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ABSTRACT

We consider the interpretation of time series data from firing events in periodically
stimulated sensory neurons. The neurons are represented as nonlinear switching ele-
ments embedded in a Gaussian noise background. The cooperative effects arising
through the coupling of the noise to the modulation are examined, together with their
possible implications in the features of Inter-Spike-Interval Histograms (ISIHs) that are
ubiquitous in neurophysiological experimental data. Our approach provides the simplest
posible interpretation of the ISIHs and has been found to reproduce the salient features
of experimental 1SIHs. One such comparison, between very recent data from experi-
ments performed in St. Louis, on the mechanoreceptor in the tailfan of the crayfish
Procambarus clarkii, and analog simulations on a simple nonlinear exciteable neural
model is presented to elucidate this point.

INTRODUCTION

Neuroscientists have known for decades that sensory information is encoded in the
intervals between the action potentials or "spikes" characterizing neural firing events.
Statistical analyses of experimentally obtained spike trains have shown the existence of
a significant random component in the inter-spike intervals. There has been speculation,
of late, that the noise may actually facilitate the transmission of sensory information;
certainly there exists evidence that noise in networks of neurons can dynamically alter
the properties of the membrane potential and the time constants'. Recent work by
Longtin, Bulsara and Moss 2 (LBM) demonstrated how experimental ISIHs measured,
for example, on the auditory nerve fibers of squirrel monkey 3 and visual cortex of cat"
could be explained via a new interpretation of noise-driven bistable dynamics. They in-
troduced a simple bistable neuron model, a two-state system controlled by a double-well
potentia4 with neural firing events corresponding to transitions over the potential barrier
(whose height is set such that the deterministic stimulus alone cannot cause transitions).
The cell dynamics was described via a variable x(t) loosely denoting the membrane
potential and evolving according to

xr =f(x) + Q sin(wt) + F(t), (1)

wheref(x) is a flow function (expressible as the gradient of a potential U(x)) and F(t)
is noise, taken to be Gaussian, delta-correlated, with zero mean and variance 21).
Potentials can be either soft or hard (even infinitely hard) in the bistable description.

C 1993 American Institute of Physics 703



704 The Role of Noise in Sensor. Information Transfer

The potential used here was taken to be the "soft" function U(x) = ý=2 - b ln(cosh x).

It is instructive to point out that a bistable model of the form (I) can be deriveds for
the dynamics of more complex networks of neurons and/or dendrites, under certain
mean-field-like assumptions. For our analysis, the system (1) is numerically integrated,
%&ith the residence time in each potential well (these times correspond to the firing and
quiescent intervals) assemrlcd into a histogram, which displays a sequence of peaks
%it h a characteristic spacing. Two unique sequences of temporal measurements are pos-
sible the first measures the residence times in only one of the states of the potential
and the histogram consists of peaks located at t ='nTu12, T3 being the period of the
deterministic modulation and n an odd integer The second sequence encompasses mea-
surements of the total time spent in both potential wells, i.e it includes the active and
refractory or reset intervals; in the presence of noise, the reset intervals are of largely
stochastic duration. The histogram corresponding to this sequence consists of peaks at
locations t = nTo where n is any integer. The sequence of peaks implies a form of
phase locking of the neural dynamics to the stimulus. Starting from its quiescent state,
the neuron attempts to fire at the first maximum of the stimulus cycle. If it fails, it will
try again at the next maximum, and so on. The latter sequence is the only one observ-
able in an experiment, the former sequence. which corresponds to the refractory events
is elegantly elucidated by the LBM theory. Analog simulations of the dynamics yield an
extremely good fit to experimental data: the fit can be realized by changing only one
parameter (the stimulus intensity or the noise intensity). In addition to the peak spacing
in the ISIH. most of the other substantitive features of experimental ISIHs are explain-
able via the simple model (1): (a). Decreasine the noise intensity (keeping all other
parameters fixed) leads to more peaks in the histogram since the "skipping" referred to
abowe becomes more likely. Conversely. increasing the noise intensity tends to concen-
Irate most of the probability in the first few peaks of the histogram. (h). In general. the
probability density of residence times is well approximated by a Gamma distribution of

T
the form P(T) = 7-7 exp f-TI(T)I, where I'T) is the mean of the ISIH. It is apparent

that P(T) 0 or exp(-T/(T)) in the short and Iong time limits. respectively. For van-
ishingly small stimulus amplitude Q, the distribution tends to a Gamma. conforming to
experimental observations. (c). Increasing the stimulus amplitude leads to an increase in
the heights of the lower lying peaks in the ISIH (d). Memory effects (even within the
frarnework of a description based on the theory of renewal processes) frequently occur.
particularly at very low driving frequencies: they manifest themselves in deviations from
an exponentially decaying envelope at low residence times (the first peak in the ISIH
mav not he the tallest one). (e). The mean of the ISIH yields (through its inverse) the
mean firing rate. A more rigorous treatment of the aboiVe res,,lt,. is available in recent
work". this work also includes comparison of our results with rec,:ent experimental data
taken from cat auditory nerve. The important point to note here is that the results are
almost independent of the functional form of the potential I (.x i, depending crit ically on
the ratio iof barrier height to noise: this ratio determines the hpping rate bet keen the
basins of attraction in the absence of noise.

The LBM theory demonstrates that the peaks of the ISMH anoto .ust in tlu" ahmnce
0j noise'. Indeed. stimulus cycle skipping. Mitch is necessary tI, generate a sequence ol
peaks, cannot occur unless two, conditions are fulfilled, there must be noise. and the
c inherent stimulus mist be subthreshold It also implies the )x ,tence oh a "regulatory
mechanism" in which sensory neurons measure the stimulus amplitude by comparing it
to the background ;. level, a plrozes that is mediated and optlimized b\, the
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(cosh x). (internally adjustable) potential barrier height in the bistable model.

iveds for HOW GOOD IS THE BISTABLE DESCRIPTION?
rtain
:tegrated, Although the LBM model provides an important first step in the understanding of
iring and the(possibly pivotal) role of noise in sensory information transfer, it is farfrom corn-
of peaks plete. The results do not depend critically on the characteristics ofthe potential function
are pos- U(x) and the fundamental question: what aspects of the data are due to the statistical
potential properties of noisy two-state systems as opposed to properties of cells that transcend
,d of the this simple description (or, can the neuron be satisfactorly described by a noisy bistable
ses mea- switching element), have still not been satisfactorily answered, although an important
-tive and first step in this direction is afforded by recent work'.
,f largely Integrate-fire (IF) models have been exceptionally popular in the quest for a descrip-
peaks at tion of the statistical properties of spike trains obtained from exciteable cells. For th:
form of classical Gerstein-Mandelbrot (GM) model7,f(x) -=ju, a (positive) constant drift term
:nt state, corresponding roughly to the difference between excitatory and inhibitory post-synaptic
is, it will potential steps; the dynamics (1) then corresponds to a Wiener process with drift.
observ- Other, somewhat more realistic models' assume a decay of the membrane potential, fol-
y events x
yield an lowing a firing event, to its resting value; for these modelsf(x) - - - + A± correspond-T

:nly one ing to Ornstein-Uhlenbeck dynamics. We consider briefly some recent results based on
spacing the GM model with deterministic modulation. A simple extension of the original GM
explain- calculation leads to a closed form expression of the probability density function of first
All other passage times to an (absorbing) boundary located at a separation a from the starting
-erred to point. Each crossing of the boundary denotes a firing event which is followed always by
concen- a deterministic reset to the starting point, accompanied by perfect phase locking to the
ural, the periodic stimulus (this is not necessary for the theory; in fact one can assume a random
'ution of phase 0 in the argument of the deterministic modulation term in (1), in accordance with

.pparent what is more common in experiments. Then, averageing over the phase leads to a
smoothed ISIH which differs very little from the spontaneous case; we do not discuss

For van- this situation here). The solution of the Fokker Planck Equation associated with the
fining to deterministically modulated GM model, leads to an analytic computation9 of the proba-
:rease in bility density function of first passage times. This function displays peaks at locations
ithin the nT0 , similar to the results obtained from the bistable LBM model (note that this model
y occur, cannot, however, elucidate the "hidden" symmetry corresponding to the reset events).
,ns from The peaks are superimposed on a Gamma-like distribution characterizing 7 the Q = 0
he ISIH case. With increasing inhibition, the density function approaches a Gaussian; the same
,rse) the effect is observed with decreasing noise variance. While the driven IF model reproduces
n recent some of the salient features of experimentally observed ISIHs it does not, in general,
:ital data produce the same excellent agreement with the experimental ISIHs that characterizes

uilts are bistable models. The formal connection between the two classes of models is also tenu-
ically on ous at present.
veen the We now consider a third class of neuron models; these are the so-called Fitzhugh-

Nagumo models corresponding to exciteable systems controlled by a bifurcation param-
absence eter. In these models, when the membrane voltage variable crosses a boundary, a large
ience of excursion (identified as a neural firing event) occurs. This leads to a natural defirition
and the of a deterministic refractory period, in contrast with the statistical distribution of ref-

•gulatory ractory events that characterizes bistable models. The FHN system is not bistable, but
iaring it can be made periodically firing or residing on a fixed point, dependng on the choice of
by the bifurcation parameter. We write the equations for the model in theform' 0 :
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i'= ki v- 0.5)(l I w + FEt)

It where v is the attion potential to which noise has been added and w the recoverv vari-
able it) which the signal is added. The model has been electronically simulated in St
Louis. in the fixed point regime (h = 0 9) so that bursts of sustained oscillations are

I' ~absent. Hence one )htiwn' a randomihation in the inter- spike intervals, but sionie coher
ence with the external ,ional is maintained. THe variable v is treated as the "!fast "vairl-
able in the dynamics, and its ISMH has heen examined in this simulation, The noise
was colored since itsý correlation time wtas equal ito the time constant of the last %vari-
able but much smialler than the time constant of" the slow variable VA.

Thc analog simulti t~r has been described elsewhere and also within this volumiel anid
sowill not be furtl- N described here. The fact is that ucing it we have been eas"il ahle

to reproduce actual experimental data obtained from periodic stimulation of crayloih
mechanorecepto~r cells In order ito reproduce the physiological data it is only necessar,,

to set the same st,-na~t itrequency and then to adjust either the periodic stimulus intensit\

4144
1~~~ ~ ~ S\ ,IInedIrkiIi II1 1 ,tII10901 1p~ n

I-iN siit~im dr,, n l h \,a l,ýlcpe '% %lh h -- 0 )

an I (-1V n

III j I .~tý ISI t hie onth e t:,, i 'L h an tI hli t foin a t h FIX "1, l kippr aidt .
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deeply subthreshold as we have discussed above. The crayfish experiments are
described by Douglass, et al elsewhere in this volume, and so will not be further detailed

(2) here.

DISCUSSION AND CONCLUSIONS
-ecovery vari-
iulated in St. Stochastic resonance is a cooperative nonlinear phenomenon wherein the signal-to-
,cillations are noise-ratio (SNR) of a weak time-varying deterministic signal may be enhanced by the

some coher- noise; a plot of the SNR vs. noise strength demonstrates a characteristic bell-shaped
e "fast" vari- profile. For low modulation frequencies, the critical value of the noise strength corres-
1. The noise ponds to a matching between the modulation frequency and twice the Kramers rate. The
he fast vari- effect has been extensively analysed"2 and observed in a wide variety of physical sys-

Iand tems. It is evident that, in order to take advantage of this effect, there must exist a form
volumeai abd of self-regulatory mec'..aism such that the internal parameters of the system (these

Sefcrayfisil aparameters control, for instance, the characteristics of the potential function describing
Sof crayfish bistable systems of the form described earlier in this work) can be adjusted so that it
ily necessary operates close to the maximum of the SNR curve. It is tantalizing to speculate that bio-
ilus intensity logical sensory systems might actually routinely utilize this effect for the processing and

transmission of information. Our studies of collective behavior in large networks
show' 3 that the coupling to other elements can enhance or degrade the SNR depending
on the magnitudes and signs of the coupling coefficients (i.e., the excitatory or
inhibitory nature of the interactions is critical).

The precise connection between the ISIHs and SR remiiins somewhat tenuous,
although several features of the ISIHs lend themselves to an interpretation based on SR.
Perhaps the most important of these features is that the heights of successive peaks
(excluding the first) pass through a maximum as a function of the noise strength 0",14.
ISIHs obtained from the IF models display the same features 9. So far, attempts to quan-
tify this "resonance" as a matching of two characteristic rates have been inconclusive,
largely because of the difficulty of (numerically) producing good ISIHs with low noise.
The question of defining a "SNR" from the ISIHs is also largely unanswered.

Experimental investigations into the occurrence of SR in living systems are now
underway at at least two laboratories. Douglass, et al in this volume and Douglass,
Moss and Longtin'' have measured the SNR vs. noise strength curves in the crayfish

echanoreceptor. With externally applied noise, the SNR displays the characteristic
bell-shaped response of SR. However, another and inherently more interesting case
exists: that wherein the neuron makes use of its own internal noise for subthreshold
signal transmission. This question directly relates to the possibility of the existence of
an internal noise regulatory mechanism alluded to above and to questions of the evolu-
tionary development of sensory organs using inherently noisy transducers. The experi-
mental difficulty is that the internal neuronal noise is only indirectly controllable, via
the temperature of the preparation, for example. For the internal noise case, the results
are not as clear. The SNR increases monotonically as a function of the temperature of
the saline bath, the crayfish having been acclimated for many weeks in either high or
low temperature environments. While there exists an optimal temperature, that is a

Sand the temperature for which the SNR passes through a maximum, this result does not demon-

0.022 strate SR using the internal neuronal noise. The reason is that the internal noise also
decreases beyond the optimal temperature, so that the mechanism which maximizes the
SNR at the optimal temperature is different from SR. However, on the low tempera-

-er, the sharp ture side, the SNR still increases approximately linearly on a logarithmic scale with in-
terns appears creasing temperature (internal noise intensity). This result is significant in its own right;

)del operated it points to the existence of a fundamental nonlinear dynamic mechanism underlying the
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cell response, Nevertheless, the dynamics underlying SR seem to be the most likely to
provide explanations for the observed effects. These (albeit somewhat, preliminary)
results lend credence to our speculations regarding the positive role of noise in the det-
eci on and q~uantification of signals by sensory neurons.

Work supported b'. grants from the US Office of Naval Research.

REFERENCIEf

I L Kaplan and R Barlow, Vision Res. 16, 745 (1976); H. Treutlein and K S~hulten.
Ber. lunsenges Phys Chern. 89, 710 (1985); 0. Bernander, C. Koch and R. Douglas; in
"Adv inces in Neurajl Information Processing Systems 3", eds. R. Lippman, JI Moody 'and
1). Touretzk-v (Morgain Kaufmann, CA 1992).
2. A Longtin, A. Bulsara and F. Moss, Phys. Rev. Lett. 67, 656 (1991v
3 J. Rees. J. lBruge. D. Anderson and J. Hind; J. Neurophys. 30 709 (1967),
4 R Sieoal. Physica 42d 385 (1991).
5 W SchIieve. A. 13ulara and G. Davis, Phys. Rev. A43 2613 (1991)
6 A Longt en. A Bul'ara, D. Pierson and F. Moss; Biol. Cyb. preprint
7 (1 Gersicn and B Niandelbrot; Biophys. J. 4, 41 (1968).
8 See e J I (laN tnJ Ný Goel; J. Theor. Biol. 39. 633 (1973). J Cowan. in 'Statistical
Mechanc eds S. Ri~e, K. Freed and J. Light (Univ. of Chicagoo Prers bhicago 1974)
1) A\ leiukara. preprint
N.) A. Lounetn J2 Stait Pbs's. 70, 309 (1993).
11 J. lDeU~laSS. F. Mloss and A. Longtin; in "Advances in Neural Intormlatior.
Processing S~stenis 4". (Morgan Kaufmann, CA 1993). D. Pierson. I 1111ug'i-ss. F Pan-
t a17lou anid F. Mioss. this proceedings.
12 See e L 13 McNamrara and K. Wiesenfeld, Phys. Rev. A39. 4S54 ( 1989). F Mloss.
'stoc:hast ic Resonance Fronm the Ice ages to the Monkey's Ear,. in Sonic problimts in
.Slau.oiiu IP)ivvie' edited by George H. Weiss (SIAM, Philadelphia. in presý). P Jung
and P. liangi.i Eurktphvs. Lett 8. 505 (1989): P. Jung. Z. Phvs B 16. 521 1 19S99) L
( eaninia,:,eni. F-. \Iarchesoni, E. Menichaella-Saetta and S. Santucci: Ph"' Re% A40.
2 114 (1989). MI. Dý.krnan. R. Mannella, P. McClintock and N Stoc:ks. IPhys Rev Lett.
65. 2606 (1990). P. June and P. Hanggi; Phys. Rev. A44 8032 (1902), and Pro( NATO
-IR H ton Sioclisu ic Resonance in Ph ' sics & Biology, edited bY I NIos. A liulsara and
MI F. Shlesinger. J Stat. Phys. 70 (1993)
131 A. Busir'a and G Schmera; Phys. Rev. E, in press; A. BlluI.ir. A Marco and G
Shniere. Heel COh . prrcpritu A. Bulsara and A. Maren. in '1'io~cdines of the First

.*\jpIachi~in ('cfent renc, (in Netirodynamics', in press.
14 1'. /leou. F Ste" and P Jung; Phys. Rev. A42, 3161 (1991)


