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The work carried out under this contract may be subdivided according to the following
topics: 1) Development of Implicit ALE Navier-Stokes Solvers;
2) Implementation of Turbulence Models;
&) Development of Gridding Techniques for 3-D Viscous Flows;
4) Demonstration Calculation and Results.

The description of the main accomplishments of the present work are listed according
to these topics in the following.

1. IMPLICIT ALE NAVIER-STOKES SOLVERS

The work performed in the area of flow solvers may be subdivided into two parts:
a) Improvement of Edge-Based Solvers;
b) Implicit Solvers for the Navier-Stokes equations.

1.1 Ede-Based Solvers: The switch from element-based to edge-based solvers
allowed a number of improvements in the performance and accuracy of the flow-
codes. When developing these new codes, we incorporated all the coding lessons that
we learned over the years. The latest code, FEFLO96, runs at a sustained rate of
115 MFlops on the CRAY-YMP, and has significantly less Flops per update than the
previous code (FEFLO52). At the same time, indirect addressing (i/a) costs were re-
duced by a factor of 7.3. This reduction in i/a was achieved by using the edge-based
data structure (1.57), computing the fluxes 'on the fly' from the unknowns (2.14) and
using superedges (2.18) (Fl]. The code without superedges runs about 25% faster on
the CRAY-YMP than the code using usual edges. We also excercised FEFLO96 in
parallel on the CRAY-C90, and simply using autotasking, i.e. CRAY-preprocessing,
timed a remarkable 3.87 speed-up on 4 processors for some large runs.
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1.2 Implicit Solvers: The use of implicit solvers was recognized as being essential
for the fast solution of the compressible Navier-Stokes equations. Therefore, we devel-
oped implicit iterative solvers. The solvers are based on a linearized Euler backward
time-advancement of the Navier-Stokes equations. The resulting non-linear system of
equations is then solved using a preconditioned GMRES solver. Both block-diagonal
and incomplete LU decompositions were tried. While incomplete LU performs bet-
ter than block-diagonal, it also requires a lot more memory, and is less amenable to
massive parallel architectures. For this reason, we are currently investigating other
preconditioners. More details of these techniques are given in [4], which is included in
the current report as Appendix 1.

2. TURBULENCE MODELS

The algebraic Baldwin-Lomax turbulence model [T1] was implemented in the 3-D flow
solver. This is the simplest way to add the effects of turbulence. The model is straight-
forward to implement as the only difference in th%. flow equations is the increase of
viscosity. The model represents the inner and outer parts of a boundary laver as fol-
lows:

Inner part:

At = pl•l [ky(1 - exp(-y/A))]
2

Outer part:

At = aCcppYmaoFmazy/

with

F(y) = ylwI(l - exp(-y/A))

The exponential factor in the inner part is the Van Driest damping factor which matches
the damping of the wall. In the second equation, Fmaz is computed along a normal
to the wall. This is particularly easy when dealing with structured grids, but requires
some effort for unstructured grids. The required data structures were discussed by
Rostand [T2] for 2-D. As far as we can see, this is the first time a fully unstructured
3-D Baldwin-Lomax implementation has been attempted. One complete evaluation of
the turbulent viscosity requires the following transfer of information:
a) Vorticity from elements or points in the mesh to the appropriate normals to the walls.
Along each normal, the vorticity IwI is required to evaluate the turbulent viscosity. This
transfer of vorticity is accomplished with a linked list of intersections of normals to the
wall with elements of the mesh. This list is constructed by starting from the surface and
moving along the normal. All that is required to do so is a list of elements surrounding
elements.

2



b) Transfer of the turbulent viscosity from the normals to the walls to the elements or
points of the mesh. In the present case, we transfer to points. This not only reduces the
transfers required (there are less points than elements in a mesh), but also introduces a
beneficial smoothing effect at element level. For each point in the mesh close to wetted
surfaces, we find the closest normals surrounding it, and then the two closest points
along each of the normals. Thus, a point in the mesh assembles the turbulent viscosity
from four points along the normals of a wetted surface. The search for the closest
points is done using quad-trees [T31. In the case of the mixing of several boundary
layers, 1t is computed from the contribution of each wall weighted by its distance to
the point.

3. GRIDDING FOR 3-D VISCOUS FLOWS

The difficulty of gridding complex geometries for the simulation of flows using the
Navier-Stokes equations - i.e. including the effects of viscosity and the associated
boundary or mixing layers - increases not only with the geometric complexity of the do-
main to be gridded, but also with the Reynolds-number of the flow. For high Reynolds-
numbers, the proper discretization of the very thin, yet important boundary or mixing
layers requires elements with aspect ratios well in excess of 1:1000. This requirement
presents formidable difficulties to general, 'black-box' unstructured grid generators.
These difficulties can be grouped into two main catcgories:
a) Amount of Manual Input: In most unstructured grid generators, the desired spatial
distribution of element size and shape is given by some form of background grid or
sources [G1,G2]. This seems natural within an adaptive context, as a given grid,
combined witn a suitable error indicator/estimator, can then be used as a background
grid to generate an even better grid for the problem at hand. Consider now trying
to generate from manual input a first grid that achieves stretching ratios in excess of
1:1,000. The amount of background gridpoints or sources required will be proportional
to the curvature of the objects immersed in the flowfield. This implies an enormous
amount of manual labor for general geometries, rendering this approach impractical.
b) Loss of Control: Most unstructured grid generators introduce a point or element at a
time, checking the surrounding neighbourhood for compatibility. These checks involve
Jacobians of elements and their inverses, distance-functions, and other geometrical
operations that involve multiple products of coordinate differences. It is not difficult to
see that as the stretching-ratio increases, round-off errors can become a problem. For
a domain spanning 1,000m (mesh around a C-17), with a minimum element length at
the wing of 0.0001m across the boundary layer and 0.05m along the boundary layer,
and a maximum element length of 20m in the farfield, the ratio of element volumes is
of the order of 3 * 1011. Althoughthis is well within reach of the 10- 16 -accuracy of
64-bit arithmetic, element distortion and surface singularities, as well as loss of control
of element shape can quickly push this ratio to the limit.
A number of semi-automatic grid generators have been devised in the past. The most
common way to generate meshes suitable for Navier-Stokes calculations for complex
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geometries is to employ a structured or semi-structuredmesh close to wetted surfaces
or wakes [G3-G1O]. This 'Navier-Stokes' region mesh is then linked to an outer un-
structured grid that covers the 'inviscid' regions. In this way, the geometric complexity
is solved using unstructured grids and the physical complexity of near-wall or wake
regions is solved by semi-structured grids. This approach has proven very powerful in
the past, as evidenced by many examples.

A recurring problem in all of these approaches has been how to link the semi-structured
mesh region with the unstructured mesh region. We developed a new, general technique
to solve this problem. The design criteria for the new grid generation strategy may be
summarized as follows:

- The geometric flexibility of the unstructured grid generator should not be com-
promised for Navier-Stokes meshes. This implies using unstructured grids for the
surface discretization.

- The manual input required for a desired Navier-Stokes mesh should be as low as
that used for the Euler case. In the present case, this requirement is solved by
specifying at the points of the background grid the boundary layer thickness and
the geometric progression normal to the surface.

- The generation of the semi-structured grid should be fast. Experience shows that
usually more than half of the elements of a typical Navier-Stokes mesh are located
in the boundary-layer regions. This requirement is met by constructing the semi-
structured grids with the same normals as encountered on the surface, i.e. without
recurring to smoothing procedures as the semi-structured mesh is advanced into
the field [G9,G11].

- The element size and shape should vary smoothly when going from the semi-
structured to the fully unstructured mesh regions. How to accomplish this is the
main topic of this paper, and is detailed in subsequent sections.

- The grid generation procedure should avoid all of the problems typically associated
with the generation of Navier-Stokes meshes for regions with high surface curva-
ture: negative or deformed elements due to converging normals, and elements that
get too large due to diverging normals at the surface. In order to circumvent these
problems, the same techniques which are used to achieve a smooth matching of
semi-structured and unstructured mesh regions are used.

Given these design criteria, as well as the approaches used to meet them, the present

grid generation algorithm can be summarized as follows:

M.1 Given a surface definition and a background grid, generate a surface triangulation
using an unstructured grid generator.

M.2 From the surface triangulation, obtain the surface normals.
M.3 Smooth the surface normals in several passes in order to obtain a more uniform

mesh in regions with high surface curvature.
M.4 Construct a semi-structured grid with the information provided by the background

grid and the smoothed normals.

4



I I

M.5 Examine each element in this semi-structured region for size and shape; remove
all elements that do not meet certain specified quality criteria.

M.6 Examine whether elements in this semi-structured region cross each other; if so,
keep the smaller elements and remove the larger ones, until no crossing occurs.

M.6 Examine whether elements in this semi-structured region cross boundaries; if so,
remove the crossing elements.

M.7 Mesh the as yet 'empty' regions of the computational domain using the background
grid and the unstructured grid generator.

The main areas of work were:

a) Smoothing of Surface Normals: This implies obtaining the smoothed normals
quickly (i.e. less than 20 passes over the surface mesh), and defining proper bound-
ary conditions for the normals in order to avoid problems at ridges, intersections,
etc.

b) Prism Generation: When generating tetrahedra from prisms, certain compatibility
criteria must be met [G14]. We developed a very fast compatibility algorithm that
was found to converge in less than 3 passes over the surface mesh.

c) Fast Proximity Finders for Crossed Elements/Points: In order to speed up the
checking of bad elements (negative, crossing, etc.), a series of data structures had
to be developed and implemented. The main data structures used are Octrees and
Linked Lists. The main filtering strategies to reduce the work even further are
cones of visibility and distance functions.

d) Initial Front for Unstructured Grid Region: Once the elements have been marked
for deletion, the initial front for the unstructured grid generation of the remaining
'empty' region of space has to be obtained. The main work here was to obtain
this initial front taking into consideration the boundary arrays required by the
flow-solver later on, i.e. to minimize user-intervention as much as possible.

More details of the algorithm, as well as several example grids computed with it, are
given in [3], which is included in the report as Appendix 2.

4. DEMONSTRATION CALCULATIONS AND RESULTS

4.1 Unstructured Grid/Remeshing Transient 3-D Runs: With the developed tools we
performed several 2-D and 3-D test runs. The steady 2-D and 3-D results are summa-
rized in [1], which is included here as Appendix 3. Pilot/Seat ejection from an F-16
fighter at supersonic speeds was shown in [2], which is included here as Appendix 4.

5. PUBLICATIONS

All of the developments listed above were reported extensively in the literature. The
main papers published are listed in chronological order:

5



[1] H. Luo, J.D. Baum, R. L6hner and J. Cabello - Adaptive Edge-Based Finite Ele-
ment Schemes for the Euler and Navier-Stokes Equations; AIAA-93-0336 (1993).

[2] J.D. Baum and R. L6hner - Numerical Simulation of Pilot/Seat Ejection from an
F-16; AIAA-93-0783 (1993).

[3] R. L6hner - Matching Semi-Structured and Unstructured Grids for Navier-Stokes
Calculations; AIAA-93-3348-CP (1993).

[4] H. Luo, J.D. Baum, R. L6hner and J. Cabello - An Implicit Three-Dimensional
Finite Element Solver for Unstructured Meshes; pp. 1027,1028 in Proc. 11th AIAA
CFD Conf. , Orlando, FL, July (1993).

[5] H. Luo, J.D. Baum, R. L~hner- Numerical Solution of the Euler Equations
for Complex Aerodynamic Configurations Using An Edge-Based Finite Element
Scheme; AIAA-93-2933 (1993).

6. CONCLUSIONS AND OUTLOOK

We have made major steps towards the development of a CFD capability to compute
viscous 3-D compressible flows with moving bodies.

In the future, we plan to expand the developed capabilities as follows:

a) Development of Flow Solvers for high Re-number Viscous Flows: We will continue
to develop our implicit Navier-Stokes solvers. In particular, we plan to extend the
linelet-concept to the fully coupled linear equation systems that arise for implicit
Navier-Stokes solvers.

b) Turbulence Models: We will incorporate the k - c model into the implicit Navier-
Stokes solver.

c) Development of suitable gridding algorithms for high Re-number viscous flows:
We plan to improve our present capability for automatically gridding problems
involving high Re-number viscous flows.

d) Development of suitable error indicators for high Re-number viscous flows: The
idea here is to develop error indicators that sense were to refine boundary layers
and shear layers, and that work even for highly stretched grids.

e) Improvements in movie-making capabilities: The main aim of this improvement is
to be able to run the movie on the workstation before going to the movie-making
center. At the same time, we must be able to compress the information to an
extent that a 3min movie can be stored effortlessly on a small disk. This will be
accomplished through image compression algorithms.

f) Further test runs: we plan to look for available experimesatal and/or numerical
data in the literature in order to set up runs to test the algorithms developed.
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AN IMPLICIT THREE-DIMENSIONAL
FINITE ELEMENT SOLVER FOR UNSTRUCTURED MESHES

Hong Luo', Joseph D. Baum', Rainald Lbhner2 , and Jean Cabello2

'Science Applications International Corporation
1710 Goodridge Drive, MS 2-3-1, McLean, VA 22102
2 CMEE, School of Engineering and Applied Science

The George Washington University, Washington, D.C. 20052

INTRODUCTION boundary points similarly to the interior points. This

Significant progress has been made in recent procedure provides a boundary point treatment that
years in developing numerical algorithms for the so- is completely compatible and consistent with the inte-

lution of the compressible Euler and Navier-Stokes rior point differencing scheme. The boundary condi-
equations on unstructured grids. Most efforts have tions are then linearized consistently, and are included
been focused on improving the spatial discretization in the left-hand-side coefficient matrix.
operator which has reached a high degree of sophisti- NUMERICAL RESULTS
cation. Usually, explicit time integration, such as the Due to space limitation, results are presented
multi-stage Runge-Kutta scheme has been used to get only for an inviscid transonic flow and a laminar vis-
a steady state solution. In general, explicit schemes cous flow. The first test case is the well known Ni's
are easy to implement and vectorize and require only test case. It is an inviscid flow in a channel with a
limited memory storage. However, for large-scale 10% thick circular bump on the bottom. Inlet Mach
problems and especially for solution of the Navier- number is 0.675. This is a 3D simulation of a 2D
Stokes equations, the rate of convergence slows dra- flow. The mesh, which contains 13,891 grid points,
matically. To speed up the convergence rate, an im- 68,097 element and 4,442 boundary points, is depicted
plicit temporal discretization is required, in Fig.1a. Fig.lb displays the computed pressure con-

The objective of this research is to develop an im- tours in the flow field The Mach number distribution
plicit 3D finite element algorithm for the solution of on lower wall is shown in Fig.lc. Fig.ld displays a
the compressible Euler and Navier-Stokes equations comparison of convergence histories between explicit
on unstructured meshes. Numerical results for both scheme and implicit scheme with left, right, and sym-
inviscid and viscous flows are presented to demon- metric ILU preconditioner, respectively. The explicit
strate the performance of the proposed scheme, scheme results were obtained using three stage Runge-

NUMERICAL SCHEME Kutta scheme with implicit residual smoothing and a

The governing equations are integrated in time CFL number of 4. The implicit scheme results were
"Ttn tobtained using a CFL number of 100,000 with a max-

using an Euler implicit differencing scheme. The re- imum number of Krylov space of 10 without restart.
suiting large nonsymmetric linear system of equations Contrary to the results obtaind in [2], the left, right
is solved by using the preconditioned GMRES algo- and symmetric preconditioners perform equally well.
rithm. The preconditioner used in this work is a block The second test case involves a 3D simulation of

,=omplete LU factorization with zero fill-in. Left, a 2D laminar flow past a flat plate at a Mach num-
right, and symmetric preconditioners are investigated ber of 0.5 and a chord Reynolds number of 10,000.
and examined. Spatial discretization is achieved by The mesh, shown in Fig.2a. contains 81,885 elements,
using an edge-based finite element scheme [1]. Roe s 15,694 points, and 3,774 boundary points. The corn-
flux-difference splitting is used for spatial discretiza- puted Mach number contours and velocity vectors in
tion of the inviscid flux terms. A MUSCL approach the flow field are depicted in Fig.2b and 2c. Fig.2d
is used to achieve higher-order accuracy. The viscous shows the comparison of the Blasius velocity profile
flux terms are evaluated using second order accurate and the computed velocity profiles as scaled by the
central differences. Blasius similarity law at the exit.

Results obtained during this investigation indi-
cate that the treatment of boundary conditions is REFERENCES
extremely important to the success of an implicit [1] H. Luo, J. D. Baum. R. L~hner and J. Cabello -
scheme. When boundary conditions are treated ex- AdaptivL Edge-Bas, 'inite Element Schemes
plicitly, only a very Ii aited CFL number can be used. for the Euler and N.-vier-Stokes Equations on
In order for the implicit scheme to be stable for Unstructured meshes; AIAA-P3-0336.
high CFL numbers, the boundary condition must be [2] V. Venkatakrishnan - Preconditioned Conjugate
treated implicitly. In the present work, Roe's approx- Gradient Methods for the Compressible Navier-
imate Riemann solver was also extended to treat the Stokes Equations; AIAA-90-0586.
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MATCHING SEMI-STRUCTURED AND UNSTRUCTURED GRIDS
FOR NAVIER-STOKES CALCULATIONS

Rainald L~hner

CMEE, School of Engineering and Applied Science
The George Washington University, Washington, D.C. 20052

ABSTRACT ement length of 20m in the farfield, the ratio of element

A new gridding technique for Navier-Stokes calculations in- volumes is of the order of 3 * 10-12. Although this is well

volving complex geometries is presented. This technique within reach of the 10-1 6 -accuracy of 64-bit arithmetic, el-

is based on a combination of semi-structured and unstruc- ement distortion and surface singularities, as well as loss of

tured meshing techniques that accommodates the strengths control of element shape can quickly push this ratio to the

of these two approaches while avoiding their respective weak- limit.

nesses. The technique has the advantage of being generally Given these difficulties, it is not surprising that at present,
applicable, yielding one single unstructured final mesh for a there does not exist a black-box' unstructured (or struc-
given computational domain. At the same time, the prob- tured, for that matter) grid generator that can produce ac-
lems usually encountered when meshing surfaces with high ceptable meshes with such high aspect ratio elements. The
curvature for Navier-Stokes calculations are avoided auto- demand for Navier-Stokes calculations in or past complex ge-
matically. ometries being great, a number of semi-automatic grid gener-

1. INTRODUCTION ators have been devised. The most common way to generate

meshes suitable for Navier-Stokes calculations for complex
The task of gridding complex geometries for the simulation geometries is to employ a structured or semi-structured mesh
of flows using the Navier-Stokes equations - i.e. including close to wetted surfaces or wakes (3-11]. This 'Navier-Stokes'
the effects of viscosity and the associated boundary or mix- region mesh is then linked to an outer unstructured grid that
ing layers - is encountered commonly in engineering prac- covers the 'inviscid' regions. In this way, the geometric com-
tice. The difficulty of this task increases not only with the plexity is solved using unstructured grids and the physical

y_ geometric complexity of the domain to be gridded, but also complexity of near-wall or wake regions is solved by semi-
ns with the Reynolds-number of the flow. For high Reynolds- structured grids. This approach has proven very powerful in
le, numbers, the proper discretization of the very thin, yet im- the past, as evidenced by many examples.

portant boundary or mixing layers requires elements with The meshes in the semi-structured region can be constructed
aspect ratios well in excess of 1:1,000. This requirement to be either quads/bricks [3-9] or triangles/prisms [10,111.
presents formidable difficulties to general, 'black-box' un- The prisms can then be subdivided into tetrahedra if so

ila- structured grid generators. These difficulties can be grouped desired. For the inviscid (unstructured) regions, multi-
into two main categories: block approaches have been used for quads/bricks [5-8],
a) Amount of Manual Input: In most unstructured grid and advancing front [13-15], Voronoi [16,17] and modified

nce generators, the desired spatial distribution of element size quadtree/octree approaches [18] for triangles/tetrahedra.
and shape is given by some form of background grid or

Fi- sources [1,2]. This seems natural within an adaptive con- A recurring problem in all of these approaches has been how
Fke text, as a given grid, combined with a suitable error in- to link the semi-structured mesh region with the unstruc-

okes dicator/estimator, can then be used as a background grid tured mesh region. Some solutions put forward have consid-
ered:

to generate an even better grid for the problem at hand.

Consider now trying to generate from manual input a first Overlapped Structured Grids: these are the so-called
grid that achieves stretching ratios in excess of 1:1,000. The chimera grids (8,91, that have become popular for Navier-
amount of background gridpoints or sources required will be Stokes calculations of complex geometries; as the grid-

'Ifless proportional to the curvature of the objects immersed in the points of the various meshes do not coincide, they allow
ity of flowfield. This implies an enormous amount of manual labor great flexibility and are easy to construct, but the so-
Kar- for general geometries, rendering this approach impractical. lution has to be interpolated between grids, which ma,

b) Lo of Cntr: Most unstructured grid generators intro- lead to higher CPU cost and a deterioration in solutior
duce a point or element at a time, checking the surrounding quality.
neighbourhood for compatibility. These checks involve Jaco- Overlapped Structured/Unstructured Grids: in this casE

* bians of elements and their inverses, distance-functions, and the overlap zone can be restricted to one cell, with tht
other geometrical operations that involve multiple products points coinciding exactly, so that there are no interpola
of coordinate differences. It is not difficult to see that as tion problems [3,4].
the stretching-ratio increases, round-off errors can become Delaunay Triangulation of Points Generated by Alge
a problem. For a domain spanning 1,000m (mesh around a
Boeing-747), with a minimum element length at the wing of braic Grids: in this case several structured grids are gen

Sl~ess than 0.01mm across the boundary layer and 0.05m along tersligcodo onsi hngidduigD
~i~nj74,70  acrss he oundry aye and0.0m aong erated, and their spatial mapping functions are stored

the boundary layer and along the wing, and a maximum el- the resulting cloud of points is then gridded using De

Copyright 1993 by the author. Published by the AIAA with permission.
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launay triangulation techniques (16]. i.e. without recurring to smoothing procedures as the

Although some practical problems have been solved by these semi-structured mesh is advanced into the field (10,12].
approaches, they can not be considered general, as they suf- The element size and shape should vary smoothly when
fer from the following constraints: going from the semi-structured to the fully unstructured

- The first two approaches require a very close link be- mesh regions. How to accomplish this is the main topic

tween solver, grid generator and interpolation techniques of this paper, and is detailed in subsequent sections.

to achieve good results; from the standpoint of general- The grid generation procedure should avoid all of the
ity, such a close link between solver, grid generator and problems typically associated with the generation of
interpolation modules is undesirable. Navier-Stokes meshes for regions with high surface cur-

vature: negative or deformed elements due to converging
- Another problem associated with the first two ap- normals, and elements that get too large due to diverg-

proaches is that at concave corners, negative (i.e. folded) ing normals at the surface. In order to circumvent these
or badly shaped elements may be generated. The usual problems, the same techniques which are used to achieve
recourse is to smooth the mesh repeatedly, or use some a smooth matching of semi-structured and unstructured
other device to introduce ellipticity [10,12]. These ap- mesh regions are used.
proaches tend to be CPU intensive, and require consid-
erable expertise from the user. Therefore, they can not Given these design criteria, as well as the approaches used
be considered general approaches. to meet them, the present grid generation algorithm can be

summarized as follows (see Figure 1):

The third case requires a library of algebraic grids to

mesh individual cases, and can therefore not be consid- M.1 Given a surface definition and a background grid, gen-
ered a general tool. However, it has been used exten- erate a surface triangulation using an unstructured grid
sively for important specialized applications, e.g. single generator.
or multi-element airfoil flows [161. M.2 From the surface triangulation, obtain the surface nor-

The present research effort is directed towards generality and mals.
ease of software expandability and maintainability. There- M.3 Smooth the surface normals in several passes in order to
fore, we strive to generate a single unstructured mesh consist- obtain a more uniform mesh in regions with high surface
ing of triangles/tetrahedra. This mesh can then be consid- curvature.
ered completely independent of flow solvers, and neither re- M.4 Construct a semi-structured grid with the information
quires any interpolation or other transfer operators between provided by the background grid and the smoothed nor-
grids, nor the storage of mapping functions. mals.

The remainder of the paper is divided as follows: The de- M.5 Examine each element in this semi-structured region for 4

sign criteria used and the new grid generation strategy are size and shape; remove all elements that do not meet f
outlined in Section 2. Removal criteria are discussed in Sec-
tion 3. Section 4 u.escribes the formation of tetrahedra from certain specified quality criteria.
prismatic elements. Several examples of gridded configura- M.6 Examine whether elements in this semi-structured region
tions are shown in Section 5. Finally, some conclusions are cross each other; if so, keep the smaller elements and
drawn in Section 6, and further extensions are considered. remove the larger ones, until no crossing occurs.

2. DESIGN CRITERIA AND ALGORITHM M.7 Examine whether elements in this semi-structured region
cross boundaries; if so, remove the crossing elements.

The design criteria for the new grid generation strategy may M.8 Mesh the as yet 'empty' regions of the computational
be summarized as follows: domain using an unstructured grid generator in combi-

- The geometric flexibility of the unstructured grid genera- nation with the desired element size and shape.
tor should not be compromised for Navier-Stokes meshes.
This implies using unstructured grids for the surface dis- 3. ELEMENT REMOVAL CRITERIA
cretization.

The critical element of the matching algorithm described
- The manual input required for a desired Navier-Stokes above is the development of good element removal crite-

mesh should be as low as that used for the Euler case. In ria. The criteria to be considered are: element size, element
the present case, this requirement is solved by specifying shape, element overlap and element crossing of boundary
at the points of the background grid the boundary layer faces.
thickness and the geometric progression normal to the
surface. 3.1 E

- The generation of the semi-structured grid should be The two main types of problems encountered in semi-
fast. Experience shows that usually more than half of structured grid regions that are related to element size are
the elements of a typical Navier-Stokes mesh are located elements that are either too large or negative (folded). These
in the boundary-layer regions. This requirement is met problems originate for different reasons, and will therefore be
by constructing the semi-structured grids with the same treated separately.
normals as encountered on the surface (see Figure 1),
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311.1 LargcElmns suitable data structures 1191, the number of elements tested
can be reduced signihicantly, leading to a total number of

As a result of surface normals diverging close to convex sur- operaions of O(Nr, log Ni,).

faces very large elements (as compared to the user-defined

size and shape) may appear in the semi-structured mesh re- For quad/octrees, the complete testing procedure would look

gions. The situation is shown diagrammatically in Figure 2. as follows:

The volume of each element in the semi-structured mesh re- - Construct a quad/octree for the points;
gion is compared to the element volume desired by the user - Order the elements according to decreasng volume (e.g.
for the particular location in space. Any element with a vol- in a heap-list (13J);
ume greater than the one specified by the user is marked
for deletion. In the present case, the desired distribution - Construct a linked list for all the elements surrounding

of element size and shape is given by a background grid. each point;

Tree-search algorithms are used to relate the information - Loop over the elements, in descending volume, testing:.
between this background grid and a particular location in - IF the element, denoted in the sequel by lmu, has not
space (see [131 for details), been marked for deletion before:

3.1.2 N E nt Obtain the minimum/maximum extent of the coor-

As a result of folding away from concave surfaces, elements dinates belonging to this element;

with negative jacobians may appear. The situation is shown Find from the quad/octree all points falling into this
diagrammatically in Figure 3. As before, the element vol- search region, storing them in a list I=LO(1:ICLOP);
umes are computed. All elements with negative volumes are Find all the unmarked elements with smaller vol-
marked for deletion. ume than in= surrounding the points stored in
We have observed that typically the elements adjacent to LCLOP(1:UcLOP); this yields a list of close elements
negative elements tend to be highly deformed. Therefore, we LCLOZ( 1: 1 Ic );
also remove all elements that have points in common with
negative elements. Obviously, this one-pass procedure can be Loop over the elements stored in LcLO(1:ECLm):
extended to several passes, i.e. neighbours of neighbours, etc. - ir the element crosses the faces of lU

Our experience indicates, however, that one pass is sufficient or is inside Zin: Mark inn for deletion
for most cases. The reason for looping over the elements according to de-

3.2 Element Shape scending volumes is that the search region is obtained in a
natural way, i.e. the extent of the element. Looping ac-

The aim of a semi-structured mesh close to a wall is to pro- cording to ascending volumes would imply guessing search
vide elements with very small size normal to the wall and regions.
reasonable size along the wall. Due to different meshing re- As negative elements could lead to a failure of this test, the
quirements along the wall (e.g. comers, separation points, overlap test is performed after the negative elements have
leading and trailing edges for small element size, other re- been identified and marked.
gions with larger element size), elements that are longer in
the direction normal to the wall than along the wall may 3.4 Elements Crossing Boundary Faces
appear. The situation is shown diagrammatically in Fig-uree4. The situcturedigri h metiand in In regions where the distance between surfaces is very small,ure 4. For the sem i-stru ctu red grids, the elem en t an d p oin t th cr s i g o b un a y f es y el m ts r m t e s m -
numbering can be assumed as known. Therefore, a local el- the crossing of boundary faces by elements from the semi
ement analysis can be performed to determine whether the structured region is likely to occur. As this test is per-

element has side-ratios that are consistent with boundary formed after the element crossing tests are conducted, the

layer gridding. All elements that do not satisfy this criterion only boundaries that need to be treated are those that have

are marked for deletion, no semi-structured grid attached to it. In order to detect
if overlapping occurs, we loop over the surface faces, see-

3.3 Overlanninf Elements ing if any element crosses it. As before, straightforward
testing would result in an expensive 0(&4, • NI) procedure,

e- Overlapping elements will occur in regions close to concave where N1 denotes the number of boundary faces. By us-
nt surfaces with high curvature, or when the semi-structured ing quad/octrees (13], this complexity can be reduced to
ry grids of two close objects overlap. Another possible scenario O(N! log Ne.). The face-crossing check looks essentially the

is the overlap of the semi-structured grids of mixing wakes. same as the check for overlapping elements, and its explicit
The main criterion employed is to keep the smaller element description is therefore omitted.
whenever an overlap occurs. In this way, the small elements

ni- close to surfaces are always retained. Straightforward testing 4. SUBDIVISION OF PRISMS INTO TETRAHEDRA

3re would result in 0(1b ) operations per element, where Nme As we only desire to work with tetrahedra, the prisms formed
sedenotes the number of elements leading to a total number by extruding the surface triangles along the smoothed nor-
be of operations of O(N,21). By using quad/octrees (13], or other mals must be subdivided. This subdivision must be per-

formed in such a way that the diagonals introduced at the
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rectangular faces of the prisms match across prisms. Given gap regions. Appiication of the removal criteria reduced the
that a prism= cannot be subdivided into tetrahedra in any number of elements to Mm=o ,022, yielding the mesh shown

arbitrary waF, care has to be taken when choosing these di- in Figure 7c. The final unstructured mesh, consisting of

agonals. F•ure 5 illustrates the possible diagonals as the numsi .e? elsments is shown in Figure 7d.
base qides 4c the prism are traversed. One can see that in
order to obtain a combination of diagonals that can be sub- Cylinder on a Flat Plate: The surface definition for this 3-

divided into tetrahedra, not all sides of the triangular base D case is shown in Figure 8a. The surface of the semi-

have to be np-down or down-up as one traverses the sides. structured grid genrated from the surface triangulation,

This implies that the sides of the triangular base mesh have which consisted of za -s2S4,990 elements, is shown in Fig-

to be marked in such a way that no such combination oc- ure 8b. Overlapping and negative elements are clearly

curs. We have implemented the following iterative procedure present in this mesh. Application of the removal criteria

to arrive az valid aide-combinations: reduced this number to z.sa.0s13.94 yielding the surface

D.0 Given: shown in Figure 8c. The removal of these elements required

less than imin of CPU time on an IBM-RISC-550 worksta-

- The sides of the surface triangulation tion. The surface of the final unstructured mesh, consisting

of 1LCM-213,979 elements is shown in Figure 8d. The CPU

- The sides of each surface triangle time required for the complete mesh was less than 10min

- "r. triangles that surround each surface triangle on an IBM-RISC-550 workstation. This mesh was used for

D.i DO: l•r,- over the surface triangles an incompressible laminar flow simulation. A Blasius pro-

IF the current side-combination is not valid: file was prescribed at the entrance plane, and the Reynolds-

- enumber based on the cylinder diameter was set to Re = 100.

- DO: loop over the sides of the triangle Figures 8e,f show some of the cross-sectional meshes, as well

- Ir the inversion of the side/diagonal as the solution obtained.

orientation leads to an allowed Gnjec il: The surface definition for this 3-D case is

side-combination in the shown in Figure 9a. The surface of the semi-structured grid

neighbour-triangle: generated from the surface triangulation, which consisted

- Invert the side/diagonal orientation of IRLES94O,Soo elements, is shown in Figure 9b. Over-

lapping and negative elements are clearly present in this
Goto next element mesh. Application of the removal criteria reduced this num-

Mmn ber to ELEm.697.638 yielding the surface shown in Figure 9c.

UnDO The surface of the final unstructured mesh, consisting of

KIF NRim-997,99o elements is shown in Figure 9d. The CPU

ENDIO 
time required for the complete mesh was about 55min on an
IBM-RISC-550 workstation.

D.2 IF any unallowed combinations are left: Go"o D.1

This precedure works well, converging in at most two passes 6. CONCLUSIONS AND OUTLOOK

over the surface mesh for all cases tested to date. A new gridding technique for Navier-Stokes calculations in-

volving complex geometries has been presented. The tech-

5. EXAMPLES nique is based on a combination of semi-structured and

unstructured meshing techniques that accommodates the

131rck-d Channel with Obiect: The surface definition is strengths of these two approaches while avoiding their re-

given in Figure 6a. The semi-structured grid generated from spective weaknesses. The technique has the advantage of

the surface discretization, consisting of iNum7,784 element, being generally applicable, yielding one single unstructured

is shown in Figure 6b. Observe that we have sharp con- final mesh for a given computational domain. At the same

v-x and concave corners, smoothed normals, negative ele- time, the problems usually encountered when meshing sur-

ments at concave corners, and element overlap between semi- faces with high curvature for Navier-Stokes calculations are

structured grids. Application of the removal criteria reduced avoided automatically. The technique was demonstrated on

the number of elements to BELMI-4.83S, yielding the mesh several examples that were run interactively on workstations,

shown in Figure 6c. The final unstructured mesh, consisting indicating a reasonable speed for possible use within an adap-

Of NRLE•se,397 elements is shown in Figure 6d,e. Notice the tive remesbing context. Future developments will center on

smooth transition between the semi-structured and unstruc- better wake-gridding capabilities, automation of the proce-

tireid grid regions. dure for adaptive remeshing, and the extension to free sur-

Multi-Element Airfoil: The surface definition is shown in faces or flexible bodies immersed in the fiowfield.

l'igure 7a. The semi-structured grid generated from the sur- 7, ACKNOWLEDGEMENTS

Face discretization, is shown in Figure 7b and consisted of This work was partially funded by AFOSR under contract

,KLENC~s7.2s2 elements. As before, the normals have been F49620-92-J-0058. with Dr. Leonidas Sakell as the technical
smoothed, but deformed elements appear due to surface cur- monitor. The support of IBM in the form of a workstation
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Figure 8: Cylinder on a Flat Plate
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Figure 9 Generic Missile Configuration
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ABSTRACT chains have recently been developed [5]. The use of
This paper describes recent developments of high edge-based data structure has been shown to yield sig-

nificant computational savings for three dimensional
resolution finite element schemes for the solution of problems.
the unsteady compressible Euler and Navier-Stokes Extensive research has been performed during
equations on unstructured meshes. These finite el- the last few years on upwind algorithms for the so-
ement algorithms use an edge-based data structure, lution of the Euler and Navier-Stokes equations on
as opposed to a more traditional element-based data unstructured meshes (6-9]. A significant advantage of
structure. The advantage of using such an edge-based anytupwind meshes .6-9]. i that i disn tuage o
data structure is that it provides a unified approach any upwind discretisation is that it is naturally dissia-
in which the relation between centered and upwind pative, as compared with central-difference discretima-schemes becomes apparent, improves the efficiency of tions, and consequently does not require any problem-
the algorithms, and reduces the storage requirements. dependent parameters to adjust. So far, all the up-

A variety of numerical schemes using such edge-based wind schemes implemented as either node-centered ordatastrctue, rngig fom odunv shems ~cell-centered discretizations on unstructured meshes
data structure, ranging from Godunov schemes to use the finite volume approach and the control vol-centered schemes with blended dissipation, is pre- ume must be constructed first. In terms of computa-sented and discussed. Adaptive m esh refinem en t isti n lef c n y, od - n er d s h m sa ep f r b e
then added to these solvers to enhance the solution tional efficiency, node-centered schemes are preferable
accuracy and efficiency. Various numerical results for to their cell-center counterparts. In the node-centered
a wide range of flow conditions, from subsonic to hy- approach [6,8o, the control volume is typically taken
personic in both 2D and 3D, are presented to demon- to be part of the neighboring cells that have a ver-strate the performance and versatility of the proposed tex at that node. In two dimensions, the part of the
schemes. cells taken is determined by connecting the centroid

of the cell and the midpoints of the two edges that
share the node. In 3-D, the part of the cells taken

1. INTRODUCTION is determined by a surface that is constructed in a
In recent years, significant progress has been similar way, a somewhat complicated geometrical pro-

made on developing numerical algorithms for the so- cess in three dimensions. The switching from element
lution of the compressible Euler and Navier-Stokes to edge-based data structure enables the implemen-
equations. The use of unstructured meshes for tation of upwind schemes trivial and straightforward
computational fluid dynamics problems has become in the context of finite elements. This is especially
widespread due to their ability to discretize arbitrar- attractive for three dimensional problems, as there is
ily complex geometries and the ease with which mesh no need to construct control volumes explicitly and
adaption can be carried out to improve the solution. geometrically.
However, any numerical schemes based on unstruc- The objective of this paper is to present recently
tured meshes require a storage of mesh connectivity developed high accuracy schemes on unstructured
information. This requirement leads to an increase grids using an edge-based data structure. This edge-
of computer memory and the use of indirect address- based data structure provides a unified approach in
ing to retrieve nearest neighbor information, which, which the link between centered and upwind schemes
in turn, implies that any numerical algorithms will becomes apparent. The use of such an edge-based
run slower on unstructured grids than on structured data structure not only improves the efficiency of
grids. To reduce indirect addressing, finite element the algorithms, but also enables a straightforward
schemes based on edge-based data structures have implementation of upwind schemes in the context
been introduced [14]. In addition, more sophisti- of finite element methods. A variety of numerical
cated data structures such as stars, super edges, and schemes using the edge-based data structure is pre-

Copyright 1993 by th, authors. Published by the
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Inc. with permission.



sented and the performance of these schemes in terms In the sequel, we assume that fQ is the flow do-
of solution accuracy and overall computational ef- main, r its boundary, and nj the unit outward normal
ficiency is discussed. Some different strategies for vector to the boundary. The following bount ery con-
the discretization of the viscous terms are considered. ditions have to be added:
An approach well suited for use with an edge-based On the solid wall, the slip condition is aw ied for
data structure is then introduced and presented. An inviscid flow
H-refinement/coarsening adaptive scheme is imple- inni flow
mented in these schemes to enhance the solution ac- tLnfl= 0 . (2.6)
curacy and efficiency. Various numerical examples for For viscous flow, no-slip condition
a wide range of flow conditions, from subsonic to hy-
personic in both 2D and 3D, are presented to demon-
strate the performance and versatility of the proposed = 0 , (2.7)
algorithms.

and either isothermal condition
2. GOVERNING EQUATIONS

The Navier-Stokes equations governing unsteady T = To (2.8)
compressible viscous flows can be expressed in the
conservative form as where To is the total temperature or adiabatic condi-

OU 8F 8G3 tion
"O + zj - j' (2.1) tion ni" -- 0 (2.9)

where the summation convention has been employed could be imposed. In the far-field, a characteristic
and analysis based on the introduction of Riemann invari-

(0 ants Pj for one-dimensional flow normal to the boundary
k )uj is used to determine the values of the flow variables.U = u ,F- pUuj + pSij ,This analysis correctly accodmts for wave propagation

uj(pe + p) in the far field, which is important for rapid conver-
gence to steady-state and serves as a non-reflecting

G0 0 boundary condition for unsteady application.
' ffl= )- (2.) 3. VARIATIONAL FORMULATION AND

Here p,p, e, Tand k denote the density, pressure, spe- FINITE ELEMENT APPROXIMATION
cific total energy, temperature and thermal conduc- Let T be a trial function space and W a weighting
tivity of the fluid, respectively, and uj is the velocity function space, both defined to consist of all suitably
of the flow in the coordinate direction zi. This set of smooth functions. An equivalent variational formula-
equations is completed by the addition of the equation tion of (2.1) is given by
of state

p =(-)p(e1- 1ujuj) T (a iuj A/C find UET such that VWEW
(2.3) fa Wd - fFj EW dfl + frFnjnWdri -

which are valid for perfect gas, where 7 is the ratio of .'
the specific heats and C, is the specific heat at con- - y W' d + fr rJW dr
stant volume. The components of the viscous stress (3.1)
tensor ai are given by Assuming ill a classical triangulation of fQ with the

IN o +49ut nodes numbered from i to n and rh the boundary of
P=(- + ' ) + A i (2.4) ill, we approximate the trial and weighting spaces T

.zj and W by their subspaces of finite dimension T, and

The thermal conductivity k and viscosity coefficient u W%, which respectively, are defined by

are assumed to be a function of the temperature and
determined using Sutherland's empirical relation. It Th= Uh(- )IU (--,t) U1 'tNI
is assumed that A and p are related by jhi ~ Ii~~

3 (2.5)Wh = 1 Wt(Z) a-Nl(z) (3.2)

The left-hand side of equation (2.1) constitutes the so-
called Euler equations governing unsteady compress- where Nr is the standard linear finite element shape
ible inviscid flows, function associated with node 1, Ui is the value at

2



node ¶I and al is a constant. The Galerkin finite ele- All integrals appearing in equation (3.5) can then be
ment approximation is then given by evaluated in closed form, leading to a matrix-vector

product of the form
findUh E Tjsuch that for eachN,(1 < I < n) Rl = D (4.2)- -R, (4.2)

f " IN~dih = Here rj are sparse matrices, whose off-diagonal en-

fn Fi(Uh),Ld!2h - fr, F2 (Uh)niNjdrh tries can be identified as being associated with the4 edges of the mesh. Moreover, it can be shown that
- fn, G (uh) . d + frt G'(Uh)nj NIdrh . for any interior node, equation (3.4) can be written

(3.3) as
The integrals appearing here are evaluated in the [M 7] 1: C. • (FI +F) (43

standard finite element form by summing individual (j 2
element and boundary surface contributions, the com- where mr i the number of edges connected to the
pact support of the shape function N, means that the node Li The coefficient Cf denotes the weight ap-
equation can be written as plied to the average value of the flux on the edge that

connects nodes I and J, to obtain the contribution
=Ndill- made by the edge to node I, whereas C(j, denotes the

weight applied to the same quantity to obtain the con-
Ntribution made by the edge to node J. These weights

EJ F'(Uh)nNldrh% are computed as

- E IC4 E! I'b
where now the summation extends only over those

(3.4) elements Q., which contain edge IJ. It can be easily
verified that these weights possess the properties

where the summation extends over those elements e
and boundary surfaces b that contain node I. In- E ®ri = 0 for all 1 (4.5)
serting the assumed form for U,% in equation(3.4), the 0o
left-hand side integral can be evaluated exactly to give

C, = -C3, for all andJ. (4.6)

4 ý Nrdalh (= j NlNrd(•2h]-- For notational convenience, we define the vector C,,
eel • eel dt by the expression

dUiMij-• (3.5) r~ CjCjCj) ,(4.7)

and let Llj denote the modulus and Sij denote a unit
where M denotes the finite element consistent mass vector in the direction of Ci, then equation (4.3) can
matrix. For steady state computations, M can be be written as
replaced by the lumped (diagonal) mass matrix, de- dU
noted by ML. [MLd-U] = ] Lj(F, + Fj) (4.8)

I.,

4. EDGE-BASED FINITE ELEMENT
SCHEMES FOR THE EULER EQUATIONS where

F, = (FI, F , F).SF (4.9)
It is well known that the discretization of the con-

vective terms is crucial to the successful numerical so F = (F), F), F.).S,, . (4.10)

lution of the Navier-Stokes equations. Therefore, we 4.1 Edge-Base Data Structure
start by considering the solution of the Euler equa-
tions. The extension to the Navier-Stokes equations The alternative procedure for obtaining the dis-
will be discussed in the next section. The integral crete form of the equations is now apparent. While
of the convective terms appearing on the right-hand with the element-based data structure information is
side of equation (3.4) is evaluated approximately by gathered from all the nodes of each element, oper-
linearly interpolating the flux in terms of its nodal ated on the element, and then scattered back to the
values: nodes of the element, the edge-based algorithm gath-

ers information from all the nodes of each edge, op-
n erates it on the edge, and then scattes it back to

F = NlFj , Fj = FP(Ul) (4.1) the nodes of the edge. A significant reduction in
2fi gather/scatter costs and memory requirements can
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be realized by going from an element-based to an 4.2 Godunov Scheme - Exact Rliema•n Solver
edge-based data structure. For a typical mesh of A stable scheme can be constructed by using the
triangle elements with N nodes, the number of ele- exact Riemann solver [10]. This would imply replac-
ments, Nelem is about 2N and the number of edges, ing (4.11) by
Nedge 3N. An element-based data structure requires
2*3*Nelem, i.e., 12N gather/scatter operations, while -m,
its edge-based counterpart needs 2*2*Nedge, i.e. 12N RHS(I) = • Lj.(U( (4.12)
gather/scatter operations. Whereas there appears to
be little difference between an edge-based and an el-
ement based data structure in 2-D, the situation is where U/j denotes the local exact sob in of ae Rie-
different in 3-D. For a typical tetrahedral mesh with mann problem to the Euler equation Aind can be ex-
N nodes, the number of elements, Nelem is about 5.5N pressed as
and the number of edges, Nedge 7N. An element- U1 = Rie(UwU,) (4.13)
based data structure requires 2*4*Nelem, i.e., 44N
gather/scatter operations, while its edge-based coun- where we have set
terpart needs 2*2*Nedge, i.e., 28N. Note that a sig-
nificant'gather/scatter overhead reduction is achieved U'. = U1, U1 = UJ (4.14)
using an edg-based data structure in 3D, thus leading
to a remarkable CPU savings. This is the first order Godunov scheme. A scheme

The memory overhead for an element-based data of higher order accuracy can be achieved by a better
structure calls for storing the derivatives of the shape approximation to U, and U1, e.g., via reconstruction
functions and the volume of elements, and requires process and monotone limiting. The major disadvan-
a 7*Nelem, i.e. 14N vector in 2-D, and a 13*Nelem, tage of Godunov's approach is the extensive computa-
i.e. 71.5N vector in 3-D. The memory overhead for tional work introduced through the Riemann solver.
an edge-based data structure calls for storing the 4.3 Roe Scheme - Approximate R.lemann Solver
first order derivatives and the Laplacan and needs a A first simplification can be achieved by replac-
3*Nedge, i.e. 9N vector in 2-D, and a 4*Nedge, i.e. ing the computationally costly exact Riemann solver
28N vector in 3-D. Thus an edge-based data struc- ingathe computationally costlyeexactvarieannosolver
ture requires significantly less storage overhead. In by an approximate Riemann solver. A variety of pth-fact, the edge-based data structure, defined by a iist~ sibifities can be defined; here we consider one of the

factte -aseddrsstctw oe s def listig most popular approxnmate Rlemann solvers, namelyof edges with the thedfluxdifferenewsplitieg oflRemiting

each edge, representes the minimum amount of infor-
mation required to described the unstructured mesh.

In addition, it will be shown below that this edge- .rJ, = F, + F,- I Ai I (U, - Ur). (4.15)
based data structure is extremely useful in the process
of constructing different numerical schemes, and pro- Here I Aj I denotes the standard Roe matrix eval-
vides a unified approach in which the relation between uated in the direction Sj. It can be shown that
centered and upwind schemes is clearly apparent. It this scheme is equivalent to the first order finite vol-
is clear that equation (4.8) is nothing but a classic ume upwind cell-vertex scheme based on a dual mesh.
Galerkin finite element scheme, which is equivalent Many different ways exist to achieve higher order ac-
to a central difference type scheme. By using the curacy. In the present study, a scheme of higher or-
results of equation (4.6), this scheme allows for the der accuracy is obtained by using upwind-biased in-
appearance of chequerboarding modes and thus suf- terpolations of the solution U via the MUSCL ap-
fers from numerical instabilities, ,mless some type of proach (12]. This leads to the flux function
numerical dissipation in the form of artificial viscos-
ity is introduced. To construct stable schemes for the
Euler equations, we have to replace the actual flux P, - F+ + F
function F, 3 by a consistent numerical flux .,'l, and I + I A(Ut+ U7) I (U7 - Ut) (4.16)

write the right-hand-side in the form where

F+ = F(U+), Fy = F(Uy)• (4.17)

RHS(I) = • Li.,,rr. (4.11) The upwind-biased interpolations for Ut+ and U7 are
IJ defined by

Then, by adopting different forms for this numerical U4 = U1 + 1[(1 - k)A7 + (1 + k)(U, - U,)] (4.18)
flux function, we are able to construct a number of dif-
ferent algorithms for the Euler equations as described 1 +
below. U4 - u,- [(1 - k)A+ + (1 + k)(U, - U,)] (4.19)
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where the forward and backward difference operators damping for the dissipation (1]. This is borne by the
are given by observation that even for smooth problems, central

difference schemes still require fourth order damping
A- = U, - Ur-, = 2(VU), •I" - (Uj - UI) (4.20) for stability. A scheme of this type may be written

as:
A' = U,+l - U, = 2(VU),. I" - (U, - UI) (4.21) F,-j = F1 + F,

where 1"J =x - xr is the length vector of this edge. - r .,[ur - U, + ý1l"(VU, + Vu,) (426
The parameter k, which can be chosen to control 1+2,(4.26)

the degree of approximation, was set to k = 1/3 in
all calculations presented here. This correponds to a therm 1d
third-order upwind-biased scheme [12]. With higher of the form [11
order spatial accuracy, spurious oscillations in the
vicinity of shock waves are expected to occur. Some
form of limiting is usually required to eliminate these I= 1- P - PJ - 0.5 1"(Vp, + Vpj) (4.27)
numerical oscillations of the solution and to provide Ipi - PI + 10.5 l"(Vpj + VpJ) 4
some kind of monotonicity property. The flux lim-
iter modifies the upwind-biased interpolation Ur and We have experimented with several combinations of
Uj and the equations (4.18) and (4.19) are replaced, this sensor function. The one we favor at the present
respectively by time is computed in two passes over the mesh. In the

first pass, the highest of the edge-based #-values given
U+= + (1 - k)A" + )( -- ) by eqnuation (4.27) is kept for each point. In a second

4 + (pass, the highest value of the two points belonging to

(4.22) an edge is kept as the final O-value. For 6 = 0, 1,
U7= U,, - -[(1 - ksj)Aj+ + (1 + ksi)(U, - UI)] second- and fourth- order damping operators are ob-

(4.23) tained respectively. We remark that although this
discretization of the Euler fluxes looks like a blendwhere a is the flux limiter. Both the Van Albada lim-. of second- and fourth-order dissipation, it has no ad-

iter and Minmod limiter were employed in this study.
Three options exist concerning the choice of interpola- justable parameters.
tion variables: conservative variables, primitive vati- 4.6. Scalar Dissipation Without Gradients
ables, and characteristic variables. Using limiters on The scalar dissipation operator presented above
characteristic variables seems to give the best results, stiU requires the evaluation of gradients. This can
but sacrifices some computational efficiency. be quite costly for Euler simulations. An alterna-

4.4. Scalar Limited Dissipation tive is the simplify the combination of second- and

A further possible simplification can be made by fourth-order damping operators by writing out explic-

replacing the Roe matrix by its spectral radius. This itly these operators:

leads to the choice d2 = I\ (I - 0) [UI - UJ]

Fri = Fr + F,- I A\, I (Uj - Ur) (4.24)

for the numerical flux function, where di4 1= A= t) - U, +- (~+VU,)I

[IA, 1=1 '4" S*, I +cr¢ (4.25)
Performing a Taylor-series expansion in the direction

and t and cj, denote edge values, computed as of the edge, we have
nodal average, of the fluid velocity and speed of
sound respectively. This can be considered as a cen-
tered difference scheme plus a second order dissi- lIJ 12,F[U 2• 2

pation operator, leading to a first order, monotone UI-U,+--(VU,+VU,) J I- I -E - I•
scheme. A higher-order scheme would be obtained by 4 82 ap

a better approximation to the 'right' and 'left' states This suggests the following simplification, which ne-
of the 'Rtiemann problem', which have been set to g gects the off-diagonal terms of the tensor of second
U, = Ur, U, = Uj. This would reduce the difference gectst
between Ur, U,, decreasing in turn the dissipation. derivatives:
As before, limiting would provide automatic cut-off
values for the possible range of U1, U!, that lead to 12 2 

2U 02u ] 2
monotonic solutions. " 1 j] -ft I [V2U, - V2U,]

41i912 492 4
4.5. Scalar Dissipation With Pressure Sensors

Another option to reduce the magnitude of IU, - and leads to the familiar blend second- and fourth-
IUI is to apply a blended second- and fourth-order order damping operators
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a

i.e., lumped mass-matrix plus mass diffusion. 8ub-
tracting (4.33) from (4.32) yields the antidiffusive

=li = Fr + F,- I Ali 1 (1 - 3) [U, - Uj] edge contributions

-A,,1# L2 [V2 UJ - V2 UJ (4.28) (A&Uh - AU') = M-NML - Mc)( 7n_ -.
4 (4.34)

This avoids any need for physical fluy ýcoi itations
4.7 Taylor-Galerkin scheme and leads to a very fast overall sr ne. though

Due to their importance for transient calcula- FEM-FCT is often criticized as n aav, i strict
tions, it is worthwhile to consider possible edge-based mathematical background, our e-x ienc. as been
Taylor-Galerkin schemes. The essential feature of any that it gives excellent resolution f both Jcks and

Taylor-Galerkin scheme is the combination of time contact discontinuities for the si, alation of strongly
and space discretizations, leading to second-order ac- unsteady compressible flows.
curacy in both time and space. An edge-based two
step Taylor-Galerkin scheme can be readily obtained 5. EXTENSION TO
by adopting the numerical flux THE NAVIER-STOKES EQUATIONS

In this section, we extend the solution algorithms
Y. F(Ui, ) , (4.29) described above for the Euier equations to the solu-

tion of the Navier-Stokes equations. The numerical
where integration of the viscous terms is carried out in a

centered way. Note that the viscous fluxes are func-
+ 1F. tions of unknowns and their first derivatives, which

=;. !(U + U.)- t(- ) 4.0
S - . (4.30) can be expressed as

au,°
(O!.'l is computed on each edge and given by (' - G'( -).

The following are three possible ways to evaluate the
)r.1 = (F• - Fjll"/ 2  (4.31) integrals that involve these viscous fluxes.

Sl/(4(a) Standard Finite Element Approach

The major advantage of this scheme is its speed, since In this approach, the integral involving the via-
there is no requirement of gradient computations and cous fluxes is evaluated numerically after inserting the
limiting procedures. An explicit numerical dissipation assumed form for U into the viscous flux functions.
in the form of Lapidus viscosity is needed to model Note that over each element, OUOz k will be constant
flows involving discontinuties. The Taylor-Galerkin since U is assumed to have a linear variation. Thus
scheme alone is of little use practically. However it for an element e with nodes I, J, K and L, the integral
provides a useful base scheme for the flux-corrected is obtained, using a one point numerical integration
transport scheme presented below. rule, as

4.8 Flux-Corrected Transport Scheme GJ (U, '' )-aN- dflh

The idea behind FCT is to combine a high-order in. z&

scheme with a low-order scheme in such a way that 1 4e (U,+U.+UK+UL), 2 *0 (5.2)
the high-order scheme is employed in smooth regions 0L*, 4 ).5
of the flow, whereas the low-order scheme is used near
discontinuities in a conservative way, in an attempt to (b) Mixed Formulation
yield a monotonic solution. The implementation of An alternative approach is to evaluate the via-
an edge-based FCT scheme is exactly the same as its cous flux contributions by making using of the nodal
element-based counterpart [13]. However, the use of gradients of the unknown vector U. In this case, nodal
an edge-based data structure makes the implemen- values of the viscous fluxes can be directly evaluated
tation more efficient, which is especially attractive as
for three dimensional problems. As the high-order G= (U -)
scheme, we employ the edge-based two step Taylor- -- ( )
Galerkin scheme with consistent mass matrix. Theconverged solution can be recast into the following Now, the viscous fluxes can be interpolated linearly
form: over each element and considered jointly with the in-viscid fluxes. In this case, of course, the edge data

MLAUh = R + (ML - MC)AUh (4.32) structure can be readily employed to give the approx-
imation

The low order scheme used is simply f &TU, - c ( G (
Gj~~~~~~ ~ (U(5.3)N il ir Gr+G

MLAU1 = R + Ci(M c - ML)U " , (4.33) Jn•b aZ i j (5
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* It is noted here, that the discretization of the viscous right-hand side might be evaluted only for the first
terms using the standard finite element approach only stage.
uses information from those points which are directly
connected to the points being considered. On the 7. ADAPTIVE REFINEMENT
other hand, the mixed formulation involves informa- A very attractive feature of unstructured grids
tion from two layers of points surrounding the point is the ease with which they incorporate adaptive re-
under consideration. Despite their inconsistency, the finement. The addition of further degrees of free-
numerical experience indicates that the results from dom does not destroy any previous structure. Thus,
two approaches are virtually identical. the flow solver requires no further modification when

(c) Edge-based Finite Element Approach. operating on an adapted grid. For many practical
Note that the integrals of viscous flux terms in- problems, the regions that need to be refined are ex-

volves the evaluation of the following terms tremely small as compared to the overall domain. On
the other hand, the spatial location of these regions

f _ 1gN dfh • where small elements are required are typically un-
jnf az! azd known, and may vary in time. It is thus not surpris-

ing that the use of adaptive refinement typically ac-
It is easily shown that this integral can be written as crues savings in storage and CPU requirements, which

range between 10-100 as compared to an overall fine

f fk • Lfl, fa ", + " mesh. Any adaptive refinement scheme consists of
_ r =~h 11 + i) three different stages: determining what we want to

fa achieve by refining the grid, developing an error in-
(5.5) dicator/estimator to detect the regions to be refined,

where Dij are computed as and a refinement strategy, such as movement, enrich-

(, 4ON ONj ment or remeshing. In this study, an h-refinement
=: -4 e 3T e (5.6) scheme has been incorporated into the flow solvers in

CEl 4 OZorder to enhance the solution accuracy and efficiency.
Further detail and description about this adaptive

This approach provides a way to evaluate the inte- scheme can be found in [14-15].
gral of the viscous fluxes that is consistent with the
standard finite element approach. The computational 8. NUMERICAL EXAMPLES
effort for this approach is very small. The major dis- The results obtained by the centered difference
advantage of this approach is that overhead storage schemes are not included in this paper, since such
requirements become significant. results can be found in [1] for steady state compu-

6. TEMPORAL DISCR.ETIZATION tations, and more recently in [16] for the simulation
of high speed trains through tunnels using an ALE

Equation(4.8) represents the time evalution of formulation and adaptive remeshing techniques. As
the unknown vector U,(t) at node I of the grid. As- the solutions obtained by the edge-based FEM-FCT
suming that the nodal values Ul are known at time scheme are almost identical to those obtained by its
t,,, the solution is advanced over a time step At, element-based counterpart, only a few test cases are
to time t,,+, by an explicit multi-stage Runge-Kitta presented for the edge-based FEM-FCT scheme. All
time-stepping scheme given by the results to be presented are obtained by edge-based

upwind finite element scheme, where the Van Albada
U -°) Un limiter based on primitive variables is used for the

steady state computations and the Minmod limiter
based on characteristic variables is used for transient
flow calculations. For the purpose of comparison

U =P) U°) - ,t(ML)ylR,(U4_Pi)) p - 1, 2, ... ,m the simulations for test cases 3-4 were also perfomedusing the edge-based FEM-FCT scheme to show its
excellent resolution for both shock waves and contact

un+i= U(-) discontinuities for the simulation of strongly unsteady
-I compressible flows.

with the parameters cp assigned appropriate values. Test Case 1. NACA0012 Airfoil
The scheme is second order accurate in time. For The problem under consideration is transonic
steady state computations, implicit residual smooth- flow around a NACA0012 airfoil with a freestream
ing and local time-stepping are used to accelerate Mach number of 0.85 and an angle of attack of 1 de-
convergence to steady state. Residual smoothing al- gree - a classical test problem for Euler solvers. The
lows the use of larger CFL numbers than the one dic- grid adaption scheme was used. The initial mesh con-
tated by the stability of the original scheme. For the taining 1,311 elements and 719 points and the final
centered-difference scheme, in the interests of compu- refined mesh consisting of 6,397 elements and 3,274
tational efficiency, the diffusion contribution to the points after three levels of refinement are shown in
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Figures Ia and lb, respectively. The computed pres- levels allowed in this case is 5 and the giid is mad-
sure contours in the flow fields on the initial and final ified every 7 timesteps. Density was chosen as the
adapted mesh are displayed in Figures lc and Id, re- key variable for the error indicator. Figure 4a shows
spectively. Figures le and if show, respectively, the the adapted mesh at 60 As and the experimental solu-
comparison of pressure coefficients and entropy on the tion is depicted in Figure 4b. Figures 4c and 4d show
airfoil between initial mesh and final refined mesh. the computed density contours obtained by the edge-
The refinement of regions with strong gradients such based FEM-FCT and the edge-based upw' d finite
ms shocks, leading edge, and trailing edge is well pre- element sheme, respectively. Comparisoi 1 these

sented and the considerable improvement in the solu- results demonstrates that the edge-based I M-FCT
tion for these regions after refinement is clearly appar- produced better solutions than the edge- ,sed up-
ent. The production of numerical entropy in the vicin- wind finite element scheme, while runni approxi-
ity of the stagnation point is dramatically decreased mately 3 times faster.
after refinement. The pressure coefficient distribution Test Case 5. ONERA M6 Wing
on both initial and final adapted mesh indicates that
there is only one grid point within the shock structure In this test case, we consider a transonic flow over
and demonstrates the sharp shock capturing ability of the ONERA M6 wing geometry. The M6 wing has a
Roe's approximate Riemann solver for the solution of leading edge sweep angle of 30 degree, an aspect of
steady problems. 3.8, and a taper ratio of 0.562. The airfoil section

of the wing is the ONERA "D" airfoil, which is a
Test Case 2. Half Cylinder 10% maximum thickness-to-chord ratio conventional

In this example, we consider hypersonic flow section. The flow solutions are presented at a Mach
around a half cylinder with a freestream Mach num- number of 0.84 and an angle of attack of 3.06. The
ber of 10. The particular difficulty is due to the large mesh, which contains 179,106 grid points, 951,179 el-
Mach number and a quasi-rarefaction zone behind the ements, and 34,013 boundary points, is depicted in
cylinder. The final refined mesh after three levels of Figure 5a. Figures 5b and 5c show pressure contours
refinement, shown in Figure 2a, contains 20,178 ele- on the upper wing surface and lower surface, respec-
ments and 10,277 points. The computed Mach num- tively. The upper surface contours clearly show the
ber contours in the flow fields are depicted in Figure sharply captured lambda-type shock structure formed
2b. The pressure coefficient distribution and entropy by the two inboard shock waves, which merge together
on the surface are shown in Figure 2c and 2d, respec- near 80% semispan to form the single strong shock
tively. For this computation, the choice of Mach num- wave in the outboard region of the wing. The com-
ber as error indicator provides the best refinement in puted pressure coefficient distributions are compared
the wake of blunt bodies. with experimental data [17] at six spanwise stations

in Figure 5d. The results obtained compare closely
Test Case 3. Shock Tube Problem or Riemann Problem with experimental data, except at the root stations,

The shock tube problem constitutes a partic- due to lack of viscous effects.
ularly interesting and difficult test case, since it Test Case 6. Boeing 747 Aircraft
presents an exact solution to the full system of one- The sixth test case is performed on a coin-
dimensional Euler equations containing simultane- plete Boeing 747 aircraft. The 747 configuration in-
ously a shock wave, a contact discontinuity, and an ludes the fuselage, the wing, horizontal and vertical
expansion fan. The initial conditions in the present t he u selwing , and verticalcomputation are the following: tails, underwing pylons, and flow-through engine na-

o m .0a ,uL - 0,p-- 1.0, 0.0 o l <w50.0 celles. The mesh, which contains 162,440 grid points,
P = 1000, UL = 0, P = 10., 00. 5 X 5 100. 901,275 elements and 18,454 boundary points for thep -- 0.125,uR = 0,p -- 0.1, 50. < x < 100. half-span airplane, is shown in Figure 6a. Solutions
Figure 3 shows the computational mesh and the hl-pnarlni hw nFgr a ouinresults f shor s the edge-based nal FE Tsche and twere computed for the aircraft at a free stream of

results for the edge-based FEM-FCT scheme and Mach number of 0.84 and an angle of attack of 2.73
edge-based upwind finite element scheme. This is degrees. The computations were performed using the
a 2D simulation of a 1D problem. The mesh con- three-stage Runge-Kutta time-stepping scheme with
sists of 101 points in the X-direction and 3 points in local time stepping and implicit residual smoothing.
the Y-direction. Both schemes produced very similar The solution was advanced 100 time-steps using a
results, with excellent resolution for both shock and CFL number of 0.35 and 1000 time-steps with a CFL
contact discontinuity. number of 4.0, to converge the solution to engineering

Test Case 4. Shock Diffraction in a Baffled Tube accuracy( a decrease of a three order-of-magnitude in
the L2 norm of the density residual). The computed

The problem under consideration is shown in Fig- pressure contours on the surface of the airplane are
ure 4. A weak shock (M, = 1.31) propagates inside shown in Figure 6b.
a baffled tube. We selected this problem to show
that the FCT scheme together with the classic h- Test Case 7. Viscous Flow Past a Flat Plate
enrichement/coarsening grid adaption scheme could This test case involves a laminar flow past a flat
produce excellent results for the efficient simulation plate at a Mach number of 0.5 and a chord Reynolds
of strongly unsteady flows, without deteriorating the number of 10,000. This computation was performed
accuracy of the solutions. The number of refinement to validate the Navier-Stokes code by comparing the
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results with the exact Blasius solutions. The mesh [5] R. L6hner - Stars, Super Edges and Chains;
used in the computation is shown in Figure 7a. It con- GWU-CMEE Report, 91/92-1, Submitted to
tains 2,604 elements, 1,376 points, and 146 boundary Comp. Meth. Appl. Mech. Eng. (1992)
points. The computed Mach number contours in the
flow field are depicted in figure 7b, where the devel- [6] V. Billey, J. Periaux, P. Perrier, B. Stoufflet
opment of a boundary layer can be clearly observed. - 2-D and 3-D Euler Computations with Fi-
Figure 7c shows the comparison of the Blasius veloc- nite Element Methods in Aerodynamic; Inter-
ity profile and the computed velocity profiles as scaled national Conference on Hypersonic Problems,
by the Blasius similarity law at different chord length Saint-Etienne, Jan. 13-17 (1986).
downstream of the leading edge. The computed re- [7] Timothy J. Barth and Dennis C. Jespersen - The
suits indicate that the similarity solution for a fiat Design and Application of Upwind Schemes on
plate boundary layer is correctly obtained and the so- Unstructured Meshes - ALAA-89-0366, Janua.-y
lution agrees well with the Blasius solution. Finally, 9-12, 1989/ Reno, NV
Figure 7d shows the comparison of velocity profiles
obtained using two different discretization approachs (8] David L. Whitaker, B. Grossman and R. L6hner -
for viscous terms. It is observed that these two types Two Dimensional Euler Computations on a Tri-
of discretization give practically identical results. angular Mesh Using an Upwind, Finite-Volume

Scheme; AIAA-89-0365, January 8-11, 1989/
7. CONCLUSIONS Reno, NV

We have given an overview of the recent devel- (9] J. T. Batina - Three-Dimensional Flux-Split
opment of some high order accuracy finite element Euler Schemes Involving Unstructured Meshes;
schemes to the solutions of the compressible Euler and AIAA-90-1649, January 8-11, 1990/ Reno, NV
Navier-Stokes equations on unstructured grids. These
schemes are based on an edge-based data structure, as [10] S. Godunov, A. Zabrodine, M. Ivanov, A. Kraiko,
opposed to the more traditionel element-based data and G. Prokopov - RAsolution Numiuique des
structure. The advantages of such data structure Problems Multidimensionnels de la Dynamique
might be summarized as a) better performance of des Gas; USSR_ Editions MIR, 1979.
the numerical schemes in terms of computational ef- (11] P. L. Roe - Approximate Riemann Solvers, Pa-
ficiency and memory requirements, b) easy construc- rameter Vectors and Difference Schemes; Journal
tion of different numerical schemes, ranging from the of Computational Physics, 43 (1981), pp. 357-
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Fig.1a. Initial Mesh Used for Computing Flow Fig.1b Final Adapted Mesh Used for Computing Flow
past NACA0012 Airfoil, nelem=1311, npoin=719 past NACA0012 Airfoil, nelem=6397, npoin=3274

Fig.lc Computed Pressure Contours Fig.ld Computed Pressure Contours on
on Initial Mesh, Mt. 0.85, a =1 the Final Adapted Mesh, M, = 0.85, a = 1
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Fig.2a Final Adapted Mesh Used for Computing Flow Fig.2b Computed Mach Number Contourspast a Half Cylinder; nelem=20,178, npoin=10,277 on Final Adapted Mesh; M. = 10,a =0
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Mesh used for shock tube problem calculation
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Fig.4a Adapted Mesh at 60 jus for Computing Fig.4b, Shadow Cinemnatograph of Shock
Shock diffraction in a Baffled Tube Propagation at 60 ps

Fig.4c Computed Density Contours at 60 ps Fig.4d Computed Density Contours at 60 ps

Using Edge-based Upwind Scheme Using Edge-based FCT Scheme
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Fig.5a Mesh Used for Computing Flow past ONEILA M6 Wing;
nelem=951,179, npoin=179,106, nboun=34013

Fig.5b Computed Pressure Contours on the Upper Surface;

M,,=0.84, a =- 3.06
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Fig.5d. Comparison between computed and experimental surface
pressure coefficient for the ONER.A M6 wing; .=0.84, a = 3.06
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Fig.6a Surface Mesh of Triangles for the Boeing 747 Aircraft
nelem=671,382, npoin=121,612, nboun=-12,025

ti,

Fig.6(b) Computed Pressure Contours on the Boeing 747
at M,,- = 0.84, a = 2.73
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FIg.7a Mesh Used for Computing Viscous Flow Fig.7b Computed Mach Number Contours past
past a Flat Plate; nelem=2,604, npoin=l,376 a Flat Plate; M,,=0.5, Re=1O,OOO

Rh Velocity Profile
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Fig.7c Streamnwise Velocity Profiles past Fig.7d Comparison of Velocity Profiles Obtained
a Flat Plate; M,,.=0.5, Re=1O,OOO Using Different Approachs to Model Viscous Terms
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NUMERICAL SOLUTION OF THE EULER EQUATIONS
FOR COMPLEX AERODYNAMIC CONFIGURATIONS
USING AN EDGE-BASED FINITE ELEMENT SCHEME
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and
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ABSTRACT done on upwind type algorithms for the solution of
the Euler and Navier-Stokes equations on unstruc-

This paper describes the development, validation tured meshes(16]-19]). A significant advantage of up-
and application of a new finite element scheme for wind discretization is that it is naturally dissipative,
the solution of the compressible Euler equations on in contrast with central-difference discretizations, and
unstructured grids. The implementation of the nu- consequently does not require any problem-dependent
merical scheme is based on an edge-based data struc- parameters to adjust. So far, all upwind schemes
ture, as opposed to a more traditional element-based implemented as either node-centered or cell-centered
data structure. The use of this edge-based data struc- discretizations on unstructured meshes have used the
ture not only improves the efficiency of the algorithm, finite volume approach where the control volume must
but also enables a straightforward implementation of be constructed first. In terms of computational effi-
upwind schemes in the context of finite element meth- ciency, node-centered schemes are preferable to their
ods. The algorithm has been tested and validated on cell-center counterparts. In the node-centered ap-
some well documented configurations. A flow solution proach(61,({8), the control volume is typically taken
about a complete F-18 fighter is shown to demon- to be part of the neighboring cells that have a ver-
strate the accuracy and robustness of the proposed tex at that node. In two dimensions, the part of the
algorithm. cells taken is determined by connecting the centroid

1. INTRODUCTION of the cell and the midpoints of the two edges that
share the node. In 3-D, the part of the cells taken

In recent years, significant progress has been is determined by a surface constructed in a similar
made in the development of numerical algorithms for way. However, this is somewhat complicated geomet-
the solution of the compressible Euler and Navier- rically to do in three dimensions. The switching from
Stokes equations. The use of unstructured meshes for element to edge-based data structure renders the im-
computational fluid dynamics problems has become plementation of upwind schemes trivial and straight-
widespread due to their ability to discretize arbitrar- forward in the context of the finite element approach;
ily complex geometries and due to the ease of adap- this is especially attractive for three dimensional ap-
tion in enhancing the solution accuracy and efficiency plication, since there is no need to construct control
through the use of adaptive refinement techniques. volumes explicitly and geometrically.
However, any unstructured algorithm requires the The authors have recently developed some high
storage of the mesh connectivity, which implies the accuracy schemes for the solution of the Euler and
increase of computer memory and the use of indi- Navier-Stokes equations on unstructured grids by us-
rect addressing to retrieve nearest neighbor informa- ing an edge-based data structuretl]. This paper de-
tion. These requirements, in turn, mean that any scribes the development, validation, and application
numerical algorithm will run slower on an unstruc- of an upwind finite element algorithm to the simula-
tured grid than on a structured grid. In order to tion of three dimensional compressible flows around
reduce indirect addressing, new edge-based finite ele- complex aerodynamic configurations. In this scheme,
ment schemes([l]-[4]) have been recently introduced, the spatial discretization is accomplished by an edge-
In addition, even more sophisticated data structures based finite element formulation using Roe's flux-
such as stars, super edges, and chains were recently difference splitting. A MUSCL approach is used to
developed by Lbhner[5]. The use of edge-based data achieve higher-order accuracy. A characteristic anal-
structure has shown to result in remarkable compu- ysis based on the introduction of Riemann invariants
tational savings for three dimensional problems. for one-dimensional flow normal to the boundary is

In the last few years, extensive research has been used to treat boundary conditions. Solutions are ad-

Copyright E)1993 by the authors. Published by the I
American Institute of Aeronautics and Astronautics,
Inc. with permission.



vanced in time by a multi-stage Runge-Kutta time- where N, is the standard linear finite element shape
stepping scheme. Convergence is accelerated using function associated with node 1, U1 is the value at
local time-stepping and implicit residual smoothing. node I, and al is a constant. The Galerkin finite
The algorithm has been tested and validated on some element approximation is then gi n by
well documented configurations. A solution of the
flow around a complete F-18 fighter is presented to findUh E Thsuch that for ea N,(1 < I < n)
demonstrate the accuracy and robustness of the pro-
posed algorithm. f a N =

2. GOVERNING EQUATIONS F)(Uh) 8N dnh - fr (Uh)njfNldrh.

The Euler equations governing unsteady comn- (3.3)
pressible inviscid flows can be expressed in the con- The integrals appearing Y - are evaluated in the
servative form as standard finite element fc by summing individual

element and boundary suridýe contributions, the com-
OU 2F = pact support of the shape function NI means that the

"a-+ ! = 0, (2.1) equation can be written as

where the summation convention has been employed
and E-" N d Q h

=,Fj = pjui 'uj~p+| (2.2) +piI jU)N-&h j F(hn ld,pe ~~eel az b*

U u=(pe + ), 2 • +

Here p, p, and e denote the density, pressure, and spe- (3.4)
cific total energy, respectively, and ui is the veloc-
ity of the flow in the coordinate direction zi. This where the summation extends over those elements e
set of equations is completed by the addition of the and boundary surfaces b that contain node I. Insert-
equation-of-state ing the assumed form for Uh in Eq.(3.4), the left-hand

side integral can be evaluated exactly to give

p (= (- 1)p(e - lujuj), (2.3) ' OT, - dU,
2 - Nd1,h = 1( NIrdnhJ"•

which is valid for perfect gas, where -7 is the ratio of •Jn. at e N! Nj ., dh
the specific heats. dU,

In the sequel, we assume that f is the flow do- = Mr. , (3.5)
main, r its boundary, and ni the unit outward normal
vector to the boundary. where M denotes the finite element consistent mass

matrix. For steady state computations, M can be
3. VARIATIONAL FORMULATION AND replaced by the lumped (diagonal) mass matrix, de-

FINITE ELEMENT APPROXIMATION noted by ML.

Let T be a trial function space and W a weighting
function space, both defined to consist of all suitably 4. EDGE-BASED UPWIND
smooth functions. An equivalent variational formula- FINITE ELEMENT SCHEME
tion of (2.1) is given by It is shown in the appendix that for any interior

Sfind U E T such that VW E W node, Eq. (3.4) can be written as

f U •Wd9 - fn Fj MjdO + f, FjnjWdr-- d= o. n
"" [ML"'II]= ] C=•- IJ( Fjj + F3) (4.1)

(3.1) d
Assuming O2h is a classical triangulation of 0 with the
nodes numbered from 1 to n and rh the boundary of where mr is the number of edges connected to the
9lh, we approximate the trial and weighting spaces T node I, and
and W by their subspaces of finite dimension Th and
Wh, which respectively are defined by C49- f'•N"Ie , (4.2)

C',• 4 i@zj

T=% U(zt) I Uh (z,t) -- U,,(tN,(
I in 3D. The coefficient C1 , denotes the weight applied

n to the average value of the flux on the edge that con-
{h= Wh(r)W(z) = EalN(z) (3.2) nects nodes I and J, to obtain the contribution made

J= by the edge to node I, whereas C,, denotes the weight
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applied to the same quantity to obtain the contribu- with
tion made by the edge to node J. It can be easily
verified that these weights possess the properties - A(

C 0 for allI, (4.3) I=62I(~-y

- -C=,, for all I and J. (4.4)[( 0
Au - kAqk

For notational convenience, we define the vector Cj Av - kIAqk (4.11)
by the expression qw - k kqqk

C (c , cj, , (4.5)

and let Lij denote the modulus and k1j denote a unit Ap ±P-CAq- -? k'C
vector in the direction of C,,, then Eq. (4.1) can be IAF4, 1=1 A4.5 262 ) U k1
written as t k'

dU "l my (4.12)
[M,-- = B Lu(F, + F,) = LuF,, (4.6) where i2 = f+j2 f2+b2, Aqk = Auk,+Avk +Awk,,

d Iu. and qk = iik, + oky + tbk,. The bar designates Roe-
averaged quantities, which are defined by

where Fr = (F', F 2, (4.7) =

Fj = (Fr, F, F, )kj (4.8)

The alternative procedure for obtaining the dis- - (wt + Wt, V/'')/(1 + pV/'•7 -)
crete form of the equations is now apparent. While
with the element-based data structure information is h = (h, + h, pV'•7h)/(1 + p•'p)
gathered from all the nodes of each element, oper- 2= - i)Qh - o.5 )
ated on the element, and then scattered back to the
nodes of the element, the edge-based algorithm gath- Furthermore, the eigenvalues of A are A, = jk and
era information from all the nodes of each edge, op- A4,5 = ik * E •
erates it on the edge, and then scatters it back to In order to prevent entropy violation, an entropy
the nodes of the edge. The property of conservation fix is imposed. When an eigenvalue A reduces to zero,
in the numerical scheme is guaranteed by the asym- a smoothed value, I A *, is defined to replace I A
metry of edge coefficients as expressed in Eq. (4,3).
This edge-based data structure not only improves AI, ifIAI(.
the efficiency of the algorithm [1], but also enables Ia* t2  if (4.13)
a straightforward implementation of upwind schemes 2c

in the context of finite element methods. It is clear where e = Kmaz(Aj - A,, 0). K is a small constant.
that Eq. (4.6) is nothing but a classic Galerkin fi- It can be shown that this scheme is equivalent to
nite element scheme, which is equivalent to a cen- the first order finite volume upwind cell-vertex scheme
tral difference type scheme. By using the results of based on a dual mesh. There are many different ways
Eq. (4.4), this scheme allows for the appearance of to achieve higher order accuracy. In the present study,
chequerboarding modes and thus suffers from numer- a scheme of higher order accuracy is achieved by using
ical instabilities unless some type of numerical dissi- upwind-biased interpolations of the solution U via the
pation in the form of artificial viscosity is introduced. MUSCL approach [11]. This leads to the flux function
A stable scheme can be constructed, for example us-
ing Roe's flux difference splitting [10], to replace the
actual flux function FIj in Eq. (4.6) by Roe's numer- FI, = F+ + F- - I A(U+, U7) I (U; - U7) (4.14)
ical flux formula Frj: where

.•'jj = F1 + F.•- I A•,, (Uj - Uj) (4.9) F+1 = F(U+), F7 = F(Ui) . (4.15)

where The upwind-biased interpolations for U+ and U; are
defined by

AliI(U- U)=1API +IA I+4I0AA U+ = U, + 1[(1 - k)A7 + (1 + k)(U, - U,)] (4.16)
(4.10) 4
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,(On the inflow and outflow, a characteristic anal-U" = Uj - j[(4 - k)A+ + (I + k)(Uj - Uj)] (4.17) ysis based on the ID Riemann invariants is used to
where the forward and backward difference operators correct the computed values of the flow variables at
are given by the time step n+1. In the sequel, the' - indicates the

known linearized variables, i.e., quay 2s at the time
A- = U, - U-,I = 2(VU)i I1" - (U, - U,) (4.18) step n, the index c designates the co! ited variables

at the time step n + 1, and the ir * represents
A+ = Uj+, - Uj = 2(VU). .1" - (Ur - U,) (4.19) the modified variables at the tim ? n + 1 after

applying the boundary conditions
where 1"J = xi - x! is the length vector of this edge. Note the eigenvalues and char dristic variables

The parameter k can be chosen to control a fain- are
ily of difference schemes in the interpolation. On
yields a fully upwind scheme, k = 0 yields semi- V, -C

upwind approximation (Fromm's scheme), and k = 1 A = V , w = Vt (5.2)
yields central differencing. The value k = 1/3 leads vV + (+ VV (.
to a third-order-accurate upwind-biased scheme, al- ,,,, - (-v + )V
though third-order-accuracy is strictly correct only -

for one-dimensional calculations. Nevertheless, k =
1/3 was used in the calculations presented herein, where v, and 6t = V are normal and tangen-
With higher order spatial accuracy, spurious oscilla- Vt2

tions in the vicinity of shock waves are expected to tial velocity components. The number of boundary
occur. Some form of limiting is usually required to conditions that has to be imposed is equal to the

eliminate these numerical oscillations of the solution number of negative eigenvalues. For supersonic in-
and to provide some kind of monotonicity property. flow (vt < -c), all the eigenvalues are negative, and

The flux limiter modifies the upwind-biased interpo- therefore all the variables have to be imposed. In this
lation U1 and Uj and the Eqs.(4.16) and (4.17) are case, all the variables are simply reset to freestream
replaced, respectively, by values. For subsonic inflow (-c < vn < 0), four eigen-

values are negative, and one is positive. WI, w2, W3,

and w4 are defined by the freestream values, while w5

U+ = U, + 4[(1 - ks,)A' + (1 + ksg)(Uj - U,)] is determined from the computed state. The following
4(4.20) equations are then obtained:

U;* = U~-j- L (1 -ksj)A + (I+ ksj)(Uir- Ui)1 . .
(4.21) 64* = ;(

where s is the flux limiter. The Van Albada limiter Vn. + 2Pt = vnoo + p(5.3)
employed in this study acts in a continuously differ- PC PC
entiable manner and is defined by pC - PC"

2AT(U, - U,) +E, By combining these equations, we get the unknown
8i =maz{O (A7)2 + (Uj - U,) 2 + ( (4.22) variabl3

sj = maz{0, 2A(U, - U,) + (4.23) f i* =oo C

(A+)2~ ~ ~ ~ + +U r) (Poo P*)
Vn + + PC = +(5.4)

where c is a very small number to prevent division Vt* = Vtoo

by zero in smooth regions of the flow. Three options P* = 2[PoP + Pc + 0(vN. 0 - e)] •
exist concerning the choice of interpolation variables:
conservative variables, primitive variables, and char- For subsonic outflow (0 < vn < c), only one eigen-
acteristic variables. Using limiters on characteristic value is negative, and pressure is then imposed by the
variables seems to give the best results. However, the freestream value. W1, w2, W3, and Ws are determined
primitive variables are used in this study for the sake from the computed values. The following relations
of computational efficiency. are then obtained:

5. BOUNDARY CONDITIONS P. = PC +

The treatment of boundary conditions is very . = Vne+ • +P- PC ) (5.5)
important for rapid convergence to steady-state and PC
serves as non-reflecting boundary conditions for un- Vt. = Vj00

steady computations. p. = poo
On the solid walls, the normal velocity vanishes For supersonic outflow (c < v,), all the eigenvalues

u, = 0 . (5.1) are negative, and therefore all the information comes
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from' the domain. In this case, nothing needs to be structure; this demonstrates the sharp shock captur-
imposed and all the values are computed values. ing ability of Roe's approximate Riemann solver for

6. TEMPORAL DISCRETIZATION the solution of steady problems.
7.2 Wing/pylon/finned-store configuration

Equation(4.7) represents the time evaluation of The second test case is conducted for a
the unknown vector U1 (t) at node I of the grid. As- wing/pylon/finned-store configuration reported in
suming that the nodal values U7" are known at time reference [13]. The configuration consists of a clipped
t,, the solution is advanced over a time step At, delta wing with a 45 degree sweep comprised from a
to time t,,+, by an explicit multi-stage Runge-Kutta constant NACA64010 symmetric airfoil section. The
time-stepping scheme given by wing has a root chord of 15 in., a semi-span of 13

in. and a taper ratio of 0.134. The pylon is located at
U -°) Un mid-span station and has a cross-section characterized

by a flat plate closed at the leading and trailing edges
by a symmetrical ogive shape. The width of the pylon
is 0.294 in. The four fins on the store are defined by

U(P)= U() - a At(ML)-1RI(U(-Pl)) p= 1,2,..., m a constant NACA0008 airfoil section with a leadingedge sweep of 45 degrees and a truncated tip. The
mesh used in the computation is shown in Fig.2a. It

U _+i U(•) contains 274,953 grid points, 1,518,770 elements and
= U33,046 boundary points. The flow solutions are pre-

sented at a Mach number of 0.95 and an angle of
with the parameters ap assigned appropriate values, attack of zero degree. Figures 2b and 2c show the
The scheme is second order accurate in time. For pressure contours on the upper and lower wing sur-
steady state computations, implicit residual smooth- face, respectively. The computed pressure coefficient
ing and local time-stepping are used to accelerate con- distributions are compared with experimental data at
vergence to steady state. The residual smoothing al- two spanwise stations in Fig.2d. The comparison with
lows the use of larger CFL numbers than the one dic- experimental data is excellent on both the upper and
tated by the stability of the original scheme. This lower surface up to 70 percent chord. As expected
is accomplished by averaging implicitly the residual from the Euler solution, the computation predicts a
with values at neighboring grid points. These implicit shock location which is downstream of that measured
equations are solved approximately by using several by the experiment due to the lack of viscous effect.
Jacobi iterations. The local time-stepping uses sepa- 7.3 ONERA M6 Wing configuration
rately a maximum allowable step size for each node The third, well documented case is the transonic
according to the local stability analysis. flow over the ONERA M6 wing configuration. The

7. NUMERICAL RESULTS M6 wing has a leading edge sweep angle of 30 degree,
an aspect of 3.8, and a taper ratio of 0.562. The airfoil

All the grids used here were generated by the ad- section of the wing is the ONERA "D" airfoil, which
vancing front technique [12]. All computations used a is a 10% maximum thickness-to-chord ratio conven-
three-stage Runge-Kutta time-stepping scheme with tional section. The flow solutions are presented at
local time stepping and implicit residual smoothing. a Mach number of 0.84 and an angle of attack of
The computations were started with uniform flow and 3.06. The grid adaption scheme was used for this
advanced with a CFL number of 4. The L2 norm of test case. The final adapted mesh contains 133,206
density residual is taken as a criterion to test the con- grid points, 738,669 elements, and 17,155 boundary
vergence history. points after two levels of refinement. The refinement
7.1 Channel with a circular bump on the lower wall of high gradient regions such as shocks, leading edge

The first test case is the well known Ni's test case. and wing tip is well captured. The final adapted up-
It is a transonic flow in a channel with a 10% thick cir- per and lower surface meshes are shown in Fig.3a.
cular bump on the bottom. The length of the channel The pressure contours on the upper wing surface and
is 3, its height 1, and its width 0.5. The inlet Mach lower surface, are displayed in Fig.3b, respectively.
number is 0.675. This is a 3D simulation of a 2D flow. The upper surface contours clearly show the sharply
This simple test case is chosen to assess both accu- captured lambda-type shock structure formed by the
racy and convergence of the numerical scheme and to two inboard shock waves, which merge together near
validate the implementation of the code. The mesh, 80% semispan to form the single strong shock wave
which contains 13,891 grid points, 68,097 elements in the outboard region of the wing. The computed
and 4,442 boundary points, is depicted in figure lb. pressure coefficient distributions are compared with
The convergence history is shown in Fig.la, where experimental data [14] at four spanwise stations in
a monotone convergence to computer machine zero Fig.2c. The results obtained compare closely with
is observed. Fig.lc displays the computed pressure experimental data, except at the root stations, due to
contours in the flow field. The Mach number distri- lack of viscous effects.
bution on the lower wall, shown in Fig.ld indicates 7.4 F-18 fighter configuration
that there is only one grid point within the shock The final case is a complete F-18 fighter con-
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figuration, which includes the wing, horizontal and 161 V. Billey, J. P6riaux, P. Perrier, B. Stoufflet,
vertical tails, and flow-through engine ducts. The "2-D and 3-D Euler Computations with Fi-
mesh, which contains 93,642 grid points, 505,087 el- nite Element Methods in Aerodynamic," Inter-
ements and 15,421 boundary points for the half-span national Conference on Hypersonic Problems,
airplane, is shown in Fig.4b. The computations were Saint-Etienne, Jan. 13-17 (1986).
performed at a free stream of Mach number of 0.9 and
an angle of attack of 3 degrees. The convergence his- [] Timothy J. Barth and Dennis C. Jespersen, "The
tory is depicted in figure 4a. The solution is converged Design and Application of Upwind Schemes on
to engineering accuracy (a decrease of a four order-of- Unstructured Meshes," AIAA-89-O.n66, JanNuar
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Usinj Eq. (2), Eq (1) can be written as Note that

RHS(I) • N_•_fI (OON 1
NAdF~ ON *N,2-Ndfl. (5)

= f (F' +(nnode-2)FjNI) M- dlh k a =d

+ fj FPni Nldrh Then the following expression is obtained

+ 1 (nnode - 2)FJlnj NlNdr (3) RHS(I)
2 nnode

For an interior point, the boundary integrals can be = - E ( J j aT Ndah)(F. + FJ), (6)
dropped and the right-hand-side becomes i e• • OZJ

RHS(I) which can be further simplified as

=-f (Fj + (nnode - 2)FINt)'9Ndnh,

-(Fj +(nnode-2)F•Nt) dah RHS(I) = EC'j(Fj + Fl), (7)
Szi Ij

nnode

* ON' • where mi is the number of edges connected to the
= - Zj( N, F3 + (nnode- 2)F N,) * df1 node I, and

fn ON, nod I, aN,
(nnode 8I4N

=- /fn N Fj'+ (nnode -1) Fj NI)- h A 2 4OZ e (8)• JZ"eFI 4 azi
eElfn"" cONl.

fJ Z (.. F ' Oza (4) in3D.
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