
AD-A273 566 " (7

A Type-Theoretic Approach to Higher-Order Modules
with Sharing

Robert Harper Mark Lillibridge
October 1993

CMU-CS-93-197

DTIC
ELECTED EC 0 9 1993 •

E 0 9 School of Computer Science

"Carnegie Mellon University

Pittsburgh, PA 15213

Also published as Fox Memorandum CMU-CS-FOX-93-04.

T ~ ~ tcs h f>3-fl p:ovedf or publi: reiease and sca-le; its

distribution is unii.•-ted

93-30013

93 12 8 085 \ imIhIIfll
This research was sponsored by the Defense Advanced Research Projects Agency, CSTO, under the title "The Fox

Project: Advanced Development of Systems Software". ARPA Order No. 8313, issued by ESD/AVS under Contract
No. F19628-91-C-0168.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the
U.S. Government.



Keywords: type theory, modularity, abstraction, sharing, functional programming, lambda calculus



Abstract

The design of a module system for constructing and maintaining large programs is a difficult task that

raises a number of theoretical and practical issues. A fundamental issue is the management of the flow of

information between program units at compile time via the notion of an interface. Experience has shown that

fully opaque interfaces are awkward to use in practice since too much information is hidden, and that fully

transparent interfaces lead to excessive interdependencies, creating problems for maintenance and separate

compilation. The "sharing" specifications of Standard ML address this issue by allowing the programmer to

specify equational relationships between types in separate modules, but are not expressive enough to allow
the programmer complete control over the propagation of type information between modules.

These problems are addressed from a type-theoretic viewpoint by considering a calculus based on (Girard's

system F. The calculus differs from those considered in previous studies by relying exclusively oil a new
form of weak sum type to propagate information at compile-time, in contrast to approaches based onl strong
sums which rely on substitution. The new form of sum type allows for the specification of equational, as well

as type and kind, information in interfaces. This provides complete control over the propagation of compile-

time information between program units and is sufficient to encode in a straightforward way most uses of

type sharing specifications in Standard ML. Modules are treated as **first-class'* citizens, and therefore the

system supports higher-order modules and some object-oriented prograninmlig idioms: the laimwmae~e may be

easily restricted to "second-class" modules found in ML-like languages.

7? .:.!. . . - . . .

U

MInC QUALITY IS ZTJ3 r

L a!1.,j1 Oris t HI aSe idl



1 Introduction

Modularity is an essential technique for developing and maintaining large software systems [46, 24, 36]. Most
modern programming languages provide some form of module system that supports the construction of large
systems from a collection of separately-defined program units [7, 8, 26, 32]. A fundamental problem is the
management of the tension between the need to treat the components of a large system in relative isolation
(for both conceptual and pragmatic reasons) and the need to combine these components into a coherent
whole. In typical cases this problem is addressed by equipping each module with a well-defined interface
that mediates all access to the module and requiring that interfaces be enforced at system link time.

The Standard ML (SML) module system [17, 32] is a particularly interesting design that has proved to be
useful in the development of large software systems [2, 1, 3, It, 13]. The main constituents of the SML module
system are signatures, structures, and functors, with the latter two sometimes called modules. A structure is
a program unit defining a collection of types, exceptions, values, and structures (known as sub-structures of
the structure). A functor may be thought of as a "parameterized structure'. a first-order function mapping
structures to structures. A signature is an interface describing the constituents of a structure - the tylpes.
values, exceptions, and structures that it defines, along with their kinds, types. and interfaces. See Figure I
for an illustrative example of the use of the SML module system: a number of sources are available for
further examples and information [15, 39].

A crucial feature of the SML module system is the notion of type sharingi which allows for the specification
of coherence conditions among a collection of structures that ensure that types defined in sel)arate modules
coincide. The classic example (adapted from MacQueen) is the construction of a parser from a lexer and
a symbol table, each of which make use of a common notion of symbol (see Figure 2). '[he parser is
constructed by a functor that takes as arguments two modules, a lexer and a symbol table manager. The
parser composes functions from the lexer and symbol table manager: the composition is well-typed only
if the two modules "share" a common notion of symbol. Within the body of the functor Parser the
types L. S. symbol and T.S. symbol coincide, as specified by the type shar:ng specification in the parameter
signature. See MacQueen's seminal paper for further examples and discussion [26. 17].

1.1 Transparency and Opacity

Module bindings in SML are "transparent" in the sense that the type components of a module are fully
visible in the scope of the binding. For example, the structure declaration

structure S = struct
type t = int
type u = t -> t
val f = fn x:t => x

end

introduces a structure variable S with type components S.t and S.u and value component S.f. Witlhin
the scope of S, the type S.t is equivalent to the type int and the type S.u is equivalent, to the type int-

>int. These equivalences are not affected by the ascription of a signature to the binding. For 'xamuple. the
signature SIG defined by the declaration

signature SIG = sig
type t
type u
val f : u

end

may i)e currrctly ascribed to the structure S without obscuring the bindings of S. t and S.u.
Functor bindings are similarly 'transparent" in that the type components of the rvsnlt. of any ;application

of the functor are fully visible within the scope of the finictor bii.ading. For eximnl)he. ('-oisidr the following
functor declaration:

'The closely-related notion of strurturr sharing is not considered in this palwr.



signature SYMBOL = sig
type symbol
val intern : string -> symbol

val pname : symbol -> string
val eq : symbol * symbol -> bool

end

structure Symbol SYMBOL - struct
structure HashTable : HASH-TABLE =

type symbol = HashTable.hash-key
fun intern id -

HashTable.enter (HashTable.hash id) id
fun pname sym - HashTable.retrieve sym
fun eq (sl, s2) - HashTable.sane-key sl s2

end

Figure 1: Example of the SML Module System

signature LEXER = sig
structure S : SYMBOL
type token

end

signature SYMTAB = sig
structure S : SYMBOL

end

signature PARSER = sig
structure L : LEXER
val parse : string -> Lexer.token stream

end

functor Parser
(structure L:LEXER and T:SY•TAB
sharing type L.S.symbol-T.S.symbol) :PARSER=

struct

end

Figure 2: Sharing Specifications

2



functor F(structure X:SIG):SIG struct
type t = X.t * X.t
type u = X.u
val f = X.f

end

The bindings of the t and u components of any application of F are fully visible as a function of the t and
u components of the parameter X. For example, within the scope of the declaration

structure T:SIG = F(S)

the type T.t is equivalent to the type int*int and the type T.u is equivalent to the type int->int.
It is possible only to a very limited extent in SML to specify in a signature the bindings of the types in

a module. For example, we may augment the signature SIG with a sharing specification to specify that t
is int as follows:

signature SIG' = sig
type t
sharing type t=int
type u
val f : u

end

This method cannot be extended to specify the binding of u - sharing specifications may only involve
type names, not general type expressions. To fully determine the type bindings in S requires a Iransparcit
signature:

signature FULL-SIG-S = sig
type t = int
type u = int -> int
val f : int -> int

end

Note that this is not a legal SML signature because of the type equations. There is no way to express
equations such as u = int -> int in SML signatures. The signature FULLSIGS is the "full" signature of
S since it completely determines the bindings of its type components.

The importance of transparent signatures only becomes apparent when we consider functors and the
closely-related abstraction bindings suggested by MacQueen [26. 17]. Functor parameters are opaque
in the sense that the ascribed signature is the sole source of type information for those I)aralielers (this
property is the basis for the reduction of abstraction bindings to functor applications). Fine control over
the "degree" of opacity of a functor parameter can be achieved by admitting transparent. or. more generally.
translucent, signatures that allow for the partial (possibly full) determination of the type components of a
module. For example, the translucent signature

signature PARTIALSIGSI = sig
type t
type u = t -> t
val • u

end

is a partially transparent signature that leaves the type t unconstrained, but. (etertities u tip to t.l(' choice
of t. The structure S matches the signature PARTIALSIGS_1 since S.u is equal to S.t->S.t which is itself
equal to int->int. Conversely, the translucent signature

signature PARTIALSIGS_2 = sig
type t = int
type u
val f u

end



determines t, leaving u unconstrained. This signature is essentially equivalent to the signature SIG' above.2

S matches this signature.
Translucent signatures are particularly useful in connection with higher-order functors [43]. Using equa-

tions in signatures it is possible to specify the dependency of the functor result on the functor argument.
For example, a natural signature for the functor F defined above is the following functor signature which
fully determines the type components of F:

funsig FULLSIGF =
(structure X:SIG):
sig type t=X.t*X.t type u=X.u val f:u end

Another, less precise, signature for F is the functor signature

funsig PARTIALSIGF
(structure X:SIG):
sig type t type u=X.u val f:u end

which only specifies the behavior of F on the component u, leaving its behavior on t unspecified.
Higher-order functors [43] are particularly important in connection with separate compilation. A separately-

compiled module may be represented by a variable whose signature is the -'full" transparent signature of
the module itself [42]. By abstracting the client module with respect to these variables we obtain a (pos-
sibly higher-order) functor whose application models the process of linking the clients of the module with
its actual implementation. The signature matching process ensures that the presumed signature of the
separately-compiled module is consistent with the module itself so as to guarantee type safety. The full
signature of the separately compiled module is necessary to ensure that separate and combined compilation
yield the same result.

1.2 Static Semantics

The static semantics of SML [32] is defined by a collection of complex claboration ruies that specify the
static well-formedness conditions for SML programs. The main techniques employed in the semantics are
the use of "unique names" (or "generativity" ) to handle abstraction and sharing specifications. and the use
of non-deterministic rules to handle polymorphism, sharing specifications, and signature matchin.g. The
static semantics has proved useful as a guide to implementation [28, 2, 411. .10], but, is remarkably difficult
to modify or extend (see, for example, [43]). The naive attempt to enrich signatures as sketched above is
incompatible with the crucial "principal signature" property [31]. But it is not clear whether this failure is
a symptom of an intrinsic incoherence in the language, or is merely an artifact of the semantic method.:1

In an effort to gain some insight into the complexities of the static semantics several authors have
undertaken a type-theoretic analysis of SML. especially its module system [27, 33. 35. 7, 20. 19]. Previous
studies of the module system focused on the transparency of SML-style structures through the use of "strong
sum" or "dependent product" types. These are types of the 'orm Ex:A.B(i') whose elements are pairs"
(MI, M,) that are accessed via projections -rT(M) an(d r.,(A1). The crucial properties of strong sinus [29]
are that if M : Ex:.B(x), then 7r2(M) : B(7rr(M)), and that ,r((.I,.1.,)) = .l11. l'oget•ler. these
properties ensure that type information is propagated in rough accord with the SML static semantics.
(See [27, 33, 20, 191 for further discussion.) Substitution-based methods are problhematic in the presence
of computational effects, unless care is taken to account for the phase distinction ['20]. Moreover, st-rong
sums fail to account for sharing specifications and the abstract nature ("generativity") of structure and
datatype bindings.

In this paper we extend the type-theoretic analysis of SML-like module systems by presenting a ('alculus
with the following features:

2 It seems plausible that most uses of type sharing specifications may h~e acc(,hlted for in this way, provided Ohat we neglect

local specifications and re-binding of variables in specifications, both ,of wvhiich are of q(uestionable utility.

'Based on the approach taken here, and a related idea due to Leroy. lofte has rel,'utly devised a way to ;wAcoiittlat.e a

form olf type abbreviation in Standard MLs ignatlires [,Il.

41



Kinds K ::= K=:K'

Constructors A ::= [I:A.A' I ID 1 . . . . . D.. I
Aa::K.A I A' I V.b

Declarations D ::= bt ::K b bics::K=A I y c> x:A

Terms M := x Ax:A.M I M M' j M:A I
{B1 ,....B,.} I M.y

Bindings B ::= ba=A I yt>x=M

Values V x I Az:A.MI {Bv1 . , Bv,})
V.y

By ::= bt cr'=A I ytc> =V

Contexts F r,* , F,::K I F, a::K=A I rx:A

Figure 3: Syntax rules (n > 0)

"* Translucent sum types, which generalize weak sums by providing labeled fields and equations governing
type constructors. These mechanisms obviate the need for substitution, and account for abstraction
and common uses of SML-style sharing specifications.

"* A notion of subsumption that encompasses a 'coercive" pre-order associated with record fields and a
"forgetful" pre-order associated with equations that represent sharing information.

" Treatmenf if modules as "first-class" values. The typing rules ensure that visibility of compile-time
componeats is suitably restricted when run-time selection is used (see also [34]). If run-time selection
is not used, modules behave exactly as they would in a more familiar "'second-class' module system
such as is found in SML.

Our calculus improves on previous work by providing a much greater degree of control over the propagation
of type information at compile time so that we can achieve the effect of SML-like sharing specifications and
provide direct support for abstraction.

2 Overview of the Calculus

Our system is based on Girard's F, [14] in much the same way that many systems are based on the second-
order lambda calculus (F'2 ). That is to say, our system can be (roughly) thought of as being obtained
from F,, by adding more powerful constructs (translucent sums and dependent functions) and a notion of
subtyping and then removing the old constructs (quantification*' (V), weak sums (3). and ,non-dependent)
functions (-)) superseded by the new ones. Subtyping interacts with the rest. ol the calculus via implicit
subsumption. Bounded quantification is not supported.

Like F,, our system is divided into three levels: terms, (type) constructors, and kinds. Kinds classify
constructors, and a subset of constructors, called types, having kind Q classify terms. The kind level

is necessary because the constructor level contains functions on constructors. Example: the constructor
Aa::f2.a-a has kind Q=:f2 and when applied to type Int yields Int-Int.

The syntax rules for our system are given in Figure 3. The meta variable (t ranges over constructor
variables and the meta variable x ranges over term variables. The meta variable b ranges over constructor
field names and the meta variable y ranges over term field names. We have placed field names in bold11 in
order to help emphasize that they are names, not variables. The complete typing rules appear in appendix A.

4Quantification is derivable from dependent functions and translucent sums. The basic idea is to I ransform A,t::IK. .11
into Ax:{bi, o::K}. [x.b/a]M where x is not free in N1 and M [A] into N {jb, •=A . Note that this iiphcnents ,onstructor
abstraction as a delaying operation unlike the normal SML semantics. See [161 for a di-wussioii of the differe-ccs. I)et.ween these
two interpretations of constructor abstractions and why this choice seems to be preferable.



Our handling of dependent functions (Ax:A.M) is standard [29] except that our elimination rule only
allows for the application of functions having arrow-types 5 (non-dependent function types). The normal
elimination rule for dependent functions does not have this restriction, requiring functions only to have a R-
type. We make this restriction because we intend to extend this system in future work with effect-producing
primitives. In the presence of effects, the unrestricted rule is unsound because of interactions with tln
first-class nature of translucent sums.6

Translucent sums ({B 1I,... Bn,), the central contribution of the calculus, will be discussed at length in
the next section. Very briefly, they are n-ary labeled dependent sums whose types can optionally contain
. 'formation about the contents of their constructor fields. Traditional records and weak sums (existentials)
are degenerate forms of translucent sums.

A mechanism (written M:A) for forcing a term M to be coerced to a supertype .A is provided. [he
subtyping relation allows for both generalized record subtyping [7, 6, 9] (fields which are not depended on
by the other fields in a translucent sum may be dropped) and for the forgetting of information about the
contents of constructor fields.

There are two basic forms of constructor definitions. A constructor definition is opaqtu if within thel
scope of the definition there is no information available about the identity of the constructor variable being
defined. By contrast, a transparent constructor definition makes available the identity of the constructor
variable that is being defined.

Contexts in our system can contain both opaque (a::K) and transparent (o::K=A) definitions. The
effect of transparency is implemented by a typing rule (ABBREV') for the constructor equality relation
judgement that establishes that a = .4 when a::K=A is in the context. (This is similar to niechanisnis used
in AUTOMATH and LEGO [12, 45, 25].)

Our calculus is intended to be interpreted using a call-by-value semantics. The typing system is [ot
sound for call-by-name in the presence of effects. 7 We restrict. terms in constructors to values in order to
avoid the problem of trying to give a meaning to a constructor containing a sidhe-etfecting term .' Iti our
system, values (V) are considered to be term variables. term A-expressions. translucent sullns containing only
values and constructors, and selections of term fields from values. We allow V .y to he a value il order to
allow paths like x.y.y' to be values while still keeping the set of values closed under the subhstitution of a
value for a term variable.

3 Translucent Sums

A translucent sum has the form of a possibly empty sequence of bindinqs written bIetweent curly braces
({B 1 ... B }). The corresponding translucent sum type is similar except that duclarations are use(d instead
of bindings ({DI..., D, 1).

Translucent sums differ from traditional records in a nutiher of ways. In addition to unrmal trm li'lds.
they can contain constructor fields. The type or content of later fields in a translucent suni can depend oi
the content of earlier fields. As an example, consider the following t ranslucent sum,. call it P. t hat packages
up a type with a value of that type:`'

{b)t, e=lnt, ytr=31 : {bto::S2. yt, (J:}

Binding r to P would give r.b :: Q and r.y : r.b., t

'The arrow-typ A.4-A' can be regarded as an abbreviation for llx:....4' wherex is not free in ..1'.

6
Abbreviated example: (((,\x. i.y)A1).2) (((.\.r. x.y)M).I ) where 11 is the ,'xample in secliti 1.6.

'To see this consider the outermost j3-redex of (.\x.(x.y.2) (.r.y.I)) M where N1 is the example in section I.(;

aIt is not clear that allowing general terms in rotstructors wol, I be that t1seful' anyway sin•'e Illbe'16lt iil ,if general
terms for term variables wonld( be prohibited in a call-by-value setting in any r.aise.

9 We suggest pronouncing '", as "as". ":" as "has type", and "::" as "has; kind".

'(0Note the distinction between r and P here: r is a term variable (and hence a value) while IP is a terli tieta-varialle

denoting a non-value. This distinction is important because tile typing riles treat values specially.

6



The scope of variables bound in bindngs and declarations is all the following bindings/declarations ti
that translucent sum (type). For example, the scope of r in the following translucent sum includes -11' and
A' but not M or A:

{ b i a=A, yc, x=M, y'c x'=M', b'c>a'=A'}

Scoping for the other constructs is as normal. We regard terms, constructors, etc.. that differ only by
a-conversion of variables as equivalent.

Note that field names cannot be a-converted. Changing a field name in a translucent sum term/type
results in a different term/type because the set of legal field names which can be selected changes. Failure
to distinguish between field names which cannot be a-converted and the internal names for fields which
must be able to a-convert in order to permit substitution to work, leads to problems." For example. the
equivalent of the following cannot be written straightforwardly in SML: '-2

{b>a=Int. yc >x={bc> a'=Bool, y' >r'=Ax:a'. :}}
{ bh> a::Q, y r:{bi ,a'::Q, y't z':a'--a}

Because SML does not distinguish the two kinds of names, it is problematic to express that the type of the
y' field depends on both the outer and inner b fields.

The field names of any given translucent sum (type) are required to be distinct. Translucent sum
types that differ only in that their declarations have been reordered without violating any dependences are
considered equivalent. For example, the following first two types are equivalent but both are different fronm
the third type:

{b c a::Q, bi c, ai::Qt=a, b2 C, a2::Ql=O}

{b,> a::i, b2 C> a2::Q=Z'Y1, bi C. al ::1 =a}
{bl, >al::Q•=a, b t, a:: Q!, 132 C> ,2:: a)=

It may help to think of translucent sum types as being directed acyclic graphs (DA(s) where the nodes are
declarations and the edges are dependencies by one declaration on a variable declared in .nother declaration.

It is possible to include information in a translucent sum type on the contents of 'he constructor fields
of its instances. This ability can be used to give a more expressive type to P:

lb> a=lnt, y > r=3} : (bt,, ::Q2=Int. y o-r:a)

If it can be shown that r has this type, then it can be inferred that r.b = Int. This call not be inferred if it
can only be shown that r has the less expressive type. The use of nested translucent sunms and constructor
field component information can give rise to more complex dependencies as the following example illustrates:

{y,>x={bc>a=lnt}, y'i> z'=*3. b to .a=.r.b}
{y c> x:{b, c,:: Q}, y' c> r': rb. bh , ,,::=.b}

3.1 Introduction and elimination rules

The introduction rule for translucent sums is as follows:

I- F valid

ViE (I[n]. F. D ..... D. F- B, : D, SIM
............... ,... {........D,}

(The overline function (D) merely strips off the field name.) Note that each of the bindings is being type
checked under a context which takes account of the effect of all of the previous bindings. ('onstructor
bindings result in transparent definitions, both when type checking later bindings and ill t he resulting type.

"l To avoid verbosity, a real programming language based on our system would protbablY provide that 1,Y ,he'ault only one

name need be given per field, to be used as both the field name and the internal nfame.

"12 It is possible to write this in SML by using a combination of local specifications and type sharing in lie signat ure. [hanks

to Mads Tofte for pointing this out. Unfortunately, however, some SML implementations (,.g.. SMI,/N.I) do iuuot implehment
local specifications in signatures properly so this is not very helpful in practice.



Thus, the introduction rule gives P the more expressive type. The less-expressive type is obtained by ti-,
use of the subsumption rule afterwards.

There are two elimination forms with corresponding rules for translucent sums, one for constructor fields
and one for term fields:

r I- V : {b, o,a::K} ((-EXT-Of
F F- V.b:: K

FF-11: {ytx:AJ (EXT-V)

F - M.y: A

In order to apply these rules to translucent ,iums with multiple fields, it is first necessary to use the
subsumption rule to drop the fields that are not being selected. The constructor field case miiay also require
that type information about the field to be selected be dropped Unlike traditional records, with translucent
sums it is not always possible to drop all the other fields because the field we wish to select may depend in

an essential way on them. Thus, the fact that Al has a translucent sum type with a y field is not in itseilf

sufficient to ensure that M.y is well-typed.' 3 It is always possible to drop fields from the type of' V because
of the VALUE rules which, ye will discuss in section 3.3.

3.2 Translucency

When x:A appears in the context where A is a translucent sum type which contains information abo,,t liec
contents of the constructor fields of its instances, it gives rise to equations via the following rule:

FF- ": tbt, a::Al=A}
SI i.\BBREV)

r -V.b A ::hK

Thus it is possible to infer that r.b = lnt when it can be shown that r has tile type ( {b > o::Q?=lnt, y t> j:o })
but not when it can only be shown to have the type ({b>c a::Q, yt> x:a }).

This rule also gives rise to equations such as {br a=Int. b'tr a'=Bool}.b' = Bool. These equations allow
any valid constructor V.b to be reduced to a constructor which contains only values of the form .r.y, .. y,,
(n > 0). Because of this. it is not necessary in our system to consider the equality of arbitrary values (and
hence terms) at type-checking time.

When the equality rules compare the parts of a constructor that are in t lie scope of a variable binding.
they do so with the declaration associated with that variable in the context. For example. the ,quality rul,
for fl-types below compares .4A1 and A, with x:A, in the context:

I" F A,4 = .42 :: !

F. x:., - . = i, :: 1-D F N )

F F flr:, . ,-' = Hlx:A 2. A2' :: Q

This allows use of the ABBREV rule to obtain equations such as the followinI:

flx:{b, ca::S?=lnt)..r.b = flx:{bt, o:-QInt}. lit
{br•a::J=lnt, yt>r:a} = {~br,,•::S2=lnt. yc,•:lnt}

A similar effect occurs while typing terms. For example, in the following, wi. know that x..b = lilt while
type checking M:

{y >, x: {b t, ý"'It y'> tr': M

Because of the ability to substitute away transparently bound names using tile equality rules, no deplt'ldemNcy
on a transparently bound name is ever truly essential. This allows nany more field selections and fianctiion

applications to type check than would otl,-rwise be the case.
When translucent sums are given fully opaque types, they act like weak snuis which can be wsed to cremae

abstract data types (ADTs) [351. Because we have dependent functions and a form of dependent pairs (a
pair of terms where the type of the second term depends on the first component of the pair). our eliminatioln
form for weak sums is more powerful than usual [35, 7, 101. (Consider the f,,llowing example in SNIl-like
notation, where weak is used to construct a weak sum:

"3 For example, ( {b cý rv=Int, y > r=3) : blh , ::.l y > r:a } ).y i% im4 well-typed.

8



let structure S = struct
structure Stack = weak

type T = (int ref) list
val makeStack:(->T
val push:(intT)->()

end
val myStack = Stack.makeStack()

end in
S.Stack.push( I,S.myStack)

end

This example is well-typed ili our system because we can determine that S.myStaclr >as type S.Stack.T
which is the argument type of the function S.Stack.push. Note that there is no way to type this example
using the open elimination form for weak smis because there is no scope containing both the initialization
of myStack and its use that is also inside the scope of Stack.

3.3 The VALUE rules

Suppose the typing context contains the following declaration:

r:{bt, ::Ql, y c, :rt

What types can we give to the expression r under this context*' Because we have a name. r. for the
translucent sum expression we are trying to type. we have a name for t he contents of its b field, namely c.h.
This suggests that we can give r the type {b, o::=r.b. y, r:r.b} which is a subtype of the context t'.pe for
r.

This tech-ique of giving a more expressive type to translucent sums when we have a name IF( r their
constructor components can be generalized to work on arbitrary translucent sum values. lihe naiiw ili this
case is simply V.b where V is the value in question. Attempting to extend the technique to general emrls
requires dropping the restriction that only values may appear in constructors and results ini unsoundness in
the presence of effects."4 The following two typing rules implement this technique:

Fr- v : {bt, a::A'. D 1 ... D ý} {V\L -E-O 1

F I- V : {bc. ,r:: k=V.b. D1 ..... D( i,

F r- 1'.y : .- '
Fr-- ,: {yr" r:.4.D.D 1 ... D,})..I4._.
F FVU {y x:A. D_.. . D.4IFV.X 1,UE- V)F -V : {y >.r:A'.Dl,..... D,}I

(The VALUE-V rule is used in cases of nested translucent sums to apply the technique recursively.)
By alternately applying the VALUE rules to convert an opaque binding into a transparent one and the

:ubsumption rule to propagate that defenition (and hence removing any dependencies on that binding), we
can give any translucent sum value a fully transparent type (there are no constructor conii)onenls for which
information is lacking) with no dependencies between the hiolds (or sublields). Because of this. field selection
on values as well as applications of functions t.o values d1o not. run ine o problems due to lie inability to
remove dependencies. Without this kind of usage of the VALUE rules, expressions such a.; r.y would not
type check.

The more expressive type given by the VALUE rules to translucent sum values is also critical to the
propagation of typing information. For example, if s is bound to the result of the expression r. it will be
given the more expressive type, allowing the fact. that s.b = r.b to be inferred.

"i4This would allow field selection to always suc-,eed because it would permit all lh')p'ndenicius I,, bI rI'Ii -,el. t rlindlhess

example: (M.y.2) (M.y. 1) where M is the example i," section .1.6.



4 Selected Examples

4.1 Simple structures

Typical SML structures can be translated straightforwardly into our system, w'itti Lie only complication
being the treatment of polymorphism (as discussed in [161.) Consider the following structure S considered
in the introduction:

strlucture S = struct
type t = int
type u = t -> t
val f = fn x:t => X

end
This translates as:

S {t - t-lnt, u c> u=t-t, f t f=Ax:t. x)

The translations of the signatures considered earlier (only SIG here is actually a valid SML signature) are:

FULL.SIGS = {t c t::f2=1nt, ut u::••-Int-1nt.
f c> f:Int--Int}

PARTIALSIG.SI = {t > t::Q1, u c> u::fQ=t-t, f c> f:u)
PARTIAL.SIGS.2 = {t, ct::f2=lnt, ucou::(, f >f:u)

NIG = {t , t::Q. uC u::.Q, f > f:u}

The subtyping rules for our system establish that FULL-SIGS < PARTIALSIGSI < SIG and FULLSIG-S <
PARTIALSIG-..2 < SIG. The signatures PARTIAL-SIG-S_1 and PARTIAL-SIG.S.2 are incomparable.

The signature given to S determines which equations on S.t and S.u can be deduced. By default our
system, like SML, will give S its full signature, FULLSIGS. This means that we will be able to deduce that
S.t = Int and S.u = Int-Int. If we insert a coercion to one of the other signatures before the binding to S.
fewer equations will be deducable in our system. In SML, by contrast. user-specified coercions never result
in the loss of typing information. They can, however, result in the loss of fields. Thus. in order to translate
a coercion from SML into our system, we need t3 enrich the target signature with all the available typing
information.

4.2 Abstraction

SML/NJ [2] supports an extension to SML, called abstraction, which is an alternative to the normal structure
binding mechanism. If the keyword abstraction is used instead of the keyword structure when binding
a structure, all information about the constructor components of that structure is forgotten. Had S inl the

previous example been bound with an abstraction binding instead of the structure one we used, it would
have been as if we had given S in our system the signat tire SIG. That is to say. S. t and S.u would have Ieen
bound opaquely. Note that it is not, possible in SML/NJ to give S a partial signature using this iuechanisni.

Only the fully transparent (via structure) and fully opaque (via abstraction) alternatives are available.
Abstraction bindings can be translated into our system by inserting a forced coercion just, before the

binding to the appropriate opaque type. For example, coiisider the following implementation of an abstract
data type (ADT):

abstraction Stack = struct
type T = (int ref) list
val push: (T,int)->() .
val pop:T->int = ...
val isEmpty:T->bool =

end

10



This translates to:
Stack= ({ T t T=1ist(ref Int),

push , push=(...):(T, Int)-(),
pop c- pop=( ... ):T--lnt,

isEaptycý isExpty=(...):T-Bool }
):T{ Tt>T::fQ,

push t> push:(T, Int)-(,
pop r pop:T--nt,
isEmpty r isEmpty:T-Bool

Note that because the type information about the identity of the T field is lost in the coercion, the rest of

the program will be unable to break the abstraction. SML provides an abstraction inechanic,-. abstype, at
the core language level. Because translucent sums are first-class in our system, we can achieve the effect of

SML's abstype using the abstraction binding mechanism.

4.3 Sub-structures

Sub-structures are also easily translated. For example, suppose we wanted to use the Stack structure in a
bigger structure as follows:

structure Big = struct
structure ourStackr = Stack

type T = ourStack.T

end

This translates into:
Big = {ourStackr >ourStack-Stack, T > T=ourStack.T, .

Big will be given the following full signature:

{ourSt ack r ourStack:{ T t T::Q=Stack.T,

push > push:(T, lnt)-(),
pop c, pop:T--[nt,
isEmpty c> isEmpty:T- Bool},

T C T::fQ=ourStack.T,

Note that we have that Big.ourStack.T = Big.T = Stack.T.

4.4 Functors

Functors translate into dependent functions in the expected way. Consider the following example from (lhe

introduction:

functor F(structure X:SIG):SIG = struct
type t = X.t * X.t

type u = X.u

val f = X.f

end

This translates into:
F = AX:SIG.( It > t=X.t * X.t, ua u=X.u, f > f=X.f)

{t C t::Q=X.t * X.t, u u::1=X.u, f > f:u))

(The coercion on the result type of the functor is an abbreviation for a coercion on the functor body.) Note
the enriched signature we have to give instead of SIG in order to make the coercion have the same effect. is

it does in SML. Translating the functor signatures we considered for F gives:

FULL-SIG-F = HI:SIG. It C> t::i=X.t * X.t, u . u::Q=X.u,
f * f:u}

PARTIAL-SIGF = [11X:SIG. {t c, t::{, u o. u::()=X.u. f r> f:u)
SIG-F = H1X:SIG. SIG

11



FULL-SIG-P
= HX:SIG. it C> t::fQ=I.t * It. t, U C ::Q2=X.U, f Cý f:u)

= flX:(ttý t: £Z=lnt, ur. u::f2=lInt-.lnt. I- f: I:nt-lnt). it c> t: •Q=X.t * I~t, ur u::Q=X.u. f C> f:u}
= HIX:{t c t::f2=lnt, uo, u::Q=1nt-.lnt, f c> fIlnt-lnt). {t Pý tJ:Qnt * flt, u C u::fQ=lnt-fnt, fI> cf:uj
= FULL-SIG..S-{t I> t::fl=lnt * ftit ui u::11=lnt-.lnt, fI> f :u}

Figure 4: Steps in coercing F's type to an arrow type

Here, FULL-SIGSF < PARTIAL..SIG..F < SIGSF.
Suppose T was bound to the result of applying F to S. Before the APP rule can be applied to determine

T's type, the subsumption rule must be used to coerce F's type (FU~LLSIG-F) to an arrow type. One way
this could be done is shown in Figure 4. First, F's argument type is coerced to a subtype (rememnher that

JULL-SIG-S < SIG) using the fact that subtyping of function types is contra-variant. Next, the equality rules
are used to remove the dlependencies on X by the result type. resulting in an arrow type. Thie result is that
T gets assigned the following type:

{t >. t::fl=lnt * lilt, u > u::fQ=lnt-.4nt, f ý ftu}

If F had instead had the type PARTIAL-SIGSF, T would have been assigned the type:

ft I> t::11, u > u::=12=nt-lnt, f c> f:u)

4.5 Sharing specifications

The basic idea in translating sharing specifications is that for each set of naines thfat are asserted to b~e equial.
pick one with maximal scope as representative of the equivalence class and set, the others equal to It using
transparent definitions. For example. the following SML signature:

signature H = sig
type t
type u
type v

sharing type t = u
and type v = u

end

translates into:
H = it c> t::Q2. u I> u::fl~t. v cvA2t

A more interesting case is provided by the argumlent signature of the Parser finictor in MacQueven's examtiple
from the introduction:

sig structure L:LEXER
structure T:SYMTAB

sharing type L.S.symbolT.S.symbol
end

This translates into:
L > L:LEXER, T c> T:f S > S: { symbol > syubo1::Q=L.S.symbo1.

....................),...1

The omitted parts are the usual translation of the rest of SYNTAB and SYMBOL. Tlhis translation nwt0.hod al1so

works. on sharing between constructors in the argamrent and result of a fulictor.

12



4.6 First-class modules

So long as we restrict ourselves to simple module operations like binding, functor application of a named
functor to a named or fully transparent module, and selection from a named module, we never lose any
typing information. In fact, the only module operation available in SML that causes a loss of information
when used in our system is coercing a module to a user-specified type. This is not surprising, however, since

the purpose of coercions is controlled information loss.
Due to the fact that modules are first-class in our system, it is possible to write module expressions which

force the loss of typing information in order to preserve soundness. For example, consider the following:"'

if flip() then (bca=lnt, y, r=(3. succ)}
else {b t, t=Bool, y D, z=(true, not))

While both parts of the if can be given fully transparent types, these types are not equal. In order to make
the if type check, we must give them equal types. The only way to do this is to use the subsnmption rule
to coerce both of their types to {be> e::1Z, y > ;:(a, 0-0)).

The system described in [34] displays similar behavior, namely a forced loss of typing information when
using modules in conditionals and other primitives. In that system, types are divided into two universes.
U1, the universe of "normal" types like [nt and Bool-Irnt, and U,', the universe of module types. The loss in
this system is caused by the need to apply an implicit coercion from a strong sum (which belongs to U,) to
a weak sum (which belongs to U,) because primitives operate only on terms with types in Ul. This coercion
causes a total loss of typing information. Our system is more flexible than this because it only loses just
enough information to ensure soundness.

The possible uses for first-class modules have not been well explored. One known use discussed in (35] is to
select at runtime between two or more ADTs which implement the same abstraction using d(ifferent algoritlims
based on expected usage conditions. For example, we could use one particular hash table iniplementation
for small tables and another for large ones.

5 Related Work

An early influential attempt to give a comprehensive type-theoretic analysis of modularity and abstraction
was undertaken by Burstall and Lampson with the experimental language Pebble [5]. Their work stresses
the role of dependent types and the mechanisms required to support abstraction, but does not address the
problem of controlling the "degree" of abstraction. In particular, Pebble supports type and value bindings
as primitive notions, but with an "opaque" typing discipline, in contrast to our calculus.

Cardelli's language Quest [7] has exerted a strong influence on the present work. Our approach shares
with Quest the emphasis on type-theoretic methods, and is similarly based on (Girard's F-, enriched with
a notion of subsumption (though we depart from Cardelli's approach by omitting bounded quantification).
Quest does not provide an adequate treatment of modularity: our work c-aii be seen ,s providing the type-
theoretic basis for an extension of Quest with an expressive inodule system.

Mitchell, et al. [34] consider an extension of the SML module system with first-class modules as a mieams of
supporting certain object-oriented programming idioms. Their paper is primarily concerneud with illustrating
an interesting language design rather than with the type-theoretic underpinnings of such a language, though
a brief sketch is provided. A comparison with their work is given in Section 4.6.

The type-theoretic analysis of the SML modules system was initiated by MacQueen [27], and further
developed by Harper and Mitchell [33, 20, 19]. This work is summarized and compared with the present
work in the introduction.

Our language bears some relationship to Russell [4] and Poly [30], buth a detailed comparison seems
difficult in the absence of a type-theoretic analysis of these languages (see [21] for an early attteln).).

In an effort to address the problem of separate compilation, Leroy has independently dvewloped a variant
of the SML modules system based on the notion of a "-manifest. type" which is similar in spirit to our

" SFor the unsoundness examples, flip is a function which alteramtes rem.irning true and false. II. is ,.tsily intpleie'tited
using a global variable.

1:1



translucent sum types. See Leroy's paper (231 for a description of his system and some comments on its
relationship to ours.

6 Conclusions

The main contribution of this work is the design of a calculus of modularity with the following features:

"* Fine control over the "degree" of abstraction through the notion of a translucent sum type.

"* A treatment of modules as first-class entities without sacrificing the control over type abstraction
afforded by a second-class module system.

"* Support for separate compilation in a form that ensures the complete equivalence between separate
and integrated compilation of a large system.

The following are some important directions for future research:

"* Establish the soundness of the type system by proving preservation of typing under a call-by-value
operational semantics.

"* Investigate the efficiency of type checking and develop practical algorithms that may be used in an
implementation. We show in Appendix B that the subtyping problem for our system, and hence the
type checking problem, is undecidable. There is reason to believe, however, that this will not be a
problem in practice.

"* Design an elaborator to translate an SML-like syntax into the calculus, including a systematic treat-
ment of the reduction of symmetric sharing specifications to asymmetric definitions in signatures.

"* Develop an treatment of structure sharing that accounts for structure generativity and interacts well
with computational effects.

Acknowledgements

We are grateful to Andrew Appel, Luca Cardelli, Olivier Danvy, ,John Greiner, Nick Ilaines, MVark Leone.
Xavier Leroy, Brian Milnes, John Mitchell, and Mads Tofte for their comments and suggestions.

References

[1] kndrew W. Appel. Compiling with Continuations. Cambridge University Press., 199-2.

[21 Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey. In .1. Maluszynski and M. Wirsing,
editors, Third Int'l Symp. on Prog. Lang. Implementation and Logic Programming, pages 1-t3, New York.
August 1991. Springer-Verlag.

[3] Edoardo Biagioni, Nicholas Haines, Robert Ilarper, Peter Lee, Brian G. Milnes, and Eliot B. Moss. ML signa-
tures for a protocol stack. Fox Memorandum CMU-CS-93-170, School of Computer Science. Carnegie Mellon
University, Pittsburgh, PA, July 1993.

[4] Hans-J.irgen B6hm, Alan Demers, and James Donahue. An informal description of Russell. Technical Report
80-430, Computer Science Department, Cornell University, Ithaca, New York, 19910.

[5] Rod Burstall and Butler Lampson. A kernel language for abstract data types and modules. fi Kahn et al. [22].
pages 1-50.

[6] Luca Cardelli. A semantics of multiple inheritance. In Kahn et al. [22], pages 51-67.

[71 Luca Cardelli. Typeful programming. Tef ,nical Report 45, DEC SRC, 1989.

[8] Luca Cardelli, lames Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, and Greg Nelson. Modula-3 report
(revised). Technical Report 52, DEC Systems Research Center, Palo Alto, CA, November 1989.

1'1



[9] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymorphism. Computing
Surveys, 18(4), December 1986.

[10] Luca Cardelli and Leroy Xavier. Abstract types and the dot notation. Technical Report 56, DEC( SR('. Palo
Alto, CA, March 1990.

[11] Eric Cooper, Robert Harper, and Peter Lee. The Fox project: Advanced development of systems software.
Technical Report CMU-CS-91-178, School of Computer Science, Carnegie Mellon University, Pittsburgh. PA.

August 1991.

[12] Nicolas G. de Bruijn. A survey of the project AUTOMATH. In J. P. Seldin and J. R. Hindley, editors. To H. B.
Curry: Essays in Combinatory Logic, Lambda Calculus and Formalism, pages 589-606. Academic Press, 1980.

[13] Emden Gansner and John Reppy. eXene. In Robert Harper, editor, Third International Workshop oa Standard
ML, Pittsburgh, PA, September 1991. School of Computer Science, Carnegie Mellon University.

[14] Jean-Yves Girard. Interpritation Fonctionnelle et Elimination des Coupurees dans I.-I rithnm'ttqut d'Ordrh
Superieure. PhD thesis, Universit6 Paris VII, 1972.

[15] Robert Harper. Introduction to Standard ML. Technical Report ECS-LFCS-86-14. Laboratory for the Founi-

dations of Computer Science, Edinburgh University, September 1986.

[16] Robert Harper and Mark Lillibridge. Explicit polymorphism and CPS conversion. In Twentieth .1('M Symxosturn
on Principles of Programming Languages, pages 206-219, Charleston, SC, January 1993. ACM, AC(IM.

[17] Robert Harper, David MacQueen, and Robin Milner. Standard ML. Technical Report E('S-LFCS-86-2. Labo-
ratory for the Foundations of Computer Science, Edinburgh University, March 1986.

[18] Robert Harper, David MacQueen, and Robin Milner. Standard ML. Technical Report ECS-LFCS-86-2. Labo-
ratory for the Foundations of Computer Science, Edinburgh University, March 1986.

[19] Robert Harper and John C. Mitchell. On the type structure of Standard ML. A C.11 Transactions on Programmian
Languages and Systems, 15(2):211-252, April 1993. (See also [33].).

[20] Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order modules and the phase distinction. In
Seventeenth ACM Symposium on Principles of Programming Languages, San Francisco. (A, .January 1990.

[21] James G. Hook. Understanding russell: A first attempt. In Kahn et al. [22], pages 69-85.

[22] Gilles Kahn, David MacQueen, and Gordon Plotkin, editors. Semantics of Data Types, volume 173 of Lceture,
Notes in Computer Science. Springer-Verlag, June 1984.

[23] Xavier Leroy. Manifest types, modules, and separate compilation. In Proceedings of the Twventy-fir.ut Annual

A CM Symposium. on Principles of Programming Languages, Portland. ACM. January 1994.

[24] Barbara Liskov and John Guttag. Abstraction and Specification in Program Developmen. NMIT Press. 1986.

[25] Zhaolui Luo, Robert Pollack, and Paul Taylor. How to use Lego: A preliminary user's manual. Technical Report
LFCS-TN-27, Laboratory for the Foundations of Computer Science, Edinburgh University. October 1989.

[26] David MacQueen. Modutes for Standard ML. In 1984 ACM Conference on LISP (ind Functional Progqramming.
pages 198-207, 1984. Revised version appears in [18].

[27] David MacQueen. Using dependent t3 -,; to express modular structure. In Thirtrcnth r.1'l Sympoxsium on

Principles of Programming Languages, i:Th.

[28] David B. MacQueen. An implementation of Standard ML modules. In Procccdings of thc 198• 1.-('l Confe nc(
on LISP and Functional Programming, Snowbird. Utah, pages 212-223. ACM Press. July 1988.

[29] Per Martin-LZf. Constructive mathematics and computer programming. lin Sixth international Congrrss for
Logic, Methodology, and Philosophy of Science, pages 153-175. North-lHolland, 1982.

[30] David C. J. Matthews. POLY report. Technical Report 28. Computer Laboratory. University of ('ambridge,

1982.

[31] Robin Milner and Mads Tofte. (.Commentary on cladard VlL. MIT Press, 1991.

[32] Robin Milner, Mads Tofte, and Robeio ia.& .r. The Definition of Standalrl ML. MIT Press, 199M.

[331 John Mitchell and Robert Harper. The essence of ML. In Fiftcenth .A('CM SymNs.inum on Primniplu.'i of Pr(wrJtral-
ming Languages, San Diego, California, January 1988.

[34] John Mitchell, Sigurd Meldal, and Noel Madlhav. An extension of Standard ML modules with subt.yping and
inheritance. In Eighteenth ACM Symposium on Principles of Progirammiing Languiijc.; .January 1991.

15-



[35] John C. Mitchell and Gordon Plotkin. Abstract types have existential type. .4M Transactions on Programming

Languages and Systems, 10(3):470-502, 1988.

[361 Greg Nelson, editor. Systems Programming with Modula-3. Prentice-Hall, Englewood Cliffs, NJ, 1991.

[37] Benjamin Pierce. Bounded quantification is undecidable. In Proceedings of the Nineteenth Annual .4CM .1'ym-

postum on Principles of Programming Languages, Albuquernue. ACM, January 1992.

[381 Benjamin C. Pierce. Programming with Intersection Types and Bounded Polymorphism. PhD thesis. School of

Computer Science, Carnegie Mellon University, Pittsburgh, PA, December 1991.

[39] Chris Reade. Elements of Functional Programming. International Computer Science Series. Addison Wesley.

1989.

[40] Nick Rothwell. Functional compilation from the Standard ML core language to lambda calculus. Technical Report

ECS-LFCS-92-235, Laboratory for the Foundations of Computer Science. Edinburgh University, Edinburgh.

Scotland, September 1992.

[41] Nick Rothwell. Miscellaneous design issues in the ML kit. Technical Report ECS-LFCS-92-237, Laboratory for

the Foundations of Computer Science, Edinburgh University, Edinburgh. Scotland. September 1992.

[42] Zhong Shao and Andrew Appel. Smartest recompilation. In Twentieth AC(M Symposium on Principles of

Programming Languages, pages 439-450, Charleston, SC, .lanuary 1993.

[43] Mads Tofte. Principal signatures for higher-order program modules. In Vineteenth ACM Symposiumn on Prn-

ciples of Programming Languages, pages 189-199, January 1992.

[44] Mads Tofte. Type abbreviations in signatures. Unpublished manuscript, August 1993.

[45] Diedrik T. van Daalen. The Language Theory of A UTOMATH. PhD thesis. Technical University of Eindhoven.

Eindhoven, Netherlands, 1980.

[46] Niklaus Wirth. Programming in Modula-2. Texts and Monographs in Computer Science. Springer-Verlag, 198.1.

A The Typing Rules
Definition A.1 (Judgements)

H- F valid valid context
F F- A :: K valid constructor

F H- A = A' :: K equal constructors

F I- D = D' equal declarations

F '4 < A' subtype relation

F - D < D' subfield relation

F Al A well-typed term
F B B D well-typed binding

Definition A.2 (The field name stripping function)

b• c,(:: " A' (v:: A'

be>.:: K=A cv ::h'=A

y c r.:A r:,'I

Definition A.3 (Context Formation Rules)

H- * valid (IN ITI.\1,- F)

H-I' valid rk 1 dom(l')

H , aF::h valid

I- FPa::K" valid I' -- A :: A'

H- U, ::A'=A valid

Fr - :: x iZ dom(F) I)IJ-V)

F, x.r::A valid

16



Dennition A.4 (Constructor Formation Rules)

F- r valid a::K E F

F I- a:: K

F- F valid a::K=A E r (C-VAR-T)
F F- a:: K -VRT

F F- V : {be> a::hK} -EXT-O)
F V.b:: K

F, x:A F- A':: Q DFUN)
F F Hlx:A. A' :: fl

r F valid

F F- 1 :: 
( (C-UNIT)

F, D - 1{ D j,.... D ,, ::Tt
F I D, D... D} :: (-TSI'M)

F,a::K .:: '(CLAM)

F F- Aac::K. A:: K=h K'

F A1 :: K2=*K F F- A2 :: K 2  (C-APP)

SF- A1 A2 :: K

Definition A.5 (Constructor Equality Rules)

F - A:: K

F F- A = A:: K (E-REFL)

Fr * A :: K
F -,=,'::A K(E-SYM)I'F- I= A':: K

FF-,A=A'::K FF-A'=A":: K

F-A= A":: K (E-TRAN)

SF- A1  42 ::iQ
F, x:A, IF- A , A 2, :: Q tE-DF IN )

FF- [Ix:A1 . A, = Hx:A 2 . A2 :: Qt

F FD D'

r,DF- {D1 ..... D, (}= D .... DD' ,, ::

F ({D,D1 ,.... }D={D',D' .. ,}, (Eý I::TQ

F, c::K F A A' :: K'

F- Acy::hK. A = Aa::K. A' :: = (E-LAM)

F F- A 2 = A24 :: K

F F- it = A, :: K*K' (E-APP)
F F- Al A2 = A, A2 :: K'

F,::K F' A:: K' I F A':: I

F F- (Aa::K. A) A' = [A'/a]A :: K' (E-BETA)

F,o::KF At:: K' FE A::EKTK'

F F- Aa::K. A = A :: K=K' (E-ETA)

F - V : (be> a::K=A) (AI BIIEV)

F F V.b = A:: K

F F valid ax::K=A E F (ABBII E V')

F F• = A :: K

17



Definition A.8 (Declaration Equality Rules)

I- F, a::K valid

T F- b> a::K = bt- a::A" (EQ-OK

r '- A = A':: K I- F,a::K=A valid

r b b a::K=A = b , a::K=A' (EQ-T)

F A =A':: l - r, x:A valid
F I" y t, x:A = y c> x:A'

Definition A.7 (Subtyping Rules)
F I- .4 = A' :: 9

r ,-A < A' 
(S-EQ)

F - .4 < A' r - A4' < A"

F - .4 < A" S-TR.N

F I- ,42 < A1

F, z:A2 I- A , <_ A ,' I' H • [I:A.A Q: D FUNI

rF fIx:A1 . .4, < zII:A2. .4

Fr-D<D' F- {I D',} :D,.

FTD- I{D, ., - Dý} < {DI.. Dr.} (STS[,M)

rF {DD,, .... , D } <_ {D',D , ... , D,}

Fr- {1)D, ... , DD} :: Q
r ý- {Dl,..... D,, D} < D,... O. S-HN

Definition A.8 (Subfielding Rules)
F - D=D'

FI-D < D' (S-;AME)

Fl-A< A' I- F,x:A valid (SVALUE)

r' l- y > x:A < y D.x:A

P F,ct::K=A valid

F H b r, a::K=A < b c> ::K

Definition A.9 (Term Formation Rules)

r F talid x:,. E F

F - X : A

F.x:.i - w : v'

r I- Ax:A. M : •':,.(LAN.)

r I- m , : A -- A2  r )- M 2 : AAP
El- A 1 Al 2 : A 2 (APP)

1")" MI M2 :,-1-

P- r valid

Vi E [1..n]. F,D, . D,-, l- B, :D, (,SITM)

r - B, . .B: (D, . .. , 1).

rl M : {y t. :Aj (IXTV)

rP- M.y: ,-I

-: {b ::,D . (VA LIIE-)

r lV : {be>::A'=V.b, D. D.) OL}

18



a, ~if p = a
F(p) = 3r,aI ... n. ý.((3,a'= =F(pi) .a.. a,=(p.).--F(pi)) if p= [oa.. Q]<pi ... P,>

3a, - -,..., an,.-or if p = HALT

Y(R) = 3a=a',ai=.F(pi).. oa,=.(pn).-,F(pi) <5 a where R = <pi-.. p,> and
01 = 3c, a 1,,. -.(3a'=a, arI=a,.. .,n= a , ýa)

Here, et, a', and a, through a, are fresh variables.

Figure 5: Modifications to Pierce's encoding of row machines

F H- V.y: A'
F- V l{y c x:A, D1l... , D,} V LUE-V)

F- V: {ye> :A', D1 ,. .. DL

(COERCE)
F r- M:A : A

FH"M :A' Fk-A'< A' A( 
S UBS)

F H- M A

Definition A.10 (Binding Formation Rules)

H- F,o::K=A valid

Fr"- b>a =A : be) ar::K=A

Fr - M : A H- F,x•:A valid
S- y t> =M y :A(BIND-V)

Lemma A.11 (Properties of the typing system)

1. if F A:: K then F- P valid

2. iF r A1 = A2 :: K then r H- A1 :: K and F- A2 :: K"

.3. if F D1 = D2 then H- F, D1 valid and r F, 2 valid

4. iF r A1 :_ A2 then Fr - ti :: Q and F A 2 ::

.5. if F H D1 • D2 then H- F, D5 valid and H F, D52 valid

6. iJFH-M :A thenFH- A::fQ

7. if F H- B : D then H- F, D valid

8. if - F,D valid then H- F valid

B Undecidability of Subtyping

The subtyping relation for our system can be shown to be undecidable l)y a slight modification 0o BIen janmin
Pierce's proof of the undecidability of F< subtyping [38, 37]. The basic source of undecidability is the
subtyping rule (FORGET) that allows the forgetting of information about. the type conpl)onents of trransluc(-nt
sums.

Even a vastly simpler system with transparent and opaque sums and a forgetting rule is undecidable. In
order to demonstrate this as well as simplify the discussion, we consider now a very simple fragnient. of oi r
full system.

19



B.1 The fragment A-',',=

The fragment A-'3= is obtained from our system by restricting the set of constructors to include only
types and restricting the methods of building types to only allow for arrow types, binary opaque stuns (often
called weak sums), and binary transparent sums. We use a slightly different notation tj emphasize that
these are simpler constructs. The syntax for A- .3= is as follows:

Types A ::= a A1-A 2 I 3a.,4 I 3a =A1 .IA2

As before, the meta-variable a ranges over type variables and we identify types that differ only by o-
conversion. The translation back to our earlier notation is as follows:

A -A = -14Al--A• = Hxr:,4 1.A2"

3a.A = {b, ra::Jy, YI>X:A)}
3a=Aj.A 2 = {b >a::A=A1 , y > X:,4 2}

The effect of the subtyping rules of our system on this fragment is captured by the following simple set
of rules:

Definition B.1 (Subtyping rules for A-'3,3=)

a < a (V\AR)

A'I <i A1 .42 _< ,42 (ARROW)
Al --A2 _< Ai - A2

'A < X'

3c..A < 3aA' 
(SUl-O)

[A,/aAI • [.A/]Aj2  (S.I-T)

3a=A..A1  3a,.A 2=A.lT

[A/a]AI <[Oa/I. 
; E

3a=A.A1 < 3a.-A2

Note that this set of rules is completely syntax directed and does not require the use of a context because
of the explicit use of substitution. The proof that this set of rules corresponds to Ile subtyping rules of tIe

original system on this fragment is omitted. For the purposes of the undecidabilit.y proof. we will only need
the following lemma:

Lemma B.2 The subtypzng relation for A-'3= t.s reflexive.

The proof proceeds by structural induction on the size of the type using the following measure:

jaj = I)

IAl -A-2i = I + IAIjI + 1A21
13a.AI = I + 1
13a=Ai.A21 = I + I({iI,-]A21

B.2 Undecidability of A-'' 3 = subtyping

Theorem 13.3 If the FORGET' rule is removed, then A-'3,3= ubtyping is decidable.

'6 Note that I(Al /IcA2 1 = [IAI I/,l.42l if we define Iil = i.

20



Proof: Each use of the other rules strictly decreases the following non-negative measure, so the simple
syntax-directed procedure always terminates in this case: JA1 < A.1 = 1,411 + 1.4,1. 0

Note that use of the FORGET' rule doe-; not decrease this measure and in fact can increase it because.
the type on the right side can grow without limit in the recursive call. This fact can be used to construct
examples that cause the simple syntax-directed procedure for checking A-ý 3 = subtyping to loop. For
example, consider the following definitions:

--A = A-a'

P(A) = 3a=A.--A where a fresh
Go(A) = 3a.-A

The definition of -'A is chosen so that -A 1 < --.4, iff .4, < A1 . Any type constructor with a contravarlant
subtyping rule could be used here. An example which causes cyclic behavior is then as follows:

P(Ga (P(cr))) <ý Go(P(a))

= 3a=Ga (P(a)).-,Ga(P(a)) < 3a.-,P(a)
. [Ga(P(a))/a(-,Ga(P(a))) < [Go (P(a))/n,](-P(a))

= -"Ga(P(a)) < -"P(Ga(P(a)))
SP(Ga(P(a))) _ Ga(P(a))

Theorem B.4 A-','3= subtypzng is undecidable.

Pierce's proof can be found in chapter 6 of his thesis [38] or in [37J. Space considrations pr(vent outlining
it here. The modifications necessary to change his encoding of row machines so that it produces A-,3.3

subtyping questions instead are found in Figure .5. The key differences are as follows:

"* Use of 3a=A.A <K 3a.A. instead ofcVa.A, < Va<_.-l.

"* Use of reflexivity to halt computation instead of the FTOP rule. (('ompare the two d(einitions of
.F(HALT))

21


