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EXECUTIVE SUMMARY

This report contains the research done by Berkeley Research Associates under contract
DNA-001-88-C-0006. The focus of the work is on theory and computation for the pulse
power elements in existing and future DNA flash x-ray simulators, in particular DECADE.
The pulse power for this machine is based on inductive store technology, which depends
on an opening switch. Despite much work over the last 10 years, many details in the
operation of the opening switch are known incompletely, preventing extrapolation from
the experimental data on existing switches to DECADE. Switch opening improves with a
low-impedance load, such as the Plasma Filled Diode or the Plasma Radiation Source...

The following nine sections discuss the Reflex switch, the consequences of dirty elec-
trodes, a zero-dimensional, two one-dimensional, and a two-dimensional treatment of the
Plasma Filled Diode, design computations on the Plasma Opening Switch, the Plasma Ra-
diation Source, and a detailed description of a code especially developed for this research.
Appendices contain published papers, and some further code details.

Section 1 is the first dynamic study of the Reflex Switch, a device developed by Physics
International. Previous Reflex Switch theories were stationary, and therefore missed im-
portant dynamical features that were discovered here. Physics International’s scientists
used these considerations in further experimental work on the Reflex Switch.

Section 2 warns against contamination from electrode material blown off by the plasma
injected into the opening switch. The blown-off material modifies the intended plasma
density and therefore affects opening switch operation. As expected, in experiments; at
Physics International the reproducibility and opening speed improve with cleaning of the
electrodes.

Sections 3, 4, and 5 discuss different types of theory and modeling of the Plasma
Filled Diode, while Section 6 presents fully two-dimensional computations of the switch
that contain many features of the simpler theories and computational models. Although it
is clear from the essential two-dimensional nature of the plasma dynamics in the diode that
one-dimensional approximations can not be accurate, the one dimensional computations
show especially clearly the instabilities between fast electrons and the plasma. During the
conduction phase the instabilities produce a voltage internal to the plasma that can be
many times the applied voltage. The two-dimensional modeling maintains this and other
features of the one-dimensional computations.

Section 7 discusses the use of the ANTHEM code for modeling opening switches.
This code is intended for the time and density regime associated with the intermediate
density plasma opening switches. However, the code has many parameters to be selected
by the user, and it is necessary to gain confidence in the code’s predictions by careful
benchmarking. In addition, the code must be augmented with the experimentally relevant
boundary conditions. This work points to the need for another code having many of
ANTHEM?’s features, and the possibility of adding hitherto ignored physics.

Section 8 contains the work on the Plasma Radiation Source, in the form of the papers
published over the contract period. These include a review paper summarizing the state of
tae art of the Plasma Radiation Source, and a review paper on radiative collapse. Other
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papers discuss the current outside a z-pinch, and the Pease-Braginskii current. In addition,
the Proceedings of the 2"¢ International Conference on High-Density z-pinches were edited.
Section 9 describes the code REFLEX: this code contains many features of general interest
to pulse power theory.

In the course of this work we have been in frequent and fruitful interaction with
the experimental groups developing opening switches (especially at Physics International),
Plasma Filled Diodes (especially at Maxwell Laboratories), and the Plasma Radiation
Source (especially at the Naval Research Laboratory).
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CONVERSION TABLE

Conversion factors for U.S. customary to metric (SI) units of measurement

To Convert From To Multiply
angstrom meters (m) 1.000 000 X E-10
atmosphere (normal) kilo pascal (kPa) 1.013 25 X E+2
bar kilo pascal (kPa) 1.000 000 X E+2
barn meter? (m?) 1.000 000 X E-28
British Thermal unit (thermochemical) Joule (J) 1.054 350 X E+3
calorie {thermochemical) jouie (J) 4.184 000
cal (thermochemical)/cm? mega joule/m3(MJ/m?) 4.184 000 X E-2
curie giga becquerel (GBq) 3.700 000 X E+1
degree (angle) radian (rad) 1.745 320 X E-2
degree Fahrenheit degree keivin (K) tas{t’l + 459.671/1.8
electron volt Joule (J) 1.602 19X E-19
erg Joule (J) 1.000 000 X B-7
erg/second watt (W) 1.000 000 X E-7
foot meter (m) 3.048 000 X E-]
foot-pound-force Joule (J) 1.355 818
gallon (U.S. liqusd) meter’ (m¥) 3.783 412X E-3
mch meter (m) 2.540 000 X E-2
Jerk Joule (J) 1.000 000 X E+9
Joule/kilogram (J/Kg) (radiation dose
absorbed) Gray (Gy) 1.000 000
kilotons terajoules 4.183
kip (1000 1bf) newton (N) 4.448 222 X E4+3
kip/inch? (ks1) kilo pascal (kPa) 6.804 757 X E+3
ktap newton-second/m? (N-s/m?) 1.000 000 X E+2
micron meter {m) 1.000 000 X E-8
mil meter (m) 2.540 000 X E-S
mile (international) meter (m) 1.609 344 X E+3
ounce kilogram (kg) 2.834 952 X E-2
pound-force (Ibf svoirdupots) newton (N) 4.448 222
pound-force inch newton-meter (N-m) 1.120 848 X E-)
pound-force/tnch newton/meter (N/m) 1.751 268 X E+2
pound-force/foot? kilo pascal (kPa) 4.788 026 X E-2
pound-force/inch? (pst) kilo pasca) (kPa) 6.804 757
pound-mass (Ibm avotrdupois) kilogram (kg) 4.535 924 X E-1
pound-mass~foot? (moment of tnertia) kilogram-meter? (kg-m?) 4214011 X2-2
pound-mass/foot® kilogram/meter? {hg/m?) 1.801 848 X E+)
rad {radiation dose abgorbed) Gray (Gy)* 1.000 000 X E-2
roentgen coulomb/kilogram (C/kg) 2.579 760 X E-4
shake second (s) 1.000 000 X E-8
slug kilogram (kg) 1.459 390 X E+1
tort (mm Hg 0°C) kilo pascal (kPa) 1.333 22 X E-1

*The becquerel (Bqi ts the SI unit of radioactivity-
**The Qray (Gy) Is the SI unit of absorbed radiation.
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SECTION 1

REFLEX SWITCH

Physics International’s Reflex Switch,! a viable opening switch candidate at the be-
ginning of this program, is investigated with two different models. The first model uses
the two-dimensional particle code ELECTRA. The computations show features that seem
qualitatively correct, but they do not exhibit the expected dynamical behavior. The sec-
ond model employs the one-dimensional particle code REFLEX developed specifically to
perform dynamical computations of the reflex switch. REFLEX contains an inductive
circuit and an approximate but realistic foil scattering component. This code is able to
dynamically attain the expected equilibrium. The time to reach equilibrium is a function
of the ionic mass and the anode-cathode gap spacing. Instabilities are evident through all
phases of reflex switch operation. The time to opening of the switch depends on removal
of ions from the primary gap. '

1.1 INTRODUCTION.

The reflex switch! is an opening switch concept developed by the Physics International
Company (PI) for use with magnetic energy storage. Figure 1 illustrates the geometry of
a reflex switch. The device is a triode with a positively charged thin foil anode placed
between a primary cathode connected to the pulse power generator and an electrically
floating secondary cathode. An externally applied magnetic field maintains axial electron
flow.

_O,O,O,O,O,,,,,, G

—
.o e o8 88w

K1 A K2
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Figure 1. Configuration of the reflex switch. A thin foil anode, A is placed between the
primary cathode K1, and a floating secondary cathode K2.
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The anode is a thin metallic or plastic foil a fraction of an electron range in thickness.
During a high-voltage discharge the foil is covered by a plasma of sufficient density to allow
ion emissicn. The essential feature of the reflex triode is that electrons emitted from both
cathodes lose energy traversing the anode foil and are reflected by the opposite cathodes.
Electrons continue to “reflex” through the anode until their kinetic energy is small enough
for them to be absorbed.

Normalized current density

2 4 6 8 10 12

N (average number of transits)

Figure 2. Electron and ion current densities (normalized to the bipolar Child-Langmuir
value) versus number of transits 5 through the reflexing foil anode. Theoretically

the current densities become arbitrarily large at a critical value of  (from Ref.
4).




In connection with an experiment involving double diodes, Smith? developed a model
showing that multiple reflections of electrons combined with the flow of positive ions from
the anode could produce a large increase in current over the usual Child-Langmuir value®
for a given gap voltage. Likewise, the reflex triode would be expected to achieve an
impedance much lower than a diode of comparable gap spacing and potential. Prono,
et al.* developed a one-dimensional, steady-state theory of reflex triodes demonstrating
the existence of such low-impedance equilibrium states. These equilibria depend crucially
on the distribution of electrons in the vicinity of the the anode foil and therefore on the
average number of transits through the anode, n. Figure 2 shows how the equilibrium
current depends on the reflexing parameter 7. Theoretically, there is a critical value of 5
at which the current becomes arbitrarily large, i.e., the dynamic impedance drops to zero,
although in a real device the circuit would keep the current finite.

Figure 3 gives examples of the potential profile in one of the gaps at equilibrium and
shows how the profile changes with 5. Note that as  increases, the potential tends more
and more to resemble a sheath. Thus the effective gap becomes narrower consistent with
reduced impedance. During this stage, the voltage drop across the anode-cathode gap
remains approximately constant. This voltage is determined by the electron energy gain
necessary to maintain the reflexing electron population. Generator voltage in excess of
the reflexing voltage yields a corresponding increase in switch current flowing through the
inductor. The reflex switch operates in a high current, low voltage “closed” mode.

Equilibrium theory has been helpful in understanding the basic characteristics of the
reflex triode. However, the steady-state model does not address the dynamics. For exam-
ple, it is unclear how the triode attains a steady state, and whether the steady state is
stable. While experiments indicate that low-impedance states of the reflex triode may be
obtained,! experimental diagnostics are inadequate to characterize the local electric fields
in the switch, let alone the microphysics of the electron and ion distributions. Therefore,
dynamical calculations, using particle simulations as a model, can be helpful in under-
standing the physics of the reflex triode.

Switch opening is thought to begin when a plasma fills the secondary cathode-anode
gap. This gap is usually smaller than the primary gap, and therefore it should fill up with
plasma first. The plasma effectively shorts the secondary cathode to the anode potential.
When this occurs the electrons stop reflexing: they move to the secondary cathode where
they are absorbed. The vacuum inductance tries to maintain the current achieved in the
reflexing mode, but there are insufficient electrons. As a result, the voltage across the
diode must rise sharply.

Once the switch has opened the impedance of the primary gap should correspond to a
bipolar Child-Langmuir diode. However, the ion population in the reflexing state is larger
than in a bipolar diode. It takes an ion transit time before the excess ions are cleared from
the gap. Thus the opening time should scale with the ion transit time.

1.2 SIMULATION OF THE CONDUCTION PHASE.

The first attempts at modeling the reflex switch utilize an existing two-dimensional
particle code, ELECTRA.> ELECTRA uses an electrostatic, magnetostatic formulation
for the electromagnetic fields in a cylindrical r-z coordinate system. Particles are advanced

3




Normalized potential

n=10.94

0 0.2 0.4 0.6 0.8 1.0
Normalized distance

Figure 3. Potential profiles (normalized to the anode potential) as solutions to the steady
state reflex triode problem. As 5 approaches the critical value, the profiles begin
to resemble that of a sheath (from Ref. 4).

in time using the relativistic Lorentz force equations. Particle emission based on Gauss’s
law is allowed from conformal surfaces of internal conductors. Features of ELECTRA
relevant to this problem are an ad hoc foil scattering module, external magnetic fields, and
a floating conductor. Additional options include a variable spaced mesh and color graphics
post-processing.

The simulation parameters are taken from the MOSES I experiment operated by
Physics International.” In MOSES I, two Marx banks separately charge the anode and




cathode up to 100 kV for a net 200 kV maximum difference in potential across the elec-
trodes. The anode foil normally used in MOSES I consists of 2um Kimfol whose main
component is carbon. Optimal gap spacings are 8 cm for primary gap and 6 cm for sec-
ondary gap. The cathode has rollpins or needles on its front face to enhance electron field
emission.

During these experiments, the Reflex Switch operated at a conduction phase voltage
of 60 kV and current densities hundreds of times higher than bipolar Child-Langmuir. The
switch opens to over 500 kV. An electron could be expected to reflex 10-15 times.

Humphries and Xu® investigated the time-dependent behavior of the Reflex Switch
using a one-dimensional nonrelativistic particle code. Their study proceeds in two stages.
In the first stage, the secondary cathode is placed at the same potential as the primary
cathode. The simulation is evolved forward in time until an equilibrium is reached. The
secondary cathode is then switched to the anode voltage to observe the opening process.
In equilibrium most of the voltage drop occurs near the anode and a smaller drop near
the cathode, with an approximately constant voltage in the remainder of the gap. In their
computations, the opening time is proportional to the square root of the ion mass, i.e.,
proportional to the ion transit time.

The simulations here use the same methodology. The voltage difference between the
anode and cathode during the conduction phase is given by

_ | Vosin(nt/2T7) O0<t<T, _
V(t)_{v0 t>1 . (1-1)

{ After the initial ramp, the voltage is kept constant. This situation would apply if the
device were connected to a parallel capacitor.

The simulation comes to an equilibrium with a reflexing electron population when the
secondary cathode charges up and reflects subsequent electrons. Ions are then emitted from
the anode and after a longer time depending on the ion mass the simulation again comes
to an equilibrium. The simulation is stopped at this point in order to set the secondary
cathode to the anode potential by external intervention. This procedure is designed to
mimic the shorting of the secondary anode-cathode gap by processes taking place in the
high-density plasma that are outside the simulation. The simulation is then restarted to
¢ observe the opening dynamics.

The configuration of the simulations is similar to Figure 1. Typical values for simu-
lation parameters are: a primary cathode radius of 3 cm, a anode inner radius of 5 cm, a
primary gap spacing of 8 cm, and a secondary gap spacing of 6 cm. The voltage risetime
is & ns with a maximum voltage between the primary electrodes of 60 kV to 200 kV. The
foil thickness is varied to allow from 0 to a maximum of 15 reflexes. Either carbon ions,
s hydrogen ions, or artificial ions with sub-protonic mass are emitted from the foil assuming
space-charge limited emission. The external magnetic field strength is 5 kG.

Qualitatively the simulations reproduce what is expected from the stationary theory.
1 For example, Figure 4 shows the voltage for a run with maximum applied voltage of 60 kV
and foil thickness of 2um. Hydrogen ions are emitted from the anode. The potential con-
T tours are concentrated near the anode as expected. There is very little current carried in the
1 region above the cathode shank. The magnetic field keeps the electron flow well-confined.
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Figure 4. Contour plot of the electric potential in reflexing equilibrium. The labels on
the contours are in volts with the values ranging from 0-60 kV. The contours
of constant potential are tightly clustered near the anode foil particularly at the
cathode radius.

The current found by the simulation in the reflexing state is 2.4 kA. However, this value
is an order of magnitude higher than a bipolar Child-Langmuir diode, but twenty times
below the currents achieved , : *he experiment. Moreover, the two-dimensional variations
seen in the code make a purely one-dimensional model seem suspect.

Several cases were run varying the scattering model, voltage, and foil thickness. In all
cases, the simulation current is more than an order of magnitude below the experimental
results. There is a discrepancy between what the theory predicts and the experiments
measure and what the simulations are able to achieve. One possibility is that discrete
effects in the simulation overwhelm the relevant physics. This is tested by increasing the
resolution of the simulation. The number of particles was varied by a factor of three and the
grid resolution was also varied by a factor of 2.5 without suvstanti:l change in the current
or equilibrium profiles. The simulations with ELECTh A are voltage driven. With the
voltage drop held fixed, the simulatior * .nahle to adjust itself to find the low-impedance
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state. This suggests that the switch must be modeled as part of a circuit.

REFLEX is a one-dimensional electrostatic particle-in-cell (PIC) simulation of a pla-
nar triode coupled to a circuit model developed expressly for studying the reflex switch.
REFLEX is discussed more thoroughly in Section 9 of this report. The self-consistent
coupling of electron and plasma dynamics to a circuit model is an unusual feature of the
simulations described in this study. It is nonetheless an essential requirement for following
the dynamics of the reflex triode as it seeks an impedance consistent with its interaction
within the circuit as a whole. REFLEX extends the PIC-circuit simulations pioneered
by Lawson®® to the complex situation demanded by the reflex switch application. An
additional feature is the electron-foil interaction via a Monte Carlo module described in
Appendix C which scatters electrons in angle and degrades their energies as they pass
through the foil.

The one-dimensional simulation demonstrates how a reflex triode can attain a low-
impedance state. The parameters in the simulation match the circuit parameters of the
first EYESS experiments at Physics International.!® Each power supply is charged to 800
kV, discharging into transmission lines with length 1.25 m, inductance 130 nH and a
capacitance 130 pF, connected to a circuit with L=500 nH, R=0.2  and C=1 uF. The
impedance of the transmission line is approximately 30 0. The area of the plates is 570
cm?: this choice is needed to match the impedance of the diode to the transmission line
during the initial high-impedance bipolar Child-Langmuir phase. Both diode gaps are 4, 6,
or 8 cm and the anode is assumed to be 2 um mylar foil. Each gap is resolved by 80, 120,
or 160 cells, hence the simulation grid size Az = 0.05 cm, and the timestep is At = 1.5 ps.
This ensures that electrons with energies up to 800 keV will move less than a single cell
per timestep. Electrons are field-emitted from the primary and secondary cathodes. lons
with an artificial mass ratio of m;/m, = 100 or with the hydrogen value of m;/m. = 1836
are emitted from both sides of the foil anode.

Figure 5(a) is the voltage as a function of time, Figure 5(b) is the the current, and
Figure 6 is the time-averaged voltage. Initially, the voltage rises rapidly to a value close
to the capacitor bank voltage, exhibiting oscillations that are too fast to be seen in an
experiment. The voltage then declines as the conduction phase is reached. During this
time the current rises steadily as the impedance decreases. After hitting a minimutn at
170 ns, the voltage slowly increases again as the current continues to rise.

Figure 7 clearly shows on an expanded scale that the oscillations in the voltage are
regular, and on the scale of the electron transit time as expected from a fundamental mode
of the triode. Close examination of particle data shows that the mode comes from the
collective motion of electrons “sloshing” back and forth across the foil anode, alternately
pushing the voltage in the gaps up and down.

Movies of the electron phase space provide fascinating insight in the dynamical be-
havior of the reflex switch, but this section can only show a few typical snapshots. In
the earliest time before the start of the oscillations at 7 ns electrons from both cathodes
accelerate toward the foil. They penetrate the foil, and disperse in phase space through
directional scattering and energy loss (not shown). The beams remain symmetric until
some streaming instability mixes the beams together. The instability creates the space-
charge bunch seen in Figure 8(a). The bunch rotates: moving up and down in phase space
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Figure 6. Time-averaged voltage versus time for the simulation of a symmetric triode with
4 cm gaps and with protons as the ionic species.

is directly related to energy oscillations of the electron. Therefore, the rotation of the
bunch is correlated with the rapid voltage oscillation in Figures 7 and 5(a). Eventually the
system relaxes to the state shown in Figure 8(b) in which electrons are accelerated across
a small cathode sheath, drift across the neutral region, and are accelerated in the small
effective gaps near the anode.

By 50 ns (not shown) the sloshing mode still continues but causes the entire phase
space to oscillate up and down in what appears to be a standing wave pattern. The phase
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Figure 7. Expanded view of the fast oscillations of Figure 5(a) during the first 15 ns. The
oscillation period closely matches the transit time of electrons across the gap.

space in both halves of the triode move together indicating that the oscillation in one
gap is 180° out of phase with the other gap. As the voltage decreases and concentrates
near the anode, the phase space oscillations begin propagating from the anode to the
cathode. The wavelength decreases as the voltage decreases until ~ 150 ns. Figure 8(b)
shows the little sprays of electrons that are accelerated by these waves. The oscillations
are born in the anode sheath and move towards the cathode opposite in direction to the
motion of unscattered electrons. These waves quickly saturate in amplitude in propagating
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from the anode to the cathodes. The waves in the first gap and secondary gap start out
uncorrelated, but are later on coupled by electron space charge oscillations through the
foil.

The transition between high and low-impedance states is evident from the electric
field profiles of Figure 9. Figure 9(a) shows a field profile typical of an ordinary diode.
However, during the low-impedance state, seen in Figure 9(b), the profile has changed dra-
matically. Now there is a region essentially free of electric field over most of the diode gap,
and a thin sheath with strong electric fields near the anode across which the electron flow
is space-charge limited. The narrowing of the space charge region is consistent with the
lowered impedance. It should be noted that the accelerating regions near the electrodes
do not exhibit bipolar Child-Langmuir flow. Near the anode, the electrons have a much
larger space charge than in bipolar Child-Langmuir flow due to their multiple reflections,
and this increases the ion current.

The ion phase space in Figure 10(a) shows that early in the simulation the ions are
accelerated over most of the diode gap. As the low impedance equilibrium is established,
the ions in Figure 10(b) are accelerated by the narrow anode sheath and drift across the
remainder of the gaps. Neutral plasma formed by the electron and ion beams now fills
most of the gaps. In this region we can see plasma waves with features similar to the
well-known two-stream instability.’? Determination of the relative electron-ion drift in the
neutral regions and of the plasma wavelengths seen in the figure are consistent with the
dispersion relation for these unstable waves.

The principal characteristics of the various runs done for different parameters are
summarized in Table 1. R,, is the ion to electron mass ratio. The time t,;, is time at
which the voltage experiences a minimum when approaching the low impedance state and
Vinin is its value. I,,;, is the value of the current at this time. The last entry in the table
is the time at which the voltage decreases to 240 kV after hitting its initial peak. The data
indicate that the time to approach the low impedance state is independent of the ion mass
in the ranges investigated. The time for the minimum in the € cm case is about 1.5 times
longer than the 4 cm cases, linear with the gap spacing. For an 8 cm gap, the voltage had
not achieved a clearly identifiable minimum during this simulation run. For the artificially
light ions and protons, the time to attain 240 kV appears to be ~ 30 ns/cm times the gap
spacing. Thus the time to reach the low impedance state appears to be roughly linear with
the gap spacing.

Table 1. Parameters and results from four REFLEX runs.

Gap(cm) Rn tmin (nS) Vin (kV) I(kA)@t,nin t(ns)@240 kV
4. 1836. 170. 150. 120. 130.
4. 100. 170. 150. 160. 110.
6. 100. 230. 170. 170. 180.
8. 100. ? ? ? 240.
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1.3. REFLEX SWITCH OPENING

In the computations the reflexing state described above would persist, but the ex-
periments contain additional phenomena that trigger switch opening. The opening of the
reflex switch is believed to occur when the secondary gap is completely filled with plasma.
The secondary gap is shorted by the plasma and upsets the reflexing equilibrium which
causes the impedance to rise in the primary gap. The plasma is believed to be created by
either expansion of electrode plasmas or by ionization of fast charge-exchange neutrals.!!!
Whatever processes create plasma in the secondary gap will also be at work in the pri-
mary gap, but the secondary gap is smaller and shorts first. In the simulation the plasma is
added to the secondary gap in an ad hoc fashion which is not intended to accurately model
plasma closure in the experiments: its sole purpose is to elucidate the opening dynamics
of the reflex switch.

In order to save computation time, a run with a floating conductor is not started from
scratch. Instead the run is restarted at time 450 ns with a new circuit for the secondary
gap. The charge across the secondary circuit capacitor is set to zero and the secondary
circuit resistance is increased to 1.0 x 10'? Q, effectively isolating the secondary cathode
from ground. This run proceeds for 30 ns. Figures 11(a) and 11(b) show the time averaged
current and voltage for the primary gap, and Figure 11(c) shows the time-averaged voltage
in the secondary gap. The voltage across each gap increases to ~ 460 kV. The current in
the primary gap remains approximately the same: the current through the 1 TS resistor
in the secondary gap drops to virtually zero. An equilibriuin is established very similar to
the old one as can be seen from the electron and ion phase space plots in Figure 12.

For the next 10 ns after this time, 480 ns, a plasma consisting of protons and electrons
with a spatially uniform density increasing at 103 cm™2/ns, is artificially added ir.to the
secondary gap. By 10 ns the plasma in the secondary gap has a density of 10'* cm=3. The
purpose of this plasma is to electrically short the secondary gap.

Figure 13 gives the current and voltage of the primary gap, and the voltage of the
secondary gap, for the next 60 ns. The current in the primary gap during this time drops
from 360 kA to 180 kA, while the energy from the vacuum inductance is being transferred
to the diodes. During the first nanosecond the voltage in the primary gap decreases to near
zero. During the next 12 ns the primary voltage increases sharply to 3 MV after which
time it drops more slowly to 2 MV by the end of the run. The voltage in the secondary
gap, which also drops to zero during the first nanosecond, starts to rise again, and drops
back towards zero where it remains noisily shorted for the remainder of the run.

During the first nanosecond, the reflexing equilibrium is upset by the plasma in the
secondary gap. The electron density in the vicinity of the anode foil drops dramatically.
The anode sheath collapses to a small size, with a corresponding decrease in the voltage
because this is no longer needed to maintain the current across the smaller anode sheath.
The decrease in electron space charge near the anode decreases the ion emission from the
anode. The evolution of the opening event are highlighted in four electron phase space
plots of Figure 14 at 3, 6, 9, and 12 ns after the beginning of plasma creation, and in four
ion phase space plots for these same times in Figure 15.

The phase space plots in Figures 14(a) and 14(b) at 3 ns show the anode sheath
expanding towards the primary cathode, with neutral plasma filling the bulk of the primary
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y Figure 14. Electron phase space plots at (a) 3 ns, (b) 6 ns, (c) 9 ns, and (d) 12 ns after the
introduction of plasma into the secondary gap. The velocity axis is expressed in
dimensionless code units. The electrons are accelerated by an expanding anode
sheath: oscillations are suppressed.

; gap. A larger voltag- is seen across the anode sheath while the voltage across the cathode
sheath remains abcit the same. At 6 ns, the ions in the gap are moving at about half
of the speed that ion: were at the beginning of the opening. lons accelerated across the
anode sheath pile up against flowing plasma, creating the dips at x=2.5 cm seen in both
the electron and ion phase spaces in Figures 14(b) and 15(b). A larger cathode sheath
1 is forming as the cathode sheath starts expanding at a rate which is still slower than the
anode sheath expansion. The ions in the gaps prior to the initiation of the opening event
continue to mainly free stream towards the cathodes. The ion emission from the anode
f is unable to replenish the density of ions that are leaving. In the primary gap, the anode
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Figure 15. Ion phase space plots at (a) 3 ns, (b) 6 ns, (c) 9 ns, and (d) 12 ns after the
introduction of plasma into the secondary gap. The velocity axis is expressed
in dimensionless code units. The opening time depends upon sweeping the ions
from the gap.

sheath expands towards the cathode following the stream of original ions. The inductance
in the circuit tries to maintain the same current. An increased voltage drop is required
to maintain the electron current across the widening anode sheath. By 9 ns, most of the
original plasma is gone from the gaps. The cathode sheath is accelerating the removal of
the ions in the gap. No neutral plasma is left in the primary gap by 12 ns as can be seen
from Figures 14d and 15d. The ion and electron phase plots at this time show a bipolar
Child-Langmuir flow in the primary gap. The primary gap acts like an ordinary vacuum
diode thereafter.
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1.4 DISCUSSION.

The early attempts at simulating the reflex switch utilized the existing PIC code
ELECTRA. Some of the features of the simulation appeared qualitatively correct. How-
ever, it clearly did not achieve the low-impedance state predicted by the theory. This led to
the development of the REFLEX code, described in Section 10. REFLEX self-consistently
includes the effects of an inductive circuit attached to the simulations necessary for finding
the low-impedance phase. REFLEX is able to establish a low-impedance phase, explore
its dynamics, and simulate an opening event.

The first feature revealed by the REFLEX simulations is the fast electron transit-time
oscillations that pervade all runs. These oscillations only occur when the primary and
secondary diodes are coupled by a transparent foil. When the foil is made opaque, the
voltage does not oscillate. The simulation diagnostics, including movies of the electron
phase-space having good time resolution, show that these oscillations occur after natural
perturbations growing out of the interpenetrating electron beams begin to push substantial
electron space charge back and forth across the foil. These electrons transit the gaps,
impact the cathodes, and increase the voltage. The increased voltage sends electron clouds
back across the foil producing steady oscillations.

The interesting plasma/circuit modes discussed above are linked with electron turbu-
lence in the simulations. The turbulence mixes the electron beams and quickly destroys
the early symmetric spiral patterns of electrons in phase space. Steady-state models have
assumed that the electron distribution in the vicinity of the foil results solely from elec-
tron beams repeatedly scattered by the thin foil. Collective interactions among beams are
usually neglected. However, according to the simulations the stationary assumption is an
oversimplification of the electron distribution. Instead the dynamical behavior has impli-
cations for the validity of such models if they are sensitive to the details of the electron
energy spectrum near the foil.

Simulations with various ion masses indicate that the time to establish equilibrium
does not depend on the ion mass (between the artificial mass ratio 100 and 1836 for
hydrogen). Runs with higher mass particles would be needed to extend this result, but
these runs are quite expensive computationally. The ion mass could come in when the ion
transit time across the gap is larger than the time to establish equilibrium by the relaxation.
This time increases linearly with the electrode gap spacing in the computations.

The simulations clearly show the sequence of events during opening. In a previous run
stopped at an equilibrium configuration the secondary gap is shorted by artificial loading
with plasma. Subsequently, the reflexing electron equilibrium is destroyed very quickly.
This leads to the collapse of the anode sheath and drop in the voltage. The ions continue
their streaming motion from the anode to the cathode. The subsequent ion emission is
insufficient to replace the ions streaming away. The anode sheath expands with the ion
motion with the resulting increase in voltage. Most of the opening event involves ions
free streaming with some erosion from an expanding cathode sheath later on. The gap is
completely open when all vestiges of plasma are gone and the primary gap behaves like a
vacuum diode.

The computations suggest that the opening time is controlled by the rate at which ions
are removed from the primary gap. Thus it becomes desirable to minimize the amount of
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ions in the primary gap just prior to opening. The opening of the reflex switch is believed
to be caused by shorting of the secondary gap by plasma which is caused by either electrode
plasma expansion or by the ionization of fast charge-exchange neutrals. Whatever process
creates plasma in the secondary gap will be at work in the primary gap as well. This
issue is not addressed in these simulations. Switch opening should occur mainly by anode
sheath expansion, at least when the ion density is largely uniform throughout the primary
gap.

The simulations described above are performed in order to probe the dynamical be-
havior of a reflex switch. Simulations are primarily an intuition building exercise whose
aim is to facilitate the development of more complete theories and the design of critical 1
experiments. Compromises with reality are inevitable, e.g., the simulations are purely
one-dimensional and electrostatic. It is not known how electromagnetic effects or the
additional degrees of freedom available to three-dimensional systems would modify the
phenomena. Oscillations tend to be coherent in one-dimensional systems, while in real
three-dimensional systems the phase of oscillations at locations transverse to the axial
direction could become mixed. It is quite possible that the effects of the instabilities en-
countered in these simulations are mitigated by the inclusion of electromagnetics as well
as by higher dimensionality.

22




SECTION 2

ACCUMULATION OF NEUTRALS IN PLASMA OPENING SWITCHES
FROM PLASMA BOMBARDMENT OF ELECTRODES

Plasma injected into a Plasma Opening Switch hits the electrodes, where it drives
off surface contaminants into the vacuum, mostly as neutrals. The spatial and energy
distribution of the neutrals is estimated using the Monte Carlo computer code TRIM.SP.!*
These neutrals can increase the density of the injected plasma twofold (or more), which
can significantly affect the behavior of the opening switch. The purpose of this work is to
quantify the unintended plasma from electrode blowoff, in order to stimulate measurements
and any remedial action that may be fruitful.

2.1 OPENING SWITCHES AND ELECTRODE PLASMAS.

Pulse compression and voltage multiplication in pulsed-power systems can, in princi-
ple, be done efficiently by storing electrical energy in a current-carrying inductor followed
by an interruption of the current. The crucial component of this inductive energy stor-
age technique is the opening switch. It has proven to be difficult to develop an opening
switch with a long conduction time (~ 1-10 us) that opens rapidly (in ~ 10-50 ns) at high
currents (MA’s). Ongoing research aims to increase the conduction time, to increase the
conduction current, and to reduce the opening time.

Opening switch concepts such as the Plasma Erosion Opening Switch, the Density
Controlled Opening Switch and the Plasma-Filled Diode, conduct the current through a
plasma injected between the metal electrodes. Longer conduction times generally require
more plasma, which can be provided by leaving the plasma sources on longer. Then
the injected plasma interacts longer with the electrodes. Plasma-electrode interaction
effects, such as material blowoff, are likely to be greater for long conduction time switches.
Obviously, both the conduction and opening phases should be strongly affected by the
initial state of the plasma. Here we show that the initial plasma density can be strongly
affected by blow-off from the electrodes.

In a Plasma Opening Switch the plasma is usually injected from the anode to the
cathode with either a plasma gun or a flashboard. These sources produce a plasma plume
that consists mostly of singly and doubly ionized carbon with a density of 10'3/cm® to
10'® /cm®, and a drift velocity from 4 to 20 cm/us. Typically, in a moderate (10-* —10~°
Torr) vacuum an electrode is covered with ~100 monolayers of hydrocarbon adsorbates.
High-speed ions that hit these weakly bound adsorbates can splatter atoms and molecules
out of the monolayers back into the gap. More than 90 % of the particles that leave the
surface can be neutrals with energies significantly less than the incident ions. Therefore,
the density of blown-off neutrals can be an order of magnitude higher than the density of
the incoming plasma. The neutrals can be ionized by collisions with the incoming plasma,
substantially modifying the intended plasma density.

Some aspects of plasma-wall interactions have been studied extensively in the nuclear
fusion community, especially the effect on single elemental materials in a clean environ-
ment from impact by energetic ions (above 1 keV). Computer simulations using Monte
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Carlo methods reproduce the experimental data. The data presented below are obtained
with such a computer code (the TRansport In Materials code TRIM!>4), which is ap-
propriate for the amorphous surfaces formed by the adsorbates on the electrode surfaces.
For crystalline suzfaces, a slower computer code MARLOWE!® is more applicable. The
various codes also give insight in the dynamics of sputtering phenomena.'® However, our
purpose is principally to make the DNA community aware of the expected magnitude of
the unintended plasma from electrode blowoff in order to stimulate measurements, and
possibly remedial action.

Subsection 2.2 contains a brief discussion of TRIM, including reasonable estimates for
the (badly characterized) parameters, the composition and binding energies of the dirty
surfaces encountered in pulsed-power environments. Subsection 2.3 presents results, such
as the number of atoms entering the vacuum per incident ion as function of energy and
angle of the incident ions, for different composition and binding energies of the surface. In
the absence of quantitative data for surfaces encountered in typical pulse power vacuums,
the quantitative numbers generated by this investigation are probably correct in magnitude
but not accurate. However the trends and conclusions should be correct.

2.2 MONTE CARLO TRANSPORT IN MATERIALS CODE TRIM.

TRIM.SP'314 is a Monte Carlo computer program that follows the interaction of
energetic particles with individual target atoms. With a given atomic density N the
atoms are £ = N~1/3 apart, on average. In TRIM the target atoms’ positions are related
through a randomly generated impact parameter, which ranges from 0 to a maximum value
of £/x'/2. Also the impact angle is chosen randomly, as appropriate for an amorphous
material. TRIM simulates composite materials by random selection of the target ions, and
simulates layered structures by using target ions that depend on the penetration depth of
the ion.

For a given incident energy and angle, each ion and the subsequent recoil atoms are
followed through their slowing-down processes until their energy falls below a predeter-
mined level or until they have moved back through the surface. In each collision the ion
energy is reduced as a result of nuclear and electronic energy losses. Whenever a new recoil
atom is created, a certain amount of energy, the binding energy, is subtracted from the ion
energy, and whenever the recoil atom leaves the surface, the surface energy is subtracted.
These energies are two important parameters in TRIM.

An ion can interact with a surface in three conceptually different ways, viz., backscat-
ter, sputtering, and desorption. An incoming ion that interacts with a material interface
is likely to acquire neutralizing electrons. The incident ions that come back from the sur-
face, mostly as energetic neutral atoms, are backscattered. However, most frequently the
incoming ion burrows itself into the material, dislodging other atoms in the process. When
atoms from the crystalline substrate leave the surface the process is called sputtering, when
surface contaminants leave the surface the process is called desorption. Experimentally it
is possible to distinguish backscattered atoms from sputtered atoms when the incoming
ion is a different species than the target material (although the code tracks the incom-
ing ion and sputtered atom separately even when they are the same species). Sputtering
and desorption involve the same physical processes, viz., the loosening of atoms from the
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solid. In the absence of good data on electrode surfaces in pulse power systems, we do not
distinguish between sputtering and desorption.

Sputtering generally dominates over backscatter. In Plasma Opening Switches the in-
cident ion is the same species as a principal contaminant, carbon. Therefore the sputtering
yield, the number of neutral atoms coming back per incident ion, will refer to the total
emitted neutral atoms without distinguishing between the sputtered and backscattered
atoms. Again, the semi-quantitative information we seek is unaffected by not distinguish-
ing between backscatter, sputtering, and desorption.

TRIM calculates the sputtering yields of each component, i.e., both the total number
of reflected ions and the distributions of the sputtered particles in energy and in angles.
TRIM also provides detailed information on primary and secondary knock-on atoms, the
deposition depth profiles of the incoming ions, and similar quantities useful for ion implan-
tation studies (but not of interest here).

A crucial input parameter in TRIM is the total binding energy, which is the sum of the
binding energy of the atoms to the surface, the surface energy, and the binding energy of
the atoms inside the material, the bulk binding energy. Theoretically,'® in an intermediate
range of incident energy around 1 keV the sputtering yield should be inversely proportional
to the surface binding energy. However, for elemental surfaces the sputtering yield turns
out to depend!* only on the total binding energy. For convenience the bulk binding energy
is set to zero, and the sole rcinaining parameter is the surface binding energy.

For the present study the surface binding energy is chosen in the range of 1 to 5 eV per
atom. Values like these are obtained for one or two monolayers on simple surfaces. When
the surface is composed of solid compounds whose components are also solids, the surface
binding energy is the heat of formation of the compound minus the heat of sublimation
of the components. This is typically hundreds of kJ per gram-molecule, or a few eV per
atom. For water a similar line of argument gives the total surface binding energies for the
hydrogen and oxygen atoms in the water molecule, A Esgg (H;0), to be equal to the heat of
formation of water, AE;(H;0), minus the heat of formations of the hydrogen and oxygen
molecules from their atomic states, AEsgg (H20) = —AE;(H:0)+ AE;(H;)+AE;(0,).
This gives for the surface binding energy of hydrogen and oxygen atoms in water about
4-5 eV, in the same range.

For more complicated contaminant molecules such as hydrocarbons this way of esti-
mating the surface binding energy is less appropriate, because the component atoms of
these large molecules are usually sputtered one atom at a time. Therefore, the binding
energy of these atoms to the molecules is more accurately prescribed by the bond strength
between the atom and the molecule. Hydrocarbons have bond strengths for the different
C-H bonds around 4 eV. For water the bond strength should be an equally good repre-
sentation of the surface binding energy: the bond strengths of O-HO and O-H bonds are
also in the range of 4-5 eV. The different components of a compound have different bond
strengths and hence they should have different surface binding energies. Our version of
the TRIM.SP code uses only a single binding energy, which we justify by noting that the
surface binding energy for all of the carbon, oxygen and hydrogen atoms are close to 4 eV.
These considerations suggest a reasonable value for the surface binding energy to be a few
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eV. To see what the effect the surface binding energy has on the calculation, the surface
binding energy is varied from 1 to 5 eV in the computations.

Another variable is the chemical composition of the surface. Hydrocarbons and water
are the most prevalent, i.e., mixtures of hydrogen, carbon, and oxygen. Fortunately, the
exact composition of the rurface contaminants has a minor influence on the results.
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Figure 16. Total emission coefficient C7(a) as a function of the incident angle « for incident
carbon ions with 2.2 keV and an assumed binding energy of 5 eV.

The remaining variables belong to the incoming ion, viz., the energy £ and the angle
of incidenc~ a. The drift speed of the plasma is usually greater than the ion thermal
speed. Therefore the ions have basically a single energy at a given point. The energy is
largest early in the injection pulse, and decreases later. A typical velocity for an injected
carbon plasma into a plasma opening switch is measured to be around 10 cm/us, which
corresponds to an energy £ ~ 650 eV. The computations are therefore done for £ from a
few hundred eV up to a few keV.

2.3 RESULTS AND DISCUSSIONS.

TRIM provides the total number of emitted neutral atoms per incident ion, the sput-
tering yield Y,, as functions of the incident energy £ and of the incident angle a. However,
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for a given incoming flux the incoming ions are spread over an area inversely proportional
to cos a. Therefore, the sputtering yield Y, must be multiplied by cos a to normalize to
the ion flux. This results in the total emission coefficient, Cr(a) =Y, cosa.

10.0:
Ea=5eV

5 5] 8 g @
S 8
7] o]
N 1.0F
A a
S

0.1 . s i s . et i a aas

0.1 1.0 10.0

energy (keV)

Figure 17. Total emission coefficient C1(60°) as function of incident ion energy.

Figure 16 shows the total emission coefficient Cr(a) as a function of incoming angle
a for carbon ions of 2.2 keV and a surface binding energy of 5 eV. The total emission
coefficient C7(a) increases from about 0.1 at @ = 0° to a maximum of about 1.0 at an
incoming angle a ~~ 70°. Since the plume from a plasma gun or flashboard has an angular
spread and since the electrode surfaces are normally curved, the total emission coefficient
involves an appropriate average over angles. In a Monte Carlo computation the statistical
uncertainty of the results are lowest with the most particles emitted. Computationally, the
most convenient angle gives the most particles, therefore a = 60° is chosen as the standard
incident angle.

The carbon ions in the plasma opening switch are injected with a velocity in the range
of 4x10° to 20x10° cm/s. A typical velocity of 10" cm/s corresponds to a kinetic energy
of 0.65 keV. Figure 17 shows the total emission coefficient Cr(60) at a = 60° as function
of the incident ion energy €. The number of particles emitted increases as the incident ion
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Figure 18. Sputtering yield Y,(60°) as function of binding energy and incident energy.

energy increases by a factor of three from 0.1 keV to 1 keV and remains approximately
constant thereafter.

It seems surprising that Cr depends quite weakly on energy at higher energies. This
is due to the deeper penetration of the faster ions, which makes it more difficult for the
sputtered ions to escape from deeper inside the material.

Figure 18 shows the sputtering yield Y,(a = 60°) as function of the surface binding
energy £,;, for an incoming carbon ion with impact energy £ of 0.65 keV, 1.5 keV, and
2.2 keV. More than one neutral atom comes back for each impinging ion irrespective of
the surface binding energy. The sputtering yield Y, is approximated reasonably well by
Y, ~ 2/€;, , where the exponent s is between 0.7 for the smaller impact energy, and 0.5 for
the higher impact energy. This dependence agrees with expectations.!*

The sputtering yield depends weakly on the exact composition of the surface. For the
same surface binding energy, £, = 4 eV, but different concentrations of oxygen, carbon
and hydrogen, the sputtering yield is highest around 40% oxygen and no carbon, Y, ~ 1.4,
and lowest with 40% carbon and no oxygen, Y, ~ 0.95. Thus, sputtering is 40% higher
when water is the only surface contaminant than with pure hydrocarbons on the surface.
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These and other computations show that the flux of neutrals from the surface is com-
parable to the flux of ions hitting the electrode in the plasma opening switch, irrespective
of the exact parameters of the incoming plasma or the electrode surface. When the neu-
trals are ionized they become part of the plasma, changing the intended plasma density
and affecting opening switch behavior.
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Figure 19. Normalized velocity distribution of the neutral atoms coming off the surface,

assuming a binding energy of 5 eV.

Ion impact creates neutral atoms that flow away from the electrode back into the
gap with velocity v, at an angle 8. The returned neutral density distribution n,(v,,f) is
given by the differential sputtering coefficient C(v,, v;, 8, @): the total sputtering coefficient
shown in Figures 16-18 is Y, cosa = Cr(v;,a) = [ dBdv,C. In terms of C the incoming
and returned ion densities are related by

v, cos fn, (v,, B) = C(v,, v, B, a)n;v;.
The distribution of the returned ions can be found given the incident ion velocities

and angles. Assume that the incident ions come in at 10 cm/us (0.65 keV) with an
isotropic angular distribution. Then Figure 19 shows the normalized velocity distribution
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function of the emitted neutral atoms, n, (v, S)/n;, as a function of the velocity v, cos 8
perpendicular to the surface. The velocity distribution of the neutral atoms looks very
much like a Maxwellian, with a thermal velocity of around 1 cm/us, an order of magnitude
slower than the incoming ion. The energy of the sputtered ions corresponds to about 9
eV. '

These cold neutral atoms can be ionized through direct ionization by the incident 4
plasma, but the dominant process is charge exchange: the cross section of ionization is
about 10-® cm? while the charge exchange cross section is about 10! c¢m?.
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Figure 20. Density of the desorbed plasma as function of distance to the electrode surface
after 0.5 us long ion bombardment.

To calculate the density of cold ions formed in the charge exchange process the density
profile of the neutral atoms must be known. If the neutrals freely expand, the density of
neutral atoms with normal velocity v at a distance z and at time t is the same as the
density very near the surface (z = 0) at a time t — z/v earlier. Of course, there are no
atoms beyond z = vt. Therefore, the total density at = and ¢t is

n(z,t) = /ooo f(z,v,t)dv = /: f(z =0,v,t — z/v)dv.
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If the neutral density distribution at the surface remains the same throughout the bom-
bardment, then

n(z,t) = /s: f(z = 0,v)dv.

Figure 20 shows the density as function of distance from the surface after 0.5 us ion
bombardment. The bulk of the neutral atoms have migrated about 0.5 cm away from the
cathode surface. The neutral atom density on the surface is about five times the incident
ion density n;. With n; = 10" cm~3 and using 10~!® cm? for the cross section of charge
exchange processes about 25% of the neutral atoms becomes ionized. This gives a cold ion
density of 1.25x10'* cm~3, comparable to the density of incident energetic ions.

2.4 CONCLUSION.

The emitted neutral atoms have two orders of magnitude lower energies than the
incoming ions, and they build up to a substantial density close to the surface, in roughly
a self-similar profile. The neutral atoms are ionized by the incident energetic ions through
charge exchange. The density of the resultant cold plasma is a substantial fraction of the
incident carbon plasma: in these computations the density increases by a factor of two.
The principal conclusion from these computations is that the sputtering affects the density
of the plasma, an effect that should be taken into account in theoretical studies of plasma
openings switches.

In addition to sputtering, chemical desorption could occur from the heating of the
wall surfaces due to bombardment with the energetic ions. Molecules, instead of atoms,
may be released and the molecules are capable of transforming into cold ions through the
same process of charge exchange. These processes, which have not been considered here,
strengthen the conclusion from this work: there could be lots more plasma than you think.

These computations, which were substantially completed in 1989, have been corrob-
orated by experiment. In part inspired by our work researchers at Physics International
have cleaned the electrode surfaces in their Plasma Erosion Switch, by using higher vacu-
ums than customary and by applying discharge cleaning. As a result, their opening switch
improved its opening characteristics and its reproducibility. More recently, measurements
of the plasma density in the Plasma Opening Switch on the HAWK machine at the Naval
Research Laboratory have shown a substantial gradient in the plasma density close to
the (negative) electrode. The plasma density at the cathode is many times higher than
expected from the plasma guns alone.
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SECTION 3
OPENING MECHANISMS OF THE PLASMA-FILLED DIODE

In the early days of plasma-filled diode research three different mechanisms were sug-
gested to explain the diode’s behavior. These are the formation of a vacuum region filled
with space charge, the implosion of the current channel, or an increase in the bulk resis-
tance of the plasma due to turbulence. Simple estimates using electrical and radiation data
point to the formation of a space-charge gap as the opening process. This analysis, done
early in the performance period, has been borne out by the two-dimensional computations
presented in Section 5: it is included here as an example of the considerations that form
the background to the computational work.

3.1 INTRODUCT! 3N.

The plasma-filled diode (PFD) is intermediate between a vacuum bremsstrahlung
diode and a plasma opening switch (POS). In the PFD plasma sources inject plasma
between the electrodes of the vacuum diode. With sufficient plasma the diode becomes
almost perfectly conducting in the early part of the current pulse, and the voltage across
the PFD is small. However at some point, the diode impedance rises rapidly. When the
current is maintained by a large inductance the diode voltage increases. The high voltage
accelerates electrons in the diode region for bremsstrahlung x-ray production.

The PFD can be used as a single stage opening switch, or as the last stage switch in
tandem with a plasma opening switch. Compared to a plasma opening switch spatially
separated from the electron beam diode, which has inductance between switch and load, the
PFD has minimal inductance between the opening switch and beam diode since they both
occupy the same space. The PFD also helps establish magnetically insulated electron flow
to the diode by providing a low-impedance load, yielding better power coupling between
a plasma opening switch and the diode.

Physics International tested this device using the EYESS bank. Available measure-
ments include systems parameters like the capacitance, charge and inductance of the bank,
the inductance and geometry of the transmission line, the charging circuit and delays of the
plasma sources, and the geometry of the diode. Current and voltage monitors recorded
the current and the inductively corrected voltage of the diode, and thermoluminescent
detectors recorded the x-ray dose. These data and details of the EYESS generator, all
graciously provided by Physics International,!” are discussed in Section 3.2.

Early on it was difficult to evaluate the different models directly because the available
diagnostic information does not include detailed plasma measurements such as the location
and density of the plasma fill, or on the location and magnitude of the current density.
Such data have become available only recently. However, even with limited data it is
possible to discriminate between the models. This is done in Section 3.3 for the PFD
experiments at Physics International.

In the PFD a plasma column connects the electrodes, except perhaps in a localized
gap region. The three opening mechanisms have different features indicated in Figure 21.
With gap formation the plasma is presumed to remain a perfectly conducting cylinder,
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but the gap has space-charge limited (Child-Langmuir) flow. With implosion there is no
gap: instead, magnetic pressure implodes a one-dimensional current sheath on the outside
of the plasma. An inductive voltage V = d(LI)/dt then forms across the inductance L,
which increases during the implosion at the rate L. In the third mechanism the plasma
becomes bulk resistive during conduction due to e.g., plasma turbulence. Obviously, in
reality the different mechanisms may act simultaneously: here the point is to see which
one dominates.

anode cathode
/j plasma
g n(t)
y ¢
! R(t)

D(t)

Figure 21. Cartoon of the PFD showing the space-charge gap, the plasma cylinder, and the

parameters of the three models.

3.2 EXPERIMENTAL DATA.

The EYESS generator is a 0.96 uF Marx capacitor bank with 520 nH inductance
connected to a vacuum transmission line and load. The transmission line has a 33 Ohm
impedance with 130 nH inductance. The quarter cycle time for a shorted load is 1.25 us.
The cathode is a cylindrical rod with radius 7.6 cm, with a flat plate facing the anode.
The anode is recessed, with an outer radius of 12.8 cm. The gap spacing is typically 10
cm. Four plasma guns inject plasma into the diode. The experiment is easily changed
from a single stage PFD into a tandem POS-PFD with an array of flashboards that can
inject plasma into a POS region of the transmission line.

Figure 22 shows the current and inductively corrected voltage for two shots provided
by Physics International,’” one for a single stage PFD and the other for a tandem POS-
PFD. Each shot exhibited close to optimum performance for its configuration. Both shots
show similar features. Early in time the voltage is small while the current is linearly
increasing. When the current reaches a maximum the voltage begins to rise, i.e., the
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Figure 22. Voltage and current for the PFD and the tandem POS-PFD obtained from the
EYESS generator at Physics International.

PFD opens. The current decreases while the voltage increases, reaches a maximum and
subsequently decreases. When the voltage is small again, the current resumes a linear rise.

Each shot defines a resistance R(t) = V/(t)/I(t), or an inductance by L(t) =
fot V(t')dt'/I(t). Figure 23 shows the resistance R(t) for the two shots. The diode resis-
tance rises, reaching 2-6 Ohms during opening. The POS-PFD tandem gives the shorter
opening time and the larger voltage gain. The difference between PFD and POS-PFD tan-
dem may be due to the different plasma densities in these two cases. For the single stage
PFD shots, the plasma guns are discharged longer prior to the arrival of the generator
pulse than in the tandem experiments, because the single stage PFD needs to conduct the
current longer to reach the same current as the POS-PFD tandem. The opening mecha-
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Figure 23. The resistance V/I corresponding to the voltage and current traces of Figure 22.

nism for the PFD apparently slows down with increasing plasma density. As a consequence
the voltage gain during the opening event also decreases.

3.3 ANALYSIS OF OPENING MECHANISMS.

3.3.1 Gap Formation.

With this mechanism the plasma is perfectly conducting, and all the voltage is dropped
across a gap between an electrode and the plasma surface, or possibly between two plasma
surfaces.’® The current is quasistationary and the current density is constant across the
plasma, and the electric fields at both boundaries are zero. In the gap flows the bipolar
Child-Langmuir current, given by

I(kA) Mzm) Lo (MV) V32 (MV)
*R?(c )—'335[1""/ /Z “D?(cm) (3-1)

where R is the plasma radius, D is the gap spacing, m, is the electron mass, M; is the
ion mass, and Z is the charge state of the ions. Even though electrons attain relativistic
velocities, the nonrelativistic version of bipolar Child-Langmuir flow is adequate for this
simple model.

Assuming a constant radius R= 8 cm, the the voltage and current traces give the gap
spacing D(t) shown in Figure 24(a) for the single stage PFD, and in Figure 24(b) for the
tandem POS-PFD. The gap spacing goes up to about 1.5 centimeters for the single stage
PFD and to about 2.25 centimeters for the tandem PFD. After attaining the maximum
the gap spacing and the voltage decrease while the current continues to increase. The
standard explanation of this behavior is gap closure by plasmas coming off the electrodes.
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Figure 24. The gap spacing corresponding to bipolar Child-Langmuir flow inferred from the
current and voltage traces of Figure 22.

Apparently, gap erosion predicts a reasonable values for the gap spacing, and gap erosion
is a viable opening mechanism.
3.3.2 Implosion Model.

The implosion model assumes that the voltage pulse comes exclusively from the in-
crease in inductance due to the the contraction of a uniform pinch. The current is restricted
to a sheath on the outside of the plasma channel. The magnetic field is

By = pol 21, (3-2)

outside the plasma radius r, while inside the magnetic field vanishes.
The inductive voltage is

poD d
2x dt

where D is the electrode gap spacing. Solving Eq. 3-3 for the radius r(t) yields

V() = 22 L1 n("E) (3-3)

r(t) = Rexp[ DI(t) / V(t’)dt’] . (3-14)

Figure 25 shows r(t) for an electrode gap D = 10 cm and an initial radius R = 8 cm.
Clearly, the current channel is unrealistically small, 3 x 10-1° ¢cm for the PFD tandem and
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Figure 25. The radius of the current shell computed according to the implosion model from
the voltage and current traces of Figure 22.

down to 5 x 10~ cm for the single stage PFD. Therefore the opening process can not be
primarily inductive.

3.3.3 Resistivity.

An increase in bulk resistivity of the plasma has also been advanced as an opening
mechanism in the PFD. Turbulent plasmas contain large electric field fluctuations, which
perturb the electron trajectories and provide friction to the electron flow. For an estimate,
the plasma is assumed to remain a cylinder of constant radius R with homogeneous resis-
tivity . The resistivity is given by the diode impedance V/I (see Figure 23) multiplied
by a geometrical factor,

n(t) = (xR /D) V(t)/1(t). (3-3)

Again taking R = 8 cm and D = 10 cm the maximum resistivity in the single stage switch
is about 50 Ohm-cm, and the maximum resistivity in the tandem is about 90 Ohm-cm.
In contrast, Spitzer resistivity for a plasma with an electron density of 10’2 cm~2 and an
electron temperature of 10 eV is 0.054 Ohm-cm. If the electron density is increased to
5 x 10" cm™3, Spitzer resistivity has the value 0.07 Ohm-cm. The resistivity needed for
the PFD is about 3 orders of magnitude larger than expected from Coulomb collisions.
Can plasma turbulence change the picture? The PFD has ample sources of free energy
to drive various instabilities (two-stream, Buneman, ion-acoustic). All eventually saturate,
leading to an order of magnitude estimate for the maximum effective collision frequency
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of v < 0.4wy,. The resistivity n = m,/ne?v then becomes
7(Ohm — cm) = 8 x 10" /V/ n(cm-3). (3-6)

For a plasma density of 10'® cm~?, this expression yields a resistivity of 25 Ohm-cm, 7
consistent with a reasonable values for the pinch resistance. {

Although opening by anomalous resistivity agrees with the electrical data, it disagrees
with the observed bremsstrahlung.!® Resistivity prevents electrons from accelerating to
high energies, a necessity for bremsstrahlung production. Therefore bulk resistivity can 4
not open the PFD.

3.4 CONCLUSION. 1

According to these estimates only the appearance of a space-charge filled gap in the l-
diode is consistent with the electrical and radiation data obtained with the PFD on EYESS.
However, this conclusion does not imply the absence of the other processes, implosion and
anomalous resistivity. Instead, the expected dominance of gap formation gives added
confidence in computations that ignore resistivity in favor of space charge phenomena,
such as particle in cell codes. The next section discusses some of these computations.
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SECTION 4

ONE DIMENSIONAL PARTICLE IN CELL SIMULATIONS
OF A PLASMA FILLED DIODE WITH AN EXTERNAL CIRCUIT

The validity of the classical bipolar model for the operation of a planar, plasma filled
diode (PFD) is examined using a one dimensional, electrostatic particle in cell simulation
of a PFD coupled to an external LC driver circuit. While the high voltage opening phase
of operation in the PFD is correctly described by the bipolar model, the low voltage
conduction phase is not. In the low voltage conduction phase the unstable interaction
between the emitted electron beam and the diode plasma creates internal states of the
diode which are far from the bipolar equilibrium state hypothesized by the classical model.
As a result the simulation’s scaling predictions for the operation of the PFD differ from
those of the classical model.

4.1 INTRODUCTION.

In its most frequently encountered form a plasma filled diode (PFD) is a high power
cold cathode vacuum diode which consists of a pair of plane parallel electrodes whose
anode-cathode gap has been prefilled with a fully ionized low density plasma. Plasma fill
densities of the order of 10'® cm—3 are typically employed in such devices and the fill plasma
is often injected into the diode gap with a net drift velocity of several cm/us through a
semitransparent screen anode. An axial magnetic field may be applied to inhibit pinching
of the fill plasma that might occur in the self magnetic field of the diode current. When
a high voltage pulse is applied to the diode, explosive electron emission and formation
of a cathode plasma rapidly takes place at the surface of the cold cathode so that the
cathode quickly becomes a space charge limited (SCL) electron emitter. Plasma filled
diodes have frequently been employed in the pulsed power community as high current,
relativistic electron beam sources.??

Recently, interest in these devices has focussed on their important application as
multimicrosecond conduction time, fast opening switches?*:?? for use with inductive energy
storage systems. Experiments?' employed a PFD embedded in a strong externally applied
axial magnetic field as a plasma opening switch (POS). In these experiments when current
was applied to the magnetized PFD, a low voltage conduction phase up to 2.5 us in
duration was observed followed by a rapid opening phase generating a high voltage pulse
with risetimes less than 150 ns. These experimental observations have motivated the
theoretical work in this section: understanding the plasma processes that control the
conduction time and opening rate is essential to opening switch technology.

The generation of high voltages and the acceleration of the electron beam in PFD’s
have long been thought to result from the rapid expansion of a cathode sheath into the body
of the low density fill plasma. A simplified analytic treatment of the problem of ion sheath
growth near a negatively biased, non-emitting electrode in contact with a low density
plasma was first presented by Sander.?® This treatment was later extended by Widner and
Poukey?* and applied by Miller, Poukey and Wright?® to the problem of sheath growth
and electron beam generation in a high power PFD. In the model of Miller?® et al. it is
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assumed that the impedance of the PFD is controlled by a bipolar sheath at the interface
between the cathode and the low density fill plasma across which all of the diode voltage
is dropped. The space charge limited electron and ion currents, J. and J;, flowing across

this sheath are given by the classical bipolar relations,?® viz.,

4 9 1/2 Va/z
Ji = 18636 (-mi) - (4-1)
J.JJ; = (mifm. )2, (4-2)

Here Vp is the diode voltage and z is the sheath thickness. The time evolution of the
sheath thickness z is determined by the differential equation

en%‘tE = J; — enuy, (4-3)
where n and up are the density and mean velocity of the ions entering the sheath from the
body of the plasma. As long as the ion current J; is less than enug the sheath remains small
and low voltage conduction is obtained. However, when the ion current J; demanded at
the cathode exceeds enuy Equation (4-3) shows that the sheath rapidly expands to supply
the required ion flux and a high voltage develops across the diode. The onset of this high
voltage opening phase will occur when the diode current I increases to the point where,

e\ 112
I~] = (—-i) enug A, (4-4)

me

where A is the area of the diode. This model is a direct generalization of Sander’s original
treatment of ion sheath growth near a non-emitting cathode to the case in which the
cathode is a space charge limited electron emitter. The fundamental assumption is the
replacement of the positive ion sheath for the non-emitting case by a bipolar sheath for
the SCL case. The explicit numerical calculation to follow shows that this assumption is
only partially correct and in fact misses much of the important physics of the PFD.

This section treats a planar PFD self consistently coupled to an external LC driver
circuit. The electron flow is explicitly assumed to be one dimensional so that an electro-
static treatment of the problem is adequate. The model presented here might be expected
to correctly describe the behavior of the PFD in the case where the By self field of the
diode current is much smaller than the external applied B, field, and the electrons are
effectively one-dimensional. Thus, the model describes a magnetized PFD or POS of the
type described in reference [2] where the electron flow may be regarded in some approxi-
mation as one-dimensional. This approximation is not valid for the plasma erosion opening
switch (PEOS)!® where magnetic insulation of the electron flow and other essentially two-
dimensional effects play a significant role. Nevertheless, the results of the one-dimensional
electrostatic model may be expected to provide some interesting insights into the processes
taking place in the PEOS.

The investigation is done with a version of the computer code PDW1 originally de-
veloped by Lawson?’ et al, a particle in cell (PIC) model of the one-dimensional PFD
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coupled to an external LC circuit. Both electrons and ions are treated by the PIC method
and phenomena on the time scale of an electron plasma period and Debye length scale are
explicitly resolved. The code thus provides a fully self-consistent solution for the simul-
taneous behavior of the plasma and the external driver circuit. In this section the code
is used to solve a simple PFD problem that represents a scale model version of a POS
experiment.?' The model problem is solved numerically for two different cases, one with-
out electron emission at the cathode, the other with space charge limited (SCL) electron
emission.

The case without emission recovers the results of earlier investigators, e.g., the sheath
theory of the PFD as discussed by Widner and Poukey. The computation therefore provides
a correct description of the impedance evolution of the diode under study. However, turning
on SCL emission gives a substantially different result. In this case, the acceleration of the
emitted electron beam by the growing cathode sheath leads to the development of a strong
beam-plasma instability. This instability rapidly evolves to a non-linear state, which is
characterized by a large potential maximum near the center of the diode gap, with a
relatively small net voltage drop and significant trapping of electrons out of the emitted
beam. This low-voltage conduction phase of the PFD is essentially different than the
bipolar equilibrium hypothesized by Miller?® et al.

Eventually, this low voltage phase terminates and a high voltage opening phase ap-
pears which is characterized by the expansion of a large bipolar sheath at the cathode that
sweeps the remaining ions out of the diode gap. Hence, while a bipolar sheath is indeed
responsible for the generation of high voltages in the PFD, the details of this process differ
substantially from those of the classical sheath theory and lead to a variety of new scaling
relationships for the conduction time and conducted current in a 1D POS model.

The remainder of Section 4 is organized as follows. Section 4.2 describes the computa-
tional model implemented in the PDW1 code, and the choice of parameters for the model
POS problem to be solved. Section 4.3 examines the numerical solution without electron
emission from the cathode surface. Section 4.4 describes the general phenomenology of
the results for the SCL emission case. Section 4.5 discusses some detailed scaling results
for the SCL emission case which illustrate how the conduction time, conducted current
and other parameters of interest scale in our simple 1D model POS. Finally, Section 4.6
summarizes the discussion and indicate the direction of future work in this area.

4.2 COMPUTATIONAL MODEL

Figure 26 illustrates the model POS problem solved by the PDW1 code. It consists
of a planar diode gap of spacing d and area A coupled to an external driver circuit with
inductance L and capacitance C. The diode gap is pre-filled with a thermal Maxwellian
plasma of electrons and ions with temperatures T, and T; respectively. The initial fill
plasma has a spatially uniform density and no net drift motion. Hence, the present dis-
cussion treats only the simple case wherein the fill plasma is stationary and is not renewed
by continuing injection of plasma into the diode gap. The more complex case of injecting
a drifting thermal plasma is treated later. The anode is assumed to be a non-emitting
cold wall. Two different cathode emission conditions are considered, no emission and SCL
electron emission. For SCL electron emission the emitted electrons are given an initial
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thermal spread of velocities corresponding to the flux distribution vf(v) where f(v) is a
half Maxwellian whose temperature is the same as that of the fill plasma.

Cathode

Figure 26. Plasma Filled Diode with circuit.

The calculation is one-dimensional and electrostatic. Hence, all quantities depend
only on z, the coordinate across the diode gap, and the electric field is obtained explicitly
from the solution of Poisson’s equation in the region between the electrodes. Both electrons
and ions are treated as one-dimensional macroparticles by the particle in cell method. To
self-consistently solve for the simultaneous behavior of the plasma and the external circuit
the code must integrate the equations of motion for all the macroparticles, together with
the following system of equations for the circuit and the diode:

22+ 2w, (4-3)
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subject to the boundary conditions

¢(0a t) = 0, (4 - 8)
0¢ o
%] --Z (4-9)
and
Vo(t) = é(z=d,t). (4 - 10)

Here o is the net surface charge density on the right hand electrode and Jpiasma is the net
current density from the plasma into the right hand electrode boundary. Equation (4-5)
above is just the circuit equation for the external driver circuit including the voltage drop
Vp across the diode gap. Equation (4-6) simply states that the rate of change of the net
charge on the right hand electrode is determined by the balance between the net current
supplied by the plasma and the current drawn off by the external circuit. Equation (4-7)
is Poisson’s equation for the potential distribution in the region between the electrode
boundaries subject to the boundary conditions on ¢ given in Equations (4-8) and (4-9).
The potential is solved on a finite spatial grid in the z direction, with grid spacing Az.
The spacing is sufficiently small so that a single Debye length of the plasma is explicitly
resolved. At any given time step the potential ¢; is known at each of the points jAz (from
j = 0to j = N). By convention, the potential ¢ = 0 at the left hand boundary, and the
initial value of Q is taken to be positive. Then the right hand electrode is always the anode
as shown in Figure 26.

The algorithms used in the PDW1 code and their implementation?” are as follows.
The calculation typically begins at t = 0 with the initial distribution of electron and ion
macroparticles ia the diode gap, the external capacitor charged to some initial voltage V;,
zero current in the external circuit and zero voltage drop across the diode gap.

At time step n the potential ¢(z,t,) is known, together with the positions of all
the macroparticles of the plasma. The electric fields are obtained from the potential ¢ by
center differencing. The electric field is used to push the particles via the standard leapfrog
algorithm. The circuit quantities are simultaneously advanced by this same method. The
surface charge value of o is then adjusted to account for the charge carried by plasma
particles that may have been absorbed from the plasma during the timestep, as well as
the charge that has been drawn off by the external circuit. The charge density on the
spatial grid at step n + 1 is then obtained by weighting the particles to the grid using
linear weighting. Given o and p at step n + 1 Poisson’s equation is solved by a simple
finite difference method to yield ¢(z,¢n4+1 ), thus completing the time step. This process is
repeated many times to obtain the time evolution of the coupled plasma-circuit system.

Parameters can be chosen to mimic the POS experiment, while at the same time
providing an economical computational model for study. The fill plasma is a thermal
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hydrogen plasma with density n; = 10> cm™2 and T, = 5eV, T; = 1 eV. In this case the
Debye length \p = 5.25x10~* cm, and the grid cell must be on this order. To avoid an
excessive number of grid cells, the diode gap must be much smaller than the experimental
value. It is also desirable to have many tens of macroparticles per grid cell in order to
avoid noise. In the model of Figure 26 the A-K gap spacing is d = 1 mm, with 128 grid
cells across the gap. The grid cell is then Azp ~ Ap, which provides adequate spatial
resolution with a reasonable number of grid cells. For most model calculations a plasma
pre-fill of 8320 macroparticles of each species is loaded uniformly into the diode gap, giving
about 65 particles per cell. The initial charge voltage V; on the external capacitor must
be scaled down to 1 kV in order to preserve the typical?! vacuum electric field in the diode
gap of 10 kV/cm. The scaling with gap width is addressed further in Section 5.

The behavior of the PFD as a circuit element can vary between that of a short circuit
and that of an open circuit with vacuum capacitance Cp = € A/d, where Cp is typically
very much smaller than the capacitance of the external driver C. The timescale of the
external circuit is defined by the relatively long VIC time associated with the external
inductance L and capacitance C of the driver if the PFD acts as a short. In the oppo-
site limit when the PFD acts as an open circuit the effective capacitance of the series
combination of C and Cp is CCp/(C + Cp) = Cp, so that the timescale becomes
the much shorter /ICp time defined by the vacuum capacitance Cp of the diode gap.
Realistic values for these timescales must be preserved in the modeling, which determines
the remaining model parameters L, C and A. Thus, L = 1 pgH and C = 1 uF, and the
quarter cycle time matches the experiment, 1.6 us. Similarly, to get /IZCp =~ 3.3 ns the
diode area is chosen as A = 0.314 cm? (or 7/10), maintaining the current density of the
experiment with a much smaller diode.

Sections 4.3 and 4.4 below use the basic model parameters discussed above and ex-
amine the effect of varying the electron emission at the cathode surface on the impedance
history of the diode. Section 4.5 focuses on the SCL emission case and examines the effect

of model parameters such as fill density on the conducted current and other properties of
our model POS.

4.3 CATHODE WITHOUT ELECTRON EMISSION.

Consider first a PFD without electron emission from the cathode. As already discussed
the calculation starts at ¢ = 0 with a spatially uniform fill of neutral hydrogen plasma with
density 10" cm~3, 1 kV on the external capacitor, and zero current. The evolution of the
diode impedance in this case is controlled by the rapid growth of a large positive ion sheath
at the cathode surface which expands into the fill plasma at several times the ion acoustic
speed C, = V' T./m;. Sheath growth near a negatively biased non-emitting electrode in
contact with a low density plasma is treated in the literature.?3?#?® The computations
exhibit this process in some detail, and agree with earlier investigations.

Figures 27(a) and (b) show the time history of the diode current and total diode
voltage drop during the first 80 ns of time development. Figures 27(c) and (d) show
corresponding plots of the cathode sheath thickness and the velocity of the sheath edge as
a function of time for the same period. The sheath thickness, defined as the distance from
the cathode surface to the sheath edge where £ = 0, is measured in grid cell units: the
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full width of the diode gap d = 1 mm corresponds to 128 grid cells.

Almost immediately after the onset of current flow a significant voltage drop begins
to develop corresponding to a rapid growth of the cathode sheath. By ¢ = 4 ns the sheath
edge has reached a peak expansion velocity of 2.2 C, or about 6 cm/us. At this same time
the total diode voltage drop Vpp exceeds the 1 kV charge voltage on the external capacitor,
sc that dI/dt must change sign in accordance with the circuit Equation (4-5). Then the
diode current begins to drop, together with the velocity of the sheath edge. By ¢t = 6.8 ns
the velocity of the sheath edge has fallen below C,. Pre-sheath electric fields now penetrate
out ahead of the sheath at velocity C,, and they begin to accelerate ions back into the
sheath from the body of the plasma. As a result the sheath has slowed almost to a halt by
t = 8 ns. This situation does not persist indefinitely because the supply of plasma is finite.
At about t = 20 ns the sheath begins to accelerate again, until by t = 30 ns it has attained
a relatively constant velocity of 1.25 cm/us. This motion is maintained until the sheath
has penetrated the full width of the gap and the plasma has been completely eroded away
by t = 75 ns.

In lieu of the movie, Figure 28 illustrates the detailed evolution of the cathode sheath
with a sequence of snapshots at different times of interest. Figure 28 shows from top to
bottom the electron phase space, the potential distribution ¢(z) in the diode gap, the ion
phase space, and the electron and ion charge density distributions p.(z) and p;(z). In
the phase space plots all velocities are in scaled units normalized to Az/At. The position
z across the diode gap is measured in grid cell units from = = 0 at the cathode on the
left to £ = 128 at the anode on the right. The potential ¢ is given in volts and all
charge densities are in Coulombs/m®. Figure 28(a) for t = 0 illustrates the initial spatially
uniform distribution of Maxwellian electrons and ions with charge density 1.6 C/m3 from
the plasma density 10! ¢cm™3. The potential distribution is identically zero across the
diode gap.

The fast timescale for the external circuit is the LCp time, which is about 3.3 ns. For
shorter times the PFD has not charged up, and the system behaves like a plasma in contact
with two cold metal walls. On the scale of a few hundred picoseconds both cathode and
anode charge rapidly negative due to the thermal flux of electrons until stable Langmuir
sheaths are formed at both electrodes with a floating potential of about!?

$r = —Eezln[(‘zr%i—:) (1 + ;)] ~ 137V (4 —11)

Figure 28(b) is a snapshot taken at ¢t = 1 ns. The potential distribution clearly
shows the Langmuir sheaths at cathode and anode with a floating potential of the correct
magnitude. The slight asymmetry in the size of the sheath potentials is due to the action
of the external circuit which by ¢ = 1 ns has just begun to charge up the diode. In the
ion phase space plot of Figure 28(b) the flux of ions to both electrodes due to the sheath
electric fields can be easily seen at each end of the gap.

Figure 28(c) shows the situation at ¢t = 4 ns corresponding to the time of peak sheath
velocity. By this time the cathode sheath voltage has grown to about 1 kV, dwarfing the
anode sheath potential on the scale of the potential distribution plot in Figure 28(c). On
the left hand side of the ion phase space plot, the cathode sheath can be seen rapidly

45




3.8
")

<

(a) Diode current (c) Cathode sheath thickness

- R
n
i :
s 4 <
2 8
- 4
Zﬂ 8
W O ®» ® e % o B = . ® W 6 ® % %
i (b) Diode voltage "1 (d) Cathode sheath velocity
3 o
|
o T 7
2 Y 5
> S
E-
5 N
& 7 WW/WA/\
® ® »® ® % ® x o™ B 6 % & A
t (ns) t (ns)
Figure 27. PFD with hydrogen plasma fill n; = 10'® cm~3 without electron emission from

cathode surface.

46

S R SN

P o a a a

e




W

$x)

Ion

Space

p;(x)
Ip,(x)I

Figure 28.

a) t=0 b) t=1ns €) t=4pns

v, /Ax /At

volts

8
o
g
9 _
o
e
8
?
~NA
o m-{ "!J
£
< _|
g—n -— —
i -
o " H w
UO’ o o
o Y T L o T — o —]
0 32 6 % 18 0 2 e % 1B 0 2 6 % 1

Electron phase space, potential ¢(z), ion phase space, and electron and ion charge
densities p.(z) and p;(z) at selected times: no electron emission at cathode.

47




d t=10ns e) t=14ns ) t=25ns

31 - &
2 & &
- g-
& 8- &
8- 2- 2-
° 0
g
2
8
?
0
h

Figure 28. Electron phase space, potential ¢(z), ion phase space, and electron and ion charge
densities p.(z) and p;(z) at selected times: no electron emission at cathode (con-
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T

propagating to the right at several times C, into the undisturbed plasma. On the right

hand side of the ion phase space, the anode side, ions are accelerated toward the anode

from the body of the plasma. This is the developing pre-sheath associated with the small

Langmuir sheath at the anode. The edge of this pre-sheath region propagates to the left

with a measured velocity of C,. The anode pre-sheath region is also clearly visible on

right hand side of the charge density distribution plot as a quasi-neutral region of reduced )
plasma density.

Figure 28(d) shows the situation at ¢ = 10 ns, well after the sheath velocity has
dropped below C, and the sheath edge has come almost to rest. Here the left side of
the ion phase space shows a developing pre-sheath region propagating out ahead of the
cathode sheath toward the right at a measured velocity of C,. In this cathode pre-sheath
region ions are being accelerated back toward the sheath-plasma interface by the pre-
sheath electric fields. The anode pre-sheath is also visible on the right. The charge
density distribution plot again shows these developing pre-sheaths as quasi-neutral regions
of reduced plasma density. The developing cathode pre-sheath is just the ion acoustic
rarefaction wave reported by Widner?® et al. in their discussion of sheath motion near a
negatively biased electrode.

At t = 14 ns shown in Figure 28(e) the edge of the anode pre-sheath propagating to
the left and the cathode pre-sheath propagating to the right meet at about z = 70. To
the left the average ion velocity is toward the cathode while to the right the average ion
velocity is toward the anode. Figure 28(f) shows the situation at a later time ¢t = 25 ns
corresponding to the period during which the cathode sheath again begins to accelerate to
the right. The ion phase space clearly shows the cathode sheath on the left and the cathode
and anode pre-sheath regions continuously joined together at about z = 70. Figure 28(g)
shows the situation at ¢ = 50 ns as the expanding cathode sheath moving at about 1.25
cm/ us slowly erodes away the remaining fill plasma. Finally, Figure 28(h) shows the state
of the system at ¢ = 70 ns shortly before the fill plasma has been completely eroded away.

Much of the phenomenology observed in the simulation can be understood in terms
of an analytic relationship between the sheath velocity, the current in the external circuit
and the ion density and mean velocity at the sheath edge first discussed by Sander.?®
This relationship follows from conservation of charge and the assumption of a sharp edge
for the sheath. Figure 29 shows the region near the surface of the non-emitting cathode,
separated from the neutral plasma region on the right by a positive ion sheath. The sheath-
plasma interface is depicted in Figure 29 as a relatively sharp boundary, i.e., the plasma
electron density falls off so rapidly at the sheath-plasma interface that the plasma electron
contribution to the total charge of the sheath region can be neglected. This becomes a
good approximation when the potential drop across the sheath becomes greater than a
few times the floating potential ¢, so that even the most energetic thermal electrons from
the plasma can no longer penetrate more than a few Debye lengths into the sheath region
before being turned back by the sheath potential.

In the theoretical considerations that follow, the density and mean velocity of the
ions at the sheath-plasma interface are n, and u, respectively, the total positive ion space
charge per unit area in the sheath is @, , the negative electron surface charge per unit area
of the cathode is 0., and the magnitude of the current per unit area of electrons delivered
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to the cathode by the external circuit is Je;¢(t). The time rate of change of Q, can be
written as the sum of three contributions,
. dz
—d-—z—- = - Jic + cn'E - eﬂ,u’- (4 - 12)
The first term on the right hand side is the current of ions lost from the left of the
sheath region by absorption at the cathode surface. The second and third terms represent

the current of ions which enter the right hand side of the sheath region from the neutral
plasma at the moving sheath-plasma interface. Similarly, do./dt is given by

idati = J.' - J,,g. (4 - 13)
The change in surface charge do. /dt is a balance between the charge deposited by ions
from the sheath and the electrons from the external circuit. Notice that do./dt contains
no electron current contribution due to the thermal electron flux from the plasma, under
the assumption that the sheath potential is sufficient to turn back any thermal electrons at
the sheath-plasma interface. Now applying Gauss’s Law to the region indicated in Figure
29 yields
o. = -Q,. (4-14)

Differentiating with respect to time and substituting dQ,/dt and do./dt from Equations
(4-12) and (4-13) gives

Jet(t) = en,(%f- — ). (4 -15)

Equation (4-15) states that the rate at which electrons are delivered to the cathode by the
external circuit is equal to the rate at which ions enter the moving sheath from the plasma.

Equation (4-15) is an exact consequence of Gauss’s Law and charge conservation when
the sheath edge is sufficiently sharp to neglect the contribution of the plasma electrons to
the total charge density of the sheath region. An approximate form of Equation (4-15)
often discussed in the literature?®>?* may be obtained by making two additional approxi-
mations. First, the so called “displacement current” must be neglected. In other words,
do./dt << J.: so that from Equation (4-13) Jic = J.r¢ in Equation (4-15). If in
addition the sheath velocity is sufficiently small so that the sheath does not expand very
much during the time required for a plasma ion to transit the sheath, the ion current J;c
is given approximately by the stationary Child-Langmuir space charge limited ion current.
Hence, the approximate form of Equation (4-15) becomes

dz 4 2\ V32
eny, (5 - u,) = '9-60(;:) -322-—’ (4—16)

as used by Widner and Poukey.?
Equation (4-15) provides a useful consistency check on the simulation results. Dividing
both sides of Equation (4-15) by J..; shows that en,(£ — u,)/Jez¢ =~ 1 when the sheath
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potential becomes greater than a few times ¢;. During the computation this ratio is
determined using the local values of n, and u, at the moving sheath-plasma interface as
well as the corresponding simulation values of # and J,,;,. After an initial period before
t = 2 ns during which the sheath potential grows rapidly to about 7 ¢y, the ratio drops to
1 and remains at this value out to ¢ = 75 ns, the point at which all the plasma has been
removed from the gap so that n, approaches zero.

Equation (4-15) also provides a convenient basis for understanding the general char-
acter of the sheath evolution observed in Figure 28. Consider a sheath propagating into an
undisturbed plasma of uniform density n, with a velocity dz/dt > C,. Thenu, = G0,
and Equation (4-15) shows that the velocity of the sheath edge is proportional to the
current in the external circuit. Hence, the rising current in the external circuit drives the
initial rapid penetration of the sheath observed during the first 8 ns of conduction. Sim-
ilarly, the limitation of the current in the external circuit by the growing sheath voltage
drop is responsible for the sheath velocity falling below C, at about ¢ = 6.8 ns.

4.4 CATHODE WITH SPACE-CHARGE LIMITED EMISSION.

Space-charge limited (SCL) electron emission from the cathode changes PFD behavior
due to the additional presence of an electron beam that can interact with the background
plasma. In the simulation below all parameters are unchanged except for the emission of
electrons from the cathode such that the electric field vanishes. Now a well defined bipolar
sheath develops at the cathode. The emitted electrons are accelerated across this sheath
and stream through the fill plasma with some mean velocity v,. A strong beam-plasma
instability develops once the sheath potential has grown sufficiently so that v, exceeds
v = V2T, /m. . In the initial stages of the interaction unstable electrostatic waves are
launched from the edge of the cathode sheath and propagate toward the anode growing
spatially in amplitude until they begin to trap the beam at some distance away from the
cathode. The character of the beam-plasma interaction is largely determined by the value
of the parameter = n;/n,., the ratio of the beam electron density to the total electron
densityn, = n, + n,. The weak beam limit << 1 in spatially infinite systems has been
extensively studied since the 1960’s and is well described by single wave trapping theory.3
The linear theory of the beam-plasma instability in this limit can easily be obtained from
the Bohm-Gross dispersion relation for the one-dimensional beam-plasma system,

(wp + gk’vfh)/w’ + wf(w - kw) = L (4-17)

Applying the expansion technique of O’Neill and Malmberg®! to Equation (4-17) with ve,
in the range 0 < vy, /vy < 0.2 yields a maximum spatial growth rate for the unstable waves

of
V3 (n ‘/3(%)2/3%
=G R (4-18)

with wavenumber

2 1/3 2/3
ko= [1+%(’l") +%(g) (—””-) 2 (4 - 19)




The weak beam linear theory illustrates some important trends. As the voltage across
the cathode sheath increases so does the beam velocity The wavelength of the instability
then increases according to Equation (4-19) while the spatial growth rate is reduced. Beam
trapping then begins further away from the cathode boundary. However, the results from
linear theory are only qualitatively relevant for the present investigation. In the PFD sim-
ulations 7 ranges between 0.15 and 0.35 during the conduction phase so that the observed
beam-plasma interaction always lies far outside the weak beam regime.

According to Morey and Boswell,®? the beam-plasma interaction in a bounded, one-
dimensional system with arbitrary 7 is classifiable into a linear regime for 0 < n < 0.05,
and into two nonlinear regimes with 0.05 < n < 0.3 and 0.3 < n < 0.7. The PFD in our
simulation always operates in the nonlinear regimes, which are characterized by strong
non-linear heating of the plasma and variety of other non-linear effects. These are clearly
seen in the simulations presented below.

Figure 30 shows the diode current and voltage during the first 80 ns in a diode with
SCL emission. In contrast to Figure 27 without SCL emission, where the voltage develops
immediately, the voltage in Figure 30 has a 34 ns long low-voltage conduction phase,
followed by a sudden opening phase that generates a peak diode voltage about 4.8 times
that of the charge voltage. Without SCL emission the current reaches an early peak of
3 A (10 A/cm?), while with SCL the current increases until opening to over 30 A (or
100A /cm?)

In lieu of the movie, Figure 31 illustrates the detailed evolution of the phase space,
potential and charge density distributions for the PFD with SCL emission. The initial
state in Figure 31(a) is identical to Figure 27(a), except that the scales are different to
accommodate the subsequent development. Figure 31(b) at ¢ = 10 ns shows that the
potential distribution within the diode gap is essentially flat and the diode acts as a short
circuit. This situation is typical of the internal state of the diode for the first 18 ns of
conduction, the period prior to the formation of the bipolar sheath.

As the conduction phase progresses a well defined bipolar sheath begins to develop at
the cathode starting at about ¢ = 18 ns. The voltage across this sheath quickly exceeds the
thermal energy kT, ~ 5 eV, and the instability turns on almost immediately thereafter at
about ¢t = 20 ns. Figure 31(c) shows the state of the system at a slightly later time ¢ = 23
ns. A 20 V bipolar sheath is present on the left hand side of the potential distribution
in Figure 31(c) with the unstable waves visible to the right of the sheath. These waves
are launched from the sheath edge and propagate toward the anode on the right, growing
spatially as they move away from the cathode until they trap the beam. The electron
phase space plot in Figure 31(c) shows beam trapping beginning at about x = 45. Most of
the trapped beam electrons are carried along by the waves. However, some are scattered
out of the waves and are left behind to become part of the plasma electron distribution.
Conversely, the waves trap not only beam electrons but also plasma electrons leading to
the formation of electron holes like the ones visible in the electron phase space of Figure
31(c). These holes can propagate all the way across the gap as coherent structures and may
provide an efficient mechanism for rapidly removing plasma electrons from the diode gap.
The electric fields of the waves also accelerate the remaining plasma electrons leading to
the rapid heating of the plasma electron distribution which is already visible in the electron.
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Figure 30. PFD with hydrogen plasma fill n; —= 10'® cm~2 with space-charge limited electron
emission from cathode surface.

phase space plot of Figure 31(c). The net voltage drop at the instant of the snapshot in
Figure 31(c) happens to be about 31 V, but in fast this value is rather arbitrary because
the potential at the anode boundary oscillates at the plasma frequency with a maximum
amplitude determined by the beam-plasma interaction. The amplitude is sufficient to cause
reflection of some beam electrons at the anode boundary.

As the heating progresses the hot plasma electrons escape from the diode faster than
the more massive ions, resulting in an increasing net positive charge for the plasma and
the corresponding potential hump in the diode gap. Figure 31(d) shows the state of the
system at ¢ = 28 ns. The construction of this potential hump is well underway and the
heating of the plasma electron distribution is readily apparent. The wave behavior of
the interaction becomes more chaotic and the time average point in space at which beam
trapping begins tends to move toward the right, away from the cathode toward the anode
boundary. Corresnondingly, the structure of the electron holes becomes less coherent and
the holes less prominent.

As the process continues the amplitude of the potential hump grows while trapping
tends to occur further and further toward the right. Wave trapping gives way to a state
in which much of the trapping occurs due to reflection of the beam by the oscillating
potential at the anode boundary. Figure 31(e) shows the situation for ¢ = 33 ns at the
very end of the conduction phase. Here the potential plot shows a distribution for ¢(z)
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densities p(z) and p;(z) at selected times: space-charge limited electron emission
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Figure 31. Electron phase space, potential ¢(z), ion phase space, and electron and ion charge
densities p.(z) and p;(z) at selected times: space-charge limited electron emission
at cathode (continued).
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Figure 31. Electron phase space, potential ¢(z), ion phase space, and electron and ion charge
densities p.(z) and p;(z) at selected times: space-charge limited electron emission
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with a maximum of 222 V (or 2.2 kV/cm) near the center of the gap, even though the
diode voltage is only about 30 V (or 0.3 kV/cm). At this point all of the beam trapping is
taking place at the anode boundary as can be seen in the electron phase space plot. The
ion phase space plot in Figure 31(e) shows that the potential hump accelerates the ions,
creating a significant enhancement of the ion current to both cathode and anode. As a
result the ratio of emitted electron current to ion current at the cathode is substantially
lower for this state than the classical value v/ m,,?me ~ 43 for a simple bipolar sheath
with hydrogen ions. In Figure 31(e) the ratio of electron to ion current is about 27.

At t = 34 ns the conduction phase ends and a rapid transition to a high voltage
opening phase begins. This transition is characterized by the termination of electron
trapping and the formation of a large bipolar sheath at the cathode. The sheath expands
rapidly and sweeps the remaining ions out of the diode gap. Figure 31(f) shows the state
of the system at t = 36 ns. The conduction phase potential distribution of Figure 31(e)
has made an extremely rapid transition to the bipolar distribution shown in Figure 31(f).
The total diode voltage in Figure 31(f) has already reached nearly 1 kV as the bipolar
sheath expands and grows. The phase space plot shows that electrons accelerated across
this sheath no longer interact with the remaining plasma.

The bipolar sheath expands very rapidly to the right reaching a peak sheath velocity
of about 23 cm/us. By t = 38 ns shown in Figure 31(g) the sheath edge has already
reached the anode. All of the plasma electrons have left the diode at the anode side and
the remainder of the ions are being removed at the cathode. Finally, Figure 31(h) shows
the state of the system at t = 43 ns after all of the ions have been swept out of the
diode gap. The diode now operates as a simple SCL electron diode with the characteristic
Child-Langmuir z4/3 potential distribution.

The overall effect of the beam-plasma interaction on the plasma electrons is the result
of a balance between two processes. On the one hand the heating of the plasma electrons
and the transport of plasma electrons to the anode by propagating electron holes tend to
deplete the plasma electrons. On the other hand trapping of electrons out of the emitted
beam adds to the plasma electrons. On balance the plasma loss processes dominate. Figure
32 illustrates this point. The lower curve represents the time history of the total charge in
the emitted beam. The middle curve is the total charge in the plasma electron distribution.
The upper curve is the sum of the two, the total electron charge in the diode. An electron
is considered to belong to the beam if it was emitted from the cathode and has not turned
around. An electron is considered to belong to the plasma electron distribution if either
it was present in the initial fill plasma or it was emitted from the cathode but has turned
around once or more. Figure 32 shows that after the instability turns on at ¢ = 20 ns, the
plasma electron population is rapidly depleted until the total charge in the plasma electron
distribution equals the total charge in the beam at about the time that opening begins.
Hence, the net effect of the beam-plasma interaction during the conduction phase is that
the emitted electrons increasingly provide for the neutralization of the plasma ions.

Comparison of the -esults for the SCL emission case discussed above with the no
emission case of Section 3 clearly illustrates the fundamental difficulty with the classical
PFD model.2®* With SCL emission the system evolves through a series of states which are
far from the bipolar equilibrium state hypothesized by the classical model. As a result,
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Figure 32. Total beam electron charge (lower), total plasma electron charge (middle) and
total (beam + plasma) electron charge (upper) for SCL emission case. Values are
normalized to the total electron charge present in the initial fill plasma at ¢t = 0.

the scaling predictions for conduction time, conducted current and other quantities must

be modified substantially.

4.5 SCALING IN THE SIMULATIONS.

This Section discusses the scaling of conduction time and current in the computations
with model parameters such as the initial d//dt, plasma density, gap width and ion mass.
The conduction time , t., is defined as the time interval from the onset of current flow at
t = 0 to the time at which a significant net diode voltage drop begins to develop. The
conducted current, I, is the corresponding diode current at time ¢.. During the conduction
phase the diode acts as a short circuit (Vp = 0). Then the initial current risetime dI/dt
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is Vo/L where V; is the initial charge voltage on the external capacitor and L = 1 uH is
the circuit inductance. Hence, the scaling of I. and ¢. with initial dI/dt can be found by
varying Vo while keeping L and the other model parameters held fixed.

Figures 33 and 34 show how I, and the corresponding value of ¢. scale with V, and
hence initial dI/dt for three different initial plasma densities n; = 10'? cm=3, 10! ¢m=3
and 10'* cm~3. The plotted points are simulation results. The simulation results for I, and
t. versus V; lie roughly on a straight line on this log-log plot, suggesting an approximate
power law dependence for these quantities. The solid curves are least squares fits to the
simulation data for a given density assuming a power law dependence for I, and ¢, on Vj.
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Figure 33. Conduction current I, versus V; for fill densities n; = 102 cn™3, n;, = 1013
cm~?, and n; = 10 cm~3. Solid curves are least squares fits to a power law
Vi

The scaling from the simulations for I, with dI/dt is in sharp contrast to the classical
PFD model. The classical model predicts that switching occurs at a current threshold that
is completely determined by the properties of the fill plasma, but completely independent of
the initial dI/dt. Figure 33 shows that the simulation result for I, increases with increasing
dI/dt to a power ~ 0.5 that depends slightly on initial plasma density. For example, at
n; = 10" cm3 I is fitted well by (dJ/dt)°463. The optimum exponent varies slowly
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Figure 34. Conduction time ¢, versus V; for fill densities n; = 10'? cm=3, n; = 10'® cm™3,
and n; = 10 cm™3. Solid curves are least squares fits to a power law V{.

with density from 0.396 at n; = 10'?2 cm~2 t0 0.581 for n; = 10'* cm~2 Correspondingly,
t. scales like d1/dt to about the —0.5 power, again with a slight variation of the exponent
with density. The variations in the power law exponent for I. and t. with density are, of
course, related since the ratio I./t, must always be proportional to dI/dt.

Figure 35 shows how the conduction current I, scales with initial plasma density n;
for fixed current risetime dI/dt obtained by setting Vo = 1 kV and Vj = 10 kV. The solid
curve is a power law least squares fit with the initial capacitor voltage Vo = 10 kV (or an
initial dI/dt = 10 kA/us). The result is that I, scales as (n;)%%. For n; = 10" cm™®
and below the simulation data for V5 = 1 kV show similar power law dependences, but
above n; = 10! cm™3 scaling curves flatten out, showing that the power law dependence
is only approximate.

In the classical model?® I, does not vary with gap width d, but the simulations give
a different result. Figure 36 shows t. versus the gap width d from a series of simulation
runs with n; = 10! cm™2 and V; held fixed at V, 1 kV. The solid curve is least squares
fit indicating a scaling of ¢, as d®%2. This prediction should be easily testable in an
experiment.
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Figure 35. Conduction current I, versus n; for Vo = 1 kV and 10 kV. Solid curve is a least
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squares fit to a power law n;

Voltage amplification during opening V,/Vo is particularly relevant. Figure 37 shows
the peak value V, of the voltage compared to the initial voltage on the capacitor Vg, as a
function of V;, and hence the initial current risetime dI/dt at three different initial plasma
densities n; = 10" cm~3, n; = 10'® cm~3, and n; = 10" cm~3. The decrease of V,/V,
with increasing dI/dt at fixed density is readily apparent. It should be noted that for
each density there is a value of dI/dt (or Vp) above which no net voltage amplification is
obtained. Correspondingly, at fixed dI/dt, V,/V, increases with increasing fill density.

All of the scaling results discussed above were obtained using a hydrogen fill plasma.
How do these change with mass of the plasma ions? Figure 28 is a log-log plot of the ratio
of emitted electron current to ion current into the cathode at the onset of opening, J./J;,
as function of the ion mass m; normalized to the proton mass m,. The initial voltage V,
is held fixed at 1 kV, and n; = 10'® cm.~® The solid curve is a least squares fit to an
assumed power law dependence for the simulation data. Apparently J./J; at the onset of
opening scales like (m; /m,)"/2. Hence, even though the value of J,/J; is not simply given
by v/m;/m,. as would be the case in the classical bipolar model, the simulation result still
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Figure 36. Conduction time ¢, versus gap width d for n; = 10" cm~3, V5 = 1 kV. Solid
curve is a least squares fit to a power law d’.

shows that,
Jc/Ji = «a \/mi/me, (4—20)

where @ = 0.63 for n; = 10'® cm~3 as shown. The dashed line in Figure 38 shows the
bipolar value v'm;/m, for comparison. Note that Figure 38 contains physically unreal-
izable ion masses up to 10*m,, approaching the limiting case of infinite ion mass to be
treated elsewhere.

Figure 39 shows the simulation results for ¢, versus m;/m,, from runs with V; at 1
kV, and densities n; = 10'2 cm™2 and n; = 10'3 cm™3. For both densities ¢, scales like
m?-32. However, for n; = 10'? cm~2 and beyond m; /m, = 100 the ¢, scaling curve flattens
out and approaches a constant limiting value ¢, = 40.8 ns shown by the horizontal dashed
line. For the higher density, n; = 10'® cm,~3 the data suggests a much higher limiting
value for ¢., and a much larger value of m;/m, for the onset of saturation. Theoretical
considerations elsewhere suggest that the saturation value of ¢, is should be about 2.2 us.

Saturation of ¢, with m; demonstrates a surprising result, namely, that a low voltage
conduction phase exists even for infinitely massive ions. Since the ions can not move the
system never relaxes to a bipolar equilibrium state during the opening process. Research
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Figure 37. Voltage amplification (V,/V, versus Vo: Vo = LI) for fill densities n; = 10'?
cm~3, n; = 10® cm3, and n; = 10" cm™3.

on the PFD with immobile ions, presented elsewhere, clarifies the conduction process for

the PFD studied here.

4.6 CONCLUSIONS.

This section demonstrates by an explicit numerical example why the classical bipolar
model®® incorrectly describes the conduction phase of a magnetized PFD or POS. This
failure arises from violation of the bipolar equilibrium state assumed to exist during the
conduction phase. Instead the low voltage conduction phase is characterized by the growth
of a large potential maximum near the center of the diode gap, while the voltage across the
diode remains small, and a J./J; ratio that is substantially lower than the bipolar value
vm; /m.. This state is maintained by the nonlinear interaction of the emitted electrons
with the plasma fill. The onset of the opening phase is characterized by the termination of
electron trapping and the rapid transition to a bipolar equilibrium state. These processes
take place even if the ions are infinitely massive. If the particle ions are replaced by
a stationary uniform background of positive charge, the system still has a low voltage
conduction phase followed by an opening phase in which a significant diode voltage drop
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Figure 38. Value of J./J; at the onset of opening versus m;/m, n; = 10" cm=3, V; =1
kV. Solid curve is a least squares fit to a power law m{. The dashed curve is the
bipolar value v'm;/m,.

develops. This infinite mass ion case is smoothly obtained from the case of finite ion mass
as m; increases.

The model for the operation of a magnetized PFD outlined above makes a variety
of testable predictions. For example, with fixed plasma fill and increasing V; the current
conducted before opening increases roughly like 1/V,, while the classical model?® predicts
a constant current. The present model also predicts ions on the anode side of the diode
with energies significantly greater than the diode voltage during the conduction phase.
These ions betray the presence of the growing potential hump during conduction. Finally,
the rapid oscillation of the potential near the anode during the conduction phase might be
expected to generate electromagnetic noise near the plasma frequency. Hence, a PFD with
plasma fill of n; = 10" cm~3 should produce roughly 28 GHz microwave noise during
the conduction phase.

Perhaps the simplest and most distinguishirg prediction of the simulations is the
effect of an initial ion drift. According to the classic model*® the ion drift affects the
low-voltage current, while in the present model the ion drift is virtually irrelevant. Recent
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Figure 39. Conduction time t. versus m;/m, for fill densities n; = 10'> cm=3 and n; = 103

cm™? with ¥, = 1 kV. Upper solid curve is a least squares fit of the form m?.
The lower solid curve is a least squares fit for m;/m, < 100. The dashed curve
is the limit of ¢, for n; = 10'%2 ¢cm™—3.

experiments®? seem to support this prediction. In these experiments the fill plasma was
created in situ in the diode gap by ionization of a low pressure gas instead of being injected
at trans-sonic velocities as happens with plasma guns. In these experiments there is a low
voltage conduction phase of about 50 ns followed by a rapid opening. This behavior
disagrees with the classical model?® but agrees with the simulations presented here.
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SECTION 3

THEORY OF THE PLASMA FILLED DIODE WITH IMMOBILE IONS

This chapter discusses the Plasma Filled Diode (PFD) coupled to an external LC
driver circuit in the limit of infinite ion mass.3* In this limit the immobile ions act as a
fixed spatially uniform background of positive charge. Although jon motion was thought
to be essential to PFD opening, the simulations with immobile ions still show a low voltage
conduction phase with a characteristic potential hump, followed by a high voltage opening
phase. An analytic theory for the potential hump agrees with the simulation, especially
when trapped electrons are included. The considerations are extended to the PFD with
mobile ions.

5.1 INTRODUCTION.

The previous section considers a planar Plasma Filled Diode (PFD) coupled to an
external LC circuit, as in Figure 26 of Section 4. During the conduction phase the PFD
has a bipolar sheath at the cathode, which accelerates electrons to velocities in excess
of the electron thermal speed of the background plasma, causing a strong beam-plasma
interaction. The effect of this interaction is to drive the plasma electrons out of the diode
on a timescale faster than the response time of the ions. As a result, the plasma charges
up, and a potential hump develops in the diode gap, with a peak potential much larger
than the voltage drop. The surprise in Section 4 was that conduction and opening phase
persist even when the plasma ions are infinitely massive.

This section is a detailed investigation of the PFD with infinitely massive ions, which
act as a constant uniform background of positive charge. This situation has analytic solu-
tions, which provide a quantitative explanation for the conduction and opening processes
observed in simulations, even for the case of mobile ions. Section 5.2 presents a typical
simulation of a PFD with space-charge limited emission of electrons and immobile ions.
Section 5.3 contains the analytical solution for the space charge flow problem. Section 5.4
shows the agreement of these solutions with the simulations. Section 5.5 adds the effects
from trapped electrons, which further improves the agreement with simulations. Section
5.6 discusses how the insight gained from the analytic theory in the immobile ion limit
provides a quantitative explanation for the operation of the PFD with mobile ions.

5.2 PFD SIMULATION WITH IMMOBILE IONS.

Figure 40 shows the diode current and voltage obtained from the simulation code
PDW!1 (see Section 4.2) for a PFD with an initial plasma fill of immobile ions with con-
stant density n; = 10'> cm~2 and an equal density of plasma electrons. The initial charge
voltage on the external capacitor is Vo = 1 kV, and the remaining model parameters are
as in Section 4. Space-charge limited (SCL) electron emission is allowed from the cathode
surface. The diode voltage of Figure 40 has a 41 ns long low voltage conduction phase
followed by an opening phase with a significant diode voltage. The voltage increases mono-
tonically to V; during the opening phase, in marked contrast to the voltage amplification
factor ~ 2.3 observed with mobile hydrogen ions at the same fill density in Section 4.
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Figure 40. Diode voltage and current with density n; = 10'? cm™2 of spatially immobile

ions, and SCL electron emission from cathode surface.

Figures 41(a) through (h) are a sequence of snapshot plots done at selected times
during the first 150 ns of the simulation. At each time indicated the figure shows the
electron v, versus z phase space and the potential distribution ¢(z) in the diode gap. In
the phase space plots all velocities are in scaled units normalized to Az/At. The position
z across the diode gap is measured in grid cell units from z = 0 at the cathode on the left
to z = 128 at the anode on the right. The potential ¢ is given in Volts.

The initial state is a spatially uniform distribution of Maxwellian electrons with T,
= 5 eV and the fixed background of immobile ions with number density n = 102 cm~3.
The potential distribution is initially identically zero across the diode gap. As the current
begins to flow in the external circuit the initial plasma electrons are rapidly replaced by
beam electrons emitted off the cathode. By ¢t = 8 ns this replacement is 95 % complete.
Figure 41(c) shows the state of the diode at this time. The potential plot of Figure 41(c)
shows a series of potential humps in the diode gap. Initially these humps have a small
spatial scale and very small amplitude. Figures 41(c) through (f) are snapshots taken at 2
ns intervals irom ¢ = 8 ns out to ¢t = 14 ns which demonstrate how these potential humps
evolve as time progresses. The hump nearest the cathode grows rapidly in both spatial
width and amplitude at the expense of the humps to its right until by ¢ = 14 ns it spans
the full width of the diode gap. The electron phase space plot in Figure 41(c) shows that
trapping of electrons out of the emitted beam is taking place due to oscillations of the
potential minimum on the right hand side of each of the humps, with most of the trapping
taking place at the right hand side of the hump nearest the cathode. By t = 14 ns the
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Figure 41. Electron phase space v, versus z, potential ¢(z), and electron and ion densities

p.(z) and p;(z) at selected times for an immobile ion density n; = 10'? cm™3.
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(continued).
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hump nearest the cathode spans the full width of the gap and all trapping takes place by
the oscillation of the potential at the anode.

As the conduction phase proceeds the amplitude of the potential hump continues to
grow even though the total diode voltage drop seen by the external circuit remains small.
Figure 41(g) shows the state of the diode at the end of the conduction phase at t = 40 ns.
By this time the potential maximum has grown to 634 V. Most of the trapped electrons
are lost and they are no longer being renewed by further trapping of electrons out of the
beam.

As the opening phase progresses the total voltage drop slowly grows. Figure 41(h)
shows the state of the diode late in the opening phase at ¢ = 150 ns. By this time the total
voltage drop has reached 994 V while the potential maximum is 1254 V. The maximum is
not located at the center of the diode gap but at x = 87.3 A instead. Even in the final open
state there still remains a potential hump whose amplitude is significantly greater than the
total voltage drop, and a small population of electrons that is permanently trapped inside
this hump.
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Figure 42. Potential distribution after opening for different ion densities.

The spatial position z,, and amplitude of the potential maximum ¢m in the final
state are strong functions of the density of the immobile ion background. Figures 42(a)
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through (d) show the potential distribution in the diode gap after complete opening, for
four ion background densities n;. Figure 42(d) shows that for n; = 4 x 10'? cm~3 the final
amplitude of the potential maximum is 3893 V, nearly 4.5 times the total voltage drop,
and the position of the maximum is at z,, = 69, near the center of the diode gap at z = 64.
As n; decreases, ¢, decreases while z,, moves toward the anode. Figure 42(a) shows the
distribution at n; = 5 x 10! cm=3. Here ¢,, =1016 V, only slightly greater than the total
voltage drop of 1 kV, and z,, =108.7, near the anode at r = 128. For n; = 3 x 10*!
cm~3, not shown in Figure 42, the potential maximum is at the anode, and for n; below
3 x 10! ¢cm~3 no potential maximum is present. As the ion density vanishes the potential
distribution ¢(z) in the final state looks increasingly like the z*/3 distribution for SCL
electron flow in the absence of ion space charge.

Figure 43 shows the simulation results for the conduction time ¢, as function of the ion
density n; (points), fitted by a power law ¢, ~ n¢, where § ~ 1.8. Extrapolating this scaling
to ion densities exceeding 10'* cm™3 gives t. = 2.2 us, too long for the computations to
observe opening.
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Figure 43. Scaling of the conduction time t., which is proportional to the conduction current
I. at opening, with n; for simulations with immobile ions. The solid curve is a
least squares fit of the form nf, with § ~ 1.8.
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5.3 ANALYTIC CONSIDERATIONS.

The simulations discussed above find that the propagation of an SCL electron beam
in a fixed ion background leads to the formation of quasiperiodic potential humps in the
diode gap. This observation suggests that the humps might be computable analytically by
considering the time independent flow of a space-charge limited electron beam in a fixed,
spatially uniform background of positive charge. In the dynamical simulation the humps
are unstable and oscillations in the potential minima between humps lead to trapping of
electrons out of the beam. In the first approximation trapped electrons are ignored, as
discussed earlier.3*?¢ Neglecting trapped electrons is appropriate for the late conduction
and opening phase when the trapped electrons have decreased in importance. Trapped
electrons are added below in Section 5.5.

The space charge in the diode has two contributions, the charge density p = en; from
the background ions, and the charge density from the electrons emitted at the cathode:
the background electrons have disappeared. Electrons are emitted with zero velocity from
the cathode, at £ = 0 with potential ¢ = 0. Conservation of energy and current for the
electrons gives

%msvbz_e¢=01 (5—1)
Je = eny(z)v.(z) = constant. (5 -2)

Combining Equations (5-1) and (5-2) with Poisson’s equation gives

52
a_zf = 7le¢-1/2 - %, (5—3)
where ) 12
]C me
e = (g) (5-4)

and 7; = en;/e. Multiplying both sides by 0¢/dz, integrating and imposing the SCL
boundary condition that 3¢/0z = 0 at the cathode gives

1(9¢)\?
E(a_i) = 29.4'% - nig. (5 —5)

At the potential maximum ¢ = ¢,, the derivative 3¢/3r = 0. Combining this with
Equation (5-5) above yields
=4l (5-6)

Since 7, #/? is the electron charge density at the potential maximum Equation (5-6) simply
says that the electron charge density is half the background ion density there. Recalling
the definition of 1, Equation (5-6) becomes

b = 2me(je)2. 5-1)

e en;
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Equation (5-7) gives a relation between the amplitude of the potential maximum, the
electron beam current and the background ion density.

Equation (5-5) can be rewritten using the normalized potential ¢ = ¢/¢n in the
region between z = 0 to the position of the potential maximum at z,, as

_ -4 [2’7: o _ ]1/2, (5 -8)

where the positive square root must be taken since 3¢ /dz > 0. Integrating Equation (5-8)
from z = 0 to z,, yields

1Y
’/u1 [y1/2 dlp,b]llﬁ = [%]123'"‘ (5-9)

The integral is easily evaluated to yield = so that Equation (5-9) becomes

1/2
2,"] (5 - 10)

Combining this result with Equation (5-7) gives

/2 . .
Ty = W(Cozme) de - T2 (5-11)
e?n; en; wp en;

Equation (5-11) relates the half width of the potential hump to the electron beam current
and the ion charge density.
Equation (5-8) becomes when using Equation (5-10)

W _ LT [y o
= =t [z — o] " (5 -12)

This equation describes the solution for the potential in the region 0 < z < zn.
Integrating from 0 to i gives an implicit equation for ¥(z) of the form,

v
/ oy d¢¢»] 77 = sin ' [291/2 — 1] — 2[y'? —¢]'? 4+ x/2=x (xi) . (6-13)
° - m

Similarly, the potential in the region z,, < z < 2z,, to the right of z = z,, is also
described by Equation (5-12) if the plus sign is replaced by a minus, since dy/3z < 0in
this region. Integrating the resultant equation again leads to an implicit equation for ¥(z)
similar to Equation (5-13):

sin~[2¢'? — 1] — 2% —y]'? +x/2=x (2 - ;i) : (5-14)

m
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Figure 44. Analytic solution for ¢(z) for a space-charge limited electron beam in a fixed
spatially uniform background of positive charge, without trapped electrons.

Equations (5-13) and (5-14) can be solved numerically to yield the complete solution
for 1(z) over the region from the cathode z = 0 to the point where ¥ again vanishes at
z = 2z,,. Figure 44 plots the resultant solution. Note that the solution is symmetric
about the point z = z,,. Further, the point z = 2z,, is completely equivalent to z = 0
since ¢ = Gy/0z = 0 there. Hence, the solution for the potential to the right of the point
z = 2z, is a spatially periodic repetition of the solution for 0 < = < 2z,,. To emphasize
this point Figure 44 contains two repetitions of the solution.

The conclusion is that the time independent solution for a SCL electron beam in a
spatially uniform fixed ion background is a series of spatially periodic potential humps.
Equations (5-7) and (11) show that the amplitude ¢,, is proportional to the square of the
beam current j2, while the hump width 2z,, is proportional j.. The current for which a
single hump fills the entire diode is a critical value j.,, given by

. 1 2e 12 3/2
Jer = 2‘/2—160 ; LA d. (5—15)

Any increase in j. beyond this critical value will make the width of the hump larger than
the physical gap width d and thus will drive up the voltage at the anode. This is precisely
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what happens in the simulation late in time during the opening phase when the trapped
electron contribution to the potential can be effectively neglected.

o v T v T T T v

analysis —

bm (KV) |

«— simulation

n;/10!? cm3

Figure 45. The potential maximum ¢, in the analytic theory compared with the value in
the simulations.

In these considerations the trapped electrons are ignored. However, during most of
the conduction phase the trapped electrons are important. The dynamical simulation
suggests that the virtual cathode represented by the potential minimum inside the diode
near r = 2z, is unstable. The virtual cathode oscillates, which causes trapping of electrons
out of the beam. Section 5.5 further discusses the trapped electrons and their role in the
evolution of the potential during the conduction phase.

5.4 COMPARISON WITH SIMULATION.

The analytic solutions obtained above can be used to predict the position and ampli-
tude of the potential maximum late in the opening phase when the virtual cathode has
moved beyond the anode, when 2z,, > d. Define the normalized diode po ential ¢y as

Vo

Yo = 3> (5 - 16)
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Combining Equations (5-10) and (5-14) gives

3n/2 — sin~'2yp”? — 1] + 2Awp? — w2 _ (2_'1_) " (5-17)

1/2
0/ ¢°

Equation (5-17) determines the I-V characteristic of the diode. Given the total voltage
drop Vp, the gap width d and background ion density n;, Equation (5-17) determines the
value of ¥ and hence ¢,,. Inserting ¢,, into Equation (5-7) then yields the corresponding
value of the diode current. Also, ¢,, determines z,, via Equation (5-10).

1.0 7 T v T T T

ZTm/d

+ simulation

analysis —

n;/10'? cm™3

Figure 46. The width of the potential hump z,, in the analytic theory compared to the
simulations.

Figure 45 compares the analytic value of ¢,, predicted by Equation (5-17) with the
maximum voltage observed in the simulations (using ¢o measured in the simulation instead
of ¢p = 1kV). Figure 46 compares the (normalized) position z., of the potential maximum
with the simulation, andFigure 47is the final current. The agreement between analysis
and simulation is clearly excellent. The deviations apparent in these figures arise from two
effects not included in the above analysis, viz., the trapped electrons already mentioned,
and also the finite energy of electron emission as discussed further in Section 5.5.
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Figure 47. Final diode current Iy, in the analytic theory compared to the simulations.

5.5 TRAPPED ELECTRONS.

The analytic solution for the potential obtained in Section 5.3 assumes that all the
electron space charge in the diode comes from the beam. However, in the simulation the
minima between the potential humps become unstable and form oscillating virtual cathodes
which trap electrons out of the beam. Figure 48(a) shows the amplitude of the potential
minimum on the right hand side of the potential hump nearest the cathode as a function
of time early in the conduction phase, corresponding to the snapshot plots of Figure 41(b)
through (e) between 6 and 12 ns (for n; = 10!'? cm~3). The amplitude initially executes
regular oscillations with a period about equal to the plasma frequency. The oscillations
become increasingly chaotic as the time evolution progresses. Figure 48(b) is a plot of
the spatial position of this minimum versus time for the same period. This shows an
average motion of the minimum toward the anode corresponding to the expansion of the
potential hump, with an oscillation on top. This type of behavior is very reminiscent of the
oscillations in both position and amplitude of the virtual cathode formed by an electron
beam injected into a vacuum region between two grounded parallel conducting planes.3

This section discusses the inclusion of trapped electrons analogous to their treatment
in the reflex triode.3® The model assumes that the transit time of a trapped electron across
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Figure 48. Amplitude (a) and spatial position (b) versus time of the potential minimum
nearest to the cathode in a simulation with immobile ion density n; = 102
cm~3. The time interval 6 to 11 ns corresponds to Figures 41(b) to near 41(e).
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the potential hump is much shorter than the time for a change in the hump’s amplitude,
so that at each instant the system is approximately in a steady state. Similarly, the energy
E of a trapped electron remains constant as it reflexes back and forth inside the potential
hump, with a velocity according to m.v*/2 = E + e¢. Following Creedon,*®

Y e
TdE (5 —18)

is the number of trapped electrons per unit area per unit time traveling in the negative
z direction at £ = z,, with total energy between E and E + dE. In a stationary state

this number is constant. The density of negative going trapped electrons with total energy
between E and E + dE follows by dividing the flux by the local velocity,

-1/2

in = dE[-g—(E + ¢)] (5 — 19)

The total electron density then becomes

Y - A R 5-)

€

The factor of 2 in front of the integral reflects that in steady state the negative going flux
of trapped electrons at every point is equal to the flux of positive going trapped electrons.

Equation (5-20) expresses the spatial density of trapped electrons in terms of the
energy spectrum df /dE of the trapped electrons at z = z,,. This spectrum is determined
by the details of the trapping process, which are hard to account for analytically but easily
seen in the simulation. Therefore, with some assumptions about the form of df/dE it is
possible to use the simulation to approximate the effect of the trapped electrons on the
potentials.

Using Equation (5-21) into Poisson’s equation, multiplying by 8¢/0z, and integrating
with the additional boundary condition 8¢/3z = 0 at ¢ = ¢,,, gives the generalization of
Equation (5-6),

1/2 (O
27’e¢3n/2 - Nidm + Ci(mc) / (E + C(ﬁm)l/2 de = 0. (5-21)
0

—-edm

To proceed further the energy spectrum for the trapped electrons must be defined.
The simplest is to assume that the trapped electrons at z = z,, are uniformly distributed
throughout the allowed range of total energy, i.e., df /dE is a constant independent of E.
This assumption simplifies the analysis because all the integrals involved can be done in
closed form. However, a constant energy spectrum is not a very good approximation to
the trapped electron distribution observed in the simulation. The actual distribution is
strongly peaked at its low energy end (at E = —eg,, ), and falls off rapidly with increasing
E. Fortunately, the details of df /dE appear in lower order, and are therefore qualitatively
unimportant in computing the correction for the effect of the trapped electrons.
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The trapped electron energy distribution is normalized by

Y dE 4 ! ( )

where 4 = 4f; /3 is proportional to the current j; in trapped electrons compared to the total
electron current j. emitted from the cathode, f; = ji/j.. ‘rhis normalization condition
and the assumption of a constant spectrum gives

f 3 Je _
dE T degm € (5-23)

Substituting Equation (5-23) into (5-21) and solving for ¢,, gives

bo = e () gy (5 - 24)

e en;

Equation (5-24) is the extension of Equation (5-7) including the trapped electron con-
tribution in the case of a constant energy spectrum. Equation (5-24) can be rewritten
as

1/2 1/2
m Ty 2m, ) ) _
i ( p 1+~). (5 -25)

The potential maximum ¢,, increases as expected from the addition of the trapped elec-
trons to the total beam current.
In analogy to Section 5.4 the potential for 0 < z < z,, satisfies

W _ 2n; 1/2 / 3/2] /2
3 = [m] [$'7 — (1 + 9 + w2 T, (5 26)

where ¢ = ¢/¢,,. Integrating Equation (5-26) from z = 0 to z = z,, gives

1 . & 2, 12
=F\TTT N m- 527
/0 [$1/2 - (1 + 7y + 2] 'V? (¢m(1 + 7)) ‘ (5-27)

The integral on the left is a combination of elliptic integrals of the first and second kind,

4 x .1
1) =217 (3.v4) - B(3.v3)]. (5-28)
Finally, solving for z,, in Equation (5-28) with Equation (5-24) for ¢,, gives
: 3/2
2, = 1&.[(1 + 7) ’(7)], (5 — 29)
wp en; n
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Figure 49. The correction factors for z,, and ¢,, as function of the trapped electron param-
eter 7. The trapped electrons have equal energy.

where w, is the plasma frequency w? = e?n;/eom.. Equation (5-27) is the analogue of
Equation (5-9) where the expression in square brackets is the multiplicative correction for
the trapped electrons.

Integrating Equation (5-26) yields an implicit equation for ¥(z) in terms of elliptic
functions that must be solved numerically. With a constant energy spectrum for the
trapped electrons, Figure 49 shows that for 4 = 1 the potential maximum ¢,, approaches
4¢,, in the absence of any trapped electrons (¥ = 0) while the location of the maximum
Z,, diverges. The meaning of this result is clarified in Figure 50, which illustrates the effect
of varying v on the solution for the potential ¢(z). In Figure 50 ¢ and = are normalized
to the values of ¢, and z,, for ¥ = 0. As v approaches the critical value 4., = 1, the
spatial period of the solution increases while ¢, approaches 4 times the amplitude of the
potential maximum in the absence of any trapping. For v very close to 1 the location of
the maximum z,, approaches infinity. At the same time there appears an extended spatial
region around z = z,, in which ¢ ~ ¢,,: then the potential distribution looks increasingly
like that of a sheath at the edge of a quasi-neutral plasma.
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Figure 50. The potential in the diode as function of the trapped electron parameter 4. The

potential ¢ and the position of the maximum z are normalized to ¢,, (v = 0) and
Z, (v = 0) without trapped electrons.

Figure 51 shows the effect of 4 on the density of the beam electrons n;, the trapped
electrons n, and the total electron density n, = ny, + n, at the position z = z,». In the
limit v = 1 the total electron density n. = n; is at z = z,,. Note that for 4 = 1 the density
of trapped electrons is 3/4 the total electron density while the beam electrons contribute
only 1/4. In this limit the system does indeed look very much like a beam in a plasma.

Equation (5-29) indicates that the trapped electrons increase the width of the potential
hump compared to the potential with the same beam current without trapped electrons
given in Equation (5-11). The simulations indeed show this effect. The upper curve in
Figure 52(a) shows the position of the potential maximum for the jump nearest the cathode
in the simulation of Figure 42, with immobile ions at density n, = 10'? cm~3. The lower
curve is the value of z,, predicted in the absence of trapping using the value of j. measured
in the simulation. Comparison of the two curves shows that the potential hump in the
simulation initially expands much more rapidly than it would have without trapping, until
the potential hump spans the full width of the gap so that z,, is located near the gap
center at £ = 64A. This situation persists until trapping stops and opening begins at
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Figure 51. Density of beam electrons n;, trapped electrons n; and total electrons n. =
n, + n; as function of v at ¢ = r,,,. All curves are normalized to n;.

about ¢ = 40 ns. Then z,, increases until it relaxes to a final position slightly greater
than that predicted by Equation (5-11) (with j. from the simulation). The middle curve
in Figure 52(a) is the prediction of Equation (5-29) including the approximate effect of the
trapped electrons. The value of f; and hence v used in Equation (5-29) is measured directly
in the simulation and plotted in Figure 52(b). Figure 52 shows that even the relatively
crude approximation of a constant energy spectrum for the trapped electrons results in a
significant improvement in the agreement between the prediction of the analytic theory
and the simulation for the expansion of the potential hump as a function of time.
Equation (5-25) allows some rather general statements concerning the effect of the
trapped electrons on ¢,, for an arbitrary spectrum df/dE. In non-dimensional form

df o _ ¢ Je
35 9E = £ F(O) &, (5-30)

where £ = E/ed,, is the normalized energy and F(¢) is the normalized distribution func-
tion, with f‘,l F(€)d¢ = 1. As before, the influence of the trapped electrons is defined by
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Figure 52. (a) Position of the potential maximum z,, versus time in the simulation with
immobile ions of density n; = 10'> cm~3 (upper curve). Lower curve is the
prediction of Equation (5-11). The middle curve includes the trapped electrons
according to Equation (5-29). which approximately includes the correction due
to the trapped electrons. Figure 51(b) is the trapping fraction f;