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operating systems. In addition to real-time support, multithedis Ires Targe s
data to be moved between devices and processes. Qljxmdmﬂmbedlmsetof
applications that stress consistent low-latency response and efficignt interpragess cotfhtinication
for large blocks of data. The Multimedia Testbed was ported to the Mach 3.6 Operatihg System
where performance was measured. Experiments were conglucted to compare variolis techniques
for [PC and disk reads. Experience with fixed priority scheduling; user-levet device drivers, and
a high-resolution timer are also reported. L 8
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1. Introduction.

In recent years, multimedia has become a key concem in the architecture of operating systems
and applications. Multimedia has many definitions, but from the operating system perspective,
we will take ‘‘multimedia’” to mean conventional graphical display capability augmented with
continuous-time digital media such as animation, video, and audio. New system support is
required for multimedia because multimedia presentations inherently take place in real time,
multimedia data rates are typically higher than those for simple text or graphics, and system
abstractions for time, synchronization, media access, and media processing offer new areas for

system support.

In this report, we examine the Mach Microkemel [Accetta 86] as a base for multimedia
support. Our method is to develop applications, often ported from other systems, and measure
their performancs. Unlike many performance studies that isolate and measure a single operation,
our focus has been on ‘‘end-to-end’’ performance measurements in a system configured for
normal use. In addition, we measured individual operations to explain the overall results.

Our measurements are guided by two principal concerns. The first involves response latency,
and we measured this with a set of music programs that output MIDI signals to music
synthesizers in response to user input or to timer interrupts. The second involves interprocess
communication, and we implemented a digital video application to stress this aspect of the
operating system. We did not explore real-time network communication because Mach' has no
real-time support in this area.

Several techniques were used to improve real-time performance of our applications. First,
Mach supports fixed-priority threads which are scheduled before ordinary timesharing threads.
Second, we used a kernel-based high-resolution timer service. Third, we used a ‘‘user-level’’
device driver to avoid Unix I/O. Finally, we used shared memory interfaces for efficient
interprocess communication.

All timings are performed on a 33Mhz i486 processor running a Mach 3.0 MK69 Microkernel
with a Mach 3.0 UX36 Unix server on a Gateway 2000 486/33C computer unless otherwise
noted. In most cases, tests were done with machines running network servers and the Andrew
file system, both of which impose significant loads that are difficult to predict.

1.1. What should we expect?

In many ways this paper is unfair to Mach and its designers. To run real-time programs on a
non-real-time operating system is asking for trouble. It should come as no surprise that we found
it. A number of noted researchers, however, believe that real-time problems can be handled by
current systems such as Mach. Anecdotal evidence is often cited, such as the ability to handle
network interfaces without losing packets, the fact that faster processors and memory are
reducing context-switch and IPC times, and the fact that microkernels can reduce the time during
which preemption is disabled or shared resources are locked. All these are valid points, but there
are other factors to consider.

Mach is still a fairly Unix-oriented system, and applications ordinarily make many calls to the
Unix server for services such as I/O and time. Since the Unix server has very unpredictable
performance, we should not expect real-time performance from any of its clients. Another set of




issues has to do with scheduling. A Mach fixed-priority thread will not preempt an ordinary
thread until the end of its quantum, so there is a built-in latency. There are also fixed-priority
threads in the Unix server that interfere with applications. Finally, there are kernel threads such
as the io_done thread that do not have fixed priority and can become very low in priority. The
kernel itself is non-preemptive, and there are some long paths that take an indeterminate amount
of time to execute.

Our goal is to share practical experience and real performance measurements. We would like
OS designers to consider that latency and predictability should be good enough for multimedia
even in the worst case. This is very different from almost always good enough. This report may
shed some light on the extent to which work is required for multimedia support. Finally, it is
important to make things easy where possible. Our experience may encourage designers to make
systems easier to use.

At the time of this writing, Mach is being modified to incorporate facilities from Real-Time
Mach (RT Mach [Tokuda 90]), and we are porting our applications to RT Mach. We expect
better real-time performance and interesting new results in the future. By studying Mach now,
however, we can obtain benchmarks that can be compared to RT Mach later, and we can
estimate what kind of performance can be reasonably expected.

The next section describes related work. Sections 3 through 6 describe operating system
modifications and device driver issues associated with our set of MIDI (music) applications.
Sections 7 through 11 then describe system issues and measurements for our digital video
applications. Section 12 presents our conclusions.

2. Related Work.

Researchers at Fujitsu Laboratories have used Mach for multimedia applications. Mach 2.5
was extended with real-time threads and other facilities to support multimedia applications.
[Nakajima 91] The main parameter studied was event dispatch latency. A worst case of about
20ms was achieved by a combination of scheduling and support for preemption in the kernel.

Subsequent work [Nakajima 92] produced even better performance under an extended Mach
3.0, where worst-case latencies of about 10ms were observed. An analysis of the sources of
latency points to two problems: the SCSI disk interrupt handler can cause unpredictable delays
and interrupts can interfere with real-time “areads.

These two studies both rely on kernel extensions similar to those provided by RT Mach, so we
are encouraged by the low latencies reported. These studies did not measure IPC performance,
disk performance, or run with heavy network traffic, so there are remaining issues to consider.

The user-level I/O facilities of Mach that are used in our study are described in [Forin 91].
This work is extended in [Golub 93]. A shared memory interface to XII and its performance is
described in [Ginsberg 93]. Our XII server is a descendent of this work.




3. Low-latency applications.

A real-time system that deals with temporal media should be able to provide low-latency
response to user input. An extreme case is a music performance system where input from a
music keyboard must be routed to a synthesizer within a few milliseconds. Another example is a
video or audio editing system where a user might tap the space bar to mark an edit point while
watching or listening in real time. User input should be captured and timestamped within about
10ms.

Our original application was a music conducting system in which the user taps a tempo and the
conducting system dynamically adapts to the user’s tempo. In this application, a musical score is
loaded from disk to memory before the performance. Once the performance is started, input
comes from the user’s taps and from the real-time clock, and output is to the MIDI serial port,
which is connected to an external music synthesizer. One of the interesting characteristics of this
application is that input handling must be done in real time by the application program.
Although possible, it would be unusual to put this sort of complex, adaptive input handling in a
device driver.

While this application is good to illustrate requirements, we soon learned that a much simpler
system could exhibit the same basic requirement but make measurement easier to perform. We
wrote a program that outputs 100 MIDI messages per second. This program is similar to the
conducting program in that it requires low-latency response from input (the real-time clock
device) to output (MIDI) and runs at the application/user level. In addition, the output in this
case is simple and predictable, making it easy to measure performance. Before reporting on
performance, we will describe the real-time clock and MIDI device drivers in some detail.
Readers may wish to read Section 4.4 and then skip to Section S.

3.1. Providing real-time clock services.

The real-time clock services were provided by integrating a modified version of Jack Test’s
clock service for OSF-1/MK into the MK69 version of Mach. (Mach now has a real-time clock
in the standard release.) The goal of this clock model is to provide accurate services for setting
and reading the clock, along with an alarm service for timing events.

Time is represented by a t imespec — a structure containing two integers. The t imespec
is P1003.4 compliant; that is, the first value represents a number of seconds, the second a number
of nanoseconds (valid in the range [0,10%). The system real-time clock is a timespec
representing elapsed time since the system boot.

The alarm service is provided in two forms. In each, times may be expressed either as an
absolute time since the last reboot, or as a time measured from when the IPC is received by the
kernel. The first form acts very much like the normal Unix sleep () call: The calling thread is
suspended until the specified time is reached. The second is asynchronous: An IPC is sent to a
specified port when the time is reached. The granularity of the timing of these alarms is
adjustable; values as small as half a millisecond have been used without adverse effect upon
system performance (see Section 6 for measurements). ’

The in-kernel implementation of this clock service is relatively straightforward. The
granularity of the clock operations is mapped into a frequency, which is used to determine how




often the system clock is updated, and how often alarms are checked. Whenever a thread sets an
alarm (synchronous or asynchronous), it is placed in an ordered list of alarms. Alarms are
checked within the clock interrupt. If the alarm was synchronous (the thread is suspended until
the time of the alarm), the thread is flagged as ready to run, and will run according to its priority
when the scheduler schedules it. If the alarm was asynchronous (IPC), it is placed upon another
list, this one composed entirely of expired alarms. At this time, another kemel thread, the alarm
thread, is marked as ready to run at high priority. When this thread runs, it traverses the list of
expired alarms, removing them from the list and sending an IPC to each port listed. The reason
that the IPCs are not sent from within the clock interrupt is that interrupts may come at any time,
even within other IPCs. Therefore, it is not necessarily safe to send an IPC during an interrupt.
(An alternate faster approach is to create a software interrupt — known as an ‘‘AST"’ in Mach
— which would run ahead of regular kernel threads, at a time when it is safe to send IPCs.)

The interface between user processes and the kernel clock services are provided by IPCs.
Messages to the clock server are dispatched in the same manner as other kernel services (such as
the device server, the norma server, etc.). Messages are sent on one of two ports — the clock
port and the clock control port. Actions which change the state of the clock (such as setting the
clock rate, the alarm resolution, etc.) can only be performed using the clock control port; normal
actions (such as querying the time and setting alarms) can be performed with either port. There
are IPCs to query both of these ports from the kernel. To get the control port, one must use the
host privileged port. _

4. The MIDI device driver.

Our MIDI device driver interfaces to a Roland MPU-401 or compatible interface. This
interface has small buffers for incoming and outgoing data. Interestingly, the MPU-401 will
interrupt the host when the input buffer becomes non-empty, but there is no interrupt when the
output buffer becomes non-full. We use the MPU-401 in ‘‘UART Mode,”’ which means both
input and output pass through the device as uninterpreted byte streams.

4.1. Overview.

The MIDI device driver is divided into three major components: the user-level output portion,
the in-kernel driver, and a user-level input server. Because output to the MPU-401 MIDI
interface is accomplished by polling a register to determine whether or not the adapter is ready
for data, and storing a byte in a register on the adapter when it is, no in-kernel code is necessary
to handle interrupts, DMA, or other low-level hardware requirements for output. On the other
hand, MIDI input requires that an interrupt be serviced when the MPU-401 wishes to present
data to the system, and that this data somehow gets moved into user address space. The in-
kernel portion of the MIDI driver does exactly this; when an interrupt arrives, it reads any
available input bytes into a page of memory and raises a semaphore also located in this page. A
user-level server maps this page into its own address space, and waits on the semaphore. When it
awakens, it parses the new data into timestamped messages and sends them to its clients via
IPCs.




4.2. MIDI Output.

Output is provided in the library 1ibmidi . a, which provides these functions to other levels:
read a data byte, read the status byte, send a data byte, and send a command byte. When
asserting a byte (data or command), the caller is responsible for determining that the MPU buffer
is not full by reading and checking the status byte.

A more generally useful level of functionality is provided by the real-time MIDI library
(1ibmtmidi.a). This library provides user-level processes with the ITC standard MIDI
interface (documented separately). When an mi_id (an abstract representation of the MPU
used by the user process, and passed to all mtmidi functions) is created, several threads are
automatically spawned and associated with the new mi_id.

One of these is a useless thread; it sleeps continuously. Its purpose is to receive signals.
Because signals are a Unix-level concept, they do not exist as far as low-level Mach functions
are concerned. Therefore, unlike normal Unix system calls, Mach system calls cannot be
interrupted by signals. The behavior that results from this condition is somewhat undesirable;
Mach programs in the midst of blocking while performing a Mach-specific operation (such as
waiting for an IPC, as is most often the case within all Mach system calls) will not stop if the
process is AC’d, or receives any signal (except sxgnal 9, which the Unix server does not deliver to
the process but instead uses to abort the process’s threads). A solution to this problem is to have
a process blocking on a Unix-level function (in this case, sleep () ). This thread will receive
the signal, which will then have its normal effect on the running process.

Two threads work together for MIDI output. Using the ITC MIDI library, all outgoing
messages. aave associated with them times at which they should be sent. When any thread in the
ordinary user-process enqueues a message, a function in 1ibmtmidi enters a critical section
and inserts the message into a queue of outgoing messages (unless it’s timestamp is such that it is
late or out-of-order; handling of these messages will be explained below). After doing so, it
asserts a condition (a C-Threads equivalent of a semaphore) that the queue has changed, and
returns.

The first of the output threads is interested in this condition. When it receives it, it wakes up
and examines the message at the head of its queue. It then uses the real-time kernel sleep service
to wait for the time when the message should be dispatched. When it awakens after sleeping, it
first examines its associated mi_id to see if it has been closed. If so, the thread exits cleanly.
Otherwise, the thread continues to execute normally. All messages whose dispatch times have
come are removed from this queue of outgoing messages and placed in another queue. This
second queue contains nothing but messages that should be dispatched immediately. (When late
or out-of-order messages are enqueued, they are placed directly into this second queue). The
thread then asserts the condition that this second queue has changed, and re-examines the first
output queue. If the queue is empty, it will wait for the condition that something has been placed
in this queue, otherwise it will sieep until the dispatch time of the item at the head of the queue.

The second output thread actually does the work of sending the bytes. As long as there is any
data in the queue of messages to be dispatched immediately, it will continue to send bytes. When
this queue is empty, it will wait for the condition that something has been placed in this queue to
be signalled. (This thread also examines its mi_id when it awakens to determine if it should
exit). As long as the MPU-401 output buffer is not full, it will continue to send bytes. When the




MPU-401 is full, the thread will sleep for a few milliseconds to give the MPU-401 time to clear
its buffer.

4.3. MIDI kernel input.

The original conception of the MIDI device driver was that it would use a page of memory
shared between the kemel and the application process. The interrupt handler would write data
into this shared page, and the user-level process would read from it. Inevitably, this raises
problems of synchronization. Within the microkernel, there is a set of functions that provide
semaphores explicitly to be used for synchronizing an interrupt handler’s communications with a
user ‘evel process in a page of shared memory.

In the kernel version used for our work, the user-level process is required to delete semphores
before exiting; otherwise, a system crash could occur. (This problem has been fixed in more
recent releases.) This led us to implement the device driver as a server process rather than link
the driver into the application process.

When the machine boots, before the Unix server is started, the microkernel initializes all its
devices. First, it calls the probe method of all its drivers to determine what devices are present.
The probe method indicates whether or not a device is present, and if it is, it allocates any
necessary storage for dealing with this device. (This is where the page to be shared with the
user-level process is allocated; this shared page must also be wired to avoid swapping). The
device should not enable interrupts at this time. Later in the boot, the microkernel calls the attach
method of each device found by probing. This method associates the driver with its interrupt.The
open method is called when the user-level process performs a device_open. This method
initializes the semaphore in the shared page, and resets the MPU-401 MIDI interface hardware.
When the user-level process wishes to access the shared page, it calls device_map, which
results in a call to the mmap method in the MIDI driver. This method must return a special
indicator of the page to be shared. To do so, it maps the kernel virtual address for this page
directly to a physical address (using kvtophys () ), and then uses 1386_btop () to map this
physical address to a page indicator.

4.4. Device driver issues.

Let us summarize the design issues thus far. Traditional (at least for Unix) in-kernel device
drivers offer efficiency and a variety of implementation options, but development is painful. This
led Mach designers to add support for ‘‘user-level’’ device drivers [Forin 91]. Despite the
name,‘‘user-level’’ drivers require in-kernel interrupt handlers that signal user tasks and perform
time-critical data transfers (such as moving data from a register to a buffer). Since interrupt
handlers cannot be loaded at run time, installing a new driver requires that a new kemnel be built.
(IBM has implemented dynamically loadable interrupt handlers in a proprietary version of
Mach.) Drivers based on IPC are slow, and messages cannot be sent from within interrupts
anyway, so the preferred structure for a *’user-level’’ driver is a shared page for data transfer and
a semaphore for asynchronous event notification.




4.5. MIDI input server.

When the MIDI input server starts, it must gain access to the page shared with the in-kemel
device driver. To do so, it must first get a port to use to communicate with the driver, using
device_open. This requires the master device port, which is returned by
task_by pid(-2) (but only to the superuser or member of the kmem group, which is why
this server runs as root). At this point, before the shared page is accessed, the input server sets
traps for all Unix signals. These traps will cause some signals to be ignored entirely. Others will
cause the device port to be closed, and then the input server will exit. As usual, a thread that does
nothing but sleep is detached to receive these signals. Next, device_map is called, which will
return a memory object suitable for passing to vm_map. It is vm_map which actually provides
the virtual address of the shared page to the user-level process.

This shared page contains the id number of the semaphore that the user-level process must use
to wait for an interrupt. When the interrupt handler is called, it reads as many bytes as it can from
the MPU-401 into a circular buffer in the shared page, and increments a counter in this shared
page that indicates where in the buffer the next byte will be inserted. Once there are no more
bytes to be read, the interrupt handler raises the semaphore and returns. The user-level process
maintains a second such counter (which is initialized to the value of the counter in the shared
page when this page is mapped into user space). When the input server wakes up after waiting
for the semaphore, it reads bytes out of the buffer while incrementing its counter until its counter
equals the one in the shared page, at which point it waits for the semaphore to be raised again.

After access to the shared page has been gained, the MIDI input server creates a port on which
it will listen for IPCs. This port is registered with the netname server with the name
‘‘midi_inputport’’ so clients can easily locate this port. When a client wishes to receive MIDI
input, it creates a port of its own and sends it to the MIDI input server. The client requests
normal and system-exclusive messages separately, so if it is not interested in one it need not be
notified. The data bytes of normal messages are passed inline, because they are at most three
bytes long. System exclusive messages are passed as a length and a pointer to a copy-on-write
buffer.

As each byte is read out of the shared page, it is passed through a MIDI parser, which
reassembles the bytes into complete MIDI messages (adding status bytes where running status
was used, moving normal messages out of the middle of system-exclusive messages, etc.).
Whenever the parser encounters a complete MIDI message (either normal or system exclusive),
all clients interested in this message are notified. The parser timestamps all messages, and the
times of these messages are passed along with message contents to the interested clients. (These
timestamps are timespecs representing elapsed time since system boot).

The server uses mach_port_request_notification to find out when one of its
interested client ports is destroyed for any reason; when this happens, it removes this port from
its lists of interested clients. This is accomplished by passing the registered server port as the
listening port to mach_port_ request _notification, and passing incoming IPCs
through notify_ server, which is part of 1ibmach. This requires that several symbols be
defined for the notification port to call back into the MIDI input server, these are:




do_mach_notify port_deleted,
do mach not:ify msg_accepted,
do_mach_notify port_destroyed,
do mach notify no_senders,
do_mach notify send |_once, and
do mach notify dead name.

Each of these takes two arguments, both of type mach_port t,andmnn'nsavalueoftype
kern_return_t. Because the only notification ever requested in the MIDI input server is
MACH_| NOTIE‘Y DEAD_NAME, all of these functions except do_mach_notify dead name
donothmgexoeptxennnKERN FAILURE (smcetheyshouldnothavebeencalledmthcﬁrst
place). In do_mach_notify dead name, the second port passed in is deleted from both
(system-exclusive and normal) lists of interested clients if present, and returns KERN _SUCCESS.

4.6. MIDI library input.

~ When an mi_id is created, the ITC MIDI library automatically creates an input thread
which creates a port and registers itself with the input server as interested in both normal and
system-exclusive messages. This thread caches the mi_id along with the receiving port that it is
associated with in a separate list. When it receives an IPC from the input server, it looks up the
associated mi_id from its cache. In this manner, several mi_ids can coexist within the same
process. The message is placed in the mi_id’s input queue, and a condition indicating that
MIDI input has occurred is signalled.

Calls to mi_get (for normal MIDI messages) and mi__getx (for system exclusive messages)
examine this input queue, and remove items from it as necessary. We use separate calls because
normal MIDI messages have a maximum length of 3 bytes and are easily handled as fixed-length
data, whereas system-exclusive messages can have any length. If the queue is empty and the call
is specified to block (by a function parameter), the calling thread will be suspended pending the
signalling of the condition that MIDI input has occurred.

Like the output threads, the MIDI input thread examines its mi_id when it is awakened to
determine if mi__close has been called and the thread should exit.

5. Performance of the MIDI system.

To evaluate the performance of the Mach 3.0 microkernel under real-time constraints, we
constructed a simple program which enqueues 100 MIDI messages per second (maximum MIDI
bandwidth is about 1000 messages per second), approximately one second in advance. Ideally,
the messages would be dispatched one every 10 milliseconds, indicating perfect performance.
This proved not to be the case.

Before describing the measurement of MIDI output by Mach drivers, we will describe our
instrumentation, consisting of an IBM RS/6000 running AIX 3.1, using a MIDI driver developed
earlier. This AIX MIDI driver timestamps incoming messages within the device driver, at high
interrupt priority. Before we can make claims about Mach MIDI output drivers, we need to
measure the accuracy of the RS/6000 MIDI input drivers. We did this by generating 100
messages per second on another RS/6000 and recording the maximum interarrival times of
messages. If both machines were infinitely fast, we would measure exactly 10ms between each




incoming message. If however, the receiving machine occasionally takes 1ms to respond to the
MIDI receive interrupt, then occasionally the reported interarrival time will be 11ms. In fact, we
measured a maximum interarrival time of 10.7ms. This is not necessarily all due to the receiver,
but since we are looking for an upper bound, we conservatively use the figure 0.7ms as the
worst-case timing error. If we run a file-system intensive process on the receiving RS/6000, we
can push the error up to 1.1ms.

Returning to Mach, we examined performance under two conditions. In the first, the output
threads are scheduled the same as other threads using a timesharing policy. In the second, fixed
priority scheduling is enabled on the processor, and the output threads are set to run at the
highest priority. In both cases, the output threads were wired to kernel threads, and the pages
containing outgoing messages were wired to prevent the message queues from being swapped.

An important point to note about fixed-priority scheduling is that it is not properly supported
by the C-Threads package. C-Threads uses spin locks to avoid costly kernel calls, and it
assumes that when a thread yields the processor, that another thread will run. If threads are .
scheduled according to fixed priorities, a priority-inversion situation may cause starvation. We
discovered this only after finishing all of our implementations (based on C-Threads) and
measurements. There is no evidence that serious problems occurred, but this problem certainly
requires attention. We are implementing our own synchronization primitives for our port to RT
Mach.

On an otherwise unloaded system, output intervals fell mostly in the 9.5 to 10.5 millisecond
range, with a few variations outside this range. The maximum interval noted with fixed priority
threads on an unloaded system was 16.7 milliseconds, indicating that something preempted our
threads for about 6.7 milliseconds. Using a timesharing policy on an unloaded system, intervals
again fell mostly in the 9.5 to 10.5 millisecond range. The number of variations outside this
range was much greater, however, and the maximum observed interval was 21.6 milliseconds,
indicating an 11.6ms latency.

Adding a single, compute-bound process to the machine that performed no input or output did
not noticeably affect the intervals when fixed priority scheduling was active. Tests using the
timesharing policy did not fare as well though; the interval for message arrival times increased to
encompass the entire 9.0 to 11.0 millisecond range, and the number of messages falling ou:side
this range increased dramatically. Several delays of more than 200 milliseconds were observed.

Performing a compile in an uncached AFS volume introduced a worst-case scenario. Another
process was not only competing for CPU time but was also performing many disk and network
accesses. The effect on the timesharing policy client was dramatic; the delays between most
messages varied over a range from 6.0 to 14.0 milliseconds, and a large number of messages fell
outside this interval. The most dramatic delay between messages was over 10000 milliseconds
(ten seconds). The fixed priority client fared much better. Most message delays fell in the 9.0 to
11.0 millisecond range, with a maximum variation of 149.6 milliseconds. This indicates that
network threads interfere with real-time performance. The number of delays outside the 9.0 to
11.0 millisecond range was extremely low, and as anticipated, the compile took significantly
longer while running with the fixed priority MIDI client.

Figure 1 is a screen dump from our RS/6000 MIDI timing monitor program. The horizontal
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lines (vertical axis) represent interarrival time in units of 1ms. The interarrival time is plotted on
successive horizontal pixels for each incoming MIDI message. When the right edge is reached,
the program wraps around to the left edge; thus, the resulting plot is the superposition of several
passes from left to right. In a perfect sy...m, all points would fall at the 10ms line. While
producing the plot by running a fixed priority task in Mach, we remotely ‘‘finger’d’’ a user on
the Mach machine. The Mach system’s finger demon fetched a . plan file from AFS, resulting
in a MIDI delay of more than 60ms. (This is off the scale, but indicated by the ‘‘Worst case’’
number displayed at the lower right comer of the figure.) This illustrates that even a fixed
priority program on an ‘‘unloaded machine’’ can fail to meet real-time requirements. Any
machine on the internet is capable of making the same finger request.

MIDI performance measurement
doing performance measurements... Worst case: 70.5 as

Figure 1: Plot oif MIDI message interarrival times. Each line represents 1
millisecond. The data points cluster around the nominal 10 ms line, but notice the
scattered points near the right side of the figure indicating longer delays.

For the next test, we ran two xterms on the Mach machine, displaying elsewhere. While the
MIDI output clients ran, the mouse pointer of the host where the data was being displayed was
passed over the two xterms, without keyboard input or mouse clicking. This generates X11 Enter
and Leave notification events (which xterm requests, and uses to redraw its text cursor as either a
solid or outlined rectangle). Using the timesharing client, the normal range of message delays
was 9.0 to 11.0 millisecond range, with large numbers of messages falling outside this range,
distributing themselves over the 1.0 to 18.0 millisecond range. The greatest observed delay was
165.1 miliiseconds. When using fixed priority output threads, most messages remained in the
rormal 9.5 to 10.5 millisecond delay range. Several rapid mouse passes were necessary to trigger
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a delay in message dispatching, and the largest such delay generated was 21.7 milliseconds.

Keyboard input in an xterm running on and displaying on the Mach machine spread the
messages of the timesharing client over a range of 1.0 to 28.0 milliseconds, with the maximum
delay of 169.9 milliseconds. Using the fixed-priority client, the normal range of delays was 9.0
to 11.0 milliseconds, with a several messages falling outside this range. The greatest delay was
109.6 milliseconds.

With no load on the system, pressing the return key on the console of the Mach machine had a
dramatic effect. Each keypress caused the next message to be dispatched with a 30 to 36
millisecond delay. The greatest observed delay was 36.5 milliseconds. While most such
keypresses did not affect the fixed priority output client, about 1 in 10 did cause delays of up to
34.3 milliseconds. This indicates that keyboard input is also a problem.

Mouse input while the Mach machine runs the X window system is another cause of distress.
Simply moving the mouse pointer back and forth over a distance of about an inch over the root
window, without entering or leaving any windows, caused the normal range of message delays in
the timesharing client to fall in the 1.0 to 24.0 millisecond range. The greatest delay was 521.2
milliseconds. The fixed priority client fared somewhat better, most messages fell in the 9.0 to
11.0 millisecond range. Quite a few messages fell outside this range, however, with the greatest -
observed delay being 20.1 milliseconds. This indicates that mouse handling is a serious problem
for real-time applications.

Table 1 summarizes these measurements. In general, fixed priority scheduling helps, but the
performance is still intolerable.

Latency Timesharing | Fixed Priority
No Load >11ms >6ms
Compuzation Load >200ms >6ms
AFS Load >10000ms >159ms
X11 +Network Load >155ms >11ms
X11 Keyboard Input >159ms >99ms
Console Keyboard Input| >26ms >24ms
Local X11 Mouse Input >511ms >10ms

Figure 1: Latency table summarizes message delays.

5.1. Summary of interrupts and low-latency scheduling.

While Mach enables programmers to develop device driver code outside the kernel, the term
‘‘user-level’’ is somewhat misleading. In practice a driver consists of an interrupt handler that is
compiled into the microkemel, services interrupts, and performs other hardware-level activities.
This is not a fundamental problem, as demonstrated by proprietary systems that can dynamically
load interrupt handlers, but it is a practical consideration. The bulk of the device driver can run
in a user-level process, but the process must have root privileges. Again, this is not a
fundamental problem, but a practical consideration.
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Performance measurements indicated that there are several issues which need to be addressed
for Mach to provide reliable real-time services. While the fixed priority thread scheduling clearly
works, there are several high-priority threads in the system which can interfere with real-time
processes (such as the keyboard, mouse, and network input threads). In the past, setting these
threads to run at the highest possible priority has not interfered with ordinary Unix activities.
Unlike ordinary processes, real-time processes cannot be preempted with impunity, even for a
few milliseconds. At this time, under the existing Mach, a fixed-priority thread is only assured
of running within about 0.15 seconds of its requested run time.

6. Timer overhead measurements.

Another parameter we measured is the overhead of interrupts on the system. This is important
because the system clock is typically implemented as a periodic interrupt. If the overhead per
interrupt is high, then there is a tradeoff between clock resolution and system throughput. We
measured the overhead of the clock by changing its interrupt frequency and measuring the
resulting impact on a background process. The background process simply loops to consume al!
the available processing power. We made sure that the background process read through many -
lines of code and accessed many memory addresses in an attempt to flush the cache between
timer interrupts.

Since the clock interrupt time and the time to perform one iteration of the background loop are
both unknown quantitics, we made one measurement with an interrupt rate of 100Hz, which
allowed 1530 iterations per second, and another with an interrupt rate of 2000Hz, which allowed
1333.6 iterations per second. Solving for clock interrupt time, we get 67us. There is some
variation from one run to the next, even running on a stand-alone system, but this measurement
is repeatable to within a percent or two.

Given the clock interrupt time, we can estimate that a 1KHz clock rate will consume 6.7% of
the available processing time. This seems to indicate there is a trade-off between clock
resolution and processing overhead: the better the resolution, the more clock interrupts there are,
and the more processing time is wasted. It appears to be possible, however, to use the time-of-
day clock on PC/AT hardware to generate low-frequency periodic interrupts, freeing the
currently used timer for high-resolution interval timing. This would reduce overhead because
the interval timer could be set to interrupt only at times when processing is required. At the
same time, resolution would improve because the timer resolution is a fraction of a microsecond.

7. Digital video applications.

Digital video typically requires high-bandwidth data transfer across several process
boundaries, so it is an interesting test for operating systems. We implemented a digital video
playback system as part of our multimedia testbed. We will describe the application and then
present measurements of various components of the system.

7.1. Tactus.

The digital video application is really a general purpose multimedia playback system. The
system is based on Tactus, a multimedia extension for the Andrew Toolkit. Since Tactus has
been described elsewhere [Dannenberg 93], we will only summarize the basic mechanisms of
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Tactus here. Tactus is based on the principle that if multimedia data can be precomputed or
prefetched into buffers, then the data can be delivered to devices with low latency and accurate
timing. (See Figure 2.) A problem with this idea is that when data is prefetched and buffered, it
can be difficult to maintain synchronization between streams. Therefore, Tactus expects data to
be timestamped. Tactus uses timestamps to achieve and maintain synchronization.

RO
@ Message with

Timestamp Tactus
Server

Client " [Audio/
‘ Video

H

MIDI

Figure 2: The Tactus System. Clients send timestamped data (heavy lines) to the
server ahead of real time. Data is buffered and then delivered to various
presentations devices. Some presentation devices (e.g. MIDI as shown here) may
accept data early and provide further buffering and more accurate timing than can
be provided by the Tactus Server. The clock on the left shows logical time as
seen by the client, while the clock on the right shows real time as seen by the
Tactus Server.

Tactus is implemented in two parts. The Tactus server is a process that buffers and
synchronizes timestamped streams of multimedia data. The Tactus toolkit extensions form a
library that helps programmers to schedule data-producing computations. The toolkit also
generates timestamps for the data and delivers the data to Tactus. As a result, the programmer
can often write multimedia programs as a collection of simple ‘‘active’’ objects, which request to
be run at specific times. Tactus automatically runs the objects early, timestamps the output,
delivers it to the server, and synchronizes the output with streams from other objects. This
greatly simplifies the programming of a real-time, concurrent system.
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7.2. The Application.

Our multimedia playback system will now be described. The user selects a presentation by
clicking on an icon in a scrolling window. The application then begins reading multimedia data
from disk and sending it to the Tactus synchronization server. The Tactus server forwards data
to various devices and maintains synchronization between multiple data streams. The Tactus
server runs at a higher priority than the application, and time-critical threads in Tactus avoid
making calls to the Unix server, so Tactus has tighter real-time properties than its clients.

In order for this system to work, we need efficient data transfer through a number of processes:
Data moves from disk to application to Tactus to the X11 display server. Data movement
requires memory allocation, memory copy, and release as well as synchronization between
processes. We explored various implementations and report on their performance below.

8. Memory Transfer.

There are many ways to transfer data. . We begin by timing repeated calls to bcopy, copying
from one memory buffer to another. Copies of multiples of 4 bytes ran at 10MB/s to 14MB/s,
based on 10,000 to 100,000 iterations and blocksizes ranging from 656 to 65536 bytes. We have
not yet explored the observed variance. When blocksizes are not multiples of 4 bytes, the
transfer rate is between 3.5MB/s and 4.0MB/s.

For comparison, an RS/6000 model 530 copies about 4SMB/s, a factor of 3 to 4 improvement.

8.1. In-line IPC.

Mach IPC messages can transfer data in-line, where data is copied, or out-of-line, where the
memory is mapped but not copied. In-line messages of various sizes were sent from a ‘‘client’’
to a “‘server’’ process; the client blocked waiting for a reply, and the server always replied by
simply returning KERN_SUCCESS. For each message size, 1000 iterations were performed. As
expected, times increased with buffer size. A 1-byte buffer took 0.160ms, while a 32768-byte
buffer took 8.77ms. For N bytes, the transfer time is approximately (0.160 + N/4000) ms. In
other words, each message incurs a 0.160ms overhead, and data is transferred at about 4MB/s.
Note that this time includes the application overhead imposed by MIG, the Mach Interface
Genemator.

8.2. Out-of-line IPC.

Out-of-line IPC messages were measured in a similar test. In this case, the receiver performed
avm_deallocate to remove the data from its virtual address space. Without this call, virtual
memory becomes cluttered with messages, and the time to send a message was observed to
increase linearly with the number of messages sent. Since no data is actually copied, the time to
send any number of bytes is approximately constant, but there is a linear cost of mapping pages
if the data is examined.

We measured between 0.36 and 0.39ms simply to send a message. In this case, the sender and
receiver do not actually touch the data. Instead, the receiver simply deallocates the out-of-line
data and sends an in-line acknowledgment message back to the sender. We subtracted 0.16ms
from the measured round trip time to obtain th< one-way out-of-line IPC message time
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When the overhead of accessing pages is added, the real transfer time is approximately (0.6 +
N/6300)ms. For this measurement, the sender copied data into the buffer to be sent and the
receiver touched the first byte of each page, forcing the page to be mapped. The data was then
deallocated and a reply message was sent. Starting with the measured round trip time, we
estimated and subtracted the becopy time and the reply message time. We then calculated the per
page cost by timing messages from 4K to 32K in length.

A more realistic test is to have the sender allocate new data for each message, and to deallocate
the data upon sending it. To understand why this is so, consider how out-of-line messages might
be used for a multimedia data stream. The sender wants to send a sequence of messages to the
receiver, but the receiver does not want to deallocate the received data until it has been used.
When a message is sent from the sender, it is marked by Mach as ‘‘copy on write,’’ meaning that
a write to the buffer will cause a page fault (otherwise the write would destroy the data
previously sent and waiting for use by the receiver.) The solution is for the sender to allocate
new data for each message, avoiding the needless copy on write. In practice, the sender will still
generate page faults when the newly allocated memory is touched, and these will require zero-
fill, but this should be slightly cheaper than a copy.

Allocation of cach message by the server increases the message send time to between 0.46 and
0.54ms/message. Neither the sender nor receiver actually touches the data in this case. We
subtracted 0.16ms, representing the reply message, from the measured round trip time to
estimate the one-way out-of-line IPC message time.

Even when memory is ‘‘allocated,’”” no physical memory is actually associated with the
address until memory is read or written. We modified the test so that the sender uses bcopy to
fill the message before sending it, and the receiver touches the first byte of each page. The
transfer time is approximately (1.1 + N/8500)ms.

8.3. Socket I/O.

Unix sockets are convenient, but socket I/O involves the Unix server. Thus, the overhead of
using sockets is quite high. For our measurement, we had a client send data to a server, which
then sent the same data back to the client. Because the client and server are symmetric, we can
divide the total time by 2 to get one-way socket transfer times. The one-way time for a one-byte
transfer is about 2.9ms. The transfer time grows somewhat non-linearly with message size, and
4096 byte messages piov.d. faster throughput (at about 600KB/s) than 16384 byte messages (at
about 540KB/s). This may be the effect of the secondary cache. Note that these times are for
Mach 3.0. Sockets should be faster \nder Mach 2.5 because there, sockets are implemented in
the kemmel. Also note that optimization of this code is ongoing, and substantially better
performance may be seen in future Mach releases.

8.4. Shared Memory IPC.

Rather than using Mach IPC, we implemented our own communication mechanism using
shared memory to eliminate data copies, and simple Mach IPC ..essages for synchronization and
notification. The timing test consists of a client ailocating a buffer from shared memory,
copying data to the buffer, and notw;, .:g ...¢ server via IPC. The server performs symmetrically,
allocating a reply message, copying data from the incoming message to the reply, and notifying
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the client. As before, one-way message transfer times can be obtained by dividing the total time
by 2. Unlike the previous tests, this test used the actual Tactus server which uses multiple
threads to receive messages and which adds headers to messages. The one-way message time is
4.4ms. We have not yet measured where all of this time is going.

A fair comparison with the previous methods would be a streamlined implementation where
the client and server were single threads that signaled each other with simple IPC messages.
This is essentially equivalent to the in-line IPC case where only a few bytes are transmitted. The
measured time was 0.16ms. This assumes that no data must be copied into the shared memory
area. For example, in our application, we read images directly from the disk into the shared
memory for transmission to the Tactus server.

8.5. Summary.

Figure 3 illustrates memory copy strategies and their performance. The fastest transfers by far
were seen with a shared memory interface, where data is neither mapped nor copied. Unix
sockets are very slow by comparison. In-line [PC offers an intermediate rate. At first, we
thought out-of-line IPC would be ideal for mapping large amounts of data without actually
copying it. Several factors make this not the case. First, newly allocated memory must be
zeroed; this causes a time-consuming page fault as well as a zero-fill operation. This alone is
about as expensive as a memory copy. To avoid allocating new memory, old mémory must be
retained. This is possible, but it means that neither the sender nor the receiver can write into the
data or else a copy-on-write fault will be taken. It seems that the optimal implementation is to
‘‘recycle’’ memory: The client starts with a pool of messages which are deallocated upon-
sending to the server. After the server finishes using a message, the message is returned to the
client, this time deallocating the message from the server’s memory. Since out-of-line IPC can
move data from anywhere in an address space, this scheme might be advantageous if large
messages needed to be routed to multiple destinations. Otherwise, the shared memory interface
is simpler and faster. .

9. File I/O.

Our combined video and audio data rate is about 220KB/s, which is a sizable fraction of the
total disk I/O bandwidth on our machines. We measured how much time was involved in
reading the disks. In these tests, the IDE drive is a Western Digital 300 MB WDAP4200 with a
Gateway MIO400 controller. The SCSI drive is a Seagate 1GB drive with an Adaptec 1542b
controller.

Using stdio and IDE drives, the transfer rate is about 440 KB/s. Fortunately, disk I/0 does
not require 100% of the CPU. Depending upon the method used to read data, the CPU
utilization ranges from 31% to 51% when reading as fast as possible. This means that while we
are using about half the maximum disk bandwidth, we are only using about one fifth of the CPU
for disk reads.

We experimented with various ways to read files. These methods are summarized below.
o stdio: using the Unix stdio library.
® block: using Unix read commands directly.
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Figure 3: Performance of various forms of communication in Mach.

© memory-mapped: using Mach mechanism to map files regions into user address
space and faulting in pages.
* mapio: a partial reimplementation of the Unix stdio library interface using the
memory mapped files capability of Mach.
The method and the maximum performancy: for SCSI and IDE drives are presented in Table 2.
The block sizes in the table refer to the size of the read requests issued by the applications.
Many block sizes were tried, but only the size that gave the best performance is reported here.

A few words are in order about these measurements. Within a column (SCSI or IDE) all
numbers represent reading the same file and should be comparable. The relative performance of
SCSI vs. IDE, however, is not as meaningful because only one file was used, and the layout of
the file on the disk was not controlled. To avoid caching effects, a 30MB file was used, and the
main memory size is 16MB. All of these tests used a 33Mhz i486 processor. These tests were
done in single user mode and were consistently repeatable, typically to within 2% and always
within about 5%.

The numbers show that block I/O provides the fastest access. This is not consistently the case,
and under some conditions mapped I/O is faster than block I/O (see below). The last line of the
table gives a performance figure for DOS running on identical hardware. Although this figure is
high relative to Mach, it was obtained with a different fil2, and the timing difference may be due
to the physical layout of blocks on the disk. Overall, performance seems to be dominated by
(lack of) tuning, and not by the access method.

Our measurements of CPU time include the application, the kernel, and the Unix server. CPU
time is computed by subtracting idle time, as measured by the program freetime, from the
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Method SCSI KB/s (blocksize) CPU% | IDE KB/s (blocksize) CPU%
stdio 840 (1KB) 102% 450 (64KB) 51%
block 940 (8KB) 112% 440 (8KB) 42%
memory-mapped 660 (1IMB) 54% 420 (256KB) 31%
mapio 660 (20KB) 68% 430 (2 MB) 38%

DOS - 850 (32KB)

Figure 2: Disk read performance using different input methods.

total run time. The freetime program uses a low-priority task to consume and count all
available idle CPU cycles while other programs are running. Unfortunately, this interacts with
disk reading programs. We conjecture that critical disk timing is perturbed by the addition of
even low-priority processes. In one extreme case, run time consistently jumps from 32 to 47s
when freetime is run.

To calculate a percentage of CPU utilization, we took the ratio of measured CPU time (with
freetime) to actual run time (without freetime). This sometimes results in an inflated
value that exceeds 100%. In spite of these anomalies, these timing numbers are reproducible.

Other anomalies were encountered. Mapped I/O is much faster when running in multi-user
than in single-user modes. For example, on a 66Mhz 486DX system, mapped I/O run time
dropped from 48 to 30s when multiuser mode was enabled. On the other hand, block /O and
stdio run times stayed roughly constant.

We re-ran all of the timing tests on a 66Mhz 486DX system for comparison. The 486DX
system has a faster CPU clock but the same 33MHz bus as our standard system. With the fast
CPU, we found relatively little improvement in I/O. This could be explained by saying the
system is I/O bound, but if this were the case, we would expect the CPU utilization to go down
with a faster processor. This did not occur, indicating that a faster CPU clock speed alone does
not lead to dramatic improvements.

Overall, we found performance to be rather erratic. A variation of 20% between two runs in
multiuser mode is not uncommon, and much higher variations, up to 70%, were observed. In
cases where there is large variation, we see correspondingly large amounts of paging activity,
although we cannot explain this paging in terms of our application. We have also seen
performance vary by 50% or more when running the freet ime program concurrently with our
I/O test program. It seems that the Mach strategies for caching pages, disk scheduling, and
process scheduling make the system very unpredictable. Consequently, the reported I/O
bandwidth may be as much as double the bandwidth usable in practice.

The erratic performance of disk I/O may be a result of overall unpredictability in the kernel. If
so, then better real-time support could lead to higher system performance overall.
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10. X11 Performance.

Our application creates video by displaying standard X11 images at 10 frames/s, thus X11
performance is a critical component. The standard socket-based X11 performance was a
problem, so we used a shared-memeory interface [Ginsberg 93] to speed up data transfers.

With a standard socket-based X11, we wrote a program to repeatedly call XPutImage,
XF1lush, and XSync, and we measured the time per frame. The display time ranged from 76 to
85ms for a 19.2KB image; in other words, we can display about 240KB/s. :

With our shared-memory X11, the display time ranged from 10 to 23ms per image, for a
transfer rate of from 835KB/s to 1.9MB/s. We did not track down the source of this variance,
“but it is obvious that this shared memory interface is significantly faster. We created a special
libX11.a that has a modified version of select so that ordinary X clients need only to be
relinked to use the new interface.

11. Overall Timing Model.

Combining our measurements, we can build a model of where time is spent in our video mail
application. We found it convenient to work in terms of computation time per frame. Our
current application assumes 10 frames per second, so the total budget is 100ms per frame. The
operations and their times are as follows:

Disk read : 20ms
Send data (client to Tactus) . 9ms
Copy data within Tactus 2ms
Send and display data (Tactus to X11) 20ms
Total S1lms

This model does not include 15KB/s audio, which follows roughly the same data path. We have
not completed measurements, but we expect audio to add another 10% to the total processing
time per frame. Although these numbers indicate a fair amount of ‘‘headroom,’’ this application
barely keeps up with real time. This is disturbing, but consistent with the large performance
variations we have observed in our measurements.

If we were to use Unix sockets throughout, the total processing time for video alone would be
about 170ms, much slower than our shared memory implementation, and slower than real time.

12. Conclusions and Future Work.

Our low-latency measurements show that Mach is far from supporting any kind of reliable
low-latency interaction, even with fixed-priority scheduling. This seems to be a combination of
scheduler problems (the scheduler will allow a low-priority thread to run for 10ms before
preempting it), and server problems (various high-computation device drivers and servers *‘take
over’’ the processor for extended periods of time at high priority, in contradiction to well-known
scheduling principles). Mach emphasizes a lazy evaluation strategy and was not designed as a
real-time system, so it should not be too surprising that the worst-case latency is fairly high.

Our measurements show that shared memory interfaces support high-bandwidth
communication of multimedia data. Shared memory eliminates expensive page mapping and our
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application and server only perform one data copy (from the client-Tactus interface to the
Tactus-X11 interface). With a little work, we could climinate this copy as well. Further
improvements might be made within the Unix file system and within X11.

Many of our measurements arc preliminary, and exhibit a fairly wide variance. Running a
machine standalone seems to climinate all but a percent or two of performance variation. This is
somewhat disturbing because it implies the overhead of maintaining connections to a network
and file systems is quite high, unpredictable, and only marginally related to the currently running
tasks. This in turn has serious implications for providing real-time services and predictable
performance to users.

Similar comments apply to file system performance. Caching and scheduling in Mach
apparently conspire against predictable performance. The worst-case performance often
approaches a factor of 2 worse than ‘‘normal’’ performance. For real-time and multimedia
systems that are limited by the worst-case performance, Mach imposes a very high overhead.

-One particular result we would like is a more accurate model for interprocess communication
via shared memory, in-line IPC, and out-of-line IPC. For example, we would expect in-line IPC
transfer rates to be some integer factor slower than bcopy, based on the model that IPC has a
fixed overhead plus some integer number of memory copies.

Our measurements and experience indicate that shared memory interfaces can provide
significant performance improvements over those based on mapping or copying, although shared
memory interfaces do sacrifice some amount of protection. Message-based interface
abstractions can be based on shared memory, and could be supported by operating systems and
interface generators.

In general, root privileges are required too often. For example, the shared-memory X11 server
can crash the machine, as can tasks that install user-level device drivers. The Mach netmemory
server is a safer way to obtain shared memory (without root privileges). Better still would be a
general shared memory IPC facility. Are there other possibilities for realizing better protection
without losing efficiency?

We began this work with the idea that applications could run directly on the Mach
microkernel, avoiding the overhead and unpredictable behavior associated with the Unix server.
In practice, we found it very difficult to avoid the Unix server. The file system must be accessed
via the server, and most of our programs have extra threads to sleep waiting for signals and to
select waiting for input as well. Even when direct Unix calls are avoided, the paging,
interrupt, cache, network, and disk behavior of the server have a major impact on the
performance of other tasks. One of the advantages of the user-level device driver
implementation is that devices are mainly controlled by ordinary threads that can be scheduled in
competition with application threads [Forin 91]. This should reduce the amount by which
devices interfere with time-critical processes. It remains to be seen how successfully RT Mach
will isolate applications from interaction with the Unix server.

RT Mach extends Mach 3.0 with real-time threads and scheduling which should greatly
enhance our low-latency applications. RT Mach should even improve upon the performance of
Tactus, allowing the Tactus server and X11 to run at high priority and low latency without
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interference from the application and file system, which have less stringent latency requirements.
We have already begun to port our applications to RT Mach.

A limitation of our work is that we have not studied the architectural dependencies of our
results. Mach 3.0 runs on other machine types, and it would be interesting to perform similar
measurements on these machines.
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