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DESCRIPTION OF THE EXPERIMENTAL APPARATUS

In order to experimentally observe the bistable dynamics, one must measure the
trapped flux 0(t). This requires a second SQUID, either mounted coaxially with the
loop of the first SQUID, or coupled to it with a superconducting transformer's. We

chose the latter configuration. The primary SQUID was a thin film device mounted on
a single chip with integrally mounted, superconducting transformer primaries supplied
by Quantum Magnetics. This is a thin film SQUID with primary and secondary windings
coupled to the SQUID all evaporated on a single silicon chip. The Quantum Design DC
SQUID chip is shown in Fig. 1. It is the first commercially available and the most sen-
sitive all-thin-film DC SQUID sensor. The junctions, located in the central region ot
the chip, are made in the state-of-the-an niobium trilayer technology on silicon and are
part of two two identical loops connected in parallel, each coupled to an input coil.

Son This unique "double balanced" design reduces coupling between the input and modulation
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Fig. 1. The Quantum Design DC SQUID. The rectangles around the edges are
-.bond pads for electrical connections. The left and right spiral coils couple the
lux input signal to the SQUID loops. The upper and lower coils are used for a
•I -TL 500 kHz AC flux modulation used for noise reduction. The current and volt-
the age leads appear as a cross but are not connected in the middle. The two

riti- Josephson junctions are located at the lower left and upper right of the cross
and but near the center. The size of the chip shown is 5 x 3 mm.

coils to negligible levels while giving high mutual inductance with the SQUID.
2) The secondary, or measuring, SQUID was a standard BTI model 16, which was cou-

pled to the primary SQUID with a completely superconducting transformer. A sche-
1,istic matic diagram of the experimental setup is shown in Fig. 2. This apparatus was
ot'lity mounted inside a superconducting Nb shield and mounted near the bottom of a liquid

helium dewar. The apparatus was operated at a temperature of 4.2 OK in boiling liquid
, hn helium. No further external magnetic shielding was employed.
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Fig. 2. Schemajtic oft the bistahic SQUID experiment showVing the Quantum
Magnet ics cl p and the 13P!* mea,,uring SQU ID coupled with a superconducting
transformner Nm se and signal i~idaees supplied by the external electronics

wer trns~rmd nto) e\tei n.1 nan tiflix in the coil C I .

u:XA.\11M 1: I:X U N FR.ILENTIAL. RESULTS

In our eeirn.~=2 01 tid ~ =0 .5+,',. values wi.hich guaranteed that the
potential was hitPe Lmrmns~eepertomied at two signal frequencies. 17 6 Hzi
and 100 Hz iwith sinlpeak viiltm~ik:c tit 6.50 ml '-pk and 475 mnV-pk respectively. The
noi se, or .stochas111. ci11 Imima Upplijed Iby a standard noise generator and the
noise voltage %arit:. liver the ranee- r~im 100 to 1500 iiiV- rnis ( 1 .0 V was equivalent to,
0 H', of' applied e'ternail f'lux Ili.wj,%er spectra of (N k)x~ere measured and aver-

aged in the usuail %ka'. at thle 0IJLuput it :hý BIffI SQUID electronics, and the sea o
*noise ratilos (SNk R i were dici erni ned runIl the mleasured and time averagedk po wer

spectra oft the uiputpt ,It the 1111I eleetrinic. using a conventioinal definition. The results
ofthis experim;enr: are show~n in IFie_ S k.here the circles represent the resuhs tor the

low signal frequene-' and thle s(Iuare, t,,r Ohe li-ih frequencv.

At each f~requene'. data %k~ere col le or mki different signal strengths Fir each
* data set. a clear nrx Inu n the SNR - the famliliar sigliatUre ofl SR - was tobseLreved

The maxima in the- !`NR iccuL at a nic '.age tit = 700 trilV \A-hich is equivaleiit to an
rnins fluctuatioin t U074,', wkithin ~~i.0 1 a cIhlerent signýIal equixal~int to 0.02374,, peak at
17 6 Hz was eail' dctectahle This Jejil 'k deminist rates that histable SQL IIE. used in
iiminhiatiiin \ki:h SR. can~ he: uise!il it) det!ctin Il-,\ak. cohcerent mlagnletic slinlals buried

in external ni~e. *:.nal' phicti in: i 'd Imable lnirance.
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Fig. 3. The SNR versus rms noise voltage for the bistable SQUID experiment,
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