
M AD-A273 616
US A.my Corps of Engineers I liiilOl illlil l
Hydrologic Engineering Center

RGENEALIZED COMPUTER PROGRAM

DTIC
SIDEDT A

Structure Inventory for Damage
Analysis Edit Program

User's Manual

December 1983 93-30137

Approved for Pubic Roleos. Distribution Unlimited. CPD-44

SIDEDT

Structure Inventory for Damage
Analysis Edit Program

User's Manual
Accesion For

NTIS CRA&I

rDTIQ

TABDecember 1983 J.' Thfft°

Original: June 1977
Revised: August 1979, February 1984 ByDBy.

..

Hydrologic Engineering Center
US Army Corps of Engineers
609 Second Street DTIO QUA•xiT UqsPECTED 3
Davis, CA 95616

(916) 756-1104 CPD-44

STRUCTURE INVENTORY FOR DAMAGE ANALYSIS EDIT PROGRAM

USERS MANUAL

Table Of Contents

Page

I. INTRODUCTION

1. Background and Overview 1

2. Job-size Limitations 1

3. Hardware and Software Requirements 1

II. PROGRAM CAPABILITIES

1. Overview 3

2. Commands 3

3. Command Syntax......... 3

4. File Description............... . . 4

5. File Units... 4

III. USER INPUT DESCRIPTION

1. Overview 7

2. READ Command 7

3. LIST Command 7

4. MERGE Command 8

5. NEWFIELD Command 8

6. UPDATE Command 9

7. WINDOW Command 11

8. PULL Command 11

9. MODIFY Command 13

10. END Command 14

Table of Contents (Continued)

IV. TEST PROBLEMS

1. Purpose and Overview. 15

2. Structure Inventory File for Test Problems 16

3. Structure Inventory Merge File for Test Problems 18

4. Damage Function File for Test Problems 19

5. Structure Update File for Test Problems..... 20

6. Damage Function Replacement File for Test Problems 20

7. Harris 500 Job Control Language (JCL) for Test Problems . . 20

Appendices

A. Test Problems

B. SID Structure Cards

C. SID Damage Function Cards

Tables

Number Page

1 Structure Inventory Record............... 5

2 Damage Function Record................. 6

iI

STRUCTURE INVENTORY FOR DAMAGE ANALYSIS EDIT PROGRAM

USERS MANUAL

I. INTRODUCTION

1. Background and Overview

The Structure Inventory for Damage Analysis Edit computer program
(SIDEDT) is a companion program to the Structure Inventory for Damage
Analysis computer program (SID) (Hydrologic Engineering Center, 1982). It is
designed to assist in the management and maintenance of stage-damage function
files and structure inventory files which are both used as input to the SID
program.

An overview of the edit capablities of the SIDEDT program are presented
herein. In addition, the input necessary for program execution and related
output are described in detail. Sample input and output have also been
included to demonstrate the program capabilities and to assist the user in
preparing input data for the program.

The SIDEDT program was originally designed and written by the
Environmental Systems Research Institute (ESRI) under contract to the New
York District, U.S. Army Corps of Engineers. After significant modification
and extension, the program is maintained and distributed by the Hydrologic
Engineering Center (HEC), U.S. Army Corps of Engineers, 609 Second Street,
Davis, California 95616. HEC should be contacted for any questions
regarding the program's use or availability.

2. Job-size Limitations

There is virtually no limit to the number of stage-damage functions or
structures that this program can process. When using random access files,
the file-size limitations are the same as for the SID program. For example,
random access files cannot contain more than 2000 stage damage functions or
when processing structure inventory files, the random files cannot contain
more than 300 damage reaches, with a maximum of 5000 structures per damage
reach.

3. Hardware and Software Requirements

The SIDEDT program was developed on a HARRIS 500 minicomputer located at
the HEC. The program Is also maintained at the Lawrence Berkeley Laboratory
(LBL), University of California, Berkeley, California, and on the national
Corps of Engineers computer vendor equipment, currently the CDC Cybernet
Computer Services. Both LBL and CDC use Control Data Corporation (CDC)
computer equipment. In general, SIDEDT is compatible with other major
computer systems. Difficulties in installation should be reported to the
Hydrologic Engineering Center.

Program Language: FORTRAN IV (ANSI Standard)

Memory Requirement: 124,000 Words (octal) of core at CDC (word
size: 60 bits)

1

Special Library Functions: Random access file read/write routines

Character manipulation routines

Printer Positions: 132

Tape/Disk Assignments:

TAPES: The local disk file name which represents the card reader; i.e.,
the primary input device.

TAPE6: The local disk file name which represents the line printer,
i.e., the primary output device.

TAPE8: The local disk or tape file name uzed when the input structure
data or damage function data resides in card image on a
sequential disk or tape device.

TAPE9: The local disk or tape file name used when merging structure or
damage function data with TAPE8.

TAPE10: The local disk or tape file name used when updating the
structure or damage function data on TAPE8.

TAPEll: The local disk file name used by the SIDEDT program as a
formatted temporary work file or alternative output file (See
TAPE12.)

TAPE12: The local disk file name used when the output structure or
damage function data is to reside in card image on a sequential
disk file.

TAPE92: The local disk file name used when the damage function selection
data (DF Cards) are output from the SIDEDT program.

TAPE98: The local disk file name used when the damage function data (DF,
DP, PC, or (DD) cards) reside on a random access disk file. It
may be used as both an input and output file.

TAPE99: The local disk file name used when the structural information
(SL, SD, SO, SS, SA cards) reside on a random access disk file.
It may be used as both an input and output file.

2

II. PROGRAM CAPABILITIES

1. Overview

The SIDEDT program has been developed to assist in locating and
correcting errors in a structure inventory file or a damage function file.
In addition, it provides a wide range of options to aid in file merging, data
selection, data manipulation, data modification and output selection.

Data are input and output as character files containing attributes
descriptive of individual structures, such as structure identification,
reference flood elevation, etc., or a specific stage-damage function, such as
damage function identification, beginning stage, etc.. SIDRDT provides the
capability of selectively reading all or some of these attributes from the
input file.

2. Commands

The capabilities of the SIDEDT program are reflected in the nine
available commands. The commands are briefly described below:

Command Description

READ Defines the type of input file to be
read, either structure or damage
function data.

LIST Generates a listing of specific
attributes.

MERGE Merges two like-type files.

UPDATE Replaces or adds attribute fields in
the files.

NEWFIELD Creates a temporary new attribute field.

WINDOW Selects structures based on geographic
location.

PULL Selects a subset of the input file
based on attribute values.

MODIFY Performs arithmetic operations on
attributes and saves the results.

END Ends the SIDEDT run.

Each command is described in its own sub-section in Chapter III of this
manual. Simple examples of each command are given in each command
description. Detailed examples are provided in APPENDIX A.

3

3. Command Syntax

Execution of the SIDEDT program options is selected by a series of
commands and keywords. Each command requires a specific English-like syntax
that must be followed. The program is unforgiving and will terminate if it
encounters a syntax error. To allow some flexibility, all command entries
are Zree-format. In free-format, the command entries are made on one or more
cards in correct sequence, with one or more blank spaces separating each
entry. Entries for a single command may be continued on additional cards by
entering a space and a slash (U) as the last entries on a card. The end of a
command's entry is signified by not entering the slash on the last card (or
line image) in the command string.

4. File Description

The input and output files to the SIDEDT program consist of a collection
of records that correspond to the structure cards or damage function cards
defined in the SID Users Manual (Hydrologic Engineering Center, 1982). Each
record is composed of a group of attribute fields defined by the variable
name for that field in the SID Users Manual. Associated with each attribute
is a data type (character, integer, or real) and a beginning and ending
column number. These column numbers are relative to the entire record, not
the specific card in the record. For example, in a structure inventory
record, the damage category (IDCAT) resides on the SD card in card columns
17-24. Because the SD card is the second card in the structure record, IDCAT
is in columns 97-104 in the record as a whole. See APPENDICES B and C.

Table 1 lists the predefined structure inventory record attribute field

names, beginning and ending columns, and data types.

Table 2 lists the same information for the damage function file.

5. File Units

All of the valid commands except READ and END require specification of at
least one file unit number and perhaps two or three unit numbers. These
numbers identify which file is used as input and which file is to be used as
output. These unit numbers also implicity define whether the file is a
sequential file or a random file. For example, the command "LIST FROM 8 ... "
identifies TAPE8 as the input file and TAPE8 is a sequential file; however,
if the command is "LIST FROM 98 ... ", the program would expect a random file
because TAPE98 defines a random access damage function file.

4

'UJ Cy

:Z CV "eneU

m& MM.onCW

Lo Ln
Lo~P 0

%1() ,

C-0 r - '4,4U~ -

M~ ON q o r-Ju -O qO % M Wr-.O ML r
V V~O~~ Ln% *% -- RE

4- 1

LUL

08- 22 I)k

W mU

>- Ln

LU J

fC z L

Ln (

IV

t- (A

If

-j4

a, cl

ditP4 Nma
ji -j j

LZI

mU LnML

-C44 -1 NCV ~ q

-YC~ N C' j Cq cn 0

ui L..

m P-tnm n

cc %aVI a

Lnlflf 0 A0L 00V
'4k.

ua.

FD ow U-

'Un

.3.

u8 z

III. USER INPUT DESCRIPTION

1. Overview

This chapter provides a detailed description of the SIDEDT data input
requirements.

Certain notations are used throughout this chapter with consistent
meaning. UPPERCASE indicates a statement keyword that is to be written as
shown. Lowercase enclosed in brackets, [lowercase], indicates a name or
number that is to be supplied by the user.

2. READ Command. Required.

The READ command specifies what type of data is to be processed, i.e.,
structure inventory data or damage function data. This command must be the
first card in the users input stream. The format of the READ command is as
follows:

READ TYPE [data type]

Where data type may be one of two
keywords:

STRUCT
for structure inventory data

or

DAMAGE
for damage function data.

Example:

READ TYPE STRUCT is the first card required when processing a structure
inventory file.

3. LIST Command. Optional.

The LIST command writes specified attributes to the printer to create a
listing of attribute values. LIST can list any of the fields from the
following data files: TAPE8, TAPE9, TAPE11, TAPE12, TAPE98, TAPE99. The

LIST command is optional and may be used anywhere after the READ command, as
many times as desired.

The listed attributes will appear in the listing as columns headed by the
field names. If all of the listed attributes are wider than a printer page,
the attributes will wrap around onto a new line in the listing and be
unreadable.

7

The LIST command is used by specifying the file that contains the
attributes to be listed and the names of the attribute fields that are to
appear in the listing. If no attribute field names are specified, LIST will
list all of the attributes in the file. The format of the LIST command is as
follows:

LIST FROM (unit # I FIELDS (field name] (field name]

Example:

LIST FROM 8 FIELDS IDRCH1 IBLDG1 STOPO IDCAT

will list the damage reach id, building id, first floor elevation and damage
category for each structure record in file TAPE8.

LIST FROM 98 FIELDS

will list the entire random damage function file, TAPE98.

4. MERGE Command. Optional.

The MERGE command merges two identically formatted sequential structure
or damage function files. The two input data files are TAPE8 and TAPE9. The
output file may be any one of the following data files: TAPEI2, TAPE98, or
TAPE99.

MERGE automatically inserts records from the second (subordinate) file
into its correct position in the first (master) file. If there is a
duplicate record, the program will replace the record in the master file with
the record from the subordinate file.

MERGE requires that the files being merged have been sorted into the same
order based on the choice of keys.

The MERGE command is used by specifying the two input files, the output
file and the key sort field. The format of the MERGE command is as follows:

MERGE FROM 8 9 TO [output unit# I KEYS [keysort field name]

Example:

MERGE FROM 8 9 TO 12 KEYS IT

will merge two sequential damage function files (TAPE8 and TAPE9) using the
damage function identifier as the sort key to output file, TAPEI2, producing
a sequential file containing all the damage function data from TAPE8 and
TAPE9 sorted by damage function identifier.

5. NEWFIELD Command. Optional.

The NEWFIELD command temporarily defines a new field, within the
structure or damage function file's records. The NEWFIELD command may be
used to define a new field to contain an additional attribute generated by

8

the UPDATE or MODIFY commands or to redefine part of an existing field as a
new field to allow access to part of an attribute code. This command must be
input before the command that utilizes the new attribute field. Each
NEWFIELD command defines one new field but the command may be used as many
times as needed.

A new field may be defined anywhere within the records defined in Tables
1 and 2. There are two cautionary notes. First, NEWFIELD cannot extend the
record length of 400 columns. Second, it is possible to define a new field
in columns used by existing attribute fields. Therefore, if data is written
to the new field, the existing data will be written over.

The NEWFIELD command is used by specifying the field name, the first and
last columns of the field, and the data type (INTEGER, REAL, CHAR) of the
field. One new field is defined on each NEWFIELD command. The format is as

follows:

NKI.FIELD [field name] [first col.] [last col.] [date type]

Example:

NEWFIELD allows new fields to be defined over existing fields so that
parts of fields may be read by the program commands. For example, if the

first two characters of the damage reach identifier are a code for the
tributary and the last four characters are the damage reach number,
NEWFIELD may be used to access all damage reaches within a particular
tributary. The command would be as follows:

NEWFIELD TRIB 3 4 CHAR

Note that either field, IDRCHI or TRIB, may now be used.

6. UPDATE Command. Optional.

The UPDATE command replaces existing attribute values with specified

values or adds attribute values to blank fields. UPDATE updates one field at
a time, either adding or replacing its values. Update data are input in a
special update file which must be present if the UPDATE command is used. The

update file structure is detailed after this command. If a new attribute is
to be added, NEWFIELD must precede UPDATE to define the new attribute field.
UPDATE is optional and may be used as many times as needed.

Updates are made by locating the record(s) that have the match value
entered in the update file's match field and replacing the value in the

specified file's attribute field with the value in the corresponding update

file's attribute field. This is nothing more than matching, for example,
structure identifications between the two files so that an update intended
for a specific structure is not made to another. Note - Both the structure

or damage function file and the update file must be sorted by the match field
before UPDATE is used. If the files are not sorted in the same order, the

results are unpredictable.

9

A single update may be applied to many records by entering a match value
in the update file that applies to multiple records. For example, a single
entry in the update file may 'match' against damage reach number, so that
every structure within the spccified damage reach would have the same update
value written to the specified attribute field in the structure file.

The UPDATE command is used by specifyinp the input file, the update file,
the output file, the location of the match field in the update file, the name
of the match field in the structure or damage function file, the location of
the field containing the update value in the update file, and the name of the
attribute field in the structure or damage function file to receive the
value. The locations of the match and update fields must be specified as
beginning and ending columns. The format of the UPDATE command is as follows:

UPDATE FROM 8 10 TO [output unit #]

MATCH [first col. of update file match field] [last col. of update file
match field] WITH [input file match field name]

MOVE [first col. of update file attribute field] [last col. of update

file attribute field] INTO [input field field name]

Example:

UPDATE FROM 8 10 TO 12 /
MATCH 1 8 WITH IBLDGl /
MOVE 11 15 INTO VIFC

NOTE: The slash (/) is used to indicate that the command is continued on
another line.

This command will locate specific structures and replace their contents
value (VlFC) with the value found in the update file. The match field is the
structure identification, which is IBLDGI in the structure file and columns
1-8 in the update file. The attribute field is contents value which is VIFC
in the structure file and columns 11-15 in the update file.

UPDATE FILE

The update file contains one 80-column card image for each record that
will be updated. Each card image must have at least two fields, a 'match'
field and one or more attribute fields. The match field contains a value
that must match the value in a specified attribute field within the structure
or damage function file before the update takes place. Cards in the update
file must be sorted by the match field in the same order as the structure or
damage function file.

The attribute field(s) contains the new or replacement value that will be
written to the records identified by the match field. Although the update
file may contain as many attribute fields as can fit on a card, the UPDATE
command can only apply one attribute update at a time.

10

The format of the update file is as follows:

[match field] [first attribute field] [second attribute field]

For example, if the value entered for the 'contents value' attribute, VIFC,
in the structure file for structure AB123456 is to replaced with a correct
value of 1300, the card might appear as follows:

AB123456 1300.

7. WINDOW Command. Optional.

The WINDOW command selects structures to be written to the output file
based on whether they fall within a specified geographic window. The window
is defined by minimum and maximum northing and easting UTM coordinates.
WINDOWed structures are output in the order in which they are found. Of
course, the structure inventory file must contain geographic coordinates for
this command to work. The WINDOW command is optional and may be used
anywhere after the READ command.

The WINDOW command is used by specifying the file that contains the
structures to be windowed, the output file unit number, the names of the
fields that contain the X-coordinates (easting values) and Y-coordinate3
(northing values), and the minimum and maximum coordinates that define the
window. The format of the WINDOW command is as follows-

WINDOW FROM [input file unit#] TO [output file unit #]
XCOOR COLE YCOOR ROIN
XMIN [coordinate] XMAX [coordinate] XMIN [coordinate] YTAX [coordinate]

Example:

The following command would be used to window from a sequential input
file to a random output file:

WINDOW FROM 8 TO 99 XCOOR COLE YCOOR ROWN /

XMIN 587335.2 /
XMAX 637229.8 I
YMIN 526304.2 /
YMAX 546297.8

8. PULL Command. Optional.

The PULL command selects records to be written to the output file based
on their attribute values. Each record's attributes, structure or damage
function data, are subjected to tests which, if passed, that record is
selected for output. Tests are stated as logical expressions that
incorporate an 'IF' test, logical operators (e.g. AND, OR, NOT) and
relational operators (e.g. equal to (EQ), not equal to (NE), greater than

11

(GT), less than (LT), etc.). PULLed structures are output in the order in
which they are found. PULL is optional and may be used anywhere after the
READ command, as many times as desired.

The PULL command is used by specifying the file that contains the input
structure or damage function file, the output file unit number and up to
twenty (20) logical expressions. At least one logical expression must be
entered. In the PULL command, if I of the logical expressions are true,
the record will be selected and written to the output file.

Logical expressions have strict format and logic rules that must be
followed. The format of a logical expression is:

IF [variable] [relational operator] [variable] AND
[variable] [relational operator] (variable] AND .

The PULL command has one test; 'IF'. This type of test is 'IF something is
true, then action', where the action is to either write the record to the
output file or subject it to another test. An 'AND' extends the test begun
by an 'IF'. A logical expression that has an 'AND' in it is of the form:
'IF something is true, AND something else is true, then action'. Up to 20
'AND's may be included in a logical expression. Note that it is not required
to use 'AND' in a logical expression. A logical expression must always start
with and 'IF', and 'ANDs' (if used) must always follow 'IFs'. For a test
extended with 'ANDs', all of the 'IF' and 'ANDs' must be true for the test as
a whole to be true. If one of the conditions is false, the entire string of
'IF' and 'ANDs' is false.

Variables in a logical expression may be an attribute's field name (the
attribute value is tested) or a constant value specified by the user. These
may be integers, real numbers or character strings. If a character string is
used in a logical expression, it must be enclosed in singlequotes (') on the
Harris computers and enclosed in double quotes (") on CDC computer equipment.

Relational operators test one variable against another to determine if
they are equal, unequal, etc.. The PULL command has six relational
operators. Each is listed below as it is entered (uppercase letters) and
what is means (lowercase letters).

EQ - equal LT - less than LE - less than or equal

NE - not equal GT - greater than GE - greater than or equal

The format of the PULL command is as follows:

PULL FROM [input unit#] TO [output unitf] BY

[logical expression] (logical expression] . .

Example:

To create a subfile of only those structures In damage r'tarh # 1 whose
first-floor elevation is greater than 500.0, the command would be as follows:

PULL FROM 8 TO 12 BY IF IDRCH1 EQ ' DRl' AND STOPO GT 500.0

12

9. M1ODIFY Command. Optional.

The MODIFY command selects records from a structure or damage function
file using the same logic as the PULL command and then performs arithmetic
operations on the contents of selected attribute fields and/or moves the
contents of an attribute field. An attribute field may be moved to another
attribute field, replacing whatever was previously there, or to a temporary
attribute for storage. The temporary attribute may then be used for
additional operations. For exanple, a constant can be added to an attribute
value storing the result in a temporary variable and then the temporary
variable can be divided by a constant, storing the result in the original
attribute or a different one. All of the selected attributes will be
subjected to the specified operation. Note that the PULL or WINDOW commands
may be used to select specific records before the MODIFY command is used.
MODIFYed records will be output in the order they are found.

The MODIFY command is used by specifying the input file unit number, the
output file unit number, a logical expression to select records and up to
twenty (20) arithmetic statements to operate on the attributes. At least one
logical expression and one arithmetic expression must be entered.

The format of an arithmetic expression is:

[operation] [variable] XX [variable] GIVING [attribute]

There are five types of operations. Each is shown below as it is used in
a statement.

ADD [variable] TO [variable] GIVING [attribute]
SUBTRACT [variable] FROM [variable] GIVING [attribute]
MULTIPLY [variable] BY [variable] GIVING [attribute)
DIVIDE [variable] INTO [variable] GIVING [attribute]
MOVE [variable] TO [attribute or temporary attribute]

Variables are the same as in the PULL command; they may be an attribute
field name, an integer or real number, or a character string. If a character
string is used, it must be enclosed in single quotes (') on Harris computers
and in double quotes (") on CDC computer equipment.

Each arithmetic statement will write its results to the specified
attribute field. Either an existing attribute field or a special temporary
attribute may be specified. The special temporary attribute is specified by
an asterisk (M). Note that the results written to an existing attribute
field will replace whatever is already there.

Each MODIFY command must start with at least one logIcal expression to
select records, although the user may use an expression that will select all
records, if desired. Logical expressions are linked to arithmetic statements
by entering "THEN" between them, as shown below:

[logical expression] THEN [arithmetic statement]

13

The format of the MODIFY command is as follows:

MODIFY FROM [input file unit #] TO !output file unit #1 BY
(logical expression] [logical expression] THEN [arithmetic
statement] [arithmetic statement] .

Example.

To subtract 1 foot from the reference flood elevation for all structures

in damage reach # 1, use the following command:

MODIFY FROM 99 TO 12 BY I
IF IDRCHl EQ ' DRI' /
THEN SUBTRACT 1.0 FROM ADJ GIVING ADJ

10. END Command. Required.

The END command is required to signify the end of the SIDEUT run. It

is always the last command entered.

14

IV. TEST PROBLEMS

1. Purpose and Overview

The test problems in Appendix A are included to illustrate detailed
examples of the input requirements of the Structure Inventory for Damage
Analysis Edit (SIDEDT) program. The problems are also intended for use in
verification of distributed program code. Six problems are presented in the
appendix; to the extent possible, subsequent problems expand on the previous
problem. The purposes of the problems are summarized below.

Test problem 1. This problem lists selected structure attributes from a
sequential structure file. It merges two sequential structure files, and
lists selected structure attributes.

Test problem 2. This problem updates the damage function attribute for
specific structures in a sequential structure file. It also changes the
reference flood elevation for the same structures. Then, all structures
values are increased by 15% to reflect a price level change. Finally,
the relevant structure attributes will be listed.

Test problem 3. A jequential structure file will be windowed by
geographic coordinates. In this particular file, the damage reach
attribute contains a code for the tributary and a code for the damage
reach number. All structures located along a selected tributary will be
listed.

Test problem 4. This problem uses a sequential damage function file to
illustrate the replacing of an entire damage function with a new one. A
bad percent damage value will be corrected and selected damage function
identifiers and stage-percent damage attributes will be listed.

Test problem 5. This problem demonstrates how to create a random damage
function file from a sequential damage function file. It will also
create the TAPE92 file required to accompany the random file when
executing the SID program. Selected damage function attributes will be
listed from the random damage function file.

Test problem 6. This problem creates a random access structure file
which is a subset of the sequential structure file used in Test problem
1. The structure attributes in the random structure file will then be
modified and listed.

15

2. Structure Inventory File For Test Problems (SFILE1)

SL080902 EKR 272 263 -. 01 0 0 00
SD080902 EMR EMRL72
SL080909 EMR 280 273 -. 01 0 0 00
SD080909 EMR EMRL79
SL080909 TRN 280.0 285 0 0 0 00
SD080909 TRN TRN7T7
SL080909 ACOOl 4523100 495725 280 286 -10 10
SD080909 ACO01 COMX05 29GAA 35 12-1 52-24 16 99GAS STATION
SS080909 ACO01 11 4 2 1 1 4 16 1 16 -7 2 21-10 4 1625 15 +4 8 70 0
SL080909 ACO02 4523100 495845 280 291 -3 10
SDO80909 ACO02 COMX04 52RAF 30 12 55-11 15 77 RESTAURANT
SS080909 ACO02 11 1 2 1 1 4 15 4 3 -3 1 1516 20 +3 5 21 0
SL080909 AROO 4522974 495628 280 274 -2 10
SD080909 ARO01 RESZ05 40Z06 22.1 TAXMAP12-1 52-31 15
SS080909 ARO01 10 1 1 1 1 4 7 6 .2 -2 1 20 -2 1 712 12 +3 2 24 0
SL080909 AR002 4522952 495619 280 274 -2 10
SD080909 ARO02 RESZ05 40Z06 22.1 TAXKAP12-1 52-32 15
SS080909 ARO02 0 1 11 1 4 7 6 2 -2 1 20 -2 1 712 12 +3 2 24 0
SL080909 ARO05 4522886 495592 280 275 -3 10
SD080909 AROOS RESZ07 40Z08 22.1 TAXMAP12-1 52-34 19
SS080909 AR005 1 7 2 1 1 4 6 5 6 -3 1 20 -2 7 610 15 +3 2 21 0
SL080909 AR022 4522710 495520 280 275 -. 01 10
SD080909 AR022 RESZ13 12.5Z14 9 TAXKAP12 52-16 9
SS080909 AR022 6 1 1 0 4 1 914 12 4 2 21 0
SL080909 AR023 4522994 495637 280 275 -3 10
SD080909 AR023 RESZ07 40Z08 22.1 TAXMAP12-1 52-30 20
SS080909 AR023 1 1 2 1 1 4 6 5 6 -3 1 20 -2 1 610 15 +3 2 21 0
SL081008 BB001 258 258 -4 00
SD081008 88001 TRNB04 336 4LA HWY
SL081008 88002 258 265.0 -4 00
SD081008 88002 TRNB04 216 2LA HWY
SL081008 BC001 4519817 493389 257 258 -6 10
SD081008 BCOOl CONX04 5FAN 9 6 6-22 4 25 PLANT SHOP
SS081008 BCO01 11 1 2 1 1 4 4 2 2 -2 1 410 12 -2 2 24 0
SL081008 BC002 4519718 493380 257 257 -. 01 10
SD081008 BC002 COMX06 9AAP 8 6 14-6 10 36 VACANT
SS081008 BC002 11 1 1 0 4 1 10 8 8+2 1 24 0
SL081008 BC003 4519675 493375 257 258 -3 10
SD081008 8C003 COMX04 64HAA 60 6 6-14 27 29 HARDWARE
SS081008 BC003 11 1 2 1 1 7 2710 3 -2 1 12 -2 1 2712 12 +2 5 50 0
SL081008 BCO16 4519650 493575 257 258 -. 01 10
SD081008 BC016 CONX03 61AAN 9 6 10-13 17 279 CAR DEALER
SS081008 BC016 11 4 2 0 4 4 17 8 64 +3 8100 0
SL081008 BCO17 4519625 493550 257 259 -1 10
SDO81008 BC017 COMR04 24PAH 11.9 6 20-11 6 39 PRINTER
SS081008 BCO17 11 1 2 1 1 4 6 2 1 -1 1 618 6 +3 3 21 0
SL081008 BRO01 4519875 493400 257 262 -2 10
SD081008 BRO01 RESZ07 35Z08 19.7 TAXKAP7 6-24 32
SS081008 BRO01 1 1 2 1 1 2 6 4 2 -3 1 20 -3 1 6 4 8 +3 2 21 0
SLOS1008 BR002 4519789 493397 257 260 -2 10
SD081008 BRO02 RESZ07 40Z08 22.1 TAXMAP7 6-21 14
SS081008 8R002 1 1 2 1 1 4 6 5 6 -3 1 20 -2 1 610 15 +2 2 21 0
SL081008 8R003 4519760 493385 257 259 -2 10

16

SD081008 BRO03 RESZ07 40Z08 22.1 TAXMAP7 6-20 42

SS081008 BRO03 1 1 2 1 1 4 6 5 6 -3 1 20 -2 1 610 15 42 2 21 0

SL081008 BR034 4519650 493433 257 260 -. 01 10

SD081008 BR034 RESZO5 30ZOO 17.4 TAXMAP6 11-6 10

SS081008 BR034 2 1 1 0 1 1011 12 44 2 21 0

SL081008 BS001 4519846 493393 257 259 -. 01 10

SD081008 BSOO1 SERX05 88S04 35 6 23-6 30 250 CHURCH

SS081008 BSOO0 11 7 2 1 1 7 30 7 3012 12 +3 3 40 0

SL081008 BS002 4519675 493455 257 258 -2 10

SD081008 BSO02 SERX05311.7S05264.9 6 6-12 85 1600 FIRE HOUSE
SS081008 BS002 11 2 2 1 1 2 85 2 2 -2 2 85 5 15 +3 2 18 0

SL081009 CCO08 4519506 493418 257 272 -8 10

SD081009 CCO08 COMX04 15HAA 19 6 33-11 8 28REGISTER CO

SS081009 CCO08 11 1 2 1 1 4 8 1 21 -8 1 8 2 8 +3 1 21 0

SL081009 CCO1O 4519425 493350 257 260 -. 01 10

SD081009 CCO10 CONX01 IOGAB 14 6 1-12 11 64GAS STATION
SS081009 CCO1O 11 4 1 0 4 4 1110 12 +3 2 21 0

SL081009 C1098 4519525 493550 257 276 -12 10

SD081009 C1098 INDX07 57175 199 6 21 22 100 SCREW KACHS

SS081009 C1098 12 2 11 1 4 100 4 12 -7 1 21-12 2 10028 24 +2 1 21 0

SL081009 C1099 4519525 493550 257 276 -12 10

SD081009 C1099 INDXOS 180174 900 6 21-22 200 SCREW MACHS
SS081009 C1099 13 2 2 1 1 4 200 6 12 -7 1 21-12 2 20040 30 42 1 48 0

SL081009 CRO01 4519543 493381 257 266 -8 10

SD081009 CR001 RESZ07 40Z08 22.1 TAXMAP6 11-36 613G

SS081009 CRO01 9 1 3 1 1 5 5 2 2 -3 1 20 -2 1 5 5 15 +3 2 24 0

SL081009 CR002 4519537 493387 257 266 -8 10

SD081009 CRO02 RESZ07 40Z08 22.1 TAXMAP6 11-36 612G

SS081009 CRO02 9 1 3 1 1 5 5 2 2 -3 1 20 -2 1 5 5 15 +3 2 24 0

17

3. Structure Inventory Merge File For Test Problems (SFILE2)

SL080909 AC003 4522750 495550 280 276 -. 01 10
SD080909 ACO03 COMX06 5BAJ 12 52-15 5 89BAR ' GRILL
SS080909 AC003 11 1 1 0 4 1 540 8 +4 4 21 0
SL080909 AR013 4522933 495627 280 271 -3 10
SD080909 ARO3 RESZ07 40Z08 22.1 TAXMAP12-1 52-34 13
SS080909 ARO3 1 1 2 1 1 4 6 5 6 -3 1 20 -2 1 610 15 +3 2 21 0
SL080909 AR014 4522915 495650 280 271 -. 01 10
SD080909 AR014 RESZ13 12.5Z14 9 TAXMAP12-1 52-34 10
SS080909 AR014 6 1 1 0 4 1 914 12 +4 2 21 0
SL081008 BC010 4519675 493415 257 258 -. 01 10
SD081008 BC010 COMX01 15DAH 10 6 6-14A 8 50 DINER
SS081008 BC010 11 1 1 0 4 1 821 7 +3 2 24 0
SL081008 BCO0l 4519650 493477 257 258 -1 10
SD081008 BC011 COMX04 33AAF 14.7 6 10-11 7 184 APPLIANCES
SS081008 BCO1l 11 1 2 1 1 4 7 1 24 -1 1 7 5 8 +1 3 21 0
SL081008 BR029 4519712 493538 257 262 -2 10
SD081008 BR029 RESZ07 40Z08 22.1 TAXMAP6 6--4 120
SS081008 BR029 1 1 2 1 1 4 6 5 6 -3 1 20 -2 1 610 15 +3 2 21 0
SL081008 BR031 4519100 493562 257 262 -2 10
SD081008 BRO31 RESZ07 40Z08 22.1 TAXMAP6 7-10 11
SS081008 BR031 9 1 3 1 1 5 5 2 2 -3 1 20 -2 1 5 5 15 +3 2 24 0
SL081009 CCO01 4519475 493350 257 258 -1 10
SD081009 CCO01 COMX05 26MAC 80 6 38-11 14 24CHILD STORE
SS081009 CCOol 11 2 2 1 1 4 14 1 12 -2 2 14 5 8 +3 3 24 0
SL081009 CRO04 4519500 493425 257 272 -. 01 10
SD081009 CRO04 RESZ07 34Z16 19.2 TAXMAP6 11-33 40
SS081009 CRO04 7 1 2 1 1 5 8 1 8 6 16 +4 2 24 0

18

4. Damage Function File For Test Problems (DFLLEI)

DF Cl 10 1 0

DP -3 -2 -1 0 1 2 3 4 5 6

DD 0 0 0 0 1 2.4 7.2 12 18 24

DF C2 10 1 0
DP -3 -2 -1 0 1 2 3 4 5 6

DD 0 0 1.6 3.2 16 20 22.4 24 25.3 26

DF C3 7 1 0
DP 0 1 2 3 4 5 6

DD 0 3.6 8.3 14.7 22.2 25 27.7

DF C4 12 1 0
DP -1 0 1 2 3 4 5 6 7 8

DP 9 10
DD 0 5 5.1 5.7 5.9 7.9 8 8 8.1 8.1

DD 8.4 8.7
DF C5 17 1 0
DP -2 -1 0 1 2 3 4 5 6 7

DP 8 9 10 11 12 13 14

DD 0 .2 .2 2.2 4.5 6.7 7.6 7.6 8.1 8.1

DD 8.4 8.4 8.8 9 9.3 9.3 9.6

DF C6 8 1 0
DP 0 1 2 3 4 5 6 7

DD 0 2.8 5.5 9.4 11.6 15 16 16.6

DF C7 12 1 0
DP 0 1 2 3 4 5 6 7 8 9

DP 10 11

DD 0 1.3 1.7 2.2 3.1 3.2 3.3 3.3 3.5 3.5

DD 3.7 8.2

DF C8 15 1 0
DP -2 -1 0 1 2 3 4 5 6 7

DP 8 9 10 11 12

DD 0 .1 .2 .5 .7 .9 1.3 1.3 1.7 1.7

DD 2.1 2.3 2.5 2.6 2.8 2.8 3.0

DF Ri 20 0 0

DP -8 -7 -6 -5 -4 -3 -2 -1 0 1

DP 2 3 4 5 6 7 8 9 10 11

PC 2 5 5 6 6 8 9 11 17

PC 22 28 33 35 38 40 440000 46 48 50

DF R2 20 0 0

DP -8 -7 -6 -5 -4 -3 -2 -1 0 1

DP 2 3 4 5 6 7 8 9 10 11

PC 0 2 7 7 10 12 12 14 16 17

PC 22 28 33 39 44 49 55 61 64 71

19

S. Structure Update File For Test Problems (UPDATE)

EMR L77 275.5
ACO03 XXX 257
AR022 ZZZ 300
BCO16 XXX 280
BR034 ZZZ 259
C1098 XO0 212

6. Dama&e Function Replacement File For Test Problems (DFILE2)

DF CI 10 1 0
DF --2 --1 -0 1 2 3 4 5 6 7
DD 0 0 0 1 3.5 6.4 8.5 11 17 30
DF R2 20 0 0
DP -9 -8 -7 -6 -5 -4 -3 -2 -1 0
DP 1 2 3 4 5 6 7 8 9 10
PC 0 1 4 8 12 14 15 16 17 18
PC 23 30 31 38 45 52 60 75 80 100

7. Harris 500 Jab-Control Lanyuae- (JCL) For Test Problems

$JOB,S[DEDT,HIIB,HEC,PRl=4
$
$ TEST PROBLEM 1
$ LIST AND MERGE A SEQUENTIAL STRUCTURE FILE
$
SIDEDTX,INPUT=TPROB1,TAPE8=SFILEL,TAPE9=SFILE2,TAPEI2=SFILE3

$ TEST PROBLEM 2
$ UPDATE AND MODIFY A SEQUENTIAL STRUCTURE FILE
l
SIDEDTX,INPUT=TPROB2,TAPE8zSFILE3,TAPEI0=UPDATE
$
$ TEST PROBLEM 3
$ WINDOW, NEWFIELD AND PULL A SEQUENTIAL STRUCTURE FILE
$
SLDEDTX,INPUT=TPROB3,TAPE8=SFILE3
$
$ TEST PROBLEM 4
$ MERGE AND MODIFY SEQUENTIAL DAMAGE FUNCTION FILES
$
SIDEDTX,INPUT=TPROB4,TAPE8=DFILE1,TAPE9=DFILE2,TAPE12=DFI.E3
$
$ TEST PROBLEM 5
$ CREATE A RANDOM DAMAGE FUNCTION FILE
t
GE TAPE98 R GCl00
SIDEDTX,INPUT-TPROBS,TAPE8=DFILE3,TAPE92=TAPE92,TAPE98zTAPE98
!
$ TEST PROBLEM 6
$ CREATE A RANDOM STRUCTURE INVENTORY FILE
$
GE TAPE99 R GC200
StDEDTX,INPUT-TPROB6,TAPE8-SFILE3,TAPE99 .TAPE99

20

APPENDIX A

TEST PROBLEMS

Appendix A

TEST PROBLEM 1

LIST AND MERGE A SEQUENTIAL STRUCTURE FILE

1. Problem Purpose

This example represents the basic program option of listing selected
attributes from a sequential structure inventory file. It also demonstrates
how to merge two sequential files that have been created by other means and
are sorted by increasing structure identification code.

2. List of Input Cards for the Run

READ TYPE STRUCT
LIST FROM 8 FIELDS IDRCH1 IBLDGI ADJ STOPO IADDR1 IADDV2 IADDR3 1ADDR4
LIST FROM 9 FIELDS IDRCHI IBLDGI ADJ STOPO IADDRI IADDR2 LADDR3 JADDR4
MERGE FROM 8 9 TO 12 KEYS IBLDGI
LIST FROM 12 FIELDS IDRCHI IBLDG1 ADJ STOPO IADDR1 IADDR2 IADDR3 1ADDR4
END

3. Output Description

The pro:;ram ,choes back every input card read (item 1). To the right of
each input card is printed a program assigned sequence number (item 2). When
the list option is selected, the SIDEDT program will always go to the top of
the next page before printing the list (item 3). The column headings are
chosen from the requested attribute names (item 4). After each listing, a
report of how many records were processed is printed (item 5). Following the
MERGE command, the SIDEDT programs reports how many records were read from both
files and written to the output file (item 6).

4. Proxram Output

The following pages are reproductions of the program execution.

21

z

Lfl'L) 0

WA Z VIl 0ý

>- u ,

.A U, W

)LA V) -

LA I^g LA

-~ 4^ L-n- *

v) Ln 00)0 (
0i 8) L

t^ 4

z0

Ai0
LU8000000

-I 4A
v,)J

OKL

22

ON

tn

CO

4A~

ui

23

U- i-

NY I kOn 4 N 1

Ci oic IV I -

I' c" IT Il Il gq' I I II -

-n 60 -~NN N 5- - ---

v n %n In
ey nC" ~

LA ~ NNN INNNN

C 4C ,4444CM In ,M C nU

"-N-N I P(") r-NF-P -r -R

24

C,)

Ij

Lt.

AAU

25

en 0 N

%I ~ I - I D- b.-4

0-

(N N NN

Ul) Ln 26

In

I

In

co
do*

0 U,-. _

U, -eu
U-

.- U

0- - R . U

P.- -

U. LM

27

I ! WUJ

. I

-~_ V- CVM Vi - N

1-

II

u

N"NI

I~

I~ M, N, IV, IV, N, I

II I I I I

%DDJNN N to-~ 1000 t

- I

28

RECORDS READ 38
END

29

Appendix A

TEST PROBLEM 2

UPDATE AND MODIFY A SEQUENTIAL STRUCTURE FILE

1. Problem Purpose

This example will illustrate the use of the UPDATE and MODIFY commands.
The UPDATE file is listed on page 20; it contains a structure identifier, a
new structure damage function identifier for the structure, and a new
reference flood elevation for the structure. Since the UPDATE command can
only change one attribute at a time, the command must be used twice; the
first time to change the damage function Identifiers and the second time to
change the reference flood elevation. In addition, all structures will be
modified to increase their total value by fifteeen percent.

2. List of Input Cards for the Run

READ TYPE STRUCT
LIST FROM 8 FIELDS IBLDGl IDIFS ADJ V1FS
UPDATE FROM 8 10 TO 11 /

MATCH 1 8 WITH IBLDGI /
MOVE 14 16 INTO IDIFS

UPDATE FROM 11 10 TO 12 /
MATCH 1 8 WITH IBLDGI/
MOVE 17 24 INTO ADJ

MODIFY FROM 12 TO 11 BY /
IF KODEI EQ 'SL' THEN /
MULTIPLY VLFS BY 1.15 GIVING VIFS

LIST FROM 11 FIELDS IBLDGI IDIFS ADJ VIFS
END

3. Output Description

The sequential structure file for this example was created in Test
Problem 2 by merging the two files listed on pages 16 and 17. Items I and 2
show the listing of the structure file before any modification. The UPDATE
commands are listed as items 3 and 4. It tells the program to UPDATE file
TAPE8 using file TAPEIO as the UPDATE FILE. The resulting modified file is
the scratch file, TAPEII. The match key field is the structure identifier
(IBLDGl) and is located in card columns 1 thru 8 in the UPDATE FILE. The
field in the structure file to be updated is the damage function identifier
(IDIFS); card columns 14 thru 16 of the UPDATE FILE will be moved into that
field. The second UPDATE command uses the file just created (TAPEll) as the
file to be modified. The UPDATE FILE (TAPEIO) remains the same and so does
the match key. The resultant file this time is TAPE12 and the field modified
is ADJ. TAPE12 now contains the entire sequential structure file with the
selected structures propertly updated.

The command to modify all the structures total value is Item 5. The file
to be modified is TAPE12; the output file is called TAPElI. Reusing files
this way is perfectly all right. In order to modify all the structures, a

30

condition must be selected that applies to every structure. One possibility
is the one shown in item 6, i.e., "IF KODEI EQ 'SL' since all structure
records must have an SL card. Item 7 shows how to increase the structure's
total value by 15 percent. The listing on page 36 illustrates the new
structure file.

31

-L Id

-J 0 -I

V) U.) ff

Z
--

UJ -

LU L
Lu LU UJ
LU Lu LU
Lu LU LU
LU ... LU
Lu LU LU LUJ LUI LU 1.

0 000

0

0-4

b-f 4A -L

0-4

LU IA IAo

2 32

U-

IL.

0.4

33

1- 61 C IP -r - V

oy44VNI4444IQ4CY VI4(0
CY C

ICVI M N 0 M V " M M-

LU ujr C4L

cc 1 -J -l I~~ i x8 -L)~x

34

m W in Cc

1-

UU-

I-~~ 0L - .
0- -.- - LA

-L -U- U
P-6I

R- I. R. -

-0'-i

U.U.P-.L - 2. i - j *

53

If

U, "U"CJ UK 4 K4

LM P. - I-

0~ 00-4 0 2 100 00 0 0 400 0

-oii I IC) INN '~ % ' I

36

37

37

Appendix A

TEST PROBLEM 3

WINDOW, NEWFIELD AND PULL A SEQUENTIAL STRUCTURE FILE

1. Problem PFrposc

This example demonstrates how to window a structure file based on
geographic coordinates. Remember, the coordinates must already be encoded
and stored in the structure records. The NEWFIELD option is used to
demonstrate how to access just a portion of a predefined attribute values.
The PULL command uses the newly defined field to create a subset of the
original sequential structure file.

2. List of Input Cards for the Run

READ TYPE STRUCT
LIST FROM 8 FIELDS IDRCHl COLE ROWN
WINDOW FROM 8 TO 11 XCOOR COLE YCOOR ROWN /

XMIN 493000 /
XMAX 494000 /
YMIN 4510000 /
YMAX 4520000

NEWFIELD TRIB 3 4 CHAR
NEWFIELD DMGRCH 5 8 CHAR
PULL FROM 11 TO 12 BY /

IF DMGRCH EQ '1009'
LIST FROM 12 FIELDS TRIB DMGRCH IBLDGl IDCAT VIFS VlFC VIFO COLE ROWN
END

3. Output Description

Item 1 is the WINDOW command used to create a subset of a structure
inventory file based on geographic coordinates. In this case, UTM
coordinates were stored in the structure file as attributes COLE for the
x-coordinate and ROWN for the y-coordinate. The SIDEDT program interprets
the WINDOW command and informs you of the coordinates window (item 2) and how
many records read from the input file fill within the coordinate window and
written to scratch output file (item 3).

The NEWF[ELD command (item 4) defines a 2 character attribute, 'TRIB',
staLting in position 3 and ending in position 4. The second NEWFIELD command
defines a four character attribute, 'DMGRCH', in positions 5 through 8.
These two new attributes may then be used as any originally defined
attribute. In this example, the 6 character damage reach attribute (IDRCH1)
is composed of a 2 characLer tributary code and a 4 character damage reach
within tributary code. The new DMGRCH is used to select a subset of the
windowed file, i.e., all structures in damage reach 1009 (item 5).

4. Program Output

The following pages are reproductions of the program execution.

38

I-- LA l%

Lu

-j-

LA tn 0

'D-

Lu LU
LuLuj
Lu LU "I

LU iu j LU LJuj

040-4

LU P-

0-
I-.3-

In jt

39Il f

1.40

SV m M

a

I/

41

m -r -n %Dr O(1

I

I Ln L l

U.1

NC.J

CCn 0-4 -

IJ. U. "M In I Ofl - O
ww i IiU. I N -

CI.- x)I

I-1 II

NO IA tA #

In
Uo a-i co

~~III cm

z 042

43

Appendix A

TEST PROBLEM 4

MERGE AND MODIFY SEQUENTIAL DAMAGE FUNCTION FILES

1. Problem Purpose

Often after a sequential damage function file is created, new damage
functions will need to be added to the file. The MERGE command is used to
carry out this function. This example also shows how to modify the merged
file using the MODIFY command.

2. List of Input Cards for the Run

READ TYPE DAMAGE
LIST FROM 8 FIELDS IT NSTAG PERCNTI7
LIST FROM 9 FIELDS IT NSTAG PERCNT17
MERGE FROM 8 9 TO 11 KEYS IT
MODIFY FROM 11 TO 12 BY /

IF IT EQ ' R1' I
THEN MOVE 44. TO PERCNTI7

LIST FROM 12 FIELDS IT NSTAG PERCNT17
END

3. Output Description

Because this test problem accesses a damage function file, the first
command to the SIDEDT program must be the 'READ TYPE DAMAGE' command (item
1). Items 2 and 3 are listings of the original damage function file and the
damage functions to be added, respectively. The MERGE command, (item 4) is
used to add the damage functions of TAPE9 to the damage functions of TAPES.
The resultant file is TAPEl1. The key field is the attribute IT, the damage
function identifier. Because the 2 functions on TAPE9 have the same key as 2
functions on TAPES, the MERGE command replaces the old functions with the two
new ones. In effect, the command is acting like a replace function.

The merged file (TAPE11) is then used as input to the MODIFY command
(item 5). The damage function ' R1' is modified to correct the value of the
seventeenth percent damage value from 440000 to 44 percent.

4. Program Output

The following pages are a reproduction of the program execution.

44

WR 0-

Ck I.--I I.I- I

ui m
LU LAO

LLU LU 04

Ln LU L

WLU U LU u A~lLU

00000A u

100000
a-a a-a
LA- a-a

0a-a
a-) a-

'flAuk
LM vi v
4A I vi

Ifl vi I
U, U L U

tU t

uj,

6 NY

45

U,

z

I-

- I.

46

ilo

II

II

I,

I-

U,

47

6-0

'A.

SAL

48

FOR

,I

@ 2!

49

LL >-

RZu --J

0w Z

1 0-4

I-

51

5

52

Appendix A

TEST PROBLEM4 5

CREATE A RANDOM DAMAGE FUNCTION FILE

1. Problem Purpose

The purpose of this example is to create a random damage function file.
When running the SID program using a random damage function file a sequential
file of just DF cards is also required. This example will also create this
necessary file (TAPE92).

2. Listing of Input Cards for the Run

READ TYPE DAMAGE
PULL FROM 8 TO 98 BY IF NSTAG GE 0
PULL FROM 8 TO 92 BY IF NSTAG GE 0
LIST FROM 98 FIELDS IT NSTAG SAGEl PERCNT1
END

3. Output Description

The first PULL command (item 1) creates the random damage function file
(TAPE98) from the sequential file (TAPE8). All damage functions with an
NSTAG greater than or equal to zero will be written to the new file. (Note -
this is one way to capture all the damage functions). The second PULL
command (item 2) creates the required TAPE92. This second command must
always be present.

4. Program Output

The following pages are a reproduction of the program execution.

53

I-i

LU Z A 7

LU Lu
LU LU LUJ
LU LU Lu
LU LU LU
LU LUJ LU
Lu LU LJ LUJ LU LU LU1

6-
6-

LA 1-4 - -4 i 14

- -4n

0-4

ulf

In 54

at n
R R

U-.

u- FSL s-U

55

| 0 1,0 Opal,,

I-

ia0eoeooa• 0

S I

1-4

57

Appendix A

TEST PROBLEM 6

CREATE A RANDOM STRUCTURE INVENTORY FILE

I. Problem Purpose

This example demonstrates how to create a random structure file which is

a subset of an input sequential structure file.

2. List of Input Cards for the Run

READ TYPE STRUCT
PULL FROM 8 TO 99 BY I

IF IDRCHl EQ '081008'
LIST FROM 99 FIELDS IDRCHl IBLDGl STOPO DELTZ DELTB DELTG
END

3. Output Description

Item 1 shows how to use the PULL command to do two functions at the same
time. The first function is to create the random file (TAPE99) from the
sequential file (TAPES). The second function is to only include a subset of
the input file, i.e., only structures located in damage reach '081008', on
the random file.

4. Protram Output

The following pages are a reproduction of the program execution.

58

AA

'i -4 f

uj = -

CA U- I a.coa

LU LU LU
LU wU LLwwwwwww

0.4 040 .#0 0-4

4*Lm 4A

tn w s

mun Un

W4on i

2i
-C3 'AuI

59

0i i

C?"f y"IC

0% Lu R uiCY I

I-. U."

L,

- -a -I

ov-4

60

APPENDIX B

SID STRUCTURE CARDS

APPENDIX B
STRUCTURE CARDS

(for SID program)

1 STRUCTURE CARDS

The structure cards which follow (SL and SD required, SO, SS and SA
optional) provide the basic inventory data for the structures to be subjected
to damage potential analysis. The SS and SA cards do not presently result in
analysis. They have been defined so that future applications (that might be
developed) could be accommodated in initial field data collection efforts.

1.1 SL CARD

This required card provides identification codes, locational information,
structure elevations, and printout controls. The numbers in parentheses under
FIELD are the card column numbers for input.

RECORD ATTRIBUTE

FIELD VARIABLE FIELD VALUE TYPE DESCRIPTION

0 KODE1 (1-2) SL (C) Card identification.

1 IDRCH1 (3-8) AN (C) Damage reach identification code
that will be used for structure
damage potential aggregation for
damage potential function
construction, summary printout, and
file transfer. The structure is
presumed to be located within this
specified damage reach.

2 IBLDGl (9-16) AN (C) Structure identification code.
Used for all subsequent accounting,
and storage and retrieval of data
for this structure.

3 ROWN (17-24) + (R) If optional coordinate values are
used (see page 17 main text for
discussion), this value is the row
or north coordinate point. Any
rectilinear coordinate system may
be used such as row/column or the
Universal Transverse Mecator (UTH)
system.

61

APPENDIX B
STRUCTURE CARDS

(for SID program)

1.1 SL CARD (continued)

RECORD ATTRIBUTE
FIELD VARIABLE FIELD VALUE TYPE DESCRIPTION

4 COLE (25-32) + (R) If coordinates are used, (optional)
this value is the column or east
coordinate point.

5 ADJ (33-40) + (R) Elevation of the reference flood at
the structure (in feet). Used (in
conjunction with damage reach
reference flood elevation) to
adjust structure elevation-damage
potential at site to the index
location. See discussion page 8 in
main text.

6 STOPO (41-48) 4 (R) Elevation of reference point
selected for structure (in feet).
Must be input as either 1) first
floor elevation or 2) ground
elevation. If elevation is input
as ground elevation, will be
adjusted to first floor by addition
of DELTG (SL.9) below. The first
floor elevation corresponds to the
zero stage value on stage damage
function (DF, DP, PC (or DD)
cards). If left blank, or assigned
as zero stage, values on D? card
are assumed to be elevation
values. See text page 17.

7 DELTZ (49-56) 4,- (R) Difference between water surface
elevation that can cause damage to
begin at first floor For
example, if a basement opening
exists that would admit water at
some elevation above the basement
floor, damage might not begin until
water reaches that elevation. If
the point is below first floor
elevation, elevation difference
input should be negative (e.g.,
preceded by a minus sign). See
text page 19.

62

8 DELTB (57-64) ÷,- (R) Difference between elevation of
basement floor and first floor
elevation. Elevation difference
input would normally be negative
(e.g., preceeded by a minus sign).

Needed if structure has a basement
and separate damage function is to
be used for basement only. See
text page 19.

RECORD ATTRIBUTE
FIELD VARIABLE FIELD VALUE TYPE DESCRIPTION

9 DELTO (65-72) ,- (lR) Used only if elevation STOPO (SL.6)
was input as ground elevation.
Needed to adjust STOPO to first
floor elevation. Difference
between elevation of first floor
and ground elevation. If first
floor elevation is above ground,

elevation difference is positive
and should be so input.

10 IFUNC (73-74) 0 (1) Analysis to be performed will use a
(73-74) single level damage function and

only SD card will be included. SO,
SS or SA cards are not used.

1 One additional structure card
(either a SO, SS, SA card) will be
included with the required SL and

SD cards.

2 Two additional structure cards
(either SO and SS, SO and SA, or SS
and SA cards) will be included with
the required SL and SD cards.

3 Three additional st.,ucture cards
(SO, SS and SA cards) will be
included with the required SL and
SD cards.

10(75) NEWSTR (75-75) 0 (1) Structure will be considered as
"existing" for analysis purposes.

I Structure will be considered as
"new" (e.g., does not presently
exist but will be built at some
future date) for analysis purposes.

63

APPENDIX B
STRUCTURE CARDS

(for SID program)

1.2 SD CARD

The required SD card specifies the damage category (for damage potential
consolidation), damage function assignments, and values for structures and
contents. The numbers in parentheses under FIELD are the column numbers for input.

RECORD ATTRIBUTE

FIELD VARIABLE FIELD VALUE TYPE DESCRIPTION

0 KODE2 (81-82) SD (C) Card identification.

1 IDRCH2 (83-88) AN (C) Damage reach identification code
(identical to SL.1).

2 IBLDG2 (89-96) AN (C) Building identification code
(identical to SL.2).

3 IDCAT (97-104) AN (C) Damage category (specified on DC
cards) JDCT (DC.2) to which this
structure will be assigned for
consolidation of damage potential
of all structures.

4 IDlFS (105--107) AN (C) Identification code for damage
(25-27) potential function to be assigned

to this structure. Use appropriate
DF card identification code, IT
(DF.l).

4 VIFS (108-112) 4 (R) Total value of structure in
thousands

(28-32) of dollars ($1000). If damage
function to be assigned to this
value is a percent function, this
value provides the conversion.
Otherwise the value input here is
used in various tables and
summaries.

5 ID1FC (113-115) AN (C) Identification code for damage
(33-35) potential function to be assigned

to damage to contents for this
structure. Use appropriate DF card
Identifier code, IT (DF.1).

64

APPENDIX B
STRUCTURE CARDS

(for SID program)

1.2 SD CARD (continued)

RECORD ATTRIBUTE
FIELD VARIABLE FIELD VALUE TYPE DESCRIPTION

5 VIFC (116-120) 4 (R) Total value contents in
(36-40) thousands of dollars ($1000).

Value of contents is a
percentage of the structure
value. Input as negative
whole number (e.g., 50% is
input as -50).

6 IDIFO (121-123) AN (C) Identification code for
(41-43) damage potential function to

be used for damage to "other"
items. Use appropriate DF
card identification code, IT
(DF.1).

6 VIFO (124-128) 4 (R) Total value of "other" items
(44-48) thousands of dollars ($1000).

Value of "other" is a
percentage of the structure
value. Input as a negative
whole number (e.g., 5% is
input as -5).

7 IADDRl (129-136) AN (C) Space allowed for
comment/record keeping.
Could be used to record
address, source of structure
market values, land costs, or
other miscellaneous
information.

8 IADDR2 (137-144) AN (C) Same as above.

9 IADDR3 (145-152) AN (C) Same as above.

10 IADDR4 (153-160) AN (C) Same as above.

65

APPENDIX B
STRUCTURE CARDS

(for SID program)

1.3 SO CARD

The optional SO card (see IFUNC (SL.1O)) provides for additional
specification of analysis for the basement and above first floor categories
for those users who desire to evaluate structures at three levels. In this
case, the SD card is then used to provide only first floor information. The
numbers in parentheses under FIELD are the card column numbers for input.

RECORD ATTRIBUTE

FIELD VARIABLE FIELD VALUE TYPE DESCRIPTION

0 KODE3 (161-162) SO (C) Card identification.

1 IDRCH3 (163--168) AN (C) Damage reach identification
code dentical to SL.1.).

2 IBLDG3 (169-176) AN (C) Building identification code
(identical to SL.2.).

3 IDBS (177-179) AN (C) Identification code for
(17-19) damage potential function to

be assigned for damage to the
structure of the basement.
Use appropriate DF identifier
code, IT (DF.1).

3 VBS (180-184) 4 (R) Total value of the structure
(20-24) basement in thousands of

dollars ($1000).

4 IDBC (185-187) AN (C) Identification code for
damage

(25-27) potential function to be
assigned to damage to
contents of the basement.
Use appropriate DF
identifier, IT (DF.1).

4 VBC (188-192) 4 (R) Total value of the contents
(28-32) of the basement in thousands

of dollars ($1000).

Value of the contents of the
besement is a percentage of
the structure value of the
basement. Input as negative
whole number (e.g., 50% is

input as -50).

66

APPENDIX B
STRUCTURE CARDS

(for SID program)

1.3 SO CARD (continued)

RECORD ATTRIBUTE
FIELD VARIABLE FIELD VALUE TYPE DESCRIPTION

5 IDBO (193-195) AN (C) Identification code for
(33-35) damage potential function to

be assigned for damage to
"other" items of the
basement. Use appropriate DF
card identifier, IT (DF.1).

5 VBO (196-200) (R) Total value of the "other"
(36-40) items of the basement in

thousands of dollars ($1000).

Value of the "other" items of
the basement is a percentage
of the structure value of the
basement. Input as negative
whole number (e.g., 50% is
input as -50).

6 IDAS (201-203) AN (C) Identification code for damage
(41-43) potential function to be

assigned for damage to the
structural portion above the
first floor. Use appropriate
DF card identifier, IT (DF.l).

6 VAS (204-208) 4 (R) Total value of the structural
(44-48) portion above the first floor

in thousands of dollars
($1000).

7 IDAC (209-911) AN (C) identification code for damage
(49-51) potential function to be

assigned for damage to the
contents above the first
floor. Use appropriate DF
card identifier, IT (DF.U).

7 VAC (212-216) * (R) Total value of the contents
(52-56) above floor in thousands of

dollars ($1000).

Value of the contents for
above first floor is a
percentage of the structural
portion above first floor
value. Input as negative
whole number (e.g., 50% is
input as -50).

67

APPENDIX B
STRUCTURE CARDS

(for SID program)

1.3 SO CARD (continued)

RECORD ATTRIBUTE
FIELD VARIABLE FIELD VALUE TYPE DESCRIPTION

8 IDAO (217-219) AN (C) Identification code for damage
(57-59) potential function to be

assigned for damage to
"other" items above first
floor. Use appropriate DF
card identifier, IT (DF.1).

8 VAO (220--224) 4 (R) Total value of the "other"
(60-64) items the first floor in

thousands of dollars ($1000).

Value of the "other" for
above first floor is a
percentage of the structural
portion above first floor
value. Input as negative
whole number (e.g., 50% is
input as -50).

9-10 Blank fields.

68

APPENDIX B
STRUCTURE CHARACTERISTICS/DOCUMENTATION CARDS

(for SID program)

2 STRUCTURE CHARACTERISTICS/DOCUMENTATION CARDS

The SS and SA cards have been formulated to provide a systematic data

capture procedure for cataloging more precisely the characteristics of

inventoried structures. The data contained on these cards ar. simply read
and printed. Future plans for enhancement of SID capabilities include sort,

display, and summary operations on these data items, and later, creation of
analysis routines to permit refined nonstructural and other analysis.

2.1 SS CARD

The optional SS (see IFUNC (SL.lO)) card provides for cataloging more
detailed information on the structure to allow for potential, (not yet
developed) more detailed, economic and nonstructural analysis. The numbers
in parentheses under FIELD are the column numbers for input.

RECORD ATTRIBUTE

FIELD VARIABLE FIELD VALUE TYPE DESCRIPTION

0 KODE4 (241-242) SS (C) Card identification.

1 IDRCH4 (243-248) AN (C) Identification code of damage reach
to which this structure is assigned
(identical to SL.1).

2 IBLDG4 (249-256) AN (C) Building identification code

(identical to SL.2).

3 YC (257-260) 4 (R) Year of completion of structure
(17-20) construction (e.g., 1952). Used as

indicator of age of structure.

3 SF (261-262) AN (C) Soil foundation types used to
(21-22) determine seepage/construction

problems/potential. Up to 5 types
(defined by user) may be

specified. An example might be:
1 Gravel
2 Rock
3 Impervious

4 Swampy
5 Other

69

APPENDIX B
STRUCTURE CHARACTERISTICS/DOCUMENTATION CARDS

(for SID program)

2.1 SS CARD (continued)

RECORD ATTRIBUTE
FIELD VARIABLE FIELD VALUE TYPE DESCRIPTION

3 TG (263-.264) AN (C) Categorization of structure
(23-24) types used as indicators of

nature of construction and
for statistical analysis. Up
to 20 types (defined by user)
may be specified. An example
might be:

1 Colonial
2 Ranch
3 Row
4 Trailer, etc.
Etc.

4 CG (265-266) AN (C) Categorization of (25-26)
construction type. Used as
indicator for potential
modifications. Up to 10
categories (defined by user)
may be specified. An example
might be:
1 Wood frame
2 Prefab
3 Masonry
4 Steel frame
Etc.

4 NG (267-268) 4 (I) Code for number of floors (not
(27-28) including basement):

1 One floor
2 Two floors
3 More than two floors

4 BG (269-270) (R) Code for presence of basement.
(29-30)

0 No basement..

I Structure has a basement.

5 BT (273-274) AN (C) Categorization of basement
type.

(33-34) Up to 5 categories (user
defined) may be specified.
An example might be:
1 Full
2 Partial
3 None, slab foundation
Etc.

70

APPENDIX B
STRUCTURE CHARACTERISTICS/DOCUMENTATION CARDS

(for SID program)

2.1 SS CARD (continued)

RECORD ATTRIBUTE
FIELD VARIABLE FIELD VALUE TYPE DESCRIPTION

5 BC (275-276) AN (C) Code for basement (35-36)
construction type. Up to 10
types (user defined) may be
specified. An example might
be:
I Wood frame
2 Prefab
3 Masonry
4 Steel frame, etc.
Etc.

5 BSIZE (277-280) + (R) Basement area in hundred
(37-40) square feet

6 NW8 (281-282) 4 (I) Number of windows below the
(41-42) first floor.

6 WAB (283-285) 4 (R) Average size of the window
(43-45) openings below the first

floor (square feet).

6 WBF (286-288) 4 (R) Elevation difference between
(46-48) the lowest window below the

first floor and the first
floor reference point.

7 NOB (289-290) (I) Number of "other" openings
below the

(49-50) first floor.

7 OAD (291-293) 4 (R) Average size of the "other"
openings

(51-53) below the first flocr (square
feet).

7 OBF (294-296) 4 (R) Elevation difference between
the

(54-56) lowest "other" openings below
the first floor and the first
floor reference point.

8 Blank.
(57-58)

71

APPENDIX B
STRUCTURE CARDS

(for SID program)

2.1 SS CARD (continued)

RECORD ATTRIBUTE
FIELD VARIABLE FIELD VALUE TYPE DESCRIPTION

8 FC (299-300) AN (C) Code for first floor
construction

(59-60) types. Up to 10 types
(user defined) may be
specified. An example
might be:
1 Wood frame
2 Prefab
3 Masonry
4 Steel frame, etc.
Etc.

8 FSIZE (301-304) + (R) First floor area in
(61-64) hundred square feet.

9 NW (305-306) + (1) Number of windows in the
(65-66) first floor.

9 WAF (307-309) + (R) Average size of window
(67-69) openings on first floor

(square feet).

9 WDF (310-312) + (R) Elevation difference
(70-72) between the lowest

window above the first
floor and the first
floor reference point
elevation.

10 NOF (313-314) + (1) Number of "other"
(73-74) openings above the first

floor elevation.

10 OAF (315-317) + (R) Average size of "other"
(75-77) openings above the first

floor elevation (square
feet).

10 ODF (318-320) + (R) Elevation difference
(18-80) between the lowest

"other" openings above
the first floor and the
first floor reference
elevation.

72

APPENDIX B
STRUCTURE CHARACTERISTICS/DOCUNENTATLON CARDS

(for SID program)

2.2 SA CARD

The optional SA card (see IFUNC (SL.1O)) provides for additional cataloging and
naming of the structure (e.g., resident or business) and record keeping such as
street address.

RECORD ATTRIBUTE

FIELD VARIABLE FIELD VALUE TYPE DESCRIPTION

0 KODE5 (321-322) SA (C) Card identification.

I IDRCH5 (323-328) AN (C) Identification code for the damage
reach to which structure is
assigned (identical to SL.l).

2 IBLDG5 (329-336) AN (C) Building/structure identification
code (identical to SL.1).

3 RESIDI (337-344) AN (C) Name of resident or business.

4 RESID2 (345-352) AN (C) Same as above.

5 ADDRI (353-360) AN (C) Street address.

6 ADDR2 (361-368) AN (C) Same as above.

7 ADDR3 (369-376) AN (C) Same as above.

8 CITY1 (377-384) AN (C) City or town.

9 CITY2 (385-392) AN (C) Same as above.

10 IZIP (393-400) 4 (1) Zip code.

73

_ 77"

APPENDIX C

SID DAMAGE FUNCTION CARDS

APPENDIX C
DAMAGE FUNCTION CARDS

(for SID program)

1 DAMAGE FUNCTION CARDS

These cards are required if NDFILE (J2.9) is not equal to 92. Three card types
DF, DP and PC (or DD) are required for each damage function. There must be NODF
(W2.1) sets of DF, DP, and PC (or DD) cards.

1.1 DF CARD

The DF card identifies the damage function, specifies the number of depth
tabulation values and flags the nature of the damage values and file source. If
NDFILE (J2.9, is 92, the DF card image is required on tape or disk. If NDFILE
(02.9) is 92 or 98, damage function data is resident on random access file 98. DF
cards must be included in the job stream to retrieve from the random access file
those damage functions to be used in the specific computer run. If NDF1L9 (J2.9)
is 92, provide DF in card image format on tape or disk, specifiying the appropriate
identification codes (DF.1) and IDFILE (DF.4) as 1. If NDFILE (02.9) is 98,
provided DF cards as physical input specifying (DF.l), as before and DF.4 as 1.

RECORD ATTRIBUTE
FIELD VARIABLE FIELD VALUE TYPE DESCRIPTION

0 KODEl (1-2) DF (C) Card identification.

1 1T (6-8) AN (C) Damage function identification code.
(6-8) (maximum of 30 characters).

2 NSTAG (9-16) 4 (1) Number of stage tabulation values
maximum of 20.

3 IDF (17-24) 0 (I) Damage values placed on PC cards
are PERCENT damage values.

1 Damage values placed on DD cards
are direct (actual) DOLLAR values.

4 IDFILE (25-32) 0 (I) Stage and damage data are
physically on cards or DF, DP, PC
(or DD)) card images exist on a
computer disk file. NDFILE (J2.9)
= 0 or 2.

1 Stage and damage data (DF, DP, PC
(or DD)) are resident on a RANDOM

10 File. NDFILE (32.9) = 98.

74

APPENDIX C
DAMAGE FUNCTION CARDS

(for SID program)

1.2 DP CARD

The DP card specifies the stage values (of stage damage functions). The first
10 stage values are placed on the initial DP card and the remainder, if needed, are
placed on a second DP card (maximum of 20). The initial stage tabulation value
should correspond to the zero damage point. Values are input in ascending order
but do not have to be of a uniform interval between values. Elevation values
instead of stage values are assumed if STOPO (SL.6) is equal to zero.

RECORD ATTRIBUTE

FIELD VARIABLE FIELD VALUE TYPE DESCRIPTION

0 KODE2 (81-82) DP (C) Card identification.

1 SAGE1 (83-88) 4 (R) First stage value. May be negative
(use "-" sign) and should
correspond to zero damage.

2 SAGE2 (89-96) (R) Second stage value. May be
negative (use "-" sign).

N SAGEN (233-240) 4 (R) Same as above for NSTAG (DF.2)
stage values. Continue for as many
DP cards as needed.

75

APPENDIX C
DAMAGE FUNCTION CARDS

(for SID program)

1.3 PC CARD

The PC cards specify the percent damage values corresponding to the stage
values specified on the DP card(s). The first 10 values are placed on the initial
PC card and the remainder, if needed, are placed on a second PC card. The first
depth (DP.l) and associated percent damage (PC.l) values should correspond to zero
damage point. Required if IDF (DF.3) is 0 or blank.

RECORD ATTRIBUTE

FIELD VARIABLE FIELD VALUE TYPE DESCRIPTION

0 KODE4 (241-242) PC (C) Card identification.

1 PERCNTI (243-248) 4 (R) Percent damage in whole numbers
(e.g., 60% is input as 60)
corresponding to first depth
value. Initial value should be
zero.

2 PERCNT2 (249-256) 4 (R) Percent damage (in whole numbers)
corresponding to second depth
value.

N PERCNTN (393-400) 4 (R) Percent damage corresponding to N
depth value. Continue for as many
PC cards as needed.

76

APPENDIX C

DAMAGE FUNCTION CARDS
(for SID program)

1.4 DD CARD

The DD card is an optional alternative to the PC card to specify direct damage
values corresponding to the stage values on the DP card(s). The first 10 direct
damage values are placed on the first DD card and the remainder, if needed, are
placed on a second DD card. It is good practice to have the first depth (DP.1) and
direct damage (DD.1) values correspond to zero damage point. Required if IDF
(DF.3) is 1.

RECORD ATTRIBUTE

FIELD VARIABLE FIELD VALUE TYPE DESCRIPTION

0 KODE4 (241--242) DD (C) Card idencification.

1 PERCNT1 (243-248) 4 (R) Direct damage in thousands of
dollars ($1000) corresponding to

initial depth value (should be
zero).

2 PERCNT2 (249-256) (R) Direct damage in thousands of
dollars ($1000) corresponding to
second depth value.

N PERCNTN (393-400) 4 (R) Direct damage in thousands of
dollars ($1000) corresponding to
NSTAG (DF.2) depth value. 184

Continue on to an additional DD

card as needed.

77 GPC 785-066,'20362

