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ABSTRACT

This dissertation presents a method for reducing the Dumber of parametric un-

certainties used in the design of a robust Ho, controller. The resulting controller is

shown to meet robust stability and performance requirements in the presence of all

the modeled uncertainties. The approach used involves grouping parametric vari-

ations affecting the same open loop eigenvalue, then scaling one or more of these

variations to accommodate the eigenvalue change caused by all the parametric un-

certainties. This method is effective in those cases where a large number of parametric

uncertainties cause current computer aided design software to fail to find a robust

controller for the plant.
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I. INTRODUCTION

A. PROBLEM STATEMENT

The advent of H,. synthesis and associated robust stability analysis techniques

has provided a process for designing controllers which are capable of meeting es-

tablished performance criteria and remaining stable over a wide range of operating

conditions and parameter uncertainties. To be successful, however, this process re-

quires that all uncertainties and variations in the plant be quantified and included in

the plant model. Modeling the pld.nt in this manner may result in either a high order

system or a system severely constrained by the number of uncertainties. Current

computer aided design (CAD) software often cannot find a solution when the system

order becomes quite large or when a large number of uncertainties are present in the

plant model. This does not imply that an appropriate controller does not exist, only

that current techniques are inadequate in these cases. A new technique is required

that provides for the use of current H, synthesis methods and software, but results

in a controller design which is stable and has acceptable performance over all plant

variations. In this dissertation we will present a technique for finding a robust H,,

controller in specific cases where the present design methods fail.

B. HISTORY

The period of modern control is delineated by state-space analysis of systems and

the development of optimal Linear Quadratic Gaussian (LQG) controllers. The LQG

design techniques, however, largely ignored uncertainties in the system and the stabil-

ity margins of Linear Quadratic Regulator (LQR) controllers with full state feedback



proved elusive when combined with Kalman Filter estimators (Doyle, 1978). Re-

cently, two new techniques for controller design and stability analysis of multi-input

multi-output systems have been introduced, Structured Singular Value analysis and

H,, synthesis.

Structured Singular Value (SSV) analysis, also referred to as P analysis, pro-

vides a mechanism for determining the stability and performance of a system in the

presence of the uncertainties defined in the plant model. The SSV and an equiva-

lent measure, the Multivariable Stability Margin, were introduced in 1982 (Doyle,

1982)(Safonov, 1982). While providing a definition for determining the stability of

a system with uncertainties, no closed-form solution exists for fiading the SSV or

Multivariable Stability Margin. It is possible, however, to calculate reasonably tight

bounds on the measure of stability margins. A considerable amount of effort has

been placed on reducing the conservative nature of the upper bound, particularly

since the method for calculating the bound does not distinguish between real and

complex uncertainties. Methods for calculating the actual SSV for real variation

in the plant parameters using interative computational techniques (de Gaston and

Safonov, 1988) and polynomial methods (Elgersma, Freudenberg and Morton, 1992)

exist, but are unwieldly and not suited for most design work. Recent research has

also suggested a method for obtaining an uncertainty model which ensures that the

number of parametric uncertainties included in the model is a minimal set (Belcastro

and Chang, 1992).

H.. synthesis provides a method for the design of a controller which minimizes

the peak magnitude of the closed-loop frequency response of appropriately modeled

systems. The first H.. controller design methods were computationally difficult and

resulted in controllers having many more states than the plant (Zames, 1981),(Fran-

cis, 1987). A breakthrough in 1988 provided a design technique which, similar to

2



LQG, involves solving two Riccati equations and results in a controller of the same

order as the plant (Doyle, Glover, Khargonecker and Francis, 1988). By appropriately

defining uncertainties in the model and adding performance weighting functions to

the system, it is possible to design a controller using H,, synthesis which, when tested

using SSV analysis can be shown to be stable and meet performance criteria over

all variations quantified in the model. The controller design may fail as mentioned

above, however, when the plant model is of high order or there are many uncer-

tainties in the plant. Despite the recent advances in uncertainty analysis and H,,

synthesis, the problem of finding a controller which is tolerant of these uncertainties

still remains.

C. SUMMARY OF THIS WORK

In this dissertation we propose a method for reducing the number of real para-

metric uncertainties with which the H,, control algorithm must contend. The tech-

nique involves grouping uncertain parameters which affect the same open loop eigen-

value, then scaling one or more of these to accomodate the effect on the eigenvalue of

all the parameter variations. It is then shown that the resulting controller is stable

in the presence of all the uncertainties while still meeting the performance criteria.

The remainder of this dissertation is organized as follows. Chapter II provides

a summary of robust multivariable control, including the use of the structured sin-

gular value for stability analysis and the state-space equations for designing an H,,

controller. Chapter III introduces sensitivity theory, where we show how parameter

uncertainty affects the eigenvalues of the open loop system. The technique for group-

ing parameters which affect system eigenvalues similarly and scaling one or more of

the parameter uncertainties to account for the changes caused by all the variations

is demonstrated. This technique is then applied to the design of control systems for

3



three systems in Chapter IV, a simple four state system and two missile systems. In

Chapter V we provide conclusions and suggested areas for further research.
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IH. ROBUST MULTIVARIABLE CONTROL

Robust multivariable control involves the design of feedback controllers for sys-

tems with specified uncertainties which meet established performance and stability

criteria. For purposes of this work, we define stability and performance criteria for

systems with feedback control as follows (Dailey, 1990):

* Nominal Stability: stability of the nominal, unperturbed system.

9 Robust Stability: stability of the system for a given set of perturbations to

the nominal model.

* Nominal Performance: the nominal system meets one or more requirements

for closed loop performance.

* Robust Performance: the system meets performance requirements and re-

mains stable for a given set of perturbations to the nominal model.

A robust H,, controller is a feedback controller for which the closed loop plant exhibits

robust performance as defined above. The concept of uncertainty in system modeling

is presented in Section A. We define a measure of robust stability, the structured

singular value, and also introduce performance robustness in Section B. Ho, control

theory and the design of robust H. controllers is described in Sections C and D.

A. UNCERTAINTY

A linear, time invariant model of a physical plant often provides an adequate

mathematical representation of the actual system. The model is characterized by



parameters which are chosen to describe the system at a given operating condition,

such as when the system is at rest or in an expected steady-state condition. A plant

model defined in this way is termed the nominal plant model. In most instances, this

nominal model is but one of an infinite number of models required to actually describe

the plant at any moment in time. Variations in the plant model from the nominal

conditions are manifested in three ways. First, a number of parameters used to

describe the nominal plant may be uncertain, or known only within some measurable

tolerance. Examples of this are uncertain pole locations or damping factors. Secondly,

certain plant dynamics may have been ignored in the nominal design, such as high

frequency dynamics. Lastly, parameters of a system may vary as operating conditions

of the physical plant change. This is quite common in aircraft and missile control

system design, where changes in angle of attack and vehicle weight can dramatically

affect the aerodynamic coefficients, which in turn affect the dynamics of the plant.

Hereinafter, any of the above manifestations which cause the true plant to vary from

the nominal plant will be deemed uncertainties.

1. Unstructured Uncertainty

Consider the plant model shown in Figure 2.1. The actual plant varies from

the nominal plant by the uncertainty Ai(s):

G(s) = G.(s)[J + Ai(s)]

where Ai(s) represents a frequency dependent uncertainty in the plant dynamics. An

uncertainty represented in this manner is termed an input multiplicative uncertainty

and it can ,e used by a designer to represent unmodeled dynamics in the plant. To

this uncertainty we associate a weighting function which indicates a bound on the

magnitude of the uncertainty as a function of frequency. For example the input un-

certainty weighting function shown in Figure 2.2 indicates a 50% modeling error in

6



r - - - - - - - - - -

Figure 2.1: System with input multiplicative uncertainty

the plant below 10 rad/sec and a 100% error at 173 rad/sec (Balas, Doyle, Glover,

Packard, Smith 1991).

For purposes of our analysis it is convenient to parameterize the uncertainty

in a normalized fashion. As a way of illustration, Figure 2.3 shows how the uncer-

tainty Ad(s) is decomposed into a frequency dependent weighting function W, (s),

indicating the largest singular value at each frequency of the uncertainty, and a nor-

realized uncertainty A(s) having an infinity norm not exceeding one. The system

represented in this way is said to be in standard form, with the plant described by the

nominal plant with associated weighting function designated as P(s). The transfer

function matrix P(s) now has two inputs, an uncertainty input wd and an exogenous

input w, and two outputs, an uncertainty output yd and a reference output y. The

perturbation block A can vary in both magnitude and phase, constrained only by

1IAII. < 1. Such an uncertainty is termed an unstructured uncertainty.

Another type of uncertainty is the inpu' feedback uncertainty, depicted in

Figure 2.4. This type of uncertainty can be used by the designer to provide gain and

phase margins in design of the H. controller as described in Appendix C. Both input

7
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------------------------------------- 1

'P(S)

IIY

Wd i

Figure 2.3: Uncertain system in standard form

G(9)
IAJ't(s)"

+ !)

L - - - - - - - - - - - - - J

Figure 2.4: System with input feedback uncertainty
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L j

A, 0
0 A2

Figure 2.5: Standard form for two uncertainties

multiplicative and feedback uncertainties will appear in the examples of uncertainty

reduction in Chapter IV.

2. Structured Uncertainty

Figure 2.5 shows a feedback uncertainty in standard form combined with

an input multiplicative uncertainty. The perturbation block A now has two blocks

along the diagonal, A1 and A 2, with scaling provided such that U4AJOO < 1. In this

structure, the perturbation block is no longer free to vary in all elements, as the

off diagonal blocks are now zero. Two or more uncertainties presented in this way

become structured uncertainties. An unstructured uncertainty is a special case of

structured uncertainty, where the perturbation consists of only one block.

The uncertainties presented above describe very general variations in the

system transfer function. Very often, however, the designer has some knowledge

about the specific variations of the parameters in the plant model. The tolerance

to which the parameters have been mearsured may be known or the parameters

may vary in some prescribed manner according to the operating conditions. These

10



Figure 2.6: System with parametric uncertainty

uncertainties, characterized by real scalar variations of certain parameters, are termed

parametric uncertainties.

As an example, Figure 2.6 shows a two state system with uncertainties in

the pole locations plo and p2o. The uncertainties 6b and 62 are defined to lie in

some region constrained by bi E [-cl, I]1] and 62 E [-C2, +f2]. The same system

is shown in its standard form in Figure 2.7. Although the uncertainties b, and 62

are real scalars, the perturbation block A is restricted only by its diagonal structure

and infinity norm; A, and A 2 may take on complex values. The design and analysis

techniques presented in this chapter do not distinguish between real and complex

perturbations, therefore real parameter uncertainties are treated as being complex

valued. It is this assumption of complex blocks in the perturbation matrix which will

subsequently allow us to reduce the number of parametric uncertainties needed for a

robust controller design.

11
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L .3
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Figure 2.7: Parametric uncertainty in block diagonal form
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B. ROBUST STABILITY

A nominally stable feedback system can become unstable in the presence of

uncertainties in the nominal plant model. When designing feedback systems, we

need a stability measure other than just stability of the nominal system, and therefore

introduce the concept of robust stability as a measure of a system's stability in the

presence of uncertainties in the plant. In this section we will define a measure of

robust stability and describe the method used for its determination.

1. Stability Robustness

Consider the system in Figure 2.8 showing the uncertainty block A. The

plant P(s) contains the nominal plant and uncertainty weightings such that IiA(s)W o :_

1. Associated with the system is a feedback controller K(s) designed on the basis of

the nominal plant to meet given specifications. The inputs to P(s), wd, w and u are

the uncertainty inputs, exogenous inputs, and control inputs, respectively. The out-

puts Yd, y and m are the uncertainty outputs, reference outputs and measurements,

respectively.

By combining P(s) and K(s) into a single block M(s), the system can be

represented as in Figure 2.9, with its transfer function M(s) partitioned as

Y[ ]= MM(s) M12(s) Wd

y1 M21(S) Al2 (S) JW [ I
Since the compensator for the system, K(s), is designed for the nominal plant, the

system M(s) is nominally stable. To guarantee that the closed loop system will

remain stable, we need only show that the loop containing the perturbation matrix

is stable for all perturbations. Due to the normalization of the perturbation matrix A,

only the transfer function from wd to Yd, namely Mu(s), need be analyzed. Using the

stability analysis results from Appendix B, a sufficient condition for robust stability

13



Wd Y

U m

Figure 2.8: Standard form for an uncertain system with feedback control

- ~A(s) I"I

Wd l Yd

wI M(S) Y

Figure 2.9: Model for robust analysis
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for all A E A such that IIAIIo < 1 is

IIM1f11I < 1. (2.1)

We observe, however, that the only constraint this result places on the perturbation

matrix is a bound on the infinity norm; off diagonal elements are free to assume a

non-zero value. As presented earlier, though, the perturbation matrix for structured

uncertainties is actually block diagonal. The stability criterion in Equation 2.1 is thus

too conservative (Doyle, 1982). In the next section, we will exploit the structure of

the perturbation matrix and develop a less conservative criterion for robust stability.

2. The Structured Singular Value

An alternative to Equation 2.1 for determining robust stability can be de-

duced from Figure 2.9. Stability in the loop containing the perturbation requires

that for all frequencies

det{I + MAI # 0 for all A E A (2.2)

where A is the set of all possible perturbation matrices. Doyle has defined a function

which can be used to define the necessary and sufficient conditions for stability, the

Structured Singular Value (SSV), .s(M) (Doyle, 1982). When Equation 2.2 holds,

this function has the property

a(A)p(M) < 1 (2.3)

where a(A) is the maximum singular value of the perturbation matrix A. The SSV

is defined as

P( f 0 if no A E A solves det(I + MA) = 0
1 {minAEA(a(A) I det(J + MA) = 0)1' otherwise

15



It can be shown that the SSV has the following properties (Doyle, 1982):

1. F(oM) =1 aI M)

2. p(I) = 1

3. p(AB) < 5(A)p(B) A,B complex matrices

4. p(A) = a(A)

5. DAD-' =A VDEV

6. p(DMD-') = p(M) D a nonsingular diagonal matrix

7. max p(UM) < p(M) < infDEv &(DMD-1 )

where p(X) is the spectral radius, or largest eigenvalue, of X and the two sets V) and

U are defined as

V = diag(dlIk1,d 2Ik,,...,d, lkj), di 1 R;

U = diag(U,,U 2,...,Un),lUiEC"kk, Ui•U=-lk,.

and Ik is the k x k identity matrix. Unfortunately, the SSV cannot be analytically

determined from its definition. Numerical methods for computing the SSV exist,

however they are extremely cumbersome and not appropriate for most design work

(de Gaston and Safonov, 1988). We shall therefore use Property 7 and calculate the

bounds for the SSV. These bounds are used in design and analysis in place of the

actual SSV.

a. Calculating bounds for the SSV

Property 7 above provides upper and lower bounds for the SSV. Doyle

(Doyle, 1982) has proven that the lower bound of p, given by

max p(MU) < p(M) (2.4)
UEU

16



is actually an equality. This problem is not convex, however, and local maxima can

e rist. The upper bound for p is given as

p(M) < inf ,(DMD-). (2.5)

DEV

Determining this bound is a convex optimization problem and it has one minimum

which has to be the global minimum. The minimum value of a(DMD-2) can be

efficiently computed using one of several optimization algorithms. This upper bound

has been found to be generally tight, usually within 5% to 15% of the SSV. In the

remainder of this dissertation, we will use the SSV, or "mu" to describe the bound

defined by Equation 2.5. The actual value of p(M), when needed, will hereinafter be

referred to as the real p.

3. Performance Robustness

A number of performance criteria can be defined by bounding iIT lc,, ,
where T. is the transfer function from the set of exogenous inputs w to the set of

error measurements y. By appropriately weighting the output vector y, we define the

performance criterion such that it is bounded by

IITY II- < 1 (2.6)

when the desired performance requirements are met (Bibel and Malyevac, 1992).

A system is said to possess nominal performance if the bound in Equation 2.6 is

satisfied for the nominal plant. The system is said to possess robust performance

if the system remains stable and meets the performance criteria in the presence of

all uncertainties. Robust performance requirements can be included in SSV analysis

by adding a block A, as a diagonal term of the uncertainty matrix A, as shown in

Figure 2.10. The reason why we take this approach is because, in this way, robust

performance and robust stability can be addressed within the same framework. The

17



S~0 AP

Figure 2.10: Model for robust performance

performance block Ap E Crxg, where r is the number of exogenous inputs and q is

the number of error measurements. The augmented uncertainty inputs and outputs

for the plant are now defined by

[Wd--

Wd W

Expressed in this form, the test for robust performance now involves computing

the SSV for the entire system M(s), rather than just Ma1(s) as in the case of ro-

bust stability. The system will therefore exhibit robust performance provided that

y(M) < 1. It is worth noting that performance robustness is a more stringent test

than stability robustness.

C. Hoo CONTROL THEORY

The use of H,, control theory to design a feedback controller for a multi-input

multi-output plant is introduced in this section. H. design involves minimizing
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K(s) n:

Figure 2.11: Model for H. controller design

the peak value of the frequency response magnitude of selected closed-loop transfer

functions. The efficacy of the resulting design in the presence of uncertainties and

performance criteria is then analyzed using the techniques described in the preceding

sections.

1. H,, Optimization

Consider the system shown in Figure 2.11. The variables are defined as

follows:

"* w E 7Rml is the input disturbance vector, including uncertainty inputs, reference

inputs and disturbances,

"* u E IZm2 is the control vector generated by the controller,

"* 31 E 7ZPI is the error vector containing those signals we desire to minimize,

"* m E IZP is the measurement vector, and input to the controller.
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Since the system is assumed to be linear time invariant, by partitioning the plant

P(s) we can write the outputs in terms of the inputs as

Y 1-P(s) [* W'] P1 1(S) P12(3) ]W]
m u P21 (s) P22(s) u

or, equivalentl,

Y = PnIw+P 12u

M = Pnw+P22u

Under closed loop conditions where u = Kin, we can relate the disturbance w to the

error signal y as

Y = [Pu + P12K(I- P22K)-'P2 ,)]w = .JI(P,K)w.

where Fj (P, K) is termed the lower linear fractional transformation of (P, K). Using

the above definitions for w and y, it is possible to put a number of design problems

into the form

minimize II7F(P, K)II.l (2.7)

This is the H•-optimization problem.

2. Solution of the H,, optimization problem

A state-space solution to Equation 2.7 is summarized here (Doyle, Glover,

Khargonekar and Francis, 1988). The system in Figure 2.11 can be described in state

space form as

i(t) = Ax(t)+ Bjw(t) + B2u(t),

y(t) = Cj-r(t)+Djw(t)+DD2u(t),

m(t) = C2z(t) + D2 iw(t) + D2u(t).
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All uncertainty and performance function weights are assumed to be included in this

plant. The plant P(s) now has a transfer function which can be expressed in matrix

form as

FDs) D ~ 12 1+ C1  (s1 - A)-[B1 B2].
[(1 )21 D22 J I IC 2 I

For convenience, the plant is often symbolically expressed as

'AB, B2 "1
P(s) C, D1 2[C2 D21 D22

which is not a transfer function matrix, but rather a compact way of expressing P(s).

The minimization called for in Equation 2.7 has no convenient closed form solution,

so we will instead solve a related problem and find a controller such that

II.(P, K)II <i, -E R (2.8)

where -y is a predetermined parameter. This will involve solving two Riccati equations

requiring the following constraints on the system P(s):

1. (A, B 2, C2) is stabilizable and detectable.

2. rank D12 = M 2 ; rank D21 = p2.

3. D)D12 = I; D21D1 = I; (For D12 and D21 full rank, scaling can be used to

make this constraint true.)

4. Du = 0; D22 = 0.

5. rank [ A-jwI B 2 E
I C, D12 ] 1 R

6. rank[ A-jwI B] = VWE]Z
.C2 D21 1
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Denoting the solution to the algebraic Riccati equation ATX + XA - XRX + Q = 0

in the Hamiltonian matrix form

X = Ric [A -R]

we now define two matrices X. and Y.. as the solutions to

T T2X[ =Ric A 7-B JB-BB (2.9)Xo - Rc_CTCI -1AT

and
= [ ATr ~-CcrcACr2 C] (2.10)Y,,. = Ric AB2.10

I I -A]

Defining three intermediate terms

Z = (I - - 2YX)-I;

F = -B2X;

L = -YC2,

the state-space form of the controller K(s)

ic(t) = Acxc(t) + Bon(t)

U(t) = CoXo(t)

is defined by the matrices

AC = A + -y2 B IBTX + B2 F + ZLC2 ;

B, = -ZL;

C, = F.

The following conditions must be met for a compensator K satisfying Equation 2.8

to exist:
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1. The solution to Equation 2.9, X., is positive semidefinite and the associated

Hamiltonian has no imaginary eigenvalues.

2. The solution to Equation 2.10, Y,, is positive semidefinite and the associated

Hamiltonian has no imaginary eigenvalues.

3. The spectral radius p(XoYoo) < "y2.

The controller that minimizes the cost function in Equation 2.8 is found by iteratively

reducing -y, with the initial value selected large enough to meet the above criteria.

The value of "y is reduced using the bisection method until no improvement in -Y is

acheived (Doyle, Glover, Khargonekar and Francis, 1988). A method for finding the

minimum value of y without iteration has been suggested by Chen, Saberi and Ly

(Chen, Saberi and Ly, 1992).

D. D-K ITERATION

The design of an H. controller using the procedure of the previous section

does not imply robust stability or performance. The algorithm generates a controller

which only guarantees stability of the nominal closed loop system and minimizes

IIYi(P, K)IIo. The resulting closed loop system must still be tested for performance

robustness as described in Section B. If the resultant structured singular value is

not less than one, the system must be modified and another controller designed. We

now introduce the technique for designing a closed loop system that has performance

robustness. This technique uses H. control design on an augmented plant and

iteratively modifies the plant with frequency dependent weighting functions.
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K(s)

Figure 2.12: Model for D-K iteration

1. Modifying the Plant With D-Scales

Recalling from Equation 2.5 that the actual measure of robustness is the

SSV and not the maximum singular value, the problem stated in Equation 2.7 can

be more accurately posed as

minimize IID.F,(P, K)DO-1 jji, (2.11)

where D = D(s) is a frequency dependent, nonsingular diagonal scaling function

matrix. It can be shown that in this way we attempt to minimize the SSV rather

than the maximum singular value (Dai!ey, 1990).

The appropriate D-scales are selected in the same manner as in the Struc-

tured Singular Value problem and appended to the plant as shown in Figure 2.12. A

new H., controller is then designed for the augmented plant and tested for robust-

ness. This process of controller design, robustness testing and D-scale augmentation

is called D-K iteration and continues until the maximum value of the SSV is less than

one or no further reduction is possible. If the iteration procedure does not succeed
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in designing a robust controller, the uncertainty weights or performance criteria in

the plant P(s) must be modified and the above design process repeated.
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III. PARAMETRIC UNCERTAINTY
REDUCTION

The concept of plant uncertainty has been introduced in Chapter II. As men-

tioned in Chapter 1, current Ho synthesis techniques may fail to design a robust

controller when all the known uncertainties are included in the plant model. In this

chapter we present a technique for reducing the number of parametric uncertainties

used in the design of a robust Hoo controller. This reduction is accomplished by using

sensitivity theory to identify groups of parameters whose variations affect the same

open loop plant eigenvalues, and then quantifying their effect on the eigenvalues. The

variation in one or more of these parameters is then scaled in a manner which causes

the same effect on the eigenvalue when acted upon by all the uncertainties. An Hoo

controller is designed for the system with the reduced number of uncertainties and

tested for robustness with the system containing the original uncertainties.

Sensitivity theory and the procedure for quantifying the effects of parameter

variation on the eigenvalues of the open loop system is described in Section A. A

technique for reducing the number of uncertainties used for designing a robust Hoo

controller is presented in Section B.

A. SENSITIVITY THEORY

In this section we present a discussion introduced by Frank (Frank, 1978) of

the effect of real parametric uncertainties on the nominal plant. We will be most

concerned with the effect the parameter variations have on the system eigenvalues.

The approach taken will be based on sensitivity theory by developing an appropriate

sensitivity function. This function, not to be confused with the sensitivity transfer
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function of the closed loop system, relates the change in the parameter of interest to

ipecific characteristics of the plant. We first present the underlying Eheory in general

form and then define the sensitivity function relating changes in plant parameters to

changes in the open loop eigenvalues.

1. General Discussion

Let the parameters which describe a system be represented by a vector

a = [IC, v2,... , ,,]T. The paraireter vector is uncertain around a nominal vector

00, which can be written as

a = ao + Act. (3.1)

For linear, time invariant systems, the plant and input matrices are a function of a,

e.g.,

= A(a)x + B(a)u. (3.2)

We now introduce a general function, C = ý(a), which characterizes some behavior

of the system, for example a performance index, set of eigenvalues or the state of the

system.

Defining the nominal system function by 4o M ý(ao), the absolute sensitivity

function is defined by

()o S(o i = 1,2,...,m (3.3)

with St., i = 1, 2,... , m relating the change in ý to a change in each parameter a,.

For small perturbations, the total perturbation of ý due to changes in a is computed

as

AC = , SCAaj. (3.4)
i=1

We next discuss the method for determining the Sensitivity Function.
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a. Calculating the sensitivity function

The plant parameter vector a contains elements which can be functions

of time varying parameters themselves, such as mass, angle of attack, etc. The

element ai can then be represented as ai - o(pjp ,... ,p,), with the nominal

vector denoted by po. The goal now is to derive the sensitivity function for ý based

on changes in p:

", i p P., j=l ,2,...,r (3.5)

Applying the chain rule, we can write

... = aa-- + -- -aa + ... + -- , j=l,2,...,r. (3.6)
apj ok, opj 0a2 Op. O.. 9pm '

Evaluating this at a, = a(po), and using the definition of SJ,(a 0 ) in Equation 3.3,

Equation 3.5 now becomes

i S." 1oi p) " 1, 2,. .,r (3.7)
i=1 v 0

3

and the total parameter-induced uncertainty can be expressed asr M: 0o,ý =-- E S., .I.Apj (3.8)

j=1 i=1 aP.

The quantity Oaa/Op, must be defined for each choice of the parameter vectors a and

p. In the next section, Equation 3.8 is applied to the eigenvalue sensitivity problem.

2. Eig. nvalue Sensitivity

We now consider the case where C is the eigenvalues of the system and

a = aj the elements of the plant matrix in Equation 3.2. We define the eigenvector

sensitivity as follows:

Given an LTI system with dynamics defined by Equation 3.2 with A =

A(ai,), A E IV"•" and a,, the elements of the matrix A having eigenvalues Ak, the
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sensitivity function relating perturbations in the eigenvalues to perturbations in the

elements ai is given by

8a (3.9)

whe.e a. represents the nominal values of the matrix A.

To develop a method of computing this sensitivity function, we first define

the right and left eigenvectors vi and wi associated with the eigenvalue Ai of the

system described in Equation 3.2. The right eigenvectors vi, (i = 1,2,.. ., n) are

defined by Avi = Aivi and the left eigenvectors wi, (i = 1,2,... , n) by Arwi = Ai'i.

Letting A equal the diagonal matrix of eigenvalues Ai and defining v = [VI, v2 ,. . ., v,n]

and w = [w1, w2, ldots, wn], the matrix form of the eigenvec-or relations become

A = .

An

Av = vA

ATW = wA

The right and left eigenvectors are normalized such that wTV = VTW = I where I is

the identity matrix. Using the above equations, we can now write A as

A = wTAv.

It can be shown that the sensitivity matrix S'I is directly related to the left and

right eigenvectors as

Si• _ 1a00), =wkVk, i,j,k= l,2,...,n (3.10)

We now describe the method for determining the term Oaj/Op. We define

a perturbed parameter vector

p =P + P, P2 + Ap 2 ,...,p, + Ap7 ]
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For small perturbations around the nominal vector, Oaao/ap can be approximated by

Aa%/Ap. The tenns Aaji are the elements of the matrix

A = A(ao) - A(a)

where a = a(p').

For one parameter variation, Ap = Apt, and Aaij/Ap = Aai 1/Apt. The chain rule

is used to find the eigenvalue sensitivity aAh/8p1

7Ak _ O", 9 = 1,2,...,j I=1,2,...,T (3.11)

Recognizing e9Ak/laij as the eigenvalue sensitivity function from Equation 3.10 and

assuming small perturbations, Equation 3.11 becomes

AAk1,2 r (312)
p- = E , Ap

API i=1 j=1

This equation provides a numerical method for deter;mining the sensitivity of each

eigenvalue to any parameter in the system. In the next section we will investigate

the problem of changes in the eigenvalues and present the procedure for dealing with

perturbations not infinitesimally small. A two state example will be presented which

uses the methods described in this chapter to calculate eigenvalue sensitivity.

B. UNCERTAINTY REDUCTION

The theory for calculating the sensitivity of system eigenvalues to small vari-

ations in plant parameters was derived in the previous section. Not all the system

parameters, however, affect the eigenvalues. In this chapter we deal only with those

parameters that affect the eigenvalues of the open loop system, and the example in

this section will illustrate that each parameter typically affects only a small num-

ber of eigenvalues. We will show that by grouping parameters that affect the same

eigenvalue, a single parameter can be scaled and used in the controller design to
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accommodate all the uncertainties of the grouped parameters. In subsection 1 the

effects of parameter variations on the eigenvalues are illustrated, and the case of

large perturbations will be included. In subsection 2 an example is presented which

incorporates the techniques previously developed.

1. Calculating the Eigenvalue Sensitivity

In Section A, the sensitivity of the kth eigenvalue of a system, Ak, to vari-

ations in a single parameter p, was defined in Equation 3.12. In order to select an

appropriate parameter for scaling, we first describe the manner in which parameter

variations affect pole locations, showing that the maximum eigenvalue change will

occur for some combination of the maximum parameter variations. Procedures for

dealing with perturbations large en.ough that the Sensitivity Function changes sig-

nificantly over the parameter variation, which is often the case, will be discussed

next.

a. Behavior of eigenvalues

In this section we consider the perturbation of a single real eigenvalue

or a pair of complex eigenvalues. First, consider one eigenvalue of a system in the

complex plane. The eigenvalue is determined by the equation

A + a = 0

where a = a(p), the parameter vector of the system. The variation in the pole

location is

AA = --Aa (3.13)

where Aa = a(po) - a(po + Ap). Figure 3.1 describes a one state system with two

uncertain parameters, P = P, + AP and K = Ko, + AK. The characteristic equation
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Figure 3.1: Uncertain one state system

of this system is

A + •K-" = 0. (3.14)

From Equation 3.14, it is apparent that the maximum eigenvalue change will occur

for some combination of the maximum parameter perturbations.

In the case of complex roots, the eigenvalues are the solutions to

x2 +6A + -= 0 (3.15)

where P = 6(p) and -y = y(p). The relationship between the parameter variations and

AA is best illustrated by an example. Consider an uncertain system with complex

eigenvalues as shown in Figure 3.2. For the time being, the eigenvalues are assumed

to remain complex over the full range of parameter variations. (This constraint will

be removed later.) In this particular case, the characteristic equation of the system

is given by

A2 + P 1I- P2• p+ = 0 (3.16)

with roots

S= 2 (3.17)

The variation in the real part of the pole is due entirely to variations in P1. The

variation in the imaginary part of the eigenvalue is due to variations in both P1 and
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Figure .2: Uncertain two state system

P2 . Note that variations in P2 only affect the imaginary part of the eigenvalue. From

Equation 3.17, it is clear that as with a purely real pole, the maximum eigenvalue

change will again occur for some combination of the maximum parameter variations.

It will also be shown that the sensivity to change depends on the direction in which

we move the pole, and in some instances the sensitivity remains constant throughout

the change.

In general, most physical systems will be found to have parameter vari-

ations large enough that the eigenvalue sensitivity will vary considerably over the

entire range of values. In uncertainty reduction we will be most concerned with the

maximum change of the eigenvalue, which occurs at the extreme of the parameter

variations. In practice, sensitivities for all parameters are calculated first for the

nominal case. Sensitivities for the maximum perturbation case are calculated only

for a select number of parameters, as described in the following section, where we also

show that the point of maximum eigenvalue sensitivity will be of the most interest.
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[P2]

Figure 3.3: Two state system with three uncertain parameters

2. Uncertainty Reduction

We will now detail the steps necessary to determine the eigenvalue sensitiv-

ity, group parameters affecting the same eigenvalues and scale a parameter variation

to accommodate the maximum change in pole location. To illustrate, let us con-

sider a numerical example. The uncertain two state system shown in Figure 3.3 is

characterized by the parameters P1, P2, and KI, where

P1 = P1 + bp1

P2 = P2, + ,P2

K1 = Klo + 6Ki

The nominal parameters and associated uncertainties are

P1 0 = 8

P20 = 2

K10 = 100

bpi E f-0.4 -P10, +0.4 - P1"]
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TABLE 3.1: EIGENVALUE SENSITIVITY

Eigenvalue Sensivitivy
Parameter Evaluated at AA/Ap I AA/Ap I

Pl, -50 ± j28.5 57.3
pl plo + Apl,.. -50 ± j48.1 69.3

plo - Apl,,,,: -50 ± j15.6 52.4
p2o 0 :F j4.1 4.1

p2  p2o + Ap2,a0  0 : j3.3 3.3
p2 o - AP2ma, 0 T 35.9 5.9

k1o -0.07 :F jO.04 0.080
k1 k1o + Aklm,, -0.07 :F0 j.03 0.076

k1o - Akl•m, -0.07 : j0.05 0.088

6 P2 E [-0.4 P20 ,+0.4. P2,]

bKj E [-0.2- K1o, +0.2- Klo]

The pole locations for the nominal system are shown in Figure 3.4, along with the

pole motions for the above parameter variations. Note that the variations in P1

and KI result in real and imaginary perturbation of the pole locations, while the

variation in P2 results in purely imaginary motion of the poles. (This is consistent

with Equation 3.17.)

Using the techniques described in Section A, the eigenvalue sensitivities from

Equation 3.12 for nominal and maximum perturbation cases are listed in Table 3.1.

It is easy to see how the sensitivity changes as the parameters vary.

As discussed in Chapter 2, the parametric uncertainties can be arranged in a

block matrix as shown in Figure 3.5. The perturbation block A has real scalar values

on the diagonal and all other elements equal to zero. The only restriction placed on

the perturbation block by the H., control algorithm, however, is that the frequency

response have a bounded infinity norm. The elements in A, although real, may

in practice assume complex values without affecting the controller design process.

Without loss of generality, then, we can express each element in A as a bounded
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Figure 3.4: Nominal and perturbed pole locations
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Figure 3.5: Block diagram for parametric uncertainties
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magnitude with arbitrary phase. As an example, Figure 3.6 shows the nominal pole

location along with variations in P1 with magnitude I API 1,. and phase varying

from 0 to 27r. The pole motion describes a circle around the nominal pole location.

(The circle is not perfect since the sensitivity changes with parameter variations as

described above.)

We now consider variations in all three parameters simultaneously. For three

perturbations, there will be eight (23) possible pole locations when evaluated at the

scalar extremes. Figure 3.7 shows the nominal and perturbed pole locations. The

maximum AA occurs for the pole at - 11.8 ± j2.4. The parameters at this location

are described by:

PI = PIo+APIMt

P2 = P2o - AP2m•z

K1 = Klo+AKima

An Hoo controller designed for these perturbations should then accommodate all

variations within a radius of I AAmW a 1. In order to reduce the number of uncertainties

used for H,, design, we observe that the variation in a single parameter may be

increased until the magnitude of the eigenvalue change equals that of the extreme

multiple parameter case. In the above example, I AA = 10.99. Table 3.1 suggests

that this change may be achieved with a 116% variation in P1, calculated as follows.

The largest eigenvalue sensitivity is 69.3 at Pl. + API,.,. Using this to provide an

initial value for API,,e:

A = (3.18)
APl -e I AX ji*z , 10.99 01586

AA/AP1 69.3-

API 0.1586
S-5- = 1.16

P1 0.14
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Figure 3.6: Pole locations for arbitrary phase locations
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Figure 3.7: Nominal and Perturbed Pole Locations
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Figure 3.8 shows the pole location associated with this variation. Note that 116%

variation is greater than that required, as the complex poles have become real. (This

is not unexpected since the pole sensitivity increases as AP1 increases in the pos-

itive direction.) We iterate by taking successively smaller values of AP1 and find

that the required I AAiI• is found to occur for a variation of 95.5% as shown in

Figure 3.9. An H.o controller may now be designed using a variation of 95.5% in Pl.

Uncertainties of 40% in P1 and P2, and 20% in K1 should then be accommodated

in the design.

The parametric uncertainty reduction process can be summarized as follows:

1. Calculate the eigenvalue sensitivity for each of the uncertain parameters at its

nominal value.

2. Calculate the maximum eigenvalue change for each eigenvalue affected by the

uncertain parameters.

3. Group parameters affecting the same eigenvalue and select one or more for scal-

ing. (The examples in Chapter IV will provide some insight into this selection

process.)

4. Calculate the eigenvalue sensitivity for the maximum parameter perturbations

and scale the appropriate parameter uncertainties to accommodate the maxi-

mum eigenvalue change determined above.

5. Use the scaled uncertainties in the H,,. design process in place of the original

uncertainties.

6. If the resulting closed loop system is robust in the presence of the scaled uncer-

tainties, verify the design by testing the controller with the system containing

the original unscaled uncertainties.
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In Chapter IV, we use three examples to demonstrate the above uncertainty reduction

technique in the design of a robust Ho controller.
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IV. APPLICATIONS

A technique for reducing the number of parametric uncertainties needed for the

design of a robust H, controller was presented in Chapter III. In this chapter, that

technique will be applied to three dynamic LTI systems. Parametric uncertainty

reduction will first be used to design a robust H, controller for a simple four state

system with five uncertainties. Next, the procedure will be applied to the design of

pitch plane autopilots for two different missile models.

A. GENERIC FOUR STATE MODEL

1. Model Description

An uncertain four state system is depicted in Figure 4.1. The system is

similar to that used in the example in Chapter III with the addition of two more

states and two uncertain parameters. The model has a single control input and

feeds back one state and an error signal to the controller. The model in standard

form appears in Figure 4.2. The plant has two exogenous inputs, the reference

and a disturbance term. (The disturbance has been added to fulfill the constraint,

mentioned in Chapter II, that D21 be of full rank.) The disturbance has a nominal

weight of Wd,t = 0.001. There are five uncertainties and two performance weights.

The controller generates a single command input. All five parameters in the plant

are assumed to be uncertain around a nominal value. Table 4.1 lists the nominal

value for each parameter and its associated uncertainty.
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P2

Figure 4.1: Four state system

TABLE 4.1: NOMINAL SYSTEM PARAMETERS AND UNCERTAINTIES

Parameter Uncertainty
PI0 = 0.14 I AP1 , 0.4 * Pl.
P2 0 = 8 I AP2 lit,,= 0.4 * P2o
P3 0 = 2 AP2 Im=0.4 * P3o
Klo = 100 ]AK1 1,= 0.2 * Klo
K20 = 4 I AK2 In,,-= 0.2 * K20
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Figure 4.2: Four state system in standard form
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a. Performance Weighting Functions

We define two performance weighting functions for the system, a weight

on the error between the reference and the system output and a weight on the control

input. The control weight, Wo,1 , is set arbitrarily small at 0.001. We include the

weighted control as an output only to fulfill the constraint that the matrix term D 12

be of full rank as mentioned in Chapter I1. The error weighting function W•,,, plotted

in Figure 4.3, is a low pass filter with low frequency gain of 50, a gain crossover of 2

rad/sec and a high frequency gain of 0.125. This choice of weighting function should

result in a steady-state error of less than 2%, closed loop time constant of 0.5 and

minimal overshoot (Bibel and Malyevac, 1992). The transfer function of the error

weight is

5o(o.025s + 1) (4.1)
(10S+1)

The goal is to design an Ho controller which meets stability and robustness criteria

taking into account all five uncertainties.

2. H.. Controller Design

We first attempt to design a controller by including all five uncertainties in

the plant model. The H., controller design procedure of Chapter II was used in an

attempt to generate a robust controller. The mu plot in Figure 4.4 shows the SSV

for robust performance and stability and the principle gains for nominal performance

after three D-K iterations. It is clear that the closed loop plant does not exhibit

nominal or robust performance. Further iterations yielded no impro" .ýment. We next

apply the uncertainty reduction technique to the system and again attempt to design

a robust controller, this time with a reduced number of uncertainties.
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3. Uncertainty Reduction

The eigenvalues of the nominal system are

A1,•2 = -7 ±j12.3;

A3 = -32.0;

A4 = 0.

The eigenvalue sensitivity for all the plant parameters are shown in Table 4.2. We

observe that A1,2 are affected only by parameters P1, P2, and K1, A3 by parameters

P3 and K2, while the pole at the origin remains unaffected. The maximum eigenvalue

changes for all combinations of parameter variations was found using the procedure

in Chapter III to be

zA1,.2I, a: = 10.99;

1 AA3 I = 21.76.

We select uncertainties P1 and P3 for scaling and apply Equation 3.18 to obtain an

initial value for the scaled uncertainties:

API = 1.16 * P1

AP3 = 0.68 * P3.

The eigenvalue sensitivity for P3 remains constant over the range of variation, and

iteration, described in Chapter III, is not required. The eigenvalue sensitivity for

parameter P1 varies, however, and we iterate to obtain the actual variation in P1

necessary to cause the required eigenvalue change,

APireq = 0.955 * P1l

51



TABLE 4.2: EIGENVALUE SENSITIVITY

Eigenvalue Sensivitivy

Eigenvalue Parameter Evaluated at AA/Ap IA/Ap I
Plo -50 + j28.5 57.3

P1 Pl, + API,,,1  -50 ±-j48.1 69.3
Plo - API,,,vo -50 ± j15.6 52.4

P2 0 : j4.1 4.1
P2 P2, + AP2,,., 0 :j3.3 3.3

-7 ±112.3 P2. - AP12,nG 0 T j5.9 5.9
Klo -0.07 :F jO.04 0.080

KI K1. + AKImoz -0.07 :F jO.03 0.076
Kb - AKI.n, -0.07 :F 10.05 0.088

P3 P3. 0 0
K2 K2o 0 0
P1 Pbo 0 0
P2 P2o 0 0
Kb Klo 0 0

P30  -4 + jO 4
-32.0 P3 P3, + AP3m,,o 4 +10 4

P3o - AP3. -4 +jO 4
K20  -8+30 8

K2 K2, + AK2io, -8 + jo 8
K2o - AK2mao -8 + j0 8

PI Plo 0 0
P2 P2o 0 0

0 K1 K 1. 0 0
P3 P3o 0 0
K2 K2o0 0
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4. Controller Design for Reduced Uncertainties

Using only the scaled uncertainties in P1 and P3, it was possible to design

an H,, controller exhibiting desired robustness properties in the presence of the scaled

uncertainties. The mu plot in Figure 4.5 displays the SSV for robust performance

and stability, and the principle gains for nominal stability. All plots remain below

one, indicating a robust design. Our interest, however, is in the original plant with

five uncertainties. Using the controller designed for the scaled uncertainty plant,

robust analysis of the complete plant resulted in the mu plot of Figure 4.6. It is

clear that the system meets robust stability and nominal and robust performance

specifications.

We next examine the time response of the final closed loop system to verify

that performance objectives are met. Figure 4.9, showing the system response to a

unit step input, reveals a rise time of 0.23 seconds, a maximum overshoot of 4.4% and

a steady state error of 1.73%. This confirms that the performance goals of minimal

overshoot and less than 2% steady-state error are satisfied.

5. Controller Design Ignoring Some Uncertainties

It is interesting to investigate the effect of controller design ignoring several

of the uncertainties in the system. We may be tempted to use this approach when

the inclusion of all uncertainties results in a failure to design a robust controller, as

in subsection 2. Considering only the 40% uncertainties in P1 and P3, and ignoring

uncertainties in P2, KI and K2, an H,, controller was designed. When tested

against the plant with all five uncertainties, however, the SSV exceeds one as shown

in Figure 4.8, implying that the robust performance objective is not met. It is clear

that simply ignoring uncertainties may often result in a closed loop plant which lacks

robustness.
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Figure 4.9: Low-drag ramjet model

B. COMBUSTOR CONTROLLED MISSILE

We next apply the uncertainty reduction technique to a pitch plane autopilot

for a low-drag ramjet missile model. This model, shown in Figure 4.9, is controlled

by a moveable combustor section and has no external control surfaces on the missile.

The model has five uncertain parameters affecting two real poles and a set of complex

poles. The linearized model of this missile was developed by the Naval Air Warfare

Center, China Lake, CA (Robins, 1992).

.e

1. Missile Model

The block diagram of the missile is shown in Figure 4.10. The input to the

system is a commanded combustor deflection angle, 6, in radians. The outputs of the

system are missile acceleration j7, and pitch rate q. The missile model was linearized

at one operating altitude and velocity. The varying factors affecting the plant are

angle of attack and missile mass. Seven parameters are affected by these changes,

H0, H6, Z0 , Z 6, M0, M6 and Jb. Of these, H. and H6 do not affect the eigenvalues.

Table 4.3 lists the nominal value for each paramete- along with uncertainties in the
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TABLE 4.3: NOMINAL SYSTEM PARAMETERS AND UNCERTAINTIES

Parameter Uncertainty
lb. = 201 1 la Imaz 0.21 * A.
M.. = 760.79 I AM. ima,= 0.24 * M..
M6A = 341.59 I AM 6 ma:°== 0.51 * M 6°

Z..= 0.5099 & AZa.Imo= 0.34 *
Z6. = 0.2165 1 AZ 6 Im,== 0.41 *

Kp = 65, 000
Wn. = 225
Da = 1.17
H. = 10,324
H, = 11,595
Ic = 14.5
LaIg = 0.1739
V/g = 107.2981
Bm = 1523

varying parameters listed above.

a. Performance Weighting Functions

For this system we define two performance weighting functions, one

weighting the error between the reference input and output acceleration and one

weighting the combustor deflection angle. The error weight is a low pass filter shown

in Figure 4.11. It has a DC gain of 50, corresponding to a 2% steady-state error.

The combustor deflection weight is set equal to the inverse of the maximum allowable

deflection of 10 degrees.

2. H,, Controller Design

An attempt was made to design a robust Hoo controller including all five

uncertainties in the plant. The SSV plot of Figure 4.12 reveals that the process failed

to p-oduce a controller exhibiting robust performance. We next apply the parametric

uncertainty reduction technique and again attempt to design a robust controller.
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3. Uncertainty Reduction

The eigenvalues of the nominal system are

A1.2 = -36.76 ± 162.7

A3 = 27.35

A4 = -27.27

A5 = -257.11

and their eigenvalue sensitivities are listed in Table 4.4. Eigenvalue As is not affected

by any of the varying parameters and has not been included. Following the procedures

in Chapter III, the maximum eigenvalue changes for all possible combinations of

parameter variations was found to be

[AA1,2 IflBZ = 1.63

I AA3 I 4.47

I Imz,= 5.10

We select the parameters for scaling by examining Table 4.4. Parameter 1/1b, al-

though affecting all four eigenvalues with large sensitivities, is sufficiently small that

a variation of almost 200% would be required to accommodate the change in A3.

Likewise, parameters Z, and Z6 have relatively small nominal values and sensitivi-

ties. We therefore choose to scale M 6 to satisfy the change in A1.2 and M. for the

change in A3 and A4 . The initial scaling values are found as follows:

AM 6 = I AA1,2 ,,= 1.63 = 271.67
AA 1,2/AM 6  0.006

AM6  271.67
- = T4 - 0.79

�l 6 341.59
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TABLE 4.4: EIGENVALUE SENSITIVITY

Eigenvalue Sensivitivy
Eigenvalue Parameter Evaluated at AA/Ap I AV/Ap I

1/lb lb. 14.2 T- 1514 515.1
Z6 Z60. 0.13 T- j0.05 0.14
Z. Z.. 0 0

M.. -l.6e-' T j3.1e-' 1.68e-'

M., M., + AM.,... -1.6e- 4 zF j2.3e- 5  1.62e-4

-36.7 ±j62.7 M.o - AM",.. -1.6e-4 :F j4.5e-5  1.75e-4

A 6o 0.0017 0 j0.006 0.006
A 6  A 60 + AM6 ,... 0.001 - j0.006 0.006

Mb ,- AM 6,... 0.002 - j0.006 0.006

1/lb lbo -213.88 213.88
Z6 Z6o 0.09 0.09
Z. z.o -0.5 0.5

M.,. 0.02 0.02
M. M,. + AM.... 0.016 0.016

27.35 MAo - AM,".., 0.021 0.021
A 6o 0.003 0.003

M6  AM6 + AMi.. 0.003 0.003
M6, - AM,,,, 0.003 0.003

1/ib Ibo 518.38 518.38
Z6 Z60  0.17 0.17
Z. Z.. -0.5 0.5

M.,. -0.020 0.020
M`, MAlo + AM.... -0.016 0.016

-27.27 M.. - -0.021 0.021
A 6o -0.006 0.006

M6  A 6, + LiM6 ,,,, -0.006 0.006
M60 - AM 6m.. -0.006 0.006
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AM, I AA3  F- = =212.9
AA3/AM 0  0.021

AM, 212.9
M =c 76.= 0.28m. 760.79

1M AAeImz 5.10
AM, = 5"- = 242.9AA4/AMI 0.021

AM,, 242.9
S 60.79 = 0.32

By iterating, the required scaled uncertainties are found to be 80% in M 6 and 34%

in M,,. These scaled uncertainties are next used to design a robust H.. controller.

4. Controller Design for Reduced Uncertainties

Using only the scaled uncertainties in parameters M 6 and M., a robust H,,

controller has been designed. The plot of the SSV is shown in Figure 4.13. The design

exhibits nominal performance and robust performance and stability in the presence

of the two scaled uncertainties. The controller when tested against the plant with all

five uncertainties yields the plot in Figure 4.14. The system again exhibits nominal

and robust performance and robust stability.

The time response of the final closed loop system was analyzed to verify

that performance criteria were met. The step response of the system, shown in

Figure 4.15, shows an overdamped system with a rise time of 0.35 seconds and no

overshoot. Steady state error was determined to be 0.5%. The initial transient spike

is a result of the torque caused by the movement of the combustor section.
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Figure 4.16: Tail fin controlled missile

C. TAIL FIN CONTROLLED MISSILE

The parametric uncertainty reduction technique is next applied to the pitch
I

plane autopilot of a conventional tail fin controlled missile. The missile is depicted in

Figure 4.16. This model has three uncertain parameters affecting one set of complex

eigenvalues. One of the parameters varies 270%, however, causing the eigenvalues to

shift from complex to real over the range of uncertainty. A linearized model from

the Naval Surface Warfare Center, Dahligren, VA was used for analysis (Bibel and

Stalford, 1991).

1. Missile Model

The block diagram of the missile is shown in Figure 4.18. The input to the

system is a commanded tail fin deflection angle, &. The system outputs are missile

acceleration, 17, and pitch rate, q, from the accelerometer and gyro, respectiveiy.
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TABLE 4.5: NOMINAL PARAMETERS AND UNCERTAINTIES

Parameter Uncertainty
Z.. -5.24 I AZj,•, = 2.72 * Zo.
M,. = -46.97 AMo, = 0.15 * M.
M,. -4.69 iAMg.. = 0.3 * M,.
Z6= -0.73
A-f6 = -1134
d/kG = 8.55e-4

V/kG = 1.8154

TABLE 4.6: FLEXIBLE BODY MODE PARAMETERS
w., _ K ,. K,h

368.0 1204.1 -0.943
937.0 406.5 0.561
1924.0 -1408.4 -0.312

a. Nominal System Parameters and Uncertainties

The linear model has been developed for one particular altitude and

velocity. Factors affecting the plant parameters are angle of attack, a, and pitch rate,

q which cause changes in the parameters M,, Z•, and Mq. The nominal parameters

and associated uncertainties are listed in Table 4.5. The actuator is modeled as a

second order transfer function with a damping of (ACT = 0.7 and a natural frequency

of WACT = 188.5 rad/sec. The actuator has a fin deflection limit of 40 degrees and a

fin rate limit of 300 degrees/sec. The input to the actuator is the command input,

6b. The model includes flexible bending modes which are modeled as second order

transfer functions. The first three bending modes have been included, and the nth

mode effect on acceleration and pitch rate is given by

q(3) 1 -~, 1~s

f6 32) i + 2CfbWn.3 + W,2 [ 3 ] (s)

The data for the flexible modes is shown in Table 4.6. The controller acts on an

accelerometer and pitch rate gyro, both modeled as second order devices with a
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damping of 0.7 and natural frequencies wACC = 377 rad/sec and W'GYRO = 500

rad/sec. The model includes an input feedback uncertainty with a constant value

of 0.2, and a second order input multiplicative uncertainty with a transfer function

given by

- (1/100)(0.049s + 1)'
(9.805e- 4 s + 1)2

b. Performance Weighting Functions

For this plant we define four performance weighting functions. Two of

these are weights on the fin deflection and fin rate, set equal to the inverse of the

allowable values of 40 degrees and 300 degrees/second, respectively. The performance

weight on the error between the reference input and output acceleration is a first order

transfer function described by

100(0.0258s + 1)
Werr = 10.327s + 1) (4.2)

The fourth performance function is a weight on the pitch rate. It is a high pass trans-

fer function designed to attenuate the effects of unmodeled high frequency dynamics

and sensor noise. It is described by
W9 = (1/400)(0.025s + 1)' (4.3)

(1.78e- 4 s + 1)2

The goal is to design a robust Ho, controller taking into account all the uncertainties

and performance weights.

2. Ho, Controller Design

An attempt was made to design a robust H,, controller for the plant with

all three uncertainties. Figure 4.18 shows the robust analysis results after four D-K

iterations. The closed loop system does not possess robust or nominal performance.

Uncertainty reduction techniques are next applied to the model in an effort to obtain
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TABLE 4.7: EIGENVALUE SE"SITIVITY

Eigenvalue Sensivitivy
Eigenvalue Parameter Evaluated at AA/Ap [ AA/Ap

M.. 0 ± j0.073 0.073

M. M.o + AM,,.. 0 ± j0.038 0.038
- AMoo, ±0.056 ± 10 0.056

Z.. 0.5 F jO.02 0.5
-4.97 ± j7.5 Z. Z,. + AZo,,, 0.5 F jO.05 0.5

S- A Z0,,6  0.5 = 0.01 0.5
M9. 0.5 ± jO.02 0.5

M9  Mo + AMq,., 0.5 ± jO.03 0.5
Mq, - AMq,.,1 0.5 ±-0.07 0.5

a robust controller.

3. Uncertainty Reduction

The eigenvalues of the open loop system are

A1,2 = -4.97 ± 37.5

A3,4 = -38.5± j1923

A5,6 = -7.36 ±1j368

A7,8 = -18.7±j937

A9,10 = -132 ±-3135

Only A1,2 are affected by the variations in parameters ML, Z•, and M.. The eigenvalue

sensitivities for these parameters is listed in Table 4.7. The parameters for scaling are

selected by observing that the large variation in M,, causes the eigenvalues to vary

from complex to real. While complex, the largest eigenvalue change is I AX1,2 1= 7.5,

the distance from the nominal location to the real axis This change is already acco-

modated by the first 100% variation in M0. On the real axis with all three parameters

varying, the eigenvalues have extreme values of +5.10 and -15.1. The variation in M0
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alone causes the eigenvalues to move to +4.03 and -13.96. The additional eigenvalue

change caused by variations in Z, and Mq can be accommodated by increasing the

variation in M, to 300% and leaving unchanged the 15% variation in Z,. An Ho,

controller is next designed for a system with these two uncertainties used in place of

the uncertainty in Mq.

4. Controller Design for Reduced Uncertainties

Using only the scaled uncertainties in M. and Z., a robust Ho, controller

was designed. The SSV plot for the closed loop system is shown in Figure 4.19. When

tested against the system incorporating all three uncertainties at their actual values,

the plot of Figure 4.20 results. The system meets the robustness specifications.

The time response of the final closed loop system was analyzed to assess

performance. The step response of the system is show in Figure 4.21. The response

shows an overdamped system with a rise time of approximately 0.15 seconds and

no overshoot. The error at 1 second is 1.4%, and has decreased to near the 1%

specification by 2 seconds.
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V. SUMMARY AND CONCLUSIONS

A. PROBLEM STATEMENT

Current H.0 synthesis techniques are often unable to provide a robust controller

design when all parametric uncertainties in a system are included in the plant model.

The plant, in effect, becomes overconstrained and the design algorithms fail. This

does not, however, preclude the existence of a robust Hoo controller, rather it indicates

current methods are not effective in many practical design problems. This work

has focused on a technique which allows the designer to use existing Ho, synthesis

theory and commercially available software to produce a controller which is robust

in the presence of all quantified parametric uncertainties in the plant. The procedure

involves grouping uncertain parameters which affect the same open-loop eigenvalue.

The variation of one or more of the designated parameters is scaled to provide for

the same eigenvalue change as that caused by all the parameters at the extreme

values of their uncertainties. An Ho, controller which is robust in the presence of the

scaled uncertainties is then shown to be robust in the presence of the actual plant

uncertainties.

B. CONTRIBUTIONS

As a result of this research, two original contributions were made that pertain

to robust controller design:

* Development of a technique which reduces the number of parametric uncer-

tainties required for the design of a robust H0, controller that accommodates

79



all parametric uncertainties in the plant, when design attempts using all un-

certainties have failed. This technique may also be used to reduce the number

of uncertainties used even when a robust controller can be found for all uncer-

tainties, thus reducing computation time.

* Procedures for applying the technique to missile autopilots, providing for the

design of a robust controller taking into account not only model uncertainties

but also parameter variations caused by changes in flight conditions. These

variations, often quite extreme, have until now required conservative autopilot

designs which sacrificed performance to maintain stability.

In short, this research has provided designers with a new tool for finding a robust

H,, solution in specific cases when current design methods fail. Development of this

technique has revealed several other areas requiring further study. These include:

"* Complex scaling of a parametric variation rather than real scaling as described

herein may allow for the use of a smaller scale factor in robust design, and

therefore increase the number of problems for which a solution can be obtained.

"* Performance functions in missile autopilot models are often the dominant con-

straints in controller design. A technique for reducing the number of perfor-

mance constraints similar to the technique for parametric uncertainty reduction

may also increase the number of problems for which a solution can be obtained.
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APPENDIX A

Transfer Function Norms

Structured Singular Value (SSV) analysis makes extensive use of transfer func-

tion norms in defining the underlying theory for stability analysis. We present here

a brief discussion of the 2-norm and oo-norm along with some useful properties (Ma-

ciejowski, 1989).

Given a proper transfer function matrix G(s) with no poles on the imaginary

axis, the 2-norm of G(s) is defined as

JIG112 =- tor(G(jw)GT(-jw)jdw.

The infinity norm is defined as

IIGII• = sup a(G(jw))

with a denoting the largest singular value. These norms satisfy the following prop-

erties:

1. UIGII >- 0 with UIGII - 0 if and only if G = 0.

2. 'ickGlI = laIIIGII V a E C.

3. IG + HII _< uIGl + IIHII.

The 00-norm also satisfies

hIGHIIo :_ hIGII..hIHIICO.

This inequality is not satisfied by the 2-norm.
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APPENDIX B

Robust Stability Analysis

We present in this Appendix a discussion of robust stability analysis using the

small gain theorem (Burl, 1993). An uncertain system with a feedback controller

designed for the nominal plant can be depicted as in Figure B.1. By combining the

nominal plant and controller into one block M(s), we can redraw the system as in

Figure B.2. Writing the outputs of M(s) in terms of the inputs:

[Yd lr MuI(s) M 12(s)][wd 1
y] M2 1 (s) M2s(s) W

Figure B.3 shows the system expanded to show the subsystems of M(s). The nominal

system M(s) is stable since K(s) is designed for the nominal plant. The entire system

will therefore be internally stable provided that the loop containing A(s) is stable,

since this is the only possible source of instability. The internal stability of this loop

can be determined by examining the four transfer functions shown in Figure B.4.

These can be written as

e2 (I1- M1 1A)-'M 11 (U - M 11A) 1  U2

Consider the transfer function from u2 to el:

el (I - AM,)-, Au2

We can rewrite this as

el = AMrlel + Au2.

Taking the 2-norm and employing some properties of norms from Appendix A:

lIeC112 = IlAM11CI + AU2ll2 < llAMueul 2 + lIAU2112
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Wd Yw P(S) =y
U m

It K(s)ll

Figure B.I: Uncertain system with feedback control

W M(S)

Figure B.2: Uncertain system in standard form
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WI I

!M,22(S) +
M(s)

L - - - -

Figure B.3: System expanded to show subsystems of M(s)

u1 el• [Y1

Figure B.4: System used for stability analysis
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lel 112: IIAMA'iIoo liM 1l. 112 + IIAIlllu21l•2

Hex 1125 j IAIj~ocIIAI'u eIotex12 + lIAIicIIU~l211

We can solve for the 2-norm of el:

e1 112 _ (1 - IIAII.IIM ,III )-'II u2112 (B.1)

Noting that IAIl 0 < 1, this inverse is finite if

IIMxx II < 1.

Analysis on the other transfer functions yields the same conclusion. We can now

state that for the uncertain system of Figure B.2 where the perturbation matrix is

bounded such that

IIAII < 1,

internal stability is guaranteed for all allowable perturbations provided that M(s) is

nominally stable and

IIM1II < 1.
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APPENDIX C

Guaranteed Gain and Phase Margins Using the
Sensitivity Function

In this appendix we derive one method for providing guaranteed gain and phase

margins for a mulit-input multi-output system by using a scalar input feedback un-

certainty (Dailey, 1990). Consider the plant in Figure C.1. The uncertainty blocks

are arranged in a feedback loop. When the perturbations A, are combined into a

single diagonal block as shown in Figure C.2, the transfer function seen by A is

(I - KG)-'. We recognize this as S, the sensitivity function. An equivalent system

is shown in Figure C.3. In this diagram, A = I - C-1, L = KG is the loop gain

and C is a diagonal matrix. The gain seen by L is equal to (I - (I - C-1))-1 = C.

Thus, the elements of C are simply gains for each path in the loop. From the results

of the stability analysis in Appendix B, a guaranteed upper bound on the gain of A,

namely a(A), for the feedback loop to remain stable can be determined from

a(4)&(S) < 1 V W (C.1)

Since the maximum singular value is independent of the phase of the matrix elements,

each diagonal element A, in Acan be expressed as a magnitude and phase, I Ai I

e•, e E [0,2r]. From Equation C.1, &(4) _< 1/&(S) is required for stability. Now,

solving for the gain matrix C from above yields C = (I - 4)-'. This matrix has

elements 1/(1 - A,) on the diagonal. Assuming only real perturbations, the gains

will vary from 1/(1- I Ai.. 1) to 1/(1+ I Ai,.,0 I). Observing that for a diagonal

matrix, 4, a(4) =1 Aj,,, 1, the stability requirement yields
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Figure C.1: Closed loop plant with input feedback

A, 0

Figure C.2: Closed loop plant with diagonal feedback block

I -C-I

L

Figure C.3: Loop gain
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I III I f8ZIwR )(C)

Ai... I=inf (C.2)"el? &(S)
Thus, the gain margins are given by ( j. Figure C.4 shows a plot of

A i,.. I versus gain margin in dB. It can also be shown that the guaranteed lower

bound for the multi-input multi-output phase margin is given by

PM E [-0, +0] where 0 = 2sin-'(I A,... I )2

Figure C.5 shows a plot of I versus phase margin in degrees.
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