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Accomplishments

The work carried out under this contract may be subdivided according to the following
topics: 1) Development of Implicit ALE Navier-Stokes Solvers;

2) Implementation of Turbulence Models;

3) Development of Gridding Techniques for 3-D Viscous Flows;

4) Demonstration Calculation and Results.

The description of the main accomplishments of the present work are listed according
to these topics in the following.

1. IMPLICIT ALE NAVIER-STOKES SOLVERS

The work performed in the area of flow solvers may be subdivided into two parts:
a) Improvement of Edge-Based Solvers; V
b) Implicit Solvers for the Navier-Stokes equations.

1.1 Edge-Based Solvers: The switch from element-based to edge-based solvers
allowed a number of improvements in the performance and accuracy of the flow-
codes. When developing these new codes, we incorporated all the coding lessons that
we learned over the years. The latest code, FEFLO96, runs at a sustained rate of
115 MFlops on the CRAY-YMP, and has significantly less Flops per update than the
previous code (FEFLO52). At the same time, indirect addressing (i/a) costs were re-
duced by a factor of 7.3. This reduction in i/a was achieved by using the edge-based
data structure (1.57), computing the fluxes ‘on the fly’ from the unknowns (2.14) and
using superedges (2.18) [F1]). The code without superedges runs about 25% faster on
the CRAY-YMP than the code using usual edges. We also excercised FEFLO96 in
parallel on the CRAY-C90, and simply using autotasking, i.e. CRAY-preprocessing,
timed a remarkable 3.87 speed-up on 4 processors for some large runs.
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1.2 Implicit Solvers: The use of implicit solvers was recognized as being essential
for the fast solution of the compressible Navier-Stokes equations. Therefore, we devel-
oped implicit iterative solvers. The solvers are based on a linearized Euler backward
time-advancement of the Navier-Stokes equations. The resulting non-linear system of
equations is then solved using a preconditioned GMRES solver. Both block-diagonal
and incomplete LU decompositions were tried. While incomplete LU performs bet-
ter than block-diagonal, it also requires a lot more memory, and is less amenable to
massive parallel architectures. For this reason, we are currently investigating other
preconditioners. More details of these techniques are given in [4], which is included in
the current report as Appendix 1.

2. TURBULENCE MODELS

The algebraic Baldwin-Lomax turbulence model [T'1] was implemented in the 3-D flow
solver. This is the simplest way to add the effects of turbulence. The model is straight-
forward to implement as the only difference in thc flow equations is the increase of
viscosity. The model represents the inner and outer parts of a boundary layer as fol-
lows:

Inner part:
pe = plw| [ky(1 — ezp(~y/A)))?
Outer part:
He = aCcpPYmaszaz'Y ’
with

F(y) = ylw|(1 — ezp(-y/A)) .

The exponential factor in the inner part is the Van Driest damping factor which matches
the damping of the wall. In the second equation, Fpn,, is computed along a normal
to the wall. This is particularly easy when dealing with structured grids, but requires
some effort for unstructured grids. The required data structures were discussed by
Rostand [T2] for 2-D. As far as we can see, this is the first time a fully unstructured
3-D Baldwin-Lomax implementation has been attempted. One complete evaluation of
the turbulent viscosity requires the following transfer of information:

a) Vorticity from elements or points in the mesh to the appropriate normals to the walls.
Along each normal, the vorticity |w| is required to evaluate the turbulent viscosity. This
transfer of vorticity is accomplished with a linked list of intersections of normals to the
wall with elements of the mesh. This list is constructed by starting from the surface and
moving along the normal. All that is required to do so is a list of elements surrounding
elements.
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b) Transfer of the turbulent viscosity from the normals to the walls to the elements or
points of the mesh. In the present case, we transfer to points. This not only reduces the
transfers required (there are less points than elements in a mesh), but also introduces a
beneficial smoothing effect at element level. For each point in the mesh close to wetted
surfaces, we find the closest normals surrounding it, and then the two closest points
along each of the normals. Thus, a point in the mesh assembles the turbulent viscosity
from four points along the normals of a wetted surface. The search for the closest
points is done using quad-trees [T3]. In the case of the mixing of several boundary
layers, u, is computed from the contribution of each wall weighted by its distance to
the point.

3. GRIDDING FOR 3-D VISCOUS FLOWS

The difficulty of gridding complex geometries for the simulation of flows using the
Navier-Stokes equations - i.e. including the effects of viscosity and the associated
boundary or mixing layers - increases not only with the geometric complexity of the do-
main to be gridded, but also with the Reynolds-number of the flow. For high Reynolds-
numbers, the proper discretization of the very thin, yet important boundary or mixing
layers requires elements with aspect ratios well in excess of 1:1000. This requirement
presents formidable difficulties to general, ‘black-box’ unstructured grid generators.
These difficulties can be grouped into two main catcgories:

a) Amount of Manual Input: In most unstructured grid generators, the desired spatial
distribution of element size and shape is given by some form of background grid or
sources {G1,G2]. This seems natural within an adaptive context, as a given grid,
combined witn a suitable error indicator/estimator, can then be used as a background
grid to generate an even better grid for the problem at hand. Consider now trying
to generate from manual input a first grid that achieves stretching ratios in excess of
1:1,000. The amount of background gridpoints or sources required will be proportional
to the curvature of the objects immersed in the flowfield. This implies an enormous
amount of manual labor for general geometries, rendering this approach impractical.
b) Loss of Control: Most unstructured grid generators introduce a point or element at a
time, checking the surrounding neighbourhood for compatibility. These checks involve
Jacobians of elements and their inverses, distance-functions, and other geometrical
operations that involve multiple products of coordinate differences. It is not difficult to
see that as the stretching-ratio increases, round-off errors can become a problem. For
a domain spanning 1,000m (mesh around a C-17), with a minimum element length at
the wing of 0.0001m across the boundary layer and 0.05m along the boundary layer,
and a maximum element length of 20m in the farfield, the ratio of element volumes is
of the order of 3 * 10~!*. Althoughthis is well within reach of the 10~'¢-accuracy of
64-bit arithmetic, element distortion and surface singularities, as well as loss of control
of element shape can quickly push this ratio to the limit.

A number of semi-automatic grid generators have been devised in the past. The most
common way to generate meshes suitable for Navier-Stokes calculations for complex
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geometries is to employ a structured or semi-structuredmesh close to wetted surfaces
or wakes [G3-G10]. This ‘Navier-Stokes’ region mesh is then linked to an outer un-
structured grid that covers the ‘inviscid’ regions. In this way, the geometric complexity
is solved using unstructured grids and the physical complexity of near-wall or wake
regions is solved by semi-structured grids. This approach has proven very powerful in
the past, as evidenced by many examples.

A recurring problem in all of these approaches has been how to link the semi-structured
mesh region with the unstructured mesh region. We developed a new, general technique
to solve this problem. The design criteria for the new grid generation strategy may be
summarized as follows:

- The geometric flexibility of the unstructured grid generator should not be com-
promised for Navier-Stokes meshes. This implies using unstructured grids for the
surface discretization.

- The manual input required for a desired Navier-Stokes mesh should be as low as
that used for the Euler case. In the present case, this requirement is solved by
specifying at the points of the background grid the boundary layer thickness and
the geometric progression normal to the surface.

- The generation of the semi-structured grid should be fast. Experience shows that
usually more than half of the elements of a typical Navier-Stokes mesh are located
in the boundary-layer regions. This requirement is met by constructing the semi-
structured grids with the same normals as encountered on the surface, i.e. without
recurring to smoothing procedures as the semi-structured mesh is advanced into
the field [G9,G11].

- The element size and shape should vary smoothly when going from the semi-
structured to the fully unstructured mesh regions. How to accomplish this is the
main topic of this paper, and is detailed in subsequent sections.

- The grid generation procedure should avoid all of the problems typically associated
with the generation of Navier-Stokes meshes for regions with high surface curva-
ture: negative or deformed elements due to converging normals, and elements that
get too large due to diverging normals at the surface. In order to circumvent these
problems, the same techniques which are used to achieve a smooth matching of
semi-structured and unstructured mesh regions are used.

Given these design criteria, as well as the approaches used to meet them, the present
grid generation algorithm can be summarized as follows:

M.1 Given a surface definition and a background grid, generate a surface triangulation
using an unstructured grid generator.

M.2 From the surface triangulation, obtain the surface normals.

M.3 Smooth the surface normals in several passes in order to obtain a more uniform
mesh in regions with high surface curvature.

M.4 Construct a semi-structured grid with the information provided by the background
grid and the smoothed normals.
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M.5 Examine each element in this semi-structured region for size and shape; remove
all elements that do not meet certain specified quality criteria.

M.6 Examine whether elements in this semi-structured region cross each other; if so,
keep the smaller elements and remove the larger ones, until no crossing occurs.

M.6 Examine whether elements in this semi-structured region cross boundaries; if so,
remove the crossing elements.

M.7 Mesh the as yet ‘empty’ regions of the computational domain using the background
grid and the unstructured grid generator.

The main areas of work were:

a) Smoothing of Surface Normals: This implies obtaining the smoothed normals
quickly (i.e. less than 20 passes over the surface mesh), and defining proper bound-
ary conditions for the normals in order to avoid problems at ridges, intersections,
etc.

b) Prism Generation: When generating tetrahedra from prisms, certain compatibility
criteria must be met [G14]. We developed a very fast compatibility algorithm that
was found to converge in less than 3 passes over the surface mesh.

c) t imity Fi s for Crosse ts/Points: In order to speed up the
checking of bad elements (negative, crossing, etc.), a series of data structures had
to be developed and implemented. The main data structures used are Octrees and
Linked Lists. The main filtering strategies to reduce the work even further are
cones of visibility and distance functions.

d) Initial Front for Unstructured Grid Region: Once the elements have been marked

for deletion, the initial front for the unstructured grid generation of the remaining
‘empty’ region of space has to be obtained. The main work here was to obtain
this initial front taking into consideration the boundary arrays required by the
flow-solver later on, i.e. to minimize user-intervention as much as possible.

More details of the algorithm, as well as several example grids computed with it, are
given in (3], which is included in the report as Appendix 2.

4. DEMONSTRATION CALCULATIONS AND RESULTS
4.1 Unstructured Grid/Remeshing Transient 3-D Runs: With the developed tools we

performed several 2-D and 3-D test runs. The steady 2-D and 3-D results are summa-
rized in (1], which is included here as Appendix 3. Pilot/Seat ejection from an F-16
fighter at supersonic speeds was shown in [2], which is included here as Appendix 4.

5. PUBLICATIONS

All of the developments listed above were reported extensively in the literature. The
main papers published are listed in chronological order:
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(1] H. Luo, J.D. Baum, R. Loéhner and J. Cabello - Adaptive Edge-Based Finite Ele-
ment Schemes for the Euler and Navier-Stokes Equations; AIAA-93-0336 (1993).

[2] J.D. Baum and R. Lohner - Numerical Simulation of Pilot/Seat Ejection from an
F-16; AIAA-93-0783 (1993).

[3] R. Lohner - Matching Semi-Structured and Unstructured Grids for Navier-Stokes
Calculations; AIAA-93-3348-CP (1993).

(4] H. Luo, J.D. Baum, R. Lohner and J. Cabello - An Implicit Three-Dimensional
Finite Element Solver for Unstructured Meshes; pp. 1027,1028 in Proc. 11th AIAA
CFD Conf. , Orlando, FL, July (1993).

r

9] H. Luo, J.D. Baum, R. Lohner- Numerical Solution of the Euler Equations

for Complex Aerodynamic Configurations Using An Edge-Based Finite Element
Scheme; AIAA-93-2933 (1993).

6. CONCLUSIONS AND OUTLOOK

We have made major steps towards the development of a CFD capability to compute
viscous 3-D compressible flows with moving bodies.

In the future, we plan to expand the developed capabilities as follows:

a) Development of Flow Solvers for high Re-number Viscous Flows: We will continue
to develop our implicit Navier-Stokes solvers. In particular, we plan to extend the
linelet-concept to the fully coupled linear equation systems that arise for implicit
Navier-Stokes solvers.

b) Turbulence Models: We will incorporate the k — € model into the implicit Navier-
Stokes solver.

c¢) Development of suitable gridding algorithms for high Re-number viscous flows:
We plan to improve our present capability for automatically gridding problems
involving high Re-number viscous flows.

d) Development of suitable error indicators for high Re-number viscous flows: The
idea here is to develop error indicators that sense were to refine boundary layers
and shear layers, and that work even for highly stretched grids.

e) Improvements in movie-making capabilities: The main aim of this improvement is
to be able to run the movie on the workstation before going to the movie-making
center. At the same time, we must be able to compress the information to an
extent that a 3min movie can be stored effortlessly on a small disk. This will be
accomplished through image compression algorithms.

f) Further test runs: we plan to look for available experimental and/or numerical
data in the literature in order to set up runs to test the algorithms developed.
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AN IMPLICIT THREE-DIMENSIONAL
FINITE ELEMENT SOLVER FOR UNSTRUCTURED MESHES

Hong Luo!, Joseph D. Baum!, Rainald Lohner?, and Jean Cabello?
1Science Applications International Corporation
1710 Goodridge Drive, MS 2-3-1, McLean, VA 22102
2CMEE, School of Engineering and Applied Science
The George Washington University, Washington, D.C. 20052

INTRODUCTION

Significant progress has been made in recent
years in developing numerical algorithms for the so-
lution of the compressible Euler and Navier-Stokes
equations on unstructured grids. Most efforts have
been focused on improving the spatial discretization
operator which has reached a high degree of sophisti-
cation. Usually, explicit time integration, such as the
multi-stage Runge-Kutta scheme has been used to get
a steady state solution. In general, explicit schemes
are easy to implement and vectorize and require only
limited memory storage. However, for large-scale
problems and especially for solution of the Navier-
Stokes equations, the rate of convergence slows dra-
matically. To speed up the convergence rate, an im-
plicit temporal discretization is required.

The objective of this research is to develop an im-
plicit 3D finite element aigorithm for the solution of
the compressible Euler and Navier-Stokes equations
on unstructured meshes. Numerical resuits for both
inviscid and viscous flows are presented to demon-
strate the performance of the proposed scheme.

NUMERICAL SCHEME

The governing equations are integrated in time
using an Euler implicit differencing scheme. The re-
sulting large nonsymmetric linear system of equations
is solved by using the preconditioned GMRES algo-
rithm. The preconditioner used in this work is a block

,complete LU factorization with zero fill-in. Left,
right, and symmetric preconditioners are investigated
and examined. Spatial discretization is achieved by
using an edge-based finite element scheme [1]. Roe’s
flux-difference splitting is used for spatial discretiza-
tion of the inviscid flux terms. A MUSCL approach
is used to achieve higher-order accuracy. The viscous
flux terms are evaluated using second order accurate
central differences.

Results obtained during this investigation indi-
cate that the treatment of boundary conditions is
extremely important to the success of an implicit
scheme. When boundary conditions are treated ex-
plicitly, only a very h aited CFL number can be used.
In order for the implicit scheme to be stable for
high CFL numbers, the boundary condition must be
treated implicitly. In the present work, Roe’s approx-
imate Riemann solver was also extended to treat the

boundary points similarly to the interior points. This
procedure provides a boundary point treatment that
is completely compatible and consistent with the inte-
rior point differencing scheme. The boundary condi-
tions are then linearized consistently, and are included
in the left-hand-side coefficient matrix.

NUMERICAL RESULTS

Due to space limitation, results are presented
only for an inviscid transonic flow and a laminar vis-
cous flow. The first test case is the well known Ni’s
test case. It is an inviscid flow in a channel with a
10% thick circular bump on the bottom. Inlet Mach
number is 0.675. This is a 3D simulation of a 2D
flow. The mesh, which contains 13,891 grid points,
68,097 element and 4,442 boundary points, is depicted
in Fig.1a. Fig.1b displays the computed pressure con-
tours in the flow field. The Mach number distribution
on lower wall is shown in Fig.lc. Fig.1d displays a
comparison of convergence histories between explicit
scheme and implicit scheme with left, right, and sym-
metric ILU preconditioner, respectively. The explicit
scheme results were obtained using three stage Runge-
Kutta scheme with implicit residual smoothing and a
CFL number of 4. The implicit scheme results were
obtained using a CFL number of 100,000 with a max-
imum number of Krylov space of 10 without restart.
Contrary to the results obtaind in (2], the left, right
and symmetric preconditioners perform equally well.

The second test case involves a 3D simulation of
a 2D laminar flow past a flat plate at a Mach num-
ber of 0.5 and a chord Reynolds number of 10,000.
The mesh, shown in Fig.2a. contains 81,885 elements,
15,694 points, and 3,774 boundary points. The com-
puted Mach number contours and velocity vectors in
the flow field are depicted in Fig.2b and 2¢c. Fig.2d
shows the comparison of the Blasius velocity profile
and the computed velocity profiles as scaled by the
Blasius similarity law at the exit.
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Adaptive Edge-Bas.  “inite Element Schemes
for the Euler and N.vier-Stokes Equations on
Unstructured meshes; AIAA-03-0336.

[2] V. Venkatakrishnan - Preconditioned Conjugate
Gradient Methods for the Compressible Navier-
Stokes Equations; AIAA-90-0586.




- -a 1 -
-1],1_1_)“:}""61;‘;5{
thiiiiiiesieii il

‘m
Fig.1c Mach Rumber distribution Fig.2¢ Velocity v .tors

LTI
& | e Yelocsty progije '
] Tee——  imobaxien LU.CFL«100.000) r ! /‘—_—“h 0
= . imptecen ngm n.um..lm.(u» 35 e - h
. TTe—— rmtacat ey ILU.CFL=100.000) / !
T Explat et LR , f
. |
[
w : | / ;
. .
; Poee l
» “‘ 1 4 .
“ R 1 . *
i \ A T Conwemton
g ——— Biamyr

; \ vy

u\ g :

“ ----u-a—n-n-u—.-n----n ) * N TN e e o
e m——

R L T T ‘\‘"
Fig.1d Convergence history Fig.2d Velocity profile vs. Blasiys




APPENDIX 2: NAVIER-STOKES GRIDDING TECHNIQUE




y-
ns
e,

\p-
ila-

nce

Fi-
okes

:lfless
ity of
. Kar-

AIAA-93-3348-CP

MATCHING SEMI-STRUCTURED AND UNSTRUCTURED GRIDS
FOR NAVIER-STOKES CALCULATIONS

Rainald Léhner

CMEE, School of Engineering and Applied Science
The George Washington University, Washington, D.C. 20052

ABSTRACT

A new gridding technique for Navier-Stokes calculations in-
volving complex geometries is presented. This technique
is based on a combination of semi-structured and unstruc-
tured meshing techniques that accommodates the strengths
of these two approaches while avoiding their respective weak-
nesses. The technique has the advantage of being generally
applicable, yielding one single unstructured final mesh for a
given computational domain. At the same time, the prob-
lems usually encountered when meshing surfaces with high
curvature for Navier-Stokes calculations are avoided auto-
matically.

1. INTRODUCTION

The task of gridding complex geometries for the simulation
of flows using the Navier-Stokes equations - i.e. including
the effects of viscosity and the associated boundary or mix-
ing layers - is encountered commonly in engineering prac-
tice. The difficulty of this task increases not only with the
geometric complexity of the domain to be gridded, but also
with the Reynolds-number of the flow. For high Reynolds-
numbers, the proper discretization of the very thin, yet im-
portant boundary or mixing layers requires elements with
aspect ratios well in excess of 1:1,000. This requirement
presents formidable difficulties to general, ‘black-box’ un-
structured grid generators. These difficulties can be grouped
into two main categories:

a) Amount of Manual Input: In most unstructured grid
generators, the desired spatial distribution of element size
and shape is given by some form of background grid or
sources [1,2]. This seems natural within an adaptive con-
text, as a given grid, combined with a suitable error in-
dicator/estimator, can then be used as a background grid

to generate an even better grid for the problem at hand.
Consider now trying to generate from manual input a first
grid that achieves stretching ratios in excess of 1:1,000. The
amount of background gridpoints or sources required will be
proportional to the curvature of the objects immersed in the
flowfield. This implies an enormous amount of manual labor
for generai geometries, rendering this approach impractical.

b) Loss of Control: Most unstructured grid generators intro-
duce a point or element at a time, checking the surrounding
nf.'ighbourhood for compatibility. These checks involve Jaco-
bians of elements and their inverses, distance-functions, and
other geometrical operations that involve muitiple products
of coordinate differences. It is not difficult to see that as
the stretching-ratio increases, round-off errors can become
s Pff)bletn. For a domain spanning 1,000m (mesh around a
Boeing-747), with a minimum element length at the wing of
less than 0.01mm across the boundary layer and 0.05m along
the boundary layer and along the wing, and a maximum el-

ement length of 20m in the farfield, the ratio of element
volumes is of the order of 3 » 10712, Although this is well
within reach of the 10~2%-accuracy of 64-bit arithmetic, el-
ement distortion and surface singularities, as well as loss of
control of element shape can quickly push this ratio to the
limit.

Given these difficulties, it is not surprising that at present,
there does not exist a ‘black-box’ unstructured (or struc-
tured, for that matter) grid generator that can produce ac-
ceptable meshes with such high aspect ratio elements. The
demand for Navier-Stokes calculations in or past complex ge-
ometries being great, a number of semi-automatic grid gener-
ators have been devised. The most common way to generate
meshes suitable for Navier-Stokes calculations for complex
geometries is to employ a structured or semi-structured mesh
close to wetted surfaces or wakes {3-11}. This ‘Navier-Stokes’
region mesh is then linked to an outer unstructured grid that
covers the ‘inviscid’ regions. In this way, the geometric com-
plexity is solved using unstructured grids and the physical
complexity of near-wall or wake regions is solved by semi-
structured grids. This approach has proven very powerful in
the past, as evidenced by many examples.

The meshes in the semi-structured region can be constructed
to be either quads/bricks [3-9] or triangles/prisms [10,11].
The prisms can then be subdivided into tetrahedra if so
desired. For the inviscid (unstructured) regions, multi-
block approaches have been used for quads/bricks [5-8],
and advancing front [13-15], Voronoi [16,17} and modified
quadtree/octree approaches (18] for triangles/tetrahedra.

A recurring problem in all of these approaches has been how
to link the semi-structured mesh region with the unstruc-
tured mesh region. Some solutions put forward have consid-
ered:

- Overlapped Structured Grids: these are the so-called
chimera grids [8,9], that have become popular for Navier-
Stokes calculations of complex geometries; as the grid-
points of the various meshes do not coincide, they allow
great flexibility and are easy to construct, but the so-
lution has to be interpolated between grids, which may
lead to higher CPU cost and a deterioration in solutior
quality. '

- Overlapped Structured/Unstructured Grids: in this case
the overlap zone can be restricted to one cell, with the
points coinciding exactly, so that there are no interpola
tion problems [3,4].

- Delaunay Triangulation of Points Generated by Alge
braic Grids: in this case several structured grids are gen
erated. and their spatial mapping functions are stored
the resulting cloud of points is then gridded using De

s Copyright 1993 by the author. Published by the AIAA with permission.
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launay triangulation techniques [16].

Althdugh some practical problems have been solved by these
approaches, they can not be considered general, as they suf-
fer from the following constraints:

- The first two approaches require a very close link be-
tween solver, grid generator and interpolation techniques
to achieve good results; from the standpoint of general-
ity, such a close link between solver, grid generator and
interpolation modules is undesirable.

- Anpother problem associated with the first two ap-
proaches is that at concave corners, negative (i.e. folded)
or badly shaped elements may be generated. The usual
recourse i3 to smooth the mesh repeatedly, or use some
other device to introduce ellipticity [10,12). These ap-
proaches tend to be CPU intensive, and require consid-
erable expertise from the user. Therefore, they can not
be considered general approaches.

The third case requires a library of algebraic grids to
mesh individual cases, and can therefore not be consid-
ered a general tool. However, it has been used exten-
sively for important specialized applications, e.g. single
or multi-element airfoil flows {16].

The present research effort is directed towards generality and
ease of software expandability and maintainability. There-
fore, we strive to generate a single unstructured mesh consist-
ing of triangles/tetrahedra. This mesh can then be consid-
ered completely independent of flow solvers, and neither re-
quires any interpolation or other transfer operators between
grids, nor the storage of mapping functions.

The remainder of the paper is divided as follows: The de-
sign criteria used and the new grid generation strategy are
outlined in Section 2. Removal criteria are discussed in Sec-
tion 3. Section 4 uescribes the formation of tetrahedra from
prismatic elements. Several examples of gridded configura-
tions are shown in Section 5. Finally, some conclusions are
drawn in Section 6, and further extensions are considered.

2. DESIGN CRITERIA AND ALGORITHM

The design criteria for the new grid generation strategy may
be summarized as follows:

- The geometric flexibility of the unstructured grid genera-
tor should not be compromised for Navier-Stokes meshes.
This implies using unstructured grids for the surface dis-
cretization.

- The manual input required for a desired Navier-Stokes
mesh should be as low as that used for the Euler case. In
the present case, this requirement is solved by specifying
at the points of the background grid the boundary layer
thickness and the geometric progression normal to the
surface.

- The generation of the semi-structured grid should be
fast. Experience shows that usually more than half of
the elements of a typical Navier-Stokes mesh are located
in the boundary-layer regions. This requirement is met
by constructing the semi-structured grids with the same
normals as encountered on the surface (see Figure 1),

i.e. without recurring to smoothing procedures as the
semi-structured mesh is advanced into the field (10,12].

- The element size and shape should vary smoothly when
going from the semi-structured to the fully unstructured
mesh regions. How to accomplish this is the main topic
of this paper, and is detailed in subsequent sections.

- The grid generation procedure should avoid all of the
problems typically associated with the generation of
Navier-Stokes meshes for regions with high surface cur-
vature: negative or deformed elements due to converging
normals, and elements that get too large due to diverg-
ing normals at the surface. In order to circumvent these
problems, the same techniques which are used to achieve
a smooth matching of semi-structured and unstructured
mesh regions are used.

Given these design criteria, as well as the approaches used
to meet them, the present grid generation algorithm can be
summarized as follows (see Figure 1):

M.1 Given a surface definition and a background grid, gen-
erate a surface triangulation using an unstructured grid
generator.

M.2 From the surface trianguiation, obtain the surface nor-
mals.

M.3 Smooth the surface normals in several passes in order to
obtain a more uniform mesh in regions with high surface
curvature.

M.4 Construct a semi-structured grid with the information
provided by the background grid and the smoothed nor-
mals.

M.5 Examine each element in this semi-structured region for
size and shape; remove all elements that do not meet
certain specified quality criteria.

M.6 Examine whether elements in this semi-structured region
cross each other; if so, keep the smaller elements and
remove the larger ones, until no crossing occurs.

M.7 Examine whether elements in this semi-structured region
cross boundaries; if so, remove the crossing elements.

M.8 Mesh the as yet ‘empty’ regions of the computational
domain using an unstructured grid generator in combi-
nation with the desired element size and shape.

3. ELEMENT REMOVAL CRITERIA

The critical element of the matching algorithm described
above is the development of good element removal crite-
ria. The criteria to be considered are: element size, element
shape, element overlap and element crossing of boundary
faces.

3.1 Element Size

The two main types of problems encountered in semi-
structured grid regions that are rejated to element size are
elements that are either too large or negative (folded). These
problems originate for different reasons, and will therefore be
treated separately.
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3.1.1 Large Elements

As a resuit of surface normals diverging close to convex sur-
faces very large elements (as compared to the user-defined
size and shape) may appear in the semi-structured mesh re-
gions. The situation is shown diagrammatically in Figure 2.
The volume of each element in the semi-structured mesh re-
gion is compared to the element volume desired by the user
for the particular location in space. Any element with a vol-
ume greater than the one specified by the user is marked
for deletion. In the present case, the desired distribution
of element size and shape is given by a background grid.
Tree-search algorithms are used to relate the information
between this background grid and a particular location in
space (see [13] for details).

3.1.2 Negative Elements

As a result of folding away from concave surfaces, elements
with negative jacobians may appear. The situation is shown
diagrammatically in Figure 3. As before, the element vol-
umes are computed. All elements with negative volumes are
marked for deletion.

We have observed that typically the elements adjacent to
negative elements tend to be highly deformed. Therefore, we
also remove all elements that have points in common with
negative elements. Obviously, this one-pass procedure can be
extended to several passes, i.e. neighbours of neighbours, etc.
Our experience indicates, however, that one pass is sufficient
for most cases.

3.2 Element Shape

The aim of a semi-structured mesh close to a wall is to pro-
vide elements with very small size normal to the wall and
reasonable size along the wall. Due to different meshing re-
quirements along the wall (e.g. corners, separation points,
leading and trailing edges for small element size, other re-
gions with larger element size), elements that are longer in
the direction normal to the wall than along the wall may
appear. The situation is shown diagrammatically in Fig-
ure 4. For the semi-structured grids, the element and point
numbering can be assumed as known. Therefore, a local el-
ement analysis can be performed to determine whether the
element has side-ratios that are consistent with boundary
layer gridding. All elements that do not satisfy this criterion
are marked for deletion.

3.3 Overlapping Elements

Overlapping elements will occur in regions close to concave
surfaces with high curvature, or when the semi-structured
grids of two close objects overlap. Another possible scenario
is the overlap of the semi-structured grids of mixing wakes.
The main criterion employed is to keep the smaller element
whenever an overlap occurs. In this way, the small elements
close to surfaces are always retained. Straightforward testing
would resuit in O(N,;) operations per element, where N,
denotes the number of elements. leading to a total number
of operations of O(N?). By using quad/octrees [13], or other
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suitable data structures 19}, the number of elements tested
can be reduced significantly, leading to a total number of
operations of O( N log N;).

For quad/octrees, the complete testing procedure would look
as follows:

- Construct a quad/octree for the points;

- Order the elements according to decreasing volume (e.g.
in a heap-list [13]);

- Construct a linked list for all the elements surrounding
each point;

- Loop over the elements, in descending volume, testing:

- IF the element, denoted in the sequel by 1xLEN, has not
been marked for deletion before:

- Obtain the minimum/maximum extent of the coor-
dinates belonging to this element;

- Find from the quad/octree all points falling into this
search region, storing them in a list LcLOP(1:5CLOP);

- Find all the unmarked elements with smaller vol-
ume than IELEX surrounding the points stored in
LCLOP(1:XCLOP); this yields a list of close elements
LCLOE(1:¥CLOR);

- Loop over thz elements stored in LCLOE(1:¥CLOE):
- IF the element crosses the faces of TELEM
or is inside IELEN: Mark IELEN for deletion

The reason for looping over the elements according to de-
scending volumes is that the search region is obtained in a
natural way, i.e. the extent of the element. Looping ac-
cording to ascending volumes would imply guessing search
regions.

As negative elements could lead to a failure of this test, the
overlap test is performed after the negative elements have
been identified and marked.

3.4 Elements Crossing Boundary Faces

In regions where the distance between surfaces is very small,
the crossing of boundary faces by elements from the semi-
structured region is likely to occur. As this test is per-
formed after the element crossing tests are conducted, the
only boundaries that need to be treated are those that have
no semi-structured grid attached to it. In order to detect
if overlapping occurs, we loop over the surface faces, see-
ing if any element crosses it. As before, straightforward
testing would result in an expensive O(N,; - Ny) procedure,
where N; denotes the number of boundary faces. By us-
ing quad/octrees [13], this complexity can be reduced to
O(Nylog N,). The face-crossing check looks essentially the
same as the check for overlapping elements, and its explicit
description is therefore omitted.

4. SUBDIVISION OF PRISMS INTO TETRAHEDRA

As we only desire to work with tetrahedra, the prisms formed
by extruding the surface triangles along the smoothed nor-
mals must be subdivided. This subdivision must be per-
formed in such a way that the diagonals introduced at the



rectangular ‘aces of the prisms match across prisms. Given
thaf a pristz cannot be subdivided into tetrahedra in any
arbitrary wey, care bas to be taken when choosing these di-
agonais. Figure 5 illustrates the possible diagonals as the
base sides o the prism are traversed. Ope can see that in
01_'der to obtain a combination of diagonals that can be sub-
divided int tetrahedra, not all sides of the triangular base
hGV.e 10 be np-down or dowu-up as one traverses the sides.
This implies that the sides of the triangular base mesh have
to be marzed in such a way that no such combination oc-

curs. We have implemented the following iterative procedure
to armive a1 valid side-combinations:

D.0 Given:

- TLe sides of the surface triangulation

- Tle sides of each surface triangle

- Tie triangles that surround each surface triangle
D.1 pa: luop over the surface triangies

- 17 the current side-combination is not valid:

- 00: loop over the sides of the triangle

- IF the inversion of the side/diagonal
orientation leads to an allowed

side-combination in the

neighbour-triangle:
- Invert the side/diagonal orientation
- Goto next element

ENDIF
ENDDO
ZEDIF
ENDLO

D.2 IF any unallowed combinations are left: Goro D.1

[his pre.cedure works well, converging in at most two passes
over the surface mesh for all cases tested to date.

5. EXAMPLES
Blocked Channel with Object: The surface definition is

#1ven in Figure 6a. The semi-structured grid generated from
Fhe surface discretization, consisting of NSLENs7,784 element,
18 shown in Figure 6b. Observe that we have sharp con-
vex and concave corners, smoothed normals, negative ele-
ments at concave corners, and element overlap between semi-
structured grids. Application of the removal criteria reduced
the number of elements to WELEM=4,638, yielding the mesh
shown in Figure 6c. The final unstructured mesh, consisting
of weLEn=e,397 elements is shown in Figure 6d.e. Notice the

smooth transition between the semi-structured and unstruc-
tured grid regions.

Multi:Element Airfoil: The surface definition is shown in
I'igure 7a. The semi-structured grid generated from the sur-
face discretization, is shown in Figure 7b and consisted of
NELEMs§7,262 elements. As before, the normals have been
smoothed. but deformed elements appear due to surface cur-
vature, Overlapped elements are present in the inter-airfoil

gap regions. Appiication of the removal criteria reduced the
number of elements to NELEN=§0,022, yielding the mesh shown
in Figure 7c. The final unstructured mesh, consisting of
RELEM=81 067 elesnents is shown in Figure 7d.

Cylinder on a Flat Plate: The surface definition for this 3-
D case is shown in Figure 8a. The surface of the semi-
structured grid geperated from the surface triangulation,
which consisted of FNELEW=234,990 elements, is shown in Fig-
ure 8b. Overlapping and negative elements are clearly
present in this mesh. Application of the removal criteria
reduced this number to ¥ELEN»138,954 yielding the surface
shown in Figure 8c. The removal of these elements required
less than 1m:n of CPU time on an IBM-RISC-550 worksta-
tion. The surface of the final unstructured mesh, consisting
of NELEN=213,979 elements is shown in Figure 8d. The CPU
time required for the complete mesh was less than 10min
on an IBM-RISC-550 workstation. This mesh was used for
an incompressible laminar flow simulation. A Blasius pro-
file was prescribed at the entrance plane, and the Reynolds-
aumber based on the cylinder diameter was set to Re = 100.
Figures 8e,f show some of the cross-sectional meshes, as well
as the solution obtained.

Generic Missile: The surface definition for this 3-D case is
shown in Figure 9a. The surface of the semi-structured grid
generated from the surface trianguiation, which consisted
of FELEN=948,800 elements, is shown in Figure 9b. Over-
lapping and negative elements are clearly present in this
mesh. Application of the removal criteria reduced this num-
ber to YELEK=697,638 yielding the surface shown in Figure 9c.
The surface of the final unstructured mesh, consisting of
JRLEN=997,980 elements is shown in Figure 9d. The CPU
time required for the complete mesh was about 55min on an
IBM-RISC-550 workstation.

6. CONCLUSIONS AND OUTLOOK

A new gridding technique for Navier-Stokes calculations in-
volving complex geometries has been presented. The tech-
nique is based on a combination of semi-structured and
unstructured meshing techniques that accommodates the
strengths of these two approaches while avoiding their re-
spective weaknesses. The technique has the advantage of
being generally applicable, yielding one single unstructured
final mesh for a given computational domain. At the same
time, the problems usually encountered when meshing sur-
faces with high curvature for Navier-Stokes calculations are
avoided automatically. The technique was demonstrated on
several examples that were run interactively on workstations,
indicating a reasonable speed for possible use within an adap-
tive remeshing context. Future developments will center on
better wake-gridding capabilities, automation of the proce-
dure for adaptive remeshing, and the extension to {ree sur-
faces or flexible bodies immersed in the flowfield.
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ABSTRACT

This paper describes recent developments of high
resolution finite element schemes for the solution of
the unsteady compressible Euler and Navier-Stokes
equations on unstructured meshes. These finite el-
ement algorithms use an edge-based data structure,
as opposed to a more traditional element-based data
structure. The advantage of using such an edge-based
data structure is that it provides a unified approach
in which the relation between centered and upwind
schemes becomes apparent, improves the efficiency of
the algorithms, and reduces the storage requirements.
A variety of numerical schemes using such edge-based
data structure, ranging from Godunov schemes to
centered schemes with blended dissipation, is pre-
sented and discussed. Adaptive mesh refinement is
then added to these solvers to enhance the solution
accuracy ana efficiency. Various numerical results for
a wide range of flow conditions, from subsonic to hy-
personic in both 2D and 3D, are presented to demon-
strate the performance and versatility of the proposed
schemes.

1. INTRODUCTION

In recent years, significant progress has been
made on developing numerical algorithms for the so-
lution of the compressible Euler and Navier-Stokes
equations. The use of unstructured meshes for
computational fluid dynamics problems has become
widespread due to their ability to discretize arbitrar-
ily complex geometries and the ease with which mesh
adaption can be carried out to improve the solution.
However, any numerical schemes based on unstruc-
tured meshes require a storage of mesh connectivity
information. This requirement leads to an increase
of computer memory and the use of indirect address-
ing to retrieve nearest neighbor information, which,
in turn, implies that any numerical algorithms will
run slower on unstructured grids than on structured
grids. To reduce indirect addressing, finite element
schemes based on edge-based data structures have
been introduced [1-4]. In addition, more sophisti-
cated data structures such as stars, super edges, and

Copyright 1993 by th- authors.. Published by the
American Institute of Aeronautics and Astronautics,
Inc. with permission.
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chains have recently been developed [5]. The use of
edge-based data structure has been shown to yield sig-
nificant computational savings for three dimensional
problems.

Extensive research has been performed during
the last few years on upwind algorithms for the so-
lution of the Euler and Navier-Stokes equations on
unstructured meshes {6-9]. A significant advantage of
any upwind discretization is that it is naturally dissi-
pative, as compared with central-difference discretiza-
tions, and consequently does not require any problem-
dependent parameters to adjust. So far, all the up-
wind schemes implemented as eithet node-centered or
cell-centered discretizations on unstructured meshes
use the finite volume approach and the control vol-
ume must be constructed first. In terms of computa-
tional efficiency, node-centered schemes are preferable
to their cell-center counterparts. In the node-centered
approach [6,8], the control volume is typically taken
to be part of the neighboring cells that have a ver-
tex at that node. In two dimensions, the part of the
cells taken is determined by connecting the centroid
of the cell and the midpoints of the two edges that
share the node. In 3-D, the part of the cells taken
is determined by a surface that is constructed in a
similar way, a somewhat complicated geometrical pro-
cess in three dimensions. The switching from element
to edge-based data structure enables the implemen-
tation of upwind schemes trivial and straightforward
in the context of finite elements. This is especially
attractive for three dimensional problems, as there is
no need to construct control volumes explicitly and
geometrically.

The objective of this paper is to present recently
developed high accuracy schemes on unstructured
grids using an edge-based data structure. This edge-
based data structure provides a unified approach in
which the link between centered and upwind schemes
becomes apparent. The use of such an edge-based
data structure not only improves the efficiency of
the algorithms, but also enables a straightforward
implementation of upwind schemes in the context
of finite element methods. A variety of numerical
schemes using the edge-based data structure is pre-




sented and the performance of these schemes in terms
of solution accuracy and overall computational ef-
ficiency is discussed. Some different strategies for
the discretization of the viscous terms are considered.
An approach well suited for use with an edge-based
data structure is then introduced and presented. An
H-refinement/coarsening adaptive scheme is imple-
mented in these schemes to enhance the solution ac-
curacy and efficiency. Various numerical examples for
a wide range of flow conditions, from subsonic to hy-
personic in both 2D and 3D, are presented to demon-
strate the performance and versatility of the proposed
algorithms.

2. GOVERNING EQUATIONS

The Navier-Stokes equations governing unsteady
compressible viscous flows can be expressed in the
conservative form as

ou il aF _ aG*
8t dz; Bz,

where the summation convention has been employed

and
» . pu;
U=|pu|,F =1 puu; +pbi |,
pe u;(pe + p)

0
G = oij . (2.2)
(u;a';,- + k-g;? )

Here p,p,e,Tand k denote the density, pressure, spe-
cific total energy, temperature and thermal conduc-
tivity of the fluid, respectively, and u; is the velocity
of the flow in the coordinate direction z;. This set of
equations is completed by the addition of the equation
of state

(2.1)

1
p=(r~Dole - gurws), T'= (e~ gu5u5)/Ce
(2.3)
which are valid for perfect gas, where 7 is the ratio of
the specific heats and C, is the specific heat at con-
stant volume. The components of the viscous stress
tensor o;; are given by

a"*a (2.4)

Ou;
o = uges + S 42

Y Oz;
The thermal conductivity k and viscosity coeflicient u
are assumed to be a function of the temperature and

determined using Sutherland’s empirical relation. It
is assumed that A and u are related by

2
=-F. (2.5)

The left-hand side of equation (2.1) constitutes the so-
called Euler equations governing unsteady compress-
ible inviscid flows.

In the sequel, we assume that Q is the flow do-
main, [ its boundary, and n; the unit outward normal
vector to the boundary. The following bound=ry con-
ditions have to be added:

On the solid wall, the slip condition is ar 1ed for
inviscid flow
un; =0 . (2.6)
For viscous flow, no-slip condition
% =0, 2.7
and either isothermal condition
T=Ts (2.8)

where T} is the total temperature or adiabatic condi-

tion oT

o n; =0 (2.9)
could be imposed. In the far-field, a characteristic
analysis based on the introduction of Riemann invari-
ants for one-dimensional flow normal to the boundary
is used to determine the values of the flow variables.
This analysis correctly accounts for wave propagation
in the far field, which is important for rapid conver-
gence to steady-state and serves as a non-reflecting
boundary condition for unsteady application.

3. VARIATIONAL FORMULATION AND
FINITE ELEMENT APPROXIMATION

Let 7 be a trial function space and W a weighting
function space, both defined to consist of all suitably
smooth functions. An equivalent variational formula-
tion of (2.1) is given by

find Ue€T suchthat YWeWw

Jo W waa- [, F’%—dﬂ + Jp Fin;Wdrl =
—fnmg—dn + [ Gin;WdT .
(3.1
Assuming ), a classical triangulation of Q with the
nodes numbered from 1 to n and I', the boundary of
4, we approximate the trial and weighting spaces T

and W by their subspaces of finite dimension 7), and
W,,, which respectively, are defined by

Th= {Uh(z,t) | Un(z,t) = ZUI(‘)NI(-’)}

I=1

Wy = { Wa(z) | Walz) = Za,N,(z)} (3.2)

I=1

where N is the standard linear finite element shape
function associated with node I, Ur is the value at




node I and ay is a constant. The Galerkin finite ele-
ment approximation is then given by

( findU), € Tasuch that for eachNr(1 < I < n)

Jo, % Nrdey, =

Ja, F!(U,.)%’-"J-dsz,.- Jo, Fi(Un)n; NydT

- fn. GJ(U).)-a—‘Lth <+ fl‘ G"(U;.)n, Ngdly .

(3.3)
The integrals appearing here are evaluated in the
standard finite element form by summing individual
element and boundary surface contributions, the com-
pact support of the shape function N; means that the
equation can be written as

/ aﬂN,dQ,. =
e€l

) / Ff(vh)%dm-z / Fi (Un)n; N1dT

e€l bel
ON
-Z/ & (U Gordn + Z/ & (Un)n; NydT,
e€l bl

(3.4)

where the summation extends over those elements e
and boundary surfaces b that contain node I. In-
serting the assumed form for U} in equation(3.4), the
left-hand side integral can be evaluated exactly to give

au. dU.
/ SN =Y / N1z 2L
e€l e€l

= My, el (3.5)

where M denotes the finite element consistent mass
matrix. For steady state computations, M can be
replaced by the lumped (diagonal) mass matrix, de-
noted by M;.

4. EDGE-BASED FINITE ELEMENT
SCHEMES FOR THE EULER EQUATIONS

It is well known that the discretization of the con-
vective terms is crucial to the successful numerical so-
lution of the Navier-Stokes equations. Therefore, we
start by considering the solution of the Euler equa-
tions. The extension to the Navier-Stokes equations
will be discussed in the next section. The integral
of the convective terms appearing on the right-hand
side of equation (3.4) is evaluated approximately by
linearly interpolating the flux in terms of its nodal
values:

Fi=)"NiF} , Fi=F{r) . (4.1)

I=1

All integrals appearing in equation (3.5) can then be
evaluated in closed form, leading to a matrix-vector
product of the form

Rr=Dj,F} . (42)

Here D}, are sparse matrices, whose off-diagonal en-
tries can be identified as being associated with the
edges of the mesh. Moreover, it can be shown that
for any interior node, equation (3.4) can be written
as
U, _<ACly o ri o i

(Me—)r = %: LL(F{ + F)) (4.3)
where m; is the number of edges connected to the
node I. The coefficient Cr; denotes the weight ap-
plied to the average value of the flux on the edge that
connects nodes I and J, to obtain the contribution
made by the edge to node I, whereas C'yr denotes the
weight applied to the same quantity to obtain the con-
tribution made by the edge to node J. These weights
are computed as

y Qe aN
C}] = Z T_at" le ' (4°4)
e€lJ J

where now the summation extends only over those
elements €., which contain edge I.J. It can be easily
verified that these weights possess the properties

mr

2. Cl=0

1J
Ci;=-C  foralllandJ. (4.6)

For notational convenience, we define the vector C;,
by the expression

Cr= (C;Jvclzlrcil) ’ (4.7

and let L;; denote the modulus and S;s denote a unit
vector in the direction of CrJ, then equation (4.3) can
be written as

forall I , (4.5)

[ LI]I = ZLH(FI + Fy) (4.8)

where
Fr = (F},F;,F?).SIJ (4.9)
FJ=(F}1F}1F})'SIJ . (4.10)

4.1 Edge-Based Data Structure

The alternative procedure for obtaining the dis-
crete form of the equations is now apparent. While
with the element-based data structure information is
gathered from all the nodes of each element, oper-
ated on the element, and then scattered back to the
nodes of the element, the edge-based algorithm gath-
ers information from all the nodes of each edge, op-
erates it on the edge, and then scattes it back to
the nodes of the edge. A significant reduction in
gather/scatter costs and memory requirements can




be realized by going from an element-based to an
edge-based data structure. For a typical mesh of
triangle elements with N nodes, the number of ele-
ments, Nelem is about 2N and the number of edges,
Nedge 3N. An element-based data structure requires
2*3*Nelem, i.e., 12N gather/scatter operations, while
its edge-based counterpart needs 2*2*Nedge, i.e. 12N
gather/scatter operations. Whereas there appears to
be little difference between an edge-based and an el-
ement based data structure in 2-D, the situation is
different in 3-D. For a typical tetrahedral mesh with
N nodes, the number of elements, Nelem is about 5.5N
and the number of edges, Nedge 7N. An element-
based data structure requires 2*4*Nelem, i.e., 44N
gather/scatter operations, while its edge-based coun-
terpart needs 2*2*Nedge, i.e., 28N. Note that a sig-
nificant gather/scatter overhead reduction is achieved
using an edg-based data structure in 3D, thus leading
to a remarkable CPU savings.

The memory overhead for an element-based data
structure calls for storing the derivatives of the shape
functions and the volume of elements, and requires
a 7*Nelem, i.e. 14N vector in 2-D, and a 13*Nelem,
1.e. 7T1.5N vector in 3-D. The memory overhead for
an edge-based data structure calls for storing the
first order derivatives and the Laplacan and needs a
3*Nedge, i.e. 9N vector in 2-D, and a 4*Nedge, i.e.
28N vector in 3-D. Thus an edge-based data struc-
ture requires significantly less storage overhead. In
fact, the edge-based data structure, defined by a list
of edges with the addresses of two nodes delimiting
each edge, representes the minimum amount of infor-
mation required to described the unstructured mesh.

In addition, it will be shown below that this edge-
based data structure is extremely useful in the process
of constructing different numerical schemes, and pro-
vides a unified approach in which the relation between
centered and upwind schemes is clearly apparent. It
is clear that equation (4.8) is nothing but a classic
Galerkin finite element scheme, which is equivalent
to a central difference type scheme. By using the
results of equation (4.6), this scheme allows for the
appearance of chequerboarding modes and thus suf-
fers from numerical instabilities, nnless some type of
numerical dissipation in the form of artificial viscos-
ity is introduced. To construct stable schemes for the
Euler equations, we have to replace the actual flux
function Fr; by a consistent numerical flux ¥;;, and
write the right-hand-side in the form

mp
RHS()=)_ LuF1s . (4.11)
1

Then, by adopting different forms for this numerical
flux function, we are able to construct a number of dif-
ferent aigorithms for the Euler equations as described
below.

4.2 Godunov Scheme - Exact Riemann Solver

A stable scheme can be constructed by using the
exact Riemann solver {10]). This would imply replac-
ing (4.11) by

my
RHS(I) =Y Ly F(UH ’4.12)
IJ

where U denotes the local exact soh . of ii.e Rie-
mann problem to the Euler equation and can be ex-
pressed as

UR = Rie(U1,U,)

where we have set

(4.13)

Up=U;, Uh=U; . (4.14)
This is the first order Godunov scheme. A scheme
of higher order accuracy can be achieved by a better
approximation to U, and U}, e.g., via reconstruction
process and monotone limiting. The major disadvan-
tage of Godunov’s approach is the extensive computa-
tional work introduced through the Riemann solver.

4.3 Roe Scheme - Approximate Riemann Solver

A first simplification can be achieved by replac-
ing the computationally costly exact Riemann solver
by an approximate Riemann solver. A variety of pos-
sibilities can be defined; here we consider one of the
most popular approximate Riemann solvers, namely
the flux-difference splitting of Roe [11):

Fu=F+F-|Au|(U;-Ur).  (4.15)
Here | A;; | denotes the standard Roe matrix eval-
uated in the direction S;;. It can be shown that
this scheme is equivalent to the first order finite vol-
ume upwind cell-vertex scheme based on a dual mesh.
Many different ways exist to achieve higher order ac-
curacy. In the present study, a scheme of higher or-
der accuracy is obtained by using upwind-biased in-
terpolations of the solution U via the MUSCL ap-
proach [12]. This leads to the flux function

Frs = Ff + Fy - | A(UF,UF) | (U7 = UY) (4.16)
where

Ft =F(UF), Fy=F{Uy). (4.17)

The upwind-biased interpolations for U7 and U are
defined by

Ur=Uur+ %[(1 -k)A7 + (1 + kYU, - Ur) (4.18)

U; =U; - %[(1 —k)AY + (1 + k)(Us = U3)] (4.19)




* where the forward and backward difference operators
are given by

A7 = Up = Uy = 2(VU) -V = (Us = Up) (4.20)

A =Usp =Uy =2(VU); 17 —(U; - Ur) (4.21)

where 1/7 = x; — x; is the length vector of this edge.

The parameter k, which can be chosen to control
the degree of approximation, was set to k = 1/3 in
all calculations presented here. This correponds to a
third-order upwind-biased scheme {12]. With higher
order spatial accuracy, spurious oscillations in the
vicinity of shock waves are expected to occur. Some
form of limiting is usually required to eliminate these
numerical oscillations of the solution and to provide
some kind of monotonicity property. The flux lim-
iter modifies the upwind-biased interpolation U and
U; and the equations (4.18) and (4.19) are replaced,
respectively by

Ut =Ur+ ’7'[(1 — ksr)A7 + (1 + ksy)(Us = Up)]

vy o . (4.22)
;7 =U; - T[(l ~kss)AF + (1 + ksy)(Us - Ur))
(4.23)

where s is the flux limiter. Both the Van Albada lim-
iter and Minmod limiter were employed in this study.
Three options exist concerning the choice of interpola-
tion variables: conservative variables, primitive vari-
ables, and characteristic variables. Using limiters on
characteristic variables seems to give the best resuits,
but sacrifices some computational efficiency.

4.4, Scalar Limited Dissipation

A further possible simplification can be made by
replacing the Roe matrix by its spectral radius. This
leads to the choice

Fru=Fr+Fs=| Ay | (Us=-Ur) (4.24)
for the numerical flux function, where
| A1y =l wly - Sip | +ers (4.25)

and u}; and c¢;; denote edge values, computed as
nodal average, of the fluid velocity and speed of
sound respectively. This can be considered as a cen-
tered difference scheme plus a second order dissi-
pation operator, leading to a first order, monotone
scheme. A higher-order scheme would be obtained by
a better approximation to the ‘right’ and ‘left’ states
of the ‘Riemann problem’, which have been set to
U, = Ur, Uy = Uy. This would reduce the difference
between U;,U;, decreasing in turn the dissipation.
As before, limiting would provide automatic cut-off
values for the possible range of U},U} that lead to
monotonic solutions.

4.5. Scalar Dissipation With Pressure Sensors

Another option to reduce the magnitude of U -
Us| is to apply a blended second- and fourth-order

damping for the dissipation (1]. This is borne by the
observation that even for smooth problems, central
difference schemes still require fourth order damping
for stability. A scheme of this type may be written

as:
Fry=F+Fy

A [U: -Us+ gl”(vv, + VU,)] , (4.26)

where 0 < 8 < 1 denotes a pressure sensor function
of the form (1]

y_ Pr=ps—0517(Vp; + Vp;)
lpr = ps| + 0.5 ¥ (Vps + Vpy)|

8= . (427)

We have experimented with several combinations of
this sensor function. The one we favor at the present
time is computed in two passes over the mesh. In the
first pass, the highest of the edge-based §-values given
by eqnuation (4.27) is kept for each point. In a second
pass, the highest value of the two points belonging to
an edge is kept as the final f-value. For 8 = 0,1,
second- and fourth- order damping operators are ob-
tained respectively. We remark that although this
discretization. of the Euler fluxes looks like a blend
of second- and fourth-order dissipation, it has no ad-
Jjustable parameters.

4.6. Scalar Dissipation Without Gradients

The scalar dissipation operator presented above
still requires the evaluation of gradiemts. This can
be quite costly for Euler simulations. An alterna-
tive is the simplify the combination of second- and
fourth-order damping operators by writing out explic-
itly these operators:

d2=Ay(1-8)U-0,] ,

H’
da=Ausp [UI -Us+ ?(VU[ + VUJ)] .

Performing a Taylor-series expansion in the direction
of the edge, we have

1 12 152U avu
U;-U;+T(VU;+VUJ) adry ¥l s T ll] .

This suggests the following simplification, which ne-
glects the off-diagonal terms of the tensor of second
derivatives:

2 [8%U U 2
T[am b -G =g -

and leads to the familiar blend second- and fourth-
order damping operators




Fra=Fr+Fj= Mg | (1= 8)[Ur - Uy}
12
-\ubg ViU, - v2Uy] (4.28)

4.7 Taylor-Galerkin scheme

Due to their importance for transient calcula-
tions, it is worthwhile to consider possible edge-based
Taylor-Galerkin schemes. The essential feature of any
Taylor-Galerkin scheme is the combination of time
and space discretizations, leading to second-order ac-
curacy in both time and space. An edge-based two
step Taylor-Galerkin scheme can be readily obtained
by adopting the numerical flux

Fa=FURY) (4.29)
where
1 At OF)
Uu E(U' +Us) - —(—)u . (4.30)

(%zﬂf)u is computed on each edge and given by
i

( 33, ),,.(FJ e . (4.31)

The major advantage of this scheme is its speed, since
there is no requirement of gradient computations and
limiting procedures. An explicit numerical dissipation
in the form of Lapidus viscosity is needed to model
flows involving discontinuties. The Taylor-Galerkin
scheme alone is of little use practically. However it
provides a useful base scheme for the flux-corrected
transport scheme presented below.

4.8 Flux-Corrected Transport Scheme

The idea behind FCT is to combine a high-order
scheme with a low-order scheme in such a way that
the high-order scheme is employed in smooth regions
of the flow, whereas the low-order scheme is used near
discontinuities in a conservative way, in an attempt to
yield a monotonic solution. The implementation of
an edge-based FCT scheme is exactly the same as its
element-based counterpart [13]. However, the use of
an edge-based data structure makes the implemen-
tation more efficient, which is especially attractive
for three dimensional problems. As the high-order
scheme, we employ the edge-based two step Taylor-
Galerkin scheme with consistent mass matrix. The
converged solution can be recast into the following
form:

MpAU, = R+ (M - Mc)AU? . (4.32)
The low order scheme used is simply
MU (4.33)

MLAU, = R+ ca(Mc -

i.e., lumped mass-matrix plus mass diffusion. Sub-
tracting (4.33) from (4.32) yields the antidiffusive
edge contributions

(AU* = AUy = M{Y (ML — Mc)t T™ = AU

(4.34)
This avoids any need for physical flux :coi .itations
and leads to a very fast overall s ne. though
FEM-FCT is often criticized as n  iav: 1 strict
mathematical background, our ex 1enc: as been
that it gives excellent resolution f both .cks and

contact discontinuities for the si: ulation of strongly
unsteady compressible flows.

5. EXTENSION TO
THE NAVIER-STOKES EQUATIONS

In this section, we extend the solution algorithms
described above for the Euler equations to the solu-
tion of the Navier-Stokes equations. The numerical
integration of the viscous terms is carried out in a
centered way. Note that the viscous fluxes are func-
tions of unknowns and their first derivatives, which
can be expressed as

& =G, a” . (5.1)

The following are three possible ways to evaluate the
integrals that involve these viscous fluxes.

(a) Standard Finite Element Approach

In this approach, the integral involving the vis-
cous fluxes is evaluated numerically after inserting the
assumed form for U into the viscous flux functions.
Note that over each element, U /8z* will be constant
since U is assumed to have a linear variation. Thus
for an element e with nodes 7, J, K and L, the integral
is obtained, using a one point numerical integration
rule, as

. ONy
/G’(U,a ) ard =

0550 1. GGUr+Us + U +U2), 1) (52)

(b) Mixed Formulation

An alternative approach is to evaluate the vis-
cous flux contributions by making using of the nodal
gradients of the unknown vector U. In this case, nodal
values of the viscous fluxes can be directly evaluated

as
NPT '/
G =G U5

Now, the viscous fluxes can be interpolated linearly
over each element and considered jointly with the in-
viscid fluxes. In this case, of course, the edge data
structure can be readily employed to give the approx-
imation

/ G"(U, oU Q’-’dn,, _EC},(G’ 7). (5.3)




It is noted here, that the discretization of the viscous
terms using the standard finite element approach only
uses information from those points which are directly
connected to the points being considered. On the
other hand, the mixed formulation involves informa-
tion from two layers of points surrounding the point
under consideration. Despite their inconsistency, the
numerical experience indicates that the results from
two approaches are virtually identical.

(c) Edge-based Finite Element Approach.

Note that the integrals of viscous flux terms in-
volves the evaluation of the following terms

8¢ ON;
—=dQ
. faz. dz;

It is easily shown that this integral can be written as

m D, . .
& 17

dz; 6:,
(5.5)
where Dy; are computed as
Qe aNg aNg
D}J - E 4 azk az’ |¢ . (5’6)
e€lJ

This approach provides a way to evaluate the inte-
gral of the viscous fluxes that is consistent with the
standard finite element approach. The computational
effort for this approach is very small. The major dis-
advantage of this approach is that overhead storage
requirements become significant.

6. TEMPORAL DISCRETIZATION

Equation(4.8) represents the time evalution of
the unknown vector Uz(t) at node I of the grid. As-
suming that the nodal values U} are known at time
t,, the solution is advanced over a time step At,
to time {,4; by an explicit multi-stage Runge-Kntta
time-stepping scheme given by

vl =up

UP = U® - apAt(ML); '\ RIUP™Y) p=1,2,..,m

[]?+1.== (]}"0

with the parameters a, assigned appropriate values.
The scheme is second order accurate in time. For
steady state computations, implicit residual smooth-
ing and local time-stepping are used to accelerate
convergence to steady state. Residual smoothing al-
lows the use of larger CFL numbers than the one dic-
tated by the stability of the original scheme. For the
centered-diflerence scheme, in the interests of compu-
tational efficiency, the diffusion contribution to the

right-hand side might be evaluted only for the first
stage.

7. ADAPTIVE REFINEMENT

A very attractive feature of unstructured grids
is the ease with which they incorporate adaptive re-
finement. The addition of further degrees of free-
dom does not destroy any previous structure. Thus,
the flow solver requires no further modification when
operating on an adapted grid. For many practical
problems, the regions that need to be refined are ex-
tremely small as compared to the overall domain. On
the other hand, the spatial jocation of these regions
where small elements are required are typically un-
known, and may vary in time. It is thus not surpris-
ing that the use of adaptive refinement typically ac-
crues savings in storage and CPU requirements, which
range between 10-100 as compared to an overall fine
mesh. Any adaptive refinement scheme consists cf
three different stages: determining what we want to
achieve by refining the grid, developing an error in-
dicator/estimator to detect the regions to be refined,
and a refinement strategy, such as movement, enrich-
ment or remeshing. In this study, an h-refinement
scheme has been incorporated into the fiow solvers in
order to enhance the solution accuracy and efficiency.
Further detail and description about this adaptive
scheme can be found in [14-15).

8. NUMERICAL EXAMPLES

The results obtained by the centered difference
schemes are not included in this paper, since such
results can be found in [1] for steady state compu-
tations, and more recently in [16] for the simulation
of high speed trains through tunnels using an ALE
formulation and adaptive remeshing techniques. As
the solutions obtained by the edge-based FEM-FCT
scheme are almost identical to those obtained by its
element-based counterpart, only a few test cases are
presented for the edge-based FEM-FCT scheme. All
the results to be presented are obtained by edge-based
upwind finite element scheme, where the Van Albada
limiter based on primitive variables is used for the
steady state computations and the Minmod limiter
based on characteristic variables is used for transient
flow calculations. For the purpose of comparison |,
the simulations for test cases 3-4 were also perfomed
using the edge-based FEM-FCT scheme to show its
excellent resolution for both shock waves and contact
discontinuities for the simulation of strongly unsteady
compressible flows. '

Test Case 1. NACA0012 Airfoil

The problem under consideration is transonic
flow around a NACAO0012 airfoil with a freestream
Mach number of 0.85 and an angle of attack of 1 de-
gree - a classical test problem for Euler solvers. The
grid adaption scheme was used. The initial mesh con-
taining 1,311 elements and 719 points and the final
refined mesh consisting of 6,397 elements and 3,274
points after three levels of refinement are shown in




Figures la and 1b, respectively. The computed pres-
sure contours in the flow fields on the initial and final
adapted mesh are displayed in Figures lc and 1d, re-
spectively. Figures le and 1f show, respectively, the
comparison of pressure coefficients and entropy on the
airfoil between initial mesh and final refined mesh.
The refinement of regions with strong gradients such
s shocks, leading edge, and trailing edge is well pre-
sented and the considerable improvement in the solu-
tion for these regions after refinement is clearly appar-
ent. The production of numerical entropy in the vicin-
ity of the stagnation point is dramatically decreased
after refinement. The pressure coefficient distribution
on both initial and final adapted mesh indicates that
there is only one grid point within the shock structure
and demonstrates the sharp shock capturing ability of
Roe’s approximate Riemann solver for the solution of
steady problems.

Test Case 2. Half Cylinder

In this example, we consider hypersonic flow
around a half cylinder with a freestream Mach num-
ber of 10. The particular difficulty is due to the large
Mach number and a quasi-rarefaction zone behind the
cylinder. The final refined mesh after three levels of
refinement, shown in Figure 2a, contains 20,178 ele-
ments and 10,277 points. The computed Mach num-
ber contours in the flow fields are depicted in Figure
2b. The pressure coefficient distribution and entropy
on the surface are shown in Figure 2¢ and 2d, respec-
tively. For this computation, the choice of Mach num-
ber as error indicator provides the best refinement in
the wake of blunt bodies.

Test Case 3. Shock Tube Problem or Riemann Problem

The shock tube problem constitutes a partic-
ularly interesting and difficult test case, since it
presents an exact solution to the full system of one-
dimensional Euler equations containing simultane-
ously a shock wave, a contact discontinuity, and an
expansion fan. The initial conditions in the present
computation are the following:

p=1.000,ur =0,p=1.0, 00<z<500

p=0.125,up=0,p=0.1, 50.<z<100.

Figure 3 shows the computational mesh and the
results for the edge-based FEM-FCT scheme and
edge-based upwind finite element scheme. This is
a 2D simulation of a 1D problem. The mesh con-
sists of 101 points in the X-direction and 3 points in
the Y-direction. Both schemes produced very similar
results, with excellent resolution for both shock and
contact discontinuity.

Test Case 4. Shock Diffraction in a Baflled Tube

The problem under consideration is shown in Fig-
ure 4. A weak shock (M, = 1.31) propagates inside
a baffled tube. We selected this problem to show
that the FCT scheme together with the classic h-
enrichement /coarsening grid adaption scheme could
produce excellent results for the efficient simulation
of strongly unsteady flows, without deteriorating the
accuracy of the solutions. The number of refinement

levels allowed in this case is 5 and the grid is mod-
ified every 7 timesteps. Density was chosen as the
key variable for the error indicator. Figure 4a shows
the adapted mesh at 60 us and the experimental solu-
tion is depicted in Figure 4b. Figures 4c and 4d show
the computed density contours obtained by the edge-
based FEM-FCT and the edge-based upw: d finite
element scheme, respectively. Comparisor { these
results demonstrates that the edge-based ' M-FCT
produced better solutions than the edge- .sed up-
wind finite element scheme, while runn: . approxi-
mately 3 times faster.

Test Case 5. ONERA M6 Wing

In this test case, we consider a transonic fiow over
the ONERA M6 wing geometry. The M6 wing has a
leading edge sweep angle of 30 degree, an aspect of
3.8, and a taper ratio of 0.562. The airfoil section
of the wing is the ONERA "D” airfoil, which is a
10% maximum thickness-to-chord ratio conventional
section. The flow solutions are presented at a Mach
number of 0.84 and an angle of attack of 3.06. The
mesh, which contains 179,106 grid points, 951,179 el-
ements, and 34,013 boundary points, is depicted in
Figure 5a. Figures 5b and 5c show pressure contours
on the upper wing surface and lower surface, respec-
tively. The upper surface contours clearly show the
sharply captured lambda-type shock structure formed
by the two inboard shock waves, which merge together
near 80% semispan to form the single strong shock
wave in the outboard region of the wing. The com-
puted pressure coeficient distributions are compared
with experimental data [17] at six spanwise stations
in Figure 5d. The results obtained compare closely
with experimental data, except at the root stations,
due to lack of viscous effects.

Test Case 6. Boeing 747 Aircraft

The sixth test case is performed on a com-
plete Boeing 747 aircraft. The 747 configuration in-
cludes the fuselage, the wing, horizontal and vertical
tails, underwing pylons, and fiow-through engine na-
celles. The mesh, which contains 162,440 grid points,
901,275 elements and 18,454 boundary points for the
half-span airplane, is shown in Figure 6a. Solutions
were computed for the aircraft at a free stream of
Mach number of 0.84 and an angle of attack of 2.73
degrees. The computations were performed using the
three-stage Runge-Kutta time-stepping scheme with
local time stepping and implicit residual smoothing.
The solution was advanced 100 time-steps using a
CFL number of 0.35 and 1000 time-steps with a CFL
number of 4.0, to converge the solution to engineering
accuracy( a decrease of a three order-of-magnitude in
the L2 norm of the density residual). The computed
pressure contours on the surface of the airplane are
shown in Figure 6b.

Test Case 7. Viscous Flow Past a Flat Plate

This test case involves a laminar flow past a flat
plate at a Mach number of 0.5 and a chord Reynolds
number of 10,000. This computation was performed
to validate the Navier-Stokes code by comparing the




results with the exact Blasius solutions. The mesh
used in the computation is shown in Figure 7a. It con-
tains 2,604 elements, 1,376 points, and 146 boundary
points. The computed Mach number contours in the
flow field are depicted in figure 7b, where the devel-
opment of a boundary layer can be clearly observed.
Figure Tc shows the comparison of the Blasius veloc-
ity profile and the computed velocity profiles as scaled
by the Blasius similarity law at different chord length
downstream of the leading edge. The computed re-
sults indicate that the similarity solution for a flat
plate boundary layer is correctly obtained and the so-
lution agrees well with the Blasius solution. Finally,
Figure 7d shows the comparison of velocity profiles
obtained using two different discretization approachs
for viscous terms. It is observed that these two types
of discretization give practically identical results.

7. CONCLUSIONS

We have given an overview of the recent devel-
opment of some high order accuracy finite element
schemes to the solutions of the compressible Euler and
Navier-Stokes equations on unstructured grids. These
schemes are based on an edge-based data structure, as
opposed to the more traditionel element-based data
structure. The advantages of such data structure
might be summarized as a) better performance of
the numerical schemes in terms of computational ef-
ficiency and memory requirements, b) easy construc-
tion of different numerical schemes, ranging from the
Godunov scheme to the centered scheme with blended
dissipation, and c) easy implementation of numerical
schemes for both 2D and 3D problems, due to 1-D
like data structure.
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ABSTRACT

This paper describes the development, validation
and application of a new finite element scheme for
the solution of the compressible Euler equations on
unstructured grids. The implementation of the pu-
merical scheme is based on an edge-based data struc-
ture, as opposed to a more traditional element-based
data structure. The use of this edge-based data struc-
ture not only improves the efficiency of the algorithm,
but also enables a straightforward implementation of
upwind schemes in the context of finite element meth-
ods. The aigorithm has been tested and validated on
some well documented configurations. A flow solution
about a complete F-18 fighter is shown to demon-
strate the accuracy and robustness of the proposed
algorithm.

1. INTRODUCTION

In recent years, significant progress has been
made in the development of numerical algorithms for
the solution of the compressible Euler and Navier-
Stokes equations. The use of unstructured meshes for
computational fluid dynamics problems has become
widespread due to their ability to discretize arbitrar-
ily compiex geometries and due to the ease of adap-
tion in enhancing the solution accuracy and efficiency
through the use of adaptive refinement techniques.
However, any unstructured algorithm requires the
storage of the mesh connectivity, which implies the
increase of computer memory and the use of indi-
rect addressing to retrieve nearest neighbor informa-
tion. These requirements, in turn, mean that any
numerical algorithm will run slower on an unstruc-
tured grid than on a structured grid. In order to
reduce indirect addressing, new edge-based finite ele-
ment schemes([1]-{4]) have been recently introduced.
In addition, even more sophisticated data structures
such as stars, super edges, and chains were recently
developed by Lohner{5]. The use of edge-based data
structure has shown to result in remarkable compu-
tational savings for three dimensional problems.

In the last few years, extensive research has been

Copyright ©1993 by the authors. Published by the
American Institute of Aeronautics and Astronautics,
Inc. with permission.

done on upwind type algorithms for the solution of
the Euler and Navier-Stokes equations on unstruc-
tured meshes([6]-[9)). A significant advantage of up-
wind discretization is that it is naturally dissipative,
in contrast with central-difference discretizations, and
consequently does not require any problem-dependent
parameters to adjust. So far, all upwind schemes
implemented as either node-centered or cell-centered
discretizations on unstructured meshes have used the
finite volume approach where the control volume must
be constructed first. In terms of computational effi-
ciency, node-centered schemes are preferable to their
cell-center counterparts. In the node-centered ap-
proach([6],(8]), the control volume is typically taken
to be part of the neighboring cells that have a ver-
tex at that node. In two dimensions, the part of the
cells taken is determined by connecting the centroid
of the cell and the midpoints of the two edges that
share the node. In 3-D, the part of the cells taken
is determined by a surface constructed in a similar
way. However, this is somewhat complicated geomet-
rically to do in three dimensions. The switching from
element to edge-based data structure renders the im-
plementation of upwind schemes trivial and straight-
forward in the context of the finite element approach;
this is especially attractive for three dimensional ap-
plication, since there is no need to construct control
volumes explicitly and geometrically.

The authors have recently developed some high
accuracy schemes for the solution of the Euler and
Navier-Stokes equations on unstructured grids by us-
ing an edge-based data structure{l]. This paper de-
scribes the development, validation, and application
of an upwind finite element algorithm to the simula-
tion of three dimensional compressible fiows around
complex aerodynamic configurations. In this scheme,
the spatial discretization is accomplished by an edge-
based finite element formulation using Roe’s flux-
difference splitting. A MUSCL approach is used to
achieve higher-order accuracy. A characteristic anal-
ysis based on the introduction of Riemann invariants
for one-dimensional flow normal to the boundary is
used to treat boundary conditions. Solutions are ad-




vanced in time by a multi-stage Runge-Kutta time-
stepping scheme. Convergence is accelerated using
local time-stepping and implicit residual smoothing.
The algorithm has been tested and validated on some
well documented configurations. A solution of the
flow around a complete F-18 fighter is presented to
demonstrate the accuracy and robustness of the pro-
posed algorithm.

2. GOVERNING EQUATIONS

The Euler equations governing unsteady com-
pressible inviscid flows can be expressed in the con-
servative form as

auU  OF!
B + 5“::,- =0, (2.1)

where the summation convention has been employed

and
P _ pu;
U= | pui | ,F? = | puju; +pb; | . (2.2)
pe u;(pe + p)

Here p, p, and e denote the density, pressure, and spe-
cific total energy, respectively, and u; is the veloc-
ity of the flow in the coordinate direction z;. This
set of equations is completed by the addition of the
equation-of-state

p=(y—1)p(e- ';'“j“j): (2.3)

which is valid for perfect gas, where v is the ratio of
the specific heats.

In the sequel, we assume that  is the flow do-
main, I' its boundary, and n; the unit outward normal
vector to the boundary.

3. VARIATIONAL FORMULATION AND
FINITE ELEMENT APPROXIMATION

Let 7 be a trial function space and W a weighting
function space, both defined to consist of all suitably
smooth functions. An equivalent variational formula-
tion of (2.1) is given by

{ find U€T suchthat YWeWwW

Jo ¥ waa - [, Fi ggida + fp Fin;Wdl = 0.
(3.1)
Assuming Q) is a classical triangulation of Q2 with the
nodes numbered from 1 to n and I';, the boundary of
Q, we approximate the trial and weighting spaces 7
and W by their subspaces of finite dimension 7, and
W), which respectively are defined by

T = {U»(z,t) |Un(z,t) =3 U,(t)N,(z)}

I=1

I=1

W = {W,.(z) | Wa(z) = Za,N,(z)} (3.2)

where Ny is the standard linear finite element shape
function associated with node I, Uy is the value at
node I, and ay is a constant. The Galerkin finite
element approximation is then gi' n by

findUy € Thsuch that forea Ny(1<I<n)

fo, i =
Jo, FP(Un) Tldﬂh—fr

The integrals appearing I : are evaluated in the
standard finite element fc - by summing individual
element and boundary suri..e contributions, the com-
pact support of the shape function N; means that the
equation can be written as

[ Zyaa, =
— Jo, Ot

J (Uh)ﬂj N,dI‘,,.
(3.3)

/ F’(U,.)mdﬂh— / Fi(Up)n; NydT,
e€l bel

(3.4)

where the summation extends over those elements e
and boundary surfaces b that contain node I. Insert-
ing the assumed form for U) in Eq.(3.4), the left-hand
side integral can be evaluated exactly to give

U, dU
> [ Nt =3 / NrNyda]—~
el 7 eel

dUy;

=Mu— (3.5)

where M denotes the finite element consistent mass
matrix. For steady state computations, M can be
replaced by the lumped (diagonal) mass matrix, de-
noted by My.

4. EDGE-BASED UPWIND
FINITE ELEMENT SCHEME

It is shown in the appendix that for any interior
node, Eq. (3.4) can be written as

dUu oL .
(Mol =3 CL(Fi+Fp) (41
1

where m; is the number of edges connected to the
node I, and

. Q. ON;
Ciy=- Z oo e (4.2)
e€lJ J

in 3D. The coefficient Crs denotes the weight applied
to the average value of the flux on the edge that con-
nects nodes / and J, to obtain the contribution made
by the edge to node I, whereas C; denotes the weight




applied to the same quantity to obtain the contribu-
tion made by the edge to node J. It can be easily
verified that these weights possess the properties

mp .
ZC;J =0
1

i = _ci
CIJ = _CJI

forall I, (4.3)

forall Tand J . (4.4)

For notational convenience, we define the vector Cry
by the expression

Crs =(C};,C}1,Cy) (4.5)

and let Ls denote the modulus and ks denote a unit
vector in the direction of Cys, then Eq. (4.1) can be
written as

v, & -
[ML-dT], = ZL!J(FI +Fy) = ZLuFu (4.6)
17 1J

where
FI=(F111FIZ)F13)'kIJ (47)

Fy=(F},F},F3}).k1s . (4.8)

The alternative procedure for obtaining the dis-
crete form of the equations is now apparent. While
with the element-based data structure information is
gathered from all the nodes of each element, oper-
ated on the element, and then scattered back to the
nodes of the element, the edge-based algorithm gath-
ers information from all the nodes of each edge, op-
erates it on the edge, and then scatters it back to
the nodes of the edge. The property of conservation
in the numerical scheme is guaranteed by the asym-
metry of edge coefficients as expressed in Eq. (4,3).
This edge-based data structure not only improves
the efficiency of the algorithm [I], but also enables
a straightforward implementation of upwind schemes
in the context of finite element methods. It is clear
that Eq. (4.6) is nothing but a classic Galerkin fi-
nite element scheme, which is equivalent to a cen-
tral differenc2 type scheme. By using the results of
Eq. (4.4), this scheme allows for the appearance of
chequerboarding modes and thus suffers from numer-
ical instabilities unless some type of numerical dissi-
pation in the form of artificial viscosity is introduced.
A stable scheme can be constructed, for example us-
ing Roe’s flux difference splitting [10], to replace the
actual flux function F7; in Eq. (4.6) by Roe’s numer-
ical flux formula Fr;:

Fru=F+F;— A | (Us-Up) (4.9)
where

VA | (Us=Ur) =| AR | + | AF | + | AFs |
(4.10)

with
1
i
™ < A =
| AR I=| Ay | {(Ap— ENE
[ -
¢
0
Au—kAq
+p Av - k,Aq;: }(4.11)
Aw —~ k,Aq;
4Au + 1AV + WAW - G Agy
1
- - A i ——A uikga
| AFus 1=t das | (FESE=E) [ 5£k,c
W & by
h+ g

(4.12)
where §° = @ +9°+w?, Aqe = Auk.+Avky+Auwk,,
and ¢ = @tk; + Oky + wk,. The bar designates Roe-
averaged quantities, which are defined by

P =\p1ps

@ = (ur +us\/ps/pr)/(1 + Vs /er)
& = (vr +vavpas/pn)/(1 + /p1/pr)

@ = (wr + wsVps/p1)/(1 + ps/pr)
h = (ht +hsvpsloD)/(1 + Vosler)

E={(1=-1)(h~-052g%.

Furthermore, the eigenvalues of A are A; = §; and
Ms=qEC.

In order to prevent entropy violation, an entropy
fix is imposed. When an eigenvalue A reduces to zero,
a smoothed value, | A |*, is defined to replace | A |.

3 (Al if[A|>e
L <
|,\|-{l,\|;¢z, f1h|<e (4.13)
where ¢ = Kmaz(A; — A1,0). K is a small constant.

It can be shown that this scheme is equivalent to
the first order finite volume upwind cell-vertex scheme
based on a dual mesh. There are many different ways
to achieve higher order accuracy. In the present study,
a scheme of higher order accuracy is achieved by using
upwind-biased interpolations of the solution U via the
MUSCL approach [11]. This leads to the flux function

Fry=Ff +F;- | AU UT) | (U =UF) (4.14)
where
Ft = F(U}), Fy = F(Uy) . (4.15)

The upwind-biased interpolations for U} and U; are
defined by

U} = U+ (1= DAT + (14 K)Us = UD)] (416)




UF = Us - U1~ b)AT + (1 + k)Us = Ui)] (4.17)

where the forward and backward difference operators
are given by

A7 = Uy =Upoy = 2(VU) 1 — (U = Up) (4.18)

A}' =Uj~-Us =2(VU), A —(U,;-U1) (4.19)

where 1/Y = x; — x; is the length vector of this edge.

The parameter & can be chosen to control a fam-
ily of difference schemes in the interpolation. On
structured meshes it is easy to show that £ = -1
yields a fully upwind scheme, £ = 0 yields semi-
upwind approximation (Fromm’s scheme), and k = 1
yields central differencing. The value £ = 1/3 leads
to a third-order-accurate upwind-biased scheme, al-
though third-order-accuracy is strictly correct only
for one-dimensional calculations. Nevertheless, &£ =
1/3 was used in the calculations presented herein.
With higher order spatial accuracy, spurious oscilla-
tions in the vicinity of shock waves are expected to
oceur. Some form of limiting is usually required to
eliminate these numerical oscillations of the solution
and to provide some kind of monotonicity property.
The flux limiter modifies the upwind-biased interpo-
lation Ur and U; and the Eqs.(4.16) and (4.17) are
replaced, respectively, by

Ut = Ur+ 51 = kar)A7 + (L + kar)(Us = U)]
(4.20)
Uy =Us - 2{(1- kA + (1+ kes)(Us - Up)]

(4.21)
where s is the flux limiter. The Van Albada limiter
employed in this study acts in a continuously differ-
entiable manner and is defined by

207 (Usy=Up) +¢
(A;)z +(Us=Ur)2+e¢

} (422

s; = max{0,

203 (U, - U +e
(A}')2 +Us=-Ur)?+e¢

where ¢ is a very small number to prevent division
by zero in smooth regions of the flow. Three options
exist concerning the choice of interpolation variables:
conservative variables, primitive variables, and char-
acteristic variables. Using limiters on characteristic
variables seems to give the best results. However, the
primitive variables are used in this study for the sake
of computational efficiency.

5. BOUNDARY CONDITIONS

The treatment of boundary conditions is very
important for rapid convergence to steady-state and
serves as non-reflecting boundary conditions for un-
steady computations.

On the solid walls, the normal velocity vanishes

b (4.23)

s; = maz{0,

u, =0 . (5.1

»

On the inflow and outflow, a characteristic anal-
ysis based on the 1D Riemann invariants is used to
correct the computed values of the flow variables at
the time step n+1. In the sequel, the' -indicates the
known linearized variables, i.e., quar 8 at the time
step n, the index ¢ designates the co:  ited variables
at the time step n + 1, and the it * represents
the modified variables at the tim 2 n+ 1 after
applying the boundary conditions

Note the eigenvalues and char  cristic variables

are
. o
t
A= Un W= (vn + £)/V2 (5.2)
Un +¢ p;_
Uy — C (-vn + pc)/‘/i
where v, and ©; = (:':) are normal and tangen-
t

tial velocity components. The number of boundary
conditions that has to be imposed is equal to the
number of negative eigenvalues. For supersonic in-
flow (v, < —c), all the eigenvalues are negative, and
therefore all the variables have to be imposed. In this
case, all the variables are simply reset to freestream
values. For subsonic inflow (—c¢ < v, < 0), four eigen-
values are negative, and one is positive. wy,ws,ws,
and w4 are defined by the freestream values, while ws
is determined from the computed state. The following
equations are then obtained:

P*—gf":Poo—ec-?'

Oew = Ttoo
Unx + %% = Unoo + %% (53)

~Uny + % = —Unc+ %%

By combining these equations, we get the unknown
variable 3

Pe = Poo + (B P2)

Unx = Unco + (ENT;:C'E&) (5.4)
f-;tt = ':"too

Px = %[Pco +pc + ﬁé(vnoo - vﬂc)] .

For subsonic outflow (0 < v, < c), only one eigen-
value is negative, and pressure is then imposed by the
freestream value. w;,w,, w3, and wg are determined
from the computed values. The following relations
are then obtained:

Px =Pc+(2mé1'—'2£)

Unye = Une + (EEP%BQ) (55)
Uty = Voo
Px = Poo -

For supersonic outflow (¢ < v,), all the eigenvalues
are negative, and therefore all the information comes

]




from' the domain. In this case, nothing needs to be
imposed and all the values are computed values.

6. TEMPORAL DISCRETIZATION

Equation(4.7) represents the time evaluation of
the unknown vector U;(t) at node I of the grid. As-
suming that the nodal values U} are known at time
t,, the solution is advanced over a time step At,
to time t,,; by an explicit multi-stage Runge-Kutta
time-stepping scheme given by

vy =Up

UI(P) =U§o)—apAt(ML)l-lR[(Uﬁp-l)) P= 1121"‘$m

U;H-l '= U}"‘)

with the parameters o, assigned appropriate values.
The scheme is second order accurate in time. For
steady state computations, implicit residual smooth-
ing and local time-stepping are used to accelerate con-
vergence to steady state. The residual smoothing al-
lows the use of larger CFL numbers than the one dic-
tated by the stability of the original scheme. This
is accomplished by averaging implicitly the residual
with values at neighboring grid points. These implicit
equations are solved approximately by using several
Jacobi iterations. The local time-stepping uses sepa-
rately a maximum allowable step size for each node
according to the local stability analysis.

7. NUMERICAL RESULTS

All the grids used here were generated by the ad-
vancing front technique [12]. All computations used a
three-stage Runge-Kutta time-stepping scheme with
local time stepping and implicit residual smoothing.
The computations were started with uniform flow and
advanced with a CFL number of 4. The L, norm of
density residual is taken as a criterion to test the con-
vergence history.

7.1 Channel with a circular bump on the lower wall
The first test case is the well known Ni’s test case.
It is a transonic flow in a channel with a 10% thick cir-
cular bump on the bottom. The length of the channel
is 3, its height 1, and its width 0.5. The inlet Mach
number is 0.675. This is a 3D simulation of a 2D flow.
This simple test case is chosen to assess both accu-
racy and convergence of the numerical scheme and to
validate the implementation of the code. The mesh,
which contains 13,891 grid points, 68,097 elements
and 4,442 boundary points, is depicted in figure 1b.
The convergence history is shown in Fig.la, where
a monotone convergence to computer machine zero
is observed. Fig.lc displays the computed pressure
contours in the flow field. The Mach number distri-
bution on the lower wall, shown in Fig.1d indicates
that there is only one grid point within the shock

structure; this demonstrates the sharp shock captur-
ing ability of Roe’s approximate Riemann solver for
the solution of steady problems.

7.2 Wing/pylon/finned-store configuration

The second test case is conducted for a
wing/pylon/finned-store configuration reported in
reference [13]. The configuration consists of a clipped
delta wing with a 45 degree sweep comprised from a
constant NACA64010 symmetric airfoil section. The
wing has a root chord of 15 in., a semi-span of 13
in. and a taper ratio of 0.134. The pylon is located at
mid-span station and has a cross-section characterized
by a flat plate closed at the leading and trailing edges
by a symmetrical ogive shape. The width of the pylon
is 0.294 in. The four fins on the store are defined by
a constant NACAQO008 airfoil section with a leading
edge sweep of 45 degrees and a truncated tip. The
mesh used in the computation is shown in Fig.2a. It
contains 274,953 grid points, 1,518,770 elements and
33,046 boundary points. The flow solutions are pre-
sented at a Mach number of 0.95 and an angle of
attack of zero degree. Figures 2b and 2c show the
pressure contours on the upper and lower wing sur-
face, respectively. The computed pressure coefficient
distributions are compared with experimental data at
two spanwise stations in Fig.2d. The comparison with
experimental data is excellent on both the upper and
lower surface up to 70 percent chord. As expected
from the Euler solution, the computation predicts a
shock location which is downstream of that measured
by the experiment due to the lack of viscous effect.

7.3 ONERA M6 Wing configuration

The third, well documented case is the transonic
flow over the ONERA M6 wing configuration. The
M@ wing has a leading edge sweep angle of 30 degree,
an aspect of 3.8, and a taper ratio of 0.562. The airfoil
section of the wing is the ONERA "D” airfoil, which
is a 10% maximum thickness-to-chord ratio conven-
tional section. The flow solutions are presented at
a Mach number of 0.84 and an angle of attack of
3.06. The grid adaption scheme was used for this
test case. The final adapted mesh contains 133,206
grid points, 738,669 elements, and 17,155 boundary
points after two levels of refinement. The refinement
of high gradient regions such as shocks, leading edge
and wing tip is well captured. The final adapted up-
per and lower surface meshes are shown in Fig.3a.
The pressure contours on the upper wing surface and
lower surface, are displayed in Fig.3b, respectively.
The upper surface contours clearly show the sharply
captured lambda-type shock structure formed by the
two inboard shock waves, which merge together near
80% semispan to form the single strong shock wave
in the outboard region of the wing. The computed
pressure coefficient distributions are compared with
experimental data [14] at four spanwise stations in
Fig.2c. The results obtained compare closely with
experimental data, except at the root stations, due to
lack of viscous effects.

7.4 F-18 fighter configuration
The final case is a complete F-18 fighter con-




figuration, which includes the wing, horizontal and
vertical tails, and flow-through engine ducts. The
mesh, which contains 93,642 grid poiats, 505,087 el-
ements and 15,421 boundary points for the half-span
airplane, is shown in Fig.4b. The computations were
performed at a free stream of Mach number of 0.9 and
an angle of attack of 3 degrees. The convergence his-
tory is depicted in figure 4a. The solution is converged
to engineering accuracy (a decrease of a four order-of-
magnitude in the L, norm of the density residual) in
1300 time-steps. It required a total of 10 CPU hours
on a single processor Cray 2. The computed pressure
contours on the surface of the airplane are shown in
Fig.3c. Some of the features occurring in this flow
regime, such as the canopy and wing shocks, are well
captured.

8. CONCLUSIONS

An edge-based upwind finite element scheme has
been developed for the solutions of the compressible
Euler equations on unstructured grids. The numerical
scheme has been tested and validated on some well
documented configurations. An example application
is presented for a complete F-18 fighter configuration
to demonstrate the accuracy and robustness of the
proposed algorithm.
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APPENDIX

In this appendix, the evaluation of inviscid fluxes
using an edge-based data structure is derived.
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order to derive the desired formula. ly using the
Green’s formula, we obtain
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Using Eq. (2), Eq (1) can be written as
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For an interior point, the boundary integrals can be
dropped and the right-hand-side becomes
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