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A Comparison of Free-Space and Fiber Mixer Performances

1. Introduction

A conventional heterodyne detection system employs mixing between the signal field and the local

oscillator (LO) fields in free space. In this system not all the optical power collected by the receiving

aperture contributes to the power in the intermediate frequency (IF) signal. Only that portion of the

received power which is in the same temporal and spatial mode as the LO will contribute to the IF

signal (1].

In a heterodyne detection system employing a single mode fiber mixer, the signal and LO fields are

perfectly matched, so all the signal power propagating in the fiber will contribute to the IF signal.

However, not all the power focused onto the end of a single mode optical fiber will couple into the

fiber's single propagating mode.

In order to compare a heterodyne system employing free space mixing between the LO and the

received field with a heterodyne system employing mixing in a fiber coupler, we need to compare the IF

carrier-to-noise ratio (CNR) from each system for identical system design parameters. In order to do

this, we need to be able to compute what fraction of the received optical power actually couples into

the fiber. The bulk of this report, and Section IlI in particular, attacks this computation.

The numerical results here indicate that for most reasonable radar optical designs, the free space

mixer will do as well or better than the fiber mixer. However, the fiber mixer can perform as well as

the free space mixer when the receiver optics f-number is approximately matched to the f-number of

the fiber. This will often result in a reasonable choice for the receiver optics design.



11. Free Space Mixer Performance

The IF signal power from a free space mixing system is not difficult to calculate. All the equations

necessary to make the computation are already well known and the following discussion merely collects

those results into a form suitable to solve our specific problem.

We will match the local oscillator (LO) field (referenced to the transmitting aperture) to the

transmitted field and define the fields at the transmitting aperture as:

- 2 -TL/IFt 0(2 1
ULT(-' 0) = -P• s(t) .- U LO('•, t) = e e(-) (2-1)

where: PT is the transmitted power,

PLO is the LO power,

ý(T) is the transmitted beam shape at the transmitter aperture plane, normalized to unit area

(that is, J f AT • () 2 = 1 where AT is the area of the transmitting aperture),

A(t) is the transmitted pulse shape normalized to unity time average power (indicated by the

notation < > ):

<I 1t) d' I sT )
< 0()1 >rd t s(t)I 1 (where T is the pulse width), and

0

v.F is the IF frequency in Hz.

It is custom -y in much of the laser radar literature to write the detector IF current as a target

plane integral by back propagating the LO field to the target [2]. Doing this, the signal component of

the IF current out of the detector is [3]:

()_ = 'T J J d-(;,t- )Ut(p,t -_) Ul(, t) (2-2)

where: q is the electronic charge,

r is the detector quantum efficiency,

h is Planck's constant,

Lo is the optical frequency,

X is the wavelength of the light,

L is the range to the target,

c is the velocity of light, c = Avo,

At is the target area,

T(, t) is the target's random, complex reflectivity,

Uj(5, t - !_) is the far field pattern of the transmitter at the target plane, and
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UL0 (Pt) is the local oscillator (LO) beam pattern back propagated to the target plane.

Using the Green's function for free space propagation and making the far field assumption

AT < AL, the transmitter and back propagated LO fields at the target plane are approximately1 :

jkL -k
L ,0=T-L exo -ulp L.,ejL ex 2--[ / LT(, AL

LIO(, t . e kL jk CL 7 1)(2-3)

U10 (Thi) TA exp( - R LO()CL"(-3

where k - 29 /A and it must, of course, be true that:

AL (2-4)

SkLO(AP-• t) = L eJF L O_

Substituting these quantities into equation (2 - 2), we can write the IF signal component as:

h- (AL) 2 fJAt d-T(Tt-l)cUT( --L t-c) K L ,1)(

For a stationary, purely speckle target the target statistics are (3]:

E[!'(•1)] = 0, E[T(TI)T(T 9 )] = 0, E[-T(Pl)T*(P2)) = A2 rs(Pl)6(T1 - T2)' (2-6)

where E[] indicates a statistical expectation (average) over the random variable or process and Ts(T) is

related to the reflectance of the target 2 at coordinate T. If the target is range unresolved,

approximately stationary over T, and uniform over the area illuminated by the transmitted beam and

the time lags (the t - L and t -2 effects) are negligible, we can use these statistics to find the mean,

time-average, IF signal power:

<E[I _(t) )] > q 2 P A2.s p T d' {( } .I "T (2-7)y r v)PO (L4 At T-LI
But to complete this calculation, •() needs to assume a specific form.

Let the transmitted beam shape, ý(T), be the usual Gaussian function with a l/e2 beam power

lIn this report, field functions in a script font indicate the Fourier transform of the respective field function in the-- ( means take the Fourier
Roman italic type. That is, q. t) (){= g T( ,t)} _ where the notation fp{Ur(•,t) m s e

transform of the given function on variable ; and eviuate it at the spatial frequency argument Z. In this case,

__T(7,) is the field in the transmitter aperture plane. See Appendix I for more information on this notation and how
it relates to other notations.

2For a uniform target, T.' is related to the commonly used diffuse target reflectivity, p, by CS = [9.

-3-



radius of wo, normalized to unit area and let the transmitting aperture AT be large enough that it

does not appreciably truncate the transmitted beam or the LO. Then the the beam shape and its

Fourier transform are:

= ~ ~ ~ ~ ~ ~ 9W Fe ('Li~ {'} 4 exp( -(Lw--2
10 (2-8)

Xwo WoAL

If the target is resolved by the transmitter aperture (i.e., the illuminator beam extent at the target is

less than the target area) the integral over the target is easy to do and the result gives:

< E[I (t) 9]> _ ( PL) 2cr AO) (2-9)

To find the carrier-to-noise ratio3 (CNR) out of the detector, assume the post-detection filter

bandwidth, BN, is greater than the bandwidth of the transmitted waveform s(t) and divide by the

expected value of the LO shot noise component, (q2 r)/hv 0)PLOBN 111:

CNRfree-space - hvPoBNPTS'7. (2-10)

We will compare this with the CNR from a fiber mixing system, CNRfiber, for identical system

parameters BN, PT' cfig wo, L, and AT.

It is interesting to examine this CNR in the following manner. The first portion of the CNR

expression, i/ hvoBN, is just the inverse of the IF LO shot noise power. Therefore, the remainder of

the CNR expression, PT J irw2/L 2 , is the IF signal power. However, the expected value of the total

power collected by the receiving aperture is:

PAR A RjE[Pe] = PT.P-L-- =PT . 2-f
Tr L2L2 (-1

Obviously, only a portion of the power collected by the receiver aperture actually contributes to the IF

CNR. Dividing the last two quantities, assuming a monostatic system (so AR = AT), and using

wo = dT/ 4 , (the maximum usable value of wo for which beam truncation is negligible), gives:

2Xw 4 (2-12)

In other words, in a free-space mixing system sensing a purely speckle target, only 1 of the collected

optical power actually contributes to improving the IF CNR. The remaining collected optical power is

3There is a difference between carrier-to-noise ratio (CNR) and signal-to-noise ratio (SNR). The CNR, as defined here,
is sometimes (and incorrectly) referred to as the SNR. The SNR is the CNR reduced by the effect of variations in the
received power due to target variations and atmospheric turbulence. The SNR is always less than or equal to the CNR.

-4-



in spatial modes which do not mix with the LO spatial mode. It is possible to improve on the

percentage of power which contributes to the IF CNR by using a Gaussian beam with a wo which is a

larger fraction of dT, but this leads tn beam truncation, increased beam divergence in the far field, and

the above equation no longer r -rately predicts the coupling efficiency to the IF. Rye and Frehlich

have shown, however, tla, even with the optimum choice of wo for a given dT, the maximum

efficiency when using truncated Gaussian beams is limited to about 44% [10]. Similarly, using

dT/U, > 4 will reduce the mixing efficiency to even less than 1

-5-



11. Fiber Mixer Performance

A. General analysis

Now compute the IF signal power for the fiber mixii4 ., system. Since the local oscillator and the

received optical field will be propagating in the same single mode fiber, their field patterns must be

identical. A single mode fiber will only propagate one field pattern, called the HE,, mode. Designate

this normalized field pattern UI 1 (T). The signal component of the IF current out of the detector is:

q( t) =- I Ad'p" (,-f Ul7 () 2(t - L)) (4PL• -•UI(p) e jgf IF'),

e j 21rvIFtFr!(t L 2L -J
-to J JAdP'1It(3

0=t - -2L) e (3-1)

where Pf is the received optical power coupled into and propagating in the fiber, Ad is the detector

area (which is much larger than the mode field extent), and, once again, UI (;) is normalized to unit

area. P f is a random variable because of target speckle. Consequently, the mean, time-average IF

signal power and CNR are:

<Ell ~ v(t,-o ho) PLO EPf] =:' CNRfiber=_hvo--ooBN E[•f] (3-2)

and all the received power coupled into the fiber contributes to the mean, time-average IF signal

power. It now only remains to compute E[Pf I.

To compute Pf, propagate the transmitted field UT(T) to the target using the free space Green's

function,

A L P)-=_ ejj(kLe I ),

and multiply by the target's complex reflectivity, T(7). Back propagate the resulting field to the

receiving aperture using the same Green's function and then through the lens to its focal plane. This

will give us the field at the lens' focal plane, U f(•f), in terms of the target and system characteristics.

The end of the fiber will be at the lens' focal plane where it will collect whatever power it can from the

field. Finding iLf(-f) is not difficult. Using the free space Green's function, assuming far field

operation (AT < AL), and ignoring insignificant quadratic phase terms, the result is (see Appendix I[

for a complete derivation of this formula):

-6-



SA -

d- j5 t(~ - L) ~TTLt -2L)W 7LR ~ f (3-4)
(IA -f-) (-,L)I . i JAt V* U r R

where: f is the focal length of the receiving lens,

akT(X-L 1) is the Fourier transform of the beam in the transmitter aperture (which is

proportional to the far field beam pattern of the transmitter at the target plane), and

W R(w) is the Fourier transform of the receiving aperture function, WR(T). (WR(O) is I
where the aperture is clear and 0 where it is opaque.)

In words, this formula represents an image of the target in the focal plane of the lens, with

illumination given by the far field pattern of the transmitted beam, and with the image blurred by the

diffraction introduced by receiving aperture's Fourier transform. (This is easiest to see by letting the

receiving aperture be infinitely large so the function WR( becomes a Dirac delta function.)

This is the field outside the fiber face. Inside the fiber face, the field is that of the HEl 1 mode of a

dielectric waveguide. The field distribution of this mode is proportional to J 0 (r) in the fiber core

(where r is the radial distance from the center of the fiber) and proportional to K0 (r) in the fiber

cladding, where J0 () is the zero order Bessel function and K0 0 is the zero order modified Bessel

function. Fortunately, however, Marcuse [4],451 has shown that a Gaussian function very accurately

approximates the field distribution. Therefore, the normalized single mode field distribution is

approximately:

...

where Marcuse also shows the optimum choice for the parameter w is given empirically by the

equation:

r~0 l)r 0.65 + 1-1 + 2.11 (-6w=rcgo(V) = rc (06 .1V3/2-- "t .7'V6 (3-)

where: rc is the fiber core radius and

V is the normalized frequency in the fiber, V = krc4'27"_An (where n is the index of the core

material and An is the difference between the indices of the core and cladding).

Snyder [6] has shown that it is possible to approximate the coupling coefficient between a field in

free-space and a fiber mode with an overlap integral. Using Snyder's general formula, the power

coupled into the fiber is:

f -f fi -f 1 -fML1IICF

-7--



- (~f(A)2 f f Atdp d TX~ f f U *t(1) W"(-~ )
(jf)-L I R( I

(jAf)(AL) 2  (3 _ 7)

where the second equation comes from writing out the equation for U[f() and rearranging the terms.

The third equation comes from writing out the equation for WR( 0 and rearranging the terms. Defining

the truncated or apertured version of the fiber field mode by the term:

=9 {R(l IV S!*( - 7)} , (3-8)
AL

and using it in the previous equation gives:

1f f. f. cLht() (3-9)

I-(j,\f)(A\L) 2  AL~A -

This equation has a very satisfying and intuitively appealing form. It is easy to see how the form

of this equation is very similar to the integral portion of equation (2 - 4) for -R(t) for the free space

mixing system. The first term here is the target, exactly the same as the free space integral. The

second term is the transmitter illumination propagated to the target plane, exactly the same as the free

space integral. In the free space integral, the remaining term is the local oscillator, referenced to the

receiver aperture, back propagated to the target plane. Here the last term is the fiber mode field back

propagated to the receiver aperture, truncated by the receiver aperture, and then the result back

propagated to the target. (The Fourier transforms come from far field propagation integrals.)

Using the target statistics of equation (2 - 6) and taking the expectation of Pf gives:

The last term in the integral is:

_ = J ~ ~ J d-jWPI) W (72) ex( ik1f)

-8-



J JdcAloJ Jd& WH'R(-Po+ 2P) WRCApo- 2P).

where the approximation is good for the far field and the change of variables is:

o-5-' E + -T'2 - J '•l d d= o Jd-Ap.

Finally, plugging equation (3- 11) into equation (3- 10) and doing some algebra gives the expression:

E[-Pf] j2 A) J JdE-p- 3 jLLT()} J JI -pWR,(;5O+ýj&T)S!

TT
TO - (3-12)

"R(7;0- PP) S--11( - -T/ )" 3 .

This is about as far as the expression can go without giving the field and aperture functions some

specific forms.

B. General circular aperture

Now let the apertures have the usual circular shape with diameter dR:

TR(5) = cir d i. dR/2 (3-13)ý PR) -= I 017 > dR/29

let the transmitted beam be the usual Gaussian shape, as before:

2P 2)
UT(ex= ) . = 4 27,PT exp(C-\!-.j° 1-5), (3-14)

and the fiber mode field is as shown in equation (3-5). Plugging all this into equation (3- 12),

simplifying, and scaling the space variables by dR gives:

"fd-PT exp(w-) ( Aw-T d( +)•

-9--



Now define the parameter a2 by the relation:

a2 R (3-16)

This is a useful parameter because it appears repeatedly in the expression for E[Pf] and it is

proportional to the fiber design parameter w/A and inversely proportional to the system optics f-

number, f/dR. Now the expression for E[Pf simplifies to:

-l' 4] _ Ar 2 f f ~- 2,•"•,o

f d-po x4 a2fJ pe ((.( )+ )IP)

J d0 eP( - 4 TO J~f) circ(;50 + I A) circ(;50 - I p (3-17)

The two exponentials are just standard Gaussian functions centered at the origins of the ;5- and

u''-planes. The circ( functions, however, are unit diameter circles centered at ± 1-" in the p0 -plane

and the po-integral is just over the area of overlap of the two circ0 functions. If IA'pI > 1, however,

the two circo functions will not overlap at all and the entire equation is identically equal to zero.

Figure 1 depicts a graph of circ( A +•-and circ(To-Ap)in the p0 -plane for an arbitrary A"•.

Notice the area of overlap will always be centered at the origin of the p0 -plane. The area of the

overlap is dependent only on j 3-1 and not on the angle of N. Furthermore, since the Gaussian

function in ;5 is circulo-symmetric, the inner integral over the ;5o-plane will also be independent of the

angle of Ap.

Figure 2 depicts one quadrant of the p0-plane for the specific case where Tpi lies on the y-axis,

-P-= (0, -1A-), so the center of the circle whose arc is depicted in figure 2 is at coordinates

(Zvc) =(d0, -Ip/2 1). From the equation for a circle with center at (c, yc) and radius r:

(X - Zc)2 + (y - Yc)2 = r2, (3-18)

it is easy to find values for the coordinates on the x- and y-axes of the arbitrary point on the edge of

the overlap area, (zo, yo), shown in figure 2:

Zmaz ~ ~ ~ ~ ~ 0x if2 ma(II)Y (\ii 3-19)

Since the inner integral over the p0 -plane does not depend on the direction of Ap, it is possible to

simply select a convenient direction for Ap and perform the integration for that direction. Figure 2

depicts one convenient such choice. For this choice of Ap, the integral over the entire plane is just

four times (since there are four quadrants) the integral over the area shown in the figure.

-10-



Now separate the integration in the o0-plane into x- and y-integrals, and convert the outer integral

to polar coordinates to form the expression:

-2 [ rdA 1(1 -(I ---- e-4 2

2 2
"0 "0

=P T"0( Frd ex 9w° + " e rl(P - l

(3 -20)

where erf() is the standard error function from statistics, erf(z)= J•yJ0 dY e . The CNR ratio is

then:

CNRfiber

CNsRfree-space

R (2d 'd. ex {(1(dR 2+a2) o] jail - udz e erf('a'"-'2-a). (3-21)

There are two parameters in this expression, dR/wo and a. Since the expo function and the erfO

function are both very smooth functions and they fall off rapidly as a function of increasing arguments,

the integrals are not too difficult or time consuming to do numerically. Before performing this

numerical integration, however, let's examine the two special cases of very large and very small a

values.

C. Large a parameter case

If w,! let the a parameter be large enough that a > dR/u'O, the first exponential in equation

(3 - 17) will be approximately independent of dR/uo. Furthermore, if a is this large, the second

exponential will be sufficiently concentrated near the origin of the po-plane that the Po-integral will

approximately cover the entire area of the exponential for any A-p- < 1. Then we can approximate the

inner integral by a constant (the area of the exponential) when J3pJ < I and zero elsewhere. Therefore,

E[Pf]Ilargea 4 
2  a JdAexp( -aa a r

J Jd'Pexp( - 4-a02 Ipo)circ(-to + Ap) circ( -Ap

-11-



4'TSPTd2 a f o -

- SPTd 2R d Kex( -2I1y ) (3-22)
= L2 J

for Tpf < 1 and zero otherwise. Now perform the integral over the unit radius circle, I"pI < I

-sPTd P A ea 2  TsPTd A .s T R. 21r -eL2 "a-'i (3-23)
large a 2 a L aý

_ 2
where the approximation assumes, once again, a large a so that e - a2 1 1.

Finally, the improvement of the fiber system over the free space system is:

CNRfiber(large a) dR2 
(3-24)

CNRfree-space -a0--)

Unfortunately, this final expression is greater than one only when a < dR/wo and we derived this result

for the case of a > dR/wo! Therefore, in the large a parameter limit, the fiber mixer will always

under-perform the free space mixer.

D. Small a parameter case

If a < dR/wo, the first exponential in equation (3 - 17) ;will be approximately independent of a.

Furthermore, if a is small enough, the second exponential will be approximately equal to one and

constant over the region of the p0 -plane enclosed by the two circt functions. In this case, the inner

integral will reduce to just the area of the overlap of the two circo functions. For the worst case of

"p= 0 (which gives the greatest extent of overlap of the two circo functions) and I To =1 this will

be true when:

e -a 2 >0.9 =:. a<0.3.

The overlap area is just twice the area of the segment of a circle defined by an arc and its associated

chord. Figure 3 is a drawing of a circ'e ':-ment with the arc, chord, and other parameters labeled.

For our problem, r = 1/2, d = I p/2, and h = r - d. Using standard mensuration formulas for circles

(see for instance [7]), K = r2 cos - 1(1 - h/r)- (r - h) F2rh - h2 and the area of overlap in terms of our

variables is:

A Kp1)a2K = 1[cos T(pI-'~4 - iE- 1 (3-25)

Now the mean value of the power propagating in the fiber is:

-12-



E[-P 4TS~dk d-A exý d 2

E[PI salla 4~J.~d~ ~ fJd e I(( U0) ..A(lI~PIý (3-26)Ssmall a iL I(R T

Performing a change of variable on the integral, the CNR ratio is:

CNRfiber( l a) 2 12

ON Rfree-space 0 (( 02Jux1-y)u.(~.(-7

Choosing the minimum dR/wo value, 4, and performing the integration numerically gives a value of

S0.0603 for the integral, and

CNRfiber(small a) 2
C fresae= 1.2285 a. (3- 28)

ON Rfree space

Here, once again, the parameter a must be larger than about 1 in order for the fiber mixer to out-

perform the free space mixer. But we derived this expression under the small a assumption, so the

fiber mixer will under-perform the free space mixer in this region as well. However, this equation and

equation (3 - 24) together indicate the possibility that there is an intermediate range of a values where

the fiber mixer could perform as well or better than the free space mixer. The only way to determine

what happens at these intermediate f-numbers, though, is to perform the integration of equation

(3 - 21) numerically.

E. Numerical analysis results

Figure 4 is a plot of the CNR ratio, in dB, as a function of the a parameter for three values of

dR/wo, 4.0 (the minimum useful value), 7.0, and 10.0. The figure includes plots of the asymptotic

expressions for large and small a parameters in the regions where they are appropriate. Figure 4

demonstrates that these asymptotic approximations are quite good.

Notice the fiber system is always worse than the free space system except for a small region around

an a parameter of about two where the improvement is on the order of a few dB or less. At least part

of this improvement may be illusory, however. The approximations involved in forming equations

(3 - 5) and (3 - 7) are limited in their accuracy. In fact, Marcuse (81, in plotting his figure 6, found a

similar excess performance peak problem when using exactly these same two approximations.

However, as the ratio dR/wo gets larger, the performance improvement becomes more pronounced.

This may be because as dR/wo gets larger, the LO-received field matching, as given by equation

(2 - 12) gets worse, whereas the fiber field-received field matching may remain at its optimum point

with the appropriate choice of parameter a. In effect, the choice of the fiber design provides an

additional parameter to vary in order to optimize the field coupling. Unfortunately, this is more a

testimony to the poor coupling for large values of dR/wo than a praise for the fiber mixer. In practice
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there may be some applications where a large dR/wo ratio would be useful. An example might be a

high resolution radar (hence the large dR) which used flood light illumination of the target (hence the

small wo). However, for cases where the design keeps dR/wo as small as possible, it seems the free

sue mixer makes the best possible use of the collected backscattered power and the fiber mixer cannot

significantly improve on the free space mixer's performance.

Now we will investigate what sort of fiber and optics design the optimum a value requires. Recall

the a parameter is defined by:

a2 =. (3-29)

and the ratio w/A is defined by:

!y L,_- .Vg°(V) Vg°(V) (3-30)
\ \ -go(V) -2r'2nA'n - 2w(NA)

where NA is the usual numerical aperture for a fiber. However, for a single mode fiber, the range of V

values of interest for is just 1.5 < V < 2.4. Within this range, the factor Vgo(V) is numerically almost

constant. It varies only from 2.676 (for V = 1.5) to 2.641 (for V = 2.4). If we approximate it by

Vgo(V) cý 2.66, we find w/A = 0.42/NA and we can write:

a 0.94 (3-31)a _(NA)(f/#

where f/# f/dR is the standard physical C )tics f-number. The optical f-number, however, is just

the inverse of twice the numerical aperture [11]. Therefore we can write:

a_ 1.9 (NA)optics (3-32)

(NA)fiber'

From figure 4 we notice the optimum chose of a is about 2 for a wide range of dR/wo values. Our last

equation, however, tells us an a value of about 2 corresponds to the point where the numerical

apertures of the optics and the fiber are approximately matched. This is exactly what we would

expect, however, from simple geometrical optics reasoning! Furthermore, since reasonable single mode

fibers have small numerical aperture, we will require receiver optics with a reasonably large f-number in

order to optimize the coupling. This is an fortuitous result since the larget the optics f-number, the

easier it is to fabricate the optics with low aberrations.

As an example calculation, return to equation (3 - 31) and use a = 2 as the optimal value. Then

we get the best performance when

-14-



P# =~ (3 -33)
2 (NA)fiber3

It is common to write the numerical aperture of the fiber in the follwing form:

(NA)fiber = in2-n22 -_ n142 (3- 34)

where A n -. Reasonable values for A and n1 (the fiber core index of refraction) for a single

mode fiber are A = 0.003 and nI = 1.5 which gives NA = 0.12 and f/# _ 4.3. Although this is not a

large f-number, particularly if the focal length must be long, it is not an unreasonably small f-number

either.
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Figure 3

Circle Mensuration [7]
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IV. Summary and Conclusions

This report compared the CNR at the IF stage of a heterodyne laser radar receiver employing the

traditional free space mixer with the IF CNR from a heterodyne laser radar receiver employing a fiber

mixer stage. The analysis shows that the fiber mixer will achieve optimum performance when the

fiber's numerical aperture is approximately matched to the receiving optics numerical aperture. This is

exactly the result one would expect from simple geometric optics reasoning. When the fiber and

receiving optics are optimized, the fiber mixer will still perform, at best, only marginally better than

the free space mixer, however. The greatest improvement will occur in cases where the system

requirements force an inefficient use of the aperture by the transmitting beam. In this case, the fiber

mixer can compensate somewhat for the loss of mixing efficiency encountered with an over size

aperture. Apparently the free space mixer makes nearly optimal use of the collected optical radiation

even though the mixing efficiency is 25% or less.

Since single mode fibers always have quite small numerical apertures, the optimal receiving optics

in a fiber mixer may have a reasonable f-number. A typical value would be around f/# -, 4. This

large of an f-number may not pose too much of a problem in fabricating low aberration optics. It does,

however, pose an additional constraint on the optical system design. If it is not possible to use the

optimal f-number optics, it is possible to use the relations derived in this report, figure 4 in particular,

to determine how much of a reduction in mixing efficiency will result. This will give a better

prediction of system performance.
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Appendix I

Near Field, Far Field, and Transform Notations

The purpose of this appendix is to clarify the field and Fourier transform notations used in this

report and show how this notation relates to that sometimes used in other literature, like that in

reference [3].

If we define the near field distributior, at the transmitter aperture plane by:

UT(, t0 = _ 1(t) 405) (Al - i)

where: PT is the transmitted power,

1(t) is the transmitter waveform, normalized so < I (t) r > _- 1, and

5) is the transmitter beam shape normalized so that f fIAT d- I() - 1 (where AT is

the area of the transmitting aperture),

then at the target plane the far field distribution is:

UT(• t) = P--s(tX(j) (Al - 2)

where ((Y) is the transmitter beam shape at the target plane normalized so that f f d _-(p) 1, and

is given by:

05() = J J A d- ' 4(P) AL(' - T ) (AI-3)

eJkL jk

where _hL(0) is the free space Green's function, _hL(T) = exp(-\ (2)

If we define the following notation to represent a 2-D spatial Fourier transform (as in the footnote

of Section II):

AL

we can represent the far field pattern Ut(7, t) in terms of --T(- t) byL

UT 0 =- -- r exp(-2- iL P) _T( ý?t) (Al-5)

where the approximation is good in the far field defined by AT < AL.

In the specific case of a Gaussian transmitted beam and a transmitting aperture which satisfies

dT T_ 4wo so the transmitting aperture does not truncate the beam, we have:
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-4 kL e. (- - xo P(-( 17i•) and

aL~rt) = Piet). ~~ e4 (l71 ~(A 6

where once again the approximation is good in the far field defined by AT < UL. Here wo is the 1/e2

beam power radius, dT is the transmitting aperture diameter, and AT = ird2T/4 is still the area of the

transmitting aperture.
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Appendix H

Derivation of Equation 3 - 4

We will define the following field functions:

LT(p', t) is the transmitted field at the transmitter aperture,

Lt(;2, t) is the transmitted field propagated to the target plane (the illumination function at

the target),

Ur(72, 0) is the field reflected from the target,

ER(63,t) is the field at the receiver aperture (Wr(O2,t ) back-propagated to the receiver

aperture), and

UJ(f, t) is the field at the focal plane of the lens.

Furthermore, the free space Green's function for propagation through a distance L is:

_1e.ikLex Af;5
AL(T ' 2L'

Now we can write expressions for each of the above fields:

UT(2' t) = J f ATd'pl U-T0('t 1C) A-LCA - P2)' (A2-1)

Lr(P2' t) = Ut(•2 , 0) 0 (P2' 1), (A2 - 2)

!LR'3l)LJ A (A2 -3)

!_f(0f,)-0 f fARdP- 3UR(721 0[2f exf4 l-I2) exp( -j p.- 3 )} (A2 - 41

where AT, At, and AR are the transmitter aperture, target area, and receiver aperture, respectively,

and f is the focal length of the lens. Notice the negative range value in the Green's function in the

equation for LR(C3, t), equation A2- 3. This is because this expression is for back-propagating the

reflected field to the receiver. If we keep the same coordinate system throughout, the field is now

propagating in the -z-direction, hence the negative sign. Plugging one expression into another we get:

o JAd [ exp( j' "K - Lk "-p3)].

J At 472 A- LOF2 - 3 ) 1(72 1 T fIfAT dp-IE 1  I' - -N -L(

0 J J~3 WR()[--I',7eCxP( 7 IYf ).Cx LPf '7 3
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where WR(73) is the receiver aperture function and we therefore extend the limits in the p3 -integral to

the entire plane. Writing out the Green's functions and squaring the vectors in their exponential terms

gives:

F = t .ihL (2f17 vd) J 3 WR(P3) exp( -~ Pjr3)

J J A P +(P 2) ( 2(2IP, 2P) (A2)- 6)

The quadratic terms in P2 cancel while the quadratic terms in Pl and P3 are insignificant in the far

field where AT < AL and AR 4 AL. Furthermore, the quadratic term in •f is negligible since fiber

core diameters are on the order of 5A or less for single mode fibers. This leaves nothing but a sequence

of Fourier transform integrals:

-2 ]P ) exp( jk (A2 - 7)

Under the assumption that we design the system such that the diameter of the transmitter aperture is

large enough that the transmitted beam is not truncated significantly, we can extend the limits of the

71 -integral to the entire plane. Then, rearranging terms slightly, we have:

-(jAf,)(AL)2J f JAtd2 f()2  f _L)f d' I--T(1"t -T 1xp(- 1-P" 2)"

J dP3 WR(P3) ex( fk 'A L3.x(T~. 3

-(jAf)(AL)2 1  A T2 f f )J I J'l I'(''t -F.) eP( -j27r, 1 .T).

fJ Jd- 3 WR(P3 ) ex (j2wr; 3 . 37f L)'P

which we can rewrite in our Fourier transform notation as:
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Ef (JAI)( AL)2 -A -- -) L)

AL

-(jAf)(AL)
2 f f At -2 T 052' t T X) L-j -C~) - AL2 hi (A2 - 8)

This is just equation 3 - 4 of the text, but with the time dependence stated explicitly.
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