
Computer Science
AD-A273 602

Modelling and Specifying
Name Visibility and Binding Semantics

Scott A. Vorthinanii

July 1993

CM U-CS-I3-158

DTIC
ELECTE

SLDE009199 3 3

..... - Carnegie
Melloni

IOA

BEST AVAILABLE COPY

Modelling and Specifying
Name Visibility and Binding Semantics

Scott A. Vorthmann

July 1993
CM U-CS-93-158

DTIC
ELECTE

0DEC 91993
School of Computer Science 0
Carnegie Mellon University

Pittsburgh, PA 15213

Revised from a. draft written in November 1990 93-300 16

Abstract

This paper describes visibility networks, a graphical model of static Lame visibility and bmlkhu.g'.A.4isibility

network is a visual representation of the search algorithm perforned when binding a name iqetence to

a declaration. In conjunction with an extended attribute gramnpr mechanism, visibility'netwd4r-s allow
clear and precise specification of the naming semantics of programmi~ing languages. Thepoqwer of tl model
is demonstrated through its description or several examples of co[nplex visibility, constraints ii (da. As
a specification technique, the model has several advantages for the language 4esigner, incl mgint support

for prototyping, analysis, formal description, and documentation of naming semai tics. Siilhilar adjantages
make the visibility network model pedagogically attractive. Fin lly, it has bee demonhtrat!d.Jhat the
specifications can be used to automatically generate naming semantics modules for compilers and language-
based editors, reducing the burden of the language implementor.

This research was sponsored by the National Science Foundation under Grant No. IRI-9157643.

The views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the U.S. Government.

918

DOW*93 12 8 0'088

I

DTZO QU7ALIny tn8P&cRO a

Acceslon For

NTIS CRAW&
DTIC TAB

Unannounced [
Justification

By

Distribution I

Availability Codes

' Avail and I or
Dist Special

Keywords: Software Engineering: Coding - Program editors; Programming Environments - Interactive;

Programming Languages: Formal Definitions and Theory - Semantics; Language Constructs and Features

- Modules, Packages; Logics and Meanings of Programs: Semantics of Programming Languages - algebraic

approaches to semantics;

A.4

1. Introduction

This paper describes visibility networks, a graphical model of static name visibility and binding in program-

ming languages. A visibility network is a visual representation of the search algorithm performed when

binding a name reference to a declaration. Section 2 will introduce visibility networks as a way to model

the naming semantics of specific programs, then will described how specific networks can be generalized to

describe the visibility rules of an entire language. The power of the model will be demonstrated in Section 3,

through its description of several examples of complex visibility constraints in Ada. Section 4 will describe an

extended attribute grammar notation which, when combined with the graphical visibility network diagrams,

allows clear and precise specification of the naming semantics of programming languages.

As a specification technique, the visibility network model has several advantages for the language designer,

including support for prototyping, analysis, formal description, and documentation of naming semantics.

Similar advantages make the visibility network model pedagogically attractive. Finally, the specifications

can be used to automatically generate naming semantics modules for compilers and language-based editors,

reducing the burden of the language implementor. These advantages and others will be elaborated in Section

5.

2. The Visibility Network Model

This section will introduce visibility networks, both as a technique for modelling the naming semantics of

individual programs, and as a technique for specifying the naming sentantics of programming languages.

Section 2.1 will present a visibility network that models a simple C program, with very basic visibility

semantics. Section 2.2 will then generalize from that example, looking at the same network as a specification

of the visibility semantics of a particular type of scope in C.

2.1. Modelling a Specific Program

Figure I shows a simple C program containing a single nested block, and a network representation of the

visibility and binding among identifier sites (highlighted) in the program. Note first that the set of all

identifier sites in the program has been partitioned into four separate sets according to two criteria. The

first criterion, declaration vs. reference, does not require an explanation. The second criterion, local vs.

global, simply partitions the identifier sites according to the immediately enclosing scope, with local referring

to the nested block, and global referring to the program scope. Each set of identifier sites in the program is

associated with a namnesite in the visibility network (represented by a solid rectangle). A nanesite can he

looked at as-a table of program identifier sites, indexed by the identifier string valiuts.

Both of the criteria mentioned above are essential for isolating the characteristics that determine the

treatment of individual identifier sites by the binding algorithm; all identifier sites associated with a par-

ticular namesite will be treated in a similar manner. Declaration sites must be unique in a scope (in C),

and reference sites must each be bound to a declaration site. Global references can only be bound to global

declarations, whereas local references can bind either to local or global declarations, with local declarations

preferred. The algorithm that constructs these bindings can be viewed as a search of the available decla-

ration namesites, initiated from a particular reference namesite. This search is visually represented by the

network edges connecting the namesites in Figure 1. The implied direction of the search is right-to-left,

main(0
{int x, y, z; /* global declarations */
z -3 ;y=z ; x =z; r global references */
{int y, a, b; r local declarations*/
y,4; a-x;b=z; rlocal references*/

glba glba local local
declarations references declarations references

Figure 1: Visibility network model of a C program with a single nested block.

representing reference-to-declaration. This implicit orientation persists in all visibility network diagrams, to

avoid confusion.

The visibility rules of a programming language usually require that a particular reference site can be

bound to any of several declaration sites, made visible in different ways, with some means of unambiguously

selecting among the alternatives. This situation is explicitly represented in the visibility network model by
a multiplicity of paths converging on a selector, as in Figure 1. The selector in this case is a preference

selector, indicated by a vertical arrow in a box. This selector orders the outgoing edges according to

increasing preference, indicated by the arrow direction. When a binding search reaches the selector, each

outgoing edge is searched, starting with the highest-preference edge, until a matching declaration is found.

It is therefore clear from Figure I that, when binding a local reference site, local declarations are preferable

to global declarations. We shall encounter other types of selectors later.

2.2. Modelling Programs in General

The preceding section showed how the visibility semantics of a specific C program could be modelled as a
visibility network. If this modelling technique is to be useful in general, it must be possible to associate

with every C program, in a well-defined way, a network that models that particular program. This section

will abstract from the notion of a visibility network model of a specific program, to arrive at the notion of

a network diagram as a specification of the set of possible visibility network representations of programs in

a particular language.

Clearly, these networks will exhibit regularities of structure corresponding to certain syntactic constructs
- exactly those regularities that allow us to write down a natural language description of the visibility rules
of C. The overriding majority of such regularities correspond to some notion of a "scope," or a region of

the program with more-or-less uniform visibility of declarations. The program of Figure I has two scopes;

correspondingly, the visibility network model of the program can be adjusted to reflect the boundary between

the two scopes, as in Figure 2. Note that the network has also been augmented by an additional preference

selector in the global scope, and by connections to additional contained and containing scopes. (These

2

augmentations have no effect, since the additional connections do not lead anywhere in this example.) With

these augmentations, it is easy to see that the two scopes are represented by fragments of the network with

identical structure. The term 'scope' will be used to designate a fragment of a visibility network with fixed

strýcture, as well as the region of the program that is modelled by the fragment.

declarations references declarations references

I) ~~i r N fl Xn neire l I- ~
ýouterdecisotrdcs inner-rots

global block local block

Figure 2: The previous visibility network, subdivided into scopes.

While there are a potentially infinite number of visibility network configurations for programs of a

particular language, these configurations must all be composed of scope subnets from a fairly small set of

'types' defined for that language. The network of Figure 2 is composed of two scope snbnets of the same

type. Notice that now the only distinction between the global namesites and the local ones is the subnet

in which they are found. The association between identifier sites in the program of Figure 1 and namesites

in the visibility network must now be made in two parts, first selecting a subnet, then selecting a namesite

type (declaration or reference). More will be said about this later.

Just as the structures of scope subnets are constrained, so too are the ways in which they can be composed.

We will say that two scopes that can be connected meaningfully participate in a view relationship, and the
connection between them is a view. A view consists of connections between one or more pairs of ports in

the two scope subnets. A port is designated in the figures by a semicircle attached to a vertical bar. The

scopes of Figure 2 are participating in a view relationship reflecting lexical containment, and the single

view connection is between the ports labelled inner-refs and outer-decls. Ports will usually be labelled

according to what can be found across that connection, outside of the scope. Some ports are desigitated

as multiple ports, by the presence of an asterisk (*), as are the inner-refs ports in the figure. Such ports

essentially can he duplicated as many times as necessary, to accommodate view connections to multiple

scopes. For example, a single block scope can contain, and therefore be connected to, an arbitrary minber

of inner block scopes.

By now, the reader should be able to view Figure 2 either as a network model of the visibility semantics

of the program in? Fi•gre 1, or as two copies of a scope subnee specifcatzon For 1)e C pk-rm ng vae.

These scope type specifications are actually class descriptions, with nmiultiple inheritance between classes

possible. This inheritance mechanism turns out to be invaluable for expressing the aspects common to

several scope types in a particular language description.

Visibility network diagrams, as a graphical specification technique, form a major part of a complete

specification language for describing the naming semantics of programming languages. The remainder of the

language, pieces of which are described in later sections, is more conveniently expressed in traditional, textual

3

fashion. The visibility network specifications can be represented textually as well, if necessary; naturally,

they are more understandable in graphical form.

3. More Complex VN Specifications

This section presents several examples of visibility network specifications of the naming semantics of Ada.

The purpose of these examples is threefold: 1) to elaborate upon the specification features already introduced,

2) to introduce and explain additional specification features, and 3) to illustrate the power and flexibility of

the visibility network model as a specification mechanism. The last purpose is well served by examples from

Ada, which has unusually complicated name visibility and binding semantics. This is not to say that more

common languages would not benefit from visibility network specifications as well.

3.1. Ada With- and Use-clauses

The first example concerns the visibility effects of with- and use-clauses. Briefly, a with-clause is attached

at the beginning of any compilation unit, and indicates the names of library units (top-level packages and

subprograms) that are to be visible within that compilation unit. A use-clause makes directly visible the

public declarations of the indicated packages, otherwise visible only by explicit selection (dot-notation). A

use-clause may appear directly after a with-clause, or within any basic declarative region. Figure 3 shows

the visibility network specification of the basic-decls scope type, from which. most other scope types in Ada

are derived (as desci ibed below). The top portion of the network largely repeats the basic structure already

seen in previous examples, with declaration and reference namesites, and ports connecting inner and outer

scopes.

3.1.1. With-clause Visibility

Ignoring for a moment the additional selector boxes and inner-outer connections, let us concentrate on the

with-clause semantics. Note first the namesite labelled with, which is associated with the identifiers that

appear in the with-clause. This namesite is at once a declaration site and a reference site, since it makes

a name visible for other references, but itself must be bound to a declared library unit name; hence the

namesite has both an incoming and an outgoing edge. Ilere we begin to see the generalization of the concept

of namesite: there are many more roles that an identifier can take on than just that of declaration or

reference. These roles will be defined on a per-scope-type basis, in terms of their effect on visibility and

binding.

The Ada language definition [U. 831 stipulates that the library unit names made visible by a with-clause

are to be visible as though they were declared immediately outside of the scope of the compilation unit. In

terms of the visibility network, this behavior would be most directly achieved by inserting a single with

namesite on the outer-decls edge of the outermost scope. However, the presence of body stubs and subunits

complicates the situation. Although a with-clause can only appear at the outermost scope boundary of a

compilation unit, that compilation unit may be a subunit, a separately-compiled body of a subprogram,

package, or task declared within another compilation unit. In that case, the visibility within the subunit

must be as if it appeared lexically in the place of the corresponding body stub, except that any attached

with-clause should be treated as though it appeared at the beginning of the containing unit. Therefore,

4

Souter .uses innerý_usefs

Figure 3: Visibility network specification of Ada's basic-decls scope type.

the visibility network model of the subunit is unaffected by its textual separation from its 'outer' scope,

except that the with names visible in the outer scope must be pooled with those visible from the subunit's

with-clause. Effectively, any 'body' scope can add its own with names to the accumulating pool, regardless

of its nesting depth. Local references can then tap that pool, with a lower preference than local and outer

declarations, as seen in the second preference selector, simulating the presence of the with names outside

the outermost scope.

The local with names are pooled with those in outer scopes using the 'equal' selector seen in Figure :3.
This type of selector indicates that all source paths are to be searched, but successful binding occurs only if

all visible identifier sites are the same, or bound to the same declaration. This, too, is consistent. with the

definition of with-clause visibility.

3.1.2. U-se-clause Visibility

So far we find two separate 'streams' of visible names accunmlating as we proceed inward in the scope nIesting

hierarchy, with the two streams resolving name conflicts differently. A third stream, with yet another method

of conflict resolution, is created by the presence of use-clauses in the scopes. A use-clause does not represent

a set of explicit name propagation sites, as does a with-clause. The (possibly qualified) names in a use-clause

are simply reference sites, but each such reference opens a visibility path to some package declaration scope.

Note that the references in a use-clause at the beginning of a compilation unit must be simple references to

package names in the corresponding with-clause, hence the special use namesite. In terms of the visibility

network of Figure 3, each reference in a use-clause joins an additional package scope to the used-packlges

5

port. We will encounter the other end of this connec. .later.

The names made visible by all applieable use-claust- (including those in outer scopes) must be unique:
any name declared in more than one of the 'used' packages is not visible (except by qualification). In the

visibility network of Figure 3, this is accomplished by the 'unique' selector, designated by an exclamation
point. This setuztor requires that all source paths be searched, but binding only su-ceeds if a name is visible
along just one of those paths. As with the 'equal' selector, there is no ordering on the outgoing edges of the
'unique' selector. Multiple-source ports, like used-packages, can only be connected to selectors with this

property.

The pool of names visible through use-clauses is tapped for visibility by local references at the lowest
preference level. This is to say that any declaration visible from an outer scope can mask a name that would
otherwise be made visible by a local use-clause; this is consistent with the Ada language definition.

3.1.3. View Relationships

Figure 3 is drawn to suggest that an inner-withs port, for example, is always connected to the outer-
withs port of any inner basic-decls scope. However, no formal assertion of that invariant has yet been
presented. In the interest of having a mc lelling and specification formalism that supports analysis of
visibility constraints, it is essential that an assertion be made. This role is filled by view relationship

specifications, as illustrated in Figure 41

VIEW containment [basic_decls - * basic-decls]

SERVER basicdecls CLIENT basic-decls

inner-rats - outer-decls

inner-withs - outer-withs

inner-uses - outer-uses

VIEW export C * pkg-spec.public - * basic-decls]

SERVER pkg-spec-public CLIENT basic-decls

client-uses - used-packages

VIEW context [standard-package - * basicdecls]

SERVER standard-package CLIENT basic-decls

context-clause - library-units

Figure 4: View relationship specifications for the scope type of Figure 3.

Each VIEW specification defines a view relationship, such as containment, in terms of the way in which
participant scope types are connected by that relationship. This is nothing more than a correspondence
between ports in the scope types involved. The CLIENT/SERVER designations establish the directionality of

the connections, and asterisks define whether the connections are one-to-one, one-to-many, et cetera. These
annotations can be checked against the usage of the ports in the participant scope types. Naturally, any

scope type that is a descendent of basic-decls can participate in these view relationships. Note that, due

8

to the naming convention for view ports, the port names in each connection may seem reversed with respect

to the client and server scope type names. For now, view relationship specifications will serve to define

and constrain the ways in which scope subnet type can be composed into visibility networks. We shall find

another use for them later, in Section 4.

3.2. Ada Package Visibility

This section further illustrates the descriptive power of the visibility network model, by presenting VN

descriptions of the visibility and binding semantics of Ada packages. There will be less discussion of the

mechanics of the networks. The discussion will be limited to describing the semantic effects; the reader is

left to convince himself that the networks pictured implement those effects.

Sspec_subprog_heads spec_subprog_heads

subprog-body sbprog_head

I OI

decl ref

Figure 5: Visibility network specification of the package-body scope type.

Figures 5 through 7 depict three scope types, corresponding to the body of a package and the public

and private parts of its specification, respectively. Three separate scope types are required to represent the

different visibility semantics of the various regions, even though they embody a single 'declarative region'

in the terms of the language description [U. 83]. All three scope types are descendents of the basic-deels

type seen in Figure 3; each is depicted here as an extension of that diagram, which is shown in elided form

at the lower right corner of each network.

In a package body scope (Figure 5), we can find nested package bodies and subprogram bodies. If a

nested package body is present, the corresponding specification must he found in the current package body

scope, or its specification scope. Subprogram bodies can have an optional 'head' declaration, in the current

body scope or the specification scope. All declarations in the combined package specification and body scope

must be unique, and are equally visible to references in the body scope.

7

Sbody_subprog_refsd

•publicjdecls' public privates (

S~body_refs•

decl .ref

Figure 6: Visibility network specification of the private part of a package specification scope.

The small exclamation point (!) next to the subprog-head and package-body namesites in Figure

5 indicate that the same identifier may not be duplicated at multiple syntactic sites associated with those

name:ites. By default, any 'reference' namesite (one having an edge to the left) allows duplications, as does

the ref namesite. However, nested package bodies and subprogram heads must have unique names.

A package specification is associated with two separate scope subnets, one for the public declarations

(Figure 7), and one for the private ones (Figure 6). All declarations in the public part are visible in the

private part and the package body. Any private type or deferred constant declarations in the public part

must be bound to a full declaration ifi the private part. Any subprogram head in the public or private part

must be bound to a corresponding subprogram body in the package body.

The declarations in the public part of a package specification are visible to any client of that package,

whether that client uses qualified references (dot notation) or a use-clause to access the declarations. Note

that a qualified reference may appear textually within the client scope, yet still be associated with the

client-ref namesite in the package specification public scope.

Finally, any with- and use-clauses that apply to the two parts of the package specification must apply to

the package body as well. The reader can imagine how the basic-decls network, elided in these diagrams,

can be augmented with additional view ports to accomplish this.

4. Associating Syntax with VN Semantics

It has been indicated in the preceding sections that a visibility network model can be associated with any

program. Each scope subnet is associated with some syntactic construct, and each identifier site iii the

program is associated with some scope subnet and namesite thereof. However, thus far no mention has been

made of how these associations are specified. This will be described in this section.

8

pts~ ~ ~~ubprogb-lS supg.head pl..~.upojf

p ri v ~p rlv o r j. . e fe r P 1 : j T

client-mfre

Figure 7: Visibility network specification of the public part of a package specification scope.

For simple naming semantics, like that in the example of Figure 1, the mapping between the syntactic

structure and the visibility network model is readily apparent: each scope subnet is associated with a subtree,

and identifier sites are associated with the nearest scope along the path to the root. All that remains is

to indicate, for each type of identifier site, which namesite to use in the network. In general, however, the

situation can be quite a bit more complicated. Since we are concerned only with static visibility and binding,

the visibility network state can always be derived from the syntax, but the derivation might be complex.

A slightly modified form of attribute grammar will prove to be an adequately powerful mechanism for

describing the mapping between syntax and naming semantics. Briefly, an attribute grammar is a context-

tree grammar, augmented by sets of attributes attached to nonterminal symbols, and attribute equations

attached to productions. The attribute grammar describes the flow and computation of semantic information

on the substrate provided by the abstract syntax tree.1

For our purposes, the attribute grammar is used primarily to propagate scope subnets (or pointers to

them) around the tree. The sources of these propagations are scope-defining productions, and the destinations

are view-defining productions and identifier terminal sites. A scope-defining production instamntiates a scope

subnet, with the scope type specified. A view-defining production connects two or more scope suhuets

according to a particular view relationship. An identifier site installs a pointer to itself in the specified

namesite table of the given scope subnet. All scope attributes of nouterminal symbols are typed, so that it

is possible to statically check that the namesite in question can be found in that type of scope.

Once a reference site has been installed, and a binding has been constructed, that binding can be used

to provide access to attributes of the indicated declaration site. In order to provide this access in a safe

wpy, names and bindings must be given a type that defines a particular attribute signature:. These types

are called name types, and must be distinguished from namesite types. Common examples of name types

'In the complete paper, an appendix will show parts of an AG specification.

9

include procedure, variable, constant, etc.. -Each defines a particular set of public attributes, whose values

must be determined by equations associated with the declaration production. Often these public attributes

are used as sources of scope subnets, as in-qualified package references and record field references.

Note that the visibility network specifications are defined independently of the name types defined for

the language. However, binding of a reference to a visible declaration is conditional upon the declaration

name type satisfying a name type constraint on the reference site. This is the most common version of a

more general concept, a binding constraint, attached to an identifier site. In the most general case, a binding

constraint can be a boolean expression over values of local attributes at the reference site, the name type of

the visible declaration, and the values of public attributes of the declaration. Binding occurs only when the

constraint is satisfied.

Binding constraints are part of the machinery required to support general overloading of declarations.

In addition to binding constraints, visibility network selectors and declaration namesites must be annotated

with collision and error constraints. A collision constraint dictates when two visible declarations collide,

making neither visible. An error constraint specifies the conditions under which a collision should produce

an error message, and what that error message should be.

Binding, collision, and error constraints can be use to provide declaration-before-use enforcement. This

rule is not enforced by the default mechanisms of visibility networks: a scope is a region in the program

with homogeneous, uniform visibility. There are many reasons for this default behavior, documented in

[Gar87, Vor9O]. Declaration-before-use can be enforced by defining an integer-valued "declaration-order"

attribute for every nonterminal in the grammar. This attribute is incremented at every declaration, or any

other construct that introduces visible declarations. Binding and error constraints can then be used to

guarantee that no reference is ever bound to a later declaration.

5. Putting Visibility Networks to Use

The visibility network model offers a number of advantages for language designers, implementors, users, and

students. These advantages will be described in this section. They accrue from its visual nature, as well as

its precision in describing visibility semantics.

While the advantages can be realized using the visibility network model as a 'chalkboard' or 'pencil-and-

paper' technique, they will be more strongly realized when the model is implemented as a set of interactive

software tools. One tool will allow prototyping of VN specifications, using a direct manipulation interface.

This tool will support abstraction of scope type specifications from specific networks examples, as we did in

Section 2.2, as well as network layout assistance, to help produce network diagrams with the most intuitive

presentation. (Together, these two capabilities would have reduced by an order of magnitude the amount of

time spent by the author in producing the examples for this paper.) Due to the strongly-typed nature of VN

specifications, the specification prototyping tool can support analysis of the consistency and completeness of

naming semantics specifications. Finally, this tool will have a 'test' mode, in which scopes can be instantiated,

connected, and decorated with name instances.

The advantages here for the language designer should be obvious. This tool will have pedagogical

applications, as well, finding use to explain visibility in general, or the visibility rules of a specific language,

when used in a classroom demonstration setting. Similarly, the prototyping and testing tool can serve as an

online reference manual, with specifications of individual languages serving as their own documentation.

t0

Another tool will operate in conjunction with a language-specific editor, allowing the user to display

and query the visibility network associated with the program being edited. Various operations will allow

the user to explore the source of visibility of particular identifiers, the reasons that a particular declaration

is masked, and the correspondence between the network namesites and the identifier sites in the program.

This tool will offer its advantages primarily to software developers, and to students of specific programming

languages, programming languages in general, language design, and language implementation.

Finally, the visibility network model as a specification technique offers a particularly attractive advantage

to language implementors, whether they develop compilers or language-based editors. The specifications can

be translated into a set of tables that drive a language-independent naming semantics module. In other

words, an implementation of the naming semantics of a particular language can be automatically generated

from a visibility network specification. This is being done in the MacGnome project at CMU, where an

incremental naming semantics analysis facility has been incorporated into the existing Pascal environment,

although the tables are currently hand-crafted rather than generated. The scope and binding information

maintained by this 'naming layer' will support not just the error checking facility, but also tools such as a

code browser, cross-referencing tools, module dependency analysis tools, and various navigation aids.

6. Related Work

The visibility network model has its roots in the author's thesis work (Vor90], which had similar goals, but

used a much more limited, ad hoc model of visibility. To the author's knowledge, the visibility network model

is a novel approach to the problem. Garrison's inheritance graph model of visibility [Gar87] is related in that

it has a graphical basis, but that model is much less intuitive with respect to the specification of masking and

collision. However, Garrison applies his model to dynamic as well as static visibility and binding features,

while the visibility network model makes no attempt to describe dynamic features.

The extended attribute grammar specification presented in Section 4 is quite similar to a number of

previous efforts [Hed88, HM88, BC85, MK88, Cap85a, Cap85b], and does not represent a significant new

contribution. However, the use of attribute expressions to constrain binding and visibility is unique to the

approach described here.

tt

References

[BC85] G. Beshers and R. Campbell. Maintained and constructor attributes. In Proceedings of the ACM

SIOPLAN Symposium on Language Issues in Programming Environments, pages 34-42. ACM,

July 1985.

[Cap85a] M. Caplinger. Structured editor support for modularity and data abstraction. In Proceedings of the

ACM SIGPLAN Symposium on Language Issues in Programming Environments, pages 140-147,

Seattle, WA, June 1985. ACM.

[Cap85b] M. A. Caplinger. A Single Intermediate Language for Programming Environments. PhD thesis,

Rice University, Houston, TX, 1985. Rice COMP TR85-28.

[Gar87] Phillip E. Garrison. Modeling and Implementation of Visibility in Programming Languages. PhD
thesis, University of California, Berkeley, CA, December 1987. Tech. Report # UCB/CSC 88/400.

[Hed88] G. Hedin. Incremental attribute evaluation with side-effects. Technical Report LUTEDX(TECS-

3019)/1-17/(1988) & LU-CS-TR:88-37, Lund University, Lund, Sweden, 1988.

[HM88] G. Hedin and B. Magnusson. The Mjolner environment: Direct interaction with abstractions.

Technical Report LUTEDX(TECS-3018)/1-14/(1988) & LU-CS-TR:88-36, Lund University, Lund,
Sweden, 1988.

[MK88] Josephine Micallef and Gail E. Kaiser. Version and configuration control in distributed language-

based environments. In Proceedings of the International Workshop on Software Version and Con-

figuration Control, pages 119-143. B. G. Teubner Stuttgart, 1988.

[U. 83] U. S. Dept. of Defense, Washington, D.C. Reference Manualfor the Ada Programming Lanaguage,

January 1983. (ANSI/MIL-STD-1815A).

[Vor90] Scott A. Vorthmann. Syntax-Directed Editor Support for Incremental Consistency Maintenance.

PhD thesis, Georgia Institute of Technology, Atlanta, GA, March 1990. Tech. Report GIT-ICS-

90/03.

12

