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ABSTRACT

This thesis presents a new technique for loop pipelining of perfectly-nested for-loop
structures which is designed to optimize loop execution on VLIW machines. Previously
implemented loop pipelining techniques provide limited performance benefit because they
explicitly include the constraints imposed by a loop’s cyclic dependences in their loop
pipelining process. Some loop pipelining techniques have also ignored the realistic
constraint of finite resource availability in the creation of final pipelined execution
schedules.

The new approach presented in this thesis climinates the problem of cyclic
dependences by first applying a linear transformation to the nested loop index space to
ensure a cycle-free innermost loop, which is then pipelined using modulo scheduling for a
known set of resources. The transformation guarantees that the target machine’s available
resources are the only limit to the amount of exploitable fine-grained parallelism within the
innermost loop. This results in pipelined execution schedules having near-optimal Inter-
Iteration Initiation Intervals (IIII) with the achievable performance being scalable with the
addition of resources. Consequently, our loop pipelining method utilizes more fine-grained
parallelism than other loop pipelining techniques which directly incorporate a loop’s cyclic
dependences in their pipelining process. We also explicitly provide a procedure for creating
the resultant pipelined execution schedules. In addition, we investigate the negative effect
that the transformation has on data locality and the cache miss rate, as well as the use of

iteration space tiling to restore data locality and cache miss rate to the levels expected from

sequential loop execution. Accesion For
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L. INTRODUCTION

With the ever increasing demand for higher performance in computer processing,
constant research is being conducted in an attempt to find methods to execute program
instructions faster. One area of this research emphasizes the use of concurrent processing
to exploit the independent components of a program by processing these components in
parallel. The level at which this parallelism is exploited can vary from a coarse-grained
parcllelism (e.g., from fully independent processes and procedures, independent loop
iterations, etc.) to fine-grained parallelism (e.g., from independent machine instructions or
microinstructions).

While coarse grained parallelism may be the simplest for which to plan and even to
design programming tools to identify and exploit, for many applications, it does not often
provide enough parallelism to fully utilize the resources made available for concurrent use.
By considering finer grained components, such as instructions or micro-instructions, a
greater number of independences should be uncovered. As a result, exploiting the
parallelism at this level provides a better chance of keeping resources busy. The problem,
however, is finding an effective and efficient method of identifying and harnessing the fine-
grained parallelism in existing code to create execution schedules which maintain the
original program semantics. Of particular focus in determining a solution to this problem
is the handling of the fine-grained parallelism present in loop structures, which consumes
a large percentage of the total execution time of scientific applications.

Several general machine types have been proposed which attempt to exploit the fine-
grained parallelism in programs, two of which are the Superscalar Machines and the Very
Long Instruction Word (VLIW) Mac:hines. In Superscalar Machines, several instructions in
a sequence are considered for concurrent execution. Dependences between, as well as other

characteristics associated with, these instructions are examined and, based on the results, a




subset of the instructions are issued to multiple functional units for paraliel execution. The
real limit to the effectiveness of the Superscalar architecture involves the run time overhead
required to dynamically determine the inter-dependence within a sequence of instructions.
To minimize this overhead, only a limited number of instructions can be considered for
execution at any one time. Techniques which utilize compile time analysis of the program
code could help eliminate or at least ease this run time overhead.

This is the approach used for VLIW machines, which require compile time evaluation
of inter-instruction dependences, followed by the combination of individual independent
instructions into one long instruction word. The individual independent instructions
packaged into the long instruction are then fetched as one instruction, and simultaneously
issued to multiple function units (Figure 1). This allows a more effective analysis of
dependences without affecting run time performance, and results in better utilization of
fine-grained parallelism.

One technique specifically tailored for use with VLIW machines is called Trace
Scheduling (Fisher, [Ref. 1]). Trace Scheduling first requires a selection (called trace
selection) of the most likely trace through the code. Loop unrolling is used to create long
traces, but requires the assumption that certain loop control conditionals are taken with a
high probability. A second step, trace compaction, is then used to analyze the trace for
dependences and compress the code into the VLIW format. Only the most probable traces
are scheduled this way. Correction 'code is required for those cases in which the path of
execution veers off of the selected trace path. In addition to the complexity of this method,
Lam [Ref. 2] notes that there is the possibility of exponential code explosion. Another
deficiency of trace scheduling, as noted by Zaky and Sadayappan [Ref. 3], is that there is
no easy way to determine how much unrolling in any specific circumstance would produce
better utilization of resources and better performance. Therefore, the resultant ad-hoc
methods of loop unrolling that are often used to determine the needed amount of unfolding
are not effective ways to best create VLIW instruction schedules.



Code for determining the value of

C=(3*A}(4*B): ] )
Sequentially executed code would take six
S1: LDRO, A time units to execute if each instruction
S2: MULTI R1, RO, #3 required one time unit to execute
S3: LDR2,B

S4: MULTIR3, R2, #4
S5: ADDR4,R1,R3
S6: STC,R4

With a VLIW machine with two fully capable processors, the VLIW instruction is comprised of two
sub-instructions, one for each processor. No-Op instructions are executed when no specific sub-
instruction is assigned. Evaluation of the above code at compile time would determine that the code
is executable in four time units

Processor
time P1 P2
1 LDRO, A LDR2,B Four individual VLIW
instructions, each with a sub-
2 | MULTIRL RO, #3 | MULTIR3,R2, #4 instruction assignment to a
3| ADDR4,RLR3 separate processor in the target
4 STC,R4

Figure 1: Translation of Sequential Code into VLIW Instructions




An alternative to trace scheduling is Loop Pipelining (or Software Pipelining). Loop
Pipelining is a technique whereby instructions from different loop iterations are interleaved
without unrolling the loop. The interleaving allows exploitation of fine-grained paralielism
between instructions of different iterations by combining these independent instructions
into a single long instruction. A restructured loop body of VLIW instructions is created and
replaces the original loop.

The main idea behind the tech;liquc is to generate a compact loop body of VLIW
instructions which maintain the semantics of the original loop structure. For example,
consider the Data Dependence Graph (DDG) in Figure 2 for a single loop. In the DDG,
each node represents an instruction with arcs representing data dependences between the
instructions. The labels are in the form (latency)/(loop delay). The latency refers to the
number of time units required between the start of one instruction and the start of the
dependent instructions. The loop delay identifies the relationship between the iteration of
the dependent instruction as compared to the iteration of the instruction on which it

depends.

Figure 2: Data Dependency Graph




In this example, assume that there are three processing elements available and that any
of the processing elemients can execute any of the instructions in one unit of time. The
iterations can then be scheduled as in Figure 3, with instruction from different iterations
overlapping in time, but with no more than three instructions being executed at any one
time (because there are only three available resources). The VLIW instructions which are
created are comprised of the sub-instructions which are executed at the same time in the
schedule.

As can be seen by this schedule, a recurring pattern develops in which a new iteration
is started every five time units, even though it takes twelve time units to complete any one
iteration. This is the pipelining effect. The recurring pattern which first occurs at time 7
thorough 11, is referred to as the kernel of the new schedule. The kernel executes any
instruction of the loop body only once, although the instructions in any kernel may come
from different iterations.

To take advantage of the multiple resources available, the original loop can be
restructured to include the kernel pattern as the new loop body, which executes the twelve
instructions in five time periods. The amount of time needed to execute the kernel is also
the time between subsequent starting of iterations. This time is labeled the Inter-Iteration
Initiation Interval (I1II). The IIII becomes a measure of the throughput of the system and
of how well the resources are being utilized. The smaller the IIII, the greater completion
rate of the loop iterations and the better the resources are being used. It is obvious that any
software pipelining method must have as its goal the creation of a kernel with the minimal
111

The Modulo Scheduling technique developed by Rau and Glaeser [Ref. 4] was shown
to be able to schedule acyclic DDG's to create a loop body kernel which takes full
advantage of the available resources, and therefore yields a minimal IIII for the given set
of resources. In many loop structures, loop carried dependences exist between the iterations
of the loop body. Although their existence are not a sufficient condition for creating cyclic
dependences, they are necessary, and often create cyclic dependences which are displayed




iteration number

time 1 2 3

0 S1

1 S2

2 S3

3 S5

4 S6

5 S7 S1

6 S8 S2

7 S9 S3

8 S4 S5

9 S11 S6 > kemel
10 S10 S7 Si _{
11 S12 S8 S2
12 S9 S3
13 S4 S5
14 Si1 S6
15 S10 7 S1
16 S12 S8 §2
17 S9 S3
18 $4 S5

Figure 3: Timing Schedule for Iterations Represented by DDG of

Figure 2




as cycles in the DDG for the loop. Data dependence cycles in a DDG introduce additional
constraints on the minimum length of INII. Asa result, cycles can limit the size of the kemnel
schedules which can be produced and restrict the performance benefit which can be
obtained by loop pipelining.

Modulo Scheduling methods presented for pipelining single loops with cyclic data
dependences are described by Aiken and Nicolau {Ref. 5], Lam [Ref. 2], Rau, Schlansker
and Tirumalai [Ref. 6], and Zaky [Ref. 7]. However, these methods directly incorporate the
constraints caused by the cyclic dependences into the scheduling procedure. As noted, this
restricts the minimum size of the IIII and prevents the methods from fully benefitting from
extra resources.

Because the time spent executing perfectly-nested loop structures can dominate
program runtime, previous loop pipelining techniques must be expanded to incorporate
these structures. Loop unrolling can be applied along multiple dimensions in an attempt to
climinate dependence cycles and expose additional fine-grained parallelism beyond that
available from single dimension unrolling. This is the intent behind the Loop Quantization
method described by Nicolau {Ref. 8]; however, just as with trace scheduling, determining
the amount and the direction of unrolling required to guarantee good results is not easy, and
the benefit may not justify the complexity of the effort.

Alternatively, the modulo scheduling techniques presented by Zaky [Ref. 7] and Kim
and Nicolau [Ref. 9] identify significant fine-grained parallelism across the entire iteration
space of a nested loop. Both determine, via linear timing functions, the sequential starting
times of sets of independent instructions which can be executed in parallel. However,
neither provides a concrete solution for mapping the instructions on finite resources.

In summary, previously presented techniques for loop pipelining have either been
inherently limited by the existence of cyclic dependences, have applied ad-hoc methods in
hopes of improved perfc;rmancc, or-have ignored the realistic considerations for resource

constraints, execution schedule production, and actual creation of final code products.




These failures were the motivation behind the development of the loop pipelining
technique described in this thesis.

The technique developed for this thesis emphasizes the efficient use of available
resources. It combines a method for identifying sets of independent iterations in multi-
dimensional space with a loop pipelining technique based on Modulo Scheduling of acyclic
DDG's mentioned earlier. The result is a simple procedure yielding useful execution
schedules with near-optimal ITIl. The advantage over previously proposed perfectly-nested
loop pipelining methods is its simplicity and the exploitation of fine-grained parallelism to
the extent allowed by available résources. In addition, a code generation procedure is
provided for producing the final code structure using the pipeline schedule resulting from
the application of the technique.

Chapter I of this thesis first describes, in more detail, the Modulo Scheduling technique
for acyclic DDG's. It then highlights the difficulties encountered when attempting to apply
a general Modulo Scheduling technique directly to cyclic DDG's, as well as the application
of the technique to perfectly-nested loop structures.

Chapter II describes the proposed loop pipelining technique which can be used to
create software pipelined schedules for n-dimensional perfectly-nested loops. The chapter
first details the loop transformation proce s, which converts the original loop structure into
one in which the inner loop can be pipelined using the Modulo Schedule method for acyclic
DDG's. The chapter then outlines the process for creating the loop pipelined schedule via
the Modulo Scheduling method.

Chapter IV explains the process of code generation using the loop pipelining technique
presented. In particular, it modifies the technique to include the scheduling of loop control
instructions. In addition, it provides a summary of the special machine hardware support
requirements that are assumed to be true for the code generation process. Several code
generation considerations are addressed, and a schematic diagram is presented to aid in
summarizing the require code segments which must be included in the final loop structure
created. Lastly, the algorithm of the code generation is presented.




Chapter V summarizes the performance benefits of the proposed loop pipelining
technique and analyzes the complexity of the code generation process.

Chapter V1 addresses the additional concern of data locality, particularly in light of the
negative effects the loop pipelining technique might create, and the possible solutions to
minimize these negative effects.

Chapter VII presents are review of and the conclusions to the work conducted, as well
as identifies the necessary extensions of the research required to fully explore and

implement the technique presented.




II. BACKGROUND

The Modulo Scheduling technique described by Rau and Glaeser [Ref. 4] has been
used to loop pipelined loop structures which are represented by both cyclic and acyclic
DDGs. In this chapter, the specifics of the Modulo Scheduling technique are described in
more detail for both of these applications. The concern of this thesis, however, is the
application of the scheduling tcclinique to perfectly-nested loop structures, which is
addressed at the end of the chapter. The basic modulo scheduling methods described below
were presented in detail by Rau and Glaeser [Ref. 4], and are used as a general basis for all
modulo methods subsequently developed.

A. MODULO SCHEDULING OF ACYCLIC DDGs

For loops with no cyclic dependences, Modulo Scheduling methods can create
pipelined schedules which utilize resources to the maximum benefit. The method
accomplishes this by creating a pipelined kernel schedule which has the smallest IIII
possible under the circumstances and constraints imposed by the specific resources made
available. The technique first determines the minimum III possible, and then applies
scheduling methods to create the pipelined execution schedule which will become the new
pipelined kernel.

1.  Determining The Inter-Iteration Initiation Interval
The first step in applying a modulo scheduling technique to acyclic DDGs is the
determination of the IIII. This is done by examining the instructions in the loop body and
compares the resource requirements for executing the instructions with the resources
available in the VLIW machine. The IIII which is chosen for the loop pipelined schedule is
that Il which satisfies the needs of the most limiting resource type. That is, there must be
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enough instruction slots available in the kernel of the pipelined schedule to ensure that all
instructions can be fit into the schedule.

The calculation for the IIII is found by the equation:

— Total Time For r
”"Lowerbound =max,.. g N (Eq. D

r

where R is the set of all resource types, with r being one type
of resource.

Total Time For r is the total amount of time that the resource
type r is required to be used the instructions

N, is the number of resource units of type r

It is important to note that the “Total Time For r” required of a resource type is
not dependent upon the latency values of instructions as shown in a DDG. Rather it is
dependent upon the delay of a functional unit when executing an instruction. This resource
delay is the number of time units following the start of one instruction during which the

resource is unable to start another instruction. As a result the value of “Total Time For r”

in the above equation is really 2,. using

(resource delay,) . This is a function of the
resources' pipelining capability. As an example, consider the DDG shown in Figure 4,
which is a modification of Figure 2, with cyclic dependences removed.

In Figure 4, S3 cannot start until at least one time unit after the start of S2 due to
instruction dependence. If we assume that S2 utilizes an adder to produce a value that is
used by S3, then the latency of *“1” means that the value produced by S2 is not available to
$3 until one time unit from the start of the S2. If we assume that S3 requires use of the same
adder as S2 and that the adder can only start a new instruction every two time periods, then
the adder’s resource delay is two time units. This prevents S3 from executing for two time
units after the start of S2 (see Figure 5.a).

If another adding unit is used to execute S3, then S3 would not be affected by the

resource delay and could start one time unit later than S2 (see Figure 5.b).
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Figure 4: Acydic Data Dependency Graph

tilmc adder 1 time adder 1 adder 2
52 1 52
2 S3
S3
a. With One Adder b. With Two Adders

Figure 5: Scheduling of S2 and S3 From Figure 4 With an Adder
Resource Delay of Two Time Units, With One and Two
Adders Available
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It is important to note that I calculation is independent of the graph structure
and depends only on the nodes. T;xat is, there is no input to the calculation of the IIl
involving the latency or loop delays of each of the arcs. The type of instructions represented
by the nodes and the resources available are the only required inputs for calculating the III1.

To illustrate the calculation of the IIII, consider again the example in Figure 4.
Assume that the resource delay is one time unit for all instruction types, that the machine
for which the example is created has two adders, a multiplier, and a load/store unit. Also,
assume that the DDG nodes S2, S3, S5, S7, S8, S10, and S11 are adder instructions,
instructions S1 and S6 are multiplier instructions, and instructions S4, S9, and S12 are load
store instructions. Then the calculation of the IIIl becomes:

723]=4

Iy, erbound = max[i, 1’1 (Eq. 2)

2. Creating The Modulo Resource Reservation Table
Once the IIII has been determined, the next step in applying Modulo Scheduling
is to create a Modulo Resource Reservation Table to aid in scheduling the DDG
instructions. The Modulo Resource Reservation Table identifies the relative starting times
of instruction nodes in the kernel. The intent is to assign instructions to the table in a way
that minimizes the III ultimately produced. The assignment of instructions to the table slots
is purely an exercise in bin packing. That is, the instructions are assigned to the proper

resource while maintaining the resource delay requirements. If the resource delays for the

instruction nodes are all one time unit, the instructions can be placed randomly in a table

and meet the resource delay requirements using the lower bound IIH.! If some resource

1. All mappings of instructions to resolrces in the Modulo Resource Reservation Table when the
resource delay is one yield the same IIIl. However, different mappings affect the number of differ-
ent iterations which are represented by instructions in the kernel. This creates different characteris-
tics in the transition which is needed before the pipelined schedule is used, as will be discussed
later.
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delays are more than one unit, then the lower bound IIII may not be adequate, requiring that
the final IIII be determined using some bin-packing technique.

For example, consider the simple DDG in Figure 6. Assume that each of the three
instructions use the same resource each with resource delays of two units, and that two

2+2+2

resources were available. The lower bound IIII would be three (from ( 5

) ). However,

there is no possible way to place all three instructions into a resource table with three time
slots and maintain the resource delay requirements (see Figure 7.a). As a result, the [III
must be increased above the calculated lower bound to four time units (see Figure 7.b).

Note that in the reservation tables of Figure 7, the time value is calculated with
respect to the starting time of the loop modulo the III. The instruction schedule is then
repeated every IIII time units.

In those cases where the resource delays are not of unit length, loop unrolling
prior to Modulo Scheduling can result in reducing the final IIII to a value closer to the lower
bound II. Enough unrolling will result in achieving the minimal IIIl. For example,
unrolling the loop having the code of Figure 6 one time will result in the DDG (actually a
forest) of Figure 8.a. The calculated IIII is now six time units, which will satisfy the needs
for the resource delay (see Figure 8.b).

The overall effect is that two of the original iterations can now be executed in an
average time of three tine units each, which was the original lower bound on the IIII.

Because loop unrolling c;ln be used to overcome the problem with resource
delays, with no loss of generality, we will assume that the resource delay for all instructions
is one time unit. In this manner, the schedule produced by the table is guaranteed to result
in optimal utilization of those resources for the loop instructions, restricted only by

limitations of the most used resource.
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Figure 6: Simple Acyclic DDG for Loop Code with

Three Instructions
time(mod 3) | resource 1 resource 2 m::zm res::hc:do:l:da;n
0 S1 the same resource. But with
1 S2 resource delay of two time
2 53 units, an IIII of three time units
is not adequate.

a. Reservation Table with Inadequate IIII of Three Time Units

time(mod 4) resource ! resource 2
0 S1
1 S2
2 S3
3

By increasing the IIII to four
time units, the instructions can
be scheduled and meet the
resource delay requirements.

b. Reservation Table with Adequate IIII of Four Time Units

Figure 7: ITII Adjustment to Meet Resource Delay Requirements
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@ *  Twooriginal iterations now contained in the
1 inner loop. The acyclic nature of the
original DDG results in two independent
@ trees representing the new unrolled loop
1 code. The second iteration instructions are
identified with “ * ” to denote that it is not
é@ the same iteration instruction

a. Data Dependence Forest for Unrolled Loop

time(mod 4) | resource 1 resource 2
0 S1
1 S2
2 S3
3 SI’
4 S2’
5 S3’

b. Modulo Resource Reservation Table For Unrolled Loop

Figure 8: Unrolled Loop DDG and Reservation Table
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The Modulo Resource Reservation Table of Figure 9 is generated for the DDG in
Figure 4. The time value is given with respect to the starting time of the loop modulo four
(since the IIT1 is four) and the schedule is therefore repeated every four time units.

Resource Unit

time(mod 4) adder adder multiplier Load/Store
0 S5 S7 S S9
1 S2 S11 S6 S12
2 §3 $10
3 S8 s4

Figure 9: Modulo Resource Reservation Table for 2DG of Figure 4

The reduced execution time from the original loop to the loop using loop
pipelining is due to the overlapping of instructions from different iterations. The
dependences which do exist between the instructions determine the relative iteration to
which each of the instructions in this schedule belongs.

Once the table has been created, identifying the proper relative iteration for each
instruction in the reservation table is the only sub-step in the Modulo Scheduling procedure
which any complexity. Letting “k” indicate the iteration, then the appropriate dependences
between instructions are satisfied if the iterations are labeled as in Figure 10. In this case,

the time is given with respect to the starting time of the loop, being t;. The value “a”

represents the number of iteration executed prior to the pipelined loop, to meet the
preconditioning or prolog requirements as explained in Chapter IV. The relationship
between the instructions' subscripts are determined by the latency and loop delay
requirements represented in the DDG.

The Modulo Resource Reservation Table, as shown in Figure 10, can be used to
generate the restructured loop body for a VLIW machine with the given resources. The
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simplicity of this technique allows easy automation, with performance benefits scalable

with added resources.

Resource Unit
time adder adder multiplier Load/Store
4(k-a)+g (SS)k (ST (S (S9)k-1
4(k-a)+tg+] (S2) (S11) (S6) (S12) 5
4(k-a)+ty+2 (S3) (S10).4
4(k-a)+ty+3 (S8)y (S4)

Figure 10: Modulo Resource Reservation Table for DDG of
Figure 4 with Relative Iterations Identified

B. MODULO SCHEDULING OF CYCLIC DDGs

One of the greatest limitations to the use Modulo Scheduling is the complexity and
inefficiency when considering data dependence cycles. As with modulo scheduling of
acyclic DDGs, the intent is to create a pipelined kernel schedule which has the smallest ITII
possible. However, while the equation for the lower bound on the ITII presented in the last
section only considers the restrictions which are placed on the IIIl due to resource
availability, the existence of dependence cycles creates additional constraints on the lower
bound of III that must be met. For example, consider the simple cyclic DDG of Figure 11,
which represents the loop code instructions of a loop with a cyclic dependence between the
instructions S1 and S3.

(sD
1/0
71 @

10

Figure 11: Simple Cyclic DDG
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Assume that two fully capable functional units are available to execute the instructions,
and. as said before, all resource delays are one time unit. The lower bound on the IIII due
to tt.. resources is two time units. However, the path of the cycle requires that it take at least
three time units between execution S1 in one iteration and the execution of S1 in the next
iteration (this is actually true for any instruction in the graph). The result is a lower bound
on the IIII due to the cyclic dependence which is more restrictive than the lower bound due
to resource availability. By requiring an IIII of three time units, the additional resource
available does not aid in improving performance. In fact, no matter how many resources
are made available (two, ten, one hundred, etc.), while the lower bound on the IIII due to
the resources decreases to a potential value of one, the performance is limited by the
unyielding bound placed on the III by the dependence cycle.

As an additional example, consider again the cyclic DDG shown in Figure 2, having a
a cyclic dependence from node S12 to S4. Assuming that there are the four resources as in
the previous section (two adders, a multiplier, and a load/store unit), then the lower bound
of IIII based on resource constraints would again yield a value of four time units. With no
cyclic dependences, a Modulo Resource Reservation Table could be generated with this ITI
as in the previous section, with maximum resource utilization for the loop. However, the
cyclic dependences require that the lower bound on IIII be five time units (as derived using
techniques such as those described by Zaky [Ref. 7]). Again, the result is poorer
performance and under-utilization of the resources.

In this case as always, because the lower bound on the HOII due to the cyclic
dependences is independent of the available resources, no improvement on the
performance can be obtained by adding resources. That is, as long as the cyclic
dependences require a mere :imiting IIII, performance improvement is not scalable with

added resource, as in the acyclic DDG case.
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C. PIPELINING OF PERFECTLY-NESTED LOOPS

For the case of perfectly-nested loops, Modulo Scheduling methods can certainly be
applied directly to the innermost loop of a nested loop structure. If no cyclic dependences
exist between the iterations of the innermost loop of a perfectly-nested loop structure (i.c.,
there are no innermost loop carried dependences causing cycles), the innermost loop can be
pipelined using the efficient acyclic DDG Modulo Scheduling method.

In cases where there are cyclic dependences across the innermost loop, loop
interchange techniques can sometimes be used to restructure the loop to transfer the loop
carried dependences of the innermost loop to the outermost loop. In some cases, this can
create totally independent innermost loop iterations.

For example, consider the loop shown below:

» I?:ploo;’ 12
For the same outer loop iteration, the statement in the innermost loop is dependent on

the same statement from the previous innermost loop iteration, thus forming a cycle in the
DDG.

By applying a transformation that interchanges the loops, the resultant code would be:
for i, in 1..N, loop
for i LNilop
UR Iy, Iy~
loop

end loop

The interchange transfers the loop carried dependence to the outermost loop, leaving a
parallel innermost loop to which the Acyclic DDG Modulo Scheduling method can be
applied.
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Unfortunately, many loops contain data dependence cycles which carry across all

dimensions of the loop, for example:

foriyin 1N, loop
O i AT i DAG-L. i)
cn g oA

end loop

In this case, a two cyclic dependences exists due to loop carried dependences across
both the innermost and outermost loop boundaries. The interchange of the loop structures
transfers the original innermost loop carried dependence to the outermost loop, and the
original outermost loop carried dependence to the innermost loop. The same situation exists
with a cyclic dependence in the innermost loop. As a result, the simple Acyclic DDG
Modulo Scheduling method cannot be applied. Certainly, a cyclic DDG Modulo
Scheduling method could be applied, before or after the interchange. However, it would be
beneficial if the constraints imposed by cyclic dependences could be altogether avoided.
Unfortunately, no alternative method for loop pipelining has yet been proposed which will
eliminate the restrictions of cyclic dependences in this and similar cases.

A major motivation, therefore, for creating the loop pipelining technique presented in
this thesis is to provide an alternative method to loop pipelining of perfectly-nested loops,
which when faced with the problem above, will circumvent the problems of cyclic
dependences and guarantee the applicability of the Modulo Scheduling for acyclic graphs

to the innermost loop.
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III. AN OVERVIEW OF THE PROPOSED LOOP
PIPELINING TECHNIQUE

This chapter describes the general technique for loop pipelining of a perfectly-nested
loop structure developed for this thesis The intent of the technique is to provide a means for
loop pipelining the innermost loop of perfectly-nested loop structures which have cyclic
dependences. Unlike previcusly presented loop pipelining techniques, however, this
technique overcomes the performance restrictions which cyclic dependences can impose,
while specifically targeting the resultant execution schedule for a particular set of
resources.

The technique requires the use of two basic tools, both of which have previously been
developed separately, but when combined, create a powerful technique for loop pipelining.
It is the combination of the two tools which is unique to the loop pipelining technigque
presented in this thesis.

The first tool is a linear transformation method which restructures any original
perfectly-nested loop structure into one with a parallel innermost loop--that is, one with
totally independent innermost loop iterations. With the removal of all cyclic dependencies,
the resultant loop code DDG can then be loop pipelined with the application of the second
tool, the Acyclic DDG Modulo Sch.eduling method previously discussed. The final result
will be a pipelined kernel schedule with which a restructure innermost loop can be created
for execution on the target VLIW type machine. Each of these tools are described in the
sections below.

The loop pipelining technique described considers only perfectly nested loops with unit
step increases in control variables. Loops with step increments greater that one can be
normalized to create loops with unit step increases and with index lower bounds equal to
one. While the technique is applicable to n-nested loops, the technique only requires the
alteration of the structure of the two innermost loops.
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In general, the loop structures td which this method is applied have the form:

for iy in 1..N, loop
for iz in 1..N; loop

for in-l in l..Nn.l lOOP

for i, in 1..N,, loop
(original loop body)
loop

end
end loop

end
end loop

A. TRANSFORMATION OF THE ORIGINAL LOOP STRUCTURE
The first step in the loop pipelining technique proposed in this thesis is the application
of a loop transformation on the original loop structure. In Section I1.C, it was seen that for
some perfectly nested loops structures, a loop interchange would be sufficient to eliminate
innermost loop cyclic dependencies and allow the application of the acyclic DDG Modulo
Scheduling Technique. The problem, as was noted, is the fact that loop structures exist
which carry loop dependencies across multiple loop boundaries, creating dependence
cycles which cannot be eliminated with mere loop interchanges. In fact, the scope of the
problem is extended to those loops which cannot directly support an interchange in any
case. For example, consider the two dimensional loop structure below:
for i| in 1..N; loop
for iy in 1.N, loop
A(ipig= Ay, ip-D+A(;-1, ip+1)
end
end loop

This loop not only has cyclic dependencies across both loops, but interchanging the
two loops structures would alter the semantics of the structure. Interchange, therefore,
cannot be directly applied.

However, transformations do exist that first skew of the innermost loop, and then apply
a loop interchange to once again produce parallel innermost loop iterations. The general
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method using this process to produce parallel innermost loop iterations is referred to as the
Wavefront Method (or Hyperplane Method) and addressed by Lamport [Ref. 10],as well as
by Wolf and Lam [Ref. 11].This method is described below, followed by the specific
application to the loop pipelining method.

1. Explanation Of The Wavefront Method
The wavefront method of transformation was the ideal transformation method to
use as the first step in the loop pipelining technique created. To understand the wavefront
method, consider the two dimensional loop example shown in Figure 12.a. The DDG

associated with this loop structure can be represented as in Figure 12.b.! For the purpose of

this example, a latency of “one” is assigned to the addition instruction.

for i, in 1..100 loop
for iy in 1..500 loop
SI: A(iix)= Ay, i 1)+AG)-1, ix+])

end loop
end loop

a. Two Dimensional Loop

1/0, -1) 1/(-1,1)

b. Associated DDG

Figure 12: Simple Two Dimensional Loop Structure With DDG

In this case, as in the case for all multi-dimensional loops, the loop delay identifier

on the dependence arc is represented as a vector, with each element of the vector

1. For the purposes of this example, the loop body description will be left in high
level representation as shown. In reality, the level at which the transformation and
the modulo scheduling will be applied is a machine code level. At this point, a
higher level representation of the loop structure and the DDG is used to simplify
the explanation. ,




corresponding to one of the loop dimensions. In general, the vector is in the form (d,, d,,
ds, ds,... d,), where d, correspond to the delay associated with the outermost loop, and d,
corresponds to the delay associated 'with the innermost loop.

For the example, the two delay vectors (0, -1) and (-1, 1) refer to the dependences
between the computation of an array value A(ij,iz) and its use in the computation as the
value A(ij, ip-1) and A(i;-1, ip+1), respectively.

The relationship between the iterations of the loop can be shown using a iteration
space diagram, as in Figure 13. Each point in the space represents one loop code iteration,
and the arcs between iteration points represent loop carried dependences between the
iterations. Figure 13 represents the two dimensional iteration space diagram corresponding
to the loop structure of Figure 12. The arcs continue uniformly throughout the iteration

space in the same pattern as displayed.
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Figure 13: Iteration Space Diagram, Showing Iteration
Dependences
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For the example, loop carried dependences exist across both dimensions. In

addition, the loops cannot be directly interchanged without changing the semantics of the
loop.
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In the case of the example, although cyclic dependences may exist along any
dimension, there can be identified sets of iterations which lie along regular lines, or
Wavefronts, through the iteration space, which do not have dependence relationships. In
fact, Wolf and Lam [Ref. 11] claim that for any loop structure with a constant component
loop delay vectors, a wavefront can always be found.

For the example iteration space of Figure 13, Figure 14 shows one choice of
wavefront for which all iterations on any wavefront line are totally independent. In
particular, along any line of the wavefront, the loop carried dependences which created the
DDG cycles do not relate any two iterations of the wavefront. If the original loop structure
can be transformed into one in which the innermost loop contains the iterations belonging
to one line of an independent wavefront, as Lamport [Ref. 10] claims is possible, then the
innermost loop iteration will be fully independent, and the acyclic DDG Modulo
Scheduling method can be applied to the new innermost loop.

Figure 14: Iteration Space Diagram Showing a Wavefront
for Independent Iterations
The necessary transformation accomplishing this task would have to skew the
iteration space to “‘straighten out” the wavefront lines so that they fall along a single

dimension, and then interchange the loop bounds to ensure the wavefront lines fall along




the innermost dimension. The result of the skewing and loop interchange would produce a

new iteration space with the shape of a parallelogram, as in Figure 15.

An in-depth discussion of the theory and application of applying the required loop

transformation is presented by Wolf and Lam [Ref. 11]. The key is to perform a

transformation which provides the desired affect while maintaining an execution order of

the iterations which preserves the program intent. Wolf and Lam [Ref. 11] identify

precisely the unimodular transformation (one that is performed by a square matrix with

integer elements, and whose determinant is +1) which produces the effect desired.

il -
——
+-
e
new wavefront

—_x— position
——— 3

X X X

Figure 15: Transformed Iteration Space with Horizontal

Wavefronts

When applied to the original loops structure, the unimodular transformation will

produced a loop structure for which all loop delay vectors of the associated DDG have

cither the value of zero for the component of the vector associated with the innermost loop,
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or if this value is not zero, at least one other component value of the vector is non-zero. This
will ensure that the innermost loop iterations for the transformed loop are independent, thus
allowing the application of an Acyclic DDG Modulo Scheduling method to the innermost
loop.

2.  Determining The Transformation Matrix

Now that the basic motivation for and explanation of the wavefront
transformation has been presented, the transformation process can be described. A
transformation which guarantees that the restructured loop has a completely parallel
innermost loop can be obtained in two steps: the first step is the skewing process and the
second step is the interchange process. As mentioned earlier, the transformation method is

discussed in detail by Wolf and Lam [Ref. 11], and is summarized below.

a. Step One: Obtaining The Skewing Matrix
The first step in the transformation is to apply skewing to the innermost
loop, with respect to the second innermost loop, as necessary to ensure that the two
innermost loops are fully permutable--that is, to allow the innermost loop to be
interchanged with the second innermost loop without altering the semantics of the loop.
For creating a permutable nest for the two innermost dimension, Wolf and
Lam [Ref. 11] prescribe that the proper skewing is applied using a transformation matrix

M.\, defined as in the following Equation 3.

100...00
010...00
Mew = : (Eq. 3)
000...10
000...5f1




The varaible sfis the called the skewing factor, with a value defined by the
equation:
0 if Vd:d, 20
sf= (Eq. 4)

max —(d"— 1) ] otherwise

(d de DAd,an))(‘__dn

where D is the set of all loop delay vector in the original DDG

When M, is applied to the loop structure, it results in a skewed loop
structure in which the two innermost loops are permutable. However, loop carried
dependencies can still exist and cause the cyclic dependences which are not desired. The
next step, therefore, is to create the parallel innermost loop.

For an example of this step, consider the DDG in Figure 12. For this

example, the calculation of the sf (from equation 4) yields a value of 1. Hence,

M = .
skew 11

b. Step Two: Creating The Parallel Innermost Loop

Determining the value of M, is only the first step in creating the
transformation matrix. In order to guarantee that the innermost loop is parallel, the loop
structure must be skewed one additional step beyond that skewing prescribed by M,,....
This will eliminate the existence of loop carried dependences which are solely across the
second innermost loop. This skewing is combined with the interchange of the innermost
loop with the second innermost loop. The result is a loop structure for which there is
guaranteed no loop carried dependences which cross only the innermost loop. This, then,
meets the requirements for having a fully parallel innermost loop.

Wolf and Lam [Ref. 11] describe the required additional transformation
needed to make the (n-1) innermost nested loops of a n-dimensional loop structure parallel.
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For the case of a two dimensional loop structure requiring the innermost loop to be fully

parallel, the general case yields the transformation matrix My .w. interchange> defined as:

100...00
010...00

Miew- interchange = . (Eq. 5)

000...11
000...10

Once again using the DDG in Figure 12, as an example,

M:lrw-inurthuu = l:: (l)]

¢. Combining The Steps
Once the addition skewing and interchange matrix is obtained, the entire
transformation process can be performed all in a single step using the product matrix Mg,

calculated as:

100... © ﬂ
010... 0 O

Mgpa =M XMgew = : (Eq. 6)

skew —interchange

000...1+sfl
000... 1 0

Important to note that the total skewing applied is given by the factor
(sf + 1). Also important is the fact that the determination of Mg, does not need the

intermediate calculations of M, and M., interchanges DUt Can be determined immediately
once the value of the sf is known.




Continuing with the previous example, the resultant final transformation

matrix is Mliul = Mttﬂv-inurchau' *Morew = [f (ﬂ

3. Transforming The Original Loop Structure

Once the final transformation matrix has been determined, it can be used to
transform the index space from the original loop structure to the new loop structure with
desired parallel inner loop iterations. Two direct results occur due to the transformation:
first, the loop structure changes. creating new loop index variables as functions of the
original index variables; and second, the DDG is transformed into a DDG on which acyclic
Modulo Scheduling can be applied to the innermost dimension.

a. Transforming The Loop Code
The first step in transforming the original loop into the final loop is to apply

the transformation to the ioop code. This transformation affects the loop code in two ways:
first, it requires the addition of transformation instructions which act as “mending” code at
the beginning of the new innermost loop to calculate the values of the variables which were
original index variables, and second, it determines the change in loop boundaries for the
new code.

(1) Adding The Transformation Instructions. The additional code which
must be included in the body of the innermost loop is determined directly from the inverse
of the final transformation matrix. The transformation from the old index space the to the

new index space uses Mg, ), and is represented by Equation 7.
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100... 0 O
010... 0 O

]
X

000...1+sf 1
000... 1 0

(Eq.7)

The mending code which is required for calculating the values of the

variables which were original index variables can be found using the inverse

transformation matrix, and is given by the equation:

in—l

h
h

inJ

100...0 0
010...0 0
000...0 1
000...1 (~(1+50)]

bn-1

| Fa

(Eq. 8)

As noted before, and as is made obvious here, only the two innermost

dimensions are affected by the transformation. As a result, the above equations indicate that

the only required additional code to be included in the innermost to complete the

transformation are given by the equations:i,, _ | = i’ andi, = i',_ ;- (1 +sf)i',

The equality of i,., and i’ helps simplify the situation by allowing the

variable i’, to be directly substituted for the i, , variable in the instructions. The only

calculation required due to the transformation is for the variable i,. This reduces the
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additional instructions required to only the second equation above, which is a calculation
which then must be done at runtime.

For the example from Figure 12, the resultant transformation equation
is therefore iy = i'; = 2i',.

The necessary addition of this equation to the innermost loop code is
not specifically mentioned by Wolf and Lam [Ref. !1]. Although the relationship between
the variables is clearly identified, the particular implementation and necessary overhead
required by the transformation is not addressed. Because we are also concerned with the
practical aspects involved in the generation of a code following the application of the loop
pipelining technique, the inclusion of the transformation instructions in the loop body
cannot be overlooked and is vital to the proper implementation of the technique. In
addition, the added code implies the addition of overhead to the technique which must be
considered when evaluating the effectiveness of the technique.

(2) Changing The Loop Bounds. In addition to adding transformation
instructions into the loop body, the loop boundaries for the loop control variables must also
be altered to conform to the new loop variables. Wolf and Lam [Ref. 11] specifically
address the effect of the transformation on the loop bounds, which now are dependent upon
the skewing applied, the loop interchange, and the original loop bounds.

Again, because the transformation only affects the two innermost
loops, the general n-dimensional discussion provided by Wolf and Lam [Ref. 11] is
simplified for the two dimensional case of interest. Only the bounds on the two innermost
loop variables require adjustment. The bounds on all other loop variables remain the same.

The bounds on the new two innermost loop variables are calculated
based on the value of sfand the original loop boundaries. In general, the range of the second

innermost loop variable, i’,,_,, becomes (sf+2)...[(sf+1) xN,_,+N,].
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The range of the innermost loop variable, i’,, now becomes

l: —-—————i'.-‘—N.] see ] I.i'.-l—1
max ( [ sf+1 )...min sf+1

J,N__l).

Both boundaries require some calculation. The boundaries for the
second innermost loop are based only on the sf and the original loop bounds. Because these
are known during the transformation process (compile time), these boundaries can be
calculated prior to run time. The innermost loop boundaries, however, also depends on the
value of i’ ;, and must be calculated at run time. Fortunately, this calculation can be done
outside of the innermost loop (but within the second innermost loop) not adding additional
code to the innermost loop.

Once again using the example from Figure 12, the bounds on second
innermost loop variable, i’ |, becomes 3..700. and the range of the innermost loop variable,

i', - 500

i’z,nowbecomcSmax(l,[ . 'I)_"’m.n(li',-l

J, 100).

(3) The Final Transformed Loop Code. The loop code transformation is
complete with the combination of the addition of the transformation equations and the loop
control variable boundary calculations. For the general case, the resultant transformed
structure from the final two steps is

for i) in 1..N; loop
for iy in 1..N; loop

fori’y.pin (sf+2)...[(sf+1) xXN,_, +N,] loop
o s i'n_1—N, . i’y =1
fosi’, in max(l,[' sfl+l ])...mm(l'sfll J,N__,)
loop

iy =i, -~ (+spHi’,
(original loop body)
loop

end
end loop

end loop
end loop




Once more, for the example in Figure 12, the variable i’ is directly
substituted for the iy variable in the loop body statement. In addition, the transformation
equation for calculating the iy variable is added to the inner loop and the loop control

variables and boundaries are altered to maintain the semantics of the loop. As a result, the
final transformed loop structure would have the form:
for i’} in 3..700 loop
for i*y in mx(l,{i.';sm])...min(lr'; ‘J, 100 loop
S2: iy =i =21
S1: A(i"ip= AG'2, ip-H+AG2-1, iz+1)

end
end loop

b. Transforming The Loop DDG

Although the transformation of the loop code is important in determining
the transformed loop body and the new loop control variable boundaries, the wavefront
transformation must be applied to the original loop DDG to obtain the dependence graph
that represents the innermost loop which will be modulo scheduled. This involves applying
the transformation to the loop delay vectors of the original DDG by using the
transformation matrix and adding the two additional instructions used to caiculate the value
of i, to the DDG.

(1) Altering The Delay Vectors. The delay vectors associated with each
arc of the DDG are altered using the transformation matrix M;,,. Again, only the

components of the delay vector corresponding to the two innermost loop dimensions are
altered. The new delay vectors for the transformed DDG can be labelled as d'.

(2) Adding The Transformation Instructions. The transformation
instructions which were discussed in Section IIl.A.3.a.1 are added to the DDG by
determining the dependences which exist between the new instructions and those original
instructions which use the original i, variable value. Nodes are then added to represent the
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transformation instructions, and appropriate arcs are attached to incorporate the needed
dependences.

(3) The Resultant DDG. Once transformed in the above manner, the DDG
which represents the innermost loop alone is obtained by eliminating all arcs from the
Transformed DDG for which

d (x) #0, where x is any value 1..n-1 (Eq. 9)

Because the transformation was designed to make all innermost loop
iterations parallel, the result will be the elimination of all arcs which represent any loop
carried dependences. The resultant DDG will be referred to as the Modified Transformed
DDG.

(4) Example. For an example of the process described above, again

consider the DDG of Figure 12. The two loop delay vectors are modified by multiplying
these vectors by the Mg, matrix (recall that M, = E (‘J). The transformation equation is

then added to the DDG (the transformation equation was labelled as S2 in the example
code). The last step in the DDG transformation was to eliminate all arcs which represent
loop carried dependences across the outer loops. The resultant DDG transformation follows
the steps shown in Figure 16. The latency associated with the dependence between the S2
instruction and the S1 instruction is arbitrarily set to one in this case, again for ease of

illustration.

4. Applying The Wavefront Method To Machine Code Loop Bodies

As previously noted, the example used to explain the wavefront method was
simplified for ease of explanation. In reality, the intent of loop pipelining is to combine
machine instructions into a single VLIW machine instruction. As a result, application of the
wavefront method should be approached assuming that the machine instructions are




1/0, -1) 1/-1,1)

N

l/(-l.-l)gb 1/(-1,0)
DDG with Transformed Loop
@ Delay Vectors

Original Cyclic DDG

1/(0,0)
VeL,-D 61) 1(-1,0)
Transformed DDG with
Added Transformation @
Instructions
1/0,0)
Modified Transformed DDG for
Final Innermost Loop

Figure 16: Modification Process of Original DDG
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identified, and the nodes of the DDG which represents the loop body identify the individual
machine instructions of the loop body.

For example, assume that the machine of concern is a RISC type, load/store
machine. In addition, array variables are accessed in row major manor. Then, the loop
example originally presented as

fori,in 1..1001
For iz in 1..508 loop
Alipip= Ay, ip-1+A()-1, ip+1)
loop
end loop
now becomes the loop structure of the form shown in Figure 17. In this case,

statements which rely on the value of the loop control variable are indicated as doing so..

for i; in 1..100 loop
for iy in 1..500 loop

S1(Gi;): MULTR4,R3,R1 — / calculation of array
S2(i): SUBRS,R2, #1 offset for loading
S3:  ADDRG6,R4,RS  __| A, j-1)

S&  LDRVLR6R) «—

:gf")' ,SnUBn ? %Riglks calculation of array
S-’; ADD RIO' Rz’ #1 / Offset for loadlng
S8:  ADDRIL,R9,RI0 AG-1, j+1)

S9:  LDRI2,RII(RO) /
S10: ADDRI3,R7,R12 .
S1i(ip): ADDRI4,R4,R2 o ——— calculation of array

S12:  STRI3(ROLRI4 g offset for storing

end | i, j
endloop ¥ A, j)

Figure 17: Extended Code For Figure 12 Example

In this example, the registers RO is used as the base register for the array A(i,j).
The register R1 is used to store the value of the i; variable, while the register R2 is used to
store the value for the i, variable. The register R3 is used to store the length of each row,

and would have the value of 500. Other registers are assigned as necessary to complete the
calculation.
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With these instructions, the corresponding DDG is shown in Figure 18. It is
important to note that anti-dependency arcs which are due purely to the naming of registers
are not included in the DDG. The treatment of such dependences is discussed at length in
Section IV.A.

1/0.0)

1/0,0)

2(1.-1)

Figure 18: Cyclic DDG With Nodes Representing
Machine Code Instructions

In this example, the node labelled S1 in Figure 12 is now expanded to identify the
individual RISC type machine instructions which must be utilized to execute the loop body.
The loop carried dependences which were displayed in Figure 12 are still represented by
the dependence arcs between S12 and S4, and S12 and S9 in Figure 18. These dependences
again create a cycles in the DDG.

The following sections indicate the result of applying the wavefront
transformation procedure to the extended loop body with machine instructions.
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a@. The Transformation Matrix

The transformation matrix obtained for the extended example is precisely

that obtained previously for the simplified example. That is, the sfis one, and M, = [f (')]

b. Transformation Of The Loop
The transformation of the loop structures for the machine code example

mirrors that for the simplified example.

(1) Transforming The Loop Structure. The transformation instructions
which calculate the value of i, is still given by the formula i, = i, - 2i',. However, this
equation must be expressed in terms of machine instructions, and can be done so with two
clementary calculations--one mulﬁﬁﬁcation and one subtraction.

The loop bounds calculation is also independent of the exchange of the
machine code instructions with the simplified loop body statement. As a result, if the
instructions for the transformations are labelled S13 and S14, the transformed loop
becomes:

for i’} in 3..700 loop

fori’yin max (1,

i'l~5m i'l—l

])...min(l

$13(’;) MULT R16, #2,R1
$14(i"}):SUB R2, R15, R16
S1(’;): MULT R4, R3,R1

J. 100) loop

As previously described, i’, replaces the variable j; in the loop code so
that the value of i’, is now stored in register R1, as was i; originally. The value of i,, once
calculated, is placed in the R2 register as before. Additional registers R16 and R15 are
needed for temporary storage in the calculation of i;, and for storing the value of i’;,

respectively.




¢. Transforming The DDG

Transformation of the DDG again follows the previously outlined
procedure. The loop delay vectors of Figure 18 are altered using the transformed matrix,
and instructions S13 and S14 are added to the DDG. The DDG representing only the
innermost loop is isolated by ncmovfng from the transformed DDG all arcs which represent
carry loop dependences across the outermost loop.

The the alterations to the DDG as described in Section III.A.3.b are
displayed in Figure 19, which shows the original DDG, the transformed DDG with
transformation instructions S13 and S14 and their dependence connections, and the final
modified DDG for the final innermost loop.

B. APPLYING THE ACYCLIC DDG MODULO SCHEDULING METHOD

Application of the wavefront transformation to the original loop structure marks the
end of the first major step required by the loop pipelining technique presented in this paper.
At the conclusion of this step, the innermost loop of the transformed loop structure is free
from dependence cycles.That is, the modified transformed DDG (the loop structure DDG
representing only the innermost loop) is cycle free. This is exactly the conditions required
to carry out the next major step of the presented loop pipelining procedure: the application
of the acyclic DDG modulo scheduling method.

The procedure for creating the pipelined schedule for the transformed innermost loop
follows precisely the Modulo Scheduling Method described Section II.A, originally
presented by Rau and Glaeser [Ref. 4], with minor modifications. The Acyclic DDG
Modulo Scheduling method can be used following the wavefront transformation because
the transformation has produced independent innermost loop iterations. The resultant
innermost loop DDG is, therefore, acyclic.

Various approaches and heuristics can be applied to properly fill the Modulo Resource
Reservation Table using an Acyclic DDG Modulo Scheduling Technique. Work oy Hsu
[Ref. 12] can be referred to for discussions of the various algorithms based on the desired
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1/0.0) 2/(1,1)

Transformed DDG with Added
Transformation Instructions

Figure 19: Modification Process of DDG with Machine Code

Loop Body
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result. In reality, the simplicity of the Acyclic DDG Modulo Scheduling Method actually
allows a random placement of the instructions into the Modulo Resource Reservation
Table, in the correct resource slots, of course. However, it might be desirable to create
certain characteristics in the pipelined kernel, for example, minimizing the lifetime of any
register used in the pipelined code.

One scheduling algorithm which is based on the algorithm discussed by Rau and
Glaeser [Ref. 4], but which attempts to minimize the register lifetime of all registers, is

shown in Figure 20..

Calculate the IITl
--fill the reservation table per following
perform a topological sort of the DDG, with priority given to the
nodes with the greatest height weighted by arc latency
while there are nodes not scheduled loop
pick the highest priority node per topological sort
if node has no parent then
node.starttime = 0
else
node.starttime =

max

paremss LPATENL. SIArttime + (arc latency)

(arc loop delay)

parent = mode

x11l)

parent - node

if node is not a branch then
until node is scheduled loop
node.starttime = (node.starttime) mod (1111)
if proper resource is available for node at node.slottime in table, then
node is scheduled by reserving resource for node at slottime
node.subscript = k- (node.starttime) div (111])]
else .
node.starttime = node.starttime + 1
s
€l
else (node is branch)
until node is scheduled loop
node.starttime = (node.starttime) mod (1111)
if proper resource is available for node at node.slottime in table
and (node.starttime) mod (I1111) = (illl - 1) , then
node is scheduled by reserving resource for node at slottime
node.subscript = (k- (node.starttime) div (1111)]
else
node.starttime = node.starttime + 1
end if
end loop
end if
end loop

Figure 20: Modulo Resource Reservation Scheduling Algorithm Which
Attempts To Reduce Register Variable Lifetimes
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As explained by Rau and Glaeser [Ref. 4], this procedure ensures that no more than
one instruction is assigned to any one resource during any time slot. In addition,
dependence relationships are maintained because relative starting time calculations are
based on starting times of predecessor instructions, and consider required delays due to
latencies and loop carried dependences. The calculation of the relative iteration to which an
instruction belongs merely converts the timing relationship of instruction starting times to
relative iterations

The reference made in the algorithm to a branch instruction is required in the case
where the loop control instructions for the innermost loop are included in the pipelined
schedule. This will be discussed in the next chapter.

Figure 21 shows the resuit of applying the modulo scheduling algorithm to the final
modified transformed DDG of Figure 19. In this case, the IIl is again calculated to be four
time units. The additional addition and multiplication instructions added to the loop body
have, in general, the potential to effect the calculation of the IIIl, but do not alter the result

in this case. The time of instruction execution is again represented as it was in Figure 10.

Resource Unit
time adder adder multiplier | Load/Store
4(k-ajtg (S5) (S3)-1 (S13)
4(k-a)+tp+1 (S8 (S10)2 (S1), (S4)i
4(k-a)+tp+2 (S14), (Si), (S6), (SO
4(k-a)+g+3 (52) 7k (S12),,

Figure 21: Modulo Resource Reservation Table

C. A REVIEW OF THE PROPOSED LOOP PIPELINING TECHNIQUE

The two tools presented, the wavefront ransformation and the acyclic DDG modulo
scheduling procedure, combine to form the basis of the technique developed in this thesis.




This combination has not been described in previous works, although it is simple and
efficiently scheduled instructions onto resources with a minimum [I1.

The creation of the Modulo Resource Reservation Table only requires the use of the
acyclic modified transformed DDG. Although the creation of this modified transformed
DDG is made possible by the wavefront transformation, the general results of this
transformation are, in fact, completely known prior to the actual performance of the
transformation. For example, it is known that the transformation is designed to remove all
innermost loop carried dependencies. Knowing this, all arcs in the original DDG which do
not have a zero loop delay vector can be removed from consideration in the modified
transformed DDG. Additionally, the transformation also adds one addition and one
multiplication instruction to the innermost loop code body, to calculate the value of the i,
variable. The specific instructions must use the value of sf calculated in the transformation
phase, however, the nodes can still be added to the modified transformed DDG without
knowing this value. Although not yet discussed, the nodes required for the loop control can
also be added to create a slightly different modified transformed DDG. This alteration in
the procedure was ignored during this chapter to simplify the discussion, but will be
presented in the next chapter. In addition, the transformation logically replaces of the i,
variable with the new index variable i’,. In reality, this merely requires the use of the
register originally assigned to i,.; to now be used for the value of i’,,.

As a result, the actual creation of the Modulo Resource Reservation Table can be
performed in parallel, if desired, with the calculations required for the transformation (sf
and loop bounds). A flowchart which illustrates the overall procedure is shown in
Figure 22.

The creation of the Modulo Resource Reservation Table, however, only marks the end
of the first two major steps in the useful application of the technique developed. As
Figure 22 shows, the third and final step is the generation of code from the results of the
first two steps. Discussion of code generation is minimal or non-existent in all references

reviewed concerning previous loop. pipelining technique presentations. The required
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alteration of the code to a final product is, however, of practical importance and will be
discussed in the next chapter.

Original Loop Structure DDG
. . Add expected transformation
Determine Skewing Factor, sf nodes to the Original DDG
Determine the mending code
instructions for calculz&ing Create the Modified Transformed
the value of i;,. DDG by eliminating all arcs
which do not have a zero loop
delay vector
Determine the equations for the
transformed structure loop
bounds.

Add the loop control code to the
modiied transformed DDG, if
desired (discussed in chapter IV).

Determine the I11I and create
the Modulo Resource Reserva-
tion Table

Generated New Code

Figure 22: Proposed Loop Pipelining Technique Procedure Flowchart




IV. CODE GENERATION

Having performed the loop transformation and modulo scheduling, the final step of the
presented loop pipelining technique is the code generation. Code generation depends,
naturally, on the hardware support provided by the target machine. The hardware support
that can aid in better performance goes beyond merely the number of resources. This
section will first address the possible hardware capabilities of the target machine that can
be used for supporting the modulo scheduling technique. The special considerations which
must be addressed when generating the code are then reviewed. Lastly, the code generation
procedure is described.

A. THE TARGET MACHINE HARDWARE

The procedure that was developed obviously was targeted for a VLIW type machine.
The type of functional units that are provided by the machine can vary, and no abnormal
limitations are placed on their capabilities. The type of units available determine, as was
seen in Section I11.B, the outcome of the Modulo Resource Reservation Table. The basic
intent of the research done in this thesis, however, is to improve the overall performance
capability by using VLIW machines. In that respect, additional machine hardware support
designed specifically to support the ..10dulo scheduling technique can only aid in realizing
the fullest potential of the technique. Below is a description of the necessary and desired
target machine hardware support that will be assumed when creating the final loop
structure.

1. Basic Target Machine Requirements
The following assumptions are made concerning the target machines hardware

support:

o The target machine processor is assumed to be RISC type processor, with
multiple functional units capable of simultaneous execution of multiple
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instructions. The VLIW machine instruction word is comprised of a set
of several instructions to be executed simultaneously, cambined to form
the VLiw' instruction word. Each of the individual instructions making
up a VLIW instruction will be referred to as VLIW sub-instructions, and
can be represented by the instruction set similar to that of the DLX
machine described by Hennessy and Patterson [Ref. 13]. The difference,
of course, is that multiple-independent sub-instructions can be executed
concurrently as part of a very long instruction word.

¢ A large number of registers are available for data storage, allowing the
issue of register allocation to be ignored and addressed as a separate issue

« The memory sub-system for VLIW machines is a subject in itself. For the
purpose of supporting the technique presented, it is assumed that an upper
level memory sub-system exists, such as a cache, to support a single cycle
access time assumed for load/stores. The issue of cache misses and hits
will be addressed in a later chapter. Multiple Port cache memory is made
available to allow concurrent Load/Store sub-instructions, accessing
different memory locations, to be executed The procedure for scheduling
instructions to avoid data dependency problems will preclude any
instructions attempting to access the same memory location.

2. Additional Special Hardware Support

Additional special hardware support can be made available to better support the
code generation concerns of modulo scheduling. Many of these hardware mechanisms are
described by Rau, Schlansker, and Tirumalai [Ref. 6] as they pertain for use in modulo
scheduling techniques. Although multiple supporting hardware components are described,
the only two that will be assumed is the Rotating Register File (RRF) using the Iteration
Control Pointer (ICP), and the Iteration Control Register (ICR) with support from the Loop
Counter (LC) and Epilog Stage Counter (ESC).

A RRF is a file of multiple registers that can be accessed by a pointer reference to
a single register in the rotating register file. The pointer can be the number identifier of the
register desired. As a result, if a register file A[X] exist with 3 registers, then the registers
can be referenced by referring to A[0], A[1], and A[2] (see Figure 23).
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Rotating Al0]
Foe A A
A

Figure 23: Simple Three Register Rotating Register File

Referencing can be made relative and variable with respect to some value y by
referring to a register by Afy+constant], for example. The value of (y+constant) is
evaluated in modulo the number of registers in the file to reference the correct register. For
example, using the register file A[X] shown in Figure 23, the register file might be
referenced in a loop as in the following:

for i in 1..10 loop
use Afi]
loop

In this loop, the registers in the register file A[X] will be referenced in a rotating
manner, starting with A[1), and then A[2}, A[0], A[1], Aj2}....A[1].

The reference may also be some other mathematical expression, such as in the
following:

foriin 1..10 loop
use A[i+4]
loop

In this case, the registers will be accessed in a rotating manner, starting with A[2]
and ending with A[2].

To support the use of the rotating register file in the context desired, an ICP is used
to identify the current iteration of some loop. It is originally set to zero, and a special loop
control instruction will increment the ICP at the end of every iteration. The ICP can then
be used as the variable to reference a register in an register file in some instruction. The
special loop control instruction used to trigger the events will be called “brtop”, which has
as its argument the label for the top of the loop. The full use of the *brtop” instruction will
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be explained in a moment, but with respect to the ICP, the “brtop” instruction increments
the ICP and causes a jump back to the top of the loop. For example, if the start of the loop
is labeled “LOOP_TOP”, then the above loop can be represented as follows:
LOOP_TOP: .
briop LOOP. TOP

Automatic incrementation of the ICP then allows the same instruction to
reference the next register in the register file in the next iteration. This hardware support
will become beneficial when dealing with the problem of register usage overlap discussed
following sections.

The ICR is also a rotating register file with the specific purpose of providing for

predicate execution of instructions. The ICR stores boolean values (actually one or zero)

which can be referred to when evaluating the predicate for some instruction in the form

“inst if p” (see Figure 24).
ICR Rotating ICR[0] registers store
Register File ICRI1 > cither a one or
with Two [1] a zero
Registers
Instructions Using the ICR instruction INST1
INST1:  if ICR(0) <4— executed when ICR(0)
INST2: if ICR(1) - is true (1), and INST2
is executed when ICR(1)
is true (1).

Figure 24: Simple ICR Rotating Register File

The pointer for the current ICR register is originally set to zero and is incremented
by one at the end of each loop iteration. This incrementation is triggered by the execution
of the “brtop” instruction, just as is the incrementation of the ICP.



The current ICR register then changes at the end of each iterations. When selected
as the current register, the value is set to either one or zero depending on the value of the
LC. The LC keeps track of how many iterations are left to be started in the loop. It is
originally set to the number of iterations desired, and is decremented at the end of each
iteration, again by the execution of the “brtop” instruction. In this way, the LC is the
hardware replacement for explicit loop control instructions.

The LC and the ECS counter work with the ICR to maintain special control of
instruction execution. The ECS counter is initially set to one less than the number of
registers in the ICR. As noted earlier, the LC is decremented with the execution of the
“brtop” instruction. This is done p;ior to the incrementation of the ICR current register
pointer. When LC is greater than zero, the ICR predicate register that becomes current is
set to true (one). When the LC is zero, then the ICR pointer is reset to zero and the ESC
counter activates. Also if the LC is less than or equal to zero, the ICR predicate register that
becomes current is set to false (zero). Initially, the ICR pointer is set to zero and the value
in the ICR(0) register is one. This will allow the execution of partial schedules of the
modulo resource reservation table, which are needed in transitioning into the code as
describe in the following sections. To aid in understanding the process described above,
Figure 25 provides a flow chart depicting the major occurrences.

As previously mentioned, the special loop control instruction used to trigger the
events will be called “brtop LOOP_TOP”. The instruction first decrements ESC only if LC
is less than or equal to zero, decrements the LC, and increments the ICP. The instruction
then determines the action to be taken for the next ICR register. The control then jumps
back to the top of the pipelined loop, labelled with the LOOP_TOP, unless both the LC and
the ESC are less than or equal to zero. In this way, the branch is taken unless repetitions of
the code executed was equal to the (original LC + original ECS). Figure 26 illustrates a

simple example of the sequence of events for the used of each of these components.
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Inidal Conditions:
LC set to number of iterations
ECS set to one less than registers
in ICR

ICR(0)=1

ICR current pointer set to zero and

v

| execute loop code [*

Y

briop insuuction encountered

LC>0/

\.c«o

_J

exit loop

decrement LC
increments ICP decrements ECS
decrements LC
LC> (/ LC=0 increments ICP
increment ICR pointer ECS/=0
set ICR(ICR pointer) = 1 ECS=0
set (ICR pointer) =0
activate ECS increments ICR pointer
set ICR(ICR poiner) = 0 set ICR(ICR pointer) =0
ECS /=0
ECS=0

Figure 25: Iteration Execution Control Flow Chart
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Af0]
All]

Af2)

Rotating
Register
File A[X]

Code Segment
LOOP_TOP
INST1:
INST2, using A(ICP)
INST3:

briop LOOP_TOP

ICR Rotating Register ICR[0]
File with 3 Registers ICR[1]
ICR[2]
if ICR(1)
if ICR(0)
if ICR(2)

Assume that initially, the LC=4, the ECS=2. The following sequence occurs:

at top of ICR(0) instructions to be
iteration ICR ICR(1) executed this
number | ICP LC | pointer | ECS ICR(2) iteration
TCR(0)=1
1 0 4 0 2 ICR(1)=0 INST2with A(0)
ICR(2)=0
ICR(0)=1
2 1 3 1 2 ICR(1)=1 INST2 with A(1)
ICR(2)=0 and INST1
ICR(0)=1
3 2 2 2 2 ICR(1)=1 INST2with A(2)
ICR(2)=1 INSTI1, INST3
ICR(0)=1
4 3 1 3 2 ICR(1)=1 INST2with A(0)
ICR(2)=1 INSTI1, INST3
. ICR(0)=0
5 4 0 0 2 ICR(1)=1 INSTI, INST3
ICR(2)=1
ICR(0)=0
6 5 -1 i 1 ICR(1)=0 INST3
ICR(2)=1

Figure 26: Hardware Support Sequence of Events
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To support the use of the hardware for loop pipelining, additional special
instructions are made available. The initial specification of the register file namings,
numbers, and size is obviously required. This can (and should) be done outside of the loop
structure to minimize the overhead of specifying the requirements. It will be assumed that
the register file requirements specific to the loop will be associated with a label (referred to
as the “SET_UP_LABEL”) which uniquely identifies the set up requirements. The
information contained in these specifications is determined from the evaluations which will
be discussed in Section IV.B.2 and Section IV.B.3.

In order to activate the specific requirements, special instructions are provided to
initiate the use of the specifications. One instruction will be called the “SET_UP”
instructions. This instruction takes as arguments the value that should be assigned to the
LC, and the value that should be initially assigned to the ESC. This instruction should
obviously be used prior to entering the pipelined kemnel schedule. To initiate the use of the
specifications associated with a labelled set up condition, a “INIT” is used, with the
argument being the label of the set up specifications. This instruction will initialize the
required register files set up for the specific used desired. The instruction should also be
executed prior to the commencement of the pipelined kernel schedule. For the example
shown in Figure 26, if the set up requirements were contained in specifications labeled
“example’, then the code sequence would be as follows:

SET_UP4,2

INIT example

LOOP_TO
INSTI: if ICR(1)
INST2, using A(ICP) if ICR(0)
INST3: if ICR(2)
brtop LOOP_TOP

B. ISSUES OF CONCERN FOR CODE GENERATION

Some of the issues which must be considered to properly generate the final code
structure after modulo scheduling are specifically addressed by Rau, Schlansker, and




Tirumalai [Ref. 6). There are basically four issues that are required to be addressed to
generate code after applying the scheduling technique presented in this thesis:

* adding loop control and loop control variable incrementation to the modified
transformed DDG

* creating the final pipelined kemnel schedule to be used as the new innermost
loop code

* creating the prolog and epilog for the pipelined kernel schedule

¢ determining the transitioning areas of the iteration space where the pipelined
kemel schedule cannot be applied

e determining the required amount of preconditioning of the inner loop before
use the pipelined schedule.

Of these four issues, only the fourth is specific to the overall technique proposed by this
thesis. The other four, however, are necessary to any Modulo Scheduling technique. The
second, third, and fifth items are fully discussed in the previous work of Lam [Ref. 2], and
Rau, Schlansker, and Tirumalai [Ref. 6]. The first item is seldom discussed, but practically
is a concern and should be addressed. In any case, summaries of each of the issues are given
in this section. In each discussion, the first situation considered is that of no special
hardware support as described in Section IV.A.2, followed by the discussion of the
simplifications allowed when the added support is available.

1. Adding Loop Controt To The Modified Transformed DDG

In reality, the innermost loop code not only includes the loop body, but also the
loop variable control instructions. Without hardware support, the instructions consist of an
increment, some sort of a comparison, and a branch instruction. It is obviously beneficial
if these instructions can be incorporated into the loop pipelining effort rather than merely
be sequentially executed. This section, therefore, discusses the changes needed to be made
to the modified transformed DDG to incorporate the control instructions into the
scheduling procedure.

\
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a. Adding Loop Control Instructions With Basic Machine Support

With only the basic VLIW machine support, the final modified transformed
DDG for the innermost loop that will be used to generate the pipelined schedule will be
slightly altered from the modified transformed one previously discussed (as shown in
Figure 19 for the example). The alteration is simply that the loop control code for the
innermost index variable is added to-the modified transformed DDG in order to be included
in the pipelined schedule. This control code basically consists of 3 instructions: an
innermost loop variable increment instruction, an innermost loop ending comparison
instruction, and a branch instruction for restarting the innermost loop when necessary
(these instructions will be labeled S15, S16, and S17 in the example). The addition of this
code is required independent the transformation method used or pipelining method used. It
is desirable to include these instructions in the pipelining procedure, and the following

discussion explains how this should occur.

(1) Adding Loop Control Code To The Loop Structure. For the example
being pursued, the three code instructions which occur at the end of the innermost loop
body will be labelled S15, S16, and S17. Additional registers required are R17 and R18,
with R17 holding the value of the ending condition for the innermost luop. We will assume
that the comparison instruction, S16, used requires the use of the ADDER. Additionally,
the innermost loop label is added, used for the branch instructions branch location.

The resultant loop code is as follows:
for i’y in 3..700 loop

calculate R1 = max (1, [ iy —2500])

‘.‘l-l

calculate R17 = min(l

LOOP2:
S13G’)) MULT R16, #2,R1
S14¢’)): SUBR2,RI15,R16
S1G°,): MULT R4, R3,R1
S2(ip): SUB RS, R2, #1

J,100)+l

S3: ADD R6, R4, RS
s4: LD R7, R6(RO)
S5(’):  SUBRB,RI,#1
S6: MULT R9, R3, R8
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S7: ADD R10, R2, #1

S8: ADDRI11,R9,R10
§9: LD R12, R11(RO0)
S10: ADD R13,R7,R12
S113,): ADDRI4, R4, R2
S12: STR13(R0O),R14

S15(G’y)): ADDRIL RL #1
S16(i’;): SGTRI8,R1,R17
Si7: BNEZ R18, LOOP2

where, again:
* The register RO is used as the base register for the array
A(iy).
» Theregister R1 is used to store the value of the i’, variable.

+ Theregister R2 is used to store the value for the i,
variable.

» The register R3 is used to store the length of each row, in
this original case, this would have the value of 500. Other
registers are assigned as necessary to complete the
calculation.

« The register R15 is used to store the value of the i’
variable.

» The register R17 is used to store the calculated value for
the stopping condition of the innermost loop

* LOOP2 is the label used to identify the beginning of the
innermost loop

The starting and stopping values for the innermost loop control
variable are calculated prior to the start of the loop as indicated above, and is not included

as part of the innermost loop code

(2) Adding The Loop Control Code Nodes To The Modified Transformed
DDG. Although in:lusion of the code required for loop control in the loop The control
instructions form a subgraph shown in Figure 27 which must be added to the modified
transformed DDG.
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Figure 27: Subgraph For Loop Control Instructions

The subgraph is added to the DDG in a similar manner as were the
transformation instructions. Because S15 defines a value for the loop control variable, there
is a dependence between this node and any use of the control variable in the next iteration.
The branch instruction causes a control dependence between itself and all nodes in the next
iteration. By ensuring that a dependence arc is included between this branch and all of the
nodes in the modified transformed DDG, no instructions from subsequent iterations will be
executed unless the branch condition determines that additional execution of the loop is
required. In that way, no mending will be required to fix inappropriately executed
instructions from iterations which should not have occurred. The representation of this
dependence can be simplified merély by ensuring a dependence arc exists between the
branch and the topological “top” of the DDG.The resultant DDG for the innermost loop is
shown in Figure 28.

The dependence arcs which extend from the branch instructions
have a delay of “one”, signifying that instructions are dependent on the previous iterations
branch. Most of the dependences from the increment instruction, S15, are loop carried
dependences (also having a loop delay of one).

Significant to note is that a simple cycle is introduced by instruction
$15. The Acyclic DDG Modulo Scheduling technique was not intended to handle cycles.
However, this simple cycle adds the constraint that there must be a latency of 1 between the
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Figure 28: Final Innermost Loop DDG with Loop Control Code Added
When There Is Basic Machine Hardware Support
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execution of instruction S15 of two different iterations. By the nature of the scheduling
process, any one instruction is only scheduled once in the Modulo Resource Reservation
Table. Because the table must have at least one time slot, the constraint is trivially met, and
will not cause a problem. With the addition of this code, we are otherwise guaranteed that
no other cycle can be created. This is true because the modified transformed DDG is itself
acyclic, and no instruction from this DDG can alter the input values to the control code
instructions--that is, there can be no dependence arc back to the control code nodes to cause

acycle.

(3) The New Modulo Resource Reservation Table. With the addition of
the loop control code to the modified transformed DDG, the Modulo Resource Reservation
Table is generated as previously discussed. Assuming that there are two adders, one
multiplier, one load/store, and now one branch unit available on the VLIW machine, the
Acyclic DDG Modulo Scheduling technique is performed on the final modified
transformed DDG of Figure 28, ignoring the simple cycle. The result is the Modulo

Resource Reservation Table of Figure 29.

Resource Unit
time adder .adder multiplier | Load/Store| Branch
S(k-a)+ty (S15), (S5 (S13), (S4),
5(k-a)+tg+1 (S16), (S10) (S1) (S,
5(k-a)+ty+2 (Sﬁ)k (S1i), (S6), (S12),,
5(k-a)+tg+3 (52), [y
S(k-a)+tg+4 (S3)% (S8), (S17)

Figure 29: Final Modulo Resource Reservation Table With Basic

Machine Hardware Support




The calculated IIIl for generating the reservation table has now
increased to five time units vice four, due to the addition of the control instructions of the
resource requirements. The branch instruction, S17, has been placed in the last time slot of

the schedule to control the jumping back to the top of the pipelined kernel.

b. Adding Loop Control Instructions With Special Machine Support

With the special machine support as describe in Section IV.A.2, much of
the loop control for the innermost loop can be handled by the hardware. However, there is
still a need to maintain the value of the index variable for referencing in the code. In
addition, the branch instruction “brtop” will be needed to be scheduled as well. As a result,
added to the modified transformed DDG will be an innermost loop variable increment
instruction and the “brtop” instruction. The existence of the hardware also requires added
instructions of SET_UP and INIT. These instructions must be added to the code just prior
to using the pipelined loop. The placement of these instructions, however, will be discussed

in Section IV.C.

(1) Adding Loop Control Code To The Loop Structure. The instructions
S15 and S16 are added at the end of the loop. For the example being pursued, the two added
instructions can be considered to occur at the end of the innermost loop body as they were
in the previous case. The instructions will be labelled S15 and S16. The additional register

R17 is again added to holds the ending value for the innermost loop variable.

The resultant loop code is as follows:
for i’y in 3..700 loop
calculate R1 = max(l,[

i',-soo])

i']-l

calculate R,,, = min (|.

LOOP_TOP:
Si3(i";)  MULTRI6. #2,R1
S14(")):  SUBR2.RI5,R16
SI1(i»):  MULTR4,R3.RI
S2(iy): SUB RS, R2, #1
S3: ADD R6, R4, RS

J,100)+l
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S4: LD R7, R6(RO)
S5(i°,): SUB R8,R1. #1

S6: MULT R9. R3. R&
S7: ADD R10, R2. #1
S8: ADD R11.R9,R10
S9: LD Ri2, R11(R0)
S10: ADD R13, R7.R12
S11Gy):  ADDRI4.R4.R2
S12: ST R13(RO), R14
S15G',:  ADDRI.RI. #1
S16: BRTOP LOOP_TOP

where, again:

The starting and stopping values for the innermost loop control

The register RO is used as the base register for the array
AG,j).
The register R1 is used to store the value of the i’ variable.

The register R2 is used to store the value for the i,
variable.

The register R3 is used to store the length of each row, in
this original case, this would have the value of 500. Other
registers are assigned as necessary to complete the
calculation.

The register R15 is used to store the value of the i’
variable.

The register R, Is used to store the calculated value for
the stopping condition of the innermost loop. This
stopping condition is not explicitly needed for loop
control, but will be used to calculate the number of
innermost loop iterations. An actual register number
(R14) will be assigned to this calculated value in the code
generation process to be discussed later.

LOOP_TOP is the label used to identify the beginning of
the innermost loop.

variable are calculated prior to the start of the loop as indicated above, and is not included

as part of the innermost loop code.

(2) Adding The Loop Control Code Nodes To The Modified Transformed
DDG. The control instructions in this case are added to the modified transformed DDG as

they were in the case of no hardware support. However, this time the increment node and
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the branch node are not dependent upon each other. The resultant modified ransformed

DDG for the innermost loop is shown in Figure 30.

Figure 30: Final Innermost Loop DDG with Loop Control Code Added
When There Is Special Machine Hardware Support

(3) The New Modulo Resource Reservation Table. Re-performing the
Acyclic DDG Modulo Scheduling Procedure on the modified transformed DDG of Figure

30, the result is the Modulo Resource Reservation Table of Figure 31.
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Resource Unit
time adder adder multiplier | Load/Store| Branch
S(k-a)+y (S15) (S5), (S13), (S4),
5(k-a)+ty+] (S10)., (S11), (S1) (S,
S(k-a)+tp+2 (S14), (S6), S12).,
5(k-a)+ty+3 (82), (87,
S(k-a)+ty+4 (S3), (S8), (S16),

Figure 31: Final Modulo Resource Reservation Table With Special
Machine Hardware Support

2. Creating The Final Pipelined Kernel Sciiedule

Once the Modulo Resource Reservation Table has been generated, the final
pipelined kernel schedule which is used as the new inner loop code can be derived. This
pipelined kernel schedule is basically created directly from the reservation table. The only
complication that may exist occurs when explicit specification of register usage is required,
as with the ongoing example. When this is the case, the overlapping of different iterations
in a software pipelined inner loop may also create a problem with register usage overlap.

The problem can be explained using an example from Lam [Ref. 2]. Assume a

loop code fragment that uses the register R1 exists such as in the following:

SI: def(R1)
$2: operation
S3: use(R1)
With three general processors available, the Modulo Resource Reservation Table

which would be produced would be that shown in Figure 32.




Processor

time from
beginning
of loop Pl P2 P3
0 (S3),.» 82),, (S1),

Figure 32: Modulo Resource Reservation Table

Using the Modulo Resource Reservation Table of Figure 32 to construct the
pipelined loop body would result in an execution timing diagram as shown in Figure 33,
with an 1111 of one time unit and the kernel first being used at time 2. In this figure, the

statement labels have been replaced by the actual instructions to better illustrate the

problem.
iteration number
time 1 2 3 4 5
0 def(R1)
1 operation  def(R1)
2 use(R1)  operation  def(R1) “®— possible kemnel
3 use(R1)  operation  def(R1) {833' rx)venltllﬁgn
4 use(R1)  operation def(R1) of one time
5 use(R1) operation umt
6 use(R1)
7
8

Figure 33: Initial Timing Table For Pipelined Iterations
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Because of the explicit assignment of registers, a register usage anti-dependence
(a dependence that normally requires a variable usage prior to a later variable definition) is
frequently created which is dependent upon the use of registers and not on the actual data.
For the above example, the use of the register R1 in one iteration occurs after the
redefinition of R1 in the next iteration. This will result in the use of the wrong data value
in R1. To alleviate this problem, IIII could be extended to two time units, but this reduces
the efficiency of the pipelined schedule created. Better solutions to this problem depend
up~1 the support given by the hardware, but in all cases, some register renaming scheme is

followed to avoid rewriting to registers prior to their proper usage.

a. Renaming Registers With Basic Machine Support
A technique which Lam [Ref. 2] labelled Modulo Variable Expansion is

employed to solve the register renaming problem when there is only the basic machine
hardware support. Modulo Variable Expansion requires repetition of the schedule
generated by the Modulo Resource Reservation Table, and explicit renaming of the
registers in the appropriate instructions to ensure there is no loss of information. For the
simple example given above, the result would require the renaming of the R1 register in
every other iteration, yielding an the timing diagram shown in Figure 34. The IIII will
remain one time unit in this case, but the pipelined loop has been unrolled to inciude two
iterations. The timing diagram of Figure 34 has the unrolled pipelined kernel in Figure 35.

To conduct Modulo Variable Expansion, the usage lifetimes of each
register definition must be evaluated. This determines the number of needed namings (i.e.,
the number of different registers) of the register in order to avoid overwriting a register

before the information it contains can be used.




iteration number
1 2 3 4

def(R1)

operation  def(R2)

use(Rl)  operation def(R1)

<¢t—_ pipelined loop

use(R2) operation  def(R2)

use(R1)  operation

def(R1)

use(R2)

operation

use(R1)

ool wlon I :;uNn-og'

kemel still has
III of 1 time
unit, but loop
has been un-
rolled so that
there are two
iterations per

ipelined
Boay.”

Figure 34: Table For Pipelined Iterations with Modulo Variable

Expansion Applied
Processor
time from
beginning
of loop Pl P2 P3
0 use(R1) | operation | def(R1)
1 use (R2) | operation | def(R2)

Figure 35: Pipelined Kernel with Modulo Variable

Expansion Applied
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The number of renamings is given by the equation:

N Lifetimer]

namings of Reg, ~— [T (Eq. 10)

where Reg, is a register

Each renaming of a register occurs in a different copy of the reservation
table copy. Because differenct registers may need to be renamed a different number of
times, the reservation table schedule must be repeated an appropriate number of times to
accommodate all of the registers. The required number of repetitions of the reservation
table schedule is therefore determined by the equation:

N,

schedule repetitions = 1633t common multiple [Ny pipgs o neg)»  for all Registers Reg, used  (Eq. 11)

b. Register Renaming With Special Machine Support

Special machine hardware supported solutions revoive around use of the
Rotating Register Files. A rotating register file is created for each of the originally
addressed registers which require renaming. The number of renamings can be determined
as in the above discussior, but use of the RRF will eliminate the need to unroll the pipelined
loop and duplicate code.

For the simple example above, a rotating register file would be created for
the R1 register, consisting of two registers, R1[{0] and R1{1]. The resultant timing diagram
is shown in Figure 36 with the pipelined kernel schedule shown in Figure 37. In these
diagrams, the current ICP value modulo 2 is used to determine the appropriate rotating
register file register that is to be referenced. With the ICP starting at 0, the timing table
generated using the hardware support is precisely the schedule with R1 being replaced by
R1{0] and R2 being replaced by R1[1]. .




iteration number

time 1 3 4 5

0 | def(RI[ICP})

1 operation  def(R1[ICP])

2 | useRI[CP]) operation def(R1{ICP))

3 use(R1{ICP]) operation def(R1{ICP))

4 use(R1(ICP]) operation def(R1[ICP})
5 use(R1[ICP]) operation
6 use(R1{ICP))
7

8

X represents the
current reference
pointer to the
register file R1.
The IHI is stll
one time unit

Figure 36: Timing Table for Pipelined Iterations with Rotating

Register File Support
Processor
time from
beginning
of loop P1 P2 P3
] use(R1[ICP])] operation {def(R1[ICP]

Figure 37: Pipelined Kernel with Rotating Register File

Support
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¢. The Original Example
Returning to the example which produced the Modulo Resource
Reservation Tables of Figure 29 and Figure 31, the pipelined kernel schedule can be created

in cither the case of without or with special hardware support.

(1) Creating The Pipeline Kernel Schedule With Basic Hardware Support.
First assume that there is only the basic hardware support to solve the register remaning
problem. The lifetime analysis indicates that registers R1, R4 and R7 have a lifetime of
between five and eleven time units, and all other registers have a lifetime of five time units
or less. Hence, the value of Ny i, is two for R1, R4 and R7, resulting in the value of
N, chedule repetitions 3150 being two.

For convenience, the renamed registers for R1, R4, and R7 will be
referred to as R1[0] and R1[1] for R1, R4[0] and R4{1] for R4, and R7[0] and R7[1] for R7.
The resulting pipelined kemel is then given by Figure 38.

As can be seen, the schedule from the reservation table is repeated
twice. Those registers that required more than one name are included with the associative
statement in which the registers are use.;, with appropriate index numbering identifying the
proper renamed register. Registers which require only one name are not indicated.
Important to note, only one control branch instruction is included in this schedule, to ensure
that the kernel is executed at the end of the kernel schedule, and not in the middie. This will

become important for the generation of transition code discussed in the next section.

(2) Creating The Pipeline Kemel Schedule With Special Hardware
Support. Assume that the hardware support of rotating register files is available for use in
solving the register renaming problem. The use of hardware support both eliminates one
instruction that must be scheduled as well as the dependences associated with that node. As
a result, the lifetime analysis indicates that registers Ri, R7, and R14 require renaming.
However, with the added support of the RRF and ICP, then explicit repetitions of the

Modulo Resource Reservation Table is unnecessary to create the pipelined kenel schedule.
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Resource Unit

time adder adder multiplier | Load/Store | Branch
0 s1s s5 s13 s4
m?ef;kr:lglkl[l] uses R1{0) uses R1[0) defined R7(1)
1 S16 S10 Si S9
defined R4[0]
uses R1l1) use R7(0] | uses R1(0]
2 S14 S11 56 S12
uses R4[1]
3 $2 $7
4 s3 S8
5 S1s S5 S13 S4
 med b1 R | R ) aeined R0)
6 S16 510 deﬁnesdlkam 59
uses R1{0) use R7(1] uses R1{1}
7 S14 S11 S6 S12
uses R4{0)
8 S2 S7
9 s3 S8 S17

Figure 38: Final Pipelined Kernel Schedule with Modulo Variable
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Again let a register file of two registers be established for each of
registers R1, R4, and R7,with the register files can be referred to as R1[(X1)] for R1,
R7[(X7)] for R7,a nd R14[(X14)] for R14. The variable (X1) refers to the referencing
pointer use to access the registers R1{0] and R1[1]. Variables X7 and X14 perform similar
functions with their respective register files. In any iteration, these variables can be
functions of the current value of ICP. The variables X1, X7, and X14 are evaluated modulo
the number of registers in each respective register file (in each case modulo 2) in order to
reference the registers on a rotating basis. The pointer values are initialized to zero at the
beginning of the loop by the “INIT” instruction and are incremented automatically at the
start of each new kemel execution. The resulting pipelined kemel is then given by Figure

39.

Resource Unit
time adder adder multiplier Load/Store Branch

0 S15 S5 13 4

e Ricper) | wesRINCP) | uses RIICP) | defined RIICP+1]
1 S10 S11 S1 59

use R7{ICP] defined RI4[ICP+1]| yses RI[ICP)
2 S14 S6 s12

use RI4{ICP}

3 S2 s7
4 s3 s8 17

Figure 39: Final Pipelined Kernel Schedule with Special Hardware
Register Renaming Support

The schedule from the reservation table is mirrored exactly, with
proper pointer references indicating the proper relationship between register definitions

and uses. References to the register file R1{X1] are included with the associated statement
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in which the registers are used, while registers which require only one name are not

indicated.

3. Creating The Prolog And Epilog For The Pipelined Kernel Schedule

Once the pipelined kernel schedule has been created, the next consideration in
code generation is the creating the code segments which provide the needed transition to
the pipelined loop. These code segments are called the prolog and the epilog, and are
created from partial inner loop schedules (actually, partial Modulo Resource Reservation
Table schedules), and allow the starting and completing of iterations which are only
partially represented at the beginning and end of the pipelined loop body.

The prolog supplies the front end transition into the pipelined loop, and the epilog
provides the transition at the end of the pipelined loop execution. If the instructions in the
Modulo Resource Reservation Table spanned across N, different iterations, then there
will be (N,;..-1) partial schedules in both the prolog and the epilog. The first partial
schedule of the prolog will be the one which consists only of those instructions that are
“latest” (i.e., those with the highest statement index k+1, k, k-1, etc.) in the Modulo
Resource Reservation Table. The second partial schedule will include these instructions as
well as the instructions that are second “latest”, and so on, until all but the “earliest”
instructions are included. These “earliest” instructions are first executed in the pipelined
kernel schedule.

The epilog partial schedules are similarly pattern. The first partial schedule
consists of all instructions except for the “latest” as indicated in the Modulo Resource
Reservation Table, with each subsequent partiai schedule eliminating the next latest set of
instructions. The last partial schedule of the epilog includes only the “earliest” reservation
table instructions.

In all partial iterations, the loop control branch instruction is not included in the
scheduling.
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a. Creating The Prolog And Epilog With Basic Machine Support
Without only the basic machine hardware support, the prolog and epilog
must be determined explicitly and be included as transition code into the pipelined kernel
body. The register renaming scheme used to create the kernel must also be extended into

these regions to ensure that the proper register referencing is maintained.

b. Creating The Prolog And Epilog With Special Machine Support

Special machine hardware support can again be used to aid in the creation
of the prolog and epilog. The explicit determination of the prolog and epilog required with
basic machine support can be avoided by using the Iteration Control Register.

A single instruction group is made up of all of the instructions of the
Modulo Resource Reservation Table which has the same iteration index identifier. One
register in the ICR identifies if the instructions of a group in the kernel should or should not
be executed during a given iteration. Only during the prolog or epilog will any instruction
have a negative predicate and not be executed.

With this special hardware support available, the prolog and epilog are
generated from the oipelined kernel schedule during run time. Initially, the SET_UP
instruction is used to set all predicates except the first (p,) are false, set LC to the number
of iterations that must be executed, set the current ICR pointer to the first predicate register
(po), set the first predicate register value to true (one), and set the ESC to the value of (Nj;..-
1). Each of the instructions in the kernel schedule is assigned a predicate register based on
their relative iteration index, so that an instruction with iteration index of (k-x) is assigned
the predicate register p,, and is executed “if ICR(x)”. The only instruction which in an
exception to this is the brtop which will always have a true predicate, and is therefore
always executed.

As described before, with the execution of the brtop instruction, counters
are adjusted appropriately and the current ICR pointer moves to the next register. If the LC

is greater than zero, the new current predicate is set to true. If the LC is now zero or less,
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the predicate is set to false, and the ESC counter is decremented. The partial kernel
schedules are executed until the LC an the ESC are zero.

In this way, the execution sequence progressively adds instructions groups
until the steady state kernel is reached. This performs the same function as a prolog which
was explicitly generated before. The epilog is dynamically created by eliminating
additional instruction groups from successive kemel repetitions until all instruction group
predicates are negative, essentially draining the loop pipeline and completing the execution
of the final iterations.

This “kernel only” execution requires the use of predicates and execution

of the schedule a total of [N,

inner ¥ (Native— 1)1 vice N, repetitions. As explained in

ative
Section IV.A.2, the initialization of the counters is done with special initialization
instruction “SET_UP” with arguments being the value of LC, ESC, and “set-up label”. The
instruction “INIT ‘set-up label’” can be used to set the current ICR to the first register file
and trigger the counters to take affect. The specifications for the ICR register file can be
made prior to the loop execution at the same time that the specification requirements for the

RRF were established and labeled.

¢. The Original Example
Considering again the example with reservation tables of Figure 29 and
Figure 31. The results of this step can be explained for both the case of no additional

hardware support and the case of special hardware support.

(1) Creating The Prolog and Epilog With Basic Machine Support. In the
case of a VLIW machine with basic hardware support, the prolog and epilog are generated
using the Modulo Resource Reservation Table of Figure 29 with the renaming scheme
utilized in Section IV.2.c. In this case N, is three, requiring that the prolog and epilog
both have two partial iterations of the reservation table schedule. The prolog is shown in

Figure 40 and the epilog is shown in Figure 41.
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Resource Unit

adder adder multiplier | Load/Store | Branch
S15 S5 S13
lses R1{0), uses R1(0) uses R1{0]
defined R1(1})]
S16 5‘1t 0
uses R1[1) uses Rl[:)‘l l
S14 S6
S2 S7
S3 S8
S15 S5 S13 S4
“tmeryo] =R | SR ] getned R70
516 dcﬁngdlkﬂl] 59
uses R1{0] uses R1{1)
S14 Si1 S6
uses R4{0]
s2 S7
S3 S8

Figure 40: Prolog For Modulo Resource Reservation Table of Figure

29 and Pipelined Kernel Schedule of Figure 38
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Resource Unit

time adder adder multiplier | Load/Store | Branch
0 S4
defined R7(1]

1 S10 S9

use R7(0)
2 Si1

uses R4(1) S12
3
4
5
6 Si0

use R7{1]
7 S12
8
9

Figure 41: Epilog For Modulo Resource Reservation Table of

Figure 29 and Pipelined Kernel Schedule of

Figure 38
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(2) Note that the branching instruction is eliminated from both the prolog
and epilog schedules because it is not part of the loop, but merely a transitioning section
prior to the loop.

As can be seen, the first partial iteration of the prolog includes all those
instructions from the Modulo Resource Reservation Table with the latest iteration index.
Subsequent partial iterations sequentially add the instructions with the next latest iteration
index until the first complete schedule can be executed in the pipelined kernel. One
complication that arises due to the Modulo Variable Expansion is the need to ensure that
the correct renamed registers are initialized with the correct value. In the examgie, the
register R1[0] is the first R1 register to be used, so it must hold the starting value of the
variable represented by R1. The same requirement holds true for the register R7.

Likewise, the first partial iteration of the epilog includes all those
instructions from the Modulo Resource Reservation Table except for those with the latest
iteration index. Subsequent partial iterations sequentially eliminate the instructions with the
next latest iteration index until all instructions have been eliminated from the inclusion. In

both the prolog and epilog, the branch instructions are eliminated from the code.

(3) Creating The Prolog and Epilog With Special Hardware Support. With
the special machine support of an Iteration Control Register, the instructions can be divided
into three predicate groups: those with iteration indices of k, (k-1), and (k-2). The
instructions with iteration index of k will have as their predicate the statement “if ICR(0)”,
those with iteration index of (k-1) will have as their predicate the statement “if ICR(1)”,
and those with iteration index of (k-2) will have as their predicate the statement “if ICR(2)”.

For the first execution of the pipelined kernel, the predicate for those
instructions with iteration index of k should be true and all others false, allowing the
execution of the correct instructions. The second execution of the pipelined kernel, should
have the instructions with indices of k or (k-1) executed. For the rest of the iterations, all

instructions are executed, until the last iteration has started. At this point, LC would be zero,
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and the ESC engages to help create the epilog. The execution of (N,,.. -1), that is, two,
more kernel schedules execute, the first of which executes only those instructions which
have indices of (k-1) or (k-2), and the last executing only those instructions with index

(k-2).

4. Areas Of The Iteration Space Not Supporting Use Of The Pipelined Loop

The third consideration in code generation is the determination of the sections of
the new iteration space to which the pipelined kernel schedule cannot be applied. In
general, these areas will be labelled the iteration space transition areas. As mentioned
earlier, the existence of these transition areas is the only problem of code generation which
is truly unique to the technique presented in this paper. The determination of these areas is
needed, however, because of the wavefront transformation which was originally applied.
This tranformation skewed the iteration space of the two innermost loops, resulting in an
iteration space with a parallelogram shape (see Figure 42), where the number of iterations
in the inner loop tapers up from one and down to one near the bounds of the outermost loop.
The use of the pipelined kernel schedule, as well as the supporting prolog and epilog, is
obviously possible only if the number of iterations in any transformed innermost loop
accommodates at least the number of iterations required by the prolog and a single
repetition of the pipelined kernel schedule. The tranformation, therefore, creates the need

to consider the transition areas.

a. Iteration Space Transition Areas With Basic Machine Support
With only basic machine hardware support, the pipelined kernel generation
may have required repetitions of the modulo schedule to support explicit register renaming
via modulo variable expansion. In this case, to use the resultant pipelined kernel schedule,

the number of inner loop iterations must meet the requirement:

Ninner 2 [Nschedule repetitions + (Nalive -] (Eq. 12)
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Figure 42: Iteration Space Shape Characteristics, Before and After
Transformation

80




For those second innermost iterations which do not have enough innermost
iterations to meet the above requirement, the associated innermost loops should be
executed without using the pipelined kernel schedule (in the worst case, these sections
could be executed sequentially). Sections of non-pipelined iterations will therefore occur
prior to, as well as following, the use of pipelined schedule. These sections of the iteration

space are the iteration space transition areas

b. Iteration Space Transition Areas With Special Machine Support
With special machine hardware support, schedule repetitions were not
needed to support register renaming, nor is explicit prolog and epilog generation required.
As a result, the number of innermost loop iterations which are required to exist in order to
support the use of the pipelined schedule is that amount which is represented in one
schedule kernel. In this case, the value of N,y equle repetitions it the above equation becomes

one, hence, the number of inner loop iterations must merely meet the requirement:

Ninner 2Nalive (Eq. 13)

Again, for those second innermost iterations which do not have enough
innermost iterations to meet the above requirement, the associated innermost loops should
be executed without using the pipelined schedule. As was the case when there is only basic
hardware support, the iteration space transition areas of non-pipelined iterations will

therefore occur prior to, as well as following, the use of pipelined kernel schedulc

¢. The Original Example

In the original example, the iteration space transition areas will differ

depending on the machine hardware support.

(1) With Basic Machine Hardware Support. For the case of only basic
machine hardware support, the value of N, qu, repetisions In the €xample was two and the

value of N, was three. As a result [Nocpoute repetisionst (Naiive = 1)] €valuates to four.
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Therefore, the bounds on i’; for which the inner loop code cannot be executed using the
pipelined schedule are:
fori'yin3.8 and for i’ in 695..700
Hence, the areas defined by these boundaries become the iteration

space transition areas.

(2) With Hardware Support. With hardware support, the value of
Nchedute repeiition 18 €ssentially one, so that the innermost loop must have three iterations to
use the pipelined kemel schedule. As a result, the bounds on i’; for which the inner loop
code cannot be executed using the pipelined schedule are:
fori’;in3..6 and for i’y in 697..700
As before, the areas defined by these boundaries become the iteration

space transition areas.

5. Determination Of The Pipelined Loop Preconditioning

The last issue which must be addressed before presenting the code generation
process is the determination of the amount of preconditioning that the innermost loop
requires in order to use the pipelined kernel schedule. Preconditioning refers to the
execution of non-pipelined iterations within a single execution of the innermost loop in
order to allow the pipelined kemel schedule to execute the rest cf the iterations. The need
for preconditioning exists because the pipelined kernel schedule, when combined with the
prolog iterations, can only execute a specific number of iterations.

To help understand this need, first consider the ideal case when no
preconditioning would be required. This condition exists when it is known at the beginning
of the innermost loop that the number of iterations in the inner loop which must be executed

satisfies the equation:

Ninner = AXNgchedule repetitions + (Native= 1) (Eq. 14)

where “A” is some positive integer.
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From this equation, it can be seen that preconditioning is only required in
the case where no special machine hardware support was available for implementing
the register renaming required. When special hardware support is provided, then
N chedute_repesitions 1S €scntially one, and the equation can be satisfied if N, 2N,,,,.
However, from the previous section, this will always be the case when using the pipelined
kernel schedule with special hardware support. Consequently, no preconditioning will ever
be needed when using hardware support.

However, with only the basic machine hardware support for register renaming,
this is unlikely that the equation is metin the general case for innermost loops, particularly
because the skewing results in consecutive innermost loops having different numbers of
iterations. Even if the transformed space is rectangular (i.e., no skewing was needed
because the original loop was fully parallel), the number of innermost loop iterations still
may not be such as to meet the above requirement. The solution is to identify the “extra”
iterations of the innermost loop, which, after execution, will allow the remaining iterations
of the innermost loop to satisfy the above equation. These “extra” iterations are executed
without using the pipelined schedule (in a manner similar, perhaps, to the way in which the
non-pipelined code required by Section IV.4), and are considered the preconditioning
iterations for the pipelined loop.

Execution of the preconditioning iterations is then followed by the execution of
the remaining iterations using the pipelined loop schedule. This preconditioning of the
pipelined loop is described By Rau, Schlansker, and Tirumaiai [Ref. 6]. The number of

iterations required to be performed in the preconditioning code is given by the equation:

N

precondition

= [N, - (N

alive

-1)]mod N

schedule repetitions

(Eq. 15)

inner

Again note that when register renaming machine hardware support is available,

the value of N, haue repetisions 18 ON€, Making Np,condirion €qual to zero.
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Because the skewing employed in the technique presented in this paper can result
in differing numbers of iterations for different innermost loop executions, the value of
Ny econdision Must be calculated following the start of each second innermost iteration,
and then immediately used to execute the preconditioning code for the subsequent
innermost loop.

If Modulo Variable Expansion is used to rename registers in the pipelined
schedule, then the appropriate registers (those that needed to be renamed) will need to be
initialized as required before the prolog is commenced, to ensure that the correct values are
used at the start of the prolog.

For the example, assuming only basic machined hardware support, the equation

for Norecondicion 18 specifically:

N

precondition

= [N -3]mod 2 = [N, -1]mod 2 (Eq.16)

inner inner

C. GENERATING THE FINAL LOOP CODE

Now that the general issues concerning the generation of the final pipelined loop code
structure have been completed, the actual code generation process can be described. As the
previous sections demonstrated, the type of machine hardware support will affect the issues
surrounding the code generation process. It can be concluded from these sections that use
of special hardware support not only simplifies the creation of the pipelined kernel
schedule, the prolog, and the epilog, but it also increases the potential benefit of using the
pipelined kernel schedule to execute the iterations. This is true because it eliminates the
schedule unrolling that might be required for Modulo Variable Expansion. Modulo
Variable Expansion, in general, increases the size of the iteration space transition areas and
the number of preconditioning iterations required to use the pipelined schedule, as
explained in Section IV.B.4 and Section IV.B.S. These sections of code must be executed
in a less efficient manner than the compact pipelined schedule (and in the worst case,

sequentially), and hence reduce performance. The use of the special hardware support will




minimize (or eliminate, in the case of preconditioning) these areas of code. The approach
to code generation, therefore, will assume that special machine hardware support is
made available as previously described.

Each of the considerations for code generation provides information which is used to
create the final code structure. All of the information required can be obtained prior to loop
execution, with the exception of the actual number of iteration within the innermost loop.
This number is dependent on the second innermost loop control variable value. In any case,
the information required for code generation has the identical form for any loop being
pipelined. A general procedure can therefore be presented which will use the information

to create the final code product.

1. Modelling The Final Loop Code Structure

In order to better describe and motivate the specific aspects of the code generation
process, a loop code model is presented. The use of the model is intended to help organize
and clarify the different segments of code which are required to be executed in a loop
structure. The loop code structure model presented is, in a sense, a dependence diagram

which identifies coarser-grained components than individual instructions.

a. Modelling The Original Loop Structure Code

To introduce the loop structure code model, the model will be applied to the
original loop structure code. The original code loop was in the form:

for i] in l..Nl loop
for iy in 1..N, loop

fori, ;in 1.N,_; loop
for iy, in 1..N, loop
(original loop body)
end loop
end loop

end loop
end loop
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This code segment can be modelled by a code segment dependency
diagram that illustrates the sequence of instructions required for this loop, as shown in
Figure 43. The diagram simplifies the code segment by recursively defining the “subloop
2 — n” node as per Figure 44. Figure 44.a and Figure 44.b indicate the different subloop
structures depending on whether or not the subloop is the innermost loop.

In the diagrams, the nodes represent segments of code with a specific
function. Arcs represent data dependencies and flow dependencies, with the data
dependencies shown with solid lines and the flow dependencies shown with dashed lines.
If the flow change was due to a test and branch requirement, the arcs are labelled with a
“BT” or a “BF”, indicating a branch when condition is true or a branch when condition is

false, respectively.

C sei iy bounds )
( jump to subloop 2—> n )

BT
test for ending i, )........................"....n.... exit loop

L}

\,
\J
C increment i ) " BF
‘l

'Il: i)
‘.‘.‘. "

BT ............,,"M_C subloop 2 n )

Figure 43: Original Loop Structure Code Model
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.....
o,

a. subloop x — n, for
x in 2..(n-1)

BF
( increment i, )

BT * ‘—Gubloop (x+1) —-)D
enter subloap

branch to the g .
increment iy . node jump to inner loop code
test for ending i, j
b. subloop x — n, for

C . BF
increment i, )

T
3, s =
BT %, L d

Figure 44: Recursive Definition for Subloop2 — n

87




b. Modelling The Final Loop Structure Code

The final loop structure that must be created by the code generation process
can be represented with a code model as for the original loop structure. As stated
previously, we will assume that the code generation process will be targeting a VLIW
machine with special hardware support available as described in Section IV.A.2.

The diagram which represents the final loop structure code is similar to that
representing the original loop structure, but must incorporate the issued which were
discussed in Section IV.B. In this case, the model is as in Figure 45, with the recursive
definition for the “subloop 2 — n” node shown in Figure 46.

The significant change from the original loop model, as expected, occurs
only in Figure 46.b, which represents the subloop for the innermost loop, and contains the
necessary code components which are required to support the use of the pipelined code.
The node “execute Njjner non-pipelined iterations” represents the code segments necessary
to execute the non-pipelined iterations as discussed in Section IV.B.4. This code can be
executed in a variety of manners, but we suggest using a relatively simple and efficient

method represented by Figure 47.

¢. Explanation Of The Final Loop Structure Code

To better understand the mode for the final loop structure code presented in
the Figure 45 through Figure 47, as well as provide the basis for the code generation
algorithm, the loop structure model nodes will be described in more detail. For each node
description, we will indicate the RISC assembly code instructions required for
implementing the node and any additional comments. The assembly code instructions will
be used to create the code for the final loop structure. For clarity, variables such as loop
control indices, known constants, etc., will be identified by their normal representation
instead of by explicit values, registers or address location.

An arbitrary choice of registers identifiers are referenced as necessary

support the code explanation. The register numbering will start with R1. The choice of
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Figure 45: Final Loop Structure Code Model
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registers, though arbitrary in name, ensure proper data dependences are maintained in the
supporting code. As a result, although the register naming is arbitrary, the reuse of register
names is significant in maintaining the correct references between variable values.
Renaming of the registers used in the supporting code described in this section to order to
match the available register names of a target machine is satisfactory as long as the
mapping ensures the dependences are not violated (a one-to-one mapping, for example, is
satisfactory).

My initial assumption that the target machine has a large number of
available registers was meant to ensure that the minimal register requirements presented in
the technique are supported. Not counting the registers required for loop control variables,
the supporting code requires at most fourteen registers, only two of which need lifetimes
which span across the loop body.

Additionally, the register naming scheme used in the code segments are
done so without considering the register naming used in the original innermost loop code.
As aresult, some inconsistencies or register reuse problems may exist between the registers
used in the st ~porting code and those used in the loop body. However, this problem exists
only for those register variables calculated prior to the loop body and used after the
execution of the loop body--that is, those registers which have a lifetime which extends
beyond one innermost loop execution. This limits the problem to the registers holding the
loop control variables and to that values of the variables stored in registers R8 and R10 as
used below.

To alleviate the problem with loop control variables, the procedure for code
generation takes as input the register assignments for the loop control variables which are
used in the loop body of the modified transformed loop body. These register assignments
then replace the control variable indicators in the supporting code described below. In this
way, the supporting code segments and the loop body can be compatible with respect to

loop control variable referencing. To avoid confusion during the explanation of the code
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segments, register names are not specifically assigned for loop control variables in the
sample code given below. Rather, we will refer to the loop indices in the manner “i’,”.

To alleviate any problems between use of the R8 and R10 registers in the
segments described below and a conflicting usage in the loop body, the procedure for
generating the final code will take as input the names of two available registers to be used
instead of R8 and R10 in the code segments discussed below. These register names will
replace R8 and R10 in the final code and the conflict will again be avoided. The register
namr=s of “R8 and “R10” will, however, continue to be used below during the discussion.

Constant values which are determined as part of the transformation process
(such as the sf) will be referenced using the constants name. The RISC instructions are
those of the type available in the DLX type machine as explained by Hennessy and
Patterson [Ref. 13], with the added instructions of BRTOP, INIT, and SET_UP as
described previously for support of the special hardware. Labels which identify specific

code segment will be referred to in quotes.

(1) Node “set i’y bounds” for x = 1..(n-1) of Figure 45 and Figure 46.a.

These node represents the code necessary for initializing the bounds for the any loop
variable i’y, including the i’} loop variable. Because we assume that the original loop
structure is at least two dimensional, we are assured that the bounds of these loops are
known prior to the time of execution, and therefore, the values can be considered to be the
constants M’; and N’;, where the variable i’ ranges from M’, to N’,. For all loops 1..(n-1)
the values for these with respect to the original loop control bounds are known. That is:

forx =1..(n-2)

M, =1 and N’ =N,
for x =n-1

M’ =(sf+2) and N’, = [(sf+1) XN,_, +N,]
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The code for this node is shown in Figure 48, with the variable E,

referring to the ending value for the variable.

( set i’; bounds ) smssmsssedie-  CODE:

LDI i, #M’,

Figure 48: Explanation of the “set i’y bounds” Nodes

(2) Node “jump to...” of all figures. These node represents the code
necessary for jumping to a new position. The jump locations will be identified by the code

segment labels, so that the code is that of Figure 49.

( jump to... ) sl CODE:

Figure 49: Explanation of the “jump to...”” Nodes

(3) Node “test for ending i’y of Figure 45. The test for the ending
condition of i’ merely require to test whether the present value of the control variable has
been incremented beyond the final value. As a result, Figure 50 identifies the code needed.
In this case “EXIT” is the label of the label of the code which commences following the
completion of the entire loop structure. R1 is the first register required by the supporting

code.

C test for ending i' ) ssssusmlli-  CODE:

SLEI R1, 1"}, #N",

BEZ “EXIT",R1

Figure 50: Explanation of the “test for ending i’;”” Node
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(4) Node “test for ending i’,” for x = 2..(n-1) of Figure 46.a. As in the
previous node, this node represents test whether the present value of the control variable
has been incremented beyond the final value. As a result, Figure 51 identifies the code
needed. In this case “INC(x-1)” represents the label which is used to branch to the code
which performs the incrementation of the i’.; control variable. R1 is reused as the register
containing the results of the compare operation, not expecting two comparisons to be

performed at the same time.

( test for ending i’ ) sssmenfli>-  CODE:

SLE R1,i’,, #N';

BEZ “INC(x-1)",R1

Figure 51: Explanation of the “test for ending i’,’’ Nodes

(5) Node “increment i’,” for x = 1..(n-1) of Figure 45 andFigure 46. The

increment of the control variable is simple an incrementation by one, as shown in Figure 52.

C increment i’y ) sssemmel>-  CODE:

ADDI iy, 1", #1

Figure 52: Explanation of the “increment i’,”> Nodes

(6) Node “calculate and set i’,;, bounds” Figure 46.b. Because of the

skewing process which took place during the loop structure transformation, the loop

bounds of the innermost loop are dependent on the value of the i*j,_; variable. Hence, the

calculation of bounds was discussed in Section III.A.3, with the range of i’ being given

max(l,[i"‘"_N“])...min(l.i"'"—IJ,N,_l). The floor and ceiling calculations can be
sf+1 sf+1

performed by using an integer divide instructions, and, for the ceiling, an additional
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comparison. The result is two independent calculations which determine the setting of the
starting and ending i’,, values. The code which will perform this calculation is shown in
Figure 53. Statement numbers are identified for each of the code segments. Labels are

included (“B”, “C”, and “D” as needed for branches to other parts of the code.

C calculate and set i", bounds )

computation for smny *ulmion for N',,

CODE: CODE:

SI:  SUBI R2,i’,, #N; 51’ SUBI RIL I, #1
S2:  IDIVI R3,R2, #(sf+l) S2:  IDIVI RI2,RI1, #(sf+1)
$3: LDl I, #1 $3: LDl RI4,#N,,

S4:  ADDI R4,R2,#1 S4: B: SLEI  R13.R12, #(sf+1)
S5:  IDIVI RS, R4, #(sf+1) S5: BEZ“D",R13

S6:  SLTR6,RS5,R3 S6:  LDI R14,R12

S7:  BEZ: “B".R6

S8:  ADDI R3,R3,#1
$9: B: SLEI R7,R3,#(sf+1)
S10: BNEZ“C",R7

S11: LDV {’,,R3

Figure 53: Explanation for “calculate and set i’;, boun-s” Node

Dependency graphs for these code segments are shown in Figure 54. The
latencies for the instructions are assumed to be consistent with those of the example. The
immediate loads (LDI), however, are only expected to take one time unit. When the specific
capabilities of the target machine are identified, the graphs can be used to compact the code

from both of the above independent computations to best utilize the resources for that node
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Dependency Graph for Starting i’,, Computation computation for N',,

l._-" ."._. 1
#BF g BT
TO“C"

Figure 54: Dependency Graphs for i’;, Bound Calculation
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(7) Node “calculate N;,,,," of Figure 45.b. Calculating the number of

innermost loop iteration is merely a matter of using the difference in the bound values.

Hence, the instruction are per Figure 55.

( calculate Nipper ) sl CODE:

SUBR8, M, i,

ADDI RS, R8, #1

Figure 55: Explanation of the “calculate N;,,,.,”’ Node

(8) Node “test for Nj,,.r 2 Nyyive” of Figure 45.b. This node represents the

check to verify that the pipelined schedule can be used for the innermost loop. Hence, the
instruction are per Figure 56. The label in the branch instruction directs the control to the

segment of code executing non-pipelined iterations.

Ctest for Nipner 2 Nﬁve)—b CODE:

SLTIR9, R8, #N_jve

BEZ “LABEL”,R9

Figure 56: Explanation of the “test for Ny, ., 2 Ngjiye”’ Node

(9) Node “initialize hardware register file” of Figure 45.b. This node
represents initialization instructions that must be executed as discussed in Section IV.B.2
and Section IV.B.3. The initialization consists of the setting of the LC and ESC counter
values, and the triggering of the hardware register file support. The instructions for this
node are per Figure 57. The label in the branch instruction refers to the label given the

specifications for the register files, not a jump location.
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C initialize hardware register ﬁleH CODE:

SET R8, #(Njive-1). “SET_UP_LABEL"

INIT “SET_UP_LABEL”

Figure §7: Explanation of the “test for Ny,,., 2 Ny, Node

(10) Node “pipelined kernel schedule” of Figure 45.b. This node
represents the code created as the pipelined kernel schedule. This is created via the separate
process as discussed in Section IIL.B and Section IV.B. It is assumed that this code is
created as part of a separate process to be used in the code generation, and will be used

when putting together the final code structure, but is not discussed again here.

(11) Node “execute Nj,,., non-pipelined iterations” of Figure 45.b. This
node represents the code used to execute the non-pipelined segment of code, and is further
broken down in the nodes discussed for the Figure 47. The procedure represented in Figure
47 sequentially checks the important bits of the value of N, (contained in register R8)
to verify if a certain power of two iterations needs to be executed. The procedure then
executes a compact version of the correct number of non-pipelined iterations, and then

checks the next bit for possible additional iterations.

(12) Node “shift register until only important digits” of Figure 47. This
node represents the initial step of executing the non-pipelined code by shifting all of the bits
of register R8 (containing the value of N,,,.,) to the left by an amount of equal to [logn,,;,,]
(log is base two). This will leave only those bits which may have information about the
value of N,,,,,, and can be calculated as a constant prior to the procedure. we assume that
32 bit words are used, so the shift must move 32-[logVN,,,] bits. The resultant code is

shown in Figure 58.
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((shift register until only important digi@ wessudl=  CODE:

SLLIRS, #( 32- rlogNalivc-I )

Figure 58: Explanation of the “shift register until only important
digits” Node
(13) Node “test if next digit is a zero” of Figure 47. This node represents
the code for testing the left most digit of R8, which contains the information about how
many iterations must be executed not using the pipelined schedule. The value in the register

is merely checked to see if it is positive or negative. If negative, the digits is one, and it is

known that at least 218 “«~~"J jterations must be executed, and a branch is taken to that
code (the label in the branch refers to that code segment). The resultant code is shown in

Figure 59.

( test if next digit is zero )—> CODE:

SLTIRI10, R8, #0

BEZ “LABEL”,R10

Figure 59: Explanation of the “test if next digit is a zero”” Node

(14) Node “shift value and test if next digit is a one” of Figure 47. This
node represents code executed if the previous digit of R8 that was tested was a zero. The
bits in the register R8 are now shifted left one digit and the value is again tested for
negative. This time, if negative, it is known that at least 2L'°%®a"DJ=! a4ditional
iterations must be executed, and a branch is taken to that code (identified by the branch

reference label). The resultant code is shown in Figure 60.
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Ghift register and test if next digit is zan mmnfpe- CODE:

SLLIRS, #1

SLTIRI10, R8, #0

BNEZ “LABEL",R10

Figure 60: Explanation of the “shift register and test if next digit is a
one” Nodes

(15) Node “compact 2* iterations, and include a register shift and test if

next digit is zero” where x ranges from 2..| log (V,;,.- 1) |, of Figure 47. This node

alive
represents code executing a number of non-pipelined iterations. The iterations used must
be those represented by the transformed loop, without the normal loop control variable
increment, compare and branch. That is, they must include the transformation equations
added to the loop. The additional piece of code for the register shift and value check is
described in Figure 61. The label for the branch identifies the piece of code for the which
is executed if the resultant value in R8 is positive, sending the control back to a testing code
segment as explained in Section IV.C.1.c.14. The code shown is not compacted, but

compaction of the code would result in greater efficiency.

K compact 2%..... )———> CODE:

(appropriate iterations)

SLLIRS, #1
SLTIR10, RS, #0
BEZ “LABEL",R10

Figure 61: Explanation of the “compact 2* iterations, and include a
register shift and test if next digit is zero’’ Nodes

1




(16) Node “compact 1 iteration, and include a jump to the “inc i, ;"
instruction” of Figure 47. This node represents code executing one non-pipelined
iterations, compacted and includes a jump back to the “inc i’,_;” instruction. The
instructions for the node are shown in Figure 62. The “LABEL” of the jump indicates the

label for the “inc i’ ,_;” instruction.

( compact 1..... ) s>  ((ODE:

(one iterations)

JUMP “LABEL”

Figure 62: Explanation of the “compact 1 iterations, and include a
jump to the “inc i’,,>’ Node

2. The Final Code Generation Process

Using the model of the final loop code structure and incorporating the issues of
code generation brought up in Section IV.B, a code generation process has been created for
manufacturing the final loop code structure which uses the loop pipelining technique
presented in this thesis.

The sections below list the required initial conditions an the process for code

generation.

a. Initial Conditions For Code Generation Process

The initial . .r litions, assumptions, and support for performing the code
generation are as follows:
» Itis assumed that the word size is 32 bits in the calculations for

register shifting amounts

» The dimension of the original loop structure is known,
designated as “n”

» The values of the original loop structure control variable bounds
are known, and are contained in the array 1J[x] where x ranges
from 1..n (arrav being I'"*11..N[nj).
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To allow flexibility to the desired reference syntax to the index
variables, the correct labels for the indices will be the values
assigned to the array I[x]}, with x ranging from 1..n, so that the
reference symbol for i’ will be the value contained in the
element I[1].

A label which specifies the requirements for the set up for the
register files is identified and will be used to pass into the
procedure for referencing when the requirements are to take
effect.

Two registers that are free to be used without interfering with
the pipelined code are identified to replace the R8 and R10
registers in the supporting code. The register identifiers are
passed in as values to the parameters Y and Z, with default
values of R8 and R10 respectively.

a function is made available to compact the computation for the
inner loop bounds. The function will be referred to as
COMPACT_COMPUTATIONS, and uses the graphs as
specified in Figure 54 and the resources specified to generate
compacted code. The function takes as arguments the register
labels contained in I[n-1] and I[n}, as well as the values of N[n},
and sf. It returns the compacted code segment for insertion into
the final code.

a function is made available to compact a specific number of
iterations. The function is called MULTIPLE_COMPACTION
and takes as input arguments the final loop DDG for a single
iteration as in Figure 30, the number of iterations that need to be
included in the compaction, and the branch destination label
following a true result of the testing of the R8 register value.
The function should eliminate the branches the individual
iterations, connect the individual iterations via the loop variable
increment instructions. The compaction should also include the
necessary register shift on R8 and test for next action, ending
with the branch to the correct code segment location. Register
renaming for the sequential segments of code is also necessary
to allow some overlap of register usage between iterations.
Returned is that block of compacted code which can then be
inserted into the generated code.

a function is made available to compact a single iteration. The
function is called SINGLE_COMPACTION and takes as input
arguments the transformed modified dependency graph (as in

Figure 19) for a single iteration and the code segment label to be
jumped to after the code block completed. The function should
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eliminate the branches the individual iteration, compact the
iteration, and insert the necessary jump to the outer loop control
as the last instruction of the code block generated.

b. The Final Code Generation Process

The final code generation process given below includes in its description
the application of the wavefront transformation, as well as the application of the modulo
scheduling procedure. In this way, the code generation process incorporates the used of the
loop pipelining technique presented in this thesis as the preliminary steps required to create
the pipelined kernel schedule, provide needed values of sf and N,;,, for use in the coding
generation algorithm, and provide the modified transformed DDG for use with the iteration
compaction procedures.

Application of the code generation algorithm is the last step in the code
generation process, and is used to write (to some destination) the revised RISC assembly
type code which has been modified to include the appropriate code segments needed to
support the transformation and pipelined schedule. Because the output is expected to be
used for a VLIW machine, those sub-instructions which can be executed in the same VLIW
instruction should be written on the same line, or use some other method of indicating
assignment to specific VLIW instructions. The code generation algorithm is given in
pseudo code format. The procedure “write” specifies the sub-instructions that needs to be
written to the current VLIW instruction, and assigns it to the correct available resource. If
dependencies do not prohibit instructions from being included in the same VLIW
instruction, then consecutive “write” commands are issued. Sub-instructions groups which
are dependent are separated by a “new_line” command, to explicitly indicate that
dependencies require that the instruction must belong to the next VLIW instruction. If the
argument for “write” procedure is in double quotes, then the included text should be written
verbatim. If the argument is not in quotes, then the text identifies a variable whose value

should be written. The ampersand symbol (“&”) is used for concatenation of objects. For
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example, if the write statement is: write(“R3, R4, #° & X) where X=3, then the written
output should be ADDI R3, R4, #3.
The command “write_label” is used to indicate a code segment label

assignment for the subsequent code, and is merely written as the identifier, not as code.

(1) The Code Generation Process. The code generation process is
summarized as follows:

» Apply the Wavefront Transformation Procedure to create
the modified transformed DDG, with loop variable
incrementation instructions added

» Apply The Acyclic DDG Modulo Scheduling Technique
» Create The Pipelined Kernel Schedule

» Apply the GENERATE_CODE algorithm as shown is
section (2) below.

(2) The Code Generation Algorithm. The code generation algorithm is
named GENERATE_CODE and is given as follows:

algorithm GENERATE_CODE (  input: n, §f, N,j;v. array N[X], array I[X], target
machine resources, set-up label

for hardware specification for
register files, register identifier to be
used as R8 with default as R8 (ref-
erence as variable Y), register
identifier to be used as R10 with
default as R10 (reference as var-
iable Z);
output: final code)
begin
--set first control variable bounds
if n>2 then
write("LDI” & I[1) & «, #17)
write(“JUMP LOOP2™) --note: this instruction can be combined with the
--above instruction if resources allow
new_line
write_label(“INC1:™)
write(“ADDI” & I{1} & “.” & 1[1] & “, #17)
new_line
write_label(“TEST1:”)
write(“SLEIR1,” & I[1] & “, #” & N[1])
new_line
write("BEZ EXIT, R1")
new_line
else --n=2 so that bounds must be adjusted
START :=sf+2
END := (sf +1)*N{1]+N[n]
new_line
write("LDI” & I[1] & “, #” & START)
write(*JUMP LOOP2)
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new_line
write_label(*INC1:™)
write(CADDI" & I[1) & “)" & 1[1] & “, #1™)
new_line
write label(“’l‘ESTl )
write("SLEIR1," & I[1] & “, #” & END)
new_line
write(*BEZ EXIT,R1™)
new_line

end if

--set rest of loop control structure for outer n-2 iterations
for X in 2..(n-2) loop --only will execute if n>=4
write_label(“LOOP” & X & *:™)
write("LDI"& I[X] & “, #17)
write(“JUMP LOOP” & (X+1))
new_line
write_label(*INC"” & X & ™)
write(“ADDI" & IfX] & “." & I[X] & “, #1™)
new_line
write_label(“TEST" & X & *:™)
write(“SLEIR1,” & I[X] & “, #” & N[X])
new_line
write("BEZ INC” & (X-1) & “,R1")
new_line

if n>2 then --control for loop second innermost loop not yet done
START := sf+ 2
END := (sf +1)*N{1]+N{n]
write_label(“LOOP” & (n-1) & “:7)
write(“"LDI” & I[n-1] & “, #” & START)
write("JUMP LOOP” & n)
new_line
write_label(“INC” & (n-1) & “:")
write(‘ADDI” & I[n-1] & *,” & 1[n-1] & *, #17)
new_line
write_label(“TEST” & (n-1) & *:™)
write(“SLEIR1,” & I[n-1] & “, #” & END)
new_line
write(“BEZ INC” & (n-2) & “,R17)
new_line

end if

--code of innermost loop
write_label(“LOOP” & n & *:™)
--compact the boundary calculation code with called procedure
CODE_SEGMENT = COMPACT_CODE (boundary code graphs, available

resources)
write(CODE_SEGMENT)
new_
write_label(“D™)
--determine the number of inner loo oop iterations

write(*'SUB” & Y*“,” & R14 & “.” & I[n)])
new_line

writeCCADDI" & Y& “" & Y & “, #17)
new_line

-detetmineifme’pl pelined kernel can be used
wnle(“SGEI R9,"& Y & “, #” & Nyjive)
new_line

write("BEZ TRANS, R9”)

new_line

106




--initialize the hardware register files and counters

write(“SET" & Y & “, #” & (N.-1) & “," & SET_UP_LABEL)
new_line

write("INIT" SET_UP_LABEL)

--insert the pipelined kernel schedule

write_label(“*LOOP_TOP:™)
write(PIPELINED_KERNEL_SCHEDULE)

new_line

write(“JUMP INC” & (n-1))

new_line

~-execute the non-pipelined code segments
--calculated needed values
FIRST_SHIFT := 32 - CEILING[log(N giv.)}
MAX_LEVEL := FLOOR(1og(Ny; .- )]
--shift the register Y until important bits
write_label(“TRANS:”)
write("SLLI " & Y “, #” & FIRST_SHIFT)
new_line
--test the next bit
write(“SLTI" & Z & “." & Y & “, #0”)
new_line
write(“BEZ SHIFT” & MAX_LEVEL & “,” & Z)
new_line

--compacted iterations
for X in 1. MAX_LEVEL reverse loop
write_label(“"LEV” & X & *:") X
write(MULTIPLE_COMPACTION(dependency graph, 2%,
“SHIFT” & (X-1)))
new_line
end loop
write_label("LEV” & 0 & ™)
wﬁte(l_SINGLE_COMPACI'lON(dependency graph, “INC” & (n-1)))
new_line

--shift and tests

for X in 1. MAX_LEVEL reverse loop
write_label(“SHIFT” & X & *:™)
write("SLLI" & Y “, #17)
new_line
--test the next bit
write“SLTI" & Z & Y “,#0")
new_line
write("BNEZ LEV" & (X-1) & “,” & Z)
new_line

end loop

write_label(*SHIFTOQ:™)

write(“JUMP INC” & (n-1))

new_line

write_label(“EXIT:")

(3) An Example Of Resultant Code Produced. As an example of the
expected output code from the GENERATE_CODE algorithm, assume that n=5, sf=2,
N.iive=3, with all N[x]= 100 and all I[x] = i,. Additionally, assume that both R8 and R10 are
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used in the loop body, but R24 and R25 are free, so Y := R24 and Z := R25. Assume also
that there are two fully capable processors, and the INIT and SET commands for initializing
the register files are capable of being executed on any unit. Then resultant output from the
above algorithm appears as follows, with code generated from compaction or modulo
scheduling procedures bolded and italicized, and each text line indicating the VLIW sub-

instructions that can be executed:
CLDI ir, #1 JUMP LOOP2

ADDI i}, i;, #1
TESTI:
SLEIRI, i;, #100
BEZ EXIT, R1
LOOP2:
LDI iy, #1 JUMP LOOP3
INC2:
ADDI iy, i3, #1
TEST2:
SLEIR1, i, #100
BEZ lNCl Rl
LOOP3:
LDl i3, #1 JUMP LOOP4
INC3:
ADDI i3, i3, #1
TEST3:
SLEIRI, i3, #100
BEZ lNC2 Rl
LOOP4:
LDl iy, #4 JUMP LOOPS
INCa4:
ADDI iy, iy, #1
TEST4:
SLEIR1, i, #400
BEZ INC3 Rl
LOOPS:
b CODE_SEGMENT FROM COMPACT COMPUTATIONS

SUB R24, R 14, is
ADDI R24, R24, #1
SGEI R9, R24, #3
BEZ TRANS,R9
SET R24, #2, SET_UP_LABEL)
INIT SET_UP_LABEL
LOOP_TOP:
PIPELINED_KERNEL_SCHEDULE
JUMP INC4
TRANS:
SLLIR24, #30
SLTI R25,R24, #0
BEZ SHIFT1, R25

Vi:
%lULTIPLE _COMPACTION(dependency graph, 2, SHIFT()

SINGLE_COMPACTION(dependency graph, INC4)
SHIFT1:
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SLLIR24, #1

SLTI R25, R24, #0

BEZ LEVO, R25
SHIFTO:

JUMP INC4
EXIT:

3. An Example Application Of The Code Generation Process

The example which has been used throughout this thesis is used once again to
complete the explanation of the code generation process. For the example, n=2, sf=1,
N.i.=3, and N[x]= { 100, 500}. To be consistent with the original code presented in Section
IV.B.1., the index variables arc passed in as I{X] = {R15, R1[0]}, where R1[0] is the first
element of the register file R1[X] created for the renaming of the R1 variable. In this way,
the R1[0] register is used for all code outside of the pipelined loop, therefore being
automatically initiated to the correct value when the pipelined kernel starts.

Assume that the information about the register file requirements were established
under the label SETTINGS, where the requirements for the renamed registers and the ICR
are created.

Lastly, the register R8 and R10 are used in the loop body, hence R20 and R21 will
be passed in as free registers to be used in place of the variables Y and Z.

We will assume again that the INIT and SET instructions can be performed by any

functional unit available.

a. Compacting Non-Pipelined Iterations
Before presenting the final loop code structure for the example, the
compacted non-pipelined iterations which would result from the presumed to exist
functions = COMPACT_COMPUTATIONS, MULTIPLE_COMPACTION, and
SINGLE_COMPACTION must be determined. These functions can be based on any
sequential code compaction process, such as those discussed by Colwell, Nix, O’Donnel,
Papworth and Rodman [Ref. 14]. For the purposes of the example, we have generated the

resultant code segments which might have resulted from a compaction process.
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(1) For COMPACT_COMPUTATIONS. For the compaction of the
boundary computation of the innermost loop boundaries, Figure 63 shows one compaction

schedule which is adequate.

Resource Unit

time | label adder adder multiplier | Load/Store|{ Branch
1 S1 s1’ S3

2 sS4 S2 §3'

3 S5

4 §2’

3 s6

6 S4’ S7
7 B S8

8 $9

9 S10
10 Si1

11 C: S5’
12 56’

Figure 63: Example Code Compaction for Innermost Loop Bounds
Computation Segment

(2) For SINGLE_COMPACTION. The result of this procedure is a single
piece of compacted code. Using the final modified transformed DDG from Figure 19, an
adequate compacted segment of code is given in Figure 64, with the JUMP to INC1 labelled

code segment included.
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Resource Unit

time | label adder adder multiplier | Load/Store| Branch
1 S5 s13

2 S15 S1

3 S14 S6

4 S2 S7

5 S3 S8

6 S11 S4

7 S9

8

9 S10

10 S12 JUMP INC1

Figure 64: Compacted Single Iteration

(3) For MULTIPLE_COMPACTION. The result of this procedure is a
single piece of compacted code for multiple iterations. The pieces of code generated are

- 1) | (log in base two). However, the value

alive

those for groups of iterations from 2..| log (N,

or | log (N

alive

-1) | is two. Hence, only one compacted segments for multiple iterations will
be necessary, containing two iterations. This compacted piece of code is shown in Figure
65.

The different iterations are indicated by subscript of “1” or “2”. The
additional instructions for the identifying the next code segment are included as the SLLI,
SLTI, and BEZ instructions. The R20 and R21 registers are substituted for the R8 and R10
as designated in the procedure input. Not covered or shown is the need of some register
renaming of the compacted code as appropriate to ensure no interference of register reusage

between the iterations themselves.
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Resource Unit

time | label adder adder multiplier ILoad/Store | Branch
1 (S15), (85), (S13),
2 (S5), (S14), (S13),
3 (S14), (52), (S1),
4 (87), (S2), (86),
5 (S7), (83), S1),
6 (S8), SLLIR20, #1 (S6), (S4),
7 (S3), SLTI R21, R20, ¥ (S9),
8 (S10), (S11), (S4),
9 (S15), (S11), (S9),
10 (510),
(812),
(S12), BEZ SHIFTO, R21

Figure 65: Compacted Code for Two Iterations
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b. Creating The Pipelined Kernel Schedule
The pipelined kernel schedule which will be generated for the final code

structure is that same schedule shown in Figure 31.

c¢. The Final Loop Code Structure
The final loop code structure produce from the process is given in the
schedule shown in Figure 66. The larger sections of code that are produced through
compaction or pipelining have been left out and merely referenced to help in clarity of

illustration.
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Resource Unit

time | label adder adder multiplier | Load/Store| Branch
i LDI R15,#3 | JUMP LOOP2
) INC1: | ADDI RIS, RIS, #1
3 TEST1: | SLEI R1, R15, #700
4 BEZ EXIT, Rl
5 LOOP2:
INSERT COMPACTED COMPUTATION
. CODE SCHEDULE OF FIGURE 63
16
17 D SUB R20, R4, R15
18 ADDI R20, R20, #1
19 SGEI R9, R20, #2
20 BEZ TRANS, R9
2 [SET R20, #1, SETTINGS
22 INIT SETTINGS
23 LOOP_TOP:
: INSERT PIPELINED KERNEL SCHEDULE
OF FIGURE 39
27
28 JUMP INC1
29 [TRANS: SLLI R20, #31
0 SLTI R21, R20, #0
1 BEZ SHIFTi, R21
32| Levk INSERT COMPACTED TWO ITERATIONS
. CODE SCHEDULE OF FIGURE 64
45 LEVO:
. INSERT COMPACTED SINGLE ITERATIONS
CODE SCHEDULE OF FIGURE 65
54
55 |suIFTi: SLLI R20, #31
56 SLTI R21, R20. #0
BNEZ LEVO, R21
58 | sHIFTO: JUMP INC1
39 | ExIt

Figure 66: Final Restructured Code Loop For Example
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V. EVALUATION AND ANALYSIS

Having presented the proposed loop pipelining technique, there is an obvious need to
evaluate the effectiveness of the technique as well as analyze the complexity of the code
generation procedure for creating the final product. This chapter attempts to do both. An
evaluation of the performance gained by the technique will be discussed first, followed by

an analysis of the procedurc for code generation given in the last chapter,

A. EVALUATION OF TECHNIQUE PERFORMANCE

The ideal solution to the loop pipelining problem for perfectly nested loops would be
a solution which does not require the addition of modifying instructions, uses the IIII which
is equal to the lower bound IIII based only on resources available (that is, it is not
constrained by a greater lower bound from cyclic dependences), and does not require
iteration transitioning areas, prologs, epilogs or any preconditioning iterations. In this way,
the maximum utilization of the resources is obtained with no additional overhead.

The use of special hardware allows the elimination of precondition code, as noted
before. The execution of prologs and epilogs, however, cannot be arbitrarily eliminated,
because they are the result of overlapping iterations and are non-essential only in that
unlikely case when the value for N ;. in a pipelined schedule is one. The existence of the
prolog and epilog will in all cases reduce the utilization of the resources below that of the
ideal case (because only partial pipelined schedules are being executed). As a result, the
ideal case cannot generally be met, but it provides an upper bound on performance
obtainable by loop pipelining. it is therefore useful as a guide in evaluating the
effectiveness of a technique.

As first mentioned, the IITI which is used in modulo scheduling is a measure of the
utilization of resources and the iteration throughput of the program. The lower the I, the

greater throughput and performance. As a result, the upper bound on performance is
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directly related to the lower bound on the IIII. If the IIII is derived only from resource
requirements, the upper bound on performance increases (i.e., it is scalable) with the
addition of resources just as the IIII is scalable with the addition of resources. The upper
bound on performance has the potential to increase with each resource addition, until
enough resources are provided to specifically assigned one to each instruction. At this
point, the lower bound IIII based on resources will have the value of one, and the addition
of more resources will not result in increased benefit.

The scalable nature of performance with the addition of resource is made possible only
if the IIII can, in fact, be lowered with the addition of more resources. Because the loop
pipelining technique proposed in this thesis uses an Acyclic DDG Modulo Scheduling
method, the calculation of the IIII in the technique is dependent only the available
resources, just as in the ideal case. As a result, the performance benefit of the proposed
technique is also scalable with the number of resources.

The previously proposed Modulo Scheduling techniques which could be applied to
perfectly-nested loops approach the problem with a direct application of Modulo
Scheduling to Cyclic DDG’s (such as the techniques of Aiken and Nicolau [Ref. 5], Lam
[Ref. 2], Rau, Schlansker, and Tirumalai[Ref. 6], and Zaky [Ref. 7]). Although they avoid
the addition of transformation instructions and having to overcome the implications of a
skewed iteration space, the resultant IIII is restricted not only by the resources and
instruction types, but also by the length of the dependence cycles. Consequently, the IIII is
prevented from being reduced below the limit required by the most limiting cyclic
dependence, no matter what the resource availability. Use of a cyclic DDG modulo
scheduling technique, therefore, eliminates the scalable performance benefit that additional
resources should provide.

Although the loop pipelining technique presented in this thesis requires the addition of
two instructions at the beginning of the loop body to support the wavefront transformation
(as per Section ITI.A.3 and Section II1.A.4), these instructions do not limit the performance

obtainable. In the worst case, these instructions can be absorbed with no loss in
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performance by the addition of resources. In the best case, time which otherwise would
have left resources idle can be used to execute these instructions. The real difference
between the performance achievable with the pipelining method presented and the ideal
case is the overhead required to compute the bounds on the innermost loop control variable
and execute non-pipelined iterations.

However, we believe that in most cases the scalable nature of the performance provided
by the technique presented creates an advantage over previous cyclic DDG modulo
scheduling methods which exceeds the performance detriment that the overhead creates.

To better understand this advantage, the example is again used to demonstrate this point.

1.  The Ideal Solution For The Example
Once again, consider the example introduced in Figure 17, with the innermost
loop body comprised of the original twelve instructions, and assuming two necessary
instructions in each innermost iteration for loop control (as was needed when special
hardware control was provided), for a total of fourteen instruction in the innermost loop
code (eight Add/Sub, two multiply, three load/store, and one branch). With two adders, one

multiplier, a branch unit, and a load/store unit, the upper bound the performance for loop

pipelining, based purely on resource requirements, /111,,.... pound = [g % %, -}-] =4,

For the ideal case, the code structure can be modelled in a similar fashion as was
used in Section IV.C, with a final schedule given as in Figure 67. The registers R1 and R2
hold the value of the control variables for i; and i5, respectfully, to be consistent with the
instructions in Figure 17. R15 is an available register for use in the comparison at time
three.

Although in reality a prolog and epilog are essential, we assume that they will
not exist in the ideal case in order to achieve an maximum performance estimate for this
the example.

As will be seen, by adding resources, the time units required for the III will

decrease, and lower the overall time required for the execution of the loop.

117




Resource Unit

time| label adder adder | multiplier | Load/Store | Branch

1 LDR1, #1 JUMP LOOP2
2 INC1: ADDI R1,R1,#1

3 TEST1: |SLEI R15,R1, #100

4 BEZ EXIT, R15
5 LDI R2, #1

6 | Loopz |SET 500. #0, SETTINGS

7 INIT SETTINGS

8 | Loop_toP:

PIPELINED SCHEDULE WITH III OF
FOUR AND BRANCING BACK TO LOOP_TOP
11
12 : I JUMPINCI
EXIT: |

Figure 67: 1deal Schedule For Example Loop
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Hence, the performance upper bound for this resource configuration establishes
a minimum of 200,698 (1+ {99[(500x4) +7] + (500 x4 +4)}) time units to execute all
50,000 inner loop iterations, yielding a lower bound on the average of 4.01 time units per

iteration.

2. A Cyclic DDG Modulo Scheduling Method
If a cyclic DGG modulo scheduling technique was applied directly to the

innermost loop, no additional innermost loop instructions would need to be added to the
original DDG because no transformation would be required. Assuming again that special
hardware support would be available, two instructions for incrementation of the
incrementation of the innermost control variable would produce a total of fourteen
instructions which would be pipelined as the innermost loop. The IIII based on resources
specified would still be calculated to be four time units, but the IIII required due to the
cyclic dependences would be five time units. This is due to the S4 to S10 to S12 cyclic
dependence which requires five time units to complete between iterations (descriptions of
such calculations can be reviewed in work by Zaky [Ref. 7]). As a result, the minimal 1111
which must be considered is five time units. Cyclic modulo scheduling techniques as
presented by Lam [Ref. 2] and Rau, Schlansker, and Tirumalai [Ref. 6] would require an
iterative process to attempt to schedule the DDG into a modulo resource reservation table
with five time units (in the case of Lam’s technique [Ref. 2], the technique simplifies
application for non-fully connected DDG’s so that an IIII of five time units would even be
impossible for the example). Consideration for epilog and prolog execution and register
renaming are also required.

The example in Figure 17 provides a very good situation for cyclic DDG Modulo
Scheduling with the resources as specified, a schedule can actually be generated in which

Naiive €qual to two, requiring only one iteration to be executed in the prolog (meaning the

prolog and epilog are also limited to five time units). Renaming of one register is required,

but with hardware support assumed, this does not affect the result. Once again, for cyclic
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DDG modulo scheduling the code structure can be modelled in a similar fashion as was

used in Section I'V.C, with a final schedule given as in Figure 68.

Resource Unit

time| label adder adder | multiplier | Load/Store | Branch

1 LDI R1,#1 JUMP LOOP2
2 INC1. | ADDI R1,RL#

3 TEST1: |SLEI R15, R1, #100

4 BEZ EXIT, R15
5 LDI R2, #1

6 | Loopz [SET 500. #1, SETTINGS

7 INIT SETTINGS

8 | Loor_top:

. PIPELINED SCHEDULE WITH Il OF

. FIVE AND BRANCING BACK TO LOOP_TOP

12

13 : JUMP INC1

EXIT:

Figure 68: Cyclic DDG Modulo Scheduling Final Code For

Example

Hence, the performance upper bound establishes a minimum of 250,599

(1+{99[(500x5) +7] + (500x5+4)}) time units to execute all 50,000 inner loop

iterations, yielding an average of 5.01 time units per iteration.

Because the IIII is limited by the cyclic dependences, adding resources will not

alter the pipelined kernel size. As a result, the average time units per iteration cannot be

lowered.

3.

The Proposed Acyclic DDG Modulo Scheduling Method

By modifying the loop structure to allow the application of an acyclic DDG

modulo scheduling method, the technique presented in this paper attempts to eliminate the
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effect of cyclic dependences and thereby remove any limit on the lower bound of ITII which
the cyclic dependences would cause. The overhead required to implement the
transformation are the two transformation instructions added to the innermost loop body,
the loop bound calculations, and the execution of non-pipelined iterations. The
transformation instructions added to the innermost loop body must be included in the
schedule creation process, and may cause the lower bound to the ITIl to increase, which can
be countered by an increase in resources.The added loop bound calculations and the
execution of the non-pipelined iterations become less significant as the number of iterations
using the pipelined kernel increases.

Additional consideration for execution of a prolog and epilog are required as
they are for a cyclic DDG modulo scheduling. The most significant differences in the
resultant code of this technique and the others are the twofold: one, loop bound calculations
are required to determine starting and stopping condition for the innermost loop bounds,
and two, non-pipelined sections of code exist at the boundaries of the second innermost
loop.

In the general case, the size of the code block needed to calculate the innermost
loop bounds and the compacted non-pipelined blocks of code is very much machine
dependent. In addition, the number of pieces of compacted iterations relies on the original
loop bounds and the number of alive iterations in the final pipelined loop schedule. In the
case of the example, the final loop code was shown in Figure 66.

For the example, the total number of time units required for execution is
272,314, This yields an average of 5.45 time units per iteration. A number higher than that
resulting from a cyclic DDG modulo scheduling technique!

The additional time required for execution using the presented acyclic DDG
modulo scheduling method as compared to the cyclic DDG modulo scheduling method is
due to the additional code segments as discussed. However, the major benefit of using
the technique is still claimed to be the scalable performance benefit obtained from

using an acyclic DDG modulo scheduling method. To illustrate this benefit, the
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execution time calculations were performed with other resource availability conditions.
The table in Figure 69 clearly illustrates the difference in performance of the techniques as

more resources were made available.

available 2 adders 3 adders 5 adders 9 adders
resoarces| 1 multiplier 1 multiplier 2 multipliers 3 multipliers
schedulin 1 branc 1 branch 1 branc 1 branch
method 1 load/store 1 load/store 2 load/store 3 load/stores
Cyclic DDG
odulo Scheduling 5.01 5.01 5.01 5.01
Suggested Acyclic
DDG Modulo 5.45 342 242 1.43
Scheduling
poundOn 4.01 3.01 2,01 1.01

Figure 69: Average Time Units/Iteration For Various Configurations

The table displays the average number of time units per iteration as the number
of resources is increased, using both a cyclic modulo scheduling technique and the
technique presented in this thesis. The ideal solution provides the values which are the
bound on best performance, being the lower bound on the average time per iteration.

For constructing the table, the scheduling procedure presented in the thesis was
conducted for each of the resource availabilities shown. In all resource combinations tried,
the compacted loop bound computation code required twelve time units. When the
resources available were changed to three adders, one multiplier, one load/store unit, and
one branch unit, N;;,,, became four, requiring compacted code segments for two iterations
and one iteration. Compacted schedules were derived which consisted of twelve time units
and ten time units, respectively, for these code segments.

When the resources available were again changed to five adders, two multipliers,

two load/store units, and one branch unit, N,y;,, became five, requiring compacted code
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segments for four iterations, two iterations, and one iteration. Compacted schedules were
derived which consisted of twelve time units, ten time units, and nine time units,
respectively, for these code segments.

When the resources available were finally increased nine adders, three

multipliers, three load/store units, and one branch unit, Ng;,, became nine, requiring

compacted code segments for eight iterations, four iterations, two iterations, and one
iteration. Compacted schedules were derived which consisted of fifteen time units, twelve

time units, ten time units, and nine time units, respectively, for these code segments.

4. Comparison Of Techniques

As stated previously, the addition of the resources tends to reduce the lower
bound on the IIII due to the resources constraints, and thereby increase in the bound on the
performance. This is illustrated by the last row in Figure 69, which shows that when
resources are added, the bound on the average iteration time units sequentially decreases
with the bound on the IIII due to resources from four, to three, to two, to one time units.

However, if the II11 is also constrained by cyclic dependences, as when using the
cyclic DDG modulo scheduling methods for scheduling, the IIII cannot be reduced below
the limit imposed by the dependences no matter how many resources are made available.
In the example, the original innermost loop code required a IIII due to dependence
constraints of five time units. As more resources were made available, the IIII due to the
dependence constraints remained at five time units. As a result, there was no effect on the
cyclic DDG modulo scheduling performance, and the average time per iteration of the loop
structure remained at 5.01 time units.

On the other hand, the loop pipelining method suggested in this paper is clearly
affected by the availability of resources. For the example, 2 id1ag resources resulted in the
decrease of the IIII from five time units to one time unit. Because the IIII directly affects
the performance, the performance is also scalable with additional resources. This is the

greatest advantage of using a method that utilizes acyclic DDG modulo scheduling. As
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can be seen in Figure 69, the average iteration time decreased from 5.45 time units to 1.43
time units as more resources made available.

This demonstrates the significance of using an acyclic DDG modulc scheduling
technique vice a cyclic DDG modulo scheduling technique. Even with the additional
overhead required for supporting the loop transformation to allow :he acyclic DDG
modulo scheduling, the performance of the proposed technique can exceed that of
previously proposed cyclic DDG modulo scheduling techniques due to the scalable
characteristic.

It is recognized that the example only provides an illustration of the point being
made, and is not a proof. The actual performance of the technique presented is very
much case dependent. The performance of the techinique is limited by the overhead
require to compute the innermost loop bounds, to complete partial kernel execution in the
epilog, and by the execution of non-pipelined iterations. While the computation of the

innermost loop bounds may is fairly static, the value of N, influences the other two

factors. As a result, the performance benefit of using the loop pipelining method proposed
vice a cyclic DDG method may need to be determined on a case by cases basis. As a
guideline, however, it is logical to believe that whichever method yields the lowest IIII, that
method should be used.

This guideline seems even more reasonable when executing a large number of
iterations. As the number of iterations of the innermost loop which are to be executed
increases, the number of iterations executed by the pipelined loop section of code is also
expected to increase. Consequently, the execution time of the entire structure becomes
more and more dominated by the execution time of the pipelined iterations, and the average
execution time per iteration approaches the IIII for the pipelining method used.

For the example, tables describing the average time units per iteration when the

original upper bounds on the loop variables (N and N,) are altered are shown in Figure 70.

Figure 70.a is the same table shown in Figure 69. Figure 70.b and Figure 70.c

show the results when the loop variable upper bounds were changed from the original
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example. In both cases, there is a drop in the average time per iteration when using the loop
pipelining method presented from the original loop variable boundaries. This supports the
expectation that the larger the number of iterations, the greater the percentage of iterations
that use the pipelined kernel schedule and, hence, the closer the overall performance will
approach the bound on performance.

It is important to note to that the performance gained from increasing the upper

bound N, (as in Figure 70.b) is greater than that gained by increasing the upper bound N,
(as in Figure 70.c). This too is expected, because increasing the value of N for the example
results in a “wider” transformed iteration space. That is, the transformation causes Nj to be

the new upper bound on the innermost loop control variable, and, consequently, increasing
the value of N results in a greater number of iterations to be executed within the innermost
loop with the pipelined kernel schedule. Although increasing the value of N5 add to the
total number of iterations, it does not affect the “width” of the transformed iteration space,
but rather the “length” (i.e., it adds to the number of innermost loop sequences executed).
Although this results in a larger percentage of iteration being performed with the pipelined
kernel, the additional overhead is required for executing each added innermost loop, which

mitigates the performance gained.

§.  Additional Improvements To Performance
As stated before, the performance of the technique is limited by the overhead
require to compute the innermost loop bounds, to complete partial kernel execution in the
epilog, and by the execution of non-pipelined iterations. Any improvement to the technique

relies on elimination of unnecessary overhead in these areas.
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available adders 9 adders
heduln resources 1 gluluﬂher } g\ulu%her i ulu liers 3 bm{glnn liers
s me&:od 1 load/store 1 load/store loadfstore gloadfstores
S O8G duling 5.01 5.01 5.01 5.01
led L
§1§&°:hngﬁcy° y 5.45 3.42 2.42 1.43
BoundOn 401 3.01 201 1.01

a. Average Time Units/Iteration With Original Loop Bounds of N;=100 and N,=500

available 2 adders 3 adders § adders 9 adders
hedul: urces } {)nrgln" lier 1 mulu?‘ller %{)nulu liers El! rglulu liers
c ranc
s l:m'»,‘t od 1 load/store l load/store 2 load/store 3 load/stores
A 5.01 5.01 5.01 5.01
ﬁé&ted Acyclic
5.25 3.28 2.27 1.12
uhng
BoundOn 401 3.01 2.01 1.01

b. Average Time Units/Iteration With Loop Bounds of N;=200 and N,=500

available 2 adders 3 adder g adders 9 adders
hedol resources { glrglnu%her } glrglnu lier mulu liers %{)num liers
c

s ‘}né‘; od 1 load/store 1 load/store 2 load/store 3 lorggfstores
CyclicD
s O e duling 5.01 5.01 5.01 5.01
Slg&ested Acyclic
Sch eduhng 5.36 3.37 2.36 1.37
BoundOn 401 3.01 2.01 1.01

c. Average Time Units/Iteration With Loop Bounds of N,;=100 and N,=1000

Figure 70: Average Time Units/Iteration With Various Loop Bound
Values
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Use of an efficient compaction routine is one way to ensure that the compacted
code takes the minimum amount of time. Additional evaluation of the final code product
may also be performed to identify where additional execution time can be saved.

The value of Ngy;,,. directly influences the length of the prolog/epilog as well as
the number of non-pipelined iterations that must be performed. The reduction of Ny,

when creating the pipelined schedule is also a method which can be used to help eliminate
overhead. This was mentioned in Section 1II.B when discussing the scheduling algorithm

to be used in creating the Modulo Resource Reservation Table.

B. ANALYSIS OF THE CODE GENERATION PROCEDURE

Analysis of the code generation procedure actually requires consideration of all the
steps in the process for creating a new code loop from the original code loop. The steps that
must be considered are the original transformation to create the final DDG, the modulo
scheduling process, the code compaction procedures used in the code generation procedure,

and the code generation procedure itself. Each of these is addressed below.

1. Complexity Of The Transformation

The transformation requires the determination of the value of the sf and the
modification of the DDG to support the scheduling process.

To determine the sf, a depth first search can be done through the original DDG,
with an evaluation done at each edge for use in the sf calculation. Assuming the Original
DDG has V vertices and E edges, Tarjan [Ref. 15] describes how the determination can be
done with complexity of order O(V+E).

The modification to the DDG requires the addition of as total of four nodes for
the transformation and for the inclusion of the loop control instruction. For each of these
four nodes, all other nodes in the DDG should be checked for dependence and a dependence
arc created if need be. This operation has complexity of O(V). As a result, the overall
complexity of creating the final DDG is O(V+E).
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2.  Complexity Of The Modulo Scheduling Process

The modulo scheduling process consists of creation of the modulo resource

reservation table and the renaming of the registers as required.

a. Creating The Modulo Resource Reservation Table

To analyze the procedure for creating the modulo resource reservation
table, the algorithm outlined in Section III.B can be used.

The initial calculation of the IIII requires an input for each node. If a depth
first search is ag: 1 done to visit each node, the complexity of this calculation could be
O(V+E).

According to Tarjan [Ref. 15], the search to determine the height of each
node and the topological sort of the nodes to determine scheduling order can also be done
in O(V+E).

In general, the procedure for scheduling instructions with potentially
different resource delays into a modulo resource reservation table is a bin packing
problem, which is an NP-Complete problem. However, our original assumption, and that
assumption on which the algorithm presented in Section III.B is based, is that all resource
delays are one time unit. This assumption reduces the complexity to that of the algorithm
to a polynomial level. The main body of the procedure consists of a loop which is
performed once for each node in the DDG. Within this loop a single node is picked (from
the top of the topologically sorted list). All parents of this node are checked to determine
carliest starting time. This really requires checking each edge coming into the node from
parents, there is a upper bound on these edges of O(E). Also within this loop the node is
scheduled in the table, which at most requires the consideration of IIII different time slots.
However, an upper bound limit can be established on the IIII by the number of nodes. As a
result, the overall complexity of the main body is O(V*(E + V)).

The overall complexity of the creation of the reservation table is therefore

O(VZ+VE).
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b. Register Renaming Procedure
For register renaming, each instruction which defines a register value is
considered and compared to all other instructions in which this definition is used. The
lifetime of a register definition is determined based on the relative positions and iteration
index (in the reservation table) of the instruction which defines the register and the
instructions which used it. At most, each instruction could be dependent upon all other, and

the lifetime calculated by determining all of these dependences. Consequently, the resultant

lifetime determination for each register definition could be o(V2).

¢. Overall Complexity

The overall complexity of pipelined kernel creation is a combination of the

above complexities, which is O(VZ+VE).

3.  Complexity Of The Code Compaction Procedures

The code compaction procedures are used internal to the code generation
procedure. Compaction is performed on both the loop bound calculation code segments and
the non-pipelined iteration code segments. As with the creation of the modulo resource
reservation table, a code compaction process aimed at creating the shortest code segment
is again a bin packing problem, and therefore NP-Complete. However, simple scheduling
heuristics can be applied, such as scheduling a selected node at the earliest time possible,
which reduces the complexity to a polynomial level. The compaction procedures are

analyzed assuming such heuristics are applied.

a. Compaction Of The Loop Bound Calculations

The loop bound calculations requires the use of known DDG’s with known
numbers of nodes and edges. The nodes can be scheduled following a topological sort of
the graph and each node can be selected and scheduled at the earliest time possible. Because

all of the elements are known, the procedure can be of constant order.
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b. Compaction Of The Non-Pipelined Iterations

The number of non-pipelined iterations which can be compacted together

at any one time is at most N,;,,. Assuming that the nodes are scheduled in a manner to

minimize Ng;... the upper bound on Ny, is linearly related to the number of instructions

in the DDG. Hence, the number of nodes which have to be scheduled is on the order of V2.
To compact the iterations, a topological sort can be made of the final DDG. Assuming that
the head vertices are known, the sort visits each edge once to create the sorted list (there are
order O(VE) edges). However, a depth first search can still be conducted to label the
heights initially. The result is that the sort would take 0(V2+VE) steps. The actual

scheduling only takes O(Vz) steps, so the overall procedure would take 0(V2+VE).

4. Complexity Of The Code Generation Procedure

The code generation procedure is relatively simple. One loop requires steps to be
conducted for each of (n-3) loops, where n is the dimension of the original loop structure.
This loop provide a complexity of O(n). Compaction of the loop bound calculations is
included, but as noted above, this is of O(constant) = O(1).

The compaction of the non-pipelined iterations is done within a subloop which
is executed at most log(N,j;,.) times. As a result, the order of this subloop is
O(log(V)*(V2+VE)).

One additional loop is executed on order of O(log(V)) as well.

The overall complexity of the code generation procedure is therefore

O(log(V)*(V2+VE)+ n)

5.  Overall Complexity

The overall complexity of the technique takes into account all of inputs from the

components. The result is the complexity of O(log(V)*(V2+VE)+ n).
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VI. AN ISSUE OF DATA LOCALITY

To this point, the possible negative effects of the loop pipelining technique have been
limited to the additional overhead that the technique may require. This, however, ignores
the extremely important and realistic concern of memory access time.

To ensure high performance, a fast memory is essential to minimize the amount of
delay that memory access instructions provide. It is possible that a single level memory
may be used, in which case, memory is accessed at the same speed for every memory
reference. Because the design of a fast cache for a VLIW machine is difficult, this is the
approach taken by many VLIW machine designers. However, as with any other machine,
the large main memory systems are relatively slow to any faster, smaller memory sub-
systems which can be incorporated in the design. It will be assumed, therefore, that the
VLIW machine on which the technique will be performed has a upper level memory

subsystem, like a cache, for faster access to reused memory data.

A. DATA LOCALITY

By adding a smaller, faster memory subsystem, designers are presuming that the
principle of locality will hold in the target programs. This is generally true for programs
which execute in their normal sequence, following the programmer’s thought processes of
sequential access to data arrays. In particular, loop structures tend to use the loop control
variables to step through data structures in a sequential manner. As a result, different
references to any one element tend to take place in localized time periods (temporal
locality), and data elements stored in one small area of memory tend to be accessed in a
localized time period (spatial locality). This then allows the reuse of data which has already
been transferred to the transferred to the cache, saving the long delays for main memory
data transfer by benefitting from the faster cache. In general, the better the locality in the

referencing sequence, the more time saved in memory access.
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However, as part of the pipelining technique, the original iteration space was skewed
and permuted. While the original execution sequence was along the direction of the original
control variables, the final execution sequence is along a transformed set of control
variables--that is, along the direction of the wavefront The difference can be seen from the
diagram shown in Figure 71, which shows the direction of execution of the wavefront as

compared to the original loop control variables.

Figure 71: Wavefront Direction of Execution

The intent of the transformation was to eliminate data dependencies from the
innermost loop iterations by ensuring that there are no data dependence along the innermost
loop between consecutive iterations. Because data dependences are a subset of data reuses,
at least some data reuses are eliminated from the innermost loop of the final loop structure.
Consequently, executing the transformed loop structure along the innermost dimension
does not benefit from the data locality from these data dependences that were present in the
original loop structure

To illustrate the situation, consider Figure 72. This figure shows the original data
dependence vectors of the iteration space originally presented in Figure 2 (Figure 72.a is

the same as Figure 13 for the original example). One of the original dependences was
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between consecutive innermost iterations. After the transformatior, the dependence is

moved out of the innermost iterations to the outermost iterations.
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Figure 72: Dependence Vector Alteration From Original To
Transformed Iteration Space

If the cache size is smaller than the “row size” of the new iteration space, then it is

probable that the data needed for an iteration from these dependences has been overwritten
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in the cache. For example, assume that the cache size was 64 words and each data element
is one word long. In the original iteration space, a data value produced in a previous
iteration is used by the current iteration, and should still be in the cache. However, in the
transformed space, data produced in the previous second innermost iteration (i.c., previous
row of the iteration space) will be used by the current iteration. Consequently, if more than
64 innermost loop iterations are being executed (i.c., if the row length is greater than 64
iterations), then the same data needed was produced at least 64 iterations in the past, and
may have been overwritten during the wait. The chances of overwriting go up with the
smaller cache dimension, obviously.

It is possible, therefore, that in an effort to eliminate data dependences between
successive iterations of the innermost loop, the introduction of skewing and loop
interchange is detrimental to the normal data locality of the loop structure. The actual
effect, however, is very case dependent, relying on the value of loop bounds, array sizes,

cache sizes, etc.

B. INVESITGATING THE DATA LOCALITY PROBLEM

In order to compare the effects of the pipelining technique loop transformation on
reference locality, a program was written to create a reference trace of loop structure or a

transformation from a loop structure. The trace generated from this program can be fed into

the cache simulating tool DINEROMI!, which computes statistics about cache misses and
memory bus activity with various cache organizations and policies.

To investigate the effects of the loop transformation, reference traces were obtained for
the original example loop structure from Figure 17, modified only in that the upper bound
of the innermost and outermost loop variables were both set at 200 vice 100 and 500. The
transformed loop generated will be the same as that generated in Section IV.C. The traces

were performed assuming data size of one word each.

1. DINEROIII is a trace-driven cache simulating program that uses as input a sequence of memory
references and outputs expected cache performance statistics. DINEROII is authored by Mark D.
Hill, Computer Science Department, University of Wisconsin, Madison, W1.
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Because the testing was done to investigate the locality of data only, instruction fetches
were not included in the reference listing. In all testing, the simulated cache was assumed
to be a direct mapped cache, with a demand fetch policy, a write-back write policy, no sub-
block access, and a write-allocate write policy. These choices were made somewhat
arbitrarily, with the intent only to simplify the observations and maintain consistency
Actual Dinerolll statistical results of the testing is shown in the Appendix. The results
depict a screen capture of the computer output of the statistics table that DINEROII
produces.

The initial evaluation was performed with a cache size of 128 words, with cache block
size of one word. The most significant results are felt to be the percentage of references
which resulted in misses and the total memory bus traffic. The results from this initial cache

set-up shown in the table of Figure 73.

Block Size
Loo One Word Four Words
P - percentage of
. 67% 17% miss rate
Eg%;elr;::lcution 120200 121208 ‘J\
bus traffic in

Pipelined Loop 66% 48% words
Execution 119623 355464

Figure 73: Miss Percentage and Total Bus Traffic with Each Loop
Structure and With Cache Block Size of One or Four
Words and Cache Size of 128 Words
The table compares the total data miss rate and bus traffic for both the original and the
transformed loop structures. Each loop structure was also analyzed using a one word cache
block and a four word cache block.
When the block size is one word, the percentage of misses and the total bus traffic for
the original loop and the transformed loop are very close to being the same. This indicates

that transformation of the loop structurc sid not adversely affect the temporal locality of the
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structure. However, when the block size was increased to four words, there was a dramatic
difference between the two loop structures.

With the cache block size of four words, the miss rate of the original loop references
dropped by a factor of about four from when the block size was one word. This was an
expected result of the spatial locality that the original loop structure provided, given the
sequential access of array elements along the innermost dimension.

As previously noted, the loop transformation performed to support loop pipelining the
innermost loop eliminated the data dependences along the innermost dimension of the
transformed structure, thereby eliminating of the spatial locality along this dimension. It
was, therefore, expected as well that the greater block size would cause only a slight drop
in miss rate from the one word block case. Additionally, because spatial locality is reduced,
the total bus traffic would have to be much higher to support the data swapping of the four
word blocks. This was supported by the data obtained.

Certainly, the specific results would change based on individual cases for cache
configuration and loop code. To ensure that the results were not merely coincidental, the
same analysis was performed with cache sizes of 512 words, 4k words, and 64 words.

Figure 74 through Figure 76 show the results of the those tests.

Block Size
Lo One Word Four Words
op
Sequential 34% 8%
Loop Execution] 80599 121208
Pipclinpd Loop 50% 25%
Execution 100392 220440

Figure 74: Miss Percentage and Total Bus Traffic with Each
Loop Structure and With Cache Block Size of One
or Four Words and Cache Size of 512 Words
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Block Size
One Word | Four Words
Loop

. 34% 8%
Sequential
Loop Execution 80599 81008
Pipelined Loop| _ 34% 9%
Execution 80599 81008

Figure 75: Miss Percentage and Total Bus Traffic with Each Loop
Structure and With Cache Block Size of One or Four
Words and Cache Size of 4k Words

Block Size
Loop One Word | Four Words
; 34% 8%
Sequential
Loop Execution| 80599 81008
Pipelined Loop 34% 9%
Execution 20599 81804

Figure 76: Miss Percentage and Total Bus Traffic with Each Loop
Structure and With Cache Block Size of One or Four
Words and Cache Size of 64k Words
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When the cache size is small compared to the number of array elements (in the 128
word and 512 word cache), there is a significant difference in miss rate and bus traffic
between the pipelined and non-pipelined loop structures when a four wo.d block is used.
This is attributed to spatial locality. As the cache size becomes large, the differences
between the cache performances diminishes. This, however, is due to relative size of the
cache to the data array.

These few tests do suggest, however, that under certain conditions the pipelining
method has the potential to disrupt the reference locality. This disruption would manifest
itself during execution through a higher cache miss rate and bus traffic, resulting in an
overall reduction of performance. In the worst case, the large delays caused by a greater
number of main memory accesses may overshadow the performance gains of the pipelining

technique.

C. A SOLUTION THROUGH TILING

One possible solution to reduce the cache misses is the application of iteration space
tiling methods. Iteration space Tiling is a loop transformation method which partitions a
loop structures normal iteration space into smaller sub-iteration spaces. For example,
consider a loop structure and iteration space of Figure 77.

Tiling of this loop could result in a loop structure and a partitioned iteration space as
in Figure 78. Each tiled section of the original iteration space is executed as a sub-space.
The amount of data referenced in each of these tiles is a subset of the data referenced in the
entire space. With this in mind, tiling has been presented as method by which data reuse
can be optimized for a given cache size.

A description of how tiling can be applied to optimize the reuse of data is presented by
Wolf and Lam [Ref. 16]. In using tiling to optimize the data reuse, an original loop structure
is transformed into an equivalent loop structure for which the innermost nes: containing

sor..e number of loops require a minimal number of memory accesses per iteration. This is
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Figure 77: Untiled Loop Structure and Iteration Space
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Figure 78: Tiled Loop Structure and Partitioned Iteration Space, with
Tile Size of Two
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done by performing unimodular transformations on the loop structure in an effort to make
the all components of all data reuse vectors for the particular innermost nest of loops non-
negative. Because data dependence vectors are a subset of the data reuse vectors, this has
the additional effect of ensuring the innermost nest of loops becomes a fully permutable
sub-loop structure.

By making the loops fully permutable, the innermost nest of loops can be interchanged
in order to find the structure which best localizes the reuse of data, as well as providing the
conditions for which the tiling transformation can be legally performed. The goal is to
optimize cache data reuse by limiting the localized iteration space to a size for which all
needed data can be contained within the cache at the same time. By selecting the a proper
tile size, only a limited amount of data which is highly reused is placed in the cache at any
one time.

The best selection of the tile size is one which uses a maximum of the cache (to
improve data reuse), but avoids the mapping interference into cache locations. Demirhan
[Ref. 17] provides an algorithm for choosing the best tile size based on cache size and data
array row size in the case of directly mapped caches. In some instances, it is advisable to

pad the array rows with empty elements in order to maximize the use of the cache.

1.  Tiling With Loop Pipelining

The loop pipelining technique uses a transformation which eliminates data
dependences along the innermost dimension. In performing this transformation, the two
innermost loops were made fully permutable. Although the transformation was not
motivated by any intent to tile, the result of the transformation is that the inner two
dimensions of the final loop structure is in the same conditions required to allow tiling.

One major difference between the transformation done for the loop pipelining
and that described by Wolf and Lam [Ref. 16] is that the loop pipelining technique did not
perform skewing based on the data reuse vectors, but only on a subset of those vectors-- the

data dependence vectors. However, because the transformation for loop pipelining has
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localized some reuse vectors within the two innermost loops, it is reasonable to believe that
tiling may be able to recover some of the reference locality lost when making the innermost
loop parallel. In particular, tiling a pipelined loop may still exploit the data reuse from the
data dependence along the innermost dimension which was transferred to the second
innermost loop dimension.

To investigate the possible application of tiling to the loop pipelined structure,

the procedures given by Demirhan [Ref. 17] were conducted to identify the proper tile size

for each of the cache configurations used in the last section!. Padded tiling was then applied
to the original loop structure and transformed loop structures (the original loop structure
required skewing in the innermost dimension as per Wolf and Lam [Ref. 16] to make it
tilable). Reference traces were created for the tiled loop structures and tested with
DINEROII using the same cache configurations as previously chosen, except that in all
cases, the cache block size was maintained at four words per block. The results of the

testing is shown in Figure 79.

Cache Size
L 128 Words | 512 Words | 4k Words | 64k Words
00p
, 12% 10% 9% 9%
Sequential | 107140 95020 84112 81804
Loop ExecunonJ
. 9% 9% 9% 9%
Pipelined Loop|  g5650 83620 82396 61952

Figure 79: Miss Rate and Total Bus Traffic with Padded Tiling Applied
For Both the Original and Transformed Loop Structures

1. The optimal block size was determined using the algorithms provided in the reference. This
included padding the array rows as necessary to maximally fill the cache. To accommodate for the
skewing effect of the transformed loops, the actual row size needed was less by the total skewing of
the loop structure, and was accounted for in the reference address calculations.
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As can be seen from the table, the miss rate and the bus traffic have been greatly
reduced for the pipelined loop compared to the non-tiled case. Additionally, both measures
are for the transformed loop are at least as good as for the tiled original loop. The overall
improvement is most noticeable with a smaller relative cache size, and diminishes as the
cache size becomes so large as to be less effected by locality issues for the specific loop
example.

In general, the results suggest that tiling might be used not only to reclaim some
reference locality lost by the pipelining transformation, but also optimize the data reuse in

the pipelined loop in the same manner as it can be used in other nested loop structures.

2.  Potential Problems With Tiling

Although tiling may provide a dramatic improvement in reference locality, the
application of tiling does not exist without a cost.

Even as prescribed by Wolf and Lam [Ref. 16}, tiling generally requires loop
transformations to provide the loop structure with a fully permutable loop. This requ-: cs the
obvious overhead for loop transformation equations and code alteration. This overhead,
however, is required of the loop pipelining technique anyway, and is therefore of no
additional cost.

On the other hand, much of the overhead that the loop pipelining technique
requires is that due to the transitioning into the pipelined schedule. This includes the
sections of code for executing the prolog and the epilog as well as computation of the tile
boundaries. By tiling, the iteration space is cut into smaller pieces, creating more
boundaries. The result, it appears, would be a greater proportion of code dedicated to
transition into and out of the pipelined segments, as well as more iterations performed in
less efficient code segments (i.e., in the prolog and epilog). Roughly speaking, the overhead

from a non-tiled to a tiled execution of a pipelined loop increases by a multiplicative factor

Nu-l )
square tile size’’

of (
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The addition of this overhead is a major drawback to the use of tiling. The
benefits of tiling must be weighed carefully against the cost of the overhead before it can
be determined to be a feasible option. This is certainly an issue which needs further study.

D. THE EFFECT OF MULTIPLE LOAD/STORE UNITS

Thus far, the examples used for the observations about reference locality considered a
target VLIW machine with only a single load/store unit. It is of obvious benefit to have a
machine that used multiple load/store units to be able to concurrently access the memory
for each of the units. With multiple load/store units, multiple references can be attempted
for the same long instruction word. This will not only save time when the concurrent data
accesses result in cache hits, but also when multiple concurrent data accesses result in
misses. Consequently, the use of multiple load/store units should aid in reducing the

penalty of the miss rate.

1. Investigating Concurrent Miss Savings
In an attempt to investigate the claim that multiple load/store units might result
in reducing the miss penalty, again the example originating from Figure 17 was used.
Following the loop pipelining technique presented in this thesis, pipelined schedules were

generated assuming two load store units available and assuming three load store units

available!. In the event that multiple i~ad/store units are available, it is reasonable to
implement a cache that has associativity which eliminates the possibility of self-
interference within the same instruction. By setting the set associativity to at least the
number of load/store units, same instruction interference is eliminated.

For the two pipelined schedule created, reference traces were generated
assuming no tiling as well as assuming tiling, with two tile sizes being selected. Because
there is no standard for choosing a specific tile size for the pipelined loop structures, the tile

sizes that were chosen are somewhat arbitrary. However, to ensure consistency between the

1. The pipelined schedules were generated using the same configurations as used in the examples in
Section V.A.3 when the multiple load store units were evaluated.
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tests of various cache ronfigurations the first size was selected using the optimization
algorithm given by Demirhan [Ref. 17). As stated before, this algorithm is intended to be
used for directly mapped caches, so it serves no specific purpose in this case than to
establish a standard method for picking the cache size. The second cache size was chosen
to be the closest integer square root to the cache size. This also allows the choice is to be
derived from a definite procedure which is consistent between the cache configurations.

The reference traces were again analyzed with DINEROII. The cache
configuration was set to simulate a set associative cache with the appropriate associativity
for the number of load/store units available, a demand fetch policy, a write-back write
policy, no sub-block access, and a write-allocate write policy. The cache block size was
maintained at four words per block, to ensure the problems with spatial locality would be
exhibited if they existed.

Because the intent of the test was to observe if the multiple load/store units could
result in reducing the miss penalty, the output of DINERO was analyzed for reference

misses which occurred in the same VLIW instruction. Because of the complexity of this

analysisl, the scope of the analysis was limited to examining only the references which
occurred during the iterations which used the pipelined schedule, and ignored the areas of
the iteration space that required sequential (or compacted) iteration execution.

Several tests were run with differing sizes of caches and differing number of
load/store units. The results are summarized in Figure 80 through Figure 82. The smallest
cache size examined was that with 512 words (Figure 80 and Figure 81). For both load/store
unit configurations, the some savings in miss penalties were obtained when no tiling was

used. When tiling was used, no miss penalty savings occurred.

1. DINEROIII analyzes reference traces assuming only sequential execution. The output, therefore,
required analysis to determine which references occurred on which VLIW instruction lines. This is
possible only for the iterations using the know pipelined schedule.
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Although cache sizes up to 64k words were examined, results with all cache
sizes above 512 words for both pipelined schedules indicated no saved miss penalty due to

additional resources. Figure 82 is provided as a representative example of these results.

r

conditions

no tiling

padded tiling with
tile size of 21

tiling with tile size
of 22

total
references

120,000

120,000

120,000

total
pipelined
references

115254

101054

101880

total
pipelined
instruction

lines

76458

65894

66708

total
pipelined
misses

37000

8197

8208

total
pipelined
instruction
lines with

misses

36659

8197

8208

number

of miss

penalties
saved

341

percent of
miss

penalties
saved

1%

Figure 80: Summary of Investigation for Saving Miss Penalty With
Two Load/Store Units, and a 512 Word, Two-Way Set
Associative, Four Word Block Size Cache
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conditions

no tiling

padded tiling with
tile size of 21

tiling with tile size
of 22

total
references

120,000

120,000

120,000

total
pipelined
references

107742

72357

76248

total
pipelined
instruction

lines

36448

26080

26856

total
pipelined
misses

37000

5412

5733

total
pipelined
instruction
lines with

misses

29913

5412

5733

miss
penalties
saved

7087

percent of
miss

penalty
saved

19%

Figure 81: Summary of Investigation for Saving Miss Penalty With
Three Load/Store Units, and a 512 Word, Four-Way Set

Associative, Four Word Block Size Cache
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conditions

no tiling

padded tiling with

tile size of 41

tiling with tile size

of 45

total
references

120,000

120,000

120,000

total
pipelined
references

107796

92574

92574

total
pipelined
instruction

lines

36448

31840

31840

total
pipelined
misses

8736

7276

7276

total
pipelined
instruction
lines with
misses

8736

7276

7276

miss
penalties
saved

percent of
miss

penalty
saved

Figure 82: Summary of Investigation for Saving Miss Penalty With

Three Load/Store Units, and a 2k Word, Four-Way Set
Associative, Four Word Block Size Cache
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2. Summary Of Results

The results obtained from the investigation of how multiple load/store units
affect the miss penalty only illustrates the possibility that some penalty can be saved. Such
savings, however, is dependent upon the specific loop structure, the number of load/store
units, the pipelined schedule created, as well as the relative size of the cache as compared
to the data array sized (or tile size). For the specific example observed, it appears that miss
penalty is reduced slightly for those cases when the cache is relatively small and no tiling
is used. The actual complex relationship between these factors is an area which requires
additional study; however, if the results seen are at all representative, then the use of tiling

may limit the miss rate savings with multiple load/store units.

E. SUMMARY OF DATA LOCALITY OBSERVATIONS

The observations made conceming the effects of the loop pipelining technique on data
locality illustrates the complexity and case dependent nature of the problem. The results of
the simple tests conducted indicate that data locality is negatively affected by the
transformation process used to establish the conditions for the proposed loop pipelining
technique. Particularly affected is the spatial locality that might normally exist in loop
structures which use the loop control variables to regularly access data arrays.

The use of tiling transformations, however, appear promising in returning the level of
locality of a pipelined loop to that of a non-pipelined loop, and virtually removing the
negative effects of the transformation on data locality. Unfortunately, the benefit of the
tiling must be weighed against the additional overhead that tiling imposes on the use of the
pipelined code within each tile.

With multiple load/store units, some miss penalty might be saved if multiple misses
occur within a single VLIW instruction. The conditions for which this occur, however, are
very case dependent. In some instances, the uses of tiling may limit the ability for multiple
instruction line misses to occur. The choice as to whether to use tiling, therefore, may also

have to weigh the loss of savings in concurrent misses.
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Although the observations made conceming the issue of data locality were limited,
they identify the need for further study detailed study of the desired VLIW memory system
and the effects of data locality optimization techniques used in conjunction with the loop
pipelining technique presented in this thesis.
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VII. CONCLUSION AND RECOMMENDATIONS

The technique for loop pipelining of perfectly-nested loop structures presented in this
thesis combines previously well known methods of Wavefront Transformations and
Acyclic DDG Modulo Scheduling to create a new loop pipelining method which is both
simple and efficient. The resultant pipelined schedules produced are near-optimal for a
given set of resources, with execution schedules varying from an ideal pipelining scenario
only by the necessary addition of transformation instructions, boundary calculation
overhead, and the addition of transition code necessary for use of the pipelined schedule.

Although the added overhead of the transformation tends to reduce performance, the
technique is generally scalable with resource availability. This suggests that the addition of
resources will improve performance beyond the limitations that present cyclic DDG
modulo scheduling techniques face due to the bound that dependence cycles place on the
final IIII. Because of this characteristic, the technique developed maintains a great
advantage over previously proposed loop pipelining methods.

The code generation procedure described in Section IV.C.2 provides an extremely
simple method to generate the final loop structure. The code generation procedure provides
a systematic process by which to transform the original loop structure into a modified loop
structure utilizing the loop pipelining technique presented. Most references tend to
overlook this step when describing their techniques, but is an important and practical issue
to address.

When developing the code generation procedure, code segments and their relationships
were modelled with a DDG-type graph structure. This modeling proved extremely useful
in providing a conceptual simplification and organization of the required code segments.
The same modeling technique was used to describe the original loop structure, as well as

used to develop the execution schedules presented for an ideal pipelining technique (see
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Figure 67) and for a cyclic DDG Modulo Scheduling technique (see Figure 68). The ease
at which the model was adaptable to other situations indicates that it might prove to be a
valuable aid in future code restructuring investigations.

Observations indicate that spatial data locality may be adversely effected with the
application of the presented loop pipelining technique. As a result, the use of cache memory
systems when using the pipelining method could result in a higher cache miss rate. It is
possible that the use of iteration space tiling techniques on the two innermost loops could
overcome the negative effects, or that the existence of multiple load,store units may reduce
the miss penalty with significant number of concurrent cache misses. However, the actual
effect of the pipelining technique on data locality, the benefit of tiling, and the probability
of concurrent cache misses appear case dependent on the original loop structure and on
cache configuration. This must certainly be included in further study.

The work presented in this thesis is merely the beginning of a larger undertaking which
must build upon and modify the current advancements. To obtain a clearer understanding
of the performance benefits of the loop pipelining technique proposed, automated
implementation of the method should be attempted. This would include the development
of the data structures required for proper representation of DDGs, implementation of the
loop transformation and modulo scheduling procedures, and implementation of the code
generation procedure. Implementation of the code generation procedure will also require
the implementation of code compaction sub-procedures. Once the loop pipelining method
is automated, a greater number of examples can be examnined, with simulated performance
being evaluated to properly investigate the benefits of the pipelining method.

As mentioned previously, the issue of data locality should also be investigated further.
Automation of the loop pipelining technique will also allow the examination of a greater
number of examples to determine with more precision the effect that the pipelining
technique has on data locality, as well as the saving multiple load/store units provide by
allowing concurrent misses. Additionally, modifications to the code generation procedure

can be made to investigate tiling affects. In particular, because tiling produces regularly
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sized blocks of iterations, it may be possible to simplify the boundary calculations or even
overlap prolog and epilog executions within the tiles to gain efficiency. Associate with
consideration for data locality is the issue of the appropriate choice of memory systems to

best support VLIW machines in general, and loop pipelining in particular.
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APPENDIX

This appendix contains the screen captured output of the program DINERONY,
displaying the results of simulated cache performance for reference traces from example
code loops. The results were obtained in order to compare the effects of the pipelining
technique loop transformation on reference locality. Traces from the original loop were
compared with traces from a transformed loop specific configurations of cache size and
block size. In all cases, the default settings of DINEROIII were used to maintain
consistency. These default settings included simulation of a direct mapped cache with a
demand fetch policy, and a write-back write policy. The only alterations which were
allowed were in the cache size and the cache block size.

The tests were catagorized by the following list:

» cache size is primary division

» block size within cache, being either one word per block or four words
per block. when block size was four words per block, the category is
further divided as to whether the reference traces tested were obtained
from tiled iteration spaces or non-tiled iteration spaces. When tiling, the
tile size was chosen to be the largest tile size based on the cache size, with
data array padding assumed to be applied as necessary per [Ref. 17] to
avoid address interference

» foreach category above, the test was performed on a reference trace from
an original rectangular, non-pipelined loop structure, and then on a the
references obtained from the transformed loop structure resulting from
application of the loop pipelining technique described. In all cases, the
original loop was a two dimensional loop structure, identical to the
example shown in Figure 17, except that the upper limit for both the
innermost and outermost loop variable was 200. The loop pipelining
technique was performed as described in Section IV, with the final
pipelined kemel schedule being the uae produced in Figure 31
(specifically, only one load/store unit being available).

1. DINEROIII is a trace-driven cache simulating program that uses as input a sequence of memory
references and outputs expected cache performance statistics. DINEROIII is authored by Mark D.
Hill, Computer Science Department, University of Wisconsin, Madison, WI.
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The screen capture diagrams which followed this categorization are given with

explanitory captions in Figure 1 through Figure 24, divided by cache size.

A. TESTING WITH CACHE SIZE OF 128 WORDS

Metrics Access Type:

(totals, fraction) Total Instrn Data Read Write Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 80200 0 80200 40200 40000 0
0.6683 0.0000 0.6683 0.5025 1.0000 0.0000

Words From Memory 80200

( / Demand Fetches) 0.6683

Words Copied-Back 40000

( / Demand Writes) 1.0000

Total Traffic (words) 120200
( / Demand Fetches) 1.0017

Appendix Figure 1: Test Results For Reference Trace of Original Loop with Cache
Size of 128 words, Cache Block Size of One Word, and No Tiling

Metrics Access Type:

(totals, fraction) Total 1Instrn Data Read Write Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 O0.e6667 0.3333 0.0000

Demand Misses 79623 0 79623 39623 40000 0
0.6635 0.0000 0.6635 0.4953 1.0000 0.0000

Words From Memory 79623

( / Demand Fetches) 0.6635

Words Copied-Back 40000

( / Demand Writes) 1.0000

Total Traffic (words) 119623
( / Demand Fetches) 0.9969

Appendix Figure 2: Test Results For Reference Trace of Pipelined Loop with Cache
Size of 128 words, Cache Block Size of One Word, and No Tiling
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Metrics Access Type:

(totals, fraction) Total Instrn Data Read Vrite Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 20201 0 20201 10201 10000 0
0.1683 0.0000 0.1683 0.1275 0.2500 0.0000

Words From Memory 80804

( / Demand Fetches) 0.6734

Words Copied-Back 40404

( / Demand Writes) 1.0101

Total Traffic (words) 121208
{( / Demand Fetches) 1.0101

Appendix Figure 3: Test Results For Reference Trace of Original Loop with Cache
Size of 128 words, Cache Block Size of Four Words, and No Tiling

Metrics Access Type:

(totals, fraction) Total Instrn Data Read VWrite Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 O0.6667 0.3333 0.0000

Demand Misses 49586 0 49586 39586 10000 0
0.4132 0.0000 0.4132 0.4948 0.2500 0.0000

Words From Memory 198344

( / Demand Fetches) 1.6529

Words Copied-Back 157120

( / Demand VWrites) 3.9280

Total Traffic (words) 355464
( / Demand Fetches) 2.9622

Appendix Figure 4: Test Results For Reference Trace of Pipelined Loop with Cache
Size of 128 words, Cache Block Size of Four Words, and No Tiling
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Metrics Access Type:

(totals, fraction) Total Instrn Data Read WVrite Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 O.6667 0.3333 0.0000

Denmand Misses 13885 0 13885 3885 10000 0
0.1157 0.0000 0.1157 0.0486 0.2500 0.0000

Words From Memory 55540

( / Demand Fetches) 0.4628

Words Copied-Back 51600

{( / Demand Writes) 1.2900

Total Traffic (words) 107140
( / Derand Fetches) 0.8928

Appendix Figure 5: Test Results For Reference Trace of Original Loop with Cache
Size of 128 words, Cache Block Size of Four Words, and Tiling

Metrics Access Type:

(totals, fraction) Total Instrn Data Read Write Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.00060

Demand Misses 11220 0 11220 1220 10000 0
0.0935 0.0000 0.0935 0.0152 0.2500 0.0000

Words From Memory 44880

( / Demand Fetches) 0.3740

Words Copied-Back 40800

( / Demand Writes) 1.0200

Total Traffic (words) 85680

( / Demand Fetches) 0.7140

Appendix Figure 6: Test Results For Reference Trace of Pipelined Loop with Cache
Size of 128 words, Cache Block Size of Four Words, and Tiling
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B. TESTING WITH CACHE SIZE OF 512 WORDS

Metrics
(totals, fraction)

Demand Fetches

Demand Misses

Words From Memory

( / Demand Fetches)
Words Copied-Back

( / Demand Writes)
Total Traffic (words)
( / Demand Fetches)

Access Type:

Total
120000
1.0000

40599
0.3383

40599
0.3383
40000
1.0000
80599
0.6717

Instrn Data

0 120000
0.0000 1.0000

0 40599
0.0000 0.3383

Read

80000
0.6667

599
0.0075

Vrite

40000
0.3333

40000
1.0000

0
0.0000

0
0.0000

Appendix Figure 7: Test Results For Reference Trace of Original Loop with Cache

Size of 512 words, Cache Block Size of One Word, and No Tiling

Metrics
(totals, fraction)

Demand Fetches

Demand Misses

Words From Memory

{ / Demand Fetches)
Words Copied-Back

( / Demand Writes)
Total Traffic (words)
( / Demand Fetches)

Access
Total

120000
1.0000

60392
0.5033

60392
0.5033
40000
1.0000
100392
0.8366

e:
Instn

0 120000
0.0000 1.0000

0 60392
0.0000 0.5033

Data

Read

80000
0.6667

20392
0.2549

Write
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Appendix Figure 8: Test Results For Reference Trace of Pipelined Loop with Cache
Size of 512 words, Cache Block Size of One Word, and No Tiling




Metrics Access Type:

(totals, fraction) Total Instrn Data Read Vrite Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Denand Misses 10151 0 10151 151 10000 0
0.0846 0.0000 0.0846 0.0019 0.2500 0.0000

Words From Memory 40604

( / Demand Fetches) 0.3384

Words Copied-Back 40404

( / Demand Writes) 1.0101

Total Traffic (words) 81008
( / Demand Fetches) 0.6751

Appendix Figure 9: Test Results For Reference Trace of Original Loop with Cache
Size of 512 words, Cache Block Size of Four Words, and No Tiling

Metrics Access Type:

(totals, fraction) Total Instrn Data Read VWrite Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 O.6667 0.3333 0.0000

Demand Misses 30235 0 30235 20235 10000 0
0.2520 0.0000 0.2520 0.2529 0.2500 0.0000

Words From Memory 120940

( / Demand Fetches) 1.0078

Words Copied-Back 99500

{( / Demand Writes) 2.4875

Total Traffic (words) 220440
( / Demand Fetches) 1.8370

Appendix Figure 10: Test Results For Reference Trace of Pipelined Loop with Cache
Size of 512 words, Cache Block Size of Four Words, and No Tiling
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Metrics Access Type:

(totals, fraction) Total Instrn Data Read Vrite Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Denand Misses 12147 0 12147 2147 10000 0
0.1012 0.0000 0.1012 0.0268 0.2500 0.0000

Words From Memory 48588

( / Demand Fetches) 0.4049

Words Copied-Back 46432

( / Demand Writes) 1.1608

Total Traffic (words) 95020
( / Demand Fetches) 0.7918

Appendix Figure 11: Test Results For Reference Trace of Original Loop with Cache
Size of 512 words, Cache Block Size of Four Word, and Tiling

Metrics Access Type:

(totals, fraction) Total Instrn Data Read Vrite Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 10755 0 10755 755 10000 0
0.0896 0.0000 0.0896 0.0094 0.2500 0.0000

Words From Memory 43020

( / Demand Fetches) 0.3585

Words Copied-Back 40600

( / Demand Writes) 1.0150

Total Traffic (words) 83620
( / Demand Fetches) 0.6968

Appendix Figure 12: Test Results For Reference Trace of Pipelined Loop with Cache
Size of 512 words, Cache Block Size of Four Words, and Tiling
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C. TESTING WITH CACHE SIZE OF 4096 WORDS

Metrics Access Type:

(totals, fraction) Total Instrn Data Read Write Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 O0.6667 0.3333 0.0000

Demand Misses 40599 0 40599 599 40000 0
0.3383 0.0000 0.3383 C.0075 1.0000 0.0000

Words From Memory 40599

( / Demand Fetches) 0.3383

Words Copied-Back 40000

( / Demand Writes) 1.0000

Total Traffic (words) 80599
( / Demand Fetches) 0.6717

Appendix Figure 13: Test Results For Reference Trace of Criginal Loop with Cache
Size of 4096 words, Cache Block Size of One Word, and No Tiling

Metrics Access Type:

(totals, fraction) Total Instrn Data Read Vrite Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 40599 0 40599 599 40000 0
0.3383 0.0000 0.3383 0.0075 1.0000 0.0000

Words From Memory 40599

( / Demand Fetches) 0.3383

Words Copied-Back 40000

( / Demand Writes) 1.0000

Total Traffic (words) 80599
( / Demand Fetches) 0.6717

Appendix Figure 14: Test Results For Reference Trace of Pipelined Loop with Cache
Size of 4096 words, Cache Block Size of One Word, and No Tiling
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Metrics
(totals, fraction)

Demand Fetches

Denand Misses

Words From Memory

( / Demand Fetches)
Words Copied-Back

( / Demand Writes)
Total Traffic (words)
( / Demand Fetches)

Access Type:

Total Instrn
120000 0
1.0000

10151 0
0. 0846

40604
0.3384
40404
1.0101
81008
0.6751

Data

120000
1.0000

10151
0.0846

Read

80000
0.6667

151
0.0019

Vrite

-—— - - -

Misc

Appendix Figure 15: Test Results For Reference Trace of Original Loop with Cache
Size of 4096 words, Cache Block Size of Four Words, and No Tiling

Metrics
(totals, fraction)

Demand Fetches
Demand Misses

Words From Memory

( / Demand Fetches)
Words Copied-Back

; ( / Demand Writes)

| Total Traffic (words)
| ( / Demand Fetches)

Access Type:

Total Instrn
120000 0 120000
1.0000 0.0000 1.0000

10251 0 10251
0.0854 0.0000 0.0854

41004
0.3417
40800
1.0200
81804
0.6817

Data

Read

80000
0.6667

251
0.0031

Write

Misc

Appendix Figure 16: Test Results For Reference Trace of Pipelined Loop with Cache
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Metrics Access Type:

(totals, fraction) Total Instrn Data Read \Vrite Misc

Demand Petches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 10611 0 10611 611 10000 0
0.0884 0.0000 0.0884 0.0076 0.2500 0.0000

Words Prom Memory 42444

( / Demand Fetches) 0.3537

Words Copied-Back 41668

( / Demand Writes) 1.0417

Total Traffic (words) 84112
( / Demand Fetches) 0.7009

Appendix Figure 17: Test Results For Reference Trace of Original Loop with Cache
Size of 4096 words, Cache Block Size of Four Word, and Tiling

Metrics Access Type:

(totals, fraction) Total 1Instrn Data Read VWrite Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 10399 0 10399 399 10000 0
0.0867 0.0000 0.0867 0.0050 0.2500 0.0000

Words From Memory 41596

( / Demand Fetches) 0. 3466

Words Copied-Back 40800

( / Demand Writes) 1. 0200

Total Traffic (words) 82396
( / Demand Fetches) 0. 6866

Appendix Figure 18: Test Results For Reference Trace of Pipelined Loop with Cache
Size of 4096 words, Cache Block Size of Four Word, and Tiling
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D. TESTING WITH CACHE SIZE OF 64k WORDS

Metrics Access Type:

(totals, fraction) Total Instrn Data Read WVrite Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 40599 0 40599 599 40000 0
0.3383 0.0000 0.3383 0.0075 1.0000 0.0000

Words From Memory 40599

( / Demand Fetches) 0.3383

Words Copied-Back 40000

( / Demand Writes) 1.0000

Total Traffic (words) 80599
( / Demand Fetches) 0.6717

Appendix Figure 19: Test Results For Reference Trace of Original Loop with Cache
Size of 64k words, Cache Block Size of One Word, and No Tiling

Metrics Access Type:

(totals, fraction) Total Instrn Data Read Write Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 40599 0 40599 599 40000 0
0.3383 0.0000 0.3383 0.0075 1.0000 0O.0000

Words From Memory 40599

( / Demand Fetches) 0.3383

Words Copied-Back 40000

( / Demand Writes) 1.0000

Total Traffic (words) 80599
( / Demand Fetches) 0.6717

Appendix Figure 20: Test Results For Reference Trace of Pipelined Loop with Cache
Size of 64k words, Cache Block Size of One Word, and No Tiling
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Metrics Access Type:

(totals, fraction) Total Instrn Data Read Vrite Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 10151 0 10151 151 10000 0
0.0846 0.0000 0.0846 0.0019 0.2500 0.0000

Words From Memory 40604

( / Demand Fetches) 0.3384

Words Copied-Back 40404

( / Demand Writes) 1.0101

Total Traffic (words) 81008
( / Demand Fetches) 0.6751

Appendix Figure 21: Test Results For Reference Trace of Original Loop with Cache
Size of 64k words, Cache Block Size of Four Words, and No Tiling

Metrics Access Type:

(totals, fraction) Total Instrn Data Read WVrite Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 10251 0 10251 251 10000 0
0.0854 0.0000 0.0854 0.0031 0.2500 0.0000

Words From Memory 41004

( / Demand Fetches) 0.3417

Words Copied-Back 40800

( / Demand Writes) 1.0200
Total Traffic (words) 81804
( / Demand Fetches) 0.6817

Appendix Figure 22: Test Results For Reference Trace of Pipelined Loop with Cache
Size of 64k words, Cache Block Size of Four Words, and No Tiling

164




Metrics
(totals, fraction)

Dermand Fetches

Demand Misses

Words From Memory

( / Demand Fetches)
Words Copied-Back

( / Demand Writes)
Total Traffic (words)
( / Nemand Fetches)

Access Type:

Total
120000
1. 0000

10251
0.0854

41004
0.3417
40800
1.0200
81804
0.6817

Instrn

0
0. 0000

0
0.0000

Vrite

Read

80000
0.6667

251
0.0031

Data

120000
1.0000

10251
0.0854

Appendix Figure 23: Test Results For Reference Trace of Original Loop with Cache
Size of 64k words, Cache Block Size of Four Words, and Tiling

Metrics
(totals, fraction)

Demand Fetches

Demand Misses

Words From Memory

( / Demand Fetches)
Words Copied-Back

( / Demand Writes)
Total Traffic (words)
( / Demand Fetches)

Access Type:

Total

Instrn

Vrite

Read

60248
0.6667

276
0.0046

Data

90371
1.0000

7807
0.0864

Misc

Appendix Figure 24: Test Results For Reference Trace of Pipelined Loop with Cache
Size of 64k words, Cache Block Size of Four Words, and Tiling
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