AD-A273 580
ERHURERGRY

SR

Public repc
makntaining
suggestior
22202-430

Form Approved

ATION PAGW - OMB No. 0704-0188

pes response. ncluding the time 10r 7eviewang INSITLCLONS, 38arChINg BUISHING ‘318 SOUICES. gathenng and
Send comments regarding thus burden estimale or any other aspect of this collection of iformation including
wate for Informavon Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA

ct (0704-0188). Washingion, DC 20503

1 AGENGY vur wiser (euuss wearing e e

| August 1993

- | 3. REPORT TYPE AND DATES COVERED

Professional Paper

4. TITLE AND SUBTITLE

THE ROLE OF NOISE IN SENSORY INFORMATION TRANSFER

5. FUNDINw NUMBERS

PR: MA19
PE:
WU

6. AUTHOR(S)

A. R. Bulsara, F. Moss

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Command, Control and Ocean Surveillance Center (NCCOSC)
RDT&E Division
San Diego, CA 92152-5001

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES} 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217
11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13 ABSTRACT (Maximum 200 words)

presented to elucidate this point.

We consider the interpretation of time series data from firing events in periodically stimulated sensory neurons. The
neurons are represented as nonlinear switching elements embedded in a Gaussian noise background. The cooperative effects
arising through the coupling of the noise to the modulation are examined, together with their possible implications in the
features of Inter-Spike-Interval Histograms (ISIHs) that are ubiquitous in neurophysiological experimental data. Our approach
provides the simplest pcssible interpretation of the ISIHs and has been found to reproduce the salient features of experimental
1S1Hs. One such comparison, between very recent data from experiments performed in St. Louis, on the mechanoreceptor in
the tailfan of the crayfish Procambarus clarkii, and analog simulations on a simple nonlinear excitable neural model is

Published in Noise in Physical Systems & 1/f Fluctuations, AIP 285, 1993, pp. 720—723.

14 SUBJECT TERMS

15 NUMBER OF PAGES

16 PRICE CODE

17 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION
OF REPORAT

OF THIS PAGE

UNCLASSIFIED UNCLASSIFIED

19 SECURITY CLASSIFICATION

20 LIMITATION OF ABSTRACT
QOF ABSTRACT

UNCLASSIFIED

SAME AS REPORT

NSN 7540-01-280-5500

Stangard form 298 (FRONT)




DISCLAIMER NOTICE

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.




UNCLASSIFIED

21a. NAME OF RESPONSIBLE INDIVIDUAL
A. R. Bulsara

21b. TELEPHONE (inchuide Area Cooe)
(619) 553—-1595

21¢ OFFICE SYMBOL
Code 573

93-29905

98 12 7 089

NSN 7540-01-280-5500

Stanagard form 298 IRACK)

UNCLASSIFIED




ST ST TN ey A e T P YN [T e (Y ST XY prae Y T

| Accesion For

NTIS  CRAg&I

DTIC QUaLis t LiGPECTED 3 DTIC 1ag
Urannousced
. . . Ju‘)t;f,(_;l'sj,_"
The Role of Noise in Sensory Information Transfef _. ' ...
) F. Moss f By el
Department of Physics IDitino, T
University of Missouri at St. Louis ]--—_ o
St. Louis, MO 63121 USA
A. R. Bulsara Dist | Avair L
NCCOSC-RDT&E Division N Lpecaal

Materials Research Branch
San Diego, CA 92152-5000 USA

/|20

ABSTRACT

We consider the interpretation of time series data from firing events in periodically
stimulated sensory neurons. The neurons are represented as nonlinear switching ele-
ments embedded in a Gaussian noise background. The cooperative effects arising
through the coupling of the noise to the modulation are examined, together with their
possible implications in the features of Inter-Spike-Interval Histograms (ISIHs) that are
ubiquitous in neurophysiological experimental data. Our approach provides the simplest
posible interpretation of the [SIHs and has been found to reproduce the salient features
of experimental ISIHs. One such comparison, between very recent data from experi-
ments performed in St. Louis, on the mechanoreceptor in the tailfan of the crayfish
Procambarus clarkii, and analog simulations on a simple nonlinear exciteable neural
model is presented to elucidate this point.

INTRODUCTION

Neuroscientists have known for decades that sensory information is encoded in the
intervals between the action potentials or “spikes” characterizing neural firing events.
Statistical analyses of experimentally obtained spike trains have shown the existence of
a significant random component in the inter-spike intervals. There has been speculation,
of late, that the noise may actually facilitate the transmission of sensory information;
certainly there exists evidence that noise in networks of neurons can dynamically alter
the properties of the membrane potential and the time constants!. Recent work by
Longtin, Bulsara and Moss? (LBM) demonstrated how experimental ISIHs measured,
for example, on the auditory nerve fibers of squirrel monkey? and visual cortex of cat*
could be explained via a new interpretation of noise-driven bistable dynamics. They in-
troduced a simple bistable neuron model, a two-state system controlled by a double-well
potentia: with neural firing events corresponding to transitions over the potential barrier
(whose height is set such that the deterministic stimulus alone cannot cause transitions).
The cell dynamics was described via a variable x(¢) loosely denoting the membrane
potential and evolving according to

X = f(x) + Q sin(wr) + F(n), 1))
where f(x) is a flow function (expressible as the gradient of a potential U(x)) and F(1)

is noise, taken to be Gaussian, delta-correlated, with zero mean and variance 2D
Potentials can be either soft or hard (even infinitely hard) in the bistable description.
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}
The potential used here was taken to be the "soft” function Utx) = ia)(2 - b In(cosh x).

It 1s instructive to point out that a bistable model of the form (1) can be derived’ for
the dynamics of more complex networks of neurons and/ or dendrites, under certain

mean-field-like assumptions. For our analysis, the system (1) is numerically integrated,
with the residence time in each potential well (these times correspond to the firing and
quiescent intervals) assembled into a histogram, which displays a sequence of peaks
with a characteristic spacing. Two unique sequences of temporal measurements are pos-
stble” the first measures the residence times in only one of the states of the potential
and the histogram consists of peaks located at + = nT/2, T, being the period of the
deterministic modulation and n an odd integer. The second sequence encompasses mea-
surements of the total time spent in both potential wells, i.e. 1t includes the active and
refractory or reset intervals; in the presence of noise, the reset intervals are of largely
stochastic duration. The histogram corresponding to this sequence consists of peaks at
locations 1 = nT, where n is any integer. The sequence of peaks implies a form of
phase locking of the neural dynamics to the stimulus. Starting from its quiescent state,
the neuron attempts to fire at the first maximum of the stimulus cycle. If it fails, it will
try again at the next maximum, and so on. The latter sequence is the only one observ-
able in an experiment; the former sequence. which corresponds to the refractory events
is elegantly elucidated by the LBM theory. Analog simulations of the dynamics yield an
extremely good fit to experimental data; the fit can be realized by changing only one
parameter (the stimulus intensity or the noise intensity). In addition to the peak spacing
in the ISTH, most of the other substantitive features of experimental 1SIHs are explain-
able via the simple model (1): (a). Decreasing the noise intensity (keeping all other
parameters tixed) leads to more peaks in the histogram since the “skipping” referred to
above becomes more likely. Conversely. increasing the noise intensity tends to concen-
trate most of the probability in the first few peaks of the histogram. (b). In general, the
probability density of residence times is well approximated by a Gamma distribution of

T
the form A(T) = TP [-T1(T]. where (T} is the meuan of the ISIH. It is apparent

that AT) = 0 or exp{-T/(T)) in the short and long time himits, respectively. For van-
ishingly small stimulus amplitude Q, the distribution tends to a Gamma, conforming to
experimental observations. (¢). Increasing the stimulus amplitude leads to an increase in
the heights of the lower lying peaks 1 the ISITH. (d). Memory etfects (even within the
framework of a description hased on the theory of renewal processes) frequently oceur,
particularly at very low driving frequencies; they manifest themselves in deviations from
an exponentially decaving envelope at low residence times (the first peak in the ISIH
may not be the tallest one). (¢). The mean of the ISIH vields (through its inverse) the
mean firing rate. A more rigorous treatment of the above results is available in recent
work®; this work also includes comparison of our results with recent experimental data
taken from cat auditory nerve. The important point to note here is that the results are
almost independent of the functional form of the potential U(x), depending critically on
the ratio of barrier height to noise: this ratio determines the hopping rate between the
basins of attraction in the ahsence of naise

The LBM theory demonstrates that the peaks of the ISIH cunnor exist in the absence
of noise. Indeed, stimulus cycle skipping. which is necessary to generate a sequence of
peaks, cannot occur unless twe conditions are tulbilled. there must be noise. and the
coherent stimulus must be subthreshold. It also imphies the existence of a “regulatory
mechanism”™ in which sensory neurons measure the stimulus amplitude by comparing
to the background rouce devell a process that s medisted and optimized by the
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(cosh x). (internally adjustable) potential barrier height in the bistable model. !
ivedS for . HOW GOOD IS THE BISTABLE DESCRIPTION? -t
rtain
ategrated, Although the LBM model provides an important first step in the understanding of
iring and the(possibly pivotal) role of noise in sensory information transfer, it is farfrom com- i
of peaks plete. The results do not depend critically on the characteristics ofthe potential function 1
are pos- U(x) and the fundamental question: what aspects of the data are due to the statistical C g
potential properties of noisy two-state systems as opposed to properties of cells that transcend ' .
d of the this simple description (or, can the neuron be satisfactorly described by a noisy bistable 3
ses mea- switching element), have still not been satisfactorily answered, although an important :
stive and first step in this direction is afforded by recent work®. I
f largely Integrate-fire (IF) models have been exceptionally popular in the quest for a descrip- ‘
peaks at tion of the statistical properties of spike trains obtained from exciteable cells. For the .
form of classical Gerstein-Mandelbrot (GM) model?, f(x) = u, a (positive) constant drift term ;
nt state, corresponding roughly to the difference between excitatory and inhibitory post-synaptic !
is, it will potential steps; the dynamics (1) then corresponds to a Wiener process with drift. f
+ observ- Other, somewhat more realistic models? assume a decay of the membrane potential, fol-
'y events X
);'ield an lowing a firing event, to its resting value; for these models f(x) =- z + p correspond-
=nly one

#
#
g
%
&
¥

ing to Ornstein-Uhlenbeck dynamics. We consider briefly some recent results based on

spacing the GM model with deterministic modulation. A simple extension of the original GM
explain- calculation leads to a closed form expression of the probability density function of first
_t‘" other passage times to an (absorbing) boundary located at a separation a from the starting
,e:rred to point. Each crossing of the boundary denotes a firing event which is followed always by
:;':Cf:; a deterministic reset to the starting point, accompanied by perfect phase locking to the
»:nio’n of penodnc.sumulus (this is not necessary t:or. the theory; in fact one can assume a randqm
phase ¢ in the argument of the deterministic modulation term in (1), in accordance with
.pparent what is more common in experiments. Then, averageing over the phase leads to a
smoothed ISIH which differs very little from the spontaneous case; we do not discuss
For van- this situation here). The solution of the Fokker Planck Equation associated with the
‘ming 10 deterministically modulated GM model, leads to an analytic computation® of the proba- :
:rease in bility density function of first passage times. This function displays peaks at locations 1
ithin the nT,, similar to the results obtained from the bistable LBM model (note that this model |’ !
y occur, cannot, however, elucidate the "hidden” symmetry corresponding to the reset events). &1
s from The peaks are superimposed on a Gamma-like distribution characterizing’ the @ = 0
‘he ISIH case. With increasing inhibition, the density function approaches a Gaussian; the same B
‘rse) the effect is observed with decreasing noise variance. While the driven IF model reproduces e
n recent some of the salient features of experimentally observed ISIHs it does not, in general, &
atal data produce the same excellent agreement with the experimental ISIHs that characterizes 3
sults are bistable models. The formal connection between the two classes of models is also tenu- T ‘i
ically on ous at present. ?
veen the We now consider a third class of neuron models; these are the so-called Fitzhugh- g;_-}
Nagumo models corresponding to exciteable systems controlled by a bifurcation param- z
absence eter. In these models, when the membrane voltage variable crosses a boundary, a large £
ience of excursion (identified as a neural firing event) occurs. This leads to a natural definjtion
and the of a deterministic refractory period, in contrast with the statistical distribution of ref- £
gulatory ractory events that characterizes bistable models. The FHN system is not bistable, but 7
mb”ng(hl; can be made periodically firing or residing on a fixed point, dependng on the choice of 3
y

bifurcation parameter. We write the equations for the model in the form'0:
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p=wv- 05K - - w + F)
W= v w- (b + () cin(wr)),

where vis the action potenual to which noise has been added and w the recovery van-
able to which the signal is added. The model has been electronically simulated in St
Louis. in the tixed pont regime (b = 0.9) so that bursts of sustained oscillstions are
absent. Hence one obtains g randonmization in the inter-spike intervals, but some coher-
ence with the external signal is maintained. THe variable vis treated as the Yast™ vary-
able in the dynamics. und its ISIH has been examined in this simulation'!. The noise
was colored since s correlation time was equal to the time constant of the fast vuri-
able but much smuller than the time constant of the slow variable w.

The aralog simulator has been described elsewhere and also within this volume! ' und
s will not be turth»r dexcribed here. The fact is that using it we have been eamiy uhle
to reproduce actual experimental data obtained trom periodic stimulation of craytish
mechanoreceptor cells  In order to reproduce the physiological data it is only necessary
to set the same signai frequency and then to adjust either the periodic stimulus intensity

_' *: Ta 'u [T
hime i

'
‘
i

Y rJ L

Fig: TUISIH'S obtained from the cravtish stimulated at 68 6 Hz tupper) and the.

FHN simulator drnven at the same trequencs wath b= 09 VoV, 00 = o2
Ve and Vs 0053V, o
or the noise intensity AR example ot this iy shownom Fie Moreover, the shaap

signal teature. characterintiv ot additinve noise as tound mothe bistable svstems appeans
I power spedtre obtemed both trom the cravtch and toom the FHN model operated
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deeply subthreshold as we have discussed above. The crayfish experiments are
described by Douglass, er al elsewhere in this volume, and so will not be further detailed
here.

DISCUSSION AND CONCLUSIONS

Stochastic resonance is a cooperative nonlinear phenomenon wherein the signal-to-
noise-ratio (SNR) of a weak time-varying deterministic signal may be enhanced by the
noise; a plot of the SNR . noise strength demonstrates a characteristic bell-shaped
profile. For low modulation frequencies, the critical value of the noise strength corres-
ponds to a matching between the modulation frequency and twice the Kramers rate. The
effect has been extensively analysed'? and observed in a wide variety of physical sys-
tems. It is evident that, in order to take advantage of this effect, there must exist a form
of self-regulatory meciarism such that the internal parameters of the system (these
parameters control, for instance, the characteristics of the potential function describing
bistable systems of the form described earlier in this work) can be adjusted so that it
operates close to the maximum of the SNR curve. It is tantalizing to speculate that bio-
logical sensory systems might actually routinely utilize this effect for the processing and
transmission of information. Our studies of collective behavior in large networks
show!? that the coupling to other elements can enhance or degrade the SNR depending
on the magnitudes and signs of the coupling coefficients (i.e., the excitatory or
inhibitory nature of the interactions is critical).

The precise connection between the ISIHs and SR remains somewhat tenuous,
although several features of the ISIHs lend themselves to an interpretation based on SR.
Perhaps the most important of these features is that the heights of successive peaks
(excluding the first) pass through a maximum as a function of the noise strength!0.!4.
ISIHs obtained from the IF models display the same features®. So far, attempts to quan-
tify this ‘resonance” as a matching of two characteristic rates have been inconclusive,
largely because of the difficulty of (numerically) producing good ISIHs with low noise.
The question of defining a "SNR" from the ISIHs is also largely unanswered.

Experimental investigations into the occurrence of SR in living systems are now
underway at at least two laboratories. Douglass, er al in this volume and Douglass,
Moss and Longtin!! have measured the SNR vs, noise strength curves in the crayfish
--~echanoreceptor. With externally applied noise, the SNR displays the characteristic
ovell-shaped response of SR. However, another and inherently more interesting case
exists: that wherein the neuron makes use of its own internal noise for subthreshold
signal transmission. This question directly relates to the possibility of the existence of
an internal noise regulatory mechanism alluded to above and to questions of the evolu-
tionary development of sensory organs using inherently noisy transducers. The experi-
mental difficulty is that the internal neuronal noise is only indirectly controllable, via
the temperature of the preparation, for example. For the internal noise case, the results
are not as clear. The SNR increases monotonically as a function of the temperature of
the saline bath, the crayfish having been acclimated for many weeks in either high or
low temperature environments. While there exists an optimal temperature, that is a
temperature for which the SNR passes through a maximum, this result does not demon-
strate SR using the internal neuronal noise. The reason is that the internal noise also
decreases beyond the optimal temperature, so that the mechanism which maximizes the
SNR at the optimal temperature is different from SR. However, on the low tempera-
ture side, the SNR still increases approximately linearly on a logarithmic scale with in-
creasing temperature (internal noise intensity). This result is significant in its own right;
it points to the existence of a fundamental nonlinear dynamic mechanism underlying the

RN
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cell response.  Nevertheless, the dynamics underlying SR seem to be the most likely to
provide explanations for the observed effects. These (albeit suomewhat, preliminary)
results lend credence to our speculations regarding the positive role of noise in the det-
ection and quanotication of signals by sensory neurons.

Work supported by grants from the US Office of Naval Research.

KREFERENCES

1 b Kaplan and R Barlow; Vision Res. 16, 745 (1976); H. Treutlein and K. Schulten:
Ber Bunsenges Phys. Chem. 89, 710 (1985); O. Bernander, C. Koch and R. Douglas; in
"Advances in Neursl Information Processing Systems 37, eds. R. Lippman, J. Moody and
D Touretzky (Morgen Kaufmann, CA 1992).

A Longun, A Bulsara and F. Moss; Phys. Rev. Lett. 67, 656 (1991).

J. Rose. J. Brugge. D. Anderson and J. Hind; J. Neurophys. 30 769 (1967).

R Siegal. Physica 42d 385 (1991).

W Schieve, A Bulsara and G. Davis; Phys. Rev. A43 2613 (1991)

A Longtin, A Bulsura, D. Pierson and F. Moss; Biol. Cyb. preprint

(i Gerstein and B Mandelbrot; Biophys. J. 4, 41 (1968).

8 Scee ey ) Clay and N Goel; 1. Theor. Biol. 39, 633 (1973). ) Cowan. in “Statistical
Mechames“eds S Rice. K. Freed and J. Light (Univ. of Chicago Press. Chicago 1974)
9 A Bulsara. preprint

10 A Longnin: b Siast. Phys. 70, 309 (1993).

11 ). Douglass, Fo Moss and A. Longtin; in "Advances in Neural Information
Processing Systems 47, (Morgan Kaufmann, CA 1993). D. Pierson. } Douglass. £ Pan-
tazelou and F. Moss, this proceedings.

12 See eg B McNamara and K. Wiesenfeld, Phys. Rev. A39. 4853 (1989). F Moss,
Stochastic Resonance: From the lee ages to the Monkey's Ear™. in Some problems in
Stanstical Phvsies. edited by George H. Weiss (SIAM, Philadelphis. in pressy. P Jung
and P. Hanggi, Europhys. Lett 8, 505 (1989); P. Jung. Z. Phys B 16. 52) (1989); L
Cammiaasoni. Fo Marchesoni, E. Menichaella-Saetta and S. Santucci; Phys Rev A40.
2114 (1989): M. Dvkman, R. Mannella, P. McClintock and N. Stocks: Phys. Rev Let.
65. 2606 (1990): P Jung and P. Hanggi; Phys. Rev. A44 8032 (19911, and Proc NATO
ARW on Stochustic Resonance in Physics & Biology, edited by | Moss. A Bulwara and
M F. Shlesinger. ) Stat. Phys. 70 (1993)

13 A Bulsara and G Schmera; Phys. Rev. E, in press; A. Bulsara. A Maren and G
Schmers, Biol Cvb preprint; A, Bulsara and A. Maren; i Proceedings ot the First
Applachian Conterence on Neurodynamics”, in press.

14 T Zhou. F.Messand P Jung: Phys. Rev. A42 3161 (1991

. SV VN




