		1			
AD-A273	3 621	ITATION PAG	È	Form Approved OMB No. 0704-0188	
Publi main sugg		hour per response, including the time for reviewing instructions, searching existing data sources, gathering and ation. Send comments regarding this burden estimate or any other aspect of this collection of information, including birectorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA			
AGENCY USE ONLY (Leave blank) 2. REF		Project (0704-0188), Washington, DC 20503. ORT DATE 3. R		REPORT TYPE AND DATES COVERED	
		ugust 1993	P	rofessional Paper	
STOCHASTIC RESONANCE IN A BISTABLE SQUID LOOP			P	PR: MA19 PE: WU:	
A. Hibbs, E. W. Jacobs, J. Bekked	ahl, A. Bulsara				
7. PERFORMING ORGANIZATION NAME(S) AND ADD Naval Command, Control and Oc RDT&E Division San Diego, CA 92152-5001	DRESS(ES) ean Surveillanc	e Center (NCCOSC)	8. PERF(REPO	DRMING ORGANIZATION AT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) A Office of Naval Research 800 North Quincy Street Arlington, VA 22217	ND ADDRESS(ES)		10. SPOI AGE	NSORING/MONITORING NCY REPORT NUMBER	
11. SUPPLEMENTARY NOTES		DEC 0 8 19	03		
12a. DISTRIBUTION/AVAILABILITY STATEMENT					
			12b. DIS		
Approved for public release; distri	bution is unlim	ited.	12b. DIS	TRIBUTION CODE	
Approved for public release; distri ¹³ ABSTRACT (Maximum 200 words) Stochastic Resonance (SR) is coherent function can be amplifie possible explanation for the obser theory led to an experiment and a we describe a demonstration expe Here SR is viewed as a noisy infor widely used sensitive detector; in SQUID, we hope this demonstrat	bution is unlimited the name given ed by random for ved periodicities a flurry of furth eriment wherein mation transmi this example, a ion will stimula	ited. to a statistical nonline rces, or noise, within the s in the recurrences of t er theoretical activity, a n SR is exhibited in a su ssion process. It is entire detector of weak magn the further research and	ar phenomenon wi e system. It was fin the Earth's Ice Age n international con perconducting qua ely appropriate, th etic fields. Using a development of S	TRIBUTION CODE hereby a weak or subthreshold rst advanced in the early 1980's as a es. The first publication of a modern herence and a review. In this paper, intum interference device (SQUID). erefore, to look for this dynamic in a modern, miniature, thin film R in applied superconductivity.	
Approved for public release; distri 13 ABSTRACT (Maximum 200 words) Stochastic Resonance (SR) is coherent function can be amplifie possible explanation for the obser theory led to an experiment and a we describe a demonstration expe Here SR is viewed as a noisy infor widely used sensitive detector; in SQUID, we hope this demonstrat Published in Noise in Physical Sy 14 SUBJECT TERMS	bution is unlimit the name given ed by random for ved periodicitie a flurry of furth eriment wherein mation transmi this example, a ion will stimula	ited.	ar phenomenon w e system. It was fur the Earth's Ice Age n international con- perconducting qua- ely appropriate, th etic fields. Using a development of S 93, pp. 720-723.	TRIBUTION CODE hereby a weak or subthreshold rst advanced in the early 1980's as a ss. The first publication of a modern herence and a review. In this paper, intum interference device (SQUID). erefore, to look for this dynamic in a modern, miniature, thin film R in applied superconductivity.	
Approved for public release; distri ¹³ ABSTRACT (Maximum 200 words) Stochastic Resonance (SR) is coherent function can be amplifie possible explanation for the obser theory led to an experiment and a we describe a demonstration expe Here SR is viewed as a noisy infor widely used sensitive detector; in SQUID, we hope this demonstrat Published in Noise in Physical Sy ¹⁴ SUBJECT TERMS ¹⁷ SECURITY CLASSIFICATION 18	bution is unlimit the name given ed by random for ved periodicitie a flurry of furth eriment wherein mation transmi this example, a ion will stimula	ited. to a statistical nonline rces, or noise, within the s in the recurrences of the er theoretical activity, and is exhibited in a sur- ssion process. It is entire detector of weak magnetic further research and uctuations, AIP 285, 199 MION 19	ar phenomenon wile e system. It was fin the Earth's Ice Age n international con- perconducting qua- ely appropriate, th etic fields. Using a development of S 93, pp. 720-723.	TRIBUTION CODE hereby a weak or subthreshold rst advanced in the early 1980's as a ss. The first publication of a modern herence and a review. In this paper, intum interference device (SQUID). erefore, to look for this dynamic in a modern, miniature, thin film R in applied superconductivity.	

NGN 7540-01-280-5500

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

wear and the second		
21a NAME OF RESPONSIBLE INDIVIDUAL	21b TELEPHONE (include Area Code	21c OFFICE SYMBOL
A. R. Bulsara	(619) 553 – 1595	Code 573
	•	
93-29//0		
: CALINA HALLA HA		
		_
) HER WE WHERE WHEN HERE WHEN HERE WHEN $\mathcal{P}\mathcal{H}\mathcal{O}$		
	02 12 6	U J 7 7
		— –

STOCHASTIC RESONANCE IN A BISTABLE SQUID LOOP

A. Hibbs

Quantum Magnetics, Inc., San Diego, CA, USA

E. W. Jacobs, J. Bekkedahl, A. Bulsara Navy Command, Control and Ocean Surveilance Center, San Diego, CA, USA

F. Moss

University of Missouri at St. Louis, MO, USA

ABSTRACT

Stochastic Resonance (SR) is the name given to a statistical nonlinear phenomenon whereby a weak or subthreshold coherent function can be amplified by random forces, or noise, within the system. It was first advanced in the early 1980's as a possible explanation for the observed periodicities in the recurrences of the Earth's Ice Ages^{1/2}. The first publication of a modern theory^{3/5} led to an experiment⁴ and a flurry of further theoretical activity^{6/9}, an international conference¹⁰ and a review¹¹. In this paper, we describe a demonstration experiment wherein SR is exhibited in a superconducting quantum interference device (SQUID). Here SR is viewed as a noisy information transmission process. It is entirely appropriate, therefore, to look for this dynamics in a widely used sensitive detector in this example, a detector of weak magnetic fields. Using a modern, minature, thin film SQUID¹², we hope this demonstration will stimulate further research and development of SR in applied superconductivity.

INTRODUCTION

We have demonstrated *Stochastic Resonance*⁴ in a bistable SQUID loop, as a first step in stimulating interest in possible applications using superconducting devices. We begin with an equation governing the magnetic flux trapped within an (t SQUID loop¹³.

$$LC\phi + \tau_L\phi + \phi + \frac{1}{2\pi}\beta\sin(2\pi\phi) = \phi_{c,L}$$
(1)

where $\phi = \Phi(t) | \Phi_i|$ is the normalized magnetic flux trapped within the loop, $\phi_i = \Phi_i(t)^* \Phi_i$ is the normalized flux externally imposed on the loop, $\Phi_i = h/2e$ is the flux quantum, *L* and *C* are the loop inductance and junction capacitance respectively, and $\tau_i = L^* R_j$ is the junction resistance. The parameter which determines the shape of the potential governing the dynamics of (1) is $\beta = 2\pi t_i t_i / \Phi_0$, where t_i is the junction critical current. In our experiment, the external flux Φ_i was composed of DC periodic and stochastic components.

$$\Phi_{\mu}(t) = \Phi_{\mu\nu} + \Phi_{\mu}\sin(\omega_{\nu}t) + \Phi_{\nu}(t), \qquad (2)$$

where the periodic component represents an audio trequency signal, and the stochastic component was a Gaassian noise whose bandwidth was in the audio range¹². Bestability is a prerequisite for observations of SR. Equation (1) is bistable for certain values of a and Φ_{De} , and the quantity which shows the bistable dynamics is the flux trapped within the loop, *lett*.

1993 Americal Institute of Physics

720

DESCRIPTION OF THE EXPERIMENTAL APPARATUS

In order to experimentally observe the bistable dynamics, one must measure the trapped flux $\phi(t)$. This requires a second SQUID, either mounted coaxially with the loop of the first SQUID, or coupled to it with a superconducting transformer¹⁵. We chose the latter configuration. The primary SQUID was a thin film device mounted on a single chip with integrally mounted, superconducting transformer primaries supplied by Quantum Magnetics. This is a thin film SQUID with primary and secondary windings coupled to the SQUID all evaporated on a single silicon chip. The Quantum Design DC SQUID chip is shown in Fig. 1. It is the first commercially available and the most sensitive all-thin-film DC SQUID sensor. The junctions, located in the central region of the chip, are made in the state-of-the-art niobium trilayer technology on silicon and are part of two two identical loops connected in parallel, each coupled to an input coil. This unique "double balanced" design reduces coupling between the input and modulation

non

t es, sible ci,2 v of this conimanamnetic will

tarst We mi3

(1)

thux

 $\frac{1}{\tau_L}$ the

riti-

and

2)

aastic aulity

of B

athin

Fig. 1. The Quantum Design DC SQUID. The rectangles around the edges are bond pads for electrical connections. The left and right spiral coils couple the input signal to the SQUID loops. The upper and lower coils are used for a 500 kHz AC flux modulation used for noise reduction. The current and voltage leads appear as a cross but are not connected in the middle. The two Josephson junctions are located at the lower left and upper right of the cross but near the center. The size of the chip shown is 5×3 mm.

coils to negligible levels while giving high mutual inductance with the SQUID.

The secondary, or measuring, SQUID was a standard BT1 model¹⁶, which was coupled to the primary SQUID with a completely superconducting transformer. A schematic diagram of the experimental setup is shown in Fig. 2. This apparatus was mounted inside a superconducting Nb shield and mounted near the bottom of a liquid helium dewar. The apparatus was operated at a temperature of 4.2° K in boiling liquid helium. No further external magnetic shielding was employed. 722 Stochastic Resonance in a Bistable SQUID Loop

Fig. 2. Schematic of the bistable SQUID experiment showing the Quantum Magnetics chip and the BTI measuring SQUID coupled with a superconducting transformer. Noise and signal voltages supplied by the external electronics were transformed into external magnetic flux in the coil C1.

EXAMPLE EXPERIMENTAL RESULTS

In our experiment, $\beta = 2.0$ and $\Phi_{DC} = 0.5\Phi_0$, values which guaranteed that the potential was bistable. Experiments were performed at two signal frequencies, 17.6 Hz and 100 Hz with signal peak voltages of 650 mV-pk and 475 mV-pk respectively. The noise, or stochastic, component was supplied by a standard noise generator and the noise voltage varied over the range from 100 to 1500 mV-rms. (1.0 V was equivalent to 0.1 Φ_0 of applied external flux.) The power spectra of $\phi(t)$ were measured and averaged in the usual way at the output of the BTI SQUID electronics, and the signal-to-noise ratios (SNR's) were determined from the measured and time averaged power spectra of the output of the BTI electronics using a conventional definition. The results of this experiment are shown in Fig. 3 where the circles represent the results for the low signal frequency and the squares for the high frequency.

At each frequency, data were collected for two different signal strengths. For each data set, a clear maximum in the SNR - the familiar signature of SR - was observed. The maxima in the SNR occur at a noise voltage of $\approx 700 \text{ mV}$ which is equivalent to an rms fluctuation of $0.074_{\rm o}$ within which a coherent signal equivalent to $0.02374_{\rm o}$ peak at 17.6 Hz was easily detectable. This clearly demonstrates that bistable SQUIDs, used in combination with SR, can be useful in detecting weak, coherent magnetic signals buried in external noise, an application of considerable importance.

Work supported by the U.S. Office of Naval Research grant N00014-91-J-1979 and by Quantum Magnetics. Inc.

REFERENCES

1. R. Benzi, S. Sutera and A. Vulpiani, J. Phys. A 14, L453 (1981).

2. C. Nicolis, Tellus 34, 1 (1982)

3. B. McNamara and K. Wiesenfeld, Phys. Rev. A 39, 4148 (1989).

4. B. McNamara, K. Wiesenfeld and R. Roy, Phys. Rev. Lett. 60, 2626 (1988).

5 P. Jung and P. Hanggi, Europhys. Lett 8, 505 (1989).

A. D. Hibbs et al. 723

Fig. 3. The SNR versus rms noise voltage for the bistable SQUID experiment, with $f_s = 17.6$ Hz, $v_s = 650$ mV-rms (filled circles) and $v_s = 237$ mV (open circles); and $f_s = 100$ Hz, $v_s = 475$ mV (filled squares) and $v_s = 237$ mV (open squares). For these data 1.0 $V = 0.1\Phi_0$ at the coil C1.

6. L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta, and S. Santucci, Phys. Rev. Lett. 62, 349 (1989)

7. P. Jung, Z. Phys. B 16, 521 (1989)

8. P. Jung and P. Hanggi, Phys. Rev. A 41, 2977 (1990)

9. M. Dykman, R. Mannella, P. McClintock, and N. Stocks, Phys. Rev. Lett. 65, 2606 (1990)

10. Proceedings of the N.A.T.O. Advanced Research Workshop on Stochastic Resonance in Physics and Biology, edited by F. Moss, A. Bulsara and M. F. Shlesinger, special issue, J. Stat. Phys. 70 (1993).

11. F. Moss, "Stochastic Resonance: from the Ice Ages to the Monkey's Ear" in An Introduction to Some Contemporary Problems in Statistical Physics, edited by George H. Weiss (SIAM, Philadelphia, in press).

12. Quantum Magnetics, 11578 Sorrento Valley Road, Suite 30; San Diego, CA 92121.

13. See for example, A. Barone and G. Paterno, Physics and Applications of the Josephson Effect, (John Wiley & Sons, Inc., New York, NY, 1982).

14. rf-SQUIDS can respond in the frequency range from DC to gigahertz, and the external electronics in our experiment had a bandwidth to 30 kHz, consequently the SQUID and its external electronics can respond essentially instantaneously to both the signal and the noise.

15. A. Silver and J. Zimmerman, Phys. Rev. 157, 317 (1967)

16. Biomagnetic Technologies Inc.; San Diego, CA; Model 420.

