussed in Section 3.2.1, can then be
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calculated; its absolute value is shown in Figure 3-4 with a different scale indicated on
the right side of the figure.

Now, in order 10 obtain the shift of the peak position in the spectrum g, (k,;2) in
Bq.(3-33), the pressure field p(r) has 10 be constructed by using the K, () specified in
Figure 3-4. As scen from Eq.(2-12), the phase term is calculated simply from
[k.(ydr*, whereas the amplitude requires the computation of the local eigenfunction
¥,(r). Since the effect of the range-dependent variation in eigenfunctions is small when
compared to the phase variation, we may fix &,(r) to be a constant C. As a result, the
pressure field is represented in the form of a WKBJ solution as p(r)-C’c‘Iv/,[I_c;.

Then in Eq.(3-33) we can numerically compute the STFT of this p(r) by using the
FFT. Figure 3-5(a) shows the range evolution of this output spectrum when using a
Hanning window with a 400 m length and shifting its center every 20 m. Figure 3-5(b)
also shows the result obtained by using an 800 m length Hanning window; here the
spectrum at about 1000 m demonstrates that the STFT processing does not track k,(7)
well due to its strong variation over the range covered by the 800m length window.

In Figure 3-6 the majectory of the peak in the output spectrum in Figure 3-5(a) is
compared with the exact local eigenvalue Kk, () along with the trajectories for different
window lengths. The departure of these peaks from the exact value K, (r) is greatest at
about 900 m and 1100 m, where [ k2Ur) has its largest valve. In addition, Figure 3-6
shows that the longer the window length, the larger the departure from k,(r). For
comparison, these departures and (3k(r))}! are shown together in Figure 3-7. This figure
indicates that the direction of departure coincides with the sign of k\r), as discussed

previously.
In order to extract local eigenvalues in a laterally varying waveguide, the asymptotic

Hankel transform with a sliding window is applied to the range-dependent pressure field.
The error in the eigenvalue estimation can be studied by applying the transform to the
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adiabatic mode field. For a single mode situation, a numerical analysis confirms that the
degree of the departure of the peak position from the exact local eigeavalue is propor-
tional to kX7 Multi-mode effects associated with the estimation error in this

transform will be dealt with in Section 3.3.

33 Application of mode filtering

In multi-mode environments, the interference with the sidelobes of adjacent modes
may induce another type of peak shift in the spectrum in addition to the shift due w0 the
range-dependence of the local eigenvalue as discussed in Section 3.2. This kind of shift
can be reduced by choosing a proper type and length of window, which depends on the
difference in the eigenvalues for two adjacent modes.

If the distance of the adjacent modes in the wavenumber domain, however, is too
small, then even an optimal window cannot separate two adjacent peaks in the spectrum.
To overcome this difficulty, the separation of modes prior to the STFT is desirable. This
separation can be realized by using mode filtering applied to data obtained on a fixed
vertical array of receivers, if the environment at the array position is known a priori
[74,75). With the use of a coordinate system such that the z axis lies along the vertical
array (see Figure 3-8), the position of the jth receiver (1< jSJ ) is described by (0,z), and
the pressure due to a point source at (7,z) and measured by the jth receiver is defined as
p;. Owing to the reciprocity principle, as discussed in Section 3.2, each p, is theoret-
ically identical to the pressure p(r,2,2,) which is generated by a single point source at
(0.z)), and 30 Eq.(2-12) for the adiabatic mode sum can be rewritten for a set of

observations 7; as

N
P =2 4, q.(r.2) U=L...J) , (3-55)
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Figure 3-8: Geometry of a fixed ventical array of receivers and moving source
with a constant depth.




with

u,=u(0.2) , (3-56)
(r,2) lfww

=2 e . 3-57

q.(r,2) i2xe h ( )

As seen from this definition, each ¢(r,2) is a range-dependent quantity associated with
an inglividua.l mode. On the other hand, u, is a range-independent coefficient obtained by
solving the depth equation for the local eigenfunction, Eq.(2-8), with use of the known
eavironment at the azray site. If the number of receivers is equal to or more than the

number of trapped modes, i.e., J 2 N, then Eq.(3-55) can be inverted as described below,
and ¢,(r,2) can be expressed in terms of both the measured pressures p; and calculated

eigenfunctions u;,, thereby representing the signal carried by individual modes. Eq.(3-

55) can be rewritten in matrix form as
p=Uq , (3-58)

in which p,=(p;) and q,=(g,) are vectors with J and N elements, respectively, and

U,=[u,]is a JXN matrix. If the vertical array is constructed of many receivers, thus

enabling us to sample the field densely enough to write

j —SH 0.9, 0.ds = zp(‘z 4,0,2)u.(0,2) (3-59)

=1 P())

then it follows from the orthonormality condition for the local modes in Eq.(2-9) that

J
Zp( ))u ,(0,2)u,(0,2) = 5, (3-60)
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or, equivalently, in matrix form
VU=I, , (3-61)

where I, is an NxN identity matrix and V,=[u,(0,2)/p(z,)] is & <N marrix. This

matrix is also expressed using U as
V=RU , (3-62)
where R is 2 JxJ diagonal matrix
3 -
— 0
p(z)
Rs .. l . (3-63)
0
P(z,) ]

Keeping the relation in Eq.(3-60) in mind, we can apply the so-called generalized inverse
to Eq.(3-58). Namely, by multiplying both sides of Eq.(3-58) by the transpose matrix of
V, that is, V*, followed by further multiplication by (V' U)™, we can obtain the desired

result:

q,=V'U)'V'p . (3-64)

Therefore, g (r,z) can replace p(r,2,2,) in the asymptotic Hankel transform with the
sliding window (Eq.(3-30)) in order to obtain the wavenumber spectrum for the nth local
mode, yielding

it
8. (k,:7,2) ~ T;,ﬁ-f_%(r:?)\/; g (r,2)e*dr (3-65)




or, equivalently, using Eq.(3-57):

2 __d o U(r2) [xne _,,
8. k:7,2,2,) 7?. f_w,_(r.r) C) e e dr . (3-66)

From the peaks of [k, |z, | obtained above, we can determine the local eigenvalues with
the precision discussed in Section 3.2.

We recall, however, that the assumption of knowledge about the environment at the
array position was made. In general, the sound speed in the water column as well as the
water depth are readily measurable, but the bottom geoacoustic data are not. If there
exists an isobath in some direction near the array site and also the bottom properties are
constant over this range, then the boitom environment could be obtained by applying the
inverse method, which was developed for the range-independent case, to the pressum
measured over this range. For example, for a wedge-type environment, the water depth is
constant in the direction perpendicular to the sloping bottom. As will be shown in
Chapter 4, due to the effect of horizontal refraction, the pressure along this direction is
not completely equivalent to that in a horizontally stratified medium with the same water
depth, or more precisely, the same bottom environment. Practically, however, this effect
will be negligible, because our interest here lies only in the bottom at the array site, and
so the pressure field required for this inversion is limited to ranges relatively close to the
source (but x,7 >>1). This problem will be discussed again in Chapter 5.

In deriving Eq.(3-64), a conventional least-mean-square (LMS) method has been
applied 10 obtain (V' U)™. When V'U, however, is close to being a singular matrix such
that the eigenvalues of this matrix are near zero, its inverse becomes unstable and, conse-
quently, the output of Eq.(3-65) becomes affected by this processing error. As inferred
from the approximation in Eq.(3-61), this problem is associated with the following two
factors: One is the shape of the modes of interest and the other is the vertical array
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configuration, i.e., the total number and positions of the receivers. The former factor is
characterized by the acoustic frequency and the depth-directional variation of the medium
at the array site. In shallow water, the turning point depth of the ray associated with the
maximum mode, which is often located in bottom sediment, would be of the most
concem in connection with the lowest receiver. On the other hand, the latter factor is
associated with the experimental design and, in general, the array spans only the water
column or at best covers a few wavelengths below the bottom surface. Depending on the
combination of these two factors, the above matrix V‘U has a possibility of singularity,
which leads to the unreliable output of the mode filter.

To overcome this problem, several improved methods are available. Yang used an
eigenvector decomposition method (EDM) to estimate source location in the deep ocean
in the North Arctic Sea [76]. It was demonstrated that this method can resolve more
modes than the conventional least-mean-square (LMS) method. In EDM, one may
discard the eigenvectors whose eigenvalues are smaller than a given threshold, whereas
the stabilized least-mean-square (SLMS) method keeps those small eigenvalues by
adding some small number such as one tenth of the trace of V'U to the diagonal
components of this matrix [48,49]. The latter approach is one of the regularization
methods for inverting a singular matrix. By employing these methods, we can improve
the operation for obtaining q, in Eq.(3-64) and expect reliable separation of the modes.
Here we will describe these methods by using the well-known, singular value
decomposition (SVD) method.

As proved in Ref. 43, the SVD method can decompose 8 JxN matrix U in the

following form:

with
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4, 0

A= @A,,...4,>0) , (3-68)
0 a

AA=], &-a=5  @(=L..D, G

BB,=1, &-b=5  (=L.D, 3-10)

where A, =[a,)(1Si<T)is an NxJ matrix (a is a unit vector with dimension N) and
B, =[y](1Si< ) is a Jx] matrix (b is a unit vector with dimension J). In addition, @

and b are eigenvectors satisfying
UU'q,=Alg, (i=1..0 , 3-71)
U'Ub, = A2, (i=1...0 , ©(372)

respectively, and so A2 are non-zero eigenvalues, which have to be distinguished from
the mode eigenvalues x,.

H the receivers are placed in the water column and the water density is equal to one
all around the receiver positions, which may be assumed without great risk in shallow
water, then R in Eq.(3-63) becomes a: :dentity matrix. Employment of this R in Eq.(3-
62) leads to V=U. Hence, by using Eq.(3-67) with this relation, we have

U'U=B,A’B; , (3-713)
or using the vector b :
]
Uu=Y a5 . (3-749)
i=]
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Here, since 4, are not zero, the inverse mamix A7 exists. Thus it follows from Eq.(3-73)
that [43]

(U'U)* =B, A7B! , (3-79)
or using vector the b and A} =&, /A%
gy 1y~ L l (]
[ 2

Substitution of q, in Eq.(3-64) into Eq.(3-58) with the use of Eq.(3-67) and Eq.(3-75)
yields the following identity

P=AApP , 3-77)

where p is the observed field data and p, is the predicted field data obtained by using the
solution q,. In general, A A is not equivalent to an identity matrix and represents the
resolution of p,. As the rank of the resolution matrix A,A}, i.e., ] decreases, we have

lower resolution of p,.

Theoretically Eq.(3-75) and Eq.(3-76) can hold for any 4, (>0), but numerically
becomes unstable if there exists 4, = 0. If we use the EDM, these cigenvalues are
excluded from Eq.(3-76), yielding

’ -
m*(Z;—,bﬁb.{ )U'p dsn , (3-78)
dig?Viy

if the following condition is met:
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[ ;U p) <<5:,’(U'P) G=1..0) . 3-19)
4 A

3

where 4, is a typical eigeavalue after excluding 4.
On the other hand, in the SLMS method [48), one may add a small value ¢ in the
diagonal term of U’U, yielding

q=(UU+d,)"Up . (3-80)

By adding &b, to both sides of Eq.(3-72), it is seen that the set of eigenvectors b also

satisfy the following eigenvalue system

(U'u+d, )b =(a} +€)b, (i=1....0) (3-81)

with different eigenvalues. Based on eigenvector analysis, the inverse matrix of
U'U + €, results in

(U'U+4d,)'=B,EB, (3-82)
with
E,= ——818— (i=L..0). (3-83)
A+ 51l A
i

When 4,>> ¢, we may drop £/} out of the denominator in Eq.(3-83) and 30 obtain the
same diagonal terms as those in Eq.(3-76 ). On the other hand, when 4,<<¢g, the
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diagonal terms become close © 4.2/e and 30 becomes negligible. As a result, this added -
small £ term has the same effect as that in the eigenvalue decomposition approach.
In this way, by arranging the small eigenvalues in the singular matrix with the use of
the EDM or the SLMS, we can obtain a stable output from the mode filter. The effec-
tiveness of this method in mode filtering will be shown numerically in Section 3.4.
The generalized inverse used in the above methods leads to minimizing the vector
norm fp~ Uqf or jp- Uqf* + x2(q) [ Z(q): measure of smoothness and : Lagrange
multiplier]. If the measured pressure p consists of a set of signals with noise, which
obeys the Gaussian distribution with the covariance I', then we need to minimize
(p-Uq) T (p-Uq) in order to maximize the following probability density function for

p [43):

) = Eg Uity (3-84)
2x)

As detailed in Ref. 77, the so-called maximum-likelihood inverse can be executed by a
generalized inverse in transformed coordinates.

In this section, to reduce the error caused by the interference with other modes when
using the asymptotic Hankel transform with a sliding window, we exploited mode
filtering by incorporating data obtained with a fixed vertical array of receivers. When
this filtering process becomes unstable due to the effect of a singular matrix, we may
utilize the EDM or the SLMS for inversion of the singular matrix in order to provide
reliable mode separation. In the next section, the asymptotic Hankel transform with a
sliding window will be applied together with mode filtering to the pressure field for a
laterally inhomogeneous medium; the field will be synthesized numerically using
adiabatic mode theory.




34 Analysis of simulated data

In this section, we demonstrate through a simulated example that the methods
discussed in the previous sections to detect the local eigenvalues are effective. These
methods are applied here to the pressure field in a laterally inhomogeneous waveguide,
which is numerically simulated by using the adisbatic mode theory explained in Chapter
22.

3.4.1 Ocean and seabed environment

The laterally inhomogeneous shallow water model used here is shown in Figures 3-9
to 3-14. It is based on a range-dependent, multi-layered sediment model, which we will
detail in Sections 5.1 and 5.4. As assumed in the previous two sections, the environment
is taken to be cylindrically symmetric around the z axis, where either the source or
receiver array will be placed.

The bottom consists of three sediment layers, whose properties at r=0 are indicated
in Figure 3-9. The density and the attenuation coefficient take on different values in
different layers but remain constant within each layer. Also, the sound speed varies
continuously in the vertical direction in each layer, but becomes discontinuous across the
layer interfaces. The sound speed profile in each layer is described by an n2-linear curve:

1
c(r,2)= r:,(r)[l-2—;”(%’)1[2—h,(O)]]_z (hi(r)sz<hy(n) (3-85)
]

where A,(r) is the depth of the layer interface, ¢;(r) = c(r, k(0)) is the sound speed at
z=h;(0), and g(r) is the sound speed gradient in the jth layer. Note that the curve in
Figure 3-9 shows the profile at r=0, but becomes different at other ranges due to its range
dependence. Here the first two sediment layers are subject to lateral variation, but the
Jowest layer (subbottom) is taken to be range-independent.
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Figure 3-9: Sediment sound speed profile at 7=0 and other geoacoustic parameters
in the shallow water bottom model.
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Figure 3-10 s*ows the variation with range of the layer interface and the bathymetry.
These interfaces, including the water-bottom interface, are set so that they vary smoothly
with range t0 meet the adiabatic condition. The sound speed in the sediment also has
lateral variation, which is provided through range-dependent coefficients c,(r) and g(r)
in the n2-linear curve. Figures 3-11 and 3-12 show the lateral variation of the sound
speed at the interface depths and the sound speed gradient in each layer, respectively.
The geoacoustic parameters in the subbottom are constant due to its range independence.
The sound speed profiles in the sediment at various ranges are shown in Figure 3-13,
while a 3-D picture of the profiles is exhibited in Figure 3-14. For simplicity, the sound
speed in the water column is taken to be constant such that c=1500 m/s, and the water
density is fixed to be 1 g/cm®. Thus, we can simulate the pressure field by employing
adiabatic mode theory in this laterally inhomogeneous waveguide.

3.4.2 Acoustic environment

Here, we will consider a point source with a frequeacy of 75 Hz; the water depth at
r=0 corresponds to 2.5, where the wavelength A=20 m in the water column. Figure 3-15
shows the first nine modes at this range (r=0). The local eigenfunctions [u, (z,0)| are
plotted versus depth z and are individually normalized so that their maximum absolute
values are unity. Also, the local eigenvalues of these modes are indicated in the complex
wavenumber domain in Figure 3-16. As seen from this figure, the real parts of the
eigenvalues of the first five modes are greater than the wavenumber at the depth of the
subbottom surface k, and less than k, =27/4 , so that these modes are trapped between
the sea surface and the subbottom interface. The modes with eigenvalues that are smaller
than this wavenumber are similar to leaky modes because of the small sound speed
gradient in the subbottom layer. As this gradient goes to zero, the distance of these
adjacent modes in the k,-plane decreases and eventually they become part of the modal

continuum when g,=0.
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In order to examine the effect of these higher modes, let us temporarily consider a
borizontally stratified environment having the same propertics as that at 7=0. The
pressure field p(r,2,2,) is then represented by the sum of those modes based on Eq.(2-6)
in the normal mode theory. Thus we can compare two kinds of fields: One is a sum of
the lowest five modes and the other is a sum of the lowest nine modes which includes the
higher modes. These two results are compared in Figure 3-17, where we have plotted the
relative amplitude, 2010g,,[p(7, 2,2, ), due to a point source of unit amplitude at r=1 m.
As seen from a comparison of these results, we cannot recognize substantial differences
in the relative amplitudes. Thus we will basically use the lowest five modes to simulate
the pressure fields. When the effect of the higher modes, however, is examined, these
higher modes will be used in simulating the fields.

Now in the case of the range-dependent environment specified above, the local
modes vary with range so as to satisfy the depth equation in Eq.(2-8). Since the local
eigenvalues x,(r) must be used as a measure for evaluating the results, which will be
obtained from the output spectrum of the Hankel transform with the sliding window, we
need to have highly accurate values of x,(r) for comparison. We obtained these
eigenvalues every 5 m in range by solving the range-dependent characteristic equation.
In this process, we first obtained the approximate values for the local eigenvalues by
utilizing Eq.(5-23), which will be derived for the purpose of relating the perturbed local
eigenvalues and the perturbed geoacoustic parameters in an inverse problem in Chapter 5;
these approximate values can then be converged to highly accurate values by using the
Newton-Raphson method iteratively [54,78]. The local eigenvalues thus found for modes
one through nine are shown as a function of range in Figure 3-18.

As seen from this figure, the range variation of the local eigenvalues of modes three
through five is relatively large, because these three modes are strongly affected by the top
two range-dependent sediment layers. This fact can also be inferred from the mode
shapes in Figure 3-15. Of particular interest here is that the range variation of the local
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eigenvalue of the third mode shows a different behavior. Namely, as the water depth
decreases with range, the local eigenvalues of the other modes decrease monotonically
with range, whereas the local eigenvalue of the third mode first decreases, and then at a
range of about 2500 m, begins to increase. Apparently the third mode is affected more
intensely by the variation in sediment properties than by bathymetric change.

Let us check the effect of the higher modes in this range-dependent environment.
Figure 3-19 compares the pressure fields with and without those higher modes (modes
6-9) in the adiabatic mode sum in Eq.(2-12). Again we cannot recognize substantial
differences between the two results.

In this way, we can make use of the pressure field that is synthesized by a sum of
adiabatic modes. Once again, the objective in this chapter is to recover the x:ange-
dependent local eigenvalues from the given pressure field.

3.4.3 Application of an asymptotic Hankel transform with a sliding window

First let us apply a conventional asymptotic Hankel transform to the simulated
pressure fields. In this transform, the rectangular window is used to truncate the field at §
km, so that all range-dependent components are weighted equally. For the horizontally
stratified case in Figure 3-17, the output spectrum shown in Figure 3-20 clearly indicates
that each peak corresponds to an individual mode. Note that several small peaks around
the dominant ones are sidelobes caused by using the rectangular window in the transform.
In contrast, as seen from Figure 3-21 for the range-dependent case in Figure 3-19, the
peaks in the output spectrum are not distinctive except for the first mode. The peak of the
second mode is split and the third mode peak is very hard to distinguish. As expected
from the variation of x,(7) in Figure 3-18, the latter result for the third mode is due to
the interference with the adjacent fourth mode, which actually shares the same

wavenumber at a different range.
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Next let us examine the local character of the above spectrum by using a sliding
Hanning window. Figures 3-22(a) and (b) show the output spectrum of Eq.(3-30) when
using a Hanning window with a length (L) of 1000 m and 2000 m, respectively. Here the
ceater position of this window is slid every S0 m. In the case of L=1000 m, the spectrum
became unstable due to the interference of adjacent modes; this result stems from a short
window length. The result for L=2000 m improves this situation at the cost of losing the
local character, but even in this case we cannot distinguish clearly the peak of mode 3
through mode 5 in the region around r=1500 m.

In order to improve this result, let us utilize a mode filter by incorporating data from
a vertical receiving array at r=0. The array considered here consists of 10 receivers
placed in the water column every 5 m as shown in Figure 3-23. On use of Eq.(3-64) the
pressure field can be separated by modes and then the above asymptotic Hankel
transform with the Hanning window may be applied to the output of this mode filter.
Figure 3-24 shows a set of range-dependent spectra for each mode when using L=1000 m.
Figures 3-25(a) and (b) show the peak positions of mode 3 and mode $ in Figures 3-24,
respectively, and these peak positions are compared with the local eigenvalues. We
chose only to show the peak positions of modes 3 and 5 because they are representative
of the peak positions for the other modes. It is observed that the departure from the exact
values is noticeable at the range where the curvature of the local eigenvalue is large. To
effect comparison, the difference of these two curves, i.e., the amount of the departure
from the local eigenvalue, is plotted again in Figures 3-26. This difference is further
amplified for the case of L=2000 m as shown in Figures 3-27, which we discussed in
Section 3.2. Namely, as the window length increases, the departure from the exact
eigenvalue becomes larger.

In order to study the effect of the higher modes on the performance of the mode
filtering operation, let us apply the same method to the pressure field that is synthesized
by including those higher modes. In this case, some of the eigenvalues in Eq.(3-68)
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Figure 3-23: Geometry of a vertical array of receivers fixed at =0 in the shallow
water model.
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Table 3-1: Eigenvalues of the matrix in Eq.(3-68), which were used for the EDM.

Eigenvalue (4,)

K

0.4507
0.4460
0.4357
0.1552
0.0158
0.0005

AUNHB WHN ==

become extremely small, so that the generalized inverse matrix becomes unstable. (Note
that these eigenvalues must be distinguished from the modal eigenvalues in Figures 3-16
and 3-18.) Hence, we utilized the EDM with [ =6 in Eq.(3-77) to obtain the stable
generalized inverse matrix (Table 3-1). This result is shown in Figures 3-28(a) and (b)
for modes 3 and 5 in the same manner as above. In Figure 3-29, the departure from the
local eigenvalue is compared with the departure in Figure 3-26, which is obtained for the
field without those higher modes. These results show that in the case of mode 3, the
effect of the higher modes can be eliminated by using EDM, whereas the fifth mode
closest to the higher modes suffers from the interference with those modes.

At the end of this section let us study the effect of noise. In order to simulate the
noisy data, we simply add white noise to the real and imaginary parts of the pressure field
produced in Sectiqn 3.4.2. The white noise can be generated by using a Gaussian normal
distribution routine. Note that the noise added at different receivers was taken to be inde-
pendent from each other. Figure 3-30 shows examples of synthesized noisy pressure
fields. The signal-to-noise ratio (SNR) was defined by using the range-averaged signal

intensity. Here let us use the same mode filtering and Hankel transform as those used in
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Figure 3-24. Figure 3-31 shows examples of the resulting modal evolution. In Figures 3-
32 the peak trajectories and the departure from the local eigenvalues are compared for the
different SNR's. These figures indicate that mode 3 is the most sensitive to the noise and
we cannot recognize the peak beyond a range of 3000 m for a SNR of 10 dB. This is due
to the fact that the attenuation of mode 3 is the largest in the present mode! (see Figure 3-
16), so that mode 3 decreases most rapidly with range and has a larger influence from the
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3.5 Summary

In an attempt 10 extract local eigenvalues from the pressure field in a laterally
inhomogeneous waveguide, the asymptotic Hankel transform with a sliding window is
utilized in this Chapter.

In Section 3.1, we reviewed the definition of the Hankel transform and then, in the
case of a horizontally stratified waveguide, it was shown that the eigenvalues of the
normal modes can be accurately detected by applying a zero-order asymptotic Hankel
transform to the pressure field in the waveguide.

In Section 3.2, a sliding window was introduced into the zero-order asymptotic
Hankel transform to detect the local eigenvalues in a laterally varying waveguide. In
order to analyze the errors in this method, we applied the asymptotic Hankel transform
with a sliding window to the pressure field expressed by the adiabatic mode sum and
examined analytically the effect of range dependence on the local eigenvalue estimates.
In a single mode situation, it was found that the departure of the peak position in the
output spectrum from the local eigenvalue depends on both the second derivative of the
local eigenvalue and the window length and type.

In addition to this error, another type of departure from the local eigenvalue is
induced by the interference with the sidelobes of adjacent modes. To reduce the latter
type of error, the separation of modes prior to the application of the Hankel transform
with a sliding window is desirable. In order to accomplish this, we exploited mode
filtering by incorporating data from a fixed vertical array of receivers in Section 3.3.
When this filtering process becomes unstable due to the involvement of a singular matrix,
it was demonstrated that the eigenvector decomposition method (EDM) and the stabilized
least-mean-square method (SLMS) are useful in providing reliable mode separation.

In Section 3.4, we applied the asymptotic Hankel transform with a sliding window
and mode filtering to a pressure field which was simulated numerically by using adiabatic
mode theory in a model of a laterally inhomogeneous shallow water waveguide. The
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results indicated that the use of mode filtering improved the detection of the local
cigenvalues. When the field includes higher modes, it is confirmed that the EDM is
useful in providing a stable results for mode separation.

In order to address the case of a 3-D varying environment, results obtained in this
chapter will be extended in the next chapter.




Chapter 4
Analysis of the Effect of Horizontal Refraction
on the Hankel Transform

In the previous chapter, we assumed the waveguide to be cylindrically symmetric
around a fixed source or receiver array, so that the sound propagates in the radial
direction and does not suffer from horizontal refraction. In general, however, we must
take into consideration the effect of horizontal refraction when a medium with bottom
sediments varies arbitrarily but gradually in the horizontal direction so that the pressure
field does not remain symmetric.

In this chapter, we will explore a method for determining local eigenvalués for non-
cylindrically symmetric fields. In the first section, the problem of horizontal refraction is
raised. In Section 4.2, we explore the use of a general Hankel transform with a sliding
window based on the scheme discussed in Chapter 3. In Section 4.3, an alternative
representation of a 2-D Fourier transform with a sliding window is derived and we
examine the effect of horizontal refraction. In Section 4.4, the results obtained in
Sections 4.2 and 4.3 are numerically studied by applying them to a pressure field that is
simulated by using the horizontal ray method. In Section 4.5, a way for effective

measurement in a 3-D varying environment is considered.

4.1 Problem definition

When we utilize the Nx2D method in & 3-D varying waveguide, the pressure field
can be synthesized by using only the sound speed profile and bottom sediment conditions
along a radial, just as if the medium were symmetric. The simulated field can provide a
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good approximation to the pressure field and actually includes horizontal refraction to
some extent. This is due to the following approximate relation:

()N ds - [k, (r8)dr “D

where the integral on the lefi-hand side is executed along the horizontal ray path s of the
mode propagating from the origin to (x,y), whereas the integral on the right-hand side is
taken simply along the fixed radial (6, direction).

In the inverse problem for detecting eigenvalues from a given pressure field,
however, we are not able to take advantage of Eq.(4-1); that is, to apply the asymptotic
Hankel transform with the sliding window in Eq.(3-30) to a non-cylindrically symmetric
field along some fixed radial by assuming Eq.(4-1). If we do this, then the wavenumber
of the peaks detected by this transform is only the component projected on to this radial
direction (Figure 4-1) and, consequently, we would always underestimate the local
eigenvalues. This is because what is accounted for by the transform is the rate of spatial
change of phase along the radial, not the accumulated phase shown in Eq.(4-1).

Thus the key to this problem is how to invert for the horizontal refraction angle at
each observation point. If this angle were known a priori, the .1 we could compensate for
the underestimated wavenumber discussed above by using this angle. For example,
assume & 3-D varying wiveguidc such that the horizontal refraction of modes is
dominated only by bathymetric change. We can then predict the refraction angle by
means of the horizontal ray technique. In shallow water, however, this assumption does
not always hold, especially for higher modes in the lower frequency region. Namely,
those modes are often more sensitive to the variation of the sediment structure and

properties rather than the bathymetric change in the propagation process [79].
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Figure 4-1: Schematic illustration of the phase front passing the observing
point (7,0) and wavenumber component in the radial direction.




Therefore, in order to obtain accurate local eigenvalues in a noa-cylindrically
symmetric environment, we must use & 2-D Fourier transform or general Hankel
transform.

Since the region of the pressure field to be examined is an intermediate range (e.g.,
r<R,~10 km), the phase front associated with a mode is primarily spreading out in the
radial direction. Also this phase front does not change its direction suddenly due to the
adiabatic assumption. Thus if we use a cylindrical coordinate system, the direction of
this modal evolution can be described along a radial plus a perturbation. With this
viewpoint, the measurement along the radial direction, as carried out in the cylindrically
symmetric case, can be the most effective way to provide the pressure data for
determining the dominant variation in the local eigenvalue. Hence, based on this notion,

we will continue to use a cylindrical coordinate system in the following sections.

4.2 General Hankel transform with a sliding window

In this section, we will explore a method for obtaining local eigenvalues for a non-
cylindrically symmetric field. In this case, we have to start from the 2-D Fourier
transform in the form of Eq.(3-5) to obtain the spatial spectrum in terms of the cylindrical
coordinates (%,,@). As discussed in Chapter 3, a window function may be incorporated
into Eq.(3-5) in order to obtain the local character of the wavenumber spectrum:

gk, ,p:7,8,2)= -2-1; [arwrirr [ a6 v,(0:6)p(r, 0,00 =00 42

where § in Eq.(3-5) has been replaced by g with the use of the relation in Eq.(3-10).
Here, as shown in Figure 4-2, the window is given by the product of w,(r;7) and
V,(6;6); the former is a window function for the range direction with a center position
of 7 and a length of L (as in the symmetric case), and the latter is a window function for
the azimuthal direction with a center direction of & and an angular width of 0. By
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Figure 4-2: Schematic illustration of the 2-D window defined
by w(riF)X v(6:6).




choosing a small width for £2, we can reduce the variation in the propagation direction of
the phase front associated with x, inside this window, as long as the range of interest is
in r<R,. On the other hand, the minimum length of L is restricted in order to attain the
required resolution in the output spectrum in £,.

4.2.1 Derivation of the general Hankel transform with a sliding window
Now, in order to derive a general Hankel transform, the exponential term in Eq.(4-2)
can be rewritten using the generating function for the Bessel function [57):

Pt DN 1 Yall @3)

where J(k r) is the nth order Bessel function. After converting the sine function toa
cosine function by adding x/2 to its argument, we substitute Eq.(4-3) into Eq.(4-2),
which yields

a A 1 - 2 -~ -
g(k"w;"a’zh?;fd’ w(rr)r f de Va(&e)p(r.O.z)[;L(k,r) ¢""‘H>] '
(4-4)

By changing the order of summation and integration with respect to 8, it follows that

8k, 0:7.0.0) = [drwrP)r TC.(rb. Lk o )

where C,(r) represents the Fourier coefficient at range 7, which is defined by

C.(r;5.2)=-2-l;f' d6 v,(6:6) p(r.6,2)e™ . (4-6)
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Owing 1o the window function v,(8; 8), the pressure field required for Eq.(4-6) is limited
in the azimuthal width £. Here attention should be paid to the size of £2. Namely, this
cannot be reduced as much as desired, depending on the type of the window v,(6;8). If
v(8;6) has a discontinuity such as a rectangular window, then the Fourier series
representation for this function has an error due to the Gibb's phenomenon [70]. Hence,
in this sense, the Hanning window is preferable to a rectangular window.

Since the range of interest is far enough to satisfy &, >> 1, we can employ the
asymptotic form for the Bessel function as done in Chapter 3. To do this, we use the
identity:

J(kr) =.;.[H:"(k,r)+uff’(k,r)] @7
with the asymptotic form for the Hankel function [57]:

Oy |2 R T 3
HO(kr) w[nmm]e \

4-8)
@ 122 [ = -
H®(k,r) ,’ prap. [o.-ip.]e '
where
—1- 4n* -1X4n*-3")
(T
4-9)
p, = 4n* -1 @4n’-1)4n’-3)4n’-5")
ok 31(8k,r)’ D

In the case of cylindrically symmetric fields, we used only the initial term in the
asymptotic form of the zero-order Hankel function as shown in Eq.(3-17) and Eq.(3-18),
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while here the higher order terms in Eq.(4-9) cannot be simply neglected because » goes
to infinity in the summation in Eq.(4-5).

The pressure ficld due 10 a point source at 7=0 is dominated by an outgoing wave in
the region of interest (7 <R, ), even when subjected to horizontal refraction. Thus, when
we substitute Eq.(4-7) with Eq.(4-8) and Eq.(4-9) into Eq.(4-5), the terms including e*
do not substantially contribute to the integral in Eq.(4-5) and can be dropped out of this

equation, which yields

- L
s(k..¢;f.e)~72‘?‘- [@rmriNre®

& oo, @ -P) @n'-P)4én?-3)
x-E.-C.(f;o)[l Ty 7 21(8kr)?
2_12 2__ 22 2_«2
+14n 1)(;&“;’)(4': 54..],-' . (4-10)

For simplicity, the functional notation for depth is omitted in Eq.(4-10) and also in the

following equations.
By «eeping the leading term in the numerator of each fraction within the bracket

when summing over n, Eq.(4-10) can be approximated by
.a et o~ -
gk, @:7,6) ~ 72_"‘.’@’ w(rAVrev
= ol =i 1 (=i} 1 (~in*Y
X—Z-.C.(nO)[l+-2';;+§-!-(-§k—’-’-) +§T ﬁ; TSN Pl 4-11)

s
e
Noticing that the inside of the bracket is a form of a Taylor series for e **, we obtain

the following form:
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.t - a2
:(k..w’-”"'v%:i'fd’%(nf)ﬁe* Scnbre @ e . @12)

The right-band side of Eq.(4-12) can be evaluated numerically in principle, but

realistically this requires too much computational effort. This is due to the factor &

-2

located in the denominatorin e ¥, 50 that we cannot simply make use of the FFT when
performing the integral with respect to 7, as done in Chapter 3.

Therefore we will examine Eq.(4-12) analytically in order to evaluate it in an
approximate manner. In Section 4.2.2, we expand Eq.(4-12) by using a differential
operator with respect to the azimuthal angle in order to study the relationship between the
zero-order Hankel transform in Eq.(3-30) and the general Hankel transform in Eq.(4-12).
On the other hand, in Section 4.2.3, we derive an approximate form of this transform by
resorting to the stationary phase method. Based on the analysis of the horizontal
refraction effect with the use of this approximate form, we will explore a method for

determining the horizontal refraction angle.

4.2.2 Relationship to th: zero-order Hankel transform

Unless the term e.‘_""-7 is included in Eq.(4-12), the sum over a stands for the Fourier
series for p(r, @), so that this representation reduces to the asymptotic form of a zero-
order Hankel transform given by Eq.(3-30) with replacement of 6 by ¢. As a special
case, if p(r,6) has no angular dependence such as in the cylindrically symmetric case, we

have C, =p(r,6) and C, =0 (n # 0) from Eq.(4-6) and thus Eq.(4-12) again reduces to
s

——
Eq.(3-30). Therefore we see that the term e 2% is a key factor for resolving the

horizontal refraction effect in this transform. Actually, as observed from the fact that
¢
e
¢ ** has both n- and &, -dependence, this term contains the interaction of transforms in

the radial and angular directions.
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It is well known that the index n in the Fourier series corresponds to the operator
-id/98, i.e., in general:

J
;n’c_e“' = (55) Y.C.e™ (j : arbitrary integer) . 4-13)

If one applies these properties in Eq.(4-13) to Eq.(4-12), then it follows that
u 4 1(2
gk, .;7,0)~ 7’2%1:4'”1(";) N ¢"'~'[¢W(ao). pir, O)L’ . (4-14)
or, using Eq.(4-11),

- %
8k, @:7,6) ~ 72‘—;1- der(r.f) Nre®
_ 1 () ..

Here, considering the condition w, (r;7) =0 for |r ~ 7> L, the integration range has been
formally extended from 0 to ~oo in order to facilitate a comparison with the zero-order
Hankel transform.

It can be observed that Eq.(4-15) will again reduce to Eq.(3-30) if we keep only the
first term in the bracket and set @ = 6,. As a matter of fact, this situation corresponds to
the cylindrically symmetric case because 9> p/d6* =0(n21). Accordingly, the rest of
the terms represent the effect of horizontal refraction and can be considered to be small if
these derivatives are small. Therefore Eq.(4-15) shows that the general Hanke] transform
can be represented by a zero-order Hankel transform as a primary term plus additional
terms which account for horizontal refraction, as expected in Section 4.1.
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4.2.3 Analysis of the horizontal refraction effect

In this section, based on the general Hankel transform with a sliding window that
was obtained in Section 4.2.1, we explore an approximate method for detecting the
horizontal refraction angle in order to determine local eigenvalues.

First, in order to clarify the role of @ in Eq.(4-12), let us replace it with a new angle

8 defined by
Smp-6 . (4-16)

If the phase front launched from the source in the direction é passes through the
observation point at the angle @, then & represents the horizontal refraction angle at this

point. On use of this angle, Eq.(4-12) becomes

.t _ s e
g(kﬂ&;-a)”Vlg—z-k-ﬂder(f;f)w/;eq(l'*’)" ZC-(';O) eT"’.( g i

(4-17)

where the integration range has been extended from 0 to —eo owing to w, (r;7). From

this form we can interpret Eq.(4-17) by dividing it into the following two stages:

1. By rescaling &, as k,—(1-48°)k,, where 1-$8? is the scaling factor, the
integral with respect to r can be considered to represent a zero-order asymptotic
Hankel transform with the new wavenumber (1-46%)k,. Note that this scaling factor

approximately stands for cosd since 181<<1.

2. This transform then operates on the range-dependent function F(r,d; 6) defined by

*‘—("‘v " b
e

Fr.5:0)m SCrnd)e ™ @&18)

105




Kl

l” k

t/ 6 ’

y kN \®
A -2
(r,8)
6
—_ X

Figure 4-3: Wavenumber and its components projected in the radial and

azimuthal directions.
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e
where ¢ 2V may be regarded as the weight of the Fourier coefficients in this

series. Inside this weighting function, § plays the role of a parameter controlling this
function.
In order to have more insight into Eq.(4-18), let us express this equation using &,,

{.e., the horizontal wavenumber component perpendicular to &, (sec Figure 4-3). As r
and k,, and as 6 and n are both pairs of conjugate variables, the arc length £ is also
conjugate to k,. In the Fourier transform, k, corresponds to ~id/d¢ in the same manner
as n corresponds to —id/d6. On the other hand, we have the following relation from
{=0r:

Thus, by combining these two relations, it is immediately seen that &, and » are related
by k, =n/r. Using this relation, F(r,5;6) can be rewritten in terms of k, and £, instead
of nand @, as

. = I
F(r,5:0)= Y. C,(nf)e *\* /¢ | (4-20)

[ ]

where C,.(r;é) = C.(f;é).
Since & r>>1 is satisfied, the weighting function %2 with Q = —$(k,/k, —5)°

becomes a rapidly oscillating function except for its stationary points. These points,
denoted by £, , can be easily determined by solving [70,73]

o:%kng;‘-(%-s) . @21)
(] (4 r
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Thus &, is related to & as

k, =05k (4-22)

and the primary contribution to F(r,&;8) occurs around these points. Hence, if we fix &
as 8,ie.,fix ¢ as 8+3, in Eq.(4-20), then this weighting function filters out
components only around £, (= 8 k,), which yields

F(r,5:6) = C"‘(r: 6) o . (4-23)

where C"(r; 6) is the Fourier coefficient for k, = E“ (see Figure 4-4). If this component
of the given pressure is small, ie., C; (7 6) =0, then we have F(r,5;68) = 0 from Eq.(4-

23) and, consequently, it follows that we have g(k,,3;7,8) = 0 for this specific 5.
The above app?oximation holds, even when using » instead of £,, and so Eq.(4-22)

and Eq.(4-23) are rewritten as

n=6kr . @24)
and

Fr.5:0) =G o) e™ | (4-25)

respectively. We see that, when deriving Eq.(4-25) from Eq.(4-18), &,r is placed in the
denominator in the exponential term as compared to being placed in the numerator in
Eq.(4-20). But, recalling that n =k, the term n is of order 7 and consequently the
exponential term in Eq.(4-18) tumns out to be proportional to &,r in the same way as
Eq.(4-20). Thus we can utilize the stationary phase method in using n.

When changing the value of 8, F(r,§; 6) varies approximately in accordance with
Eq.(4-25) and has its maximums at §,, where C,(r;6) is maximum. Physically this
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Figure 4-4: Schematic illustration of the Fourier coefficient |C,(r;5)|, which has its
local maximum at n,. This can also be represented in terms of k, by using k, =r/n.
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means that each 8, matches the propagating direction of the major phase front associated
with the modes at the observing point (7,8). Thus cach &, represents the horizontal
refraction angle of the local modes at (7,8). In order to find those &, F(r,5;6) in
Eq.(4-18 ) or g(k.,8;7,6) in Eq.(4-17) has to be evaluated by changing &, but it is not
straightforward as mentioned in Section 4.2.1.

Instead, let us take the variation of F(r,5;6) with respect to 8. Todo thisina
simple, approximate manner, one can differentiate F(r,5;6) in Eq.(4-18) with respect to
& after a Taylor expansion of the weighting function and then keep the leading term:

%-i i(n—ak,r)c.(r.é) Pl (4-26)

The above &, may be approximated then by the angle satisfying |0F/95]=0. In this
process, however, &, cannot be determined independently of k,, since this varisble is
involved in Eq.(4-26). To represent this condition in terms of £,, as well as &, one can
apply the zero-order Hankel transform with the same window w,, to Eq.(4-26), after
dividing it by k,r, yielding

=0 . 4-27)

Iﬁirw,_(r;i" re i (fr--b')C_(r;é) e

Owing to this approximation, the FFT is now available for use in Eq.(4-27). From this
result, we can approximately determine the horizontal refraction angles §,, in connection
with the local eigenvalue or local mode. As presented in Item 1 on page 105, we changed
the scale of the wavenumber by a factor of 1452 when operating with the zero-order
asymptotic Hankel transform; therefore, the £,-scale of its output spectrum has to be
multiplied by the reciprocal of this factor. By this process, we can correct the
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underestimated peak position obtained by using the zero-order asymptotic Hankel
transform with a sliding window.

In this section, we applied the general Hankel transform with a sliding window to
non-Cylindrically symmetric fields in an attempt to determine the local eigenvalues in a 3-
D varying waveguide. By expanding the general Hankel transform in a Taylor series, we
found that the first term corresponds to the same form as that obtained for the
cylindrically symmetric waveguide in Chapter 3; the rest of the terms take on a form
given by applying the zero-order Hankel transform with a sliding window to the pressure
field differentiated with respect to the azimuthal angle. Therefore, if these terms are
small enough to neglect, then the effect of horizontal refraction is negligible. If it is not
30, we have to take into consideration the horizontal refraction effect by evaluating the
general Hankel transform with a sliding window.

Since we cannot use the FFT when executing the general Hankel transform, we tried
to evaluate it analytically in an approximate manner. By resorting to the stationary phase
method, we derived an approximate form for this transform. It was then found that the
Fourier coefficients play the role of a filter for § or @ to match the direction of the major
phase front. Based on this analysis, we found a method for determining the horizontal
refraction angle approximately by taking the first-order variation of this transform with
respect to @. Finally, by utilizing a scaling factor, 1- 8%/2, we can compensate for the
deficit in wavenumber that is obtained when using the zero-order Hankel transform in a
--D varying waveguide.

In the next section, by exploiting an alternative form of the 2-D Fourier transform,
we will examine the effect of horizontal refraction on the zero-order asymptotic Hankel
transform with a sliding window when employing it in a non-cylindrically symmetric
waveguide. '

111




4.3 Study of the horizontal refraction effect using an alternative representation

In Section 4.2, we studied the effect of borizontal refraction by applying the general
Hankel transform with a sliding window to the pressure field in a 3-D varying waveguide.
In this section, we will re-examine this effect but will use an alternative representation of
2 2-D Fourier transform with the same sliding window in a cylindrical coordinate system.
The purpose of this section is to afford a better understanding of the role of the variable
@ (or &) in the 2-D Fourier transform in connection with the horizontal refraction effect.

To do this, let us first separate the pressure field into its constituent modes with the
use of the vertical receiver array fixed at r=0 as discussed in Chapter 3.3. The output of
the mode filter ¢,(r,60,2) for the nth mode can be expressed as

q.(r.0,2)= A (r,6,2)e™"" (4-28)

where the phase S, represents the accumulated phase along the horizontal ray path s for
the nth mode on the x-y plane:

5.rn0)=[""xds . 4-29)
Recalling the relation in Eq.(4-1), we can define the average eigenvalue K, (7,6) as

S.(r.6)nrK (r,0) , (4-30)
because the range r dc: rot represent the exact integration path length s. A Taylor
expansion of K,(r,0) with respect to the azimuthal angle around &, which is the center

direction of the window ,(6; ), yic'ds

K, (r,6) = a(r;6) +B(r;6) (6 - )+ (4-31)
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with

a,(rf)= K.(r.é)sés,(r.é) : “32)
Brdya2ElO) 195600 “33)

Here let us assume that B, can also be obtained approximately by using the phase
diffmbetweentwooutput:ignaisofmcmodeﬁlm

S,(r.60+40)-S5,(r.0) (4-34)

P.(r6)~ rA@ ’

where the pressure fields corresponding to each signal are separated by A€ in the
azimuthal direction. Thus substitution of Eq.(4-30) and Eq.(4-31) into Eq.(4-28) yields

0.(r.0,2) = A (r,8,7)e [V b (4-35)

Now let us operate on Eq.(4-35) with a 2-D Fourier transform with the same window
used in Eq.(4-2):

l(k,.Q;F. é)s fdrw,_(r;f) re* e ft do vl 6. é) A, 0) ebﬁ.(rxo-l) e~ 0-0) .
(4-36)

where the functional notation of 2 has been omitted for simplicity. For convenience, let
us express the phase term inside the 6-integral in Eq.(4-36) as k rQ, with Q,(6) defined

by

Q_(O.r)selk({l(e-é)-cos(a-p) : @37
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Then, owing to k.7 >> 1, we can utilize a stationary phase method [70,73) for this integral
and determine the stationary point 6, from the condition satisfying

g .Elﬂ 1 - =
“L <2456, 9)=0 . (4-38)

By solving this equation for 6,, we have

a,.,-;in-'(én‘-’l) . 439)
U o 0 . . .
se of 6, along with -a-a,-sl in the formula of the stationary phase method given by
Eq.(3-53) yields

:(k,.vzv".é)~e“,j%j:%(r.?)\b(o.:é)&(r.o.)

._(r)op,(rxo-%)-i.(r)d-"(ég)" -(‘*(Aéﬂn] rdr

xe . (440)

Since |B,(r)] << k,, due to the assumption of gradual variation of the medium, we may

use the following approximation in Eq.(4 40):

,i,,-.(e.@).e.g_) (@-41)
x' x'
and
2
{4
K, 2\ x,
As a result, Eq.(4-40) becomes
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(4 '.-‘)—‘Sa-‘
& (r)eA (X 2% ]\/;dr

sk, 9:7,8)~ cﬁvﬁg\b(wé) [ wrnhracr, v);[
(4-43)

where we changed the integration range in the same way as in Section 4.2.2 and approx-
imated the amplitude term as ¥, (6,:6) = v, (¢:8) and A,(7,6,) ~ A, (7, ) by dropping
B.(r)/ k, in Eq.(4-39) because of its negligible effect. But we cannot neglect it in the
phase term. As discussed in the previous section, if we can match @ to the propagation
direction of the phase front associated with the nth mode at the observing point (7,6),
then the exact wavenumber for the local eigenvalue may be obtained from Eq.(4-43).

Therefore, let us study the effect of horizontal refraction by specifying the values of
@ in the form of a 2-D Fourier transform given by Eq.(4-43).

LCaseof #=6
By setting @ = & in Eq.(4-43), we have

lz ’) g(rz &
:(k,.é;f,é)j;;—k' Lu(r.f)A.(r.én'["‘ * ]J7¢r : (444)

or, using the definition ¢,(7,6) = A (r,6)e™",

5.3 8 ﬁ 2 o "'%.m -
:(t,.o;r.a)~m_['_q(nr)q.(r.ou eVrar , (445)

where v, (6,68) =1 has been employed. It is observed that Eq.(4-45) differs from the
zero-order asymptotic Hankel transform in Eq.(3-30), which was obtained for the

(]
cylindrically symmetric case, by a factorof ¢ 2 . If the sign of the exponential term is
positive, then we can obtain the peak position close to the local eigenvalue as will be
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detailed in Item 3. But, in this case, we obtain an underestimate value from the peak
position in the output spectrum of Eq.(4-45) as explained in Item 3 again.

2.Case of 8= 6+6,(1)f2k,

i we set

=6+ 50
L4 2k (4-46)
then it follows from Eq.(4-43) that

£
ok, 6435 57,0 ~7§_;k'£“i(nf)&(r.§)e"‘""""'wf;dr. T @

where B,/2k, in the argument for v, and A, has been neglected in the same manner as in
deriving Eq.(4-43). If we rewrite Eq.(4-47) by using ¢, (7, 6), it follows that

s

“""“’*fg""'é’“:[%:? [ w:ha b Far . (448)

Here we notice that the right-hand side of Eq.(4-48) is equivalent to the zero-order
asymptotic Hankel transform with the sliding window in Eq.(3-30), which was obtained
in the cylindrically symmetric waveguide. As stated in Section 4.2, the peak position
determined from this spectrum is always qnderestimated due to the horizontal refraction
effect.

3,Cuse of #=0+8,00/k
By noticing that B, corresponds to k,(= n/r), the wavenumber component in the

azimuthal direction defined in Section 4.2, we can predict the refraction angle 5= @ ~ 6
from Eq.(4-27) as:
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(4-49)

This relation can also be understood from a physical point of view if &k, = x,. As
illustrated in Figures 4-1 and 4-3, if the phase front associated with the nth mode passes
through the observation point (7,8), then & = @ - @ is related to the wavenumbers &, and
B.as B./k, = tand = 5. Here the horizontal refraction angle & is considered relatively
small. Thus employment of this relation in Eq.(4-43) yields

a - ‘:‘ - - (4 (e
.8+ 8u 7 '”"72‘:?11%@.;)4(',9):’["” o s

or, equivalently by using gq,(r.8) = A, (r,8)e">",

L3
=

g(k,.o+%;f.a)-7;-;;k-f_ wrarde * e Vrdr . @s1)

As pointed out in Section 4.2.1, we cannot evaluate Eq.(4-51) using the FFT due to the

i (r) .
term ¢ ** . But Eq.(4-51) can be evaluated in an approximate manner as follows. First,
let Eq.(4-51) be rewritten as

& 1 XC)Y
gk, .0+ %-;F. 6)~ 7;—;1‘-£w,_(r;F)q_(r, é)c_{l—z( ¢ ) )Uwf; dar . (4-52)

If we replace B,/k, with § in Eq.(4-52), then the resulting form can be identified with
the integral with respect to r in Eq.(4-17). Thus, following the description in Item 1, page
105, we can consider Eq.(4-52) as a zero-order Hankel transform with a sliding window
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by changing the scale of %, by a factor of 1 - $8°. Since & is a function of k,, the above
stagement is not completely correct; but, we can fix & in &(=pB,/k, ) by giving some
approximate value ( K, (7)) that is close to the exact local eigenvalue x,(r). For
example, we can use the peak position in the output spectrum of Eq.(4-48) for K,(r). Of
course, this is not an exact local eigenvalue, but x,(r) - K,(r) is of second order, 30 this
choice does not affect 1-48* much to leading order. More simply, if we fix B,(r) in
Eq.(4-52) as B,(7), then the scale factor abo- = can be immediately calculated and the
local eigenvalue at the observation point 7 is approximately given by

K (F)=K (F)+ ipé% . (4-53)
Thus the above procedure can be summarized as follows: (1) First we apply the zero-
order asymptotic Hanke] transform with a sliding window to the output of the mode filter
even in a horizontally refracting environment; and (2) We compensate for the
underestimated output by using B,(r) as shown in Eq.(4-53) to obtain the local
eigenvalues.

Of particular interest is that, as seen from a comparison of Eq.(4-46) and Eq.(4-49),
the zero-order asymptotic Hankel transform in Eq.(4-48) corresponds to the 2-D
transform obtained when adjusting @ by one-half of the deflection angle, i.e., 8,/2x,.
The deficit in adjustment for @ results in an underestimate for the local eigenvalue as
shown in Eq.(4-53).

As noted in Item 1 (page 115), i.e., the case of @ = 6, the underestimated amount

(r ”
becomes B2/x, because of the factor ¢ >* , which differs from e  ** by B3/x, in
the exponent. So this factor serves to increase the deficit in the peak position in the

output spectrum.
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In the next section, the result in Eq.(4-53) will be compared numerically to the
results obtained using the general Hanke! transform in Section 4.2. The method used in
this section would not be practically applicable to real data, because we cannot expect o
obtain the stable phase difference S,(r) due to the effect of noise. In this section, we
focused rather on the analytical description of horizontal refraction by deriving an
alternative representation with the use of the phase difference B,(r) in the different
azimuthal angles. We also compared the resulting transform to the zero-order asymptotic
Hankel transform with a sliding window and found that the underestimated amount for
the local eigenvalue in the latter transform can be expressed in terms of the phase
difference B,(r).

4.4 Analysis of simulated data

In this section, we will examine numerically the methods obtained from the previous
sections to determine the local eigenvalues in a 3-D varying waveguide. Here we will
utilize a non-cylindrically symmetric pressure ficld which is simulated by using the
horizontal ray method.

4.4.1 Bottom environment and field simulation
We will use a wedge-type bottom as shown in Figure 4-5. The range-dependent

parameters characterizing the bottom sediment are given as a function of the x-coordinate
only, so that the ocean environment does not change in the y-direction. As for the bottom
change in the x-direction, we set the same variation used for the bottom model in Chapter
3.4. Hence Figures 3-9 through 3-14 hold true for the current bottom model by replacing
the variable  with x. If we employ the same source whose frequency is 75 Hz, then we
have the equivalent local modes at 7=0 as shown in Figures 3-15 and 3-16. In this ocean

environment, the local modes also depend on the range x only and remain unchanged in
the y-direction. Thus the local eigenvalues x,(x) take on the same values us those in
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Figure 3-18. The pressure ficld, however, is different from that in Chapter 3.4 due 1o the
effect of horizontal refraction, as explained in Chapter 2. To accommodate this effect in
the field simulation, we can use the horizontal ray theory that was described in Chapter
24.

Since x,(x) has already been given along the x-axis by solving the depth equation
for each local mode, the horizontal ray path associated with this mode can be easily
determined by applying x,(x) to the ray equation defined by Eq.(2-16). Then we can
calculate the phase by integrating x,(x) along this ray path and thus obtain the pressure
field by using Eq.(2-17).

Figure 4-6 represents the contour map for the horizontal refraction ang{e o, of the
third mode with respect to the range r and azimuthal angle 6 of the observation point.
Here we chose only to show the third mode because it is representative of the other
modes. From this figure it can be seen that horizontal refraction takes place most
strongly around 6=70° from the x-axis. When we fix the azimuthal angle to be 70°,
Figure 4-7 shows the refraction angle &, for different modes. As seen from this result, in
general, the higher the mode, the stronger the horizontal refraction. The angle of
horizontal refraction is one of the unknown variables that we have to infer by applying
the general Hankel transform with a sliding window to the pressure field.

Before proceeding, it would be of interest to compare the field obtained by the
horizontal ray method with the field given by the Nx2D method, because the difference in
the results of these two methods is due to the horizontal refraction as discussed in Chapter
2. Figure 4-8 compares these two fields, which are simulated using the first five modes,
in the azimuthal direction of 70°. The overlap of the two curves demonstrates that the
pressure field is almost equivalent, and thus the Nx2D method can provide a good
approximation, as far as the amplitude of the pressure field is concerned. In the present

example no substantial difference occurs because the pressure field is dominated by the
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Figure 4-6: Contour map for the horizontal refraction angle of the third mode.
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Figure 4-8: Comparison of the pressure fields simulated by the horizontal ray
method and the Nx2D method when setting the azimuthal direction at 70"
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Figure 4-9: Comparison of the phases of the third mode simulated by the horizontal
ray method and the NX2D method when setting the azimuthal angle at 8 = 70°. Both
phases are modulated as ®(r, 6) — P(r, 6) ~ kv with k, = w/c, and ¢, =1660 m/s.
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lowest two modes, which have relatively weak horizontal refraction as seen from Figure
4-8.

I we choose the third mode alone and compare its phase as obtained from the
horizor*-! ray method and the Nx2D method, then the difference in these two phases can
be clearly observed for ranges over 3000 m, as shown in Figure 4-9. Note that both
phases O(r,O)._w. are modulated as &(r,0) = &(r,0) - ky with k, = @/c, and
Co=1660 m/s, in order to effect the comparison. As discussed in Section 4.1, the
difference in the phase, or more specifically, the spatial frequency (horizontal wave-
number), plays an important role in describing the horizontal refraction accurately for a
particuiar mode.

4.4.2 Application of the general Hankel transform with a sliding window

Now, we will try to determine the local eigenvalues in this horizontally refracting
environment by applying the general Hankel transform with a sliding window to the non-
cylindrically symmetric field simulated above.

In the first stage, let us assume that, due to measurement limitations, the pressure
field p(r,0) is given only in the radial direction at selected azimuthal angles, i.e.,
azimuthally every A0 (see Figure 4-20(2)). Thus, when calculating the Fourier
coefficient C,(r;6) in Eq.(4-6) using the FFT, the sampling interval in azimuthal angle is
automatically limited to 46. Consequently, the sample distance A8 in the azimuthal
direction increases with increasing range 7, and at some range violates the spatial Nyquist
criterion [80]. As a result of aliasing errors, the general Hankel transform based on C,
does not work properly beyond this range. Therefore, for this transform to perform
correctly, there must exis: 2 maximum range, which depends on A6 and also the degree
of horizontal refraction of the field. This problem will be discussed in the next section.
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Since horizontal refraction occurs most strongly in an azimuthal direction around
70°, a3 seen from Figure 4-6, we will examine the performance of the general Hankel |
transform by setting the ceater of the azimuthal window in this direction.

Before doing this, let us show that we have a deficit in the peak position of the
output spectrum due to the effect of horizontal refraction if the zero-order Hankel
transform with a sliding window is applied to the pressure ficld in this direction. Figure
4-10 compares the local eigenvalue of the third mode and the peak position obtained by
using the Hanning window with L = 1000 / that is slid every S0 m. Here the pressure
field for the third mode has been separated by mode filtering with the use of a vertical
array of receivers that is placed at 7= 0 as shown in Figure 3-23. We observe that the
deficit in the horizontal wavenumber increases in accordance with the increase of the
horizontal refraction angle. To confirm this, the deficit is plotted in Figure 4-11 and is
compared with x, — x, cos§,, where 8, is the horizontal refraction angle shown in
Figure 4-7. |

As discussed in Section 4.1, what is required in the first place is to determine the
horizontal refraction angle §, for each mode at various ranges. When setting the center
of the window as 8 = 70° and 7 = 4250 m, the window length as £ =10° and
L=1000m, and A6 =1°, Figure 4-12(a) shows the value of the left-hand side in Eq.(4-
27) with respect to both the horizontal wavenumber £, and the refraction angle 6. As
long as the ridge corresponding to each mode is separated far enough apart to avoid
interference from each other, the propagation direction of the phase front associated with
each mode can then be determined from the angle &, at which the value in Eq.(4-27)
takes a local minimum. In Figure 4-12(a), we can find J, for the first and second modes
but it is hard to locate the angle &, for the third through fifth modes due to interference.

In particular, the ridge associated with the fourth mode is completely buried in the tail of
adjacent modes and cannot be recognized. In order to improve this situation, we can

increase the window length L. Figure 4-12(b) shows the result for L =1500 m.
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Figure 4-10: Comparison of local eigenvalue and peak position that is obtained by applying
the zero-order Hankel transform with the sliding Hanning window with length L=1000 m to

the pressure field in the azimuthal direction 8 = 70'. The pressure field for the third mode
has been separated by mode filtering with the use of the vertical array in Figure 3-23.
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Figure 4-11: Comparison of the deficit in the wavenumber in Figure 4-10 and the exact
value (x, - x,c0sd,).
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(a)

Figure 4-12: Left-hand side versus k_and 8 of Eq.(4-27) when setting the
center of the Hanning window as (7,6) = (4250 m,70'), the width of window

as Q =10, and the sampling width as A0 =1°: (a) window length L=1000 m
and (b) window length L=1500 m.
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(b)

Figure 4-12, continued.
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Although we could improve the precision of the angle J, for the third and fifth modes,
&, for the fourth mode is still hard to localize.

Thus, as we had shown previously in Chapter 3, we need to separate the pressure
field by modes before applying the above transform. By incorporating data from the
vertical array shown in Figure 3-23, we can perform mode filtering. Figures 4-13(a) and
4-13(b) show the results for the second and third modes, respectively, when applying the
transform with L =1000 m after the separation of modes; these two modes are
representative of ones having relatively strong and weak refraction, respectively, as
shown in Figure 4-7. As seen from the results in Figure 4-13(a) and 4-13(b), we can
easily find 4, in the single mode situation.

Here it would be of interest to examine the value of the Fourier coefficient C,(r;6).
In accordance with Eq.(4-24) and Eq.(4-25), as discussed in Section 4.2.3, this coefficient
takes on its maximum value at §,, found above, where the spectrum of the general
Hankel transform takes its maximum. Figure 4-14 shows the absolute value of C,(r;6)
at the same range (7 = 4250 m) after the separation of modes. In this figure, the
cocfficients at the other ranges are also compared, where each IC,(r;é)I is normalized so
that its maximum value becomes one. In the same manner, Figure 4-15 shows the range
evolution of |C,(r;6) in the azimuthal direction &=70°. It can be observed that n,, at
which |C_(r; 5)' takes on its maximum value, varies with range.

Let us next examine the maximum range for the general Hankel transform to work
properly when changing the sampling distance A@ in the azimuthal angle. Figure 4-16
shows this result for the different A@ and also compares with the exact refraction angle
of the horizontal ray (8,). As discussed in the beginning of this subsection, the

maximum range for this transform to hold true decreases with increasing 40. From the
spatial Nyquist rate that is given by x/x, sin §,, we can see that the results in Figure 4-16

match roughly this condition.
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(a)

Figure 4-13: Left-hand side of Eq.(4-27) versus k, and 6 after separation of

modes when setting the center of the Hanning window as (?,é) = (4250 m,70"),

the window length as (L, 2) = (1000 m,10"), and the sampling width as A@ =1":
(a) mode 2 and (b) mode 3.
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Figure 4-15: Range evolution of the Fourier coefficient |C,,(r;é)! along the radial
with the fixed azimuth 6 = 70°. The pressure field for the third mode has been

separated by mode filtering.
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In Figure 4-17 we compare the results for different window widths with a fixed
40(=2"). We cannot find a substantial difference among them at the range which
satisfies the Nyquist criterion. On the other hand, when the range gets close to the
maximum, the result shows that the narrow window width loses its precision faster than
the wide window.

As discussed in Chapter 4.2.3, we can compensate for the underestimated peak
position by using a scale factor 1 -4 &3, where the refraction angle has been obtained
above. Figure 4-18 shows a comparison of the compensated amount in a wavenumber
using §,, and the exact wavenumber, i.e., X, — X, cosJ,. In the same figure, the results
for different A@ are also compared. Due to the failure in the determination of 8, as seen
from Figure 4-17, we have an incorrect result beyond the maximum range which depends
on A6.

In the final stage, we apply the altemnative method discussed in Chapter 4.3 to the
simulated ficld. In this method, it is assumed that we can obtain the phase difference of
the output signals of the mode filter which is applied to the pressure field along adjacent
radials separated by the azimuthal width A8. Figure 4-19 shows the results of Eq.(4-53),
i.e., x,(f)— X (F), for the different azimuthal widths A8. In this figure, the exact
wavenumber x, — K, cos 8, is also compared. It can be observed that the error increases
with increasing width A8. As seen from a comparison of the two curves of 48=55°-70°
and 85°-70°, the error has a different range dependence even for the same width | A6,
This is due to the fact that the modal phase front has a different behavior in accordance
with the local characteristics of the ocean environment, as shown in Figure 4-6.

As seen from a comparison of Figure 4-18 and Figure 4-19, both methods provide
close results for determining the deficit in the wavenumber, as long as the observation
range is within the maximum range associated with the Nyquist criterion.

In the next section , let us examine the relation between this maximum range and the

sampling width in the azimuthal direction.
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4.5 Experimental Design

In this section, we will present an experimental design for measuring effectively the
pressure field in a 3-D varying environment that also copes with the horizoatal refraction
effoct.

As discussed in Section 4.2, unless the horizontal refraction is negligibly weak in a
3-D varying environment, we need to take into consideration this effect by using the
general Hankel transform with a sliding window. In this transform, we first need to
calculate the Fourier coefficients C,(r;8) in Eq.(4-6), which is given by executing the
integral with respect to 8. Thus if the pressure field p(r, ) is given in the azimuthal
direction in addition to the radial direction, then the coefficient can be immediately
calculated.

The pressure p(r,8), however, cannot be provided continuously as a function of
both range r and azimuthal angle 6 due to limitations in measurements made in the
ocean. Namely, we can measure the field only along some transect sampled by a moving
ship or a buoy. As discussed in the beginning of this chapter, since the phase front of
pressure propagates mainly in the radial direction in the region of interest, the
measurement should basically be carried out in the radial direction at selected azimuth
angles 6, (Figure 4-20(a)).

We have to then calculate C,(r; 6) using only the discrete values of the pressure
field p(r,6,) (i=1,...,7) in the azimuthal direction. Since we can, however, execute the
integration for C,(r; ) in Eq.(4-6) by using the FFT, the issue to resolve lies in the
sampling distance rA6,. In order to avoid aliasing emrors, this distance has to be less than
one-half of the wavelength 4,/2, where A, is defined as

2z ¥ 4
A,=—= .
‘ &k xsind, @-54)
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Here §,, is the maximum refraction angle in the region of interest and x, is the local
cigeavalue of the ath mode (Figure 4-3). The above spatial Nyquist condition is
expressed then as

%
A0, < m . (4-55)

Here we assume that we can incorporate data from the vertical array of receivers at r=0 in
order to separate the pressure field by modes. If this is not 30, &, has 10 be replaced with
ofc,, , where ¢ is the minimum sound speed in the profile. In general, we can safely use

the minimum sound speed in the water column, yielding
46, < —S=_ | 45
(] 2’f8in5. ( 6)
where f is an acoustic frequency. In Eq.(4-56), we do not know the exact &,,, but we
can estimate it by using the horizontal ray method along with an assumed sedimentary or
rigid bottom.
As seen from these results, we have to decrease A0, while increasing the range r.

For example, we can set the measurement transects in the ocean as shown in Figure 4-

20(b).

In general, the higher the mode, the stronger the horizontal refraction. Namely, 8,
has a larger value for the higher modes in Eq.(4-55). Therefore, we have to use smaller
AQ, for those modes at long ranges. Since, however, the higher modes attenuate faster
than the lower modes, we do not have to design the measurement strategy for the higher
modes at long ranges.

As an alternative method with respect to the issues discussed above, but in a more
approximate way, we first calculate C,(r;;8) at selected ranges 7, by using the pressure
field p(r,.0) (j =1,...,J) measured along an arc at these ranges; then, C,(r;8) can be
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Figure 4-20: Design of transects for measuring the sound field in the ocean.
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interpolated between those ranges as shown in Figure 4-20(c). To employ this approach,
the single mode eanvironment based on mode filtering would be preferable to increase the
precision of the interpolation.

Finally, if the horizontal refraction angle is negligibly small, i.e., §,, <<1, then we
do not have t0 use the general Hankel transform and can apply the zero-order Hankel
transform to the field in the radial direction of interest in the same way as shown in
Chapeer 3.

4.6 Summary

In an attempt to detect the local eigenvalues in a 3-D varying shallow water
waveguide, we introduced a sliding window in a 2-D Fourier transform basedon a
cylindrical coordinate system and then studied the effect of horizontal refraction on the
determination of the local eigenvalues.

In Section 4.1, we discussed issues arising from horizontal refraction in a 3-D
varying waveguide. When applying the zero-order Hankel transform with a sliding
window to the pressure field measured along a radial, the wavenumber determined from
the peak position in the output spectrum has a deficit due to horizontal refraction.

In Section 4.2, we derived the general Hankel transform with a sliding window from
the 2-D Fourier transform. By expanding it in a Taylor series, we found that the first
term corresponds to the zero-order Hankel transform with a sliding window, which was
obtained for the cylindrically symmetric waveguide in Chapter 3; the rest of the terms
correspond to the zero-order Hankel transform of the pressure field differentiated with
respect to the azimuthal angle.

In order to analyze the effect of horizontal refraction on the Hankel transform, we
utilized the stationary phase method and evaluated the transform in an approximate
manner. It was then found that the Fourier coefficients play the role of a filter for the
variable @ to match the direction of the major phase front associated with a mode. Based
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on this analysis, we can determine the horizontal refraction angle approximately by
taking the variation of this transform with respect to @. Then, by changing the scale of
the wavenumber with the use of the determined refraction angle, it was shown that we
can compensate for the deficit in the wavenumber obtained when using the zero-order
Hankel transform with a sliding window in a 3-D varying waveguide.

In Section 4.3, in order to re-examine analytically the effect of horizontal refraction,
we derived an alternative representation for a 2-D Fourier transform by using the phase
difference between the outputs of the mode filter which was applied to the pressure field
in the different azimuthal directions. By comparing the resulting transform with the zero-
order asymptotic Hankel transform, we demonstrated that the compensated amount for
the local eigenvalue in the latter transform can be determined by using the phase
difference in mode filtering.

In Section 4.4, we examined numerically the horizontal refraction effect by applying
the transforms obtained in Section 4.2 and 4.3 to the pressure field that is simulated using
the horizontal ray method. It was shown that we can determine the horizontal refraction
angle by using the general Hankel transform, as long as the pressure field is sampled in
the azimuthal direction so as to satisfy the spatial Nyquist criterion. We also showed that
the deficit in the wavenumber can be determined by using these transforms.

In Section 4.5, we considered a method for the efficient measurement of the pressure
field in a 3-D varying shallow water waveguide to deal with the horizontal refraction
effect. Based on the spatial Nyquist criterion, the sampling width in the azimuthal angle
for the general Hankel transform to work properly was determined in connection with the
maximum range.

So far we have tried to detect the local eigenvalues in horizontally varying
environments in Chapter 3 and Chapter 4. In the next chapter, we will use those local

eigenvalues as input data to a method for determining the range-dependent geoacoustic

properties.
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Chapter §
Inverse Method for the Local Bottom Properties

The purpose of this chapter is to develop a method for determining the local bottom
properties from the local eigenvalues, which were estimated by using the Hankel
transform with a sliding window in Chapters 3 and 4.

In the first place, we will try to understand how the range variation of the local
bottom properties in the horizontal direction affects the range variation of the local
eigenvalues. In order to analyze the relation between these two variations, we begin by
setting up the bottom sediment model in the following section. Based on this bottom
model, we derive the relation between the perturbed local eigenvalue and the perturbed
geoacoustic parameters in Section 5.2. To verify this perturbation relation, we apply it to
a range-dependent Pekeris model in Section 5.3. In Section §5.4, by representing the
sound speed profile in each sediment layer as an n2-linear curve, we express the
perturbation relation more explicitly in terms of sediment parameters. In section 5.5,
based on the perturbation relation, we develop an inverse method for determining the
bottom parameters from the local eigenvalues . In Section 5.6, we apply the inverse
method to the shallow water model used in Chapter 5.3. We show that the geoacoustic
parameters can then be numerically obtained by solving the perturbation equation

iteratively with range.

$.1 Geoacoustic model
From past studies, it is well known that the ocean bottom is multilayered structure

and some experiments show the range-dependent variation of the geoacoustic properties
in the sediment [81,82). With these studies in mind, we set up a shallow water bottom
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model composed of a range-dependent, multilayered fluid medium, as shown in Figure
S-1. We use this bottom model throughout the chapter and develop an inverse method
based on it.

In this bottom inodel, the sediment in each layer (L S j < M) is assumed t0 have
different physical properties, 0 that the sound speed, the density, and the attenuation
coefficient may be discontinuous across each layer interface. Within each layer,
bhowever, the sound speed is assumed to vary in a continuous manner with respect to
space. This variation is arbitrary in the vertical direction but gradual in the horizontal
direction to meet the adiabatic condition. On the other hand, both the density and
attenuation coefficient are assumed to be constant in each layer, but they may take on
different values in different layers.

Since the local eigenvalues are provided along the radial as discussed in Chapter 4,
the geoacoustic properties determined inversely from these eigenvalues are limited to
ones along this radial only. Hence the azimuthal angle is only a parameter for
distinguishing the radial direction and so the functional notation regarding an azimuth
will be omitted throughout this chapter.

The layer interface h,(r) (1< j < M), therefore, is expressed as a function of range
only. In particular, the sea surface interface h, is always set to be zero in our model, and
h,(r) corresponds to the bottom interface. Thus the layers j =1 through j=L-1 are
located in the water column. Since the physical properties in the water column are
considered to vary continuously, we do not need a layered structure in the water column
in general. If we use these criteria, we can set L = 2. If there exists, however, a water
body with different densities, then it would be convenient to represent it using a layered
structure. In any case, the density must be constant in each layer in the model.

For the same reasons mentioned above, the sound speed is expressed as a function of
range and depth only, i.e., ¢(z,7). In order for the adiabatic condition to be met, |dc/dr]
as well as |d.h, /drl have to be small enough to make the mode coupling coefficients small.
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Figure 5-1: Shallow water model of non-stratified, multi-layer bottom sediment
with horizontal changes in sound speed profile.
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As stated in Section 2.1, the branch line integral stems from the assumption of
constant sound velocity in the lowest layer (half-space), i.e., the gradient g, =0. If a
small, positive number is assigned to g,,, then this branch line does not emerge and all
modes become discrete; therefore, to avoid the difficulty arising from conversion between
discrete and continuous modes in the propagation process, we assume g,,>0 in this
model.

Based on this multilayered'sedimem bottom model, we will develop a method for
determining the geoacoustic properties in the remaining sections using a perturbative
approach.

5.2 Relation between perturbed local eigenvalues and perturbed local bottom properties -

In this section, we will derive a relationship between perturbed local eigenvalues and
perturbed geoacoustic parameters by using linear perturbation theory [43,47].

With the geoacoustic model described in the previous section, we can utilize
adiabatic mode theory, as long as the sound speed in the water column varies gradually.
Since the density is assumed to be constant in each sediment layer, it is immediately seen
from Eq.(2-8) that the local eigenfunctions u, satisfy

%‘;+[k’(r,z)- 2(Nju(r.2)=0 . . (5-1)

The local eigenfunctions u, also satisfy the orthonormality condition

[ p(: S (DU e =5, (5-2)

and the following boundary conditions:

u(rzf,, =0 , (5-3)
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lim _a_;z_,_ =0 - (5-4)
Eq.(5-3) represents a simple pressure-release condition at the sea surface. Thus surface
roughness is ignored here, which should not incur a large error for low-frequency modes.
On the other hand, the boundary condition at infinite depth is based on the assumption of
a positive gradient in the lowest layer. If g,,=0 instead, then we confine ourselves to
trapped modes only, so that the condition in Eq.(5-4) is still satisfied.

In addition to the above conditions, both pressure and vertical particle velocity must

be continuous across each layer interface:

by a0 = | miro (5-5)
and
_1 oy =1o , (5-6)

Pja Oz 'm0 p; 9z lemipo

where A; —0 and h; + 0 refer to the limit approaching the layer interface z = A, from
above and below, respectively. Although the continuity of particle velocity is originally
defined in the direction normal to the interface in Eq.(5-6), the approximation made here
leads to accurate results, as long as the interface varies gradually within the framework of
the adiabatic approximation.

First, let us derive an integral version of Eq.(5-1), which is the basis for deriving the
perturbation relation between the local eigenvalues and the geoacoustic properties [43].
Multiplying Eq.(5-1) by u,/p. integrating over the entire depth, and integrating by parts in
the first term yields
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-._u.;al‘n.l' _(._l.) k’ ’dz+x’! —u’dz =0 . é-7N

Since the first term vanishes due to Eq.(5-3) and Eq.(5-4), we obtain the following form:

- -__ 2.2 -.l_ 24, = _
j"—(—-t) pk s+ [ Zuldz=0 . (5-8)

This form also provides a foundation for representing the group velocity associated with

the nth mode in an integral form.
To accommodate the variation in interface depth 4, (1 < j < M) in Eq.(5-8), let us

M
rewrite the integration in Eq.(5-8) as [dz— j:"‘d,, that is
=

i-l

iﬁlf“’:( ) -Z f"‘k’ ’dz+x"z-j:”u’dz 0, 5-9)

where A, ,, = has been set for notational convenience. Noting that each integration

interval corresponds to a layer (h; S 2 <A,,,), we have placed p(z) outside of the integral

in Eq.(5-9), because the density is assumed to be constant within each layer in the model.
In an attempt to derive a perturbation relation between the local eigenvalues and the

geoacoustic parameters, we will perturb Eq.(5-9). When the medium (both water and
bottom) changes with range, i.e., k — k+ Ak and h;— h;+Ah; as r— r+Ar, the local

eigenvalues and local eigenfunctions are also subject to change, i.e., x,— x,+Ax, and
U, u +A4u,, thereby making Eq.(5-9) change as described below.

In order to avoid confusion in the mathematical development, we will derive the
perturbation of Eq.(5-9) term-by-term and present each perturbation separately. Later we
will combine all the perturbations.
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1. Range variation of the first integral in Eq.(5-9)
Taking a perturbation of the first term in Eq.(5-9) yields

2-0: S S

If we confine ourselves to first order perturbation, then it follows that the left-hand side of
Eq.(5-10) becomes

S ,..m,..[a(u,Mu,) .

]-lpj Ayt ok oz
¥ 1] (ou Y o » JdAu u \
S]] o)) s 2B B [ (2 ]

(5-11)

If we rewrite the second term on the right-hand side of Eq.(5-11) using j’'= j+1 as

Sl g3

ah, (5-12)
=1 P; re2 Ppa L g

r

where the (M+1) term has dropped out due to %—':'-L =0 in Eq.(5-4), then the first two

terms in Eq.(5-11) become

£, H") L an+(3)]. “"fﬂ] =30 'Pz)[%%";)zLAh, .61

Here the Ah,-term has dropped out due to 4k =0.
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The third term in Eq.(5-11) can be integrated by parts:

X 1 (e, Ou, ddu

2—2—24;

P Oz oz

& 2(ou Pu
= ——ll. - dz
Sl 3 ael, - Grans

1 e 2 i I
=2}:(AuL o= Al p?z L)-§E :“-é-z'—:ldu,dz . (5-19)

where Eq.(5-6) has been used in the last equation. At this point, let us apply the followir.g

relation,

AuL - Au |m ~pju- p,)( 14}: . (5-15)

to the first term on the right-hand side in Eq.(5-14). The proof of Eq.(5-15) is provided in
Appendix A. Eq.(5-14) is then rewritten as

x g ,.auaAu (au)’L o Py
("% 4= g
; ph Z(P; 1 P/) % ) b, y p,j,,,

(5-16)

Thus substitution of both Eq.(5-13) and Eq.(5-16) into Eq.(5-11) yields:

i_l_ M’“M[a(u! + A“,)- 2dz
= P4 Jz |

=‘§(%—:‘Pi)(l%u;' L“h 2 ZIH Ay d“'f (%)2dz] .

p
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2. Range variation of the second integral in Eq.(5-9)
By taking a perturbation of the second integral in Eq.(5-9), we find to first order that

M
) g (ST RO
I Py !

= ;pl’{-(aeiu, + (K%l LM,,, + j:' (2kAku + k*2u,4u, + k’uf)dz] .
(5-18)

Use of Eq.(5-5) after replacement of the index (j+1 - j) in the second term on the right-
hand side of Eq.(5-18) yields

i-l-J:oal M[(k-bdk)z(u + Au )z]dz=2[kJ’J-“ ¥ ) 2L4h

=17 Pj p;
.l 2 L] ol 2

+2pj 2kAky, dz+j 2%y Audz+j Kuldz| . (5-19)
mlVj

3. Range variation of the third integral in Eq.(5-9)
By taking a perturbation of the third integral in Eq.(5-9), we find to first order that

(x, +Ax)’2—-r"' (u, + Au, ) dz = x’z (—u’LM,w L, A%a)

=V i
+2x,4x,f:lf"'ufdz+ x,’i—l-'[ j' ”'(zu,Au,+u3)dz] . (5-20)
=P Pl

By using Eq.(5-5) after replacement of the index (j+1— j) in the first term on the right-
hand side of Eq.(5-20), it follows that
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.l vahy, 2
(x,+Ax_)”2_:'pl E:“' (u, +4u) d:

- xzi(—l--pl]ufl , &k +2x,45, + x}i-‘-[z j;“u,Au_dz + j:"ufdz]
f]

2\ P =t
(5-21)

Now, by substituting Eq.(5-17), Eq.(5-19) and Eq.(5-21) to Eq.(5-9), we obtain

2x,4x, - i[{ P - ﬁl‘f“ ]".’.L, +(Pr ‘Pi)(%%)zL] Ak,

m2ll Pi j

UMY 4y -Leaar 2 f-Litas|=o0 | (5-22)
P\ oz P o P

where 7,= (k* - xf)x is the vertical wavenumber, and 1,‘,‘_, and 7,|,‘,° stand for the

wavenumbers on the upper and lower sides of i, respectively. The discontinuity in 7, at
these interfaces h; originates from the discontinuity in the sound speed at &, At this point
we find that the terms in the last two brackets in Eq.(5-22) become zero owing to Eq.(5-1)

and Eq.(5-8), respectively. Both density and sound speed in the water column can be
considered generally to change continuously, so that each coefficient of 4k, from j=2

through j=L -1 in Eq.(5-22) becomes zero. By splitting the integrals that include 4k
into the water region and the bottom region and dividing both sides of Eq.(5-22) by 2x,,

we can finally obtain
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— o ——

Y o TR ey |

1
+——| kA ldz+—Y —]|" kakuld: 5-23
‘ﬁ-j: u: ulgpl ( )

where p,_ stands for the water density. If we use 2x,4x,=Ax? and 2kAk=Ak?, then
Eq.(5-23) can be rewritten as

4ol

+;1:.j:‘4k=u3¢z —j"“Ak’u’dz . (5-24)

=LP;y,

Both Eq.(5-23) and Eq.(5-24) show how the range variation of the local eigenvalue
depends on the range variation of each sediment interface depth and the range variation of
the wavenumber (sound speed) in each sediment layer. Thus these equations can reveal
which layer interface and which portion of the sediment contributes to the range variation
of the local modes. In the next section, we will apply Eq.(5-24) to a range-dependent
Pekeris waveguide and will demonstrate that it provides an accurate resuit.

$.3 Range-dependent Pekeris waveguide
In this section, to check the validity of the resulting equation for Ax, (Eq.(5-24))

obtained in the previous section, we will apply Eq.(5-24) to a range-dependent Pekeris
waveguide [16,52], which can be regarded as the simplest case of the multilayered model
we described in Section 5.1 except that here we assume g,,=0. If we, however, confine
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ourselves to trapped modes only, then the boundary condition in Eq.(5-4) is sutisfied as
seen from Eqs.(5-31) and (5-33), so that Eq.(5-24) is applicable to the Pekeris waveguide
as well.

The advantage of using a Pekeris waveguide is that the characteristic equation is
provided in a simple, analytical form and, consequently, the range variation of the local
cigenvalues Ax, can be obtained in closed form by directly differentiating the charac-
teristic equation. This enables us to compare the two analytical forms for Ax,, which are
derived in different ways.

Before deriving those forms, let us summarize the features of a range-dependent
Pekeris waveguide. As illustrated in Figure 5-2, the sound speed in both the water
column and bottom is taken to be constant vertically but is allowed to change in the
horizontal direction such that

2= {c,(r) (0<zShr) , 525

() (h(r)Sz<eo) .

Since we are interested in trapped modes only, the following condition has to be met at

each range:
(") @
m < Re[x_(r)] < a;; . (5-26)

The bathymetry is also range dependent, but the density in both regions remains constant:

_ A 0<zsh(r)) ,
plr.2)= {p, (h(r)Sz<e). 5-27)

In this Pekeris waveguide, the local eigenvalues satisfy the following characteristic
equation obtained by using the boundary conditions at the sea surface and the water-

bottom interface.
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%,.C0(7, ) = igy,, . (5-28)

where emp,/p,; and 7,, and ¥,, are the vertical wavenumbers in the water column and
bottom, respectively, and are defined by

1
Y= -x2) , (5-29)

1
=g -5 , (5-30)

with k= a)/c, and k,® @/c, . In the case of trapped modes, k, < K, is satisfied from
Eq.(5-26), so that Eq.(5-30) can be rewritten as

Y= -E . (5-31)

The local eigenfunction can also be determined so as to satisfy the boundary condition at
the sea surface and the radiation condition at infinite depth, yielding

%,.h - sin(7,.h) cos(¥,,h) - € tan(7,,h) sin*(7,.4)
(O<z2<h) , (5-32)

= 2p, % : T2 (s-8)
(r.2) (r,.h-sin(r,.h) cos(7,.h) - € an(r,h) sin’(n.h)r"“("""‘

(h<2) , (5-33)

u.(f.2)=( 2P\ rsin(r,.z)

where the u, satisfy the orthonormality condition Eq.(5-2) along with Eq.(5-5) and Eq.(5-
6) at z=h(r).
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Figure 5-2: Range-dependent Pekeris waveguide.

158




$3.1 Derivation of Ax, by differentiation of the characteristic equation

In this subsection, we will derive the analytical form for A, directly from the
characteristic equation given by Eq.(5-28).

Differentiating both sides of Eq.(5-28) with respect to 7 gives

-Z“cot(n.h) 7..——,-1—-(%% Y )sw—z“ (5-34)
(1B dr
Rearrangement of this equation yields
at L | et N _dh .
dr (°°‘(""') ’(7..h)) & ahd -39

In order to represent dy, /dr in Eq.(5-35) in terms of dx, /dr, let us also differentiate
both Eq.(5-29) and (5-30) with respect to r:

L és’__dr’) i

dr'zy,_(dr ryk (5-36)
and

!_Zu=_1._(1*{_éﬁ) e (d _d ) (537

dr 2y, \a dr) 2p.coy m\dr dr )’

where Eq.(5-28) has been used in (5-37). Thus substituting both Eqs.(5-36) and (5-37)
into Eq.(5-35) yields '

_1_(15’.__@1 sin(7,,h)cos(y,h) - ¥ J,g) e (de aa)
2y \dr dr sin’(7,,h) Yoo\ dr @

e b 5o

sin’(y,h) dr
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Rearrangement after multiplying both sides of Eq.(5-38) by 27,,sin*(7,,h) yields
. a L adi®
[.h-sin(r. hycos(r,h) - € an(y, ysin’ (r W) 22
=27 2+ [nh- m(y,,k)cos(y,,;.)]ﬁ’l ¢ nn(r..h)m’(n.h)i"l (5-39)

Multiplying both sides of Eq.(5-39) by 4r leads to the following form:

27,
Ax = —lls__ Ah
‘ 71." - Sin(Y‘.h)COS(yuh) - 82 m(Yuh)Sinz(YIlh)

+ Y1:h = sin(y, k) cos(y,.h) Ak?
Yuh m(71-h)°°s(71-h) -€ m("uh)smz(?uh)

=& tan(¥,.h)sin’ (7,.h) 2
8 . 5-40
71-” sin(7,,h) cos(7,.h) - -& m(7uh)smz(7uh)dk1 <0

This resulting form reveals the dependence of 4k, on Ah, Ak, and Ak,.

§.3.2 Derivation of Ax, by using the perturbation equation (Eq.(5-24))

In this section, we demonstrate that we can derive the same form as Eq.(5-40) by
utilizing Eq.(5-24) obtairied in Section 5.2.

The range-dependent Pekeris model corresponds to the case L=2, M =2, p, =p,,
and h, = h(r) in our shallow water model in Figure 5-1 except that g,,=0. As discussed

in the beginning of this section, however, Eq.(5-24) is applicable to the Pekeris
waveguide as long as we deal with trapped modes only.

By using Eq.(5-28) through Eq.(5-32), we can express 72| , &2 , and (du,/0z)°
20

as follows:
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l

73L,,=73.-A’—r3 : (5-41)

rfL_fr:.-kf-x.’. . (5-42)

= 2p1 71 « 2
“:L (n.h-sin(n.h) c08(Y,.h) - £ wa(r,) .in*(y,,;.))"" rm . G4

19)| ta 27, ) ‘o s
(P 0z )L P (rl.h-sin(n.h)cos(r..h)-—e’nn(y‘.h) e ooy aaad

(5-44)
Putting Eqs.(5-41)-(5-44) into the first term in Eq.(5-24) yields
yzlh,-o Tzln,oo , 1 du 2
Z[( o ], +(Pr -p,)(;-b-;) L ah,
= [(‘g} - %)Pl Sinz(ﬂuh) + (A ‘Pz)'ﬁ"m’(n.h)]
2% )Ah 545
(r,.h Sy, ) cos(Y, k) ~ € an(y,h) Sm* (Y, h) (5-43)

The members in the bracket on the right hand side of Eq.(5-45) may be further rearranged
by using Eq.(5-28) as

[ )= :(ﬂ.-eaé.)sin’(r..hh(l-%) ..cos’(r..h)]

[ 2
= ( 1.-5M)Sinz(7hh)+(l—i-) 1,0082(7,.’!)]

(5-46)

s °
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Thus the first term in Eq.(5-24) finally becomes

i Aol

= 2%, 4k 547
Fh—sin(yh) oy h) - E mar R E L G-47

In the sam~ way, the second term in Eq.(5-24) becomes

i'f: Ak u? dz

Ak,’ 2p, 7., - &
o TR R T A s

7]!" m(yuh) OOS(M) 2 . s '48\
= RS Tk cos(1,h) - S an(r, ) R R c48

Similarly the third term in Eq.(5-24) becomes

i-l-r"' Ak u? dz

m2P;
Aklz 2£] Yia z h izh.(t-h)dz
o R TR sy ) - ST A ek [y e
2€y 2(715") ak‘z
7,.h = sin(7,.h) cos(7,.h) - e’tan(y,.h) sin’(y,,h) =2iy,,
— €’ tan(y, h)sin’ (7,.k) a . (549)

= Y= sin(7,.h) cos(1,.h) — € wn(7, A sin?(7,,h)

Subsequently, the three results in Eqs.(5-47), (5-48), and (5-49) are added in accordance
with Eq.(5-24), yielding
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27
Ax‘} = cla_ - ah
¥1uh = $in(7, . h)cos(7,,h) — € an(7,,h)sin*(7,,h)

. 1.0 = sin(y, h)cos(y,.h) a
Yhh - ﬁn( 71.") ms(Yllh) - ez m(Yhh) Sinz(Yuh)

—& tan(7,,h)sin’(y,,h) 2
2 8 . 5-50
M 7,.h - sin(7,,h) cos(7,,h) ~ € tan(y,, h)sin*(7,,h) 4k (5-50)

Therefore it is immediately seen that Eq.(5-50) is completely equivalent to Eq.(5-40),
which we obrained independently ir Section 5.3.2.

In this section, we demonstrated that the perturbation equation (Eq.(5-24)) derived in
Section 5.2 provides an accurate result when applied to the range-dependent Pekeris
waveguide. In this simple waveguide, we represented the range variation of the local
eigenvalues Ax, explicitly in terms of 4k, Ak, and 4Ak,.

In the next section, by representing the sound speed profile in our multilayered
model with the use of the n2-linear profile, we will express Ax, explicitly in terms of the

perturbed geoacoustic parameters.

5.4 Range-dependent n2-linear profile

Section 5.2 showed how the range variation of the local eigenvalues depends on the
range variations of both the interface depth and the wavenumber in each sediment layer.
But, as seen from Eq.(5-24), the resulting equation includes integrals having the range
variation of the wavenumber inside the integrals. In order to express the range variations
explicitly, we need to execute the integrals in Eq.(5-24) by specifying the sound speed
profile in each sediment layer. Here we use the n-linear profile to represent the sound

speed profiles.
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$4.1 Definition of a range-dependent n2-linear profile

In this subsection, we will approximate the sound speed profile in each sediment
layer by using the n2-linear curve with range-dependent coefficients, which are defined
by

2
c(r,2)= cl(r{l ~ -2—:%%)-(2 - l':;)]. (h(r)szsh,, () , (5-51)
i

where ¢;,(r)® c(r, k,) is the sound speed at z=k;, g(7) is the sound speed gradient in the
jth layer, and h;= h,(r,) stands for the sediment interface depth at some reference range
point 7, (e.g., 7,=0). Note that &, is a constant (se¢ Figure 5-3). Due to the relation

g |<<e,m (5-52)
Eq.(5-51) can be related approximately to the following linear profile:

e(r,z) = c,(r) + g(r) = h;) (h(r)SzSh,(r) . (5-53)

Thus we see that the difference in the sound speeds represented by Eqs.(5-51) and (5-53)
increases with increasing |z — /|, It should be noted that g(r) can take cither a positive

or negative value except for the lowest layer /=M , where only a positive gradient is

allowed to meet the boundary condition given in Eq.(5-4).
To accommodate attenuation, Eq.(5-51) may be extended to the following form of

the wavenumber:
k*(r,z) = K}(r) + p(r) (z—h)) (B(N<S2<h,(r) (5-54)
with
K(r) = k(r) +ia; : complex wavenumber at z=I7j, (5-55)
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Figure 5-3: Range-dependent n’-linear profile.
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ur) = —y(%'()?")ﬁ’-)- : gradient of & in the jth layer, (5-56)
(]

where k,(r)l-;% is the real part of the wavenumber at z=h, and «, is the attenuation
i

coefficient in the jth layer.
From Eq.(5-54) it is immediately seen that the lateral variations of k* and the range-
dependent parameters are related as

AkY(r,2) = 2K,(r) Ak (r) +(z~ k) AuLr) (h(r)S28h (1) ., (557

where AK}=2K,Ak; has been used since @; is assumed to be range-independent. In
additiqn, Ak; and Ay; are uniquely related to Ac; and Ag, as

2
Ak, _ g} Ac, 558
Au;| |6w°g 20 |l4g | -

4 3

c; c;

. 6a’lg| 247 . .
Since —~= <<= due to Eq.(5-52), the contribution of the Ac;-term to Ay, is
< Ci
substantially smaller than the contribution of the Ag;-term. Hence Ay, is nearly

proportional to Ag;; but when Ag;~0, then the Ac;-term cannot be ignored. Conversely
4k; is simply proportional to 4c;.
Here it would be of interest to compare Eq.(5-54) with another representation given

by

k(r,z) = KX(r) + p(r) [z - b, (D) (hi(r)Sz<h, (7)) (5-59)
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where K,(r)= k(r)+ ia; with E(r) = 5_?5 and &,(r)= c(r,h;(r)), which stands for a
J

sound speed at the interface depth ;(r). Thus the range dependence of k(r) and ,(r)
comes from the variations of both the medium itself and the interface depth. This can
easily be checked using the following identity:

K (=K} +p ) h()-h] , (5-60)
which can be obtained by comparing Eq.(5-54) and Eq.(5-59) rewritten as
kxr,2) = {RXr) - ) (=R} + 1) =) (5-61)

Recalling that K;(r) represents the wavenumber at the fixed depth &, it is seen that K,(r)
includes the effect of the sediment interface variation in the second term on the right-hand
side of Eq.(5-60). Therefore Eq.(5-54) is more convenient than Eq.(5-59) in representing
the range variation of the wavenumber.

In order to understand the role of the parameters in Eq.(5-54) further, let us consider
the special case below. If the medium in some layer is range independent, i.e., 4k(r)=0

and Ay (r)=0, but has the layer depth variation 4h(r)# 0, then we have
2K (0 AE, (r)=p,;(r) Ah(r) from Eq.(5-60); the wavenumber E,-(r) at the sediment
interface varies in accordance with the depth variation of the interface itself. Let us refer to
this as Case A. On the contrary, if we keep (r) constant (range-independent) at A,(r),
ie., AE,(r) = (, then the medium in this layer has to be range-dependent and varies with
range so as to satisfy 2K,(r) Ak;(r) Hh;(r)- h;)Au,(r) = ~p,(r) Ah(r). This is Case B; the
medium and layer interface vary so that two kinds of range variations cancel out each other
at h(r).

Now, assume a simple waveguide consisting of a single-layer bottom and a water

column with constant sound speed as shown in Figure 5-4. Case B, then, corresponds to
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Figure 5-4: Single sediment layer with constant sound speed gradient.
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the waveguide having s range-independent plane-wave reflection coefficient, although
the acoustic properties of this bottom medium vary with range. In contrast, for Case A,
the reflection coefficient varies with range due to the bathymetric change, irrespective of
the range-independent properties of the bottom medium itself.

$.4.2 Evaluation of integrals in the perturbation equation (Eq.(5-24))

In this subsection, let us evaluate the integrals in Eq.(5-24) by employing the range-
dependent n2-linear profile in Eq.(5-54). To do this, we first represent the local
eigenfunction in terms of the parameters of this profile.

It is well known that, given the n?-linear profile, the eigenfunctions u, can be
expressed in terms of the Airy functions Ai and Bi [54,62,63]. Namely, by inserting
Eq.(5-54) in place of _k’( ,2) in Eq.(5-1), this equation is converted to the following

Stokes equation:
Pu
3&.214;{,“_ =0 (h(r)SzSh, (D) , (5-62)
J
with
_1:
fon=B= L) 563
n "
=;1‘7(K}-rf)+ n(z-F) (5-64)
i
and
nn=nt (5-65)

where 7,(r,2) is the vertical wavenumber. Since Ai(~§) and Bi(~£) are independent

solutions satisfying Eq.(5-62), u, can be represented by

u,(r,2) = CAi(~E,)+C,Bi(=£,) (h(NSzSh (M) , (5-66)
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where C, and C; are the range-dependeat coefficieats determined by the boundary
conditions in Eqs.(5-3) and (5-4) and the normalization coadition in Eq.(5-2).

Now let us substitute Eq.(5-57) into Eq.(5-24) and evaluate the integrals in Eq.(5-
24). Each integral is then split into two integrals:

j;“u:u’dz-zx,&,]:‘.cdzmu,j;“u: @-K)dz . (5-67)

By changing the variable z to § in each integral on the right-hand side of Eq.(5-67), it
follows that

L s—!- §;hm) 2
[reamdiie oo

and

K’! -x Ic,u,..) 2

b P Y U I
I\ uf(z-h,)dz--,ﬁj w? § g, - oy A5 - (5-69)

&) n,

Each integral on the right-hand side of both Eq.(5-68) and Eq.(5-69) can then be
evaluated in closed form by virtue of the following identity for the Airy function:

[0dg =07+ 07 (5-70)
and
[eotas = -13-(€’d>’ +507 -0 |, (5-71)

where @(£) is the Airy function or a linear combination of the solutions of Eq.(5-62),

and the prime denotes the derivative -:? Hence, we employ Eq.(5-70) to evaluate Eq.(5-

68) and then use of the relation ;= 73/ n: given by Eq.(5-63) to obtain
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In Eq.(5-72), use of the relations Il;'ﬂ; pveubyEq(S-és)and———s—b-z— given by

4

Eq.(5-64) yields

freamgna (3]

(5-73)

In the same way, we can evaluate the first integral on the right-hand side of Eq.(5-69); we

can also evaluate the second integral by using Eq.(5-71) as

2 2
VRSN (AP AT AR AT &
I:’ ks 3n; [('712] u‘+-’-72:("1-5:) “.("13:)}»

k-7, (1a) P
-t — 5-74a
m [nl,u:+("l oz ) ]‘M e
__1 T 2, [9u )z _ ou, - X )
—3”12[(7: 37:{ lu-+(.3:. ) ”lul az N ’ (5 74b)

where ¥, = 7,(r.B), i.e., ¥ m K} - x2 has been employed in the step from Eq.(5-74a) to

Eq.(5-74b). As a result of the substitution of both Eq.(5-73) and Eq.(5-74b) into Eq.(5-

67), we can finally obtain

12 A2 3“ L
j:‘ Ak dz--ﬂ—-[ﬂ( Ak,+-—L(y’ Bf)Iy’u + 324 } -?.ll. _%L‘zu

A
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Further, if we make use of the relation given by Eq.(5-58), thea Eq.(5-75) can be
rewritten in terms of Ac; and Ag; instead of Ak; and 4p;.

Thus, by substituting Eq.(5-75) into Eq.(5-24), the range-dependent variation of the

local cigenvalue can be expressed as
s P
o bt
Mo 2 ﬁz
+;§.__;( ul +( 3, ) ]':21(,4&,
1 [R-38 0, (WY, o s
R IO St DR

If we approximate the profile in each layer including the water layer by a sequence
of n2-linear curves, then each integral in Eq.(5-76) can be evaluated and expressed in the
same way. It should be noted, however, that the sound speed in the water column is
continuous across layer interfaces, so that &; and y; cannot be chosen independently of
each other.

If the sound speed profile in some sediment layer cannot be approximated by a single
n2-linear curve, then we can divide this layer into sublayers with single sound speed '
gradients. This treatment is often required for modeling sand layers, because the sound
speed gradient of sand decreases rapidly with depth [84), and thus a single #2-linear curve
cannot fit this profile. Again attention has to be paid to the dependence of k; and 4, on
each other for the same reason as above; the sound speed has to be continuous across the
various sublayers.

By using an n2-linear curve for the sound speed profile in each sediment layer, we
showed that the range variation of the local eigenvalue can be related to the range

variation of the geoacoustic parameters in each layer in closed form. We can make use of
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this perturbed relation (Eq.(5-76)) to analyze how the local eigenvalues are affected by
the range-varying sediment structure and geoacoustic parameters in the current model.
Conversely this equation can be used in an inverse method to determine the sediment
properties from the local eigenvalues, a topic which will be pursued in the next section.

5.5 Inversion method to determine range-dependent geoacoustic parameters

In this section, let us assume that we do not know the range-dependent geoacoustic
parameters in our shallow water model except for those near 7«0, Local eigenvalues,
however, are known as a result of applying the Hankel transform with a sliding window
to the measured pressure field as shown in Chapters 3 and 4. The objective here is to
determine these unknown geoacoustic parameters by inverting the perturbation relation
given by Eq.(5-76). We use the local eigenvalues as input data in this equation.

5.5.1 Formulation of the inverse problem

In the first place, we need to formulate an equation for the unknown geoacoustic
parameters in our shallow water model. Suppose that we know the local eigenvalues of N
modes. If the bottom environment can be modeled as described in the previous sections,
then each eigenvalue varies with range so as to satisfy Eq.(5-76) and, consequently, the
set of these equations for N modes forms a set of simultaneous equations, which can be

rewritten in vector form:

Ax,=4v,+H, Ak +S Ak +T, A, , (5-77)
where H, S and T are Nx(M-L+1) matrices defined by
_ 1 73 40 73'5,«) 2 10y, ¥
H,;= 2%, [ Pr s, “.L‘ +(P,--1 P;) 0 % L , (5-78)
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Sy =i (r'uf (é'*)z]”' (5-19)
= + .
Yo U ) ],
1 'ﬁ-sﬁ( 2 (au )’) du,
T, = Uy =2 |-u, . 5-80
v“eeon| B Yeu . u . (5-80)
Both Ax,=(4x,) and
1 . i
Av, -( 2x.p,,r4k u:dz) (5-81)

are vectors with N elements; and Ak, = (4h;), Ak; = (Ak;), and Au ;= (Au;) are vectors
with M-L+1 elements. Although N is the total number of modes to be incorporated in the
inversion, these modes are not necessarily in sequence. We could choose the modes
which are most sensitive to the variation of the geoacoustic parameters 10 be determined,
as long as those modes are measurable. Moreover, it is possible to utilize the modes of
different frequencies for Ax, in Eq.(5-77) at the same time, because the bottom
parameters to be inferred are assumed to be independent of the acoustic frequency.

Here Ax, are immediately provided by taking the difference between two local

cigenvalues separated by Ar:

4ax,(r)=Re[x,(r+ Ar)]-Reix, ()] , (5-82)

where only the real part is taken, because the measurement of x,(r) is limited to the real
part in the method used in Chapters 3 and 4. In order to obtain the imaginary part, we
would have to measure the amplitude of the output spectrum of the Hankel transform
[83]. This however is beyond the scope of the present research. Thus in implementing
Eqs.(5-78)-(5-80), only the real part of the eigenvalues is taken into account. As a matter
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of fact, the effect of the imaginary part is negligibly small in this inversion process, since
we deal with first order perturbation of the local eigenvalues in Eq.(5-77).

In addition, we can expect that the sound speed in the water column is generally
measurable with range in shallow water, so that Ak(r,z) (0 <z S k) in Eq.(5-81) is
known in advance. As a consequence, 4v, can be dealt with as input data as long as the
local eigenfunction u,(r) is provided. Therefore, we may rewrite Eq.(5-77) as

Ax,-av,=[H,, S, . T,Jan] . (5-83)
Ak;
A,
or, equivalently,
y=Dx , (5-84)
a, -
where y = Ax, — Av, and x =| Ak; | are vectors with N and 3(M-L+1) elements,
au n
respectively; and D =[H,;, §,;, T.,] is a Nx3(M-L+1) matrix. Hence y is a known

factor given as input data whereas x is an unknown factor to be determined.

5.5.2 Solution of the inverse problem
In order to obtain the range-dependent geoacoustic parameters k;(r), k,(r), and

M,(r), we have to solve Eq.(5-84) for x at different ranges.

To begin with, let us assume that the bottom environment is known at some range
point r, near r=0, that is, h,(r,), k;(r,) and y,(r,) are known; then, the local

eigenfunctions u,(r,) at this range can be determined by solving Eq.(5-1). Upon use of

those parameters and eigenfunctions in Eqs.(5-79)-(5-81), each component of H, S, and T

can be evaluated along with Av, at the range r,.

175




If we have enough modes to satisfy N=3(M-L+1), then Eq.(5-84) can simply be
inverted, yielding

x=D7(Ax,-4v,) . (5-85)

By using this x , we can then determine the range-dependent geoacoustic parameters at a
new range point r, + 4r, as

H(’("‘A’;)"h](’g)"‘dh,(n) ’
k(r,+4r,)~k(r)+A4k(r,) .

Bre+Ar,)~p(r)+Au,(r,) . (5-86)

These results are correct to the first order, since the acoustic properties are assumed to
vary gradually with range.

The validity of the results in Eq.(5-86) may be confirmed by comparing the
measured local eigenvalues at 7, + 4r,, thatis x, (7, + 4r,), and the calculated ones
determined by solving Eq.(5-1) with the new bottom environment given by Eq.(5-86).
When they do not agree closely, then we can repeat the same process after reducing the
range step 4r,.

The next step is to use the geoacoustic parameters obtained above at 7, + Ar, as a
background for determining the parameters at the following new range point. Namely, by
setting £ — £+1, we can repeat the same process as above. Note that Ar,,, is not
necessarily equivalent to Ar,. In general,' Ar may be chosen so that the linearity of
Ax,(r) is satisfied, at least in an approximate sense. The determination of Ar will be
discussed again when dealing with a numerical example in the next section.

Thus, given the known geoacoustic parameters as initial values at some range, we

can determine them successively by repeating the inversion process at different ranges.
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Third site

Second site

Horizontally stratified region

Figure 5-5: Extension of the inversion scheme from a horizontally stratified
region to a range-dependent region.
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One of the issues arising from this inversion process is how to provide these initial
parameters. We had a similar problem when using a mode filter that required the values
of sediment properties at the site of the vertical array, as discussed in Chapter 3.3. As one
of the ways of addressing this problem, we may make use of results obtained by other
methods such as ones based on the travel times of broadband signals. For example, if we
chose a locally, horizontally stratified region as an initial range point, the geoacoustic
parameters in this region could be determined by resorting to inverse methods developed
for the horizontally stratified case [34,50]; then we can employ the results obtained in this
region as initial values for the current inverse scheme. Thus we can extend the inversion
process from a locally, horizontally stratified region to a range-dependent region. Once
this approach works well and the geoacoustic properties are determined along this
extended range, then we can choose a new receiving point for the next array site from the
points in this range, where the geoacoustic parameters for an initial value have been

established (see Figure 5-5).

5.5.3 Reducing the number of unknown parameters

When deriving Eq.(5-85), we assumed that the total number of measurable modes is
equal to the number of unknown geoacoustic parameters, but this cannot always be
expected.

In general, the inverse problem for determining the geoacoustic parameters tends to
be an underdetermined problem due to the limitations of real input data. Hence we must
try to either increase the number of modes to be measured or decrease the number of
unknown parameters to be determined. Conceming the former approach, we can employ
the modes at different frequencies in the same simultaneous equations, Eq.(5-84), as
mentioned in Section 5.5.2. However the maximum bottom depth which the current
inversion method is capable of examining is automatically determined by the highest

mode of the lowest frequency in use. In general, a mode is less sensitive to changes in
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the medium below its turning point depth; thus -“¢ experimental frequency imposes limits
on the lowest sediment layer to be examined by the inversion process. '

As for the latter approach of decreasing the number of unknown parameters, we can
make use of information about the unknown parameters provided by other geophysical
methods. For example, the interface depths of sediment layers could be inferred by using
conventional seismic travel time analysis. The output data of these other methods do not
have to be any of the parameters to be determined by our method, but can be information
which relates to the desired unknown parameters. For instance, the travel time of
broadband signals reflected or refracted from lower sediment layers serves to relate the
sound speed profile and layer depth [43). Or, if the sediment type of a particular layer is
known along with other environmental information such as its depth, then the values
taken by the geoacoustic parameters of that layer can be inferred within some range by
referring to Hamilton's research results [84). By using Lagrange multipliers [78], the
information from the other methods can be combined with the inverse method considered
presently.

Taking these methods into consideration, let us assume that some of the geoacoustic
parameters are provided a priori. Then we can shift those parameters, which are denoted

by = below, from the right-hand side to the left-hand side in Eq.(5-83):

ax,-4v,-[R,,§,.T,[ % |=[H,. 5, .T,J a5 ] - (5-87)
a, ok

Rewriting the ieft-hand side as ¥, and rewriting the unknown vector on the right-hand

side as ¥, Eq.(5-87) leads to

j=Dx¥ . (5-88)

179




Thus if the total number of these known parameters is F, then ¥ becomes a [3(M-L+1)-
FIx1 vector and D becomes a NX[3(M-L+1)-F] matrix. For example, if the bathymetry is
measured using an echo sounder and A, (r) is known, then the following amount can be
subtracted from Ax, as a part of H_; in Eq.(5-87):

H Ak, = ;3:::[( T:p:-o _ T:}I,:w ] “EL +(p.- p,_)(-:;%‘;) L] , (5-89)

where p, _, =p, is set. If the sediment layer depths are determined using travel time
analysis, then we could reduce the unknown parameters further by using Eq.(5-87).

5.5.4 Solution of the underdetermined problem

Even if we take advantage of the methods described in Section 5.5.3, when N<[3(M-
L+1)-F), then unfortunately we have to solve for an underdetermined problem. An
effective method of dealing with this problem is to make use of the SVD method [43,50],
which was also utilized for the overdetermined problem in Chapter 3.3. This method can

decompose the matrix D as
D=AAB , (5-90)

where A, is an IxJ diagonal matrix with non-zero elements (4,,...,4, >0), A, is an NXJ
matrix, and B, is a [3(M-L+1)-F]X] matrix. As defined in Eqs.(3-69) and (3-70), A, and
B, are constructed from normalized eigenvectors, which should be distinguished from
the local eigenfunctions. Then using the generalized inverse matrix defined by

D;'=B,A/A! , (5-91)

we have a solution:
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% =D;'y=(BAA))F - (5-92)

In this process, the non-uniqueness of the solution arising from the underdetermined
system is dealt with so that the norm of the resulting vector, |, becomes minimal.

The relation between the estimated value ¥, and the exact value x can be obtained
by substituting Eq.(5-88) into Eq.(5-92), yielding

% =B,B;x , (5-93)

where Eq.(3-69) has been used. If B,B; =1, then ¥, =x and the solution can be uniquely
determined. In the underdetermined case, however, we have generally B, B; # I, so that
¥, #x; the matrix B,B; forms weighting coefficients with which ¥, is linearly related to
x. Thus it is seen that the resolution of the solution ¥, can be characterized by the so-
called resolution matrix B,B; [43]. As the rank of B, B;, /, decreases, we have lower
resolution for thé solution X,.

As seen from Eq.(5-92), the solution includes a component proportional to 1/2,
(1Si S I) and thus small eigenvalues induce instability in the solution. This can be
easily confirmed by examining the relation between the variances of ¥ and j. Given the
error Jy in the measured data, then the error observed in the solution ¥, is expressed as

&%, =D;' 5. Thus the covariance matrices for ¥ and 7 are related by
< &%, 6% >=D;'< 85 &' >(D;') =0?BA?B] , (5-94)

where &y is assumed to be statistically independent and has the same variance.

Therefore the variance of the solution can be characterized by the matrix A,. We see
from Eq.(3-68) that if A4, is small, then the variances of ¥ is amplified as a result of the
relation given by Eq.(5-94). To obtain a stable solution, one can introduce a threshold for
those eigenvalues and discard the eigenvalues smaller than this threshold as detailed in
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Refs. 48 and 77. This procedure, however, results in a decrease for the resolution of the
solution due to the decrease in the number of the eigenvalues, i.c., the rank. As is well
known, in general, reducing the variance leads to degraded resolution in the solution of
the underdetermined inverse problem.

In connection with the stability problem, there exists a sensitivity problem among the

geoacoustic parameters. Namely some parameters are extremely sensitive to variations in
the input data Ax, and some are not. In view of Eq.(5-88), one can immediately notice

that the range variation of the parameters (output data) as well as Ax, (input data) are
highly dependent on their magnitudes. For example, Ay, is generally much smaller than
Ah;, because Y; itself takes on a smaller value. To avoid this problem, a weighting
function can be introduced into Eq.(5-88) [77]). Suppose that X and Y are the weighting
matrices for x and y; respectively, in Eq.(5-88), which is then wansformed to

’I = YDx-l xl . (5'95)

where x’= X x and y’ = Yy are a new data set. Eq.(5-95) may then be solved in the
same manner as Eq.(5-92). Note that this normalization operation should be made in
Eq.(5-84) rather than in Eq.(5-88), because each member on the left-hand side in Eq.(S-
87) has a different magnitude. Generally we can make use of the covariance matrix as
the weighting matrix. Namely, each X and Y is defined by the square root of the

corresponding covariance matrix. If the data are uncorrelated, then the weighting matrix
is represented by a diagonal matrix with its standard deviation such that X, = q; 5, and

Y;=0,5;. Actually g; is proportional to the magnitude of the corresponding data.
Thus, by utilizing the weighting matrix, we can adjust the different sensitivity of each

parameter to the input data.

In this section, we developed an inverse method for determining the geoacoustic

properties based on the perturbation equation for the local eigenvalues obtained in
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Section 5.4. When the total number of modes is less than the number of unknown
parameters, we may make use of the SVD method to solve the underdetermined problem.

In the next section, we will apply the methods derived in this chapter to the
simulated example discussed in Chapter 4.

S.6 Analysis of simulated data

The objective of this section is to invert for the geoacoustic parameters in our
shallow water model using the local eigenvalues which were estimated by using the
Hankel transform with a sliding window in Chapter 4. Before doing this, we will first
examine numerically the relation between the range variation of the local eigenvalues and
the geoacoustic properties by using the perturbation relation in Eq.(5-76), Section 5.4.

§.6.1 Dependence of the local eigenvalues on the range variation of the gecacoustic
parameters

The purpose of this subsection is to understand how the range variation of the
geoacoustic parameters affects the range variation of the local eigenvalues in the shallow
water model used in Chapter 4.4. To do this, we examine numerically the range variation
of x,(x) by employing the perturbation relation in Eq.(5-76). Note that here we deal
with this problem in the framework of a forward problem; we are therefore in the position
of knowing a priori the bottom environment for this ocean model.

Since the local eigenvalue x,(x) varies with respect to x only in the present model,
Jet us examine the range variation 4x,(x) along the x axis, i.e., along the radial with the
azimuthal angle 6 =0. Figure 5-6 shows Ax,(x) when setting Ax=1. As seen from the
variation of ,(x) in Figure 3-18, the |Ax, (x)] of the two lowest modes is relatively
small. Since most values of x,(x) decrease with increasing range x, Ax,(x) takes on a
negative value except for mode 3, whose Ax,(x) has a positive value between about
2500 and 4500 m. Hence the local eigenvalue in this region increases with x as noted in

Chapter 3.4.2.
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Next, by using Eq.(5-76), we can break Ax,(x) into terms dependent on 4h;, Ak,
and Aj; (1S j < 4) (see Section 5.4). In the present model, the water column and the
lowest sediment layer are set 10 be range-independent and the upper two sediment layers
vary with range as shown in Figures 3-10 through 3-14. Thus the terms associated with
Jj=1 and j=4 become zero and only the terms associated with j=2 and j=3 are left in Eq.(5-
76). In Figures 5-7 through 5-9, we show the results obtained by using Eq.(5-76) for
modes 2, 3, and 5; mode 2 is representative of a relatively weak range variation and mode
5 corresponds to a maximum mode in the trapped modes between the sea surface and the

subbottom interface (see Figure 3-15). Figures 5-7(a), 5-8(a), and 5-9(a) show the terms
in Eq.(5-76) along with the Ax,(x) for each mode, where the Ak;- and 4u;-terms are

added and the result is labeled by Ak;. The Ak;-term represents the component of
4x,(x) due to the variation of the medium in the jth layer, whereas the Ah;-term
represents a component due to the variation of the sediment interface. Note that Ah,(x)
corresponds to the bathymetric variation. In Figures 5-7(b), 5-8(b), and 5-9(b), we break

the Ak;-term into Ac;- and Ag;-terms, instead of Ak;- and Ay ;-terms, by using the

relation given by Eq.(5-58). We will show below which parameters have a strong

influence on 4x,(x) for each mode.

L Cascof mode 2
In the case of mode 2 in Figure 5-7(a), we find from the curves Ah, and Ak, that the

variation in the first sediment layer (j=2) contributes primarily to the variation of the local
eigenvalue Ax,(x) . This result can be inferred from the fact that the amplitude of the
eigenfunction i,(x,z) decreases exponentially with depth below the interface hy(x), as

shown in Figure 3-15; therefore, mode 2 is less sensitive to the second sediment layer.
Figure 3-15 also indicates that du, /32|, , which stands for the vertical particle

velocity at the water-bottom interface, comes close to zero. The /2, -term in Eq.(5-
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76) also comes close to zero, so that the coefficient of Ah,(x) takes on a negative value
in the present case because of these two reasoas:
1. p, < p,, i.e., the water density is smaller than the density in the first sediment layer.
2. 7§L_°>r§L“dueto ¢, <€, iie., the sound speed in the water is smaller than that

in the first sediment layer.
Recalling the condition that the water depth increases monotonically with x, we see that
4k, (x) >0 and so the Ah,-term takes on a negative value. As a result, the Ah,-term
contributes to Ax,(x) so that the local eigenvalue x,(x) decreases with range x.

The Ak,-term changes its sign at about x=2900 m and 4300 m. This occurs for two
reasons: (1) the Ak,-term is dominated by the Ac,-term as shown in Figure 5-7(b), and
(2) c,(x) changes from a decreasing value to an increasing one at about x=2900 m and
again changes at about x=4300 m, as seen from Figure 3-11. Thus, in this range, the Ak,-
term contributes to 4x,(x) so that the local eigenvalue x,(x) increases with range x.

In particular, at about 3500 m, the 4h,- and Ak,-terms have the same order of
magnitude but have opposite signs, so that Ax,(x) comes close to zero. As a result,

KX,(x) remains corstant around this range.

2. Case of mode 3
As for mode 3, we can see from Figure 5-8(a) that its local eigenvalue is more

strongiy affected by the second sediment layer (j=3) as compared to the local eigenvalue
of mode 2; the Ak;-term has an amplitude comparable to the Ak, -term for ranges less

than x=2000 m. Also, we observe that the amplitude of the Ak, -term is larger than that
of the Ah,-term. This mode, therefore, is more sensitive to the variation of the sediment
interface than to the bathymetric variation.

Figure 5-8(b) shows that the Ak,-term depends on the variation of both ¢,(x) and
g,(x), whereas the Ak,-term depends on the variation of only ¢,(x). Namely, mode 3 is
less sensitive to the variation of the sound speed gradient g,(x). On the other hand, the
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Ag,-term changes its sign at about x=2400 m because g,(x) changes from an increasing
value to0 a decreasing one at that range, as seen from Figure 3-12.

d.Cascofmode S

As for mode 5, the effect of the Ak,-term is amplified, which can be expected from
the mode shape us(x,z) in Figure 3-15. Itis found from Figure 5-9(a) that the 44,-term
dominates Ax,(x) for ranges less than 2200 m. As seen from Figure 5-9(b), the Ak,-
term is dominated by the Ac,-term . We can see, therefore, that mode $ is most sensitive

1o the variation of c¢,(x) in this range.

In this subsection, we demonstrated with an example how the range variation of the
sediment properties affect the range variation of the local eigenvalues in our shallow water
model. In the next subsection, by assuming that the geoacoustic parameters in this mode!}
are unknown, we will use the inverse method developed in Section 5.5 to determine the

parameters from the local eigenvalues.
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Figure 5-6: Perturbed local eigenvalue Ax,(x) in the shallow water model.
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Figure 5-7: (a) Decomposition of the perturbed local eigenvalue Ax,(x) in Figure 5-6
into the 4h,- and Ak, -terms. (b) Decomposition of the Ak, -term into the 4c, - and
Ag,-term.
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Figure 5-8: (a) Decomposition of the perturbed local eigenvalue Ax,(x) in Figure 5-6
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Figure 5-9: (a) Decomposition of the perturbed local eigenvalue Ax (x) in Figure 5-6
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5.6.2 Inversion for the gecacoustic parameters

In this subsection, let us assume that the geoacoustic parameters are unknown in the
shallow water model used in Chapter 4 except for the region close to the array of
receivers. The purpose of this section is to estimate numerically those parameters by
using the inverse method developed in Section §.5.

For input data, we can use the local eigenvalues, which were estimated in Chapter
4.4 by applying the Hankel transform to the pressure field in a wedge-type bottom
environment. In that chapter we also focused on the azimuthal direction of 6=70" and
tried to detect the local eigenvalues along a radial in this direction. First we estimated the
local eigenvalues by using the zero-order Hankel transform with a sliding window
(Figure 4-10); then we compensated for the deficit in the estimated values by using the
general Hankel transform with a 2-D sliding window (Figure 4-18). In the current
section, we estimate the geoacoustic parameters by using these uncompensated and
compensated values as input data, then we compare these two sets of estimated
parameters.

In order to utilize the inverse method given by Eq.(5-83) or Eq.(5-87), we need to
provide the range variation of the local eigenvalue Ax,(r) as input data. When taking

Ax,(r) in accordance with Eq.(5-82), we have to choose the distance Ar so that Ax,(r)
is within the range of linear variation. This is due to the fact that the inverse method
developed in Section 5.4 is based on linear perturbation theory. But too small a step for
4r leads to an inefficient calculation. Therefore let us first approximate x, (r) by a
linear curve fitting every mode. Figure 5-10 shows these results for the estimated local
eigenvalues. The dots ( - ) represent the compensated peak positions in wavenumber,
which were obtained by using the general Hankel transform with a sliding window in

Chapter 4.4; the segmented straight lines stand for the linear fits to those data, where the
portion between the points ( © ) has a constant gradient (dx, /dr). These points are

determined in accordance with the variation of x,(r); i.e., when it changes nonlinearly,
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we need to represent it by shorter line segments. We can then sample x,(r,) at 7, on
each linear segment at a suitable interval Ar,. Here we set Ar, so that Ar, does not
exceed 100m. Note that A7, is not necessarily constant and can vary depending on the
variation of x,(r).

The input data Ax,(r,) determined in this way are then used in Eq.(5-87). Since the
water column (j=1) and the subbottom (j=4) are assumed to be range-independent in the
present model, we can set Ak, Ac,, Ag,,and Av, defined in Eq.(5-81) to be zero.
Besides, we can assume that the bathymetric variation is known a priori and so Ah, is
Placed on the left-hand side of Eq.(5-87). Hence we have a total of five unknowns: AZ,
and 4g, in the first sediment layer, and A, 4g,, and Ak, in the second sediment layer.
Since the total number of given modes is five, D in Eq.(5-88) becomes a 5XS regular
matrix. Here let us apply the normalization procedure in Eq.(5-95) to D in order to
reduce the difference in the magnitudes of those variations and to obtain a reliable
numerical solution. Then, by solving Eq.(5-88) at each r,, we can determine those
unknown parameters at each range. Figures 5-11(a)-(d) compare these inverse solutions
with exact ones, which were provided in Chapters 3.4 and 4.4. In Figures 5-11(c)-(d),
note that ¢, and & represent the sound speeds at the sediment interface depth h,(r) and
hy(r), respectively, instead of ¢, and c, at fixed depths defined in Section 5.4; ¢; (=2,3)
can be calculated by using Eq.(5-51) since we have estimated c; along with the gradient
g, in each layer. It can be observed that the estimated parameters take on values close to
the exact values. The difference between the two curves is due to the approximation of

the input data Ax,(r,). The 3-D pictures of the sound speed profile in the sediment are
also compared in Figures 5-12(a) and (b) and are almost identical.

Case of uncompensated local cigenvalues
Here let us examine the case where we use the uncompensated, estimated values for

the local eigenvalues as input data for the inverse method; these were obtained by using

191




Table 5-1: Matrix component in Eq.(5-94)

parameter (diagonal wnn)“

hy 6.83
9, 13.66
05 3.86
C, 5.83
Cy 4.62

the zero-order Hankel transform in Chapter 4.4, as shown in Figure 4-10. By following
the same procedure as above, we can determine the unknown geoacoustic parameters.
The results are shown in Figure 5-13. As compared to the above compensated case, we
observe that the difference between the estimated and exact parameters has increased
noticeably. This difference increases with range as the error in the estimate of x,(r)
increases with range. In particular, the difference in the gradient of the first sediment
layer, g,, is prominent. This can be understood from Table 5-1, where the square root of
the diagonal term in the matrix in Eq.(5-94) is listed. The variance of the estimated
parameters is proportional to this component; the value for g, is the largest, which

accounts for the prominent difference.

Underdetermined case

Next we will study the case of an underdetermined problem, in which the total
number of modes is less than the number of unknown parameters. Suppose that the
compensated value of the local eigenvalues is given, but only four modes are available in
total. As shown in Eq.(5-92), we can make use of the SVD method to solve this
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underdetermined problem. Here let us consider the following two cases: one is the case
where modes 1-4 are employed and the other is the case where modes 2-5 are employed.
Figures 5-14 and 5-15 show the results of applying the SVD method to each case. Figure
5-16 also compares the 3-D pictures of the sound speed profile in the sediment bottom in
each case. In the former case, we have a relatively large error, especially for ranges
greater than 2000 m. On the contrary, in the latter case, we obtain almost the same result
as for the determined case in Figure 5-10. As seen from a comparison of these two
results, we can deduce that mode 5 carries more information about the sediment
properties of the second layer than mode 1. This is because the turning point depth of
mode 1 is located inside the first sediment layer and so this mode is less sensitive to the
range variation of the second sediment layer.

In this subsection, we demonstrated through simulated examples that we can
accurately estimate the unknown parameters in our shallow water model by using the
inverse method developed in Section 5.5. Next we observed that the error in the
estimated parameters increases when using the underestimated local eigenvalues as input
data, which were obtained by using the zero-order Hankel transform with a sliding
window in Chapter 4.4. Finally, we showed that the SVD method works well for the
underdetermined case as long as we choose the modes properly.
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Figure 5-11: Comparison of the exact and estimated geoacoustic parameters in the shal-
low water model. The compensated local eigenvalues are used for the estimation of

parameters. (a) Sediment interface depth h,, (b) sound speed gradients g, and g,,
(c) sound speed ¢, atinterface depth h,, and (d) sound speed C, at interface depth A, .
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§.7 Summary
In this chapter we explored a method for determining the local properties of the

bottom sediment from the local eigenvalues; these eigenvalues were estimated by
applying the Hankel transform with a sliding window to the pressure field in a horizon-
tally as well as vertically varying waveguide.

In Section 5.1, in order to provide a basis for the development of an inverse method
for determining the range-dependent geoacoustic parameters, we set up a horizontally and
vertically varying, multilayered model for the bottom sediment in shallow water.

In Section 5.2, based on the bottom model set up in Section 5.1, we derived the
relation between the perturbed local eigenvalues and perturbed geoacoustic parameters by
utilizing linear perturbation theory.

In order to confirm the validity of the result obtained in Section 5.2, we applied it to
2 range-dependent Pekeris model in Section 5.3. We showed that the resulting
perturbation relation from Section 5.2 yields a result which is equivalent to that obtained
by directly differentiating the characteristic equation.

In Section 5.4, by representing the sound speed in each layer by an n-linear curve, we
showed that the integral in the perturbation relation can be executed in closed form. Asa
result, we revealed that the variation of the local eigenvalues can be separated into terms
that depend on the range variations of the sediment interface depths, the sound speed and
gmdient'in cach sediment layer, and the sound speed profile in the water column.

Based on the perturbation equation derived in Section 5.4, we developed an
inversion method for determining the geoacoustic parameters in Section 5.5. We then
demonstrated that we could obtain the range-dependent behavior of these parameters by
solving the simultaneous perturbation equations at successive ranges. When the number
of local modes is less than the number of unknown geoacoustic parameters, we showed
that we can apply the singular value decomposition (SVD) method to this under-
determined problem.
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In Section 5.6, to check numerically the methods derived in this chapter, we applied
them to the shallow water model used in Chapter 4.4. First, we decomposed the
perturbed local eigenvalue into terms associated with the perturbed geoacoustic
parameters by using the perturbation equation derived in Section 5.4. Then we
determined which geoacoustic parameters have the strongest influence on the range
variation of each local mode. We observed that, in this shallow water model, mode 2 is
less affected by the range variation of the second sediment layer, whereas mode 5 is
strongly affected by the range variation of the first and second interface depths.

Second, by assuming that these geoacoustic parameters were unknown, we tried to
determine them by applying the inverse method developed in Chapter 5.5 to the
compensated local eigenvalues estimated in Chapter 4.4; these eigenvalues were obtained
by using the general ﬁmkel transform with a 2-D sliding window. As a result, we
showed that we can estimate accurately these unknown range-dependent parameters.
Next, we used the underestimated values for the local eigenvalues as input data; these
eigenvalues were obtained by using the zero-order Hankel transform with a sliding
window in Chapter 4.4. As a result, we observed that the error in the estimation for the
geoacoustic parameters increased; in particular, the error in the sound speed gradient of
the first sediment layer is prominent. This was accounted for by the stability relation
between the input and output data in the perturbed simultaneous equations. Moreover,
we tried to determine the five unknown parameters by using four modes. We applied the
SVD method to this underdetermined problem and consequently could obtain geoacoustic
parameters close to the exact ones when we chose the modes properly (modes 2-5). It
was scen that these results are related to the location of the turning point depth of each
mode and its connection to the depths of the unknown parameters.

In the next chapter, we will analyze some experimental data by using the methods
developed so far.
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Chapter 6
Analysis of Experimental Data

We studied the zero-order and general Hankel transform with a sliding window in
Chapters 3 and 4, respectively, and also applied each transform to numerically simulated
fields. In this chapter, we will analyze some experimental data by using the Hankel
transform with a sliding window and estimating the local eigenvalues of the discrete
modes. Then, by using these local eigenvalues, we will find a geoacoustic model whose
local eigenvalues agree satisfactorily with the estimated ones. Based on this inferred
model, we will examine the effect of range-dependent variation of the sediment bottom
on the range variation of the local modes.

6.1 Nantucket Sound experiment

In this section, we will examine experimental data measured in Nantucket Sound by
Frisk and his co-workers. Figure 1-1 shows the configuration of this experiment; the
details can be found in Ref. 30. The acoustic pressure due to a CW source towed away
from r=0 to 1320 m was recorded by receivers at two different, fixed depths (7.1 m and
12.5 m). Here the 2 axis is fixed at the receiver position as in Figure 3-8. The
bathymetry observed over this range has a noticeable, but small, change at a range of
about 660 m. The sound speed in the water column is confirmed from temperature
measurements to be isovelocity with c=1503 m/s.

Since these field measurements were taken azimuthally in one direction, we cannot
use the general Hankel transform with a sliding window, which requires a field with
different azimuths as we discussed in Chapter 4. Here, by assuming that the field is
cylindrically symmetric about the receivers, we use the zero-order Hankel transform with
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a sliding window. The output of applying the Hankel transform in Eq.(3-30) to the
pressure data at 140 Hz is shown in Figure 6-1 in the form of [k, |g, (£,.r)| versus both
&, and r. In this processing, 8 Hanning window with a 500 m length was applied by
sliding its center position every S m. Figure 6-1 indicates that two peaks associated with
the first and second modes evolve with range and their peak positions in &, experience a
relatively strong shift at about 7=500 m. This result can account for the splitting of the
spectral peaks when the Hankel transform is applied over the eatire 1320 m aperture (see
Figure 1-2). Of particular interest is the fact that the range where the peak shift occurs is
different from the range of the pronounced bathymetric change (=660 m). Reference 30
assumed that the sediment bottom also changes its geoacoustic properties at 7=660 m and
divided the waveguide into two sections at this range; the Hankel transform was then
applied to each secnon of this waveguide in order to obtain eigenvalues for each section.

In order to examine the range of this shift further, let us elucidate the range evolution
of the second mode, whose amplitude is weak compared to the first mode and is
especially difficult to recognize for the near-bottom receiver. This is due to the fact that
the location of the near-bottom receiver (z=12.5 m) is close to the null of the second
mode. To enhance the spectral component associated with the second mode, the utility of
mode filtering is desirable. As discussed in Chapter 3.3, knowledge about the bottom
environment at the array site (~=0 m) is then required to execute mode filtering. This
bottom environment was inferred by resorting to the iteration of forward models method.
Namely, we calcuiatcd che pressure field including its phase by changing the geoacoustic
parameters repeatedly until it best fit the measured pressure field near the site (7<200 m).
By using the inferred bottom environment at the array site, the matrix U in Eq.(3-58) was
calculated. Figure 6-2 shows the range evolution of the first and second modes after the
application of mode filtering. As seen from the spectrum of Mode 2 in Figures 6-2, the
first mode is not completely eliminated and preveils ovar ti second mode at ranges

where the second mode fully i .¢y~ ue to its stronger modal attenuation. This is partly
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because of the error in the estimation of the bottom properties at the array site and also
partly because of inadequate synchronization in the phases measured at the two receivers.
From the enhanced, mode-filtered amplitude of the second mode, however, we can
confirm that the peak shift of the second mode also occurs at a range less than 660 m.

Figure 6-3 shows the peak positions of the first and second modes from each
spectrum in Figure 6-2; these peak positions are also compared with those obtained by
applying the same processing to the simulated pressure field. This field was generated
using adiabatic mode theory (Eq.(2-12)) with a geoacoustic model having the n2-linear
profiles shown in Figures 6-4(a)-(d). This model was inferred by trial and error, i.e., by
changing the values of the geoacoustic parameters until the measured and computed
modal peak trajectories produced the level of agreement shown in Figure 6-3. By
comparing the inferred sound speed and its gradient with the results of Hamilton [84], we
assumed that the bottom consists of silt and sand layers. This geoacoustic model was
also checked by comparing the measured and simulated pressure fields. Figures 6-5(a)
and (b) show the comparison of the relative amplitudes and modulated phases,
respectively.

Since the sound speed gradient of sand takes on a large value near the water-bottom
interface and decreases rapidly with depth [84], the sound speed profile in the sandy
portion was partitioned ihto four layers having different gradients as shown in Figures 6-
4(c) and (d). Note that the gradient and the sound speed at each sand layer depth are not
independent of each other in order to satisfy the condition of continuous sound speed
across the layer interfaces. In spite of this, we have a total of thirteen unknown
parameters and so we could not effectively use the inverse methods from Chapter 5.5. As
indicated in Figure 6-4, however, we were able to estimate that the geoacoustic properties
in the sediment change significantly at about /=500 m rather than =660 m.

At this point, by using the inferred geoacoustic model, let us examine the effect of
the error that has originated from the finite length of the window in the Hankel transform.
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In Figure 6-6, we compare the modal peak trajectories obtained by using the 100 m and
300 m length Hanning windows after the application of mode filtering; in this figure, the
exact eigenvalues are also shown. As also detailed in Chapter 3.2, the peak position
obtained using the SO0 m length window has a larger departure than that obtained using
the 100 m length window at ranges where |d2 x_/dr’l is large; we can observe, however,
that both trajectories have a relatively strong shift at about the same range (=500 m).
Therefore, from this result, we can see that the finite length of the window is not
associated with the difference between the two ranges (500 m and 660 m).

Finally, based on the inferred bottom mode! in Figure 6-4, we may study the
influence of the lateral changes in bottom properties on the range-dcpendcng evolution of
the modal eigenvalues by using the perturbation relation in Eq.(5-76). Figure 6-7 shows
that Ax, is decomposed into terms associated with the variation in bathymetry, the depth
of the sediment interface between the silt and the sand layers, and the sound speed in the
silt and sand layers. From these results, it is seen that the lateral change in the interface
between the silt and the sand layers contributes most significantly to the range variation
of the local eigenvalues in this inferred model.
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Figure 6-7: Decomposition of perturbed local eigenvalues into the terms associated
with the perturbed geoacoustic parameters. (a) The first mode and (b) the second
mode of the simulated field data.




6.2 Hudson Canyon experiment

In this section we will analyze a subset of experimental data measured in Hudson
Canyon on the New Jersey continental shelf (Figure 6-8) by Carey and his co-workers
[85.86]. In this experiment the ficld measurements were carried out with a vertical array
of 24 equally spaced hydrophones as shown in Figure 6-9. Here we focus on the
separation of modes by using mode filtering applied to the output of the vertical array.

The field data we chose to analyze here are the acoustic pressure due to a CW source
of 50 Hz, which was towed from about 7=4000 m to 100 m along a track parallel to the
shelf (TL2). This track was designed to have a uniform water depth. The bathymetry
was measured using a UQN-15 fathometer and the water depth along this track has a
mean value of 72.0 m. The sound speed in the water column was also obtained by using
both a Sound Velocity Profiler (SVP-16) and a Conductivity Temperature and Depth
(CTD) system: the former measures sound speed directly, whereas the latter measures
conductivity and temperature from which sound speed is calculated. Figure 6-10 shows
the SVP and CTD sound speed profiles for the TL2 run.

The wavenumber spectrum can be obtained by applying the zero-order asymptotic
Hankel transform in Eq.(3-26) to this pressure field over the entire 4000-m range. In this
transform we can use a rectangular window (Eq.(3-25)) to truncate the pressure field at
4000 m and no weight is employed in order to handle equally the wavenumber
components at cach range. Figure 6-11(a) shows the wavenumber spectrum obtained by
using receiver H18 (z=57.5 m). Each spectrum has a different shape, depending on the
receiver depth as shown in Figure 6-12(a), since the eigenfunction of each mode varies
with depth. These spectra, however, have peaks at the same positions in wavenumber.
Figure 6-11(b) shows the spectrum averaged for all receivers and Table 6-1 lists the peak
positions in this spectrum.

If the sediment properties are range-independent along the track TL2 and horizontal

refraction is small enough to be negligible, then we can determine the eigenvalues of the
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normal modes from the peak positions in the average spectrum. From the narrow
bandwidth around the spectral peaks of the first and second modes, we can expect that the
sedin  near the water-bottom interface is almost horizontally stratified. On the other
hand, it is observed in Figure 6-12(a) that for the receivers H17 through H24 the spectral
peak of the fourth mode is split. From this result only, we cannot determine if the split is
due to range-dependence in the lower portion of sediment or due to other effects such as
noise interference.

Based on the assumption that the medium along the track TL2 is range-independent,
the sound speed in the bottom can be inferred by applying a perturbative inverse method
[Rajan, 50] to the peak positions in Table 6-1. The dots in Figure 6-13 show the sound
speed obtained by Rajan using this technique. The scgmented lines in the same figure
represent a sequence of n2-linear fits to this profile.

Table 6-1: Peak positions of the spectrum in Figure 6-11 and mode eigenvalues
of the simulated field.

mode peak position (m-1)  eigenvalue (m-!)
(measure field) (simulated field)

1 0.2086 0.2086

2 0.1992 0.1992

2 0.1852 0.1850

4 0.1735 0.1735

5 0.1634 0.1628

6 0.1518 0.1513
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Figure 6-8: Hudson Canyon experimental area [86].
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By using this a2-linear profile in the depth equation (Eq.(2-3)), we can calculate the
normal modes. The resulting eigenvalues are listed in Table 6-1 and are compared with
the peak positions of the spectrum. It can be confirmed that both values agree well.
Figure 6-14 shows a set of eigenfunctions for these modes. By substituting these
eigenvalues and eigenfunctions into Eq.(2-6), we simulated the pressure field and
compared it with the measured one in Figure 6-15. Again it can be confirmed that both
pressurc fields agree very well. We can also observe in Figures 6-15(a) and (c) a bimodal
interference pattern in the output of receivers H8 (2=32.5 m) and H18 (z=57.5 m),
respectively. This arises because the pressure at these depths is dominated by the first
and second modes, which can be seen from the two strong peaks in Figure 6-12(a). The
interference distance, or so-called “skip distance”, is given by 2x/4x, where Ax is the
difference between eigenvalues of adjacent modes. From Table 6-1, we have
Ax = x, - x, =0.0094 and thus the skip distance becomes 668 m, which agrees well with
the interference distance shown in Figures 6-15(a) and (c). In contrast, we do not observe
a regular interference pattern in Figure 6-15(b). This is due to the fact that the depth of
receiver H14 (2=47.5 m) is close to the node of the second mode (see Figures 6-12(a) and
6-14) and this mode contributes less to the pressure.

We can obtain the wavenumber spectrum for the simulated pressure by using the
same Hankel transform operation as that used for the measured pressure. Figure 6-12(b)
represents a set of wavenumber spectra for the simulated field at the receiver depths
shown in Figure 6-9. As discussed in Chapter 3.1, these spectra correspond to the depth-
dependent Green's function because of the horizontally stratified assumption. Both
spectra agree very well with small differences in the behavior of the third and fourth
modes only. This difference could be due to errors in the geoacoustic model including
the assumption of range independence for the lower portion of the sediment column.
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Figure 6-15, continued.
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Next, in order 10 examine the range dependence of the eigenvalues, let us first try a
sliding window in the asymptotic Hankel transform. Since the field measurements in this
experiment were executed in two directions, i.e., parallel and perpendicular to the slope
(Figure 6-8), we cannot utilize the general Hankel transform due to a lack of field data for
varying azimuths. Thus, on the assumption of weak refraction in the horizontal direction,
we will use a zero-order asymptotic Hankel transform with a sliding window. Figure 6-
16 shows the output of this transform when using the Hanning window with a length of
1000 m. As seen from the interference pattern, the first and second modes interfere with
each other in the output spectru.n. Also we cannot recognize the spectral peaks corre-
sponding to the third and fourth modes. Thus we cannot determine the local eigenvalues
from this resulting spectrum.

Hence, let us separate the pressure by individual modes with the use of mode
filtering. By assuming that the sound speed profile at the array site is the same as that in
Figure 6-13, we may use the mode eigenfunctions shown in Figure 6-14 in Eq.(3-58).
Here we set N=6 in this equation because the sixth mode is the largest one whose phase
velocity does not exceed the maximum sound speed (2070 m/s) in the profile in Figure 6-
13. To solve Eq.(3-58), we have to execute the general inverse shown in Eq.(3-64). In
the present problem, however, Eq.(3-64) results in an unstable solution. This arises
because one of the eigenvalues of the matrix in Eq.(3-67) takes on a small value as shown
in Table 6-2. (Note that these eigenvalues in Table 6-2 must be distinguished from the
modal eigenvalues in Table 6-1.) Therefore we can use the EDM with =5 in Eq.(3-76)
to execute the generalized inverse. As a result, the output of mode filtering is shown in
Figure 6-17, where it has been transformed into the spectrum by using the same Hankel
transform as that used in Figure 6-16. As seen from a comparison with Figure 6-16, the
first and second modes are separated well. The third mode, however, is not completely
isolated. This could be due to an error in the eigenfunction for the third mode, which
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Table 6-2: Eigenvalues of the matrix in Eq.(3-68).

o

eigenvalue (4,)

0.6351
0.6041
0.5166
0.2864
0.0353
0.0012

AL EWN -

is confirmed by a comparison of the spectra of the measured and simulated data: the
depth of the second null in the measurement is closer to the water-bottom interface than
that in the simulation'(see Figure 6-12). To improve this result, we need to know more
exactly the sound speed at the array site.

In order to examine modal evolution further, the peak trajectories in Figure 6-17 are
plotted in Figure 6-18. The trajectories of the first and second modes are relatively stable
as was previously expected from the spectra in Figures 6-11 and 6-12. Since the tumning
point depth of the second mode is located at about 15 m below the water-bottom interface
(see Figure 6-14), we can infer that the sediment in this region is nearly horizontally
stratified. Although the local eigenvalue of the fourth mode is not as precise as those of
the first and second modes as seen from Figure 6-17, we can see in Figure 6-18 that the
trajectory fluctuates around a wavenumber of 0.1755 for ranges less than 2000 m whereas
it fluctuates around a wavenumber of 0.1735 for ranges greater than 2000 m; these
wavenumbers correspond to the peak positions of the split peak of the fourth mode as
observed in Figures 6-11 and 6-12.

As compared to the Nantucket Sound result, we find that the local eigenvalues along
the track TL2 in the Hudson Canyon area are relatively stable with range and the
sediment bottom in this direction can be inferred to be nearly horizontally stratified.
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Chapter 7
Conclusions

In this final chapter we summarize the results obtained in Chapters 2 through 6 and
briefly discuss some thoughts on future work.

In this thesis we focused on the analysis of the range evolution of local modes caused
by horizontal variation of the sediment bottom in shallow water; the variation dealt with
here is weak 30 as to allow us to utilize adiabatic mode theory. Since the local modes are
subject to spatial changes of the sediment geoacoustic properties, we first tried to detect
the local cigenvalues by using the asymptotic Hanke] transform with a sliding window
together with mode filtering. Next, in an attempt to obtain the spatial variation of the
sediment properties from the range variation of the local eigenvalues, we derived an
analytical relationship between these two variations by using a linear perturbation
method. Based on this relation, an inversion method for determining the range-dependent
geoacoustic parameters in the sediment was developed.

In Chapter 2 we reviewed the normal mode and adiabatic mode theories for
describing the acoustic pressure field. In order to cope with a 3-D varying waveguide, we
also reviewed briefly the Nx2D method and the horizontal ray method.

In Chapter 3, in order to detect local eigenvalues in a range-dependent but
cylindrically symmetric waveguide, we utilized the zero-order asymptotic Hankel
transform with a short sliding window. The effect of the range-dependence of the local
eigenvalues on the Hankel transform was examined analytically by expanding the phase
term of the adiabatic mode field to fourth order. In a single mode situation, it was found
that the departure of the peak position in the output spectrum from the local eigenvalue
depends on both the second derivative of the local eigenvalue with respect to range and
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the window leagth and type. In addition to this error, another type of departure from the
local eigenvalue is induced by the interference with the sidelobes of adjacent modes. In
order to attain separation of the modes prior to the Hankel transform, we used mode
filtering by incorporating data from a fixed vertical array of receivers. When this filtering
process becomes unstable due to the involvement of a singular matrix, we can use the
eigenvector decomposition method (EDM) and the stabilized least-mean-square method
(SLMS) for reliable mode separation. At the end of Chapter 3, we applied the methods
discussed in this chapter to the pressure field simulated numerically by using adiabatic
mode theory in a model of a laterally inhomogeneous shallow water waveguide. The
result indicated that the use of mode filtering improved the detection of the local
eigenvalues. When the field included higher modes, it was demonstrated that the EDM
was useful in providing a stable result for mode separation.

Chapter 4 was devoted to detection of the local eigenvalues in & 3-D varying shallow
water environment. When we apply the zero-order asymptotic Hankel transform with a
sliding window to the pressure field measured along a radial in a 3-D varying
environment, then we underestimate the local eigenvalues due to the horizontal refraction
effect. In order to deal with this problem, we explored the use of a general asymptotic
Hankel transform with a 2-D sliding window in a cylindrical coordinate system. By
expanding this transform with respect to the azimuthal angle, we demonstrated that the
first term in the Taylor series corresponds to the zero-order Hankel transform used in the
cylindrically symmetric waveguide; the rest of the terms account for the difference
between the underestimated and actual local eigenvalues. Next, we analyzed the effect of
horizontal refraction by evaluating the general Hankel transform with the use of the
stationary phase method. Based on this analysis, it was shown that we can determine the
horizontal refraction angle and correct for the underestimated value of the local
eigenvalues by using the refraction angle.




In ord: to re-examine analytically the effect of horizontal refraction, we also derived
an alternative representation for the 2-D Fourier transform by using the phase difference
between the outputs of the mode filter, which was applied to the pressure field in the
different azimuthal directions. By comparing the resulting transform with the zero-order
asymptotic Hankel transform, we demonstrated that the underestimated amount for the
local eigenvalues in the latter transform can be determined by using the phase difference
in mode filtering.

At the end of Chapter 4 we examined numerically the horizontal refraction effect by
applying the method discussed in that chapter to the pressure field simulated using the
horizontal ray method. It was shown that we can determine the horizontal refraction
angle by using the general Hankel transform, as long as the pressure field is sampled in
the azimuthal direction so as to satisfy the spatial Nyquist criterion. This issue was also
discussed in connection with the design of experiments for measuring pressure fields in a
3-D varying, shallow water environment.

In Chapter §, we discussed a method for determining the range-dependent properties
of the sediment bottom from the local eigenvalues. First, by utilizing a linear
perturbation method, we derived the analytical relationship between the range variation of
the local eigenvalues and the spatial change in the bottom properties in a horizontally and
vertically varying, multilayered bottom model. This relation was checked analytically by
using the range-dependent Pekeris waveguide, for which the identical relation can be
obtained by differentiating the characteristic equation. Next, by representing the sound
speed in each layer by an n2-linear curve, we showed that the integral in the perturbation
relation can be executed in closed form. As a result, we saw that the range variation of
the local eigenvalues can be separated into terms that depend on the range variations of
the sediment interface depth, the sound speed and gradient in each sediment layer, and the
sound speed profile in the water column. Finally, based on this perturbation relation
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between the local eigenvalues and the geoacoustic parameters, we demonstrated that we
can invert for the geoacoustic parameters at successive ranges.

In order to check numerically the methods derived in this chapter, we applied them
to the shallow water model used in Chapter 4. As a result, we showed that we can
accurately estimate the unknown range-dependent geoacoustic parameters in this model
as long as the local eigenvalues are precisely provided. When the number of local modes
is less than the number of unknown geoacoustic parameters, we can employ the singular
value decomposition (SVD) method and observe that the proper choice of modes can
reduce the error in the estimation of the parameters.

In Chapter 6 we analyzed some experimental data by utilizing the asymptotic Hankel
transform with a sliding window and mode filtering. In the Nantucket Sound experimen-
tal data, we found that the range variation of modes is dominated by the lateral variation
of the geoacoustic parameters rather than by the bathymetric change. In the Hudson
Canyon experimental data, we observed that the two lowest modes can be separated very
well by mode filtering. We found that the range variation of modes along the track
parallel to the shelf in the Hudson Canyon area is small compared to the Nantucket Sound
result.

7.1 Suggestions for future work

In this thesis, we examined the effect of range variation of the sediment bottom on
the local eigenvalues in a framework for which adiabatic mode theory holds. If, however,
the sediment properties have strong variations in the horizontal direction, then we have to
take into account the effect of mode coupling. To do this, we would first have to simulate
pressure fields which accommodate mode coupling in the propagation process. An
analytical study of the Hankel transform of this field would also be required in order to
understand the output of this transform.
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In the inversion method discussed in this thesis, we assumed range independence for
the attenuation coefficient in each sediment layer. In order to acquire the local character
of the attenuation coefficient with respect to range, we would have to measure the
amplitude of the local spectrum. Also we would need to develop the theoretical
relationship between the range variations of the spectral amplitude and the attenuation
coefficient.

The bottom model used here to relate the range variations of the local modes and the
sediment properties is based on the assumption of a fluid medium. In general, we need to
include geoacoustic parameters associated with shear waves as well. Also, attention has
to be paid to the effect of conversion between the shear and compressional waves due %0
the range variation.

If we use a broadband signal as the source, then we can make use of group velocity
dispersion curves as tools for estimating the geoacoustic properties. In a range-dependent
shallow water environment, the modal group velocity becomes a function of range and
could be measured for individual modes by applying mode filtering to data obtained on a
fixed vertical array of receivers from a source whose position is changing with range.

By taking into account the effects stated above, we could deal with more general
problems associated with the horizontal and vertical variation of the sediment bottom.
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Appendix A

In this appendix, we prove Eq.(5-15), which was used when deriving the perturbation
of the local eigenvalues in Chapter 5.2.

Let us consider Eq.(5-5), e&aluated at slightly separated positions on the sediment
interface, i.e., (r,h(r)) and (r+4r.h(r+A4r)):

U, (7, 2)smb (110 = U, (7, 2= (100 (A-1)

U (A7, 2)miimarr0 = U (AT, Z)maiwareo (A-2)

Subtracting Eq.(A-1) from Eq.(A-2), dividing both sides by Al (= {(47) +[k(r + Ar)
= h(r)I*}}), and taking the limit as 4/ — 0 yields

lim U, (P+Ar, 2)|ms (wary-0 = U, (7, 2)|m (2~0

a0 Al A3)
= lim u,(r+4r, 2)ms  (rar)+0 = U (T, z)l'ﬁ("“ ’ i
a0 Al

Eq.(A-3) is thus expréssed using the derivative tangential to the sediment interface, -aa? as

Ol lsairo gl Lw»o )




d 1 (3 .3
Haealcanbeteplacedthhé-i ‘l+hf(r)(ar+h,(r)az).sotha1Eq.(A-4)becomes

o o .. o
[%‘rlwh,(r)-é-zl-]‘_‘w_o-[%irh,(r)-;;]ﬂﬂw , (A-5)

where |1+ k;*(r) has been dropped because it takes on the same value on both sides.

Rearranging Eq.(A-5) leads to
%, ...a ‘_ R(r) (A-6)
O lmain-o a,— 10 b0 gz fembtrw0 S 10

At this point, use of the relation in Eq.(5-5) on the right-hand side of Eq.(A-6) results in

LY -iu.L 1ou] oy :
or =i,(r)-0 Or li=a ('M--(p[-l P) & A dr . (A 7)

Multiplying both sides of Eq.(A-7) by Ar and utilizing Au, = %‘-‘:-Ar and 4h; = %Ar.

we can finally obtain Eq.(5-15):

aul,_

(]

° -AuuLiro = '(P,-_l "pi)(':;%l 4k; . (A-8)
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Appendix B

In this appendix we will apply the simulated annealing method to the Nantucket
Sound experimental data in order to estimate the local eigenvalues, which will then be
compared with the local eigenvalues estimated by using the asymptotic Hankel transform
with a short sliding window as well as mode filtering in Chapter 6.1.

As introduced in Chapter 1, the simulated annealing algorithm is one of the iteration
of forward models methods for estimating the unknown parameters of interest. In this
algorithm, we iteratively change the values of these parameters until the energy function
E takes a value close to its global minimum; the energy function measures the difference
between the observed and simulated data and may take different forms depending on the
type of data [39]. At each iterative step, we calculate the change in the energy AE in
accordance with the changes in the values of the parameters and accept these values
always if AE <0; if, however, AE 2 0, we may then accept them with the probability
& =exp(~AE/T). Owing to this process, we can avoid being trapped in the local
minimums of E. Here T is called the temperature and plays the role of a parameter
controlling the probability function. Namely, we decrease T gradually at each iteration of
the calculation so as to reach the global minimum of E.

Since the energy function E has to be calculated many times in this algorithm, we
need an efficient means for computing the simulated field. Here we can set the local
cigenvalues at selected ranges x,(r;) (1 < J S J) as unknown parameters to be estimated.

Then, after interpolating the local eigenvalues between these selected ranges with the use
of x,(r,), we may simulate the pressure field p,(r) based on adiabatic mode theory

(Eq.(2-12)). If we also treat the local eigenfunctions in the amplitude as unknown
parameters in the manner described above, then they can be estimated as well by using
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the annealing method; here we treat them to be range-independent in order to save
computation time.
By using the measured field p(r) and the simulated field p,(r), we here define the

energy function as
E= flﬁ(r)-ﬁ,(r)rdr ‘ ®B-1)
where p(r) and p,(r) are normalized pressures as
a (r)
==L (B-2)
VL ipefar
XY T /il B (B-3)

K.k

Now let us apply the simulated annealing method to the Nantucket Sound experi-
mental data and estimate the local eigenvalues. We use the pressure data which was
measured by the midcolumn receiver (z, = 7.1). By referring to the result in Figure 6-3,
a set of ranges r;(j =1,...,J) and initial values of x,(r;) are selected as shown in Table
B-1(a). In order to keep the parameter values within the interval shown in Table B-1(b),
we may use the effective method described in Ref. 40. As for a cooling schedule, it is
generally desirable to start with a high temperature and cool very slowly, but this requires
a large amount of computation time. If we, however, use too low an initial temperature
or a fast cooling rate, then we run the risk of being trapped in one of the local minima. In
the process of decreasing the temperature, in general, the energy function falls off
suddenly at some temperature (T_) . Therefore if T, is known, we may start with the

temperature slightly higher than T, with a very slow rate. Thus, we first find the
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temperature 7, with a relatively fast cooling rate; and then we reset the initial

temperature and iterate the process with a relatively slow cooling rate.

(1) Figure B-1 shows the result for the energy function E in terms of the temperature T
when decreasing the temperature as T=0.1x (0.99)’ (/:iteration number, see Figure
B-2). From Figure B-1, we can observe that T, exists between 0.02 and 0.03.

(2) Based on the result obtained in (1), we set the initial temperature to be 0.03 and the
cooling schedule as T=0.03 —0.00001 x / (/:iteration number).

As a result of the cooling schedule in item (2), we obtain Figures B-3 through B-5. In

Figure B-3, we again observe that T, exists between T=0.03 (/=0) and 0.02 (=1000).

This figure shows that the energy function does not get close to zero, which is due to the

approximation in representing the local eigenvalues with the use of segmented straight

lines and also due to tﬁe fixed modal and attenuation (Table B-1(c)). Figure B-4 shows

the convergence of the parameters X,(r;) (j=1...,J) with iteration number. Since the

SNR for the second mode is lower than the SNR for the first mode as seen from Figure 6-
1, x,(r;) shows slower convergence than x,(r;). Also, as seen from the comparison of
parameters with lower j and higher j, the latter has slower convergence. This is due to the

fact that the variation in the parameters with higher j changes the simulated pressure field

only for ranges close to the maximum range. For example, the variation of x,(r,) affects
the pressure field only in ihc range r,_, Sr Sr,, whereas the variation of x,(r,) affects
the pressure field in the entire range. Finally, in Figure B-§, the local eigenvalues
estimated by using the simulated annealing method are compared to those obtained by
using the Hankel transform with a short sliding window. This figure reveals that both
results agree with each other fairly well. The disagreement in the second mode for ranges
greater than 1000m is due to slower convergence described above.
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| Table B-1 (a) The selected ranges and initial values for the parameters x,(7;).
(b) The upper and lower limits of x,(7;). (c) The relative amplitudes and mode
attenuations used for the simulation.

} (a)
) J r; K(7) LA
(m) (m-?) (m)
1 0.0 0.56 0.49
2 250.0 0.56 0.49
3 400.0 0.56 0.49
4 600.0 0.57 0.51
5 900.0 0.57 051
6 1050.0 0.57 0.51
7 1320.0 0.57 0.52
(b)
x,(r;) K,(r;)
(m-1) (m-!)
Lower limit 0.55 047
Upper limit 0.59 0.55
©

Mode 1 Mode 2
Relative amplitude 1.0 10
Mode attenuation (dB/m)  0.23x103 1.5x103
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Figure B-1: Energy function versus temperature when decreasing the temperature as
T = 0.1x(0.99)’ (!:iteration number).
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Appendix C

Throughout this thesis, the ocean and seabed environment is assumed to vary
gradually in the horizontal direction, so that we may utilize adiabatic mode theory. In
this appendix, we will check that the range variation in the Nantucket Sound case satisfies

the above assumption.
As demonstrated by Milder [59], the criterion for adiabatic mode theory is given by
—le—"-L<<l (m=ntl) , (C-1)
|K. - K.l

where B, is the coupling coefficient defined by

B_= L' %u‘(r.z)gr-u_(r.z)dz . (C-2)

In order to evaluate the right-hand side in Eq.(C-2) numerically, let us use the approx-
imation Ju, /dr =[u.(r + Ar,z)—u.(r.2)]/Ar, which yields

1 1
B_=—| —u(r.2)u(r+A4rz2)dz , C-3
- J:'pu(rz)u (r 2) (C-3)

where the orthonormality condition in Eq.(2-9) has been used and H=40 m.

Figure C-1 shows the values of the left hand side in Eq.(C-1) for the bottom model
(Figure 6-4) inferred from the Nantucket Sound experimental data. From the result in
Figure C-1, it can be seen that the adiabatic criterion, Eq.(C-1), is satisfied for this bottom
model.
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