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Abstract

To transform a sequential program into a concurrent program, a compiler typically divides
the sequential program into a partially-ordered set of basic blocks, allowing unrelated blocks
to execute concurrently. Blocks may execute concurrently only if there are no dependencies
among them, and therefore a compiler can introduce concurrency only to the extent that it
can guarantee the absence of dependencies. A limitation of this technique is that it is nec-
essarily conservative: it may be difficult or impossible to prove the absence of dependencies
even when no dependencies exist.
This paper investigates optimistic parallelization, a complementary technique for paralleliz-
ing sequential code. Blocks with potential conflicts are allowed to execute in parallel, and
conflicts are detected at run-time. When a conflict is detected, the conflicting blocks are
rolled back and re-executed in sequential order. Optimistic parallelization can enhance con-
currency when the compiler cannot prove the absence of dependence among independent
blocks, and when dependencies occur, but are sufficiently rare.
We show how conflict detection and roll-back can be accomplished efficiently through rela-
tively simple changes to the caches and the cache-coherence protocol of a shared-memory
multiprocessor. We then show how a compiler might exploit these mechanisms when paral-
lelizing programs. Finally, using simulation results, we show that optimistic parallelization
using our mechanisms can give good performance.
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1 Introduction

To transform a sequential program into a concurrent program, a compiler typically divides
the sequential program into a partially-ordered set of basic blocks (single-entry single-exit
code blocks), allowing unrelated blocks to execute concurrently. For example, consider the
following loop:

for Ui - 0; i < N; i++)
Ali] 2 * BUi];

Each iteration of this loop might be considered a basic block, and these blocks might be
distributed among the processors on a multiprocessors as follows:

for Ui = 0 + PROCESSOR; i < N; i += NOOF.PROCESSORS)

A[i] = 2 * B[i];

Thiz transformation, however, fails to preserve correctness if any of the following data
dependencies occur:

"* flow-dependency: an earlier iteration writes a variable read by a later iteration.

"* anti-dependency: an earlier iteration reads a variable written by a later iteration.

"* output-dependency: two iterations write to the same variable.

A compiler can introduce concurrency only to the extent that it can guarantee the absence
of such dependencies. The Banerjee test [21 is the basis for most compile-time techniques
for proving the absence of data dependencies. (For example, see [4, 14, 15])

A limitation of such techniques is that they are necessarily conservative: it may be difficult
or impossible to prove the absence of dependencies even when no dependencies exist. For
example, the procedure permute of Figure 1 has an output dependency if there are two
index values, il and i 2 , such that B[iiJ = B[i 2]. A compiler may parallelize this loop only
if it can establish that for every invocation of permute, no such il and i2 exist. In addition,
the compiler must ensure that the arrays A and B (lo not overlap in memory, nor do A and
C. Proving such properties is undecidable in general, and often difficult or impossible in
practice.

This paper investigates optimistic parmllelizaiion. a coinplementary technique for introduc-
ing concurrency into sequential programs. Blocks with potential conflicts are allowed to
execute in parallel, and conflicts are detected at run-time. When a conflict is detected,
the conflicting blocks are rolled back and re-executed in sequential order. Optimistic par-
allelization can enhance concurrency in circumstances when the compiler cannot prove the
absence of dependence among independent blocks, and when dependencies do occur, but
are sufficiently rare. Optimistic parallelization does not exclude the use of conventional
methods when absence of conflict is detectable.

The premise of this paper is that simple hardware support can make optimistic paral-
lelization an effective technique for introducing parallelism into certain kinds of sequential
programs. Optimistic concurrency control, in one form or another, is an old idea. Our



void permute ()
{ int i;

for (i a 0; i < N; i++)
A[B[i]] 2 C[i];

}

Figure 1: Problematic Loop

contribution is to explore -,he feasibility of optimistic methods in a specific context: par-
allelizing sequential code on shared-memory multiprocessors. Optimistic techniques can
provide adequate performance only if:

"* Data conflicts are sufficiently rare.

"* Conflict detection is sufficiently inexpensive.

"* Roll-back is sufficiently fast.

In this paper, we focus on the last two issues. To make conflict detection and roll-back fast,
we propose a set of simple modifications to standard caches and cache consistency protocols.
To test our approach, we hand-compiled a number of programs found in the literature, and
ran them on a simulated multiprocessor incorporating our modifications. Our results are
promising: we were able to speed up a number of applications, some substantially. We
believe that optimistic techniques merit furthor study.

2 Architecture

This section describes the basic architectural support needed for optimistic parallelization.
The description is given in terms of transactions on the shared memory. In later sections
we will introduce additional refinements to the proposed mechanisms.

A transaction is a finite sequence of machine instructions, executed by a single process,
satisfying the following properties:

* Serializability: Transactions appear to execute in a serial, one-at-at-time order.

* Atomicity: Each transaction makes a se(quence of tentative changes to shared memory.
When the transaction completes, it either commits, making its changes visible to the
other processes, or it aborts, causing its changes to be discarded.

Whenever the compiler is unable to establish the absence of dependencies among concurrent
blocks, those blocks are executed as transactions. The notion of a transaction originated
in the database literature (viz. [7]). Unlike database transactions, which may access large
amounts of data residing on a disk, our transactions are short-lived activities that access
a relatively small number of memory locations in primary memory. Concurrent database
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transactions may (usually) be serializable in any order, but our transactions must be seri-
alizable in the order of their corresponding basic blocks.

In addition to the usual set of instructions, the architecture provides the following transac-
tional instructions:

* Trans-Read reads the value of a shared variable into a local variable.

* Trans-Write tentatively writes the value in a private variable to a shared variable.
This new value does not become visible to other processors until the transaction
successfully commits (see below).

* Commit attempts to make the transaction's tentative changes permanent. It succeeds
only if no other transaction has updated any location in the transaction's read or
write set, and no other transaction has read any location in this transaction's write
set. If it succeeds, the transaction's changes to its write set become visible to other
processes. If it fails, all changez to the write set are discarded. Either way, Commit
returns an indication of success or failure.

* Abort discards all updates to the write sot..

This architecture is a simplified version of transac',tional icmnory, a cache structure proposed
by Herlihy and Moss [8]. A complete description of the transactional memory implemen-
tation is beyond the scope of this abstract (see [S] for (letails). For now, we remark that
transactional memory is implemented by modifying standard ownership-based cache consis-
tency protocols. It requires a small, fullly-associative transactional cache in addition to the
regular cache. Non-transactional operations uso the same caches, cache controller logic, and
consistency protocols they would have used in the absence of transactional memory. Cus-
tom hardware support is restricted to caches and their controllers; transactional memory
requires no other changes to standard processor architectures.

3 Using Transactional Memory

In this section we show how to use transactional memory for optimistic parallelization, and
we propose some simple extensions for efficiency.

Here is a first attempt at parallelizing the loop from Figure 1:

for (i = 0 + PROCESSOR; i < N; i += NOOFPROCESSORS) {
restart:

tl = TransRead(&C[i]);
t2 = TransRead(&B[i]);
Trans_Write(&A[t2] ,tI);
while (counter != i) /* wait */
if (!TransCommito) {

backoff 0;
goto restart;

}
Increment (fcounter);

}.



for (i = 0 + PROCESSOR; i < N; i += NOOFPROCESSORS) {

Set.PriorityRegister(N - i);
restart:

ti = TransRead(&C[i]);
t2 a Trans.Read(&Bti]);
TransWrite(kA[t2],t1);
while (counter != i) /* wait */
if (!Trans.Commito)

goto restart;
Increment (&counter);

Figure 2: Optimistically Parallelized Loop

If the computation terminates, the proper serialization is observed. Unfortunately, this
simple translation can lead to livelock. If a later iteration writes to a location before an

earlier iteration accesses it, then the earlier iteration's transaction will continually abort
and restart, while the later transaction will wait forever for the counter to be incremented.

3.1 Priority Registers

Effective parallelization requires that later iterations he aborted in preference to earlier

iterations. To this end, we augment transactional memory as follows. Each processor is
given a priority register that holds a fixed-size value. When a conflict occurs, the cache
consistency protocol aborts the transaction whose register holds the lesser value. If the
values are the same, the original semantics of transactional memory is preserved (either
transaction can be aborted).

The example loop might now be parallelized as shown in Figure 2. Earlier iterations
have higher priority than later iterations, and if a conflict occurs, the earlier iteration
will progress. The transaction with the highest priority will never be aborted by a data

conflict.

As an additional optimization, if a lower-priority transaction is about to write to a variable
read or written by a higher-priority transaction, it can simply be stalled until the higher-
priority transaction commits or aborts.

When a priority register is about to overflow, we can re-normalize the blocks' priorities,

giving the "earliest" transaction the highest available priority, or processors can re-normalize
priorities on the fly by keeping track of the highest, and lowest priority transactions in the
system.

3.2 Exceptions

Exceptions such as an address fault or divide by zero can be handled as follows. When the
processor receives an exception, it delays the transaction until its priority is greater than



or equal to any other transaction's priority. At that point, it attempts to checkpoint the
block by committing its partially completed transaction. Because there are no lower-priority
transactions, checkpointing the block will not cause any data conflicts. If the commit is
successful, then it handles the exception, and then starts a new transaction to execute the
remainder of the block. If the commit is unsuccessful, it handles the exception and restarts.

As mentioned above, transactional memory uses a small transactional cache for conflict
detection and recovery. Transactional cache overflow might be avoided if the size of the
transactional cache is available to the compiler, but it is preferable to compile programs
in a configuration-independent way. When the transactional cache is about to overflow, it
simply sends an interrupt back to the processor, and the interrupt is handled as described
above.

4 General Control Constructs

So far, we have considered only loops. In this section, we sketch a general transformation
for other control constructs, with special attention to procedure calls.

At or near the beginning of each basic block, a thread is forked to execute the "next" block.
The earlier block is given higher priority than the later block (and any blocks forked by the
later block.) Branch prediction techniques [18] may be needed to guess which block will be
next. If the guess is wrong, then the speculative block (and the blocks it forked) can be
aborted and rolled back.

For certain constructs, additional control information can be used by the compiler to sched-
ule basic blocks earlier or to avoid aborting work that is always necessary. As an example,
consider an if-statement:

if (El)
Si;

else
S2;

S3;

The compiler can arrange to have El, Si, S2, and S3 evaluated in parallel as transactions.
Once the evaluation of El is complete and the direction of the branch is determined, either
Si or S2 can be forced to abort. However, since control flow must always go through S3, it
does not need to be aborted unless there is a data conflict with one of the earlier statements.

Later blocks may need values computed by e'arlier blocks (c.y., a loop index). These values
can be stored in shared variables. If we can determine statically that a block depends on a
value computed by an earlier block, then we can delay forking the later block until the value
is computed. If we cannot determine statically whether such a dependency exists, the later
block can read the variable transactionally, ensuring that if an earlier block updats the
variable, the later block will be aborted and restarted. Values such as loop indices should
be calculated as soon as possible.

Calling procedures in parallel requires using cactus stacks for activation frames, or allocating
the frames from the heap. For recursive proc(edures, it is not always possible to assign
priorities statically. For example, consider the following binary-tree traversal.
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void traverse (tree t)
{

it (t !- NULL) {
traverse (t->left);
traverse (t->right);

}

To execute the traversal in parallel, we must assign priorities so that all nested calls travers-
ing the left-hand subtree have higher priority than any call traversing the right-hand sub-
tree. Such priorities can be assigned dynamically by allocating each invocation a range of
priorities, where every priority allocated to a left-hand call is higher than any value in the
allocated range of the right-hand call. The depth to which recursive calls can be parallelized
is limited by the size of the priority register.

5 Simulation Results

Our basic premise is that support for extended transactional memory can make optimistic
parallelization effective. To test this hypothesis, we hand-compiled a number of programs
found in the literature, and ran them on a simulated multiprocessor incorporating our modi-
fications. Each program was parallelized using both conventional and optimistic techniques:

We kept our experiments as simple as possible. All processors were started at the beginning
of the program, executing the same code. For "pessimistic" parallelization, we parallelized
loops for which the absence of dependencies was easy to prove statically. The processors
executed the iterations of the loop in round-robin fa•hion with no synchronization. All other
code was executed by a single processor. Minimal barrier synchronizations were inserted
between the serial and parallelized code to prevent race conditions. No other parallelization
techniques (such as renaming to eliminate dependencies) or combining trees for associative
operations were used.

For "optimistic" parallelization, we parallelized loops for which it was not apparent whether
data dependencies would exist at runtime or not. The reads and writes were converted to
transactional reads and writes and a shared couiter was used to force the proper serial-
ization. At the end of the loop, a barrier synchronization was performed and the shared
variable was reset.

5.1 Proteus

Our programs were simulated using a version of the Proteus [3] simulator which we modified
to support enhanced transactional memory. Proteus is an execution-driven simulator system
for multiprocessors developed by Eric Brewer and Chris Dellarocam of MIT. The program
to be simulated is written in a superset of C. References to shared memory trap to the
simulator, and other instructions are executed directly, augmented by cycle-counting code
inserted by a preprocessor. Because most of the program is executed directly by the host
processor, large simulations can be run relativoly quickly. Proteus does not capture the
effects of instruction caches or local caches.
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The simulator can be configured to support a variety of multiprocessor architectures. We

started with a bus-based, sequentially consistent, cache-coherent architecture using the

Goodman Snoopy-cache protocol [6]. We augmented the cache simulation to support trans-

actional memory and most of our enhancements for optimistic parallelization.

The following parameters describe the machine(s) that we simulated: A maximum of 8

processors were used. Each processor had a direct-mapped 64 kilobyte cache with a line

size of two 32-bit words. The transactional caches associated with each processor held 64

lines. Each processor had a 32-bit priority register. Cache access latency was 1 cycle -while

memory access latency was 4 cycles.

5.2 Simulation Results

The programs that we chose to simulate are drawn from a range of applications. They are

necessarily small since parallelization had to he done by hand. We chose programs and algo-

rithms which were published as our ba.seline seqpential code and concentrated on programs

whose control was loop-based and for which optimistic parallelization looked promising.

Data sets were chosen essentially at random. Since Proteus is entirely deterministic, the

same data sets were used for all versions of a program.

For each program, we give figures which show the speedup for the optimistically parallelized

code and, if applicable, the pessimistically parallelized code. In the following paragraphs,

we give a.brief description of each of the programs and attempt to explain these performance

results.

The knapsack program is taken from [17, page 5961 and uses dynamic programming. The
goal is to maximize the value of the elements that can be placed into a bag of fixed capacity,
where each element has an associated size and value. As in most dynamic programming

problems, there is a potential flow-dependency between earlier and later iterations. Thus,

the core of the program cannot be parallelized ucing conventional techniques. However,

conflicts are dependent on the data, so the core can be optimistically parallelized. Figure 3

shows the speedup for the optimistically parallelized code. As a data set, we used a fixed-

capacity knapsack, a fixed number of items. and random sizes an(d values for each different

item. The sizes of the items were restricted to 1he a small fraction of the capacity of the

knapsack.

The convex program is taken from [17, page :16,1] and is a simple 0(n " ) program that
finds the convex hull of a set of randomly placed points. Essentially, one point known to

be on the hull is chosen and points with the minimum angle from the last chosen point

are successively added. Neither of the main loops can be parallelized using conventional
techniques. We chose to parallelize the inner loon optimistically. Figure 4 shows the speedup

for the optimistically parallelized code.

The radix program is a radix sort of 1024 :12-bit random values, using an 8-bit radix. The
program is taken from [17, page 140]. The program has an outer loop that is executed a

small number of times (in this case 4) and nest-ed within it are five separate loops. Only

two of these loops may be conventionally parallehized given our compilation model. An
additional loop can be optimistically parallelized. Figure 5 shows the speedup for both the

pessimistically and optimistically parallelized code.

The solver program is a simple 0(n,3 ) program which solves a set of n linear equations

7



Knapsack Speedup

7

theosucal linu --

6 oanutmuc Pa-llizatono -

5 0..

4

3

2

I 23 4 5 6 7

Figure 3: Knapsark

Convex Hull Speedup

7

theoretical linut.---

6 optimistic paraflelization-

5

4

3

2

1 2 3 4 5 6 7
wrocsscws

Figure 4: Convex INIdl

IS



8 Radix Son Speedup

7
Ihcorcticajliner ...6 pe~im~uw~ic Imrailleliza~ao, -0---

ooniist•c pralleizatioajoo

4

3

2

0 42 3 4 7
proccssors

Figure 5: Hadix Sort

with n unknowns using Gauss-Elimination,. lie Coellicients of the equations were chosenat random. The program is take from [17, pages 539-5.tJ0 with some optimizations addedas suggested in [16, page 36]. The program consists of two phases, an elimination phasewhich drives a matrix to an upper-triangular form, and a substitute phase which calculatesthe unknowns. To make row interchange fast, an auxiliary index array is used to access therows. The use of this array leads precisely to the potential data dependency problem ofFigure 1. As a result, only the innermost loop of the elimination phase can be pessimisti-cally parallelized. We chose to optimistically parallelize the second-most-inner loop. Thesubstitute phase has a definite data dependenc y across its inner-most loop and cannot bepessimistically parallelized. Even though the dependency is definite, we applied optimisticparallelization since some work can still be done in parallel. Figure 6 shows the speedup forboth the pessimistically and optimistically parallplized code. Note that the pessimistic codeoutperforms the optimistic code for more than 1 processors. We suspect that this is due tothe large transaction size of the loops that were rhosen to be parallelized (see below).
Some general conclusions can be drawn from these benchmarks. For instance, in all ofthe benchmarks, the overhead of doing a loop transactionally becomes acceptable as soonas more than one processor is used. However, speedlup seems to level off at around 3-5processors in all cases. One reason speedup levels off is that there is a limited amount ofparallelism in the programs and more importantly, only loops were identified for paralleliza-tion. Furthermore, the parallelism within these loops is limited by the data dependencies
that occur at runtime.
Another reason speedup levels off is due to inefficiencies in the translations. A portionof this inefficiency is due to the naive implementation of the barrier synchronizations andthe shared location used to serialize transactions. This can be alleviated by using moresophisticated techniques such as counting networks or ense-reversing barriers. However,
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such techniques can increase the latency of operations, making them unattractive for small
numbers of processors.

Some of the inefficiency in the translation is due to the sinall granularity of the work done
by each processor. Small transactions make it difficult to amortize the cost of doing the
synchronizations. For instance, the transactions of the knapsack program are only 4 lines
of code. The size of transactions can be increased by using techniques such as strip-mining
or loop-unrolling. However, making a transaction larger increases the probability that a
conflict will occur with some other transaction, especially as the number of processors
grows. Larger transactions also require larger transactional caches.

To demonstrate the effect that transaction size ran have on execution time, we ran the
radix program, varying the number of loop-iterations per transaction and the number
of processors. Results for these tests are shown in Figure 7. As expected, very small
transactions (one iteration) give poor performance with any number of processors. Larger
transactions give better performance for small numbers of processors, but performance can
degrade for large transactions and large numbers of processors.

6 Related Work

There is a vast literature on optimistic technilues for database synchronization. The two
earliest and most influential papers are by Thomas [19] and by Klung and Robinson [12].

Knight [11] proposed an architecture in which basic blocks were scheduled to run in parallel
with transactional semantics. He also propose(] the use of a shared counter to force the
proper serialization. The ParaTran System [10, 20] applied these ideas in an optimistically
parallelizing compiler for Scheme. ParaTran used software techniques adapted from the
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database literature for conflict detection and recovery.

Franklin and Sohi f5J propose a hardware architecture that optimistically parallelizes code
at runtime. Processors execute basic blocks in parallel. Serialization is guaranteed by
organizing processors in a queue, and branch prediction is used to determine the next basic
block. A "future file" is used to forward register values from one processing element to the
next, and an "address resolution buffer" detects conflicts. Franklin and Sohi ran simulations
of real programs on this architecture and observed substantial speedups.

Although Franklin and Sohi's architecture resembles ours in several respects, it has two lim-

itations. First, it is a radical departure from traditional architectures, requiring a complete
change of the processing elements. Our architecture requires modest changes to caches and
their controllers, and support for a few new instrnctions. Second, in their architecture,
processors are forced to execute a serial stream of instructions, while in our scheme, a mul-
tiprocessor may still execute independent instruction streams. Recent studies [1, 13, 21]
have shown that taking advantage of independent instruction streams can have a significant
impact on performance.
In [9], Larus and Huelsbergen propose two techniques which support dynamic program

parallelization. Dynamic parallelization, like optimistic parallelization, can find more par-

allelism than static analysis by using runtime information. Unlike optimistic parallelization,
dynamic parallelization first tests to see if it is safe to run a parallelized version of code and if

not, falls back on a sequential version of the code. Obviously, testing to see if parallelization
can be done must be cheap. Thus, these tests are usually conservative approximations.
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