
NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
~DECO3 1993

THESIS E

A RESOURCE CONSTRAINED LOOP PIPELINING
TECHNIQUE FOR PERFECTLY-NESTED

LOOP STRUCTURES

by

Thor Davis Aakre

September 1993

Thesis Advisor: Dr. Amr M. Zaky

Approved for public release; distribution is unlimited.

93-29395

93 121 001

Foam Approved
REPORT DOCUMENTATION PAGE meOn NoR 7ON01M

Pft~i mpo*% - for On - - - of i~mnwon is -Nowoavm e ia ps. h mbu . •swq • *"&9 rv

cobdon of inAkm m, m•Wf winesbam I •ro* th buiden Is awoo Hesd~wlnm S~wom. Ov,.,-tfo kdanso Opao &W Repo. 1216 Jelmo
0" hoa 1Sue I4. AdmgW,. VA 2ZM0-4,3=, aW lo the Offim of Maagonwd are iudgM. Pwpwwv• Redjabon Prapt (070-01), wn•oo. DC•

1.,UPNcN MONOI AGENCY NAME ()B) AN AORT .ATE . REPORT TYPEM DARTES COVEMEO/. September 1993 [Master's Th~lesis. July 1991 - September 1993
. T.T A SUBTSUPE s. FUMDN NUMBERS
A Resource Constrained Loop Pipelining Technique For Perfectly-
Nested Loop Structures (U)

Is. ABSRC A•) w 00n~s

Aakre, Thor Davis

T. PsRFORM isN Resents NaEwts) A fo A opppSSESg) f. Pp-r-loRMopr O whIcsTIO i
Computer Science Department REPORT NUMBER
Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING MO~NITOIN AGENCYNAME(S) AND ADD)RESS(ES) 10. SPONSORING/ MNTOsRING
Naval Postgraduate School pGENCl REPORT NUMBER
Monterey, CA 93943-.500

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

12&DISTRIBUTION I AVAILABILITY STTEME•NT 12b. DIST•RIBUTION CD

Approved for public release; distribution is unlimited.

I & ABSTRACT (Maxmum 20O wrds)

This thesis presents a new technique for loop pipelining of perfitly-nested for-loop structures which is designed
to optimize loop execution on VLIW machines. Previously implemented loop pipelining techniques provide limited
performance because they explicitly include the constraints imposed by a loop's cyclic dependences in their
loop pipelining process. Some loop pipelining techniques have also ignored the realistic constraint of finite resourceavailability in the creation of final pipelined execution schedules.

cie new approach presented in this thesis eliminaess the problem of cyclic dependences by first applying a linear
transformation to the nested loop index space to ensure a cycle-free innermost loop, which is then pipelined using
modulo scheduling for a known set of resources. The transformation guarantees that the target machine's available
resources are levonly limit to the amount of exploitable fine-grained parallelism within the innermost loop. This
results in pipelined execution schedules having near-optima, Inter-Iteration Initiation Intervals (IMu) with theachievable performance being scalable with the addition of resources. Consequently. our loop pipelining method'
utilizes more fine-grained parallelism than other loop pipelining techniques which directly incorporate a loop's
cyclic dependences in their pipelinlng process. We also explicitly provide a procedure for creating the resultant
pipelied execution schedules. In addition, we investigate the negative effect that the transformation has on data
locality and the cache miss rate, as well as the use of iteration space Wiing to restore data locality and cache miss
rate to the levels expected from sequential loop execution.

i4.3Uso T TERMS 1s. NUMBER OF PAGES
Loop Pipelining, Inter-Iteration Initiation Interval, Modulo Scheduling, Data 181

Dependence Graph, Unimodular Transformation, Modulo Variable Expansion 11. FIRMS CON

17. SECURITY CLASSIFICATION 14. SECURITY CLASSIFICATION 19. SECURITY CLASSIFiCTION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified Unlimited

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Presaibed by ANSI SId. 239-18

Approved for public release; distribution is unlimited

A RESOURCE CONSTRAINED LOOP PIPELINING TECHNIQUE
FOR PERFECTLY-NESTED LOOP STRUCTURES

by

Thor Davis Aakre
Lieutenant, United States Navy

B.A., St. Olaf College, 1984

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

September 1993

Author:

Thor Davis Aakre

Approved By:

Amr M. Zaky, Thesis Advisor

Ted Lewis; Chairman,
Department of Computer Science

ii

ABSTRACT

This thesis presents a new technique for loop pipelining of perfectly-nested for-loop

structures which is designed to optimize loop execution on VLIW machines. Previously

implemented loop pipelining techniques provide limited performance benefit because they

explicitly include the constraints imposed by a loop's cyclic dependences in their loop

pipelining process. Some loop pipelining techniques have also ignored the realistic

constraint of finite resource availability in the creation of final pipelined execution

schedules.

The new approach presented in this thesis eliminates the problem of cyclic

dependences by first applying a linear transformation to the nested loop index space to

ensure a cycle-free innermost loop, which is then pipelined using modulo scheduling for a

known set of resources. The transformation guarantees that the target machine's available

resources are the only limit to the amount of exploitable fine-grained parallelism within the

innermost loop. This results in pipelined execution schedules having near-optimal Inter-

Iteration Initiation Intervals (11I) with the achievable performance being scalable with the

addition of resources. Consequently, our loop pipelining method utilizes more fine-grained

parallelism than other loop pipelining techniques which directly incorporate a loop's cyclic

dependences in their pipelining process. We also explicitly provide a procedure for creating

the resultant pipelined execution schedules. In addition, we investigate the negative effect

that the transformation has on data locality and the cache miss rate, as well as the use of

iteration space tiling to restore data locality and cache miss rate to the levels expected from

sequential loop execution. ccesion For
NTIS CRA&M
DTIC TAB

S"IC QU=C ArITY TiS•pG-' 3 Unannounced

Justification

By
Divt ib tio• I

Ak/VdUc• Jiiy Coges

! AV;,,,i 02-ý,d/ or_

DiAt I cýpýciai

ACKNOWLEDGEMENTS

I would like to thank Dr. Amr M. Zaky, whose initial interest in the subject of loop

pipelining was the foundation on which this thesis was produced. His continued support,

enthusiasm, patience, and guidance were invaluable assets for the completion of this work.

I also would like to thank my wife, Anne, for doing more than her share of life's

normal routines, for supporting my schedule, and for providing alternative activities to

balance the load.

iv

TABLE OF CONTENTS

I. INTRODUCTIO N .. 1
H. BACKGROUND .. 10

A. MODULO SCHEDULING OF ACYCLIC DDGs 10
1. Determining The Inter-Iteration Initiation Interval 10
2. Creating The Modulo Resource Reservation Table 13

B. MODULO SCHEDULING OF CYCLIC DDGs 18
C. PIPELINING OF PERFECTLY-NESTED LOOPS 20

Ill. AN OVERVIEW OF THE PROPOSED LOOP PIPELINING TECHNIQUE 22
A. TRANSFORMATION OF THE ORIGINAL LOOP STRUCTURE 23

1. Explanation Of The Wavefront Method ... 24
2. Determining The Transformation Matrix .. 28
3. Transforming The Original Loop Structure 31
4. Applying The Wavefront Method To Machine Code Loop Bod-

ies ... 36
B. APPLYING THE ACYCLIC DDG MODULO SCHEDULING

M ETHOD .. 41
C. A REVIEW OF THE PROPOSED LOOP PIPELINING TECH-

N IQ UE .. 44
IV. CODE GENERATION ... 47

A. THE TARGET MACHINE HARDWARE .. 47
I. Basic Target Machine Requirements .. 47
2. Additional Special Hardware Support ... 48

B. ISSUES OF CONCERN FOR CODE GENERATION 54
I. Adding Loop Control To The Modified Transformed DDG 55
2. Creating The Final Pipelined Kernel Schedule 64
3. Creating The Prolog And Epilog For The Pipelined Kernel

Schedule .. 73
4. Areas Of The Iteration Space Not Supporting Use Of The Pipe-

lined Loop ... 79
5. Determination Of The Pipelined Loop Preconditioning 82

C. GENERATING THE FINAL LOOP CODE .. 84
1. Modelling The Final Loop Code Structure 85
2. The Final Code Generation Process .. 102
3. An Example Application Of The Code Generation Process 109

V. EVALUATION AND ANALYSIS .. 115
A. EVALUATION OF TECHNIQUE PERFORMANCE 115

1. The Ideal Solution For The Example .. 117
2. A Cyclic DDG Modulo Scheduling Method 119

V

3. The Proposed Acyclic DDG Modulo Scheduling Method 120
4. Comparison Of Techniques .. 123
5. Additional Improvements To Performance ... 125

B. ANALYSIS OF THE CODE GENERATION PROCEDURE 127
1. Complexity Of The Transformation ... 127
2. Complexity Of The Modulo Scheduling Process 128
3. Complexity Of The Code Compaction Procedures 129
4. Complexity Of The Code Generation Procedure 130
5. Overall Complexity ... 130

VI. AN ISSUE OF DATA LOCALITY ... 131
A. DATA LOCALITY .. 131
B. INVESI rGATING THE DATA LOCALITY PROBLEM 134
C. A SOLUTION THROUGH TILING .. 138

1. Tiling With Loop Pipelining ... 140
2. Potential Problems With Tiling ... 142

D. THE EFFECT OF MULTIPLE LOAD/STORE UNITS 143
1. Investigating Concurrent Miss Savings .. 143
2. Summary Of Results ... 148

E. SUMMARY OF DATA LOCALITY OBSERVATIONS 148
VII. CONCLUSION AND RECOMMENDATIONS ... 150
A PPEND IX ... 153

A. TESTING WITH CACHE SIZE OF 128 WORDS 154
B. TESTING WITH CACHE SIZE OF 512 WORDS 157
C. TESTING WITH CACHE SIZE OF 4096 WORDS 160
D. TESTING WITH CACHE SIZE OF 64k WORDS 163

LIST OF REFERENCES .. 166
INITIAL DISTRIBUTION LIST ... 168

vi

LIST OF FIGURES

Figure 1: Translation of Sequential Code into VLIW Instructions 3
Figure 2: Data Dependency Graph ... 4
Figure 3: Timing Schedule for Iterations Represented by DDG of

Figure 2 ... 6
Figure 4: Acyclic Data Dependency Graph .. 12
Figure 5: Scheduling of S2 and S3 From Figure 4 With an Adder Resource

Delay of Two Time Units, With One and Two Adders Avail-
able .. 12

Figure 6: Simple Acyclic DDG for Loop Code with Three Instructions 15
Figure 7: fIM1 Adjustment to Meet Resource Delay Requirements 15
Figure 8: Unrolled Loop DDG and Reservation Table .. 16
Figure 9: Modulo Resource Reservation Table for DDG of Figure 4 17
Figure 10: Modulo Resource Reservation Table for DDG of Figure 4 with

Relative Iterations Identified .. 18
Figure 11: Simple Cyclic DDG .. 18
Figure 12: Simple Two Dimensional Loop Structure With DDG 24
Figure 13: Iteration Space Diagram, Showing Iteration Dependences 25
Figure 14: Iteration Space Diagram Showing a Wavefront for Independent

Iterations ... 26
Figure 15: Trarsformed Iteration Space with Horizontal Wavefronts 27
Figure 16: Mcftýfication Process of Original DDG .. 37
Figure 17: Extended Code For Figure 12 Example .. 38
Figure 18: Cyclic DDG With Nodes Representing Machine Code Instruc-

tions .. 39
Figure 19: Modification Process of DDG with Machine Code Loop

Body ... 42
Figure 20: Modulo Resource Reservation Scheduling Algorithm Which At-

tempts To Reduce Register Variable Lifetimes 43
Figure 21: Modulo Resource Reservation Table ... 44
Figure 22: Proposed Loop Pipelining Technique Procedure Flowchart 46
Figure 23: Simple Three Register Rotating Register File 49
Figure 24: Simple ICR Rotating Register File ... 50
Figure 25: Iteration Execution Control Flow Chart .. 52
Figure 26: Hardware Support Sequence of Events .. 53
Figure 27: Subgraph For Loop Control Instructions .. 58
Figure 28: Final Innermost Loop DDG with Loop Control Code Added

When There Is Basic Machine Hardware Support 59

vii

Figure 29: Final Modulo Resource Reservation Table With Basic Machine
Hardware Support ... 60

Figure 30: Final Innermost Loop DDG with Loop Control Code Added
When There Is Special Machine Hardware Support 63

Figure 31: Final Modulo Resource Reservation Table With Special Ma-
chine Hardware Support ... 64

Figure 32: Modulo Resource Reservation Table ... 65
Figure 33: Initial Timing Table For Pipelined Iterations 65
Figure 34: Table For Pipelined Iterations with Modulo Variable Expansion

Applied ... 67
Figure 35: Pipelined Kernel with Modulo Variable Expansion Applied 67
Figure 36: Timing Table for Pipelined Iterations with Rotating Register

File Support. ... 69
7-igure 37: Pipelined Kernel with Rotating Register File Support 69
Figure 38: Final Pipelined Kernel Schedule with Modulo Variable Expan-

sion and Basic Machine Hardware Support 71
Figure 39: Final Pipelined Kernel Schedule with Special Hardware Regis-

ter Renaming Support .. 72
Figure 40: Prolog For Modulo Resource Reservation Table of Figure 29

and Pipelined Kernel Schedule of Figure 38 76
Figure 41: Epilog For Modulo Resource Reservation Table of Figure 29

and Pipelined Kernel Schedule of Figure 38 77
Figure 42: Iteration Space Shape Characteristics, Before and After Trans-

form ation .. 80
Figure 43: Original Loop Structure Code Model ... 86
Figure 44: Recursive Definition for Subloop 2 --> n ... 87
Figure 45: Final Loop Structure Code Model .. 89
Figure 46: Recursive Definition for Subloop 2 -+ n ... 90
Figure 47: Expansion of "execute Ninner non-pipelined iterations" Node 91
Figure 48: Explanation of the "set i'x bounds" Nodes ... 94
Figure 49: Explanation of the "jump to..." Nodes ... 94
Figure 50: Explanation of the "test for ending i' I" Node 94
Figure 51: Explanation of the "test for ending i'x" Nodes 95
Figure 52: Explanation of the "increment i'x" Nodes .. 95
Figure 53: Explanation for "calculate and set i'n bounds" Node 96
Figure 54: Dependency Graphs for i'n Bound Calculation 97
Figure 55: Explanation of the "calculate Ni. r" Node ... 98
Figure 56: Explanation of the "test for Nine Nalve" Node 98
Figure 57: Explanation of the "test for Ninner Ntifve" Node 99
Figure 58: Explanation of the "shift register until only important digits"

N ode ... 100
Figure 59: Explanation of the "test if next digit is a zero" Node 100

vii'

Figure 60: Explanation of the "shift register and test if next digit is a one"
N odes ... 10 1

Figure 61: Explanation of the "compact iterations, and include a register
shift and test if next digit is zero" Nodes ... 101

Figure 62: Explanation of the "compact I iterations, and include a jump to
the "inc i'ns- " N ode .. 102

Figure 63: Example Code Compaction for Innermost Loop Bounds Com-
putation Segm ent ... 110

Figure 64: Compacted Single Iteration ... 111
Figure 65: Compacted Code for Two Iterations .. 112
Figure 66: Final Restructured Code Loop For Example ... 114
Figure 67: Ideal Schedule For Example Loop ... 118
Figure 68: Cyclic DDG Modulo Scheduling Final Code For Example 120
Figure 69: Average Time Units/Iteration For Various Configurations 122
Figure 70: Average Time Units/Iteration With Various Loop Bound Val-

ues .. 126
Figure 71: Wavefront Direction of Execution ... 132
Figure 72: Dependence Vector Alteration From Original To Transformed

Iteration Space ... 133
Figure 73: Miss Percentage and Total Bus Traffic with Each Loop Structure

and With Cache Block Size of One or Four Words and Cache
Size of 128 W ords .. 135

Figure 74: Miss Percentage and Total Bus Traffic with Each Loop Structure
and With Cache Block Size of One or Four Words and Cache
Size of 512 W ords .. 136

Figure 75: Miss Percentage and Total Bus Traffic with Each Loop Structure
and With Cache Block Size of One or Four Words and Cache
Size of 4k W ords .. 137

Figure 76: Miss Percentage and Total Bus Traffic with Each Loop Structure
and With Cache Block Size of One or Four Words and Cache
Size of 64k W ords .. 137

Figure 77: Untiled Loop Structure and Iteration Space .. 139
Figure 78: Tiled Loop Structure and Partitioned Iteration Space, with Tile

Size of Tw o .. 139
Figure 79: Miss Rate and Total Bus Traffic with Padded Tding Applied For

Both the Original and Transformed Loop Structures 141
Figure 80: Summary of Investigation for Saving Miss Penalty With Two

Load/Store Units, and a 512 Word, Two-Way Set Associa-
tive, Four Word Block Size Cache .. 145

Figure 81: Summary of Investigation for Saving Miss Penalty With Three
Load/Store Units, and a 512 Word, Four-Way Set Associa-
tive, Four Word Block Size Cache .. 146

ix

Figure 82: Summary of Investigation for Saving Miss Penalty With Three
Load/Store Units, and a 2k Word, Four-Way Set Associa-
tive, Four W ord Block Size Cache ... 147

Appendix Figure 1: Tes' •esults For Reference Trace of Original Loop with
Cache Size of 128 words, Cache Block Size of One
W ord, and No Tiling ... 154

Appendix Figure 2: Test Results For Reference Trace of Pipelined Loop with
Cache Size of 128 words, Cache Block Size of One
W ord, and No Tiling ... 154

Appr Jix Figure 3: Test Results For Reference Trace of Original Loop with
Cache Size of 128 words, Cache Block Size of Four
W ords, and No Tiling ... 155

Appendix Figure 4: Test Results For Reference Trace of Pipelined Loop with
Cache Size of 128 words, Cache Block Size of Four
W ords, and No Tiling ... 155

Appendix Figure 5: Test Results For Reference Trace of Original Loop with
Cache Size of 128 words, Cache Block Size of Four
W ords, and Tiling ... 156

Appendix Figure 6: Test Results For Reference Trace of Pipelined Loop with
Cache Size of 128 words, Cache Block Size of Four
W ords, and Tiling ... 156

Appendix Figure 7: Test Results For Reference Trace of Original Loop with
Cache Size of 512 words, Cache Block Size of One
W ord, and No Tiling ... 157

Appendix Figure 8: Test Results For Reference Trace of Pipelined Loop with
Cache Size of 512 words, Cache Block Size of One
W ord, and No Tiling ... 157

Appendix Figure 9: Test Results For Reference Trace of Original Loop with
Cache Size of 512 words, Cache Block Size of Four
W ords, and No Tiling ... 158

Appendix Figure 10: Test Results For Reference Trace of Pipelined Loop with
Cache Size of 512 words, Cache Block Size of Four
W ords, and No Tiling ... 158

Appendix Figure 11: Test Results For Reference Trace of Original Loop with
Cache Size of 512 words, Cache Block Size of Four
W ord, and Tiling ... 159

Appendix Figure 12: Test Results For Reference Trace of Pipelined Loop with
Cache Size of 512 words, Cache Block Size of Four
W ords, and Tiling ... 159

Appendix Figure 13: Test Results For Reference Trace of Original Loop with
Cache Size of 4096 words, Cache Block Size of One
Word, and No Tiling 160

X

Appendix Figure 14: Test Results For Reference Trace of Pipelined Loop with
Cache Size of 4096 words, Cache Block Size of One
W ord, and No Tiling ... 160

Appendix Figure 15: Test Results For Reference Trace of Original Loop with
Cache Size of 4096 words, Cache Block Size of Four
W ords, and No Tiling ... 161

Appendix Figure 16: Test Results For Reference Trace of Pipelined Loop with
Cache Size of 4096 words, Cache Block Size of Four
W ords, and No Tiling ... 161

Appendix Figure 17: Test Results For Reference Trace of Original Loop with
Cache Size of 4096 words, Cache Block Size of Four
W ord, and Tiling ... 162

Appendix Figure 18: Test Results For Reference Trace of Pipelined Loop with
Cache Size of 4096 words, Cache Block Size of Four
W ord, and Tiling ... 162

Appendix Figure 19: Test Results For Reference Trace of Original Loop with
Cache Size of 64k words, Cache Block Size of One
W ord, and No Tiling ... 163

Appendix Figure 20: Test Results For Reference Trace of Pipelined Loop with
Cache Size of 64k wcrds, Cache Block Size of One
W ord, and No Tiling ... 163

Appendix Figure 21: Test Results For Reference Trace of Original Loop with
Cache Size of 64k words, Cache Block Size of Four
W ords, and No Tiling ... 164

Appendix Figure 22: Test Results For Reference Trace of Pipelined Loop with
Cache Size of 64k words, Cache Block Size of Four
W ords, and No Tiling ... 164

Appendix Figure 23: Test Results For Reference Trace of Original Loop with
Cache Size of 64k words, Cache Block Size of Four
W ords, and Tiling ... 165

Appendix Figure 24: Test Results For Reference Trace of Pipelined Loop with
Cache Size of 64k words, Cache Block Size of Four
W ords, and Tiling ... 165

Xi

I. INTRODUCTION

With the ever increasing demand for higher performance in computer processing,

constant research is being conducted in an attempt to find methods to execute program

instructions faster. One area of this research empha.-ize_ the use of concurrent processing

to exploit the independent components of a program by processing these components in

parallel. The level at which this parallelism is exploited can vary from a coarse-grained

par•,llelism (e.g., from fully independent processes and procedures, independent loop

iterations, etc.) to fine-grained parallelism (e.g., from independent machine instructions or

microinstructions).

While coarse grained parallelism may be the simplest for which to plan and even to

design programming tools to identify and exploit, for many applications, it does not often

provide enough parallelism to fully utilize the resources made available for concurrent use.

By considering finer grained components, such as instructions or micro-instructions, a

greater number of independences should be uncovered. As a result, exploiting the

parallelism at this level provides a better chance of keeping resources busy. The problem,

however, is finding an effective and efficient method of identifying and harnessing the fine-

grained parallelism in existing code to create execution schedules which maintain the

original program semantics. Of particular focus in determining a solution to this problem

is the handling of the fine-grained parallelism present in loop structures, which consumes

a large percentage of the total execution time of scientific applications.

Several general machine types have been proposed which attempt to exploit the fine-

grained parallelism in programs, two of which are the Superscalar Machines and the Very

Long Instruction Word (VLIW) Machines. In Superscalar Machines, several instructions in

a sequence are considered for concurrent execution. Dependences between, as well as other

characteristics associated with, these instructions are examined and, based on the results, a

subset of the instructions are issued to multiple functional units for parallel execution. The

real limit to the effectiveness of the Superscalar architecture involves the run time overhead

required to dynamically determine the inter-dependence within a sequence of instructions.

To minimize this overhead, only a limited number of instructions can be considered for

execution at any one time. Techniques which utilize compile time analysis of the program

code could help eliminate or at least ease this run time overhead.

This i3 the approach used for VLIW machines, which require compile time evaluation

of inter-instruction dependences, followed by the combination of individual independent

instructions into one long instruction word. The individual independent instructions

packaged into the long instruction are then fetched as one instruction, and simultaneously

issued to multiple function units (Figure 1). This allows a more effective analysis of

dependences without affecting run time performance, and results in better utilization of

fine-grained parallelism.

One technique specifically tailored for use with VLIW machines is called Trace

Scheduling (Fisher, [Ref. 1]). Trace Scheduling first requires a selection (called trace

selection) of the most likely trace through the code. Loop unrolling is used to create long

traces, but requires the assumption that certain loop control conditionals are taken with a

high probability. A second step, trace compaction, is then used to analyze the trace for

dependences and compress the code into the VLIW format. Only the most probable traces

are scheduled this way. Correction code is required for those cases in which the path of

execution veers off of the selected trace path. In addition to the complexity of this method,

Lam [Ref. 2] notes that there is the possibility of exponential code explosion. Another

deficiency of trace scheduling, as noted by Zaky and Sadayappan [Ref. 3], is that there is

no easy way to determine how much unrolling in any specific circumstance would produce

better utilization of resources and better performance. Therefore, the resultant ad-hoc

methods of loop unrolling that are often used to determine the needed amount of unfolding

are not effective ways to best create VLIW in.truction schedules.

2

Code for determining the value of
* Sequentially executed code would take six

SI: LD RO, A time units to execute if each instruction
S2: MULTI RI, RO, #3 required one time unit to execute
S3: LD R2, B
S4: MULTI R3, R2, #4
S5: ADD R4, RI, R3
56: ST C, R4

With a VLIW machine with two fully capable processors, the VLIW instruction is comprised of two
sub-instructions, one for each processor. No-Op instructions are executed when no specific sub-
instruction is assigned. Evaluation of the above code at compile time would determine that the code
is executable in four time units

Processor

tirm P1 P2
I LD RO, A LD R2, B Four individual VLIWinsmtrctions, each with a sub-
2 MULTI RI, RO, #3 MULTI R3, R2, #4 instruction assignment to a

3 ADD R4,RI,R3 separate processor in the target3 ADDR4, R, R3machine.

4 ST C, R4

Figure 1: Translation of Sequential Code into VLIW Instructions

3

An alternative to trace scheduling is Loop Pipelining (or Software Pipelining). Loop

Pipelining is a technique whereby instructions from different loop iterations are interleaved

without unrolling the loop. The interleaving allows exploitation of fine-grained parallelism

between instructions of different iterations by combining these independent instructions

into a single long instruction. A restructured loop body of VLIW instructions is created and

replaces the original loop.

The main idea behind the technique is to generate a compact loop body of VLIW

instructions which maintain the semantics of the original loop structure. For example,

consider the Data Dependence Graph (DDG) in Figure 2 for a single loop. In the DDG,

each node represents an instruction with arcs representing data dependences between the

instructions. The labels are in the form (latency)/(loop delay). The latency refers to the

number of time units required between the start of one instruction and the start of the

dependent instructions. The loop delay identifies the relationship between the iteration of

the dependent instruction as compared to the iteration of the instruction on which it

depends.

210 110
1/07

S3 /0
S6

210 110

Figure 2: Data Dependency Graph

4

In this example, assume that there are three processing elements available and that any

of the processing elements can execute any of the instructions in one unit of time. The

iterations can then be scheduled as in Figure 3, with instruction from different iterations

overlapping in time, but with no more than three instructions being executed at any one

time (because there are only three available resources). The VLIW instructions which are

created are comprised of the sub-instructions which are executed at the same time in the

schedule.

As can be seen by this schedule, a recurring pattern develops in which a new iteration

is started every five time units, even though it takes twelve time units to complete any one

iteration. This is the pipelining effect. The recurring pattern which first occurs at time 7

thorough 11, is referred to as the kernel of the new schedule. The kernel executes any

instruction of the loop body only once, although the instructions in any kernel may come

from different iterations.

To take advantage of the multiple resources available, the original loop can be

restructured to include the kernel pattern as the new loop body, which executes the twelve

instructions in five time periods. The amount of time needed to execute the kernel is also

the time between subsequent starting of iterations. This time is labeled the Inter-Iteration

Initiation Interval (1111). The [Ill becomes a measure of the throughput of the system and

of how well the resources are being utilized. The smaller the [Ill, the greater completion

rate of the loop iterations and the better the resources are being used. It is obvious that any

software pipelining method must have as its goal the creation of a kernel with the minimal

Ilk

The Modulo Scheduling technique developed by Rau and Glaeser [Ref. 4] was shown

to be able to schedule acydic DDG's to create a loop body kernel which takes full

advantage of the available resources, and therefore yields a minimal HIU for the given set

of resources. In many loop structures, loop carried dependences exist between the iterations

of the loop body. Although their existence are not a sufficient condition for creating cyclic

dependences, they are necessary, and often create cyclic dependences which are displayed

5

iteration number

time 1 2 3 4

0 SI

I S2

2 S3
3 S5

4 S6

S7 SI

6 S8 S2
7 $9 S3

8 S4 S5

9 S5 11 $6 kernel

10 SI0 S7 SI

I 6 S1 2 S8 S2

12 $9 S3
13 S4 $5

14 SIl S 6

15 .S10 S7 SI
16 S12 S8 S2
17 $9 S3

18 S4 S5

Figure 3: Timing Schedule for Iterations Represented by DDG of
Figure 2

as cycles in the DDG for the loop. Data dependence cycles in a DDG introduce additional

constraints on the minimum length of lIII. As a result, cycles can limit the size of the kernel

schedules which can be produced and restrict the performance benefit which can be

obtained by loop pipelining.

Modulo Scheduling methods presented for pipelining single loops with cyclic data

dependences are described by Aiken and Nicolau [Ref. 5], Lam [Ref. 2], Rau, Schlansker

and Tirumalai [Ref. 6], and Zaky [Ref. 7]. However, these methods directly incorporate the

constraints caused by the cyclic dependences into the scheduling procedure. As noted, this

restricts the minimum size of the 1111 and prevents the methods from fully benefitting from

extra resources.

Because the time spent executing perfectly-nested loop structures can dominate

program runtime, previous loop pipelining techniques must be expanded to incorporate

these structures. Loop unrolling can be applied along multiple dimensions in an attempt to

eliminate dependence cycles and eipose additional fine-grained parallelism beyond that

available from single dimension unrolling. This is the intent behind the Loop Quantization

method described by Nicolau [Ref. 81; however, just as with trace scheduling, determining

the amount and the direction of unrolling required to guarantee good results is not easy, and

the benefit may not justify the complexity of the effort.

Alternatively, the modulo scheduling techniques presented by Zaky [Ref. 7] and Kim

and Nicolau [Ref. 9] identify significant fine-grained parallelism across the entire iteration

space of a nested loop. Both determine, via linear timing functions, the sequential starting

times of sets of independent instructions which can be executed in parallel. However,

neither provides a concrete solution for mapping the instructions on finite resources.

In summary, previously presented techniques for loop pipelining have either been

inherently limited by the existence of cyclic dependences, have applied ad-hoc methods in

hopes of improved performance, or have ignored the realistic considerations for resource

constraints, execution schedule production, and actual creation of final code products.

7

These failures were the motivation behind the development of the loop pipelining

technique described in this thesis.

The technique developed for this thesis emphasizes the efficient use of available

resources. It combines a method for identifying sets of independent iterations in multi-

dimensional space with a loop pipelining technique based on Modulo Scheduling of acyclic

DDG's mentioned earlier. The: result is a simple procedure yielding useful execution

schedules with near-optimal lfHl. The advantage over previously proposed perfectly-nested

loop pipelining methods is its simplicity and the exploitation of fine-grained parallelism to

the extent allowed by available resources. In addition, a code generation procedure is

provided for producing the final code structure using the pipeline schedule resulting from

the application of the technique.

Chapter II of this thesis first describes, in more detail, the Modulo Scheduling technique

for acyclic DDG's. It then highlights the difficulties encountered when attempting to apply

a general Modulo Scheduling technique directly to cyclic DDG's, as well as the application

of the technique to perfectly-nested loop structures.

Chapter III describes the proposed loop pipelining technique which can be used to

create software pipelined schedules for n-dimensional perfectly-nested loops. The chapter

first details the loop transformation proceos, which converts the original loop structure into

one in which the inner loop can be pipelined using the Modulo Schedule method for acyclic

DDG's. The chapter then outlines the process for creating the loop pipelined schedule via

the Modulo Scheduling method.

Chapter IV explains the process of code generation using the loop pipelining technique

presented. In particular, it modifies the technique to include the scheduling of loop control

instructions. In addition, it provides a summary of the special machine hardware support

requirements that are assumed to be true for the code generation process. Several code

generation considerations are addressed, and a schematic diagram is presented to aid in

summarizing the require code segments which must be included in the final loop structure

created. Lastly, the algorithm of the code generation is presented.

8

Chapter V summarizes the performance benefits of the proposed loop pipelining

technique and analyzes the complexity of the code generation process.

Chapter VI addresses the additional concern of data locality, particularly in light of the

negative effects the loop pipelining technique might create, and the possible solutions to

minimize these negative effects.

Chapter VII presents are review of and the conclusions to the work conducted, as well

as identifies the necessary extensions of the research required to fully explore and

implement the technique presented.

9

I. BACKGROUND

The Modulo Scheduling technique described by Rau and Glaeser [Ref. 4] has been

used to loop pipelined loop structures which are represented by both cyclic and acyclic

DDGs. In this chapter, the specifics of the Modulo Scheduling technique are described in

more detail for both of these applications. The concern of this thesis, however, is the

application of the scheduling tech~nique to perfectly-nested loop structures, which is

addressed at the end of the chapter. The basic modulo scheduling methods described below

were presented in detail by Rau and Glaeser [Ref. 4], and are used as a general basis for all

modulo methods subsequently developed.

A. MODULO SCHEDULING OF ACYCLIC DDGs

For loops with no cyclic dependences, Modulo Scheduling methods can create

pipelined schedules which utilize resources to the maximum benefit. The method

accomplishes this by creating a pipelined kernel schedule which has the smallest 1IM

possible under the circumstances and constraints imposed by the specific resources made

available. The technique first determines the minimum 1111 possible, and then applies

scheduling methods to create the pipelined execution schedule which will become the new

pipelined kernel.

1. Determining The Inter-Iteration Initiation Interval

The first step in applying a modulo scheduling technique to acyclic DDGs is the

determination of the 11. This is done by examining the instructions in the loop body and

compares the resource requirements for executing the instructions with the resources

available in the VLIW machine. The IM which is chosen for the loop pipelined schedule is

that Im which satisfies the needs of the most limiting resource type. That is, there must be

10

enough instruction slots available in the kernel of the pipelined schedule to ensure that all

instructions can be fit into the schedule.

The calculation for the 11I1 is found by the equation:

In :- maxr r= RTotal Time For r 1Lowerbound R Nr (EI)

where R is the set of all resource types, with r being one type

of resource.
Total Time For r is the total amount of time that the resource

type r is required to be used the instructions
Nr is the number of resource units of type r

It is important to note that the 'Total Time For r" required of a resource type is

not dependent upon the latency values of instructions as shown in a DDG. Rather it is

dependent upon the delay of a functional unit when executing an instruction. This resource

delay is the number of time units f6l1owing the start of one instruction during which the

resource is unable to start another instruction. As a result the value of 'Total Time For r"

in the above equation is really 1i using r (resource delayr) .This is a function of the

resources' pipelining capability. As an example. consider the DDG shown in Figure 4,

which is a modification of Figure 2, with cyclic dependences removed.

In Figure 4, S3 cannot start until at least one time unit after the start of S2 due to

instruction dependence. If we assume that 52 utilizes an adder to produce a value that is

used by S3, then the latency of"l" means that the value produced by S2 is not available to

S3 until one time unit from the start of the S2. If we assume that S3 requires use of the same

adder as S2 and that the adder can only start a new instruction every two time periods, then

the adder's resource delay is two time units. This prevents S3 from executing for two time

units after the start of S2 (see Figure 5.a).

If another adding unit is used to execute S3, then S3 would not be affected by the

resource delay and could start one time unit later than 52 (see Figure 5.b).

11

SI 1 S2
1/0

S3 I/O

S6

S4 2/0
SIR

S9

Z10

1/0

I

Figure 4: Acydic Data Dependency Graph

time adder time adder 1 adder 2
1 22

I S22 S32 1$ 3
32$3

a. With One Adder b. With Two Adders

Figure 5: Scheduling of S2 and S3 From Figure 4 With an Adder
Resource Delay of Two Time Units, With One and Two
Adders Available

12

It is important to note that LIII calculation is independent of the graph structure

and depends only on the nodes. That is, there is no input to the calculation of the [Lll

involving the latency or loop delays of each of the arcs. The type of instructions represented

by the nodes and the resources available are the only required inputs for calculating the 111.

To illustrate the calculation of the IlI, consider again the example in Figure 4.

Assume that the resource delay is one time unit for all instruction types, that the machine

for which the example is created has two adders, a multiplier, and a load/store unit. Also,

assume that the DDG nodes S2, S3, S5, S7, S8, S I0, and S I 1 are adder instructions,

instructions S 1 and 56 are multiplier instructions, and instructions S4, S9, and S 12 are load

store instructions. Then the calculation of the 111 becomes:

lllLowerbound = max7921 1 3 = 4 (Eq. 2)

2. Creating The Modulo Resource Reservation Table

Once the I11 has been determined, the next step in applying Modulo Scheduling

is to create a Modulo Resource Reservation Table to aid in scheduling the DDG

instructions. The Modulo Resource Reservation Table identifies the relative starting times

of instruction nodes in the kernel. The intent is to assign instructions to the table in a way

that minimizes the IIII ultimately produced. The assignment of instructions to the table slots

is purely an exercise in bin packing. That is, the instructions are assigned to the proper

resource while maintaining the resource delay requirements. If the resource delays for the

instruction nodes are all one time unit, the instructions can be placed randomly in a table

and meet the resource delay requirements using the lower bound I1U.' If some resource

1. All mappings of instructions to resohrces in the Modulo Resource Reservation Table when the
resource delay is one yield the same MIr. However, different mappings affect the number of differ-
ent iterations which are represented by instructions in the kernel. This creates different characteris-
tics in the transition which is needed before the pipelined schedule is used, as will be discussed
later.

13

delays are more than one unit, then the lower bound 111 may not be adequate, requiring that

the final 111 be determined using some bin-packing technique.

For example, consider the simple DDG in Figure 6. Assume that each of the three

instructions use the same resource each with resource delays of two units, and that two

resources were available. The lower bound II would be three (from (2+2+2 However,

there is no possible way to place all three instructions into a resource table with three time

slots and maintain the resource delay requirements (see Figure 7.a). As a result, the 1I11

must be increased above the calculated lower bound to four time units (see Figure 7.b).

Note that in the reservation tables of Figure 7, the time value is calculated with

respect to the starting time of the loop modulo the 11l1. The instruction schedule is then

repeated every IM time units.

In those cases where the resource delays are not of unit length, loop unrolling

prior to Modulo Scheduling can result in reducing the final [I to a value closer to the lower

bound Il. Enough unrolling will result in achieving the minimal 111. For example,

unrolling the loop having the code of Figure 6 one time will result in the DDG (actually a

forest) of Figure 8.a. The calculated 1111 is now six time units, which will satisfy the needs

for the resource delay (see Figure 8.b).

The overall effect is that two of the original iterations can now be executed in an

average time of three tine units each, which was the original lower bound on the 1I1.

Because loop unrolling can be used to overcome the problem with resource

delays, with no loss of generality, we will assume that the resource delay for all instructions

is one time unit. In this manner, the schedule produced by the table is guaranteed to result

in optimal utilization of those resources for the loop instructions, restricted only by

limitations of the most used resource.

14

Figure 6: Simple Acyclic DDG for Loop Code with
Three Instructions

With the three instructions, attime(rood 3) resource l resource 2 tattoms ~ cidllo
least two must be scheduled on

0 S 1 the same resource. But with

3 S2 resource delay of two time
2 S3 units, an Illl of three time units

I _is not adequate.

a. Reservation Table with Inadequate HII of Three Time Units

time(mod 4) resource I resource 2

0 S1 By increasing the Hl to four
time units, the instructions can

52 be scheduled and meet the

2 S3 resource delay requirements.

3

b. Reservation Table with Adequate E111 of Four Time Units

Figure 7: IIU Adjustment io Meet Resource Delay Requirements

15

S• $I " Two original iterations now contained in the

I I inner loop. The acyclic nature of the
original DDG resuhs in two inendent

Sutrees representing the new unroied loop
code. The second iteration instructions are

I identified with ".'. to denote that it is not

S3i) the same iteration instruction

a. Data Dependence Forest for Unrolled Loop

tinie(mod 4) resource I resource 2

0 SI

1 S2

2 S3
3 SI,

4 S2'

5 S3'

b. Modulo Resource Reservation Table For Unrolled Loop

Figure 8: Unrolled Loop DDG and Reservation Table

16

The Modulo Resource Reservation Table of Figure 9 is generated for the DDG in

Figure 4. The time value is given with respect to the starting time of the loop modulo four

(since the IllM is four) and the schedule is therefore repeated every four time units.

Resource Unit

time(mod 4) adder adder multiplier Load/Store
0 S5 S7 Sl $9
1 S2 S1l S6 S12
2 S3 Slo

3 S8 S4

Figure 9: Modulo Resource Reservation Table for DDG of Figure 4

The reduced execution time from the original loop to the loop using loop

pipelining is due to the overlapping of instructions from different iterations. The

dependences which do exist between the instructions determine the relative iteration to

which each of the instructions in this schedule belongs.

Once the table has been created, identifying the proper relative iteration for each

instruction in the reservation table is the only sub-step in the Modulo Scheduling procedure

which any complexity. Letting "k" indicate the iteration, then the appropriate dependences

between instructions are satisfied if the iterations are labeled as in Figure 10. In this case,

the time is given with respect to the starting time of the loop, being to. The value a'W

represents the number of iteration executed prior to the pipelined loop, to meet the

preconditioning or prolog requirements as explained in Chapter IV. The relationship

between the instructions' subscripts are determined by the latency and loop delay

requirements represented in the DDG.

The Modulo Resource Reservation Table, as shown in Figure 10, can be used to

generate the restructured loop body for a VLIW machine with the given resources. The

17

simplicity of this technique allows easy automation, with performance benefits scalable

with added resources.

Resource Unit

time adder adder multiplier Load/Store

4(k-a)+to (S5)k ($7)k (S 1)ik (S 9)k.1

4(k-a)+t0 +l (S2)k (S1 l)k (S6)k (SI12)k-2

4(k-a)+t0+2 (S3)k (SI 0)k. I

4(k-a)+t0+3 (S8)k (S4)k

Figure 10: Modulo Resource Reservation Table for DDG of
Figure 4 with Relative Iterations Identified

B. MODULO SCHEDULING OF CYCLIC DDGs

One of the greatest limitations to the use Modulo Scheduling is the complexity and

inefficiency when considering data dependence cycles. As with modulo scheduling of

acyclic DDGs, the intent is to create a pipelined kernel schedule which has the smallest 1I1

possible. However, while the equation for the lower bound on the EII] presented in the last

section only considers the restrictions which are placed on the II]] due to resource

availability, the existence of dependence cycles creates additional constraints on the lower

bound of Ill that must be met. For example, consider the simple cyclic DDG of Figure 11,

which represents the loop code instructions of a loop with a cyclic dependence between the

instructions S I and S3.

1/0

S3

Figure 11: Simple Cyclic DDG

18

Assume that two fully capable functional units are available to execute the instructions,

and, as said before, all resource deliys are one time unit. The lower bound on the 1n1 due

to ttU. r~esources is two time units. However, the path of the cycle requires that it take at least

three time units between execution S I in one iteration and the execution of S I in the next

iteration (this is actually true for any instruction in the graph). The result is a lower bound

on the [Ill due to the cyclic dependence which is more restrictive than the lower bound due

to resource availability. By requiring an EI] of three time units, the additional resource

available does not aid in improving performance. In fact, no matter how many resources

are made available (two, ten, one hundred, etc.), while the lower bound on the JI due to

the resources decreases to a potential value of one, the performance is limited by the

unyielding bound placed on the E1H by the dependence cycle.

As an additional example, consider again the cyclic DDG shown in Figure 2, having a

a cyclic dependence from node S12 to S4. Assuming that there are the four resources as in

the previous section (two adders, a multiplier, and a load/store unit), then the lower bound

of JII based on resource constraints would again yield a value of four time units. With no

cyclic dependences, a Modulo Resource Reservation Table could be generated with this 1111

as in the previous section, with maximum resource utilization for the loop. However, the

cyclic dependences require that the lower bound on 1i11 be five time units (as derived using

techniques such as those described by Zaky [Ref. 7]). Again, the result is poorer

performance and under-utilization of the resources.

In this case as always, because the lower bound on the 1111 due to the cyclic

dependences is independent of the available resources, no improvement on the

performance can be obtained by adding resources. That is, as long as the cyclic

dependences require a mure 1in'.iting UIl, performance improvement is not scalable with

added resource, as in the acyclic DDG case.

19

C. PIPELINING OF PERFECTLY-NESTED LOOPS

For the case of perfectly-nested loops, Modulo Scheduling methods can certainly be

applied directly to the innermost loop of a nested loop structure. If no cyclic dependences

exist between the iterations of the innermost loop of a perfectly-nested loop structure (i.e.,

there are no innermost loop carried dependences causing cycles), the innermost loop can be

pipelined using the efficient acyclic DDG Modulo Scheduling method.

In cases where there are cyclic dependences across the innermost loop, loop

interchange techniques can sometimes be used to restructure the loop to transfer the loop

carried dependences of the innermost loop to the outermost loop. In some cases, this can

create totally independent innermost loop iterations.

For example, consider the loop shown below:

for i in I..N1 loop
or i2 n I..N2 loop

A(i1 ,i2)= 3*A(ij, i2-1)
end loop

end loop

For the same outer loop iteration, the statement in the innermost loop is dependent on

the same statement from the previous innermost loop iteration, thus forming a cycle in the

DDG.

By applying a transformation that interchanges the loops, the resultant code would be:
for i in I..N2 loop

1o i in I..Nj loop
A(i1 ,i2)= 3*A(il, i2 -1)

end loop
end loop

The interchange transfers the loop carried dependence to the outermost loop, leaving a

parallel innermost loop to which the Acyclic DDG Modulo Scheduling method can be

applied.

20

Unfortunately, many loops contain data dependence cycles which carry across all

dimensions of the loop, for example:

for itin I..NI loop
for i2 in 1..N2 IoOpA(iliJ2)-- A(i1, i2-1)+A(il- 1, 2
end loop

end loop

In this case, a two cyclic dependences exists due to loop carried dependences across

both the innermost and outermost loop boundaries. The interchange of the loop structures

transfers the original innermost loop carried dependence to the outermost loop, and the

original outermost loop carried dependence to the innermost loop. The same situation exists

with a cyclic dependence in the innermost loop. As a result, the simple Acyclic DDG

Modulo Scheduling method cannot be applied. Certainly, a cyclic DDG Modulo

Scheduling method could be applied, before or after the interchange. However, it would be

beneficial if the constraints imposed by cyclic dependences could be altogether avoided.

Unfortunately, no alternative method for loop pipelining has yet been proposed which will

eliminate the restrictions of cyclic dependences in this and similar cases.

A major motivation, therefore, for creating the loop pipelining technique presented in

this thesis is to provide an alternative method to loop pipelining of perfectly-nested loops,

which when faced with the problem above, will circumvent the problems of cyclic

dependences and guarantee the applicability of the Modulo Scheduling for acyclic graphs

to the innermost loop.

21

III. AN OVERVIEW OF THE PROPOSED LOOP
PIPELINING TECHNIQUE

This chapter describes the general technique for loop pipelining of a perfectly-nested

loop structure developed for this thesis The intent of the technique is to provide a means for

loop pipelining the innermost loop of perfectly-nested loop structures which have cyclic

dependences. Unlike previously presented loop pipelining techniques, however, this

technique overcomes the performance restrictions which cyclic dependences can impose,

while specifically targeting the resultant execution schedule for a particular set of

resources.

The technique requires the use of two basic tools, both of which have previously been

developed separately, but when combined, create a powerful technique for loop pipelining.

It is the combination of the two tools which is unique to the loop pipelining technique

presented in this thesis.

The first tool is a linear transformation method which restructures any original

perfectly-nested loop structure into one with a parallel innermost loop--that is, one with

totally independent innermost loop iterations. With the removal of all cyclic dependencies,

the resultant loop code DDG can then be loop pipelined with the application of the second

tool, the Acyclic DDG Modulo Scheduling method previously discussed. The final result

will be a pipelined kernel schedule with which a restructure innermost loop can be created

for execution on the target VLIW type machine. Each of these tools are described in the

sections below.

The loop pipelining technique described considers only perfectly nested loops with unit

step increases in control variables. Loops with step increments greater that one can be

normalized to create loops with unit step increases and with index lower bounds equal to

one. While the technique is applicable to n-nested loops, the technique only requires the

alteration of the structure of the two innermost loops.

22

In general, the loop structures to which this method is applied have the form:

for il in N1. loop
for i2 in I..N2 loop

for *.- in L..Nn.I loop
for iin L..N, loop

(original loop body)
end

end loop

end loop
end loop

A. TRANSFORMATION OF THE ORIGINAL LOOP STRUCTURE

The first step in the loop pipelining technique proposed in this thesis is the application

of a loop transformation on the original loop structure. In Section ll.C, it was seen that for

some perfectly nested loops structures, a loop interchange would be sufficient to eliminate

innermost loop cyclic dependencies and allow the application of the acyclic DDG Modulo

Scheduling Technique. The problem, as was noted, is the fact that loop structures exist

which carry loop dependencies across multiple loop boundaries, creating dependence

cycles which cannot be eliminated with mere loop interchanges. In fact, the scope of the

problem is extended to those loops which cannot directly support an interchange in any

case. For example, consider the two dimensional loop structure below:

for iI in L..N 1 loop
for i2 in 1..N 2 loop

A02ii- A(ii, i2-1)+A(ii-1, i2+1)
end loop

end loop

This loop not only has cyclic dependencies across both loops, but interchanging the

two loops structures would alter the semantics of the structure. Interchange, therefore,

cannot be directly applied.

However, transformations do exist that first skew of the innermost loop, and then apply

a loop interchange to once again produce parallel innermost loop iterations. The general

23

method using this process to produce parallel innermost loop iterations is referred to as the

Wavefront Method (or Hyperplane Method) and addressed by Lamport [Ref. 1 0],as well as

by Wolf and Lam [Ref. 1 l].This method is described below, followed by the specific

application to the loop pipelining method.

1. Explanation Of The Wavefront Method

The wavefront method of transformation was the ideal transformation method to

use as the first step in the loop pipelining technique created. To understand the wavefront

method, consider the two dimensional loop example shown in Figure 12.a. The DDG

associated with this loop structure can be represented as in Figure 12b.0 For the purpose of

this example, a latency of "one" is assigned to the addition instruction.

fori! in L..100 loop
for i2 in L.500loop

SI: A(ili 2)= A(i!, irl)+A(ii-1, i2+1)
end loop

end loop

a. Two Dimensional Loop

1) 1/(-1, 1)

b. Associated DDG

Figure 12: Simple Two Dimensional Loop Structure With DDG

In this case, as in the case for all multi-dimensional loops, the loop delay identifier

on the dependence arc is represented as a vector, with each element of the vector

1. For the purposes of this example, the loop body description will be left in high
level representation as shown. In reality, the level at which the transformation and
the modulo scheduling will be applied is a machine code level. At this point, a
higher level representation of the loop structure and the DDG is used to simplify
the explanation.

24

corresponding to one of the loop dimensions. In general, the vector is in the form (dj, d2,

d3, d4,... d.), where d, correspond to the delay associated with the outermost loop, and d.

corresponds to the delay associated with the innermost loop.

For the example, the two delay vectors (0, -1) and (- 1, 1) refer to the dependences

between the computation of an array value A(iJ,i2) and its use in the computation as the

value A(i1 , i2-1) and A(il-l, i2+1), respectively.

The relationship between the iterations of the loop can be shown using a iteration

space diagram, as in Figure 13. Each point in the space represents one loop code iteration,

and the arcs between iteration points represent loop carried dependences between the

iterations. Figure 13 represents the two dimensional iteration space diagram corresponding

to the loop structure of Figure 12. The arcs continue uniformly throughout the iteration

space in the same pattern as displayed.

i 2 -- at

x x x--4"x -. X x x x

X X X X X

X X X X X X X

X X X X X X X

Figure 13: Iteration Space Diagram, Showing Iteration
Dependences

For the example, loop carried dependences exist across both dimensions. In

addition, the loops cannot be directly interchanged without changing the semantics of the

loop.

25

In the case of the example, although cyclic dependences may exist along any

dimension, there can be identified sets of iterations which lie along regular lines, or

Wavefronts, through the iteration space, which do not have dependence relationships. In

fact, Wolf and Lam [Ref. 11] claim that for any loop structure with a constant component

loop delay vectors, a wavefront can always be found.

For the example iteration space of Figure 13, Figure 14 shows one choice of

wavefront for which all iterations on any wavefront line are totally independent. In

particular, along any line of the wavefront, the loop carried dependences which created the

DDG cycles do not relate any two iterations of the wavefront. If the original loop structure

can be transformed into one in which the innermost loop contains the iterations belonging

to one line of an independent wavefront, as Lamport [Ref. 10] claims is possible, then the

innermost loop iteration will be fully independent, and the acyclic DDG Modulo

Scheduling method can be applied to the new innermost loop.

i2

X X X X X X X

Figure 14: Iteration Space Diagram Showing a Wavefront
for Independent Iterations

The necessary transformation accomplishing this task would have to skew the

iteration space to "straighten out" the wavefront lines so that they fall along a single

dimension, and then interchange the loop bounds to ensure the wavefront lines fall along

26

the innermost dimension. The result of the skewing and loop interchange would produce a

new iteration space with the shape of a parallelogram, as in Figure 15.

An in-depth discussion of the theory and application of applying the required loop

transformation is presented by Wolf and Lam [Ref. 11]. The key is to perform a

transformation which provides the desired affect while maintaining an execution order of

the iterations which preserves the program intent. Wolf and Lam [Ref. 11] identify

precisely the unimodular transformation (one that is performed by a square matrix with

integer elements, and whose determinant is ±1) which produces the effect desired.

i2

new wavefront
X X position

%-

SX X X

Figure 15: Transformed Iteration Space with Horizontal
Wavefronts

When applied to the original loops structure, the unimodular transformation will

produced a loop structure for which all loop delay vectors of the associated DDG have

either the value of zero for the component of the vector associated with the innermost loop,

27

or if this value is not zero, at least one other component value of the vector is non-zero. This

will ensure that the innermost loop iterations for the transformed loop are independent, thus

allowing the application of an Acyclic DDG Modulo Scheduling method to the innermost

loop.

2. Determining The Transformation Matrix

Now that the basic motivation for and explanation of the wavefront

transformation has been presented, the transformation process can be described. A

transformation which guarantees that the restructured loop has a completely parallel

innermost loop can be obtained in two steps: the first step is the skewing process and the

second step is the interchange process. As mentioned earlier, the transformation method is

discussed in detail by Wolf and Lam [Ref. 1I], and is summarized below.

a. Step One: Obtaining The Skewing Matrix

The first step in the transformation is to apply skewing to the innermost

loop, with respect to the second innermost loop, as necessary to ensure that the two

innermost loops are fully permutab/e--that is, to allow the innermost loop to be

interchanged with the second innermost loop without altering the semantics of the loop.

For creating a permutable nest for the two innermost dimension, Wolf and

Lam [Ref. 11] prescribe that the proper skewing is applied using a transformation matrix

M•,k0 defined as in the following Equation 3.

100. .. 00

010... 00

Mskew = • (Eq. 3)

000... 1 0

000...2sf1

28

The varaible sfis the called the skewing factor, with a value defined by the

equation:

0 V :d. O
sf max _(dn_ 1) (Eq. 4)

ax(• (d cc D ̂ A.. dn•ohvs

where D is the set of all loop delay vector in the original DDG

When M., is applied to the loop structure, it results in a skewed loop

structure in which the two innermost loops are permutable. However, loop carried

dependencies can still exist and cause the cyclic dependences which are not desired. The

next step, therefore, is to create the parallel innermost loop.

For an example of this step, consider the DDG in Figure 12. For this

example, the calculation of the sf (from equation 4) yields a value of 1. Hence,

S= [°1 0.

b. Step Two: Creating The Parallel Innermost Loop

Determining the value of M~kW is only the first step in creating the

transformation matrix. In order to guarantee that the innermost loop is parallel, the loop

structure must be skewed one additional step beyond that skewing prescribed by M k,.

This will eliminate the existence of loop carried dependences which are solely across the

second innermost loop. This skewing is combined with the interchange of the innermost

loop with the second innermost loop. The result is a loop structure for which there is

guaranteed no loop carried dependences which cross only the innermost loop. This, then,

meets the requirements for having a fully parallel innermost loop.

Wolf and Lam [Ref. IlI describe the re.quired additional transformation

needed to make the (n- 1) innermost nested loops of a n-dimensional loop structure parallel.

29

For the case of a two dimensional loop structure requiring the innermost loop to be fully

parallel, the general case yields the transformation matrix M defined as:

100.. .00

010.. .00

Mskew - interchange (Eq. 5)

000... 11
000. .. 10

Once again using the DDG in Figure 12, as an example,

M stir,-i,.e.. hente= [lI1

c. Combining The Steps

Once the addition skewing and interchange matrix is obtained, the entire

transformation process can be performed all in a single step using the product matrix Mfd,

calculated as:

100-... 0 0

010... 0 0

Mfinal =Mskew- interchange Mskew = (Eq. 6)

000... l+sfl
000... 1 0

Important to note that the total skewing applied is given by the factor

(sf + 1). Also important is the fact that the determination of Mfim does not need the

intermediate calculations of Mk,, and Mk, wdge, but can be determined immediately

once the value of the sf is known.

30

Continuing with the previous example, the resultant final transformation

matrix is MI•,j = ML-. xM.=[211)]

3. Transforming The Original Loop Structure

Once the final transformation matrix has been determined, it can be used to

transform the index space from the original loop structure to the new loop structure with

desired parallel inner loop iterations. Two direct results occur due to the transformation:

first, the loop structure changes. creating new loop index variables as functions of the

original index variables; and second, the DDG is transformed into a DDG on which acyclic

Modulo Scheduling can be applied to the innermost dimension.

a. Transforming The Loop Code

The first step in transforming the original loop into the final loop is to apply

the transformation to the ioop code. This transformation affects the loop code in two ways:

first, it requires the addition of transformation instructions which act as "mending" code at

the beginning of the new innermost loop to calculate the values of the variables which were

original index variables, and second, it determines the change in loop boundaries for the

new code.

(1) Adding The Transformation Instructions. The additional code which

must be included in the body of the innermost loop is determined directly from the inverse

of the final transformation matrix. The transformation from the old index space the to the

new index space uses Mfiw, and is represented by Equation 7.

31

100... 0 0

'2 010... 0 0 i2

X (Eq. 7)

n 1 000 ... +sf 1
• , 000... 1 0 in

The mending code which is required for calculating the values of the

variables which were original index variables can be found using the inverse

transformation matrix, and is given by the equation:

il 100.. .0 0 ill
i2 010...0 0 i' 2

• "(Eq. 8)

in_1 000. .0 1 '-I
i 000.. 1 (-(1 +sf) .,

Lin L Ln

As noted before, and as is made obvious here, only the two innermost

dimensions are affected by the transformation. As a result, the above equations indicate that

the only required additional code to be included in the innermost to complete the

transformation are given by the equations:in _ = i't and in = i _

The equality of i,.- and i', helps simplify the situation by allowing the

variable i', to be directly substituted for the i.-n variable in the instructions. The only

calculation required due to the transformation is for the variable i=. This reduces the

32

additional instructions required to only the second equation above, which is a calculation

which then must be done at runtime.

For the example from Figure 12, the resultant transformation equation

is therefore i2 = i' 1 - 2i'2.

The necessary addition of this equation to the innermost loop code is

not specifically mentioned by Wolf and Lam [Ref. I1]. Although the relationship between

the variables is clearly identified, the particular implementation and necessary overhead

required by the transformation is not addressed. Because we are also concerned with the

practical aspects involved in the generation of a code following the application of the loop

pipelining technique, the inclusion of the transformation instructions in the loop body

cannot be overlooked and is vital to the proper implementation of the technique. In

addition, the added code implies the addition of overhead to the technique which must be

considered when evaluating the effectiveness of the technique.

(2) Changing The Loop Bounds. In addition to adding transformation

instructions into the loop body, the loop boundaries for the loop control variables must also

be altered to conform to the new loop variables. Wolf and Lam [Ref. 11] specifically

address the effect of the transformation on the loop bounds, which now are dependent upon

the skewing applied, the loop interchange, and the original loop bounds.

Again, because the transformation only affects the two innermost

loops, the general n-dimensional discussion provided by Wolf and Lam [Ref. 11] is

simplified for the two dimensional case of interest. Only the bounds on the two innermost

loop variables require adjustment. The bounds on all other loop variables remain the same.

The bounds on the new two innermost loop variables are calculated

based on the value of sfand the original loop boundaries. In general, the range of the second

innermost loop variable, i', 1 , becomes (sf+ 2) ... [(sf+ 1) xN,_. +NJ.

33

The range of the innermost loop variable, i'., now becomes

max .(1,N . .. "'min(II)

Both boundaries require some calculation. The boundaries for the

second innermost loop are based only on the sf and the original loop bounds. Because these

are known during the transformation process (compile time), these boundaries can be

calculated prior to run time. The innermost loop boundaries, however, also depends on the

value of i'*., and must be calculated at run time. Fortunately, this calculation can be done

outside of the innermost loop (but within the second innermost loop) not adding additional

code to the innermost loop.

Once again using the example from Figure 12, the boands on second

innermost loop variable, i'l, becomes 3..700. and the range of the innermost loop variable,

i'2, now becomes max(1, I)...rmin([T1 , 100).

(3) The Final Transformed Loop Code. The loop code transformation is

complete with the combination of the addition of the transformation equations and the loop

control variable boundary calculations. For the general case, the resultant transformed

structure from the final two steps is

for iI in L..N1 loop
for i2 in l..N2 loop

fori'. in (sf+2)... t(sf+ 1) xN,._+N] loop

foui',in max(l,[1'+ !.]) ... min(i- -I J-,_.)

loop
i. - i'_l- (I +sJ)i'8
(original loop body)

end loop
end loop

end loop
end loop

34

Once more, for the example in Figure 12, the variable i' 2 is directly

substituted for the i1 variable in the loop body statement. In addition, the transformation

equation for calculating the i2 variable is added to the inner loop and the loop control

variables and boundaries are altered to maintain the semantics of the loop. As a result, the

final transformed loop structure would have the form:

for i"I in 3..700 loop

for i'2 in max (1I, 250) ...min (0L0j) loop

S2: i2 = i'l-2C2
SI: A(i' 2,i 2)= A(i' 2 , i2-1)+A(i' 2-1, i2+1)

end loop
ead loop

b. Transforming The Loop DDG

Although the transformation of the loop code is important in determining

the transformed loop body and the new loop control variable boundaries, the wavefront

transformation must be applied to the original loop DDG to obtain the dependence graph

that represents the innermost loop which will be modulo scheduled. This involves applying

the transformation to the loop delay vectors of the original DDG by using the

transformation matrix and adding the two additional instructions used to calculate the value

of i2 to the DDG.

(1) Altering The Delay Vectors. The delay vectors associated with each

arc of the DDG are altered using the transformation matrix Mf,d. Again, only the

components of the delay vector corresponding to the two innermost loop dimensions are

altered. The new delay vectors for the transformed DDG can be labelled as d'.

(2) Adding The Transformation Instructions. The transformation

instructions which were discussed in Section m.A.3.a.1 are added to the DDG by

determining the dependences which exist between the new instructions and those original

instructions which use the original i. variable value. Nodes are then added to represent the

35

transformation instructions, and appropriate arcs are attached to incorporate the needed

dependences.

(3) The Resultant DDG. Once transformed in the above manner, the DDG

which represents the innermost loop alone is obtained by eliminating all arcs from the

Transformed DDG for which

d(x) *O, where x is any value l..n-I (Eq. 9)

Because the transformation was designed to make all innermost loop

iterations parallel, the result will be the elimination of all arcs which represent any loop

carried dependences. The resultant DDG will be referred to as the Modified Transformed

DDG.

(4) Example. For an example of the process described above, again

consider the DDG of Figure 12. The two loop delay vectors are modified by multiplying

these vectors by the Mfiw matrix (recall that Mrl.., - [2]). The transformation equation is

then added to the DDG (the transformation equation was labelled as S2 in the example

code). The last step in the DDG transformation was to eliminate all arcs which represent

loop carried dependences across the outer loops. The resultant DDG transformation follows

the steps shown in Figure 16. The latency associated with the dependence between the 52

instruction and the S I instruction is arbitrarily set to one in this case, again for ease of

illustration.

4. Applying The Wavefront Method To Machine Code Loop Bodies

As previously noted, the example used to explain the wavefront method was

simplified for ease of explanation. In reality, the intent of loop pipelining is to combine

machine instructions into a single VLIW machine instruction. As a result, application of the

wavefront method should be approached assuming that the machine instructions are

36

1/(o,-l) p IA- 1, I)

Original Cyclic DDG

I/(-1,- l1p/(-I, 0)

2 DDG with Transformed Loop

S2• Delay Vectors

I/(0,0)

Transformed DDG with
Added Transformation

Instructions S2

1/(0,0)

Sl

Modified Transformed DDG for
Final Innermost Loop

Figure 16: Modification Process of Original DDG

37

identified, and the nodes of the DDG which represents the loop body identify the individual

machine instructions of the loop body.

For example, assume that the machine of concern is a RISC type, load/store

machine. In addition, array variables are accessed in row major manor. Then, the loop

example originally presented as

for in 1..I00 ooior i2l in .2500lop
A(ili 2)- A(il, i2-1)+A(il-l, i2+I)

end loop
end loop

now becomes the loop structure of the form shown in Figure 17. In this case,

statements which rely on the value of the loop control variable are indicated as doing so..

foril in 1..100 loop
fori 2 in LSODloop

Sl(i1): MULTR4,R3,RI calculation of array
$2(i 2): SUB Rs, R2, #1 offset for loading
S3: ADD R6, R4, R5 A(i,j-l)
S4: LD R7, R6(RO) -
S5(il): SUB R8, RI, #1 calculation of array
S6: MULT R9, R3, R8 offset for loading
S7: ADD RIO, R2, #1
S8: ADDRII,R9,RIO A(i-l,j+l)
S9: LDR12,RII(RO)
SIO: ADDR13,R7,RI2
S11(i2): ADD R4, R4, R2 ---- calculation of array
S12: STR13(RO),RI4 4 offset for storing

end loop A(i, j)
end loop

Figure 17: Extended Code For Figure 12 Example

In this example, the registers RO is used as the base register for the array A(ij).

The register R I is used to store the value of the i! variable, while the register R2 is used to

store the value for the i2 variable. The register R3 is used to store the length of each row,

and would have the value of 500. Other registers are assigned as necessary to complete the

calculation.

38

With these instructions, the corresponding DDG is shown in Figure 18. It is

important to note that anti-dependency arcs which are due purely to the naming of registers

are not included in the DDG. The treatment of such dependences is discussed at length in

Section IV.A.

oo)) 11(.
IAl/O.O

S3 /,O0..)
S6

20,0 \2/o~o) i oo

MOP0.) 1/(0.0)

S9Il

2A10.1) 2 20-0)

110.0) 21(0A-)

Figure 18: Cyclkl DDG With Nodes Representing
Machine Code Instructions

In this example, the node labelled S I in Figure 12 is now expanded to identify the

individual RISC type machine instructions which must be utilized to execute the loop body.

The loop carried dependences which were displayed in Figure 12 are still represented by

the dependence arcs between S 12 and 54, and S 12 and S9 in Figure 18. These dependences

again create a cycles in the DDG.

The following sections indicate the result of applying the wavefront

transformation procedure to the extended loop body with machine instructions.

39

a. The Tmusfonnatioa Matrix

The transformation matrix obtained for the extended example is precisely

that obtained previously for the simplified example. That is, the sf is one, and Mf,, 1 1

b. Transormation Of The Loop

The transformation of the loop structures for the machine code example

mirrors that for the simplified example.

(1) Transforming The Loop Structure. The transformation instructions

which calculate the value of i2 is still given by the formula i2 = P I - 2' 2. However, this

equation must be expressed in terms of machine instructions, and can be done so with two

elementary calculations--one multiplication and one subtraction.

The loop bounds calculation is also independent of the exchange of the

machine code instructions with the simplified loop body statement. As a result, if the

instructions for the transformations are labelled S13 and S 14, the transformed loop

becomes:

for i'1 in 3..700 loop

fori'2in max(1, 21'• /)...min([hIi_ 100)loop
S13(i' 2) MULT R16, #2. RI
S14(i'l): SUB R2, RI5, Ri6
SI(i' 2): MULT R4, R3, RI

As previously described, i'2 replaces the variable ii in the loop code so

that the value of i'2 is now stored in register R1, as was ii originally. The value of i2, once

calculated, is placed in the R2 register as before. Additional registers R16 and R15 are

needed for temporary storage in the calculation of i2, and for storing the value of i'1 ,

respectively.

40

e. Transforming The DDG

Transformation of the DDG again follows the previously outlined

procedure. The loop delay vectors of Figure 18 are altered using the transformed matrix,

and instructions S13 and S14 are added to the DDG. The DDG representing only the

innermost loop is isolated by removing from the transformed DDG all arcs which represent

carry loop dependences across the outermost loop.

The the alterations to the DDG as described in Section II.A.3.b are

displayed in Figure 19, which shows the original DDG, the transformed DDG with

transformation instructions S13 and S14 and their dependence connections, and the final

modified DDG for the final innermost loop.

B. APPLYING THE ACYCLIC DDG MODULO SCHEDULING METHOD

Application of the wavefront transformation to the original loop structure marks the

end of the first major step required by the loop pipelining technique presented in this paper.

At the conclusion of this step, the innermost loop of the transformed loop structure is free

from dependence cycles.That is, the modified transformed DDG (the loop structure DDG

representing only the innermost loop) is cycle free. This is exactly the conditions required

to carry out the next major step of the presented loop pipelining procedure: the application

of the acyclic DDG modulo scheduling method.

The procedure for creating the pipelined schedule for the transformed innermost loop

follows precisely the Modulo Scheduling Method described Section Il.A, originally

presented by Rau and Glaeser [Ref. 4], with minor modifications. The Acyclic DDG

Modulo Scheduling method can be used following the wavefront transformation because

the transformation has produced independent innermost loop iterations. The resultant

innermost loop DDG is, therefore, acyclic.

Various approaches and heuristics can be applied to properly fill the Modulo Resource

Reservation Table using an Acyclic DDG Modulo Scheduling Technique. Work oy Hsu

[Ref. 12] can be referred to for discussions of the various algorithms based on the desired

41

2 1(0, 0) S A

S3 /(OO M OM

S6

I/(OO) 1)(O)

MOM 9 IA O) MOM S2 /(o0 S7
I W.0r i(oo

21(0.1) MS(0 - ,T100.0)

0o o).0)

Original Cyclic DDG M S9 IA

2/0 1 I1 20.0) MOM1 /1,

Transformed DDG with Added
i S2 1/0 S7Transformation Instructions

1/0

2/0 S42/0

2 /0 1, i 0

1/0 Modified Transformed DDG for Final Innermost Loop

Figure 19: Modification Process of DDG with Machine Code
Loop Oody

42

result. In reality, the simplicity of the Acyclic DDG Modulo Scheduling Method actually

allows a random placement of the instructions into the Modulo Resource Reservation

Table, in the correct resource slots, of course. However, it might be desirable to create

certain characteristics in the pipelined kernel, for example, minimizing the lifetime of any

register used in the pipelined code.

One scheduling algorithm which is based on the algorithm discussed by Rau and

Glaeser [Ref. 4], but which attempts to minimize the register lifetime of all registers, is

shown in Figure 20..

Calculate the Jill
--fill the reservation table per following
perform a topological sort of the DDG, with priority given to the

nodes with the greatest height weighted by arc latency
while there are nodes not scheduled loop

pick the highest priority node per topological sort
if node has no parent then

node.starttime = 0
else

node. starttime =
maxp,,,,, [parent. starttime + (arc latency) pae.nt # -

(arc loop delay) pa .4 •,o• × !!!ii]

if node is not a branch then

until node is scheduled "oop
node.starttime = (node. starttime) mod (1111)
if proper resouwre is available for node at nodeslottime in table, then

node is scheduled by reserving resource for node at slottime
node.subscript = [k- (node. starutime) div (1111) 1

else
node. starttime = node. starttime + 1

end if
end loop

else (node is branch)
until node is scheduled loop

node.starttime = (node. starttime) mod (////)
if proper resource is available for node at nodeslottime in table

and (node. startlime) mod (li1) = (1111 - 1) , then
node is scheduled by reserving resource for node at slottime
node. subscript = [k - (node. starttime) div (l111)]

else
node.starttime = node.starttime + 1

end if
end loop

end if
end loop

Figure 20: Modulo Resource Reservation Scheduling Algorithm Which
Attempts To Reduce Register Variable Lifetimes

43

As explained by Rau and Glaeser [Ref. 4], this procedure ensures that no more than

one instruction is assigned to any one resource during any time slot. In addition,

dependence relationships are maintained because relative starting time calculations are

based on starting times of predecessor instructions, and consider required delays due to

latencies and loop carried dependences. The calculation of the relative iteration to which an

instruction belongs merely converts the timing relationship of instruction starting times to

relative iterations

The reference made in the algorithm to a branch instruction is required in the case

where the loop control instructions for the innermost loop are included in the pipelined

schedule. This will be discussed in the next chapter.

Figure 21 shows the result of applying the modulo scheduling algorithm to the final

modified transformed DDG of Figure 19. In this case, the III is again calculated to be four

time units. The additional addition and multiplication instructions added to the loop body

have, in general, the potential to effect the calculation of the 1i11, but do not alter the result

in this case. The time of instruction execution is again represented as it was in Figure 10.

Resource Unit

time adder adder multiplier Load/Store
4(k-a)+t0 (S5)k (S 3)k-I (S 13)k

4(k-a)+tO+l (S8)k.I (S 1O)k.2 (S1)k (S 4)kI

4(k-a)+t0+2 (S 14)k (SI 1l)k., (S6)k (S9)k.1
4(k-a)+t0 +3 (S 2)k (S7)k (S 12)k-2

Figure 21: Modulo Resource Reservation Table

C. A REVIEW OF THE PROPOSED LOOP PIPELINING TECHNIQUE

The two tools presented, the wavefront transformation and the acyclic DDG modulo

scheduling procedure, combine to form the basis of the technique developed in this thesis.

44

This combination has not been described in previous works, although it is simple and

efficiently scheduled instructions onto resources with a minimum 1111.

The creation of the Modulo Resource Reservation Table only requires the use of the

acyclic modified transformed DDG. Although the creation of this modified transformed

DDG is made possible by the wavefront transformation, the general results of this

transformation are, in fact, completely known prior to the actual performance of the

transformation. For example, it is known that the transformation is designed to remove all

innermost loop carried dependencies. Knowing this, all arcs in the original DDG which do

not have a zero loop delay vector can be removed from consideration in the modified

transformed DDG. Additionally, the transformation also adds one addition and one

multiplication instruction to the innermost loop code body, to calculate the value of the i.

variable. The specific instructions must use the value of sf calculated in the transformation

phase, however, the nodes can still be added to the modified transformed DDG without

knowing this value. Although not yet discussed, the nodes required for the loop control can

also be added to create a slightly different modified transformed DDG. This alteration in

the procedure was ignored during this chapter to simplify the discussion, but will be

presented in the next chapter. In addition, the transformation logically replaces of the i..

variable with the new index variable i',. In reality, this merely requires the use of the

register originally assigned to i.. to now be used for the value of i'..

As a result, the actual creation of the Modulo Resource Reservation Table can be

performed in parallel, if desired, with the calculations required for the transformation (sf

and loop bounds). A flowchart which illustrates the overall procedure is shown in

Figure 22.

The creation of the Modulo Resource Reservation Table, however, only marks the end

of the first two major steps in the useful application of the technique developed. As

Figure 22 shows, the third and final step is the generation of code from the results of the

first two steps. Discussion of code generation is minimal or non-existent in all references

reviewed concerning previous loop pipelining technique presentations. The required

45

alteration of the code to a final product is, however, of practical importance and will be

discussed in the next chapter.

Determine the mending code
inthevauctionsfr cacua. n DDG by eliminating all arcs

the vlue o i~.which do not have a zero loop
delay vector

Determine the equations for the
transformed striuctr loop
bounds.

Add the loop control code to the
mod, ied transformed DDG. if
desired (discussed in chapter IV).

Figure 2: Proosed Lop Pipeining Tchniqu Prcd relwhr

46emn teII adcet

IV. CODE GENERATION

Having performed the loop transformation and modulo scheduling, the final step of the

presented loop pipelining technique is the code generation. Code generation depends,

naturally, on the hardware support provided by the target machine. The hardware support

that can aid in better performance goes beyond merely the number of resources. This

section will first address the possible hardware capabilities of the target machine that can

be used for supporting the modulo scheduling technique. The special considerations which

must be addressed when generating the code are then reviewed. Lastly, the code generation

procedure is described.

A. THE TARGET MACHINE HARDWARE

The procedure that was developed obviously was targeted for a VLIW type machine.

The type of functional units that are provided by the machine can vary, and no abnormal

limitations are placed on their capabilities. The type of units available determine, as was

seen in Section llJ.B, the outcome of the Modulo Resource Reservation Table. The basic

intent of the research done in this thesis, however, is to improve the overall performance

capability by using VLIW machines. In that respect, additional machine hardware support

designed specifically to support the ,sodulo scheduling technique can only aid in realizing

the fullest potential of the technique. Below is a description of the necessary and desired

target machine hardware support that will be assumed when creating the final loop

structr.

1. Basic Target Machine Requirements

The following assumptions are made concerning the target machines hardware

support:

I The target machine processor is assumed to be RISC type processor, with
multiple functional units capable of simultaneous execution of multiple

47

instrucfions. The VLIW machine instruction word is comprised of a set
of sev•ral instructions to be executed simultaneously, combined to form
the VLIv7 instruction word. Each of the individual instructions making
up a VLIW instruction will be referred to as VLIW sub-instructions, and
can be represented by the instruction set similar to that of the DLX
machine described by Hennessy and Patterson [Ref. 13]. The difference,
of course, is that multiple-independent sub-instructions can be executed
concurrently as part of a very long instruction word.

" A large number of registers are available for data storage, allowing the
issue of register allocation to be ignored and addressed as a separate issue

" The memory sub-system for VLIW machines is a subject in itself. For the
purpose of supporting the technique presented, it is assumed that an upper
level memory sub-system exists, such as a cache, to support a single cycle
access time assumed for load/stores. The issue of cache misses and hits
will be addressed in a later chapter. Multiple Port cache memory is made
available to allow concurrent Load/Store sub-instructions, accessing
different memory locations, to be executed The procedure for scheduling
instructions to avoid data dependency problems will preclude any
instructions attempting to access the same memory location.

2. Additional Special Hardware Support

Additional special hardware support can be made available to better support the

code generation concerns of modulo scheduling. Many of these hardware mechanisms are

described by Rau, Schlansker, and Tirumalai [Ref. 6] as they pertain for use in modulo

scheduling techniques. Although multiple supporting hardware components are described,

the only two that will be assumed is the Rotating Register File (RRF) using the Iteration

Control Pointer (ICP), and the Iteration Control Register (ICR) with support from the Loop

Counter (LC) and Epilog Stage Counter (ESC).

A RRF is a file of multiple registers that can be accessed by a pointer reference to

a single register in the rotating register file. The pointer can be the number identifier of the

register desired. As a result, if a register file A[X] exist with 3 registers, then the registers

can be referenced by referring to A[O], A[l], and A[2] (see Figure 23).

48

Rotatg A[
Register A[l]
File A[X] A12

Figure 23: Simple Three Register Rotating Register File

Referencing can be made relative and variable with respect to some value y by

referring to a register by A[y+constant], for example. The value of (y+constant) is

evaluated in modulo the number of registers in the file to reference the correct register. For

example, using the register file A[X] shown in Figure 23, the register file might be

referenced in a loop as in the following:

fori in 1..10loop
use Ati]

end kop

In this loop, the registers in the register file A[X] will be referenced in a rotating

manner, starting with All), and then A[2], A[0], A[l], AI2J,...A[I].

The reference may also be some other mathematical expression, such as in the

following:

fori in 1..10 loop
u•s A[i+4]

ead bop

In this case, the registers will be accessed in a rotating manner, starting with A[2]

and ending with A[2].

To support the use of the rotating register file in the context desired, an ICP is used

to identify the current iteration of some loop. It is originally set to zero, and a special loop

control instruction will increment the ICP at the end of every iteration. The ICP can then

be used as the variable to reference a register in an register file in some instruction. The

special loop control instruction used to trigger the events will be called "brtop", which has

as its argument the label for the top of the loop. The full use of the "brtop" instruction will

49

be explained in a moment, but with respect to the ICP, the "brtop" instruction increments

the ICP and causes a jump back to the top of the loop. For example, if the start of the loop

is labeled "LOOP_TOP", then the above loop can be represented as follows:

LOOP-TOP,
use A[ICP+4]
brop LOOP_TOP

Automatic incrementation of the ICP then allows the same instruction to

reference the next register in the register file in the next iteration. This hardware support

will become beneficial when dealing with the problem of register usage overlap discussed

following sections.

The ICR is also a rotating register file with the specific purpose of providing for

predicate execution of instructions. The ICR stores boolean values (actually one or zero)

which can be referred to when evaluating the predicate for some instruction in the form

"inst if p" (see Figure 24).

ICR Rotating ICR[0] . registers store
Register File either a one or
with Two a zero
Registers

Instructions Using the ICR instruction INSTI
INSTI: if ICR(O) executed when ICR(0)
INST2: if ICR(l) is true (1), and INST2

is executed when ICR(l)
is true (1).

Figure 24: Simple ICR Rotating Register File

The pointer for the current ICR register is originally set to zero and is incremented

by one at the end of each loop iteration. This incrementation is triggered by the execution

of the "brtop" instruction, just as is the incrementation of the ICP.

50

The current ICR register then changes at the end of each iterations. When selected

as the current register, the value is set to either one or zero depending on the value of the

LC. The LC keeps track of how many iterations are left to be started in the loop. It is

originally set to the number of iterations desired, and is decremented at the end of each

iteration, again by the execution of the "brtop" instruction. In this way, the LC is the

hardware replacement for explicit loop control instructions.

The LC and the ECS counter work with the ICR to maintain special control of

instruction execution. The ECS counter is initially set to one less than the number of

registers in the ICR. As noted earlier, the LC is decremented with the execution of the

"brtop" instruction. This is done prior to the incrementation of the ICR current register

pointer. When LC is greater than zero, the ICR predicate register that becomes current is

set to true (one). When the LC is zero, then the ICR pointer is reset to zero and the ESC

counter activates. Also if the LC is less than or equal to zero, the ICR predicate register that

becomes current is set to false (zero). Initially, the ICR pointer is set to zero and the value

in the ICR(O) register is one. This will allow the execution of partial schedules of the

modulo resource reservation table, which are needed in transitioning into the code as

describe in the following sections. To aid in understanding the process described above,

Figure 25 provides a flow chart depicting the major occurrences.

As previously mentioned, the special loop control instruction used to trigger the

events will be called "brtop LOOPOP". The instruction first decrements ESC only if LC

is less than or equal to zero, decrements the LC, and increments the ICP. The instruction

then determines the action to be taken for the next ICR register. The control then jumps

back to the top of the pipelined loop, labelled with the LOOPTOP, unless both the LC and

the ESC are less than or equal to zero. In this way, the branch is taken unless repetitions of

the code executed was equal to the (original LC + original ECS). Figure 26 illustrates a

simple example of the sequence of events for the used of each of these components.

51

Initial Conditions:

LC set to number of iterations
ECS set to one less than registers

in ICR
lCR cument pointer set to zero andICR(O)-I

SE increments IC

decrements LC
1.C > -0Oinrmnt C

set ICROCR pointe) - I 1

S~~~set (ICR pointer) = 0ES=0

activate FCS increments ICR pointer

set ICRO(ICR poiner) =0 set ICR(ICR pointer) = 0

ECS 0

Figure 25: Iteration Execution Control Flow Chart

52

Rotating A[01 ICR Rotating Register ICR[0]
Register A[F)1 File with 3 Registers ICR[]I
FileA[2 ICR[2

Code Segment
LOOPTOP

INSTI: if ICR(I)
INST2, using A(ICP) if ICR(O)
INST3: if ICR(2)
biop LOOP-TOP

Assume that initially, the LC--4, the ECS=2. The following sequence occurs:

at top of ICR(O) instructions to be
iteration ICR ICR(I) executed this
number ICP LC pointer ECS ICR(2) iteration

ICR(0)--I

1 0 4 0 2 ICR(I)=0 INST2with A(0)
ICR(2)=O

ICR(0)=l
2 1 3 1 2 ICR(I)-- INST2 with A(l)

ICR(2)=0 and INSTI

ICR(0)=I
3 2 2 2 2 ICR(l)-1 INST2with A(2)

ICR(2)=I INSTI, INST3

ICR(0)=l
4 3 1 3 2 ICR(I)=I INST2with A(0)

ICR(2)=I INSTI, INST3

ICR(O)=0
5 4 0 0 2 ICR(I)=- INSTI, INST3

ICR(2)=l
ICR(0)=0

6 5 -1 1 1 ICR(l)=0 INST3
I _ICR(2)= _

Figure 26: Hardware Support Sequence of Events

53

To support the use of the hardware for loop pipelining, additional special

instructions are made available. The initial specification of the register file namings,

numbers, and size is obviously required. This can (and should) be done outside of the loop

structure to minimize the overhead of specifying the requirements. It will be assumed that

the register file requirements specifiic to the loop will be associated with a label (referred to

as the "SETUPLABEL") which uniquely identifies the set up requirements. The

information contained in these specifications is determined from the evaluations which will

be discussed in Section IV.B.2 and Section IV.B.3.

In order to activate the specific requirements, special instructions are provided to

initiate the use of the specifications. One instruction will be called the "SETUP"

instructions. This instruction takes as arguments the value that should be assigned to the

LC, and the value that should be initially assigned to the ESC. This instruction should

obviously be used prior to entering the pipelined kernel schedule. To initiate the use of the

specifications associated with a labelled set up condition, a "INIT" is used, with the

argument being the label of the set up specifications. This instruction will initialize the

required register files set up for the specific used desired. The instruction should also be

executed prior to the commencement of the pipelined kernel schedule. For the example

shown in Figure 26, if the set up requirements were contained in specifications labeled

"example', then the code sequence would be as follows:

SET_-UP 4,2INIT example

INSTI: if ICR(1)
INST2. using A(ICP) if ICR(O)
INST3: if ICR(2)
brtop LOOPTOP

B. ISSUES OF CONCERN FOR CODE GENERATION

Some of the issues which must be considered to properly generate the final code

structure after modulo scheduling are specifically addressed by Rau, Schlansker, and

54

Tirumalai [Ref. 6]. There are basically four issues that are required to be addressed to

generate code after applying the scheduling technique presented in this thesis:

" adding loop control and loop control variable incrementation to the modified
transformed DDG

"* creating the final pipelined kernel schedule to be used as the new innermost
loop code

"* creating the prolog and epilog for the pipelined kernel schedule
"* determining the transitioning areas of the iteration space where the pipelined

kernel schedule cannot be applied
"* determining the required amount of preconditioning of the inner loop before

use the pipelined schedule.

Of these four issues, only the fourth is specific to the overall technique proposed by this

thesis. The other four, however, are necessary to any Modulo Scheduling technique. The

second, third, and fifth items are fully discussed in the previous work of Lam [Ref. 2], and

Rau, Schlansker, and Tirumalai [Ref. 6]. The first item is seldom discussed, but practically

is a concern and should be addressed. In any case, summaries of each of the issues are given

in this section. In each discussion, the first situation considered is that of no special

hardware support as described in Section IV.A.2, followed by the discussion of the

simplifications allowed when the added support is available.

1. Adding Loop Control To The Modified Transformed DDG

In reality, the innermost loop code not only includes the loop body, but also the

loop variable control instructions. Without hardware support, the instructions consist of an

increment, some sort of a comparison, and a branch instruction. It is obviously beneficial

if these instructions can be incorporated into the loop pipelining effort rather than merely

be sequentially executed. This secti6n, therefore, discusses the changes needed to be made

to the modified transformed DDG to incorporate the control instructions into the

scheduling procedure.

55

a Adding Loop Coetbl instructions With Basic Machine Support

With only the basic VLIW machine support, the final modified transformed

DDG for the innermost loop that will be used to generate the pipelined schedule will be

slightly altered from the modified transformed one previously discussed (as shown in

Figure 19 for the example). The alteration is simply that the loop control code for the

innermost index variable is added to-the modified transformed DDG in order to be included

in the pipelined schedule. This control code basically consists of 3 instructions: an

innermost loop variable increment instruction, an innermost loop ending comparison

instruction, and a branch instruction for restarting the innermost loop when necessary

(these instructions will be labeled S15, S16, and S17 in the example). The addition of this

code is required independent the transformation method used or pipelining method used. It

is desirable to include these instructions in the pipelining procedure, and the following

discussion explains how this should occur.

(1) Adding Loop Control Code To The Loop Structure. For the example

being pursued, the three code instructions which occur at the end of the innermost loop

body will be labelled S15, S16, and S17. Additional registers required are R17 and R18,

with R17 holding the value of the ending condition for the innermost loop. We will assume

that the comparison instruction, S 16, used requires the use of the ADDER. Additionally,

the innermost loop label is added, used for the branch instructions branch location.

The resultant loop code is as follows:

for i'1 in 3.700 loop

calculate R I = max(1,['i-2 50 0])

calculate R17 = min([LJ2 100)+1

LOOP2:
S13(i' 2) MULT R16, #2, R1
S14(i'l): SUB R2. R15, R16
S10'2): MULT R4, R3, RI
S2(i2): SUB R5, R2, #1
S3: ADD R6, R4, R5
S4: LD R7, R6(RO)
S5(i' 2): SUB R8,RI,#11
S6: MULT R9, R3, R8

S7: ADD RIO, R2, #1
$8: ADDRI1,R9,RIO
S9: LDR12,RII(RO)
SIO: ADDRI3,R7,RI2
S 11(i 2): ADD R14. R4. R2
S12: ST R13(RO), R14
SlS(i'2): ADD RI, RI, #1
$16(i' 2): SGT RI8, RI.RI7
S17: BNEZ R18, LOOP2

where, again:

" The register RO is used as the base register for the array
A(ij).

"* The register R I is used to store the value of the i' 2 variable.
"* The register R2 is used to store the value for the i2

variable.
" The register R3 is used to store the length of each row, in

this original case, this would have the value of 500. Other
registers are assigned as necessary to complete the
calculation.

" The register RI5 is used to store the value of the i'l
variable.

"* The register R17 is used to store the calculated value for
the stopping condition of the innermost loop

"* LOOP2 is the label used to identify the beginning of the
innermost loop

The starting and stopping values for the innermost loop control

variable are calculated prior to the start of the loop as indicated above, and is not included

as part of the innermost loop code

(2) Adding The Loop Control Code Nodes To The Modified Transformed

DDG. Although inzlusion of the code required for loop control in the loop The control

instructions form a subgraph shown in Figure 27 which must be added to the modified

transformed DDG.

57

Figure 27: Subgrapb For Loop Control Instructions

The subgraph is added to the DDG in a similar manner as were the

transformation instructions. Because S 15 defines a value for the loop control variable, there

is a dependence between this node and any use of the control variable in the next iteration.

The branch instruction causes a control dependence between itself and all nodes in the next

iteration. By ensuring that a dependence arc is included between this branch and all of the

nodes in the modified transformed DDG, no instructions from subsequent iterations will be

executed unless the branch condition determines that additional execution of the loop is

required. In that way, no mending will be required to fix inappropriately executed

instructions from iterations which should not have occurred. The representation of this

dependence can be simplified merely by ensuring a dependence arc exists between the

branch and the topological "top" of the DDG.The resultant DDG for the innermost loop is

shown in Figure 28.

The dependence arcs which extend from the branch instructions

have a delay of "one", signifying that instructions are dependent on the previous iterations

branch. Most of the dependences from the increment instruction, S15, are loop carried

dependences (also having a loop delay of one).

Significant to note is that a simple cycle is introduced by instruction

S 15. The Acyclic DDG Modulo Scheduling technique was not intended to handle cycles.

However, this simple cycle adds the constraint that there must be a latency of I between the

58

10
1 • 1/

InO

I r I/

2• 2/0

1//0l/

Figure~~S 28: Fi2a Innrm S7pD) ihLo Cnrld de
Whe ThreIs asi Mchie HrdareSupor

59

execution of instruction S15 of two different iterations. By the nature of the scheduling

process, any one instruction is only scheduled once in the Modulo Resource Reservation

Table. Because the table must have at least one time slot, the constraint is trivially met, and

will not cause a problem. With the addition of this code, we are otherwise guaranteed that

no other cycle can be created. This is true because the modified transformed DDG is itself

acyclic, and no instruction from this DDG can alter the input values to the control code

instructions--that is, there can be no dependence arc back to the control code nodes to cause

a cycle.

(3) The New Modulo Resource Reservation Table. With the addition of

the loop control code to the modified transformed DDG, the Modulo Resource Reservation

Table is generated as previously discussed. Assuming that there are two adders, one

multiplier, one load/store, and now one branch unit available on the VLIW machine, the

Acyclic DDG Modulo Scheduling technique is performed on the final modified

transformed DDG of Figure 28, ignoring the simple cycle. The result is the Modulo

Resource Reservation Table of Figure 29.

Resource Unit

time adder . adder multiplier Load/Store Branch
5(k-a)+to (S 15)X (S5)k (S 13)k (S4)-. _

5(k-a)+t0 +l (S16)k (SlOX.2 (SIX (S9)__1

5(k-a)+t0 +2 (S 14)k (S I) .V (S6)k (S 12)k.2

5(k-a)+t0+3 ($2)k (S7)k

5(k-a)+t0+4 (S3)k (S8)\ (S 17)k

Figure 29: Final Modulo Resource Reservation Table With Basic
Machine Hardware Support

60

The calculated III1 for generating the reservation table has now

increased to five time units vice fodir, due to the addition of the control instructions of the

resource requirements. The branch instruction, S17, has been placed in the last time slot of

the schedule to control the jumping back to the top of the pipelined kernel.

b. Adding Loop Control Ins!ructions With 5pecial Machine Support

With the special machine support as describe in Section IV.A.2, much of

the loop control for the innermost loop can be handled by the hardware. However, there is

still a need to maintain the value of the index variable for referencing in the code. In

addition, the branch instruction "brtop" will be needed to be scheduled as well. As a result,

added to the modified transformed DDG will be an innermost loop variable increment

instruction and the "brtop" instruction. The existence of the hardware also requires added

instructions of SETUP and INIT. These instructions must be added to the code just prior

to using the pipelined loop. The placement of these instructions, however, will be discussed

in Section IV.C.

(1) Adding Loop Control Code To The Loop Structure. The instructions

S 15 and S 16 are added at the end of the loop. For the example being pursued, the two added

instructions can be considered to occur at the end of the innermost loop body as they were

in the previous case. The instructions will be labelled S 15 and S 16. The additional register

R17 is again added to holds the ending value for the innermost loop variable.

The resultant loop code is as follows:

for i'l in 3..700 loop

calculate R I = max (1,[I"]

calculate R,,d = min ([m1 100)(+I!
L 2j OO+

LOOP TOP.
S1,3(i' 2) MULT R16, #2, RI
S14(i'l): SUB R2. R15, R16
SI(i'2): MULT R4, R3, RI
S2(i 2): SUB R-. R2, # 1
$3: ADD R6. R4. P5

61

S4: LD R7. R6(RO)
S5(i' 2): SUB R8. R 1. #1
$6: MULT R9. R3. R8
S7: ADD RIO. R2. #1
S8: ADDRII.R9,RIO
$9: LDRI2,RII(RO)
SIO: ADDRI3.R7.RI2
SI1(12): ADD R14. R4. R2
S12: ST R 13(RO). R14
S15(i' 2): ADD RI, RI. #1
S 16: BRTOP LOOP-TOP

where, again:

"* The register RO is used as the base register for the array
A(ij).

"* The register R I is used to store the value of the i'2 variable.

"* The register R2 is used to store the value for the i2
variable.

" The register R3 is used to store the length of each row, in
this original case, this would have the value of 500. Other
registers are assigned as necessary to complete the
calculation.

"* The register R 15 is used to store the value of the i'
variable.

"* The register R•,d is used to store the calculated value for
the stopping condition of the innermost loop. This
stopping condition is not explicitly needed for loop
control, but will be used to calculate the number of
innermost loop iterations. An actual register number
(R14) will be assigned to this calculated value in the code
generation process to be discussed later.

"• LOOP_TOP is the label used to identify the beginning of
the innermost loop.

The starting and stopping values for the innermost loop control

variable are calculated prior to the start of the loop as indicated above, and is not included

as part of the innermost loop code.

(2) Adding The Loop Control Code Nodes To The Modified Transformed

DDG. The control instructions in this case are added to the modified transformed DDG as

they were in the case of no hardware support. However, this time the increment node and

62

the branch node are not dependent upon each other. The resultant modified transformed

DDG for the innermost loop is shown in Figure 30.

I2/0

1 /020

When There Is Special Machine Hardware Support

(3) The New Modulo Resource Reservation Table. Re-performing the

Acyclic DDG Modulo Scheduling Procedure on the modified transformed DDG of Figure

30, the result is the Modulo Resource Reservation Table of Figure 31.

63

Resource Unit

time adder adder multiplier Load/Store Branch
5(k-a_+_ _ (S 15) (S 5)k (S 13)k (S4),.I

5(k-a)+t0 +l (S I0)k-2 (SI l .j (Sl)k (S 9),.I

5(k-a)+t0+2 (S 14)k (S6_ _ (S 12)k-2
5(k-a)+to+3 (S2)k (S 7)k

5(k-a)+to+4 (S3)k (S8)k (S1 6)k

Figure 31: Final Modulo Resource Reservation Table With Special
Machine Hardware Support

2. Creating The Final Pipelined Kernel Schedule

Once the Modulo Resource Reservation Table has been generated, the final

pipelined kernel schedule which is used as the new inner loop code can be derived. This

pipelined kernel schedule is basically created directly from the reservation table. The only

complication that may exist occurs when explicit specification of register usage is required,

as with the ongoing example. When this is the case, the overlapping of different iterations

in a software pipelined inner loop may also create a problem with register usage overlap.

The problem can be explained using an example from Lam [Ref. 21. Assume a

loop code fragment that uses the register R I exists such as in the following:

SI: def(R 1)
S2: operation
S3: use(RI)

With three general processors available, the Modulo Resource Reservation Table

which would be produced would be that shown in Figure 32.

64

Processor
time from
beginning
ofloop P1 P2 P3

0 (S 3)k.2 (S 2)k- (Si)k

Figure 32: Modulo Resource Reservation Table

Using the Modulo Resource Reservation Table of Figure 32 to construct the

pipelined loop body would result in an execution timing diagram as shown in Figure 33,

with an IIIl of one time unit and the kernel first being used at time 2. In this figure, the

statement labels have been replaced by the actual instructions to better illustrate the

problem.

iteration number

time 1 2 3 4 5

0 def(R1)

I operation def(R1) . . .

2 use(R 1) operatkio def(R 1) ' possible kernel
3 use(R I) operation def(R 1) for pipelined

loop. with III1
4 use(R 1) operation def(R 1) of one time

unit
5 use(R 1) operation

6 use(R 1)

7
8

Figure 33: Initial Timing Table For Pipelined Iterations

65

Because of the explicit assignment of registers, a register usage anti-dependence

(a dependence that normally requires a variable usage prior to a later variable definition) is

frequently created which is dependent upon the use of registers and not on the actual data.

For the above example, the use of the register RI in one iteration occurs after the

redefinition of R I in the next iteration. This will result in the use of the wrong data value

in R I. To alleviate this problem, 1111 could be extended to two time units, but this reduces

the efficiency of the pipelined schedule created. Better solutions to this problem depend

up-n the support given by the hardware, but in all cases, some register renaming scheme is

followed to avoid rewriting to registers prior to their proper usage.

a. Renaming Registers With Basic Machine Support

A technique which Lam [Ref. 21 labelled Modulo Variable Expansion is

employed to solve the register renaming problem when there is only the basic machine

hardware support. Modulo Variable Expansion requires repetition of the schedule

generated by the Modulo Resource Reservation Table, and explicit renaming of the

registers in the appropriate instructions to ensure there is no loss of information. For the

simple example given above, the result would require the renaming of the R I register in

every other iteration, yielding an the timing diagram shown in Figure 34. The l will

remain one time unit in this case, but the pipelined loop has been unrolled to include two

iterations. The timing diagram of Figure 34 has the unrolled pipelined kernel in Figure 35.

To conduct Modulo Variable Expansion, the usage lifetimes of each

register definition must be evaluated. This determines the number of needed namings (i.e.,

the number of different registers) of the register in order to avoid overwriting a register

before the information it contains can be used.

66

iteration number

time 1 2 3 4 5
0 df(RI)

I operation def(R2) •

2 use(Rl) operanon def(Rl) •- pipelined loop
- kernel still has

3 use(R2) operation def(R2) I1l of I time
4 use(RI) operation def(R1) unit, but loop

us__(_l)_operation__ _ f(__) has been un-
5 use(R2) operation rolled so thatthere are two
6 use(RI) iterations per7

piplined

8

Figure 34: Table For Pipelined Iterations with Modulo Variable
Expansion Applied

Processor
time from
beginning
of loop Pl P2 P3

0 use(R1) operation def(RI)

1 use (R2) operation def(R2)

Figure 35: Pipelined Kernel with Modulo Variable
Expansion Applied

67

The number of renamings is given by the equation:

N[Lifetimer]
Nnamings of Reg, = IfIII,] (Eq. 10)

where Reg, is a register

Each renaming of a register occurs in a different copy of the reservation

table copy. Because differenct registers may need to be renamed a different number of

times, the reservation table schedule must be repeated an appropriate number of times to

accommodate all of the registers. The required number of repetitions of the reservation

table schedule is therefore determined by the equation:

Nschsdsle r#PIjjOj = least common multiple [N~a.mia# f Reg .] for all Registers Reg, used (Eq. 11)

b. Register Renaming With Special Machine Support

Special machine hardware supported solutions revolve around use of the

Rotating Register Files. A rotating register file is created for each of the originally

addressed registers which require renaming. The number of renamings can be determined

as in the above discussiorn, but use of the RRF will eliminate the need to unroll the pipelined

loop and duplicate code.

For the simple example above, a rotating register file would be created for

the RI register, consisting of two registers, R 1 [0] and R I [I]. The resultant timing diagram

is shown in Figure 36 with the pipelined kernel schedule shown in Figure 37. In these

diagrams, the current ICP value modulo 2 is used to determine the appropriate rotating

register file register that is to be referenced. With the ICP starting at 0, the timing table

generated using the hardware support is precisely the schedule with RI being replaced by

R1[0] and R2 being replaced by RI[I].

68

iteration number

time 1 2 3 4 5

0 def(Rl([ICPI)

1 operation def(RI [ICP])

2 use(Rl[ICP]) operation def(R1[ICP]) X represents the

3 use(Rl[ICPJ) operation def(Rl[ICP]) current reference
poriter to the4 use(RI[ICP]) operation def(R I[ICP]) register file R I.
The HII is still

5 use(Rl[ICPI) operation one time unit

6 use(R I [ICP])

7

8

Figure 36: Timing Table for Pipelined Iterationn with Rotating
Register File Support

Processor
time frorn
beginning
of loop P P2 P3

0 use(RI[ICP]) operation def(R[IJCP])

Figure 37: Pipelined Kernel with Rotating Register File
Support

69

c. The Original Example

Returning to the example which produced the Modulo Resource

Reservation Tables of Figure 29 and Figure 31, the pipelined kernel schedule can be created

in either the case of without or with special hardware support.

(1) Creating The Pipeline Kernel Schedule With Basic Hardware Support.

First assume that there is only the basic hardware support to solve the register remaning

problem. The lifetime analysis indicates that registers RI, R4 and R7 have a lifetime of

between five and eleven time units, and all other registers have a lifetime of five time units

or less. Hence, the value of N.,,ii,, is two for RI, R4 and R7, resulting in the value of

N,,d,,aiti., also being two.

For convenience, the renamed registers for R I, R4, and R7 will be

referred to as RI [0] and RI [1] for Rl, R4[0] and R4[1] for R4, and R7[0] and R7[1] for R7.

The resulting pipelined kernel is then given by Figure 38.

As can be seen, the schedule from the reservation table is repeated

twice. Those registers that required more than one name are included with the associative

statement in which the registers are use,,, v, ith appropriate index numbering identifying the

proper renamed register. Registers which require only one name are not indicated.

Important to note, only one control branch instruction is included in this schedule, to ensure

that the kernel is executed at the end of the kernel schedule, and not in the middle. This will

become important for the generation of transition code discussed in the next section.

(2) Creating The Pipeline Kernel Schedule With Special Hardware

Support. Assume that the hardware support of rotating register files is available for use in

solving the register renaming problem. The use of hardware support both eliminates one

instruction that must be scheduled as well as the dependences associated with that node. As

a result, the lifetime analysis indicates that registers RI, R7, and R14 require renaming.

However, with the added support of the RRF and ICP, then explicit repetitions of the

Modulo Resource Reservation Table is unnecessary to create the pipelined kernel schedule.

70

Resource Unit

time adder adder multiplier Load/Store Branch
S S15 S5 S13 S4

uses RI[0]. uses RI[0] uses Ril 0)

defined RIIlI defined R7111

1 S16 SIO S1 59
defined R4[01

uses Ri1l1 use R710! uses RIO0]

2 S14 S6 S12
uses R4[I1

S2 S7

S3 S8

S15 S5 S13 S4
ues RIII1. usesRRillI wesRilll

defined R 1101 defined R7105
6S16 SI0 S1 $9

defined R4[11
uses R 101 use R7T11 uses RIIII

7 S14 SiI 56 S12
uses R41O0

8 S2 S7

9 S3 S8 S17

Figure 38: Final Pipelined Kernel Schedule with Modulo Variable
Expansion and Basic Machine Hardware Support

71

Again let a register file of two registers be established for each of

registers RI, R4, and R7,with the register files can be referred to as Rl[(XI)] for RI,

R7[(X7)] for R7,a nd R14[(X14)] for R14. The variable (XI) refers to the referencing

pointer use to access the registers RI[0) and RI[1]. Variables X7 and X14 perform similar

functions with their respective register files. In any iteration, these variables can be

functions of the current value of ICP. The variables X 1, X7, and X 14 are evaluated modulo

the number of registers in each respective register file (in each case modulo 2) in order to

reference the registers on a rotating basis. The pointer values are initialized to zero at the

beginning of the loop by the "INIT"' instruction and are incremented automatically at the

start of each new kernel execution. The resulting pipelined kernel is then given by Figure

39.

Resource Unit

time adder adder multiplier Load/Store Branch
0 S15 S5 S13 54

ases R I [ICPj.defined RIIICP+I uses RI [ICPI uses R [I-"CPJ defined R7TICP+1l

1 SI0 SII Si S9

use R7[ICP] defined R14[1CP+I] uses RIPCP]

2 S14 S6 S12
use R 14[ICPI

3 S2 S7

4 S3 S8 S17

Figure 39: Final Pipelined Kernel Schedule with Special Hardware
Register Renaming Support

The schedule from the reservation table is mirrored exactly, with

proper pointer references indicating the proper relationship between register definitions

and uses. References to the register file R I [X [] are included with the associated statement

72

in which the registers are used, while registers which require only one name are not

indicated.

3. Creating The Prolog And Epilog For The Pipelined Kernel Schedule

Once the pipelined kernel schedule has been created, the next consideration in

code generation is the creating the code segments which provide the needed transition to

the pipelined loop. These code segments are called the prolog and the epilog, and are

created from partial inner loop schedules (actually, partial Modulo Resource Reservation

Table schedules), and allow the starting and completing of iterations which are only

partially represented at the beginning and end of the pipelined loop body.

The prolog supplies the front end transition into the pipelined loop, and the epilog

provides the transition at the end of the pipelined loop execution. If the instructions in the

Modulo Resource Reservation Table spanned across N,.e different iterations, then there

will be (Nu,•- 1) partial schedules in both the prolog and the epilog. The first partial

schedule of the prolog will be the one which consists only of those instructions that are

"latest" (i.e., those with the highest statement index k+l, k, k-1, etc.) in the Modulo

Resource Reservation Table. The second partial schedule will include these instructions as

well as the instructions that are second "latest", and so on, until all but the "earliest"

instructions are included. These "earliest" instructions are first executed in the pipelined

kernel schedule.

The epilog partial schedules are similarly pattern. The first partial schedule

consists of all instructions except for the "latest" as indicated in the Modulo Resource

Reservation Table, with each subsequent partia. 3chedule eliminating the next latest set of

instructions. The last partial schedule of the epilog includes only the "earliest" reservation

table instructions.

In all partial iterations, the loop control branch instruction is not included in the

scheduling.

73

a. Creating The Prolog And Epilog With Basic Machine Support

Without only the basic machine hardware support, the prolog and epilog

must be determined explicitly and be included as transition code into the pipelined kernel

body. The register renaming scheme used to create the kernel must also be extended into

these regions to ensure that the proper register referencing is maintained.

b. Creating The Prolog And Epilog With Special Machine Support

Special machine hardware support can again be used to aid in the creation

of the prolog and epilog. The explicit determination of the prolog and epilog required with

basic machine support can be avoided by using the Iteration Control Register.

A single instruction group is made up of all of the instructions of the

Modulo Resource Reservation Table which has the same iteration index identifier. One

register in the ICR identifies if the instructions of a group in the kernel should or should not

be executed during a given iteration. Only during the prolog or epilog will any instruction

have a negative predicate and not be executed.

With this special hardware support available, the prolog and epilog are

generated from the nipelined kernel schedule during run time. Initially, the SETUP

instruction is used to set all predicates except the first (po) are false, set LC to the number

of iterations that must be executed, set the current ICR pointer to the first predicate register

(po), set the first predicate register value to true (one), and set the ESC to the value of (N.i,v-

1). Each of the instructions in the kernel schedule is assigned a predicate register based on

their relative iteration index, so that an instruction with iteration index of (k-x) is assigned

the predicate register p,, and is executed "if ICR(x)". The only instruction which in an

exception to this is the brtop which will always have a true predicate, and is therefore

always executed.

As described before, with the execution of the brtop instruction, counters

are adjusted appropriately and the current ICR pointer moves to the next register. If the LC

is greater than zero, the new current predicate is set to true. If the LC is now zero or less,

74

the predicate is set to false, and the ESC counter is decremented. The partial kernel

schedules are executed until the LC an the ESC awe zero.

In this way, the execution sequence progressively adds instructions groups

until the steady state kernel is reached. This performs the same function as a prolog which

was explicitly generated before. The epilog is dynamically created by eliminating

additional instruction groups from successive kernel repetitions until all instruction group

predicates are negative, essentially draining the loop pipeline and completing the execution

of the final iterations.

This "kernel only" execution requires the use of predicates and execution

of the schedule a total of [Nir, ,,,,+ (N, - 1)] vice Ni,,,, repetitions. As explained in

Section IV.A.2, the initialization of the counters is done with special initialization

instruction "SET_UP" with arguments being the value of LC, ESC, and "set-up label". The

instruction "INIT 'set-up label"' can be used to set the current ICR to the first register file

and trigger the counters to take affect. The specifications for the ICR register file can be

made prior to the loop execution at the same time that the specification requirements for the

RRF were established and labeled.

c. The Original Example

Considering again the example with reservation tables of Figure 29 and

Figure 31. The results of this step can be explained for both the case of no additional

hardware support and the case of special hardware support.

(1) Creating The Prolog and Epilog With Basic Machine Support. In the

case of a VLIW machine with basic hardware support, the prolog and epilog are generated

using the Modulo Resource Reservation Table of Figure 29 with the renaming scheme

utilized in Section IV.2.c. In this case NHu,, is three, requiring that the prolog and epilog

both have two partial iterations of the reservation table schedule. The prolog is shown in

Figure 40 and the epilog is shown in Figure 41.

75

Resource Unit

time adder adder multiplier Load/Store Branch
0 S15 S5 S13

aes RHOI0, uses RItj0 uses RI[0

defined Rll]
1 S16 Si

defined R4(01us RI[II uses RI 101

2 S14 S6

3 S2 S7

4 S3 S8

5 S15 $5 S13 S4

usesR1111, usesRIlIl usesRIfll definedR7[01
defined RI(Ol _0] _deinedR_ 0

6 S16 S1 S9
defined R41 I

uses RIt0 uses Rill)

7 S14 Sil S6
uses R4i01

8 S2 S7

9 S3 S8

Figure 40: Prolog For Modulo Resource Reservation Table of Figure
29 and Pipelined Kernel Schedule of Figure 38

76

Resource Unit

time adder adder multiplier Load/Store Branch

o S4

defined R71 11

1S50 $9

use R71O0

2 11 S12
uses R41 11

3

4

5

6 slO
use R71i1

7 S12

8

9

Figure 41: Epilog For Modulo Resource Reservation Table of
Figure 29 and Pipelined Kernel Schedule of
Figure 38

77

(2) Note that the branching instruction is eliminated from both the prolog

and epilog schedules because it is not part of the loop, but merely a transitioning section

prior to the loop.

As can be seen, the first partial iteration of the prolog includes all those

instructions from the Modulo Resource Reservation Table with the latest iteration index.

Subsequent partial iterations sequentially add the instructions with the next latest iteration

index until the first complete schedule can be executed in the pipelined kernel. One

complication that arises due to the Modulo Variable Expansion is the need to ensure that

the correct renamed registers are initialized with the correct value. In the example, me

register R1[0] is the first RI register to be used, so it must hold the starting value of the

variable represented by RI. The same requirement holds true for the register R7.

Likewise, the first partial iteration of the epilog includes all those

instructions from the Modulo Resource Reservation Table except for those with the latest

iteration index. Subsequent partial iterations sequentially eliminate the instructions with the

next latest iteration index until all instructions have been eliminated from the inclusion. In

both the prolog and epilog, the branch instructions are eliminated from the code.

(3) Creating The Prolog and Epilog With Special Hardware Support. With

the special machine support of an Iteration Control Register, the instructions can be divided

into three predicate groups: those with iteration indices of k, (k-I), and (k-2). The

instructions with iteration index of k will have as their predicate the statement "if ICR(O)",

those with iteration index of (k-I) will have as their predicate the statement "if ICR(1)",

and those with iteration index of (k-2) will have as their predicate the statement "if ICR(2)".

For the first execution of the pipelined kernel, the predicate for those

instructions with iteration index of k should be true and all others false, allowing the

execution of the correct instructions. The second execution of the pipelined kernel, should

have the instructions with indices of k or (k- 1) executed. For the rest of the iterations, all

instructions are executed, until the last iteration has started. At this point, LC would be zero,

78

and the ESC engages to help create the epilog. The execution of (Naj,, -1), that is, two,

more kernel schedules execute, the first of which executes only those instructions which

have indices of (k-1) 9r.(k-2), and the last executing only those instructions with index

(k-2).

4. Areas Of The Iteration Space Not Supporting Use Of The Pipelined Loop

The third consideration in code generation is the determination of the sections of

the new iteration space to which the pipelined kernel schedule cannot be applied. In

general, these areas will be labelled the iteration space transition areas. As mentioned

earlier, the existence of these transition areas is the only problem of code generation which

is truly unique to the technique presented in this paper. The determination of these areas is

needed, however, because of the wavefront transformation which was originally applied.

This tranformation skewed the iteration space of the two innermost loops, resulting in an

iteration space with a parallelogram shape (see Figure 42), where the number of iterations

in the inner loop tapers up from one and down to one near the bounds of the outermost loop.

The use of the pipelined kernel schedule, as well as the supporting prolog and epilog, is

obviously possible only if the number of iterations in any transformed innermost loop

accommodates at least the number of iterations required by the prolog and a single

repetition of the pipelined kernel schedule. The tranformation, therefore, creates the need

to consider the transition areas.

a. Iteration Space Transition Areas With Basic Machine Support

With only basic machine hardware support, the pipelined kernel generation

may have required repetitions of the modulo schedule to support explicit register renaming

via modulo variable expansion. In this case, to use the resultant pipelined kernel schedule,

the number of inner loop iterations must meet the requirement:

Ninner >- [Nschedule repetitions + (Nalive - 1)] (Eq. 12)

79

2 2

x x

x x x -'

x -"x 9 x x x..

original iteration space and iteration space after transfor-
target wavefronts mation with skewed wavefront

lines

i#2 --- 0

i2

original iteration space iteration space shape after
rectangular shape transformation

Figure 42: Iteration Space Shape Characteristics, Before and After
Transformation

80

For those second innermost iterations which do not have enough innermost

iterations to meet the above requirement, the associated innermost loops should be

executed without using the pipelined kernel schedule (in the worst case, these sections

could be executed sequentially). Sections of non-pipelined iterations will therefore occur

prior to, as well as following, the use of pipelined schedule. These sections of the iteration

space are the iteration space transition areas

b. Iteration Space Transition Areas With Special Machine Support

With special machine hardware support, schedule repetitions were not

needed to support register renaming, nor is explicit prolog and epilog generation required.

As a result, the number of innermost loop iterations which are required to exist in order to

support the use of the pipelined schedule is that amount which is represented in one

schedule kernel. In this case, the value of Nh,, m,,,, in the above equation becomes

one, hence, the number of inner loop iterations must merely meet the requirement:

Ninner >_ Nalive (Eq. 13)

Again, for those second innermost iterations which do not have enough

innermost iterations to meet the above requirement, the associated innermost loops should

be executed without using the pipelined schedule. As was the case when there is only basic

hardware support, the iteration space transition areas of non-pipelined iterations will

therefore occur prior to, as well as following, the use of pipelined kernel scheduk

c. The Original Example

In the original example, the iteration space transition areas will differ

depending on the machine hardware support.

(1) With Basic Machine Hardware Support. For the case of only basic

machine hardware support, the value of Ns ,,&, ,pa,',. in the example was two and the

value of N1,, was three. As a result , ptp,,uioj+ (Nauv, - 1)] evaluates to four.

81

Therefore, the bounds on i'j for which the inner loop code cannot be executed using the

pipelined schedule are:

for i'l in 3..8 and for i'l in 695..700

Hence, the areas defined by these boundaries become the iteration

space transition areas.

(2) With Hardware Support. With hardware support, the value of

N,,,.& p,,jj,. is essentially one, so that the innermost loop must have three iterations to

use the pipelined kernel schedule. As a result, the bounds on i', for which the inner loop

code cannot be executed using the pipelined schedule are:

for i', in 3..6 and for i'l in 697..700

As before, the areas defined by these boundaries become the iteration

space transition areas.

5. Determination Of The Pipelined Loop Preconditioning

The last issue which must be addressed before presenting the code generation

process is the determination of the amount of preconditioning that the innermost loop

requires in order to use the pipelined kernel schedule. Preconditioning refers to the

execution of non-pipelined iterations within a single execution of the innermost loop in

order to allow the pipelined kernel schedule to execute the rest cf the iterations. The need

for preconditioning exists because the pipelined kernel schedule, when combined with the

prolog iterations, can only execute a specific number of iterations.

To help understand this need, first consider the ideal case when no

preconditioning would be required. This condition exists when it is known at the beginning

of the innermost loop that the number of iterations in the inner loop which must be executed

satisfies the equation:

Ninner =A x Nschedule repetitions + (Nalive - 1) (Eq. 14)

where "A" is some positive integer.

82

From this equation, it can be seen that preconditioning is only required in

the case where no special machine hardware support was available for implementing

the register renaming required. When special hardware support is provided, then

N, ,,,, is essentially one, and the equation can be satisfied if N , ,

However, from the previous section, this will always be the case when using the pipelined

kernel schedule with special hardware support. Consequently, no preconditioning will ever

be needed when using hardware support.

However, with only the basic machine hardware support for register renaming,

this is unlikely that the equation is met in the general case for innermost loops, particularly

because the skewing results in consecutive innermost loops having different numbers of

iterations. Even if the transformed space is rectangular (i.e., no skewing was needed

because the original loop was fully parallel), the number of innermost loop iterations still

may not be such as to meet the above requirement. The solution is to identify the "extra"

iterations of the innermost loop, which, after execution, will allow the remaining iterations

of the innermost loop to satisfy the above equation. These "extra" iterations are executed

without using the pipelined schedule (in a manner similar, perhaps, to the way in which the

non-pipelined code required by Section IV.4), and are considered the preconditioning

iterations for the pipelined loop.

Execution of the preconditioning iterations is then followed by the execution of

the remaining iterations using the pipelined loop schedule. This preconditioning of the

pipelined loop is described By Rau, Schlansker, and Tirumaiai [Ref. 6]. The number of

iterations required to be performed in the preconditioning code is given by the equation:

precondition [Ninner- (Nalive- 1) 1 mod Nschedule repetitions(Eq. 15)

Again note that when register renaming machine hardware support is available,

the value of is one, making Np,o,.,. equal to zero.

83

Because the skewing employed in the technique presented in this paper can result

in differing numbers of iterations for different innermost loop executions, the value of

must be calculated following the start of each second innermost iteration,

and then immediately used to execute the preconditioning code for the subsequent

innermost loop.

If Modulo Variable Expansion is used to rename registers in the pipelined

schedule, then the appropriate registers (those that needed to be renamed) will need to be

initialized as required before the prolog is commenced, to ensure that the correct values are

used at the start of the prolog.

For the example, assuming only basic machined hardware support, the equation

for Np,,,o,,aai is specifically:

Nprecondition = [Ninner - 3] mod 2 = [Ninner- 1] mod 2 (Eq. 16)

C. GENERATING THE FINAL LOOP CODE

Now that the general issues concerning the generation of the final pipelined loop code

structure have been completed, the actual code generation process can be described. As the

previous sections demonstrated, the type of machine hardware support will affect the issues

surrounding the code generation process. It can be concluded from these sections that use

of special hardware support not only simplifies the creation of the pipelined kernel

schedule, the prolog, and the epilog, but it also increases the potential benefit of using the

pipelined kernel schedule to execute the iterations. This is true because it eliminates the

schedule unrolling that might be required for Modulo Variable Expansion. Modulo

Variable Expansion, in general, increases the size of the iteration space transition areas and

the number of preconditioning iterations required to use the pipelined schedule, as

explained in Section IV.B.4 and Section IV.B.5. These sections of code must be executed

in a less efficient manner than the compact pipelined schedule (and in the worst case,

sequentially), and hence reduce performance. The use of the special hardware support will

84

minimize (or eliminate, in the case of preconditioning) these areas of code. The approach

to code generation, therefore, will assume that special machine hardware support is

made available as previously described.

Each of the considerations for code generation provides information which is used to

create the final code structure. All of the information required can be obtained prior to loop

execution, with the exception of the actual number of iteration within the innermost loop.

This number is dependent on the second innermost loop control variable value. In any case,

the information required for code generation has the identical form for any loop being

pipelined. A general procedure can therefore be presented which will use the information

to create the final code product.

1. Modelling The Final Loop Code Structure

In order to better describe and motivate the specific aspects of the code generation

process, a loop code model is presented. The use of the model is intended to help organize

and clarify the different segments of code which are required to be executed in a loop

structure. The loop code structure model presented is, in a sense, a dependence diagram

which identifies coarser-grained components than individual instructions.

a. Modelling The Original Loop Structure Code

To introduce the loop structure code model, the model will be applied to the

original loop structure code. The original code loop was in the form:

for il in l..N1 loop
for i2 in L..N 2 loop

for i,.I in 1..N,-l loop
for iin Ln., loop

(original loop body)
end loop

end loop

end loop
end loop

85

This code segment can be modelled by a code segment dependency

diagram that illustrates the sequence of instructions required for this loop, as shown in

Figure 43. The diagram simplifies the code segment by recursively defining the "subloop

2 -4 n" node as per Figure 44. Figure 44.a and Figure 44.b indicate the different subloop

structures depending on whether or not the subloop is the innermost loop.

In the diagrams, the nodes represent segments of code with a specific

function. Arcs represent data dependencies and flow dependencies, with the data

dependencies shown with solid lines and the flow dependencies shown with dashed lines.

If the flow change was due to a test and branch requirement, the arcs are labelled with a

"BT" or a "BF', indicating a branch when condition is true or a branch when condition is

false, respectively.

C sci 11 bounds

Jump to subloop 2-4 n

BT
test for ending i -.. exit loop

1BF

!!TL3|

BT subl

Figure 43: Original Loop Structure Code Model

86

set i, bounds)

br oh Gm osubloop (x+) • -• n

increment i1 .1 node
S........ BT

a. subloop x -4 n, for test for ending ix
x in 2..(n-1)

BF

increment i1

set i. bounds

branch to the
increment i4 - node jump to inner loop code

.BT

b. subloop x -- n, for
x=n

increment in :

BT -

Figure 44: Recursive Definition for Subloop 2 -- n

87

b. Modelling The Final Loop Structure Code

The final loop structure that must be created by the code generation process

can be represented with a code model as for the original loop structure. As stated

previously, we will assume that the code generation process will be targeting a VLIW

machine with special hardware support available as described in Section IV.A.2.

The diagram which represents the final loop structure code is similar to that

representing the original loop structure, but must incorporate the issued which were

discussed in Section IV.B. In this case, the model is as in Figure 45, with the recursive

definition for the "subloop 2 -4 n" node shown in Figure 46.

The significant change from the original loop model, as expected, occurs

only in Figure 46.b, which represents the subloop for the innermost loop, and contains the

necessary code components which are required to support the use of the pipelined code.

The node "execute Ninner non-pipelined iterations" represents the code segments necessary

to execute the non-pipelined iterations as discussed in Section IV.B.4. This code can be

executed in a variety of manners, but we suggest using a relatively simple and efficient

method represented by Figure 47.

c. Explanation Of The Final Loop Structure Code

To better understand the mode for the final loop structure code presented in

the Figure 45 through Figure 47, as well as provide the basis for the code generation

algorithm, the loop structure model nodes will be described in more detail. For each node

description, we will indicate the RISC assembly code instructions required for

implementing the node and any additional comments. The assembly code instructions will

be used to create the code for the final loop structure. For clarity, variables such as loop

control indices, known constants, etc., will be identified by their normal representation

instead of by explicit values, registers or address location.

An arbitrary choice of registers identifiers are referenced as necessary

support the code explanation. The register numbering will start with Ri. The choice of

88

C set i 1 bounds

jump to subloop 2-n

BT
test for ending i'l *-...................ow EXIT loop

increment i' 1BF

v.

Figure 45: Final Loop Structure Code Model

89

branch to the jup to subloop (x+1) -*n

increment i'x -1 node

"' ".°

a. subloop x -) n, for test for ending i' "

x in 2..(n-1)

increment i'x

Bt - sulop (x+ l3)- n

calculate and set i'n bounds

b. subloop x -4 n, for calculate Ninner
x=n C

Ctest for Ninner ŽNalive

-BT BF
initializ registe nonplene iturapoot

____BT_____________ (see next figure for expansion)]
• pipelined kernel schedule)

p: BF

jump to the

increment i'n-I node

Figure 46: Recursive Definition for Subloop 2 -- n

90

shift register until only important digits)

tes i net igi i azero

lev L log (Nwi, - 1) J: BF .BT

° 2L1o (N" -) J iterations, and include a . shift register and test if next

Cregister shift and test if next digit is zero t digit is a one

"." BF
lev L log (NnV. -- 1) J - 1: BF BT B T

compact 2 L eg (Nw,,,- 1) J - I iterations, and (shift regit is a one t

,include a register shift and test if next digit is zero digit ia
IBF

1 BF BT BT

lev.l:

(compact 2 iterations, and include a register shift • h rirnefe

Land test if next digit is zero . _ digitis .aone

SBT B
le.0 BFBT

compact I iteration, and include a jump to the incjumi t th, ictin

'L•%in'l" instruction at end

Figure 47: Expansion of "execute Ninner non-pipelined iterations"
Node

91

registers, though arbitrary in name, ensure proper data dependences are maintained in the

supporting code. As a result, although the register naming is arbitrary, the reuse of register

names is significant in maintaining the correct references between variable values.

Renaming of the registers used in the supporting code described in this section to order to

match the available register names of a target machine is satisfactory as long as the

mapping ensures the dependences are not violated (a one-to-one mapping, for example, is

satisfactory).

My initial assumption that the target machine has a large number of

available registers was meant to ensure that the minimal register requirements presented in

the technique are supported. Not counting the registers required for loop control variables,

the supporting code requires at most fourteen registers, only two of which need lifetimes

which span across the loop body.

Additionally, the register naming scheme used in the code segments are

done so without considering the register naming used in the original innermost loop code.

As a result, some inconsistencies or register reuse problems may exist between the registers

used in the st --porting code and those used in the loop body. However, this problem exists

only for those register variables calculated prior to the loop body and used after the

execution of the loop body--that is, those registers which have a lifetime which extends

beyond one innermost loop execution. This limits the problem to the registers holding the

loop control variables and to that values of the variables stored in registers R8 and R 10 as

used below.

To alleviate the problem with loop control variables, the procedure for code

generation takes as input the register assignments for the loop control variables which are

used in the loop body of the modified transformed loop body. These register assignments

then replace the control variable indicators in the supporting code described below. In this

way, the supporting code segments and the loop body can be compatible with respect to

loop control variable referencing. To avoid confusion during the explanation of the code

92

segments, register names are not specifically assigned for loop control variables in the

sample code given below. Rather, we will refer to the loop indices in the manner "i' ".

To alleviate any problems between use of the R8 and RIO registers in the

segments described below and a conflicting usage in the loop body, the procedure for

generating the final code will take as input the names of two available registers to be used

instead of R8 and RIO in the code segments discussed below. These register names will

replace R8 and RIO in the final code and the conflict will again be avoided. The register

namres of "R8" and "RIO" will, however, continue to be used below during the discussion.

Constant values which are determined as part of the transformation process

(such as the sf) will be referenced using the constants name. The RISC instructions are

those of the type available in the DLX type machine as explained by Hennessy and

Patterson [Ref. 13], with the added instructions of BRTOP, INT, and SETUP as

described previously for support of the special hardware. Labels which identify specific

code segment will be referred to in quotes.

(1) Node "set i'x bounds" for x = l..(n-l) of Figure 45 and Figure 46.a.

These node represents the code necessary for initializing the bounds for the any loop

variable i'x, including the i'I loop variable. Because we assume that the original loop

structure is at least two dimensional, we are assured that the bounds of these loops are

known prior to the time of execution, and therefore, the values can be considered to be the

constants M', and N'X, where the variable i', ranges from M'X to N'1. For all loops l..(n-l)

the values for these with respect to the original loop control bounds are known. That is:

for x = l..(n-2)

M't=l and N'f=N.

for x = n-i

M'1 = (sf+ 2) and N',= [(sf+ 1) xN,_ +Nj]

93

The code for this node is shown in Figure 48, with the variable E.

referring to the ending value for the variable.

ss CODE:

LDI i'l, #M'I

Figure 48: Explanation of the "set i'x bounds" Nodes

(2) Node "jump to..." of all figures. These node represents the code

necessary for jumping to a new position. The jump locations will be identified by the code

segment labels, so that the code is that of Figure 49.

jump to...IBI CODE:

JUMP "LABEL"

Figure 49: Explanation of the "jump to..." Nodes

(3) Node "test for ending i'l" of Figure 45. The test for the ending

condition of i'l merely require to test whether the present value of the control variable has

been incremented beyond the final value. As a result, Figure 50 identifies the code needed.

In this case "EXIT"' is the label of the label of the code which commences following the

completion of the entire loop structure. R1 is the first register required by the supporting

code.

to iCODE:

SLEI RI. i'1 , #N'

BEZ "EXIT-, RI

Figure 50: Explanation of the "test for ending i'1" Node

94

(4) Node "test for ending i'x" for x = 2..(n-1) of Figure 46.a. As in the

previous node, this node represents test whether the present value of the control variable

has been incremented beyond the final value. As a result, Figure 51 identifies the code

needed. In this case "INC(x-1)" represents the label which is used to branch to the code

which performs the incrementation of the i'x-I control variable. R I is reused as the register

containing the results of the compare operation, not expecting two comparisons to be

performed at the same time.

for e CODE-

SLE RI,i'X,#N'x

BEZ "INC(x- 1)', RI

Figure 51: Explanation of the "test for ending i'x" Nodes

(5) Node "increment i'x" for x = 1..(n-l) of Figure 45 andFigure 46. The

increment of the control variable is simple an incrementation by one, as shown in Figure 52.

U• CODE:

ADDI i'X, i,', #1

Figure 52: Explanation of the "increment i'x" Nodes

(6) Node "calculate and set i', bounds" Figure 46.b. Because of the

skewing process which took place during the loop structure transformation, the loop

bounds of the innermost loop are dependent on the value of the i'n-1 variable. Hence, the

calculation of bounds was discussed in Section III.A.3, with the range of i'n being given

max (1, ['+. i N) ... rmin if,, I , N,_). The floor and ceiling calculations can be

performed by using an integer divide instructions, and, for the ceiling, an additional

95

comparison. The result is two independent calculations which determine the setting of the

starting and ending i'n values. The code which will perform this calculation is shown in

Figure 53. Statement numbers are identified for each of the code segments. Labels are

included ("B", "C", and "D" as needed for branihes to other parts of the code.

(calculate and set i', bounds3

computation for starting '•, computaion for N'n-

CODE: CODE:

SI: SUBI R2, i',. #N, V1': SUBI RI, i',-j,#1

S2: IDIVI R3, R2, #(sf+1) $2': IDIVI R12,RI ,#(sf+l)

$3: LDI i'n, #1 S3Y: LDI R14. #Nn.!I

S4: ADDI R4, R2,#1 S4': B: SLEI R13. R12,#(sf+l)

$5: IDIVI R5, R4, #(sf+1) S5': BEZ "D", R13

S6: SLT R6, R5, R3 S6': LDI R14,RI2

S7: BEZ: "B", R6

S8: ADDI R3, R3, #1

S9: B: SLEI R7,R3,#(sf+1)

S10: BNEZ "C", R7

S1I: LDT i'n, R3

Figure 53: Explanation for "calculate and set i'P boundIs" Node

Dependency graphs for these code segments are shown in Figure 54. The

latencies for the instructions are assumed to be consistent with those of the example. The

immediate loads (LDI), however, are only expected to take one time unit. When the specific

capabilities of the target machine are identified, the graphs can be used to compact the code

from both of the above independent computations to best utilize the resources for that node

96

Dependency Graph for Starting i', Computation computation for N',

S1 3 SI, 3'

1
S2 S4

ST1 1
2 2

S5

2 S4'

S6 I

1
S5,

I S7 I

F BT P BF BT

TO "D'S8 1 S9

1

.,Oý BF ak BT

&--ý 'TO "C"

Figure 54: Dependency Graphs for P. Bound Calculation

97

(7) Node "calculate Ninner" of Figure 45.b. Calculating the number of

innermost loop iteration is merely a matter of using the difference in the bound values.

Hence, the instruction are per Figure 55.

calZulateNin) CODE:

SUB R8, MWn, i'n

ADDI R8, R8, #1

Figure 55: Explanation of the "calculate Ninner" Node

(8) Node "test forNinner > Native" of Figure 45.b. This node represents the

check to verify that the pipelined schedule can be used for the innermost loop. Hence, the

instruction are per Figure 56. The label in the branch instruction directs the control to the

segment of code executing non-pipelined iterations.

test for Ninner ý Nalive •. CODE:

SLTI R9, R8, #Nlive

BEZ "LABEL", R9

Figure 56: Explanation of the "test for Ninner 2! Native" Node

(9) Node "initialize hardware register file" of Figure 45.b. This node

represents initialization instructions that must be executed as discussed in Section IV.B.2

and Section IV.B.3. The initialization consists of the setting of the LC and ESC counter

values, and the triggering of the hardware register file support. The instructions for this

node are per Figure 57. The label in the branch instruction refers to the label given the

specifications for the register files, not a jump location.

98

Sinitialize hardware register filet)= - CODE:

SET R8, #(N1u•- 1). "SETUP.._LABEL"

MNIT "SETUjP..LABEL"

Figure 57: Explanation of the "test for Ninner > Nalive" Node

(10) Node "pipelined kernel schedule" of Figure 45.b. This node

represents the code created as the pipelined kernel schedule. This is created via the separate

process as discussed in Section III.B and Section IV.B. It is assumed that this code is

created as part of a separate process to be used in the code generation, and will be used

when putting together the final code structure, but is not discussed again here.

(11) Node "execute Ninner non-pipelined iterations" of Figure 45.b. This

node represents the code used to execute the non-pipelined segment of code, and is further

broken down in the nodes discussed for the Figure 47. The procedure represented in Figure

47 sequentially checks the important bits of the value of Ninner (contained in register R8)

to verify if a certain power of two iterations needs to be executed. The procedure then

executes a compact version of the correct number of non-pipelined iterations, and then

checks the next bit for possible additional iterations.

(12) Node "shift register until only important digits" of Figure 47. This

node represents the initial step of executing the non-pipelined code by shifting all of the bits

of register R8 (containing the value of Ni,,,) to the left by an amount of equal to [flogN•1j,,"1

(log is base two). This will leave only those bits which may have information about the

value of Ni,,_ and can be calculated as a constant prior to the procedure. we assume that

32 bit words are used, so the shift must move 32- [logNouv,"j bits. The resultant code is

shown in Figure 58.

99

shift register only important digits CODE:

SLU R8, #(32 - rlogN 1j,,])

Figure 58: Explanation of the "shift register until only important
digits" Node

(13) Node "test if next digit is a zero" of Figure 47. This node represents

the code for testing the left most digit of R8, which contains the information about how

many iterations must be executed not using the pipelined schedule. The value in the register

is merely checked to see if it is positive or negative. If negative, the digits is one, and it is

known that at least 2 L° lgIN--I)J iterations must be executed, and a branch is taken to that

code (the label in the branch refers to that code segment). The resultant code is shown in

Figure 59.

test if next digit is zeroo CODE:

SLTI RIO, R8, #0

BEZ "LABEL". RIO

Figure 59: Explanation of the "test if next digit is a zero" Node

(14) Node "shift value and test if next digit is a one" of Figure 47. This

node represents code executed if the previous digit of R8 that was tested was a zero. The

bits in the register R8 are now shifted left one digit and the value is again tested for

negative. This time, if negative, it is known that at least 2Lost(.'--')J-' additional

iterations must be executed, and a branch is taken to that code (identified by the branch

reference label). The resultant code is shown in Figure 60.

100

shift register and test f next digit is zero, CODE:

SLLI R8, #1

SLTI RIO, R8, #0

BNEZ "LABEL", RIO

Figure 60: Explanation of the "shift register and test if next digit is a
one" Nodes

(15) Node "compact 2x iterations, and include a register shift and test if

next digit is zero" where x ranges from 2.. Llog (N,-, - 1)J, of Figure 47. This node

represents code executing a number of non-pipelined iterations. The iterations used must

be those represented by the transformed loop, without the normal loop control variable

increment, compare and branch. That is, they must include the transformation equations

added to the loop. The additional piece of code for the register shift and value check is

described in Figure 61. The label for the branch identifies the piece of code for the which

is executed if the resultant value in R8 is positive, sending the control back to a testing code

segment as explained in Section IV.C.I.c.14. The code shown is not compacted, but

compaction of the code would result in greater efficiency.

compact 2x Bob- CODE:

(appropriate iterations)

SLLI R8, #1

SLTI RIO, R8, #0

BEZ "LABEL", RIO

Figure 61: Explanation of the "compact 2r iterations, and include a
register shift and test if next digit is zero" Nodes

if',

(16) Node "compact 1 iteration, and include a jump to the "inc i',-1 "

instruction" of Figure 47. This node represents code executing one non-pipelined

iterations, compacted and includes a jump back to the "inc i'n.1" instruction. The

instructions for the node are shown in Figure 62. The "LABEL" of the jump indicates the

label for the "inc i'nq" instruction.

compact I - CODE:

(one iterations)

JUMP "LABEL"

Figure 62: Explanation of the "compact 1 iterations, and include a
jump to the "inc i'l.-" Node

2. The Final Code Generation Process

Using the model of the final loop code structure and incorporating the issues of

code generation brought up in Section IV.B, a code generation process has been created for

manufacturing the final loop code structure which uses the loop pipelining technique

presented in this thesis.

The sections below list the required initial conditions an the process for code

generation.

a. Initial Conditions For Code Generation Process

The initial ,. ,rlitions, assumptions, and support for performing the code

generation are as follows:

"• It is assumed that the word size is 32 bits in the calculations for
register shifting amounts

"* The dimension of the original loop structure is known,
designated as "n"

• The values of the original loop structure control variable bounds
are known, and are contained in the array i4[x] where x ranges
from l..n (array being r T rl ..N[nj).

102

* To allow flexibility to the desired reference syntax to the index
variables, the correct labels for the indices will be the values
assigned to the array I[x], with x ranging from l..n, so that the
reference symbol for i'l will be the value contained in the
element I[1].

"* A label which specifies the requirements for the set up for the
register files is identified and will be used to pass into the
procedure for referencing when the requirements are to take
effect.

" Two registers that are free to be used without interfering with
the pipelined code are identified to replace the R8 and RIO
registers in the supporting code. The register identifiers are
passed in as values to the parameters Y and Z, with default
values of R8 and R 10 respectively.

" a function is made available to compact the computation for the
inner loop bounds. The function will be referred to as
COMPACTCOMPUTATIONS, and uses the graphs as
specified in Figure 54 and the resources specified to generate
compacted code. The function takes as arguments the register
labels contained in I[n-1] and I[n], as well as the values of N[n],
and sf. It returns the compacted code segment for insertion into
the final code.

"* a function is made available to compact a specific number of
iterations. The function is called MULTIPLE_COMPACTION
and takes as input arguments the final loop DDG for a single
iteration as in Figure 30, the number of iterations that need to be
included in the compaction, and the branch destination label
following a true result of the testing of the R8 register value.
The function should eliminate the branches the individual
iterations, connect the individual iterations via the loop variable
increment instructions. The compaction should also include the
necessary register shift on R8 and test for next action, ending
with the branch to the correct code segment location. Register
renaming for the sequential segments of code is also necessary
to allow some overlap of register usage between iterations.
Returned is that block of compacted code which can then be
inserted into the generated code.

* a function is made available to compact a single iteration. The
function is called SINGLE_COMPACTION and takes as input
arguments the transformed modified dependency graph (as in
Figure 19) for a single iteration and the code segment label to be
jumped to after the code block completed. The function should

103

eliminate the branches the individual iteration, compact the
iteration, and insert the necessary jump to the outer loop control
as the last instruction of the code block generated.

b. The Final Code Generation Process

The final code generation process given below includes in its description

the application of the wavefront transformation, as well as the application of the modulo

scheduling procedure. In this way, the code generation process incorporates the used of the

loop pipelining technique presented in this thesis as the preliminary steps required to create

the pipelined kernel schedule, provide needed values of sf and N.i&, for use in the coding

generation algorithm, and provide the modified transformed DDG for use with the iteration

compaction procedures.

Application of the code generation algorithm is the last step in the code

generation process, and is used to write (to some destination) the revised RISC assembly

type code which has been modified to include the appropriate code segments needed to

support the transformation and pipelined schedule. Because the output is expected to be

used for a VLIW machine, those sub-instructions which can be executed in the same VLIW

instruction should be written on the same line, or use some other method of indicating

assignment to specific VLIW instruction?. The code generation algorithm is given in

pseudo code format. The procedure "write" specifies the sub-instructions that needs to be

written to the current VLIW instruction, and assigns it to the correct available resource. If

dependencies do not prohibit instructions from being included in the same VLIW

instruction, then consecutive "write" commands are issued. Sub-instructions groups which

are dependent are separated by a "new._ine" command, to explicitly indicate that

dependencies require that the instruction must belong to the next VLIW instruction. If the

argument for "write" procedure is in double quotes, then the included text should be written

verbatim. If the argument is not in quotes, then the text identifies a variable whose value

should be written. The ampersand symbol ("&") is used for concatenation of objects. For

104

example, if the write statement is: write("R3, R4, #" & X) where X=3, then the written

output should be ADDI R3, R4, #3.

The command "writelabel" is used to indicate a code segment label

assignment for the subsequent code, and is merely written as the identifier, not as code.

(1) The Code Generation Process. The code generation process is

summarized as follows:

" Apply the Wavefront Transformation Procedure to create
the modified transformed DDG, with loop variable
incrementation instructions added

"• Apply The Acyclic DDG Modulo Scheduling Technique

"• Create The Pipelined Kernel Schedule
"* Apply the GENERATECODE algorithm as shown is

section (2) below.

(2) The Code Generation Algorithm. The code generation algorithm is

named GENERATECODE and is given as follows:

algorithm GENERATECODE (input: n. sf, Naive array N[X], array IIX], target
machine resources, set-up label
for hardware specification for
register files, register identifier to be
used as R8 with default as R8 (ref-
erence as variable Y), register
identifier to be used as RIO with
default as RIO (reference as var-
iable Z);

output: final code)
begin

--set first control variable bounds
if n>2 then

write("LDI" & I[l] & ", #1")
write("JUMP LOOP2") --note: this instruction can be combined with the

--above instruction if resources allow
new line
write_label("INCI:")
write("ADDI" & I[I] & "t" & I[I] & ", #1")
new_line
write.Jabel('TESTI :")
write("SLEI Ri," & I[1] & ",#" & N[I])
new-line
writeC(BEZ EXIT, RI")
newline

else --n=2 so that bounds must be adjusted
START:= sf+ 2
END:= (sf +1)*N[1]+N[n]
newline
write("LDrl & I[] & ", #" & START)
write("JUMP LOOP2)

105

newjline
writejabel(INCl:')
writeC'ADDI" & I[I] & "," & 1111 & ", #1")
new-line
writejabel("TESTI :")
writeC'SLEI RI," & I[I] & ", #" & END)
new-fine
writeC'BEZ EXIT, Ri")
new-line

end if

--set rest of loop control structure for outer n-2 iterations
for X in 2..(n-2) loop --only will execute if n>=4

writejabelCLOOP" & X & ":")
write("LDf"& I[X] & ", #1")
writeC'JUMP LOOP" & (X+ 1))
new-line
writejabel("INC" & X & ":")
writeC'ADDI" & I[X] & "," & I[X] & ", #1")
newjline
writelabel"TESTr & X & ":")
write("SLEI RI," & l[X] & ", #" & N[X])
new-line
write("BEZ INC" & (X-1) & ", RI")
new_line

if n>2 then -control for loop second innermost loop not yet done
START:= sf+ 2
END := (sf +1)*N[I]+N[n]
writeJabel("LOOP" & (n-1) &":")
writeC'LDr" & I[n-lJ & ", #" & START)
write("JUMP LOOP" & n)
new line
writejabelC"INC" & (n-1) & ":")
write('ADDl" & l[n-l] & "," & I[n-l1 & ", #1")
new-line
writejabel("TESr & (n-i) & ":")
writeC'SLEI RI," & I[n-i] & ",#" & END)
new_line
write("BEZ INC" & (n-2) & ",R 1")
newline

end if

--code of innermost loop
writejabel("LOOP" & n & ":")
--compact the boundary calculation code with called procedure
CODESEGMENT = COMPACT_CODE(boundary code graphs, available

resources)
write(CODE_ SEGMENT)
new_line
writejabel('D")
--determine the number of inner loop iterations
write("SUB" & Y"," & R14 & "," & I[n])
new_line
write("ADDI" & Y & "," & Y & ", #1")
newjine
--determine if thepipefined kernel can be used
writeC'SGEl R9, & Y & , #" & Na)
newjline
write("BEZ TRANS, R9")
newjine

106

--initialize the hardware register files and counters
writeC(SET" & Y & ", #" & (NUve-I) & "," & SETJUPLABEL)
newjline
write("CNrr'" SET-UP.LAEL)
--insert the pipelined kernel schedule
write_label("LOOPQOP?.")
write(PIPELINED KERNEL_SCHEDULE)
new-line
write("JUMP INC" & (n-0))
new_line

--execute the non-pipelined code segments
--calculated needed values
FIRST SHIFT:= 32 - CEILING[log(N ive)]
MAXLEVEL := FLOOR[log(N•,j- 1)]

--shift the register Y until important bits
write label"TRANS:")
write('SLLI - & Y ", #" & FIRSTSHIFT)
newline
--test the next bit
write("SLTI" & Z &", " & Y & ", #0")
new line
write('BEZ SHIFT' & MAXLEVEL & "," & Z)
new_line

--compacted iterations
for X in I..MAXLEVEL reverse loop

writejabel("LEV" & X & ":")
write(MULTIPLECOMPACTION(dependency graph, 2x,

"SHIFT" & (X-1)))
newline
end loop
writejabel("LEV" & 0 & ":")
write(SINGLE..COMPACTION(dependency graph, "INC" & (n-I)))
new-line

--shift and tests
for X in I..MAX_.LEVEL reverse loop

writelabel("SHIFT" & X & ":")
writeC'SLLI" & Y ", #1")
newjine
--test the next bit
writeC'SLTI" & Z & Y ", #0")
new line
writeC'BNEZ LEV" & (X-1) & "," & Z)
newline

end loop
writejabel("SH[Fr:.")
writ•e'JUMP INC" & (n-1))
newline
writejabel("EXrTP")

(3) An Example Of Resultant Code Produced. As an example of the

expected output code from the GENERATE_CODE algorithm, assume that n=5, sf=2,

N&,,=3, with all N[x]= 100 and all I[x] = ix. Additionally, assume that both R8 and R10 are

107

used in the loop body, but R24 and R25 are free, so Y := R24 and Z := R25. Assume also

that there are two fully capable processors, and the INIT and SET commands for initializing

the register files are capable of being executed on any unit. Then resultant output from the

above algorithm appears as follows, with code generated from compaction or modulo

scheduling procedures bolded and italicized, and each text line indicating the VLIW sub-

instructions that can be executed:

LDI i1 #1 JUMP LOOP2
INCI:

ADDI i, il, #1
TESTI:

SLEI RI, i1, #100
BEZ EXIT, RI

LOOP2:
LDI i2, #I JUMP LOOP3

INC2:
ADDI i2, i2, #I

TEST2:
SLEI RI, i2, #100
BEZ INCI, R1

LOOP3:
LDI 63, #1 JUMP LOOP4

INC3:
ADDI i3, i3, #1

TEST3:
SLEI RI, i3, #100
BEZ INC2, RI

LOOP4:
LDI 4, #4 JUMP LOOP5

INC4:
ADDI 14, 14, #1

TEST4:
SLEI RI, 14, #400
BEZ INC3, RI

LOOP5:
CODESEGMENT FROM COMPACT COMPUTATIONS

D:
SUB R24, R14, i5
ADDI R24, R24, #I
SGEI R9, R24, #3
BEZ TRANS, R9
SET R24, #2, SETUPLABEL)
INIT SET_UP_LABEL

LOOPTOP:
PIPELUNED_KERNEL SCHEDULE
JUMP INC4

TRANS:
SLLI R24, #30
SLTI R25, R24, #0
BEZ SHIFTI, R25

LEVI:
MULTIPLECOMPACTION(dependency graph, 2, SHIFTO)

LEVO:
SINGLECOMPACTION(dependency graph, INC4)

SHIFT1:

108

SLLI R24, #1
SLTI R25, R24, #0
BEZ LEVO, R25

SHIFTO:
JUMP INC4

EXIT:

3. An Example Application Of The Code Generation Process

The example which has been used throughout this thesis is used once again to

complete the explanation of the code generation process. For the example, n=2, sf=l,

N .ji,= 3 , and N[x]= 1100, 500). To be consistent with the original code presented in Section

IV.B.I., the index variables axe passed in as I[X] = (R15, RI[O]), where RI[0] is the first

element of the register file RI[X] created for the renaming of the RI variable. In this way,

the RI[0] register is used for all code outside of the pipelined loop, therefore being

automatically initiated to the correct value when the pipelined kernel starts.

Assume that the information about the register file requirements were established

under the label SETTINGS, where the requirements for the renamed registers and the ICR

are created.

Lastly, the register R8 and R10 are used in the loop body, hence R20 and R21 will

be passed in as free registers to be used in place of the variables Y and Z.

We will assume again that the INIT and SET instructions can be performed by any

functional unit available.

a. Compacting Non-Pipelined Iterations

Before presenting the final loop code structure for the example, the

compacted non-pipelined iterations which would result from the presumed to exist

functions COMPACT_COMPUTATIONS, MULTIPLECOMPACTION, and

SINGLECOMPACTION must be determined. These functions can be based on any

sequential code compaction process, such as those discussed by Colwell, Nix, O'Donnel,

Papworth and Rodman [Ref. 14]. For the purposes of the example, we have generated the

resultant code segments which might have resulted from a compaction process.

109

(1) For COMPACTCOMPUTATIONS. For the compaction of the

boundary computation of the innermost loop boundaries, Figure 63 shows one compaction

schedule which is adequate.

Resource Unit

time label adder adder multiplier Load/Store Branch

I S1 S $ S3
2 S4 S2 S3'
3 $5
4 S2'
5 S6

6 S4' S7
7 B: S8
8 S9
9 S10
10 Sli
11 C: $5'

12 S6'

Figure 63: Example Code Compaction for Innermost Loop Bounds
Computation Segment

(2) For SINGLECOMPACTION. The result of this procedure is a single

piece of compacted code. Using the final modified transformed DDG from Figure 19, an

adequate compacted segment of code is given in Figure 64, with the JUMP to INCl labelled

code segment included.

110

Resource Unit

time label adder adder multiplier Load/Store Branch

1 S5 S13

2 S15 S1

3 S14 56
4 S2 57
5 S3 S8

6 Sll S4
7 S9
8

9 S1O

10 S12 Jump INCI

Figure 64: Compacted Single Iteration

(3) For MULTIPLE_COMPACTON. The result of this procedure is a

single piece of compacted code for multiple iterations. The pieces of code generated are

those for groups of iterations from 2.. Llog (N-,1 ,- - 1) J (log in base two). However, the value

or [log (Nu,,, - 1) J is two. Hence, only one compacted segments for multiple iterations will

be necessary, containing two iterations. This compacted piece of code is shown in Figure

65.

The different iterations are indicated by subscript of "1" or "2". The

additional instructions for the identifying the next code segment are included as the SLLI,

SLTI, and BEZ instructions. The R20 and R21 registers are substituted for the R8 and RIO

as designated in the procedure input. Not covered or shown is the need of some register

renaming of the compacted code as appropriate to ensure no interference of register reusage

between the iterations themselves.

111

Resource Unit

time label adder adder multiplier Load/Store Branch

1 (S15)I (S5)1 (S13) _

2 (S5) 2 (S14), (S13)2

3 (S14)2 (S2), (Si),

4 (S7)1 (S2)2 (S6)_

5 (S7)2 (S3), (Sl)
6 (S8), SLLI R20, #1 (S6) 2 (S4) _

7 (S3)2 SLI R21, R20, (S9) _

S (SID), (SiI) _ (S4),
9 (S15)2 (Sll)2 (S9)2

10 (SI1) 2

(S12) _

(SI 2)2 rEZ SHIFTM, R21

Figure 65: Compacted Code for Two Iterations

112

b. Creating The Pipelined Kernel Schedule

The pipelined kernel schedule which will be generated for the final code

structure is that same schedule shown in Figure 3 1.

c. The Final Loop Code Structure

The final loop code structure produce from the process is given in the

schedule shown in Figure 66. The larger sections of code that are produced through

compaction or pipelining have been left out and merely referenced to help in clarity of

illustration.

113

Resource Unit

time label adder adder multiplier Load/Store Branch
- LDI R15, #3 JUMP LOOP2

2 INCI: ADDI R15,R15, #1

3 TESTI: SLEI R1, R15, #700
4 BEZ EXIT, RI

5 LOOP2:

INSERT COMPACTED COMPUTATION
CODE SCHEDULE OF FIGURE 63

16

17 D: SUB R20, R14, RI5
I R ADDI R20, R20, #1
19 SGEI R9. R20, #2

20 BEZ TRANS, R9

21 SET R20, #1, SETrINGS I I _ I
22iT SETTiNGS

23 LOOPTOP:

INSERT PIPELINED KERNEL SCHEDULE
OF FIGURE 39

27
28 JUMP INCI

29 TRANS: SLLI R20, #31
3i0 SLTI R21. R20, #0

31_ _EZ SHIFTI, R21

32 .LEVI: INSERT COMPACTED TWO ITERATIONS

CODE SCHEDULE OF FIGURE 64

45 LEV0:4 INSERT COMPACTED SINGLE ITERATIONS

* CODE SCHEDULE OF FIGURE 65
54
55 SHIFTI: SLLI R20, #31
56 SLTI R21, R20. #0

BNEZ LEVO, R21

58 SHIFT0: JUMP INCI
59 Exrr

Figure 66: Final Restructured Code Loop For Example

114

V. EVALUATION AND ANALYSIS

Having presented the proposed loop pipelining technique, there is an obvious need to

evaluate the effectiveness of the technique as well as analyze the complexity of the code

generation procedure for creating the final product. This chapter attempts to do both. An

evaluation of the performance gained by the technique will be discussed first, followed by

an analysis of the procedurc for code generation given in the last chapter,

A. EVALUATION OF TECHNIQUE PERFORMANCE

The ideal solution to the loop pipelining problem for perfectly nested loops would be

a solution which does not require the addition of modifying instructions, uses the 1111 which

is equal to the lower bound III based only on resources available (that is, it is not

constrained by a greater lower bound from cyclic dependences), and does not require

iteration transitioning areas, prologs, epilogs or any preconditioning iterations. In this way,

the maximum utilization of the resources is obtained with no additional overhead.

The use of special hardware allows the elimination of precondition code, as noted

before. The execution of prologs and epilogs, however, cannot be arbitrarily eliminated,

because they are the result of overlapping iterations and are non-essential only in that

unlikely case when the value for Natie in a pipelined schedule is one. The existence of the

prolog and epilog will in all cases reduce the utilization of the resources below that of the

ideal case (because only partial pipelined schedules are being executed). As a result, the

ideal case cannot generally be met, but it provides an upper bound on performance

obtainable by loop pipelinIng. It is therefore useful as a guide in evaluating the

effectiveness of a technique.

As first mentioned, the II which is used in modulo scheduling is a measure of the

utilization of resources and the iteration throughput of the program. The lower the IIII, the

greater throughput and performance. As a result, the upper bound on performance is

115

directly related to the lower bound on the IIII. If the HE is derived only from resource

requirements, the upper bound on performance increases (i.e., it is scalable) with the

addition of resources just as the 1111 is scalable with the addition of resources. The upper

bound on performance has the potential to increase with each resource addition, until

enough resources are provided to specifically assigned one to each instruction. At this

point, the lower bound 11E1 based on resources will have the value of one, and the addition

of more resources will not result in increased benefit.

The scalable nature of performance with the addition of resource is made possible only

if the 1111 can, in fact, be lowered with the addition of more resources. Because the loop

pipelining technique proposed in this thesis uses an Acyclic DDG Modulo Scheduling

method, the calculation of the IHII in the technique is dependent only the available

resources, just as in the ideal case. As a result, the performance benefit of the proposed

technique is also scalable with the number of resources.

The previously proposed Modulo Scheduling techniques which could be applied to

perfectly-nested loops approach the problem with a direct application of Modulo

Scheauling to Cyclic DDG's (such as the techniques of Aiken and Nicolau [Ref. 5], Lam

[Ref. 2], Rau, Schlansker, and Tirumalai[Ref. 6], and Zaky [Ref. 7]). Although they avoid

the addition of transformation instructions and having to overcome the implications of a

skewed iteration space, the resultant I11E is restricted not only by the resources and

instruction types, but also by the length of the dependence cycles. Consequently, the HIII is

prevented from being reduced below the limit required by the most limiting cyclic

dependence, no matter what the resource availability. Use of a cyclic DDG modulo

scheduling technique, therefore, eliminates the scalable performance benefit that additional

resources should provide.

Although the loop pipelining technique presented in this thesis requires the addition of

two instructions at the beginning of the loop body to support the wavefront transformation

(as per Section III.A.3 and Section llI.A.4), these instructions do not limit the performance

obtainable. In the worst case, these instructions can be absorbed with no loss in

116

performance by the addition of resources. In the best case, time which otherwise would

have left resources idle can be used to execute these instructions. The real difference

between the performance achievable with the pipelining method presented and the ideal

case is the overhead required to compute the bounds on the innermost loop control variable

and execute non-pipelined iterations.

However, we believe that in most cases the scalable nature of the performance provided

by the technique presented creates an advantage over previous cyclic DDG modulo

scheduling methods which exceeds the performance detriment that the overhead creates.

To better understand this advantage, the example is again used to demonstrate this point.

1. The Ideal Solution For The Example

Once again, consider the example introduced in Figure 17, with the innermost

loop body comprised of the original twelve instructions, and assuming two necessary

instructions in each innermost iteration for loop control (as was needed when special

hardware control was provided), for a total of fourteen instruction in the innermost loop

code (eight Add/Sub, two multiply, three load/store, and one branch). With two adders, one

multiplier, a branch unit, and a load/store unit, the upper bound the performance for loop

pipelining, based purely on resource requirements, 4.o,, Bound = [' i" i' =

For the ideal case, the code structure can be modelled in a similar fashion as was

used in Section IV.C, with a final schedule given as in Figure 67. The registers R 1 and R2

hold the value of the control variables for il and i2, respectfully, to be consistent with the

instructions in Figure 17. R15 is an available register for use in the comparison at time

three.

Although in reality a prolog and epilog are essential, we assume that they will

not exist in the ideal case in order to achieve an maximum performance estimate for this

the example.

As will be seen, by adding resources, the time units required for the IIM will

decrease, and lower the overall time required for the execution of the loop.

117

Resource Unit

time label adder adder multiplier Load/Store Branch
1 LDR1,#1 JUMP LOOP2

2 INCI: ADDI RI, RI, #1

3 TESTI: SLEI R15,.RI,#100

4 BEZ EXIT, R15

5 LDI R2, #1

6 LOOP 2: SET 500, #0, SETTINGS

7 INIT SETTINGS

8 LOOPJDP:

• PIPELINED SCHEDULE WITH 1111 OF
* FOUR AND BRANCING BACK TO LOOPTOP

11

12 :MI UPINCI

EXIT:

Figure 67: Ideal Schedule For Example Loop

118

Hence, the performance upper bound for this resource configuration establishes

a minimum of 200,698 (1+ {99 [(500x4)+7] + (500x4+4)) time units to execute all

50,000 inner loop iterations, yielding a lower bound on the average of 4.01 time units per

iteration.

2. A Cyclic DDG Modulo Scheduling Method

If a cyclic DGG modulo scheduling technique was applied directly to the

innermost loop, no additional innermost loop instructions would need to be added to the

original DDG because no transformation would be required. Assuming again that special

hardware support would be available, two instructions for incrementation of the

incrementation of the innermost control variable would produce a total of fourteen

instructions which would be pipelined as the innermost loop. The III based on resources

specified would still be calculated to be four time units, but the 1111 required due to the

cyclic dependences would be five time units. This is due to the S4 to S10 to 512 cyclic

dependence which requires five time units to complete between iterations (descriptions of

such calculations can be reviewed in work by Zaky [Ref. 7]). As a result, the minimal II

which must be considered is five time units. Cyclic modulo scheduling techniques as

presented by Lam [Ref. 2] and Rau, Schlansker, and Tirumalai [Ref. 6] would require an

iterative process to attempt to schedule the DDG into a modulo resource reservation table

with five time units (in the case of Lam's technique [Ref. 2], the technique simplifies

application for non-fully connected DDG's so that an UILL of five time units would even be

impossible for the example). Consideration for epilog and prolog execution and register

renaming are also required.

The example in Figure 17 provides a very good situation for cyclic DDG Modulo

Scheduling with the resources as specified, a schedule can actually be generated in which

Nalive equal to two, requiring only one iteration to be executed in the prolog (meaning the

prolog and epilog are also limited to five time units). Renaming of one register is required,

but with hardware support assumed, this does not affect the result. Once again, for cyclic

119

DDG modulo scheduling the code structure can be modelled in a similar fashion as was

used in Section IV.C, with a final schedule given as in Figure 68.

Resource Unit

time label adder adder multiplier Load/Store Branch
1 LDI RI, #1 JUMP LOOP2

2 INCI: ADDI RI, RI, #1

3 TESTI: SLEI R15,#Rl, #100

4 BEZ EXIT, R15

5 LDI R2, #1

6 LtooP 2: SET 500, #1, SETrINGS

7 INIT SETTINGS

8 LOOPTOP:

* PI'PELINED SCHEDULE WITH 1111 OF
"* FIVE AND BRANCING BACK TO LOOPjOP

12

13 : JUMP INCI

EXIT__

Figure 68: Cyclic DDG Modulo Scheduling Final Code For
Example

Hence, the performance upper bound establishes a minimum of 250,599

(l+ {99[(500x5) +71 + (500x5+4)}) time units to execute all 50,000 inner loop

iterations, yielding an average of 5.01 time units per iteration.

Because the 1111 is limited by the cyclic dependences, adding resources will not

alter the pipelined kernel size. As a result, the average time units per iteration cannot be

lowered.

3. The Proposed Acyclic DDG Modulo Scheduling Method

By modifying the loop structure to allow the application of an acyclic DDG

modulo scheduling method, the technique presented in this paper attempts to eliminate the

120

effect of cyclic dependences and thereby remove any limit on the lower bound of IIII which

the cyclic dependences would cause. The overhead required to implement the

transformation are the two transformation instructions added to the innermost loop body,

the loop bound calculations, and the execution of non-pipelined iterations. The

transformation instructions added to the innermost loop body must be included in the

schedule creation process, and may cause the lower bound to the I11 to increase, which can

be countered by an increase in resources.The added loop bound calculations and the

execution of the non-pipelined iterations become less significant as the number of iterations

using the pipelined kernel increases.

Additional consideration for execution of a prolog and epilog are required as

they are for a cyclic DDG modulo scheduling. The most significant differences in the

resultant code of this technique and the others are the twofold: one, loop bound calculations

are required to determine starting and stopping condition for the innermost loop bounds,

and two, non-pipelined sections of code exist at the boundaries of the second innermost

loop.

In the general case, the size of the code block needed to calculate the innermost

loop bounds and the compacted non-pipelined blocks of code is very much machine

dependent In addition, the number of pieces of compacted iterations relies on the original

loop bounds and the number of alive iterations in the final pipelined loop schedule. In the

case of the example, the final loop code was shown in Figure 66.

For the example, the total number of time units required for execution is

272,314. This yields an average of 5.45 time units per iteration. A number higher than that

resulting from a cyclic DDG modulo scheduling technique!

The additional time required for execution using the presented acyclic DDG

modulo scheduling method as compared to the cyclic DDG modulo scheduling method is

due to the additional code segments as discussed. However, the major benefit of using

the technique is still claimed to be the scalable performance benefit obtained from

using an acyclic DDG modulo scheduling method. To illustrate this benefit, the

121

execution time calculations were performed with other resource availability conditions.

The table in Figure 69 clearly illustrates the difference in performance of the techniques as

more resources were made available.

ailable 2 adders 3 adders 5 adders 9 adders
rsrces I muliplier 1 multiplier 2 multipliers 3 multipliers

sche1 n 1 branch I branch 1 branch 1 branch
method 1 load/store 1 load/store 2 load/store 3 load/stores

Cyclic DDG 5.01 5.01 5.01 5.01
odulo Scheduling

Suggested Acyclic
DDG Modulo 5.45 3.42 2.42 1.43
Scheduling

Performance 4.01 3.01 2.01 1.01

Figure 69: Average Time Units/Iteration For Various Configurations

The table displays the average number of time units per iteration as the number

of resources is increased, using both a cyclic modulo scheduling technique and the

technique presented in this thesis. The ideal solution provides the values which are the

bound on best performance, being the lower bound on the average time per iteration.

For constructing the table, the scheduling procedure presented in the thesis was

conducted for each of the resource availabilities shown. In all resource combinations tried,

the compacted loop bound computation code required twelve time units. When the

resources available were changed to three adders, one multiplier, one load/store unit, and

one branch unit, Nalive became four, requiring compacted code segments for two iterations

and one iteration. Compacted schedules were derived which consisted of twelve time units

and ten time units, respectively, for these code segments.

When the resources available were again changed to five adders, two multipliers,

two load/store units, and one branch unit, Nalive became five, requiring compacted code

122

segments for four iterations, two iterations, and one iteration. Compacted schedules were

derived which consisted of twelve time units, ten time units, and nine time units,

respectively, for these code segments.

When the resources available were finally increased nine adders, three

multipliers, three load/store units, and one branch unit, Nalive became nine, requiring

compacted code segments for eight iterations, four iterations, two iterations, and one

iteration. Compacted schedules were derived which consisted of fifteen time units, twelve

time units, ten time units, and nine time units, respectively, for these code segments.

4. Comparison Of Techniques

As stated previously, the addition of the resources tends to reduce the lower

bound on the II due to the resources constraints, and thereby increase in the bound on the

performance. This is illustrated by the last row in Figure 69, which shows that when

resources are added, the bound on the average iteration time units sequentially decreases

with the bound on the IIII due to resources from four, to three, to two, to one time units.

However, if the 1II is also constrained by cyclic dependences, as when using the

cyclic DDG modulo scheduling methods for scheduling, the II1 cannot be reduced below

the limit imposed by the dependences no matter how many resources are made available.

In the example, the original innermost loop code required a 1II due to dependence

constraints of five time units. As more resources were made available, the 1111 due to the

dependence constraints remained at five time units. As a result, there was no effect on the

cyclic DDG modulo scheduling performance, and the average time per iteration of the loop

structure remained at 5.01 time units.

On the other hand, the loop pipelining method suggested in this paper is clearly

affected by the availability of resources. For the example, 0 1 diag resources resulted in the

decrease of the 1111 from frve time units to one time unit. Because the 1111 directly affects

the performance, the performance is also scalable with additional resources. This is the

greatest advantage of using a method that utilizes acyclic DDG modulo scheduling. As

123

can be seen in Figure 69, the average iteration time decreased from 5.45 time units to 1.43

time units as more resources made available.

This demonstrates the significance of using an acyclic DDG modulo scheduling

technique vice a cyclic DDG modulo scheduling technique. Even with the additional

overhead required for supporting the loop transformation to allow ".he acyclic DDG

modulo scheduling, the performance of the proposed technique can exceed that of

previously proposed cyclic DDG modulo scheduling techniques due to the scalable

characteristic.

It is recognized that the example only provides an illustration of the point being

made, and is not a proof. The actual performance of the technique presented is very

much case dependent. The performance of the technique is limited by the overhead

require to compute the innermost loop bounds, to complete partial kernel execution in the

epilog, and by the execution of non-pipelined iterations. While the computation of the

innermost loop bounds may is fairly static, the value of Nalive influences the other two

factors. As a result, the performance benefit of using the loop pipelining method proposed

vice a cyclic DDG method may need to be determined on a case by cases basis. As a

guideline, however, it is logical to believe that whichever method yields the lowest II1, that

method should be used.

This guideline seems even more reasonable when executing a large number of

iterations. As the number of iterations of the innermost loop which are to be executed

increases, the number of iterations executed by the pipelined loop section of code is also

expected to increase. Consequently, the execution time of the entire structure becomes

more and more dominated by the execution time of the pipelined iterations, and the average

execution time per iteration approaches the 11 for the pipelining method used.

For the example, tables describing the average time units per iteration when the

original upper bounds on the loop variables (N1 and N2) are altered are shown in Figure 70.

Figure 70.a is the same table shown in Figure 69. Figure 70.b and Figure 70.c

show the results when the loop variable upper bounds were changed from the original

124

example. In both cases, there is a drop in the average time per iteration when using the loop

pipelining method presented from the original loop variable boundaries. This supports the

expectation that the larger the number of iterations, the greater the percentage of iterations

that use the pipelined kernel schedule and, hence, the closer the overall performance will

approach the bound on performance.

It is important to note to that the performance gained from increasing the upper

bound N1 (as in Figure 70.b) is greater than that gained by increasing the upper bound N2

(as in Figure 70.c). This too is expected, because increasing the value of N1 for the example

results in a "wider" transformed iteration space. That is, the transformation causes N1 to be

the new upper bound on the innermost loop control variable, and, consequently, increasing

the value of N1 results in a greater number of iterations to be executed within the innermost

loop with the pipelined kernel schedule. Although increasing the value of N2 add to the

total number of iterations, it does not affect the "width" of the transformed iteration space,

but rather the "length" (i.e., it adds to the number of innermost loop sequences executed).

Although this results in a larger percentage of iteration being performed with the pipelined

kernel, the additional overhead is required for executing each added innermost loop, which

mitigates the performance gained.

5. Additional Improvements To Performance

As stated before, the performance of the technique is limited by the overhead

require to compute the innermost loop bounds, to complete partial kernel execution in the

epilog, and by the execution of non-pipelined iterations. Any improvement to the technique

relies on elimination of unnecessary overhead in these areas.

125

S2 a3 adders s9avalab uliulrtjipilier g •uluttlIiers 3 muhnmfiers
scheduli7•

lý&jouC DD G 5.01 5.01 5.01 5.01
ul cycdlicng

Scedu 0lin 5.45 3.42 2.42 1.43

Bound On

Performance 4.01 3.01 2.01 1.01

a. Average Time Units/Iteration With Original Loop Bounds of NI=100 and N2=SOO

"available 2 adders 3 adders 5 adders 9 adders
resources 1 multiplier 1 multiplier 2 multipliers 3 multil1iers

schedulina 1 brancb 1 brancb 1 brancb 1 brancb
method I load/store I load/store 2 load/store 3 load/stores

Cyclic DDG 5.01 5.01 5.01 5.01
ulo Scheduling

Suggeted Acyclic
DI Modulo 5.25 3.28 2.27 1.12
Scheduling

Bound On
Performance 4.01 3.01 2.01 1.01

b. Average Time Units/Iteration With Loop Bounds of NI=200 and N2=500

available 2 adders 3 adders, adders 9 adders
resources I multiplier 1 multiplier 2 multiliers 3 multiVliers

scheduline 1 branh I branch I branc IbranchI
metliod I loads/store I store 2 loastotore 3 load/stores

l Sod cheduling 5.01 5.01 5.01 5.01

Sugresed Acyclicu MG Modulo 5.36 3.37 2.36 1.37
Scheduling
Bound On

Performance 4.01 3.01 2.01 1.01

c. Average Time Units/Iteration With Loop Bounds of N1=100 and N2=1000

Figure 70: Average Time Units/Iteration With Various Loop Bound
Values

126

Use of an efficient compaction routine is one way to ensure that the compacted

code takes the minimum amount of time. Additional evaluation of the final code product

may also be performed to identify where additional execution time can be saved.

The value of Nalive directly influences the length of the prolog/epilog as well as

the number of non-pipelined iterations that must be performed. The reduction of Native

when creating the pipelined schedule is also a method which can be used to help eliminate

overhead. This was mentioned in Section II.B when discussing the scheduling algorithm

to be used in creating the Modulo Resource Reservation Table.

B. ANALYSIS OF THE CODE GENERATION PROCEDURE

Analysis of the code generation procedure actually requires consideration of all the

steps in the process for creating a new code loop from the original zode loop. The steps that

must be considered are the original transformation to create the final DDG, the modulo

scheduling process, the code compaction procedures used in the code generation procedure,

and the code generation procedure itself. Each of these is addressed below.

1. Complexity Of The Transformation

The transformation requires the determination of the value of the sf and the

modification of the DDG to support the scheduling process.

To determine the sf, a depth first search can be done through the original DDG,

with an evaluation done at each edge for use in the sf calculation. Assuming the Original

DDG has V vertices and E edges, Tarjan [Ref. 15] describes how the determination can be

done with complexity of order O(V+E).

The modification to the DDG requires the addition of as total of four nodes for

the transformation and for the inclusion of the loop control instruction. For each of these

four nodes, all other nodes in the DDG should be checked for dependence and a dependence

arc created if need be. This operation has complexity of O(V). As a result, the overall

complexity of creating the final DDG is O(V+E).

127

2. Complexity Of The Modulo Scheduling Process

The modulo scheduling process consists of creation of the modulo resource

reservation table and the renaming of the registers as required.

a. Creating The Modulo Resource Reservation Table

To analyze the procedure for creating the modulo resource reservation

table, the algorithm outlined in Section IIU.B can be used.

The initial calculation of the 1Ill requires an input for each node. If a depth

first search is ag i done to visit each node, the complexity of this calculation could be

O(V+E).

According to Tarjan [Ref. 15], the search to determine the height of each

node and the topological sort of the nodes to determine scheduling order can also be done

in O(V+E).

In general, the procedure for scheduling instructions with potentially

different resource delays into a modulo resource reservation table is a bin packing

problem, which is an NP-Complete problem. However, our original assumption, and that

assumption on which the algorithm presented in Section II.B is based, is that all resource

delays are one time unit. This assumption reduces the complexity to that of the algorithm

to a polynomial level. The main body of the procedure consists of a loop which is

performed once for each node in the DDG. Within this loop a single node is picked (from

the top of the topologically sorted list). All parents of this node are checked to determine

earliest starting time. This really requires checking each edge coming into the node from

parents, there is a upper bound on these edges of O(E). Also within this loop the node is

scheduled in the table, which at most requires the consideration of lIII different time slots.

However, an upper bound limit can be established on the IM by the number of nodes. As a

result, the overall complexity of the main body is O(V*(E + V)).

The overall complexity of the creation of the reservation table is therefore

O(V2+VE).

128

b. Register Renaming Procedure

For register renaming, each instruction which defines a register value is

considered and compared to all other instructions in which this definition is used. The

lifetime of a register definition is determined based on the relative positions and iteration

index (in the reservation table) of the instruction which defines the register and the

instructions which used it. At most, each instruction could be dependent upon all other, and

the lifetime calculated by determining all of these dependences. Consequently, the resultant

lifetime determination for each register definition could be O(V2).

c. Overall Complexity

The overall complexity of pipelined kernel creation is a combination of the

above complexities, which is O(V2+VE).

3. Complexity Of The Code Compaction Procedures

The code compaction procedures are used internal to the code generation

procedure. Compaction is performed on both the loop bound calculation code segments and

the non-pipelined iteration code segments. As with the creation of the modulo resource

reservation table, a code compaction process aimed at creating the shortest code segment

is again a bin packing problem, and therefore NP-Complete. However, simple scheduling

heuristics can be applied, such as scheduling a selected node at the earliest time possible,

which reduces the complexity to a polynomial level. The compaction procedures are

analyzed assuming such heuristics are applied.

a. Compaction Of The Loop Bound Calculations

The loop bound calculations requires the use of known DDG's with known

numbers of nodes and edges. The nodes can be scheduled following a topological sort of

the graph and each node can be selected and scheduled at the earliest time possible. Because

all of the elements are known, the procedure can be of constant order.

129

b. Compaction Of The Non-Pipelined Iterations

The number of non-pipelined iterations which can be compacted together

at any one time is at most Native. Assuming that the nodes are scheduled in a manner to

minimize Native, the upper bound on Nauive is linearly related to the number of instructions

in the DDG. Hence, the number of nodes which have to be scheduled is on the order of V2 .

To compact the iterations, a topological sort can be made of the final DDG. Assuming that

the head vertices are known, the sort visits each edge once to create the sorted list (there are

order O(VE) edges). However, a depth first search can still be conducted to label the

heights initially. The result is that the sort would take O(V2+VE) steps. The actual

scheduling only takes 0(V2) steps, so the overall procedure would take O(V2+VE).

4. Complexity Of The Code Generation Procedure

The code generation procedure is relatively simple. One loop requires steps to be

conducted for each of (n-3) loops, where n is the dimension of the original loop structure.

This loop provide a complexity of 0(n). Compaction of the loop bound calculations is

included, but as noted above, this is of O(constant) = O(1).

The compaction of the non-pipelined iterations is done within a subloop which

is executed at most log(Nalive) times. As a result, the order of this subloop is

0(log(V)*(V 2+VE)).

One additional loop is executed on order of O(log(V)) as well.

The overall complexity of the code generation procedure is therefore

O(log(V)*(V 2+VE)+ n)

5. Overall Complexity

The overall complexity of the technique takes into account all of inputs from the

components. The result is the complexity of Ooog(V)*(V 2+VE)+ n).

130

VI. AN ISSUE OF DATA LOCALITY

To this point, the possible negative effects of the loop pipelining technique have been

limited to the additional overhead that the technique may require. This, however, ignores

the extremely important and realistic concern of memory access time.

To ensure high performance, a fast memory is essential to minimize the amount of

delay that memory access instructions provide. It is possible that a single level memory

may be used, in which case, memory is accessed at the same speed for every memory

reference. Because the design of a fast cache for a VLIW machine is difficult, this is the

approach taken by many VLIW machine designers. However, as with any other machine,

the large main memory systems are relatively slow to any faster, smaller memory sub-

systems which can be incorporated in the design. It will be assumed, therefore, that the

VLIW machine on which the technique will be performed has a upper level memory

subsystem, like a cache, for faster access to reused memory data.

A. DATA LOCALITY

By adding a smaller, faster memory subsystem, designers are presuming that the

principle of locality will hold in the target programs. This is generally true for programs

which execute in their normal sequence, following the programmer's thought processes of

sequential access to data arrays. In particular, loop structures tend to use the loop control

variables to step through data structures in a sequential manner. As a result, different

references to any one element tend to take place in localized time periods (temporal

locality), and data elements stored in one small area of memory tend to be accessed in a

localized time period (spatial locality). This then allows the reuse of data which has already

been transferred to the transferred to the cache, saving the long delays for main memory

data transfer by benefitting from the faster cache. In general, the better the locality in the

referencing sequence, the more time saved in memory access.

131

However, as part of the pipelining technique, the original iteration space was skewed

and permuted. While the original execution sequence was along the direction of the orginal

control variables, the final execution sequence is along a transformed set of control

variables--that is, along the direction of the wavefront The difference can be seen from the

diagram shown in Figure 71, which shows the direction of execution of the wavefront as

compared to the original loop control variables.

i2

S X X X X X X X

X X X X X X X

Figure 71: Wavefront Direction of Execution

The intent of the transformation was to eliminate data dependencies from the

innermost loop iterations by ensuring that there are no data dependence along the innermost

loop between consecutive iterations. Because data dependences are a subset of data reuses,

at least some data reuses are eliminated from the innermost loop of the final loop structure.

Consequently, executing the transformed loop structure along the innermost dimension

does not benefit from the data locality from these data dependences that were present in the

original loop structure

To illustrate the situation, consider Figure 72. This figure shows the original data

dependence vectors of the iteration space originally presented in Figure 2 (Figure 72.a is

the same as Figure 13 for the original example). One of the original dependences was

132

between consecutive innermost iterations. After the transformation, the dependence is

moved out of the innermost iterations to the outermost iterations.

i.2 so

SxxI; XI x X x

x x x x x

x x x x x

a. Original Dependence Vectors

i2'

xi i',

x x x

b. Dependence Vectors in Transformed
Iteration Space

Figure 72: Dependence Vector Alteration From Original To
Transformed Iteration Space

If the cache size is smaller than the "row size" of the new iteration space, then it is

probable that the data needed for an iteration from these dependences has been overwritten

133

in the cache. For example, assume that the cache size was 64 words and each data element

is one word long. In the original iteration space, a data value produced in a previous

iteration is used by the current iteration, and should still be in the cache. However, in the

transformed space, data produced in the previous second innermost iteration (i.e., previous

row of the iteration space) will be used by the current iteration. Consequently, if more than

64 innermost loop iterations are being executed (i.e., if the row length is greater than 64

iterations), then the same data needed was produced at least 64 iterations in the past, and

may have been overwritten during the wait. The chances of overwriting go up with the

smaller cache dimension, obviously.

It is possible, therefore, that in an effort to eliminate data dependences between

successive iterations of the innermost loop, the introduction of skewing and loop

interchange is detrimental to the normal data locality of the loop structure. The actual

effect, however, is very case dependent, relying on the value of loop bounds, array sizes,

cache sizes, etc.

B. INVESITGATING THE DATA LOCALITY PROBLEM

In order to compare the effects of the pipelining technique loop transformation on

reference locality, a program was written to create a reference trace of loop structure or a

transformation from a loop structure. The trace generated from this program can be fed into

the cache simulating tool DINEROIII1, which computes statistics about cache misses and

memory bus activity with various cache organizations and policies.

To investigate the effects of the loop transformation, reference traces were obtained for

the original example loop structure from Figure 17, modified only in that the upper bound

of the innermost and outermost loop variables were both set at 200 vice 100 and 500. The

transformed loop generated will be the same as that generated in Section IV.C. The traces

were performed assuming data size of one word each.

1. DINEROIM is a race-driven cache simulating program that uses as input a sequence of memory
references and outputs expected cache performance statistics. DINEROIM is authored by Mark D.
Hill, Computer Science Deparunent, University of Wisconsin, Madison, WI.

134

Because the testing was done to investigate the locality of data only, instruction fetches

were not included in the reference listing. In all testing, the simulated cache was assumed

to be a direct mapped cache, with a demand fetch policy, a write-back write policy, no sub-

block access, and a write-allocate write policy. These choices were made somewhat

arbitrarily, with the intent only to simplify the observations and maintain consistency

Actual DinerolIf statistical results of the testing is shown in the Appendix. The results

depict a screen capture of the computer output of the statistics table that DINEROIII

produces.

The initial evaluation was performed with a cache size of 128 words, with cache block

size of one word. The most significant results are felt to be the percentage of references

which resulted in misses and the total memory bus traffic. The results from this initial cache

set-up shown in the table of Figure 73.

'I, Blck Size
SOne Word Four Words

Spercentage of

Sequential 67% 17% n miss rate

Loop Execution 120200 bus traffic in

Pipelined Loop 66% 48% words
Execution 119623 355464

Figure 73: Miss Percentage and Total Bus Traffic with Each Loop
Structure and With Cache Block Size of One or Four
Words and Cache Size of 128 Words

The table compares the total data miss rate and bus traffic for both the original and the

transformed loop structures. Each loop structure was also analyzed using a one word cache

block and a four word cache block.

When the block size is one word, the percentage of misses and the total bus traffic for

the original loop and the transformed loop are very close to being the same. This indicates

that transformation of the loop structurL .id not adversely affect the temporal locality of the

135

structure. However, when the block size was increased to four words, there was a dramatic

difference between the two loop structures.

With the cache block size of four words, the miss rate of the original loop references

dropped by a factor of about four from when the block size was one word. This was an

expected result of the spatial locality that the original loop structure provided, given the

sequential access of array elements along the innermost dimension.

As previously noted, the loop transformation performed to support loop pipelining the

innermost loop eliminated the data dependences along the innermost dimension of the

transformed structure, thereby eliminating of the spatial locality along this dimension. It

was, therefore, expected as well that the greater block size would cause only a slight drop

in miss rate from the one word block case. Additionally, because spatial locality is reduced,

the total bus traffic would have to be much higher to support the data swapping of the four

word blocks. This was supported by the data obtained.

Certainly, the specific results would change based on individual cases for cache

configuration and loop code. To ensure that the results were not merely coincidental, the

same analysis was performed with cache sizes of 512 words, 4k words, and 64 words.

Figure 74 through Figure 76 show the results of the those tests.

-- Block Size
SOne Word Four Words

Sequential 34% 8%
Loop Execution 80599 121208

Pipelined Loop 50% 25%
Execution 100392 220440

Figure 74: Miss Percentage and Total Bus Traffic with Each
Loop Structure and With Cache Block Size of One
or Four Words and Cache Size of 512 Words

136

-ý Block Si"
SOne Word Four Words

34% 8%
Sequential 80599 81008Loop Execution

Pipelined Loop 34% 9%
Execution 80599 81008

Figure 75: Miss Percentage and Total Bus Traffic with Each Loop
Structure and With Cache Block Size of One or Four
Words and Cache Size of 4k Words

SOne W ord Four W ords

Sequential 34% 8%
Loop Execution 80599 81008

Pipelined Loop 34% 9%
Execution 80599 81804

Figure 76: Miss Percentage and Total Bus Traffic with Each Loop
Structure and With Cache Block Size of One or Four
Words and Cache Size of 64k Words

137

When the cache size is small compared to the number of array elements (in the 128

word and 512 word cache), there is a significant difference in miss rate and bus traffic

between the pipelined and non-pipelined loop structures when a four wod block is used.

This is attributed to spatial locality. As the cache size becomes large, the differences

between the cache performances diminishes. This, however, is due to relative size of the

cache to the data array.

These few tests do suggest, however, that under certain conditions the pipelining

method has the potential to disrupt the reference locality. This disruption would manifest

itself during execution th-rough a higher cache miss rate and bus traffic, resulting in an

overall reduction of performance. In the worst case, the large delays caused by a greater

number of main memory accesses may overshadow the performance gains of the pipelining

technique.

C. A SOLUTION THROUGH TILING

One possible solution to reduce the cache misses is the application of iteration space

tiling methods. Iteration space Tiling is a loop transformation method which partitions a

loop structures normal iteration spact; into smaller sub-iteration spaces. For example,

consider a loop structure and iteration space of Figure 77.

Tiling of this loop could result in a loop structure and a partitioned iteration space as

in Figure 78. Each tiled section of the original iteration space is executed as a sub-space.

The amount of data referenced in each of these tiles is a subset of the data referenced in the

entire space. With this in mind, tiling has been presented as method by which data reuse

can be optimized for a given cache size.

A description of how tiling can be applied to optimize the reuse of data is presented by

Wolf and Lam [Ref. 16]. In using tiling to optimize the data reuse, an original loop structure

is transformed into an equivalent loop structure for which the innermost nest containing

some number of loops require a minimal number of memory accesses per iteration. This is

138

i2 -- 0

x x x x x

foriI in 1.NI ii x x x x x
for i2 ai .N2

x x x x

x x x x

Figure 77: Untiled Loop Structure and Iteration Space

forI InN 1 by 2 i2
foran in I..N 2 by2

for iIin I to min(lI +1, Nj) XX x x
ori2 in 11 to mnin(2 +1,N 2)

x x xzz x x x x x

x x x x

Figure 78: Tiled Loop Structure and Partitioned Iteration Space, with
Tile Size of Two

139

done by performing unimodular transformations on the loop structure in an effort to make

the all components of all data reuse vectors for the particular innermost nest of loops non-

negative. Because data dependence vectors are a subset of the data reuse vectors, this has

the additional effect of ensuring the innermost nest of loops becomes a fully permutable

sub-loop structure.

By making the loops fully permutable, the innermost nest of loops can be interchanged

in order to find the structure which best localizes the reuse of data, as well as providing the

conditions for which the tiling transformation can be legally performed. The goal is to

optimize cache data reuse by limiting the localized iteration space to a size for which all

needed data can be contained within the cache at the same time. By selecting the a proper

tile size, only a limited amount of data which is highly reused is placed in the cache at any

one time.

The best selection of the tile size is one which uses a maximum of the cache (to

improve data reuse), but avoids the mapping interference into cache locations. Demirhan

[Ref. 17] provides an algorithm for choosing the best tile size based on cache size and data

array row size in the case of directly mapped caches. In some instances, it is advisable to

pad the array rows with empty elements in order to maximize the use of the cache.

1. Tiling With Loop Pipelining

The loop pipelining technique uses a transformation which eliminates data

dependences along the innermost dimension. In performing this transformation, the two

innermost loops were made fully permutable. Although the transformation was not

motivated by any intent to tile, the result of the transformation is that the inner two

dimensions of the final loop structure is in the same conditions required to allow tiling.

One major difference between the transformation done for the, loop pipelining

and that described by Wolf and Lam [Ref. 16] is that the loop pipelining technique did not

perform skewing based on the data reuse vectors, but only on a subset of those vectors-- the

data dependence vectors. However, because the transformation for loop pipelining has

140

localized some reuse vectors within the two innermost loops, it is reasonable to believe that

tiling may be able to recover some of the reference locality lost when making the innermost

loop parallel. In particular, tiling a pipelined loop may still exploit the data reuse from the

data dependence along the innermost dimension which was transferred to the second

innermost loop dimension.

To investigate the possible application of tiling to the loop pipelined structure,

the procedures given by Demnirhan [Ref. 17] were conducted to identify the proper tile size

for each of the cache configurations used in the last section1 . Padded tiling was then applied

to the original loop structure and transformed loop structures (the original loop structure

required skewing in the innermost dimension as per Wolf and Lam [Ref. 16] to make it

tilable). Reference traces were created for the tiled loop structures and tested with

DINEROIf using the same cache configurations as previously chosen, except that in all

cases, the cache block size was maintained at four words per block. The results of the

testing is shown in Figure 79.

S128 Words 512 Words 4k Words 64k Words

12% 10% 9% 9%
Sequential 107140 95020 84112 81804
Loop Execution _____

Pipelined Loop 9% 9% 9% 9%

Execution 85680 83620 82396 61952

Figure 79: Miss Rate and Total Bus Traffic with Padded Tiling Applied
For Both the Original and Transformed Loop Structures

1. The optimal block size was determined using the algorithms provided in the reference. This
included padding the array rows as necessary to maximally fill the cache. To accommodate for the
skewing effect of the transformed loops, the actual row size needed was less by the total skewing of
the loop structure, and was accounted for in the reference address calculations.

141

As can be seen from the table, the miss rate and the bus traffic have been greatly

reduced for the pipelined loop compared to the non-tiled case. Additionally, both measures

are for the transformed loop are at least as good as for the tiled original loop. The overall

improvement is most noticeable with a smaller relative cache size, and diminishes as the

cache size becomes so large as to be less effected by locality issues for the specific loop

example.

In general, the results suggest that tiling might be used not only to reclaim some

reference locality lost by the pipelining transformation, but also optimize the data reuse in

the pipelined loop in the same manner as it can be used in other nested loop structures.

2. Potential Problems With Tiling

Although tiling may provide a dramatic improvement in reference locality, the

application of tiling does not exist without a cost.

Even as prescribed by Wolf and Lam [Ref. 16], tiling generally requires loop

transformations to provide the loop structure with a fully permutable loop. This requ -,s the

obvious overhead for loop transformation equations and code alteration. This overhead,

however, is required of the loop pipelining technique anyway, and is therefore of no

additional cost.

On the other hand, much of the overhead that the loop pipelining technique

requires is that due to the transitioning into the pipelined schedule. This includes the

sections of code for executing the prolog and the epilog as well as computation of the tile

boundaries. By tiling, the iteration space is cut into smaller pieces, creating more

boundaries. The result, it appears, would be a greater proportion of code dedicated to

transition into and out of the pipelined segments, as well as more iterations performed in

less efficient code segments (i.e., in the prolog and epilog). Roughly speaking, the overhead

from a non-tiled to a tiled execution of a pipelined loop increases by a multiplicative factor

of(N.).
square tile size

142

The addition of this overhead is a major drawback to the use of tiling. The

benefits of tiling must be weighed carefully against the cost of the overhead before it can

be determined to be a feasible option. This is certainly an issue which needs further study.

D. THE EFFECT OF MULTIPLE LOAD/STORE UNITS

Thus far, the examples used for the observations about reference locality considered a

target VLIW machine with only a single load/store unit. It is of obvious benefit to have a

machine that used multiple load/store units to be able to concurrently access the memory

for each of the units. With multiple load/store units, multiple references can be attempted

for the same long instruction word. This will not only save time when the concurrent data

accesses result in cache hits, but also when multiple concurrent data accesses result in

misses. Consequently, the use of multiple load/store units should aid in reducing the

penalty of the miss rate.

1. Investigating Concurrent Miss Savings

In an attempt to investigate the claim that multiple load/store units might result

in reducing the miss penalty, again the example originating from Figure 17 was used.

Following the loop pipelining technique presented in this thesis, pipelined schedules were

generated assuming two load store units available and assuming three load store units

available'. In the event that multiple ',,ad/store units are available, it is reasonable to

implement a cache that has associativity which eliminates the possibility of self-

interference within the same instruction. By setting the set associativity to at least the

number of load/store units, same instruction interference is eliminated.

For the two pipelined schedule created, reference traces were generated

assuming no tiling as well as assuming tiling, with two tile sizes being selected. Because

there is no standard for choosing a specific tile size for the pipelined loop structures, the tile

sizes that were chosen are somewhat arbitrary. However, to ensure consistency between the

1. The pipelined schedules were generated using the same configurations as used in the examples in
Section V.A.3 when the multiple load store units were evaluated.

143

tests of various cache configurations the first size was selected using the optimization

algorithm given by Demirhan [Ref. 17]. As stated before, this algorithm is intended to be

used for directly mapped caches, so it serves no specific purpose in this case than to

establish a standard method for picking the cache size. The second cache size was chosen

to be the closest integer square root to the cache size. This also allows the choice is to be

derived from a definite procedure which is consistent between the cache configurations.

The reference traces were again analyzed with DINEROII. The cache

configuration was set to simulate a set associative cache with the appropriate associativity

for the number of load/store units available, a demand fetch policy, a write-back write

policy, no sub-block access, and a write-allocate write policy. The cache block size was

maintained at four words per block, to ensure the problems with spatial locality would be

exhibited if they existed.

Because the intent of the test was to observe if the multiple load/store units could

result in reducing the miss penalty, the output of DINERO was analyzed for reference

misses which occurred in the same VLIW instruction. Because of the complexity of this

analysis', the scope of the analysis was limited to examining only the references which

occurred during the iterations which used the pipelined schedule, and ignored the areas of

the iteration space that required sequential (or compacted) iteration execution.

Several tests were run with differing sizes of caches and differing number of

load/store units. The results are summarized in Figure 80 through Figure 82. The smallest

cache size examined was that with 512 words (Figure 80 and Figure 81). For both load/store

unit configurations, the some savings in miss penalties were obtained when no tiling was

used. When tiling was used, no miss penalty savings occurred.

1. DINEROHI analyzes reference traces assuming only sequential execution. The output, therefore,
required analysis to determine which references occurred on which VLIW instruction lines. This is
possible only for the iterations using the know pipelined schedule.

144

Although cache sizes up to 64k words were examined, results with all cache

sizes above 512 words for both pipelined schedules indicated no saved miss penalty due to

additional resources. Figure 82 is provided as a representative example of these results.

conditions
o padded tiling with tiling with tile size

no tiling tile size of 21 of 22

totalreferences 120,000 120,000 120,000

total
pipelined 115254 101054 101880

references

total
pipelined 76458

instruction 65894 66708
lines

total
pipelined 37000 8197 8208

misses

total
pipelined
instruction
lines with 36659 8197 8208
misses

number
of miss

penalties 341 0 0
saved

percent of
miss

penalties 1% 0 0
saved

Figure 80: Summary of Investigation for Saving Miss Penalty With
Two Load/Store Units, and a 512 Word, Two-Way Set
Associative, Four Word Block Size Cache

145

conditionst padded tiling with tiling with tile size
no tiling tile size of 21 of 22

totalreferences 120,000 120,000 120,000

total
pipelined 107742 72357 76248

references

totalpipelined

instruction 36448 26080 26856
lines

total
pipelined 37000 5412 5733

misses

total
pipelined

instruction
lines with 29913 5412 5733

misses

miss
penalties

saved 7087 0 0

percent of
miss

penalty 19% 0 0
saved

Figure 81: Summary of Investigation for Saving Miss Penalty With
Three Load/Store Units, and a 512 Word, Four-Way Set
Associative, Four Word Block Size Cache

146

conditions
padded tiling with tiling with tile size

no tiling tile size of 41 of 45

totalreferences 120,000 120,000 120,000

total
pipelined 107796 92574 92574

references

total
pipelined 36448

instruction 31840 31840
lines

total
pipelined 8736 7276 7276

misses

total
pipelined

instruction 8736 7276 7276
lines with

misses

miss
penalties

saved 0 0 0

percent of
miss

penalty 0 0 0

saved

Figure 82: Summary of Investigation for Saving Miss Penalty With
Three Load/Store Units, and a 2k Word, Four-Way Set
Associative, Four Word Block Size Cache

147

2. Summary Of Results

The results obtained from the investigation of how multiple load/store units

affect the miss penalty only illustrates the possibility that some penalty can be saved. Such

savings, however, is dependent upon the specific loop structure, the number of load/store

units, the pipelined schedule created, as well as the relative size of the cache as compared

to the data array sized (or tile size). For the specific example observed, it appears that miss

penalty is reduced slightly for those cases when the cache is relatively small and no tiling

is used. The actual complex relationship between these factors is an area which requires

additional study; however, if the results seen are at all representative, then the use of tiling

may limit the miss rate savings with multiple load/store units.

E. SUMMARY OF DATA LOCALITY OBSERVATIONS

The observations made concerning the effects of the loop pipelining technique on data

locality illustrates the complexity and case dependent nature of the problem. The results of

the simple tests conducted indicate that data locality is negatively affected by the

transformation process used to establish the conditions for the proposed loop pipelining

technique. Particularly affected is the spatial locality that might normally exist in loop

structures which use the loop control variables to regularly access data arrays.

The use of tiling transformations, however, appear promising in returning the level of

locality of a pipelined loop to that of a non-pipelined loop, and virtually removing the

negative effects of the transformation on data locality. Unfortunately, the benefit of the

tiling must be weighed against the additional overhead that tiling imposes on the use of the

pipelined code within each tile.

With multiple load/store units, some miss penalty might be saved if multiple misses

occur within a single VLIW instruction. The conditions for which this occur, however, are

very case dependent. In some instances, the uses of tiling may limit the ability for multiple

instruction line misses to occur. The choice as to whether to use tiling, therefore, may also

have to weigh the loss of savings in concurrent misses.

148

Although the observations made concerning the issue of data locality were limited,

they identify the need for further study detailed study of the desired VL1W memory system

and the effects of data locality optimization techniques used in conjunction with the loop

pipelining technique presented in this thesis.

149

VII. CONCLUSION AND RECOMMENDATIONS

The technique for loop pipelining of perfectly-nested loop structures presented in this

thesis combines previously well known methods of Wavefront Transformations and

Acyclic DDG Modulo Scheduling to create a new loop pipelining method which is both

simple and efficient. The resultant pipelined schedules produced are near-optimal for a

given set of resources, with execution ,chedules varying from an ideal pipelining scenario

only by the necessary addition of transformation instructions, boundary calculation

overhead, and the addition of transition code necessary for use of the pipelined schedule.

Although the added overhead of the transformation tends to reduce performance, the

technique is generally scalable with resource availability. This suggests that the addition of

resources will improve performance beyond the limitations that present cyclic DDG

modulo scheduling techniques face due to the bound that dependence cycles place on the

final 11. Because of this characteristic, the technique developed maintains a great

advantage over previously proposed loop pipelining methods.

The code generation procedure described in Section IV.C.2 provides an extremely

simple method to generate the final loop structure. The code generation procedure provides

a systematic process by which to transform the original loop structure into a modified loop

structure utilizing the loop pipelining technique presented. Most references tend to

overlook this step when describing their techniques, but is an important and practical issue

to address.

When developing the code generation procedure, code segments and their relationships

were modelled with a DDG-type graph structure. This modeling proved extremely useful

in providing a conceptual simplification and organization of the required code segments.

The same modeling technique was used to describe the original loop structure, as well as

used to develop the execution schedules presented for an ideal pipelining technique (see

150

Figure 67) and for a cyclic DDG Modulo Scheduling technique (see Figure 68). The ease

at which the model was adaptable to other situations indicates that it might prove to be a

valuable aid in future code restructuring investigations.

Observations indicate that spatial data locality may be adversely effected with the

application of the presented loop pipelining technique. As a result, the use of cache memory

systems when using the pipelining method could result in a higher cache miss rate. It is

possible that the use of iteration space tiling techniques on the two innermost loops could

overcome the negative effects, or that the existence of multiple load/store units may reduce

the miss penalty with significant number of concurrent cache misses. However, the actual

effect of the pipelining technique on data locality, the benefit of tiling, and the probability

of concurrent cache misses appear case dependent on the original loop structure and on

cache configuration. This must certainly be included in further study.

The work presented in this thesis is merely the beginning of a larger undertaking which

must build upon and modify the current advancements. To obtain a clearer understanding

of the performance benefits of the loop pipelining technique proposed, automated

implementation of the method should be attempted. This would include the development

of the data structures required for proper representation of DDGs, implementation of the

loop transformation and modulo scheduling procedures, and implementation of the code

generation procedure. Implementation of the code generation procedure will also require

the implementation of code compaction sub-procedures. Once the loop pipelining method

is automated, a greater number of examples can be examined, with simulated performance

being evaluated to properly investigate the benefits of the pipelining method.

As mentioned previously, the issue of data locality should also be investigated further.

Automation of the loop pipelining technique will also allow the examination of a greater

number of examples to determine with more precision the effect that the pipelining

technique has on data locality, as well as the saving multiple load/store units provide by

allowing concurrent misses. Additionally, modifications to the code generation procedure

can be made to investigate tiling affects. In particular, because tiling produces regularly

151

sized blocks of iterations, it may be possible to simplify the boundary calculations or even

overlap prolog and epilog executions within the tiles to gain efficiency. Associate with

consideration for data locality is the issue of the appropriate choice of memory systems to

best support VLW machines in general, and loop pipelining in particular.

152

APPENDIX

This appendix contains the screen captured output of the program DINEROIII1 ,

displaying the results of simulated cache performance for reference traces from example

code loops. The results were obtained in order to compare the effects of the pipelining

technique loop transformation on reference locality. Traces from the original loop were

compared with traces from a transformed loop specific configurations of cache size and

block size. In all cases, the default settings of DINEROIII were used to maintain

consistency. These default settings included simulation of a direct mapped cache with a

demand fetch policy, and a write-back write policy. The only alterations which were

allowed were in the cache size and the cache block size.

The tests were catagorized by the following list:

"* cache size is primary division

"* block size within cache, being either one word per block or four words
per block, when block size was four words per block, the category is
further divided as to whether the reference traces tested were obtained
from tiled iteration spaces or non-tiled iteration spaces. When tiling, the
tile size was chosen to be the largest tile size based on the cache size, with
data array padding assumed to be applied as necessary per [Ref. 17] to
avoid address interference

" for each category above, the test was performed on a reference trace from
an original rectangular, non-pipelined loop structure, and then on a the
references obtained from the transformed loop structure resulting from
application of the loop pipelining technique described. In all cases, the
original loop was a two dimensional loop structure, identical to the
example shown in Figure 17, except that the upper limit for both the
innermost and outermost loop variable was 200. The loop pipelining
technique was performed as described in Section IV, with the final
pipelined kernel schedule being the vae produced in Figure 31
(specifically, only one load/store unit being available).

1. DINEROIII is a trace-driven cache simulating program that uses as input a sequence of memory
references and outputs expected cache performance statistics. DINEROITI is authored by Mark D.
Hill, Computer Science Department, University of Wisconsin, Madison, WI.

153

The screen capture diagrams which followed this categorization are given with

explanitory captions in Figure 1 through Figure 24, divided by cache size.

A. TESTING WITH CACHE SIZE OF 128 WORDS

Metrics Access Type:
(totals,fraction) Total Instrn Data Read Write Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 80200 0 80200 40200 40000 0
0.6683 0.0000 0.6683 0.5025 1.0000 0.0000

Words From Memory 80200
(/ Demand Fetches) 0.6683
Words Copied-Back 40000
(/ Demand Writes) 1.0000
Total Traffic (words) 120200
(/ Demand Fetches) 1. 0017

Appendix Figure 1: Test Results For Reference Trace of Original Loop with Cache
Size of 128 words, Cache Block Size of One Word, and No Tiling

Metrics Access Type:
(totals, fraction) Total Instrn Data Read Write Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 79623 0 79623 39623 40000 0
0.6635 0.0000 0.6635 0.4953 1.0000 0.0000

Words From Memory 79623
(/ Demand Fetches) 0. 6635
Words Copied-Back 40000
(/ Demand Writes) 1. 0000
Total Traffic (words) 119623
(/ Demand Fetches) 0. 9969

Appendix Figure 2: Test Results For Reference Trace of Pipelined Loop with Cache
Size of 128 words, Cache Block Size of One Word, and No Tiling

154

Metrics Access Type:
(totals fraction) Total Instrn Data Read Write Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 20201 0 20201 10201 10000 0
0.1683 0.0000 0.1683 0.1275 0.2500 0.0000

Words From Memory 80804
(/ Demand Fetches) 0.6734
Words Copied-Back 40404
(/ Demand Writes) 1. 0101
Total Traffic (words) 121208
(/ Demand Fetches) 1. 0101

Appendix Figure 3: Test Results For Reference Trace of Original Loop with Cache
Size of 128 words, Cache Block Size of Four Words, and No Tiling

Metrics Access Type:
(totals, fraction) Total Instrn Data Read Write Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 49586 0 49586 39586 10000 0
0.4132 0. 0000 0.4132 0.4948 0.2500 0.0000

Words From Memory 198344
(/ Demand Fetches) 1. 6529
Words Copied-Back 157120
(/ Demand Writes) 3. 9280
Total Traffic (words) 355464
(/ Demand Fetches) 2. 9622

Appendix Figure 4: Test Results For Reference Trace of Pipelined Loop with Cache
Size of 128 words, Cache Block Size of Four Words, and No Tiling

155

Metrics Access Type:
(totals, fraction) Total Instrn Data Read Write Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 13885 0 13885 3885 10000 0
0.1157 0.0000 0.1157 0.0486 0.2500 0.0000

Words From Memory 55540
(/ Demand Fetches) 0.4628
Words Copied-Back 51600
(/ Demand Writes) 1. 2900
Total Traffic (words) 107140
(/ Demand Fetches) 0. 8928

Appendix Figure 5: Test Results For Reference Trace of Original Loop with Cache
Size of 128 words, Cache Block Size of Four Words, and Tiling

Metrics Access Type:
(totals fraction) Total Instrn Data Read Write Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 11220 0 11220 1220 10000 0
0.0935 0.0000 0.0935 0.0152 0.2500 0.0000

Words From Memory 44880
(/ Demand Fetches) 0.3740
Words Copied-Back 40800
(/ Demand Writes) 1. 0200
Total Traffic (words) 85680
(/ Demand Fetches) 0. 7140

Appendix Figure 6: Test Results For Reference Trace of Pipelined Loop with Cache
Size of 128 words, Cache Block Size of Four Words, and Tiling

156

B. TESTING WITH CACHE SIZE OF 512 WORDS

Metrics Access Type:
(totals, fraction) Total Instrn Data Read Write Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 40599 0 40599 599 40000 0
0.3383 0.0000 0.3383 0.0075 1.0000 0.0000

Words From Memory 40599
(/ Demand Fetches) 0. 3383
Words Copied-Back 40000
(/ Demand Writes) 1.0000
Total Traffic (words) 80599
(/ Demand Fetches) 0. 6717

Appendix Figure 7: Test Results For Reference Trace of Original Loop with Cache
Size of 512 words, Cache Block Size of One Word, and No Tiling

Metrics Access Type:
(totals fraction) Total Instrn Data Read Write Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 60392 0 60392 20392 40000 0
0.5033 0.0000 0.5033 0.2549 1.0000 0.0000

Words From Memory 60392
(/ Demand Fetches) 0.5033
Words Copied-Back 40000
(/ Demand Writes) 1.0000
Total Traffic (words) 100392
(/ Demand Fetches) 0. 8366

Appendix Figure 8: Test Results For Reference Trace of Pipelined Loop with Cache
Size of 512 words, Cache Block Size of One Word, and No Tiling

157

Metrics Access Type:
(totals fraction) Total Instrn Data Read Write Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 10151 0 10151 151 10000 0
0.0846 0.0000 0.0846 0.0019 0.2500 0.0000

Words From Memory 40604
(/ Demand Fetches) 0. 3384
Words Copied-Back 40404
(/ Demand Writes) 1. 0101
Total Traffic (words) 81008
(/ Demand Fetches) 0. 6751

Appendix Figure 9: Test Results For Reference Trace of Original Loop with Cache
Size of 512 words, Cache Block Size of Four Words, and No Tiling

Metrics Access Type:
(totals fraction) Total Instrn Data Read Write Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 30235 0 30235 20235 10000 0
0.2520 0.0000 0.2520 0.2529 0.2500 0.0000

Words From Memory 120940
(/ Demand Fetches) 1. 0078
Words Copied-Back 99500
(/ Demand Writes) 2.4875
Total Traffic (words) 220440
(/ Demand Fetches) 1. 8370

Appendix Figure 10: Test Results For Reference Trace of Pipelined Loop with Cache
Size of 512 words, Cache Block Size of Four Words, and No Tiling

158

Metrics Access Type:
(totals fraction) Total Instrn Data Read Write Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 12147 0 12147 2147 10000 0
0.1012 0.0000 0.1012 0.0268 0.2500 0.0000

Words From Memory 48588
(/ Demand Fetches) 0.4049
Words Copied-Back 46432
(/ Demand Writes) 1.1608
Total Traffic (words) 95020
(/ Demand Fetches) 0. 7918

Appendix Figure 11: Test Results For Reference Trace of Original Loop with Cache
Size of 512 words, Cache Block Size of Four Word, and Tiling

Metrics Access Type:
(totals fraction) Total Instrn Data Read Write Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 10755 0 10755 755 10000 0
0.0896 0.0000 0.0896 0.0094 0.2500 0.0000

Words From Memory 43020
(/ Demand Fetches) 0. 3585
Words Copied-Back 40600
(/ Demand Writes) 1. 0150
Total Traffic (words) 83620
(/ Demand Fetches) 0. 6968

Appendix Figure 12: Test Results For Reference Trace of Pipelined Loop with Cache
Size of 512 words, Cache Block Size of Four Words, and Tiling

159

C. TESTING WITH CACHE SIZE OF 4096 WORDS

Metrics Access Type:
(totals, fraction) Total Instrn Data Read Write misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 40599 0 40599 599 40000 0
0.3383 0.0000 0.3383 0.0075 1.0000 0.0000

Words From Memory 40599
(/ Demand Fetches) 0.3383
Words Copied-Back 40000
(/ Demand Writes) 1. 0000
Total Traffic (words) 80599
(/ Demand Fetches) 0. 6717

Appendix Figure 13: Test Results For Reference Trace of Original Loop with Cache
Size of 4096 words, Cache Block Size of One Word, and No Tiling

Metrics Access Type:
(totals, fraction) Total Instrn Data Read Write Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 40599 0 40599 599 40000 0
0.3383 0.0000 0.3383 0.0075 1.0000 0.0000

Words From Memory 40599
(/ Demand Fetches) 0. 3383
Words Copied-Back 40000
(/ Demand Writes) 1. 0000
Total Traffic (words) 80599
(/ Demand Fetches) 0. 6717

Appendix Figure 14: Test Results For Reference Trace of Pipelined Loop with Cache
Size of 4096 words, Cache Block Size of One Word, and No Tiling

160

Metrics Access Type:
(totals fraction) Total Instrn Data Read Write Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 10151 0 10151 151 10000 0
0.0846 0.0000 0.0846 0.0019 0.2500 0.0000

Words From Memory 40604
(/ Demand Fetches) 0.3384
Words Copied-Back 40404
(/ Demand Writes) 1. 0101
Total Traffic (words) 81008
(/ Demand Fetches) 0. 6751

Appendix Figure 15: Test Results For Reference Trace of Original Loop with Cache
Size of 4096 words, Cache Block Size of Four Words, and No Tiling

Metrics Access Type:
(totals,fraction) Total Instrn Data Read Write Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 10251 0 10251 251 10000 0
0.0854 0.0000 0.0854 0.0031 0.2500 0.0000

Words From Memory 41004
(/ Demand Fetches) 0. 3417
Words Copied-Back 40800
(/ Demand Writes) 1.0200
Total Traffic (words) 81804
(/ Demand Fetches) 0. 6817

Appendix Figure 16: Test Results For Reference Trace of Pipelined Loop with Cache
Size of 4096 words, Cache Block Size of Four Words, and No Tiling

161

Metrics Access Type:
(totals, fraction) Total Instrn Data Read Write Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 10611 0 10611 611 10000 0
0. 0884 0. 0000 0. 0884 0.0076 0.2500 0.0000

Words From Memory 42444
(/ Demand Fetches) 0.3537
Words Copied-Back 41668
(/ Demand Writes) 1.0417
Total Traffic (words) 84112
(/ Demand Fetches) 0. 7009

Appendix Figure 17: Test Results For Reference Trace of Original Loop with Cache
Size of 4096 words, Cache Block Size of Four Word, and Tiling

Metrics Access Type:
(totals, fraction) Total Instrn Data Read Write Xisc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 10399 0 10399 399 10000 0
0.0867 0.0000 0.0867 0.0050 0.2500 0.0000

Words From Memory 41596
(/ Demand Fetches) 0. 3466
Words Copied-Back 40800
(/ Demand Writes) 1. 0200
Total Traffic (words) 82396
(/ Demand Fetches) 0. 6866

Appendix Figure 18: Test Results For Reference Trace of Pipelined Loop with Cache
Size of 4096 words, Cache Block Size of Four Word, and Tiling

162

D. TESTING WITH CACHE SIZE OF 64k WORDS

Metrics Access Type:
(totals fraction) Total Instrn Data Read Write Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 40599 0 40599 599 40000 0
0.3383 0.0000 0.3383 0.0075 1.0000 0.0000

Words From Memory 40599
(/ Demand Fetches) 0. 3383
Words Copied-Back 40000
(/ Demand Writes) 1. 0000
Total Traffic (words) 80599
(/ Demand Fetches) 0. 6717

Appendix Figure 19: Test Results For Reference Trace of Original Loop with Cache
Size of 64k words, Cache Block Size of One Word, and No Tiling

Metrics Access Type:
(totals, fraction) Total Instrn Data Read Write Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 40599 0 40599 599 40000 0
0.3383 0.0000 0.3383 0.0075 1.0000 0.0000

Words From Memory 40599
(/ Demand Fetches) 0. 3383
Words Copied-Back 40000
(/ Demand Writes) 1. 0000
Total Traffic (words) 80599
(/ Demand Fetches) 0. 6717

Appendix Figure 20: Test Results For Reference Trace of Pipelined Loop with Cache
Size of 64k words, Cache Block Size of One Word, and No Tiling

163

Metrics Access Type:
(totals fraction) Total Instrn Data Read Write Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 10151 0 10151 151 10000 0
0.0846 0.0000 0.0846 0.0019 0.2500 0.0000

Words From Memory 40604
(/ Demand Fetches) 0.3384
Words Copied-Back 40404
(/ Demand Writes) 1. 0101
Total Traffic (words) 81008
(/ Demand Fetches) 0. 6751

Appendix Figure 21: Test Results For Reference Trace of Original Loop with Cache
Size of 64k words, Cache Block Size of Four Words, and No Tiling

Metrics Access Type:
(totals, fraction) Total Instrn Data Read Write Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 10251 0 10251 251 10000 0
0.0854 0.0000 0.0854 0.0031 0.2500 0.0000

Words From Memory 41004
(/ Demand Fetches) 0.3417
Words Copied-Back 40800
(/ Demand Writes) 1. 0200
Total Traffic (words) 81804
(/ Demand Fetches) 0. 6817

Appendix Figure 22: Test Results For Reference Trace of Pipelined Loop with Cache
Size of 64k words, Cache Block Size of Four Words, and No Tiling

164

Metrics Access Type:
(totals, fraction) Total Instrn Data Read Write Misc

Demand Fetches 120000 0 120000 80000 40000 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 10251 0 10251 251 10000 0
0.0854 0.0000 0.0854 0.0031 0.2500 0.0000

Words From Memory 41004
(/ Demand Fetches) 0.3417
Words Copied-Back 40800
(/ Demand Writes) 1. 0200
Total Traffic (words) 81804
(/ vlemand Fetches) 0. 6817

Appendix Figure 23: Test Results For Reference Trace of Original Loop with Cache
Size of 64k words, Cache Block Size of Four Words, and Tiling

Metrics Access Type:
(totals fraction) Total Instrn Data Read Write Misc

Demand Fetches 90371 0 90371 60248 30123 0
1.0000 0.0000 1.0000 0.6667 0.3333 0.0000

Demand Misses 7807 0 7807 276 7531 0
0.0864 0.0000 0.0864 0.0046 0.2500 0.0000

Words From Memory 31228
(/ Demand Fetches) 0. 3456
Words Copied-Back 30724
(/ Demand Writes) 1.0200
Total Traffic (words) 61952
(/ Demand Fetches) 0. 6855

Appendix Figure 24: Test Results For Reference Trace of Pipelined Loop with Cache
Size of 64k words, Cache Block Size of Four Words, and Tiling

165

LIST OF REFERENCES

1. Fisher, J., "Trace Scheduling: A Technique for Global Microcode Compaction",
IEEE Transactions on Computers, Vol. C-30, No. 7, July 1981.

2. Lam, M. "Software Pipelining: An Effective Scheduling Technique for VLIW
Machines", Conference on Programming Language Design and Implementation,
Atlanta, Georgia, June 1988.

3. Zaky, A. and Sadayappan, P., "Optimal Static Scheduling of Sequential Loops on
Multiprocessors", Proceedings of the International Conference on Parallel
Processing, 1989.

4. Rau, B. and Glaeser, C., "Some Scheduling Techniques and an Easy Schedulable
Horizontal Architecture for High Performance Scientific Computing", Proceedings
of the Fourteenth Annual Work•oiop on Microprogramming, 198 1.

5. Aiken, A. and Nicolau, A., "Perfect Pipelining: A New Loop Parallelization
Technique", Department of Computer Sciences, Cornell University, 1987.

6. Rau, B., Schlansker, M. and Tirumalai, P., "Code Generation Schema for Modulo
Scheduled Loops", Proceedings of the 25th International Symposium on
Microarchitecture, 1992.

7. Zaky, A., "Efficient Static Scheduling of Loops on Synchronous Multiprocessors",
Ph.D. Dissertation, Ohio State University, 1989.

8. Nicolau, A., "Loop Quantization: A Generalized Loop Unwinding Technique",
Journal of Parallel and Distributed Computing, 1988.

9. Kim, K. and Nicolau, A., "N-Dimensional Perfect Pipelining"', Proceedings of the
25th Annual Hawaii International Conference on Systems Sciences, 1992.

10. Lamport, L., "The Parallel Execution of DO Loops", Communications of the ACM,
February 1974.

11. Wolf, M. and Lam, M., "A Loop Transformation Theory and an Algorithm to
Maximize Parallelism", IEEE Transactions on Parallel and Distributed Systems,
July 1990.

12. Hsu, P., "Highly Concurrent Scalar Processing", Ph.D. Dissertation, University of
Illinois, Urbana, 1986.

166

13. Hennessy, J., and Patterson, D., Computer Architecture: A Quantitative Approach,
Morgan Kaufmann Publishers, 1990.

14. Colwell, R., Nix, R., O'Donnell, J., Papworth, D., and Rodman, P. "A VLIW
Architeecture for a Trace Scheduling Compiler", IEEE Transactions on Computers,
August 1988.

15. Tarjan, R. E. "Depth First Search And Linear Graph Algorithms", SIAM Journal on
Computing, June 1972.

16. Wolf, M. and Lam, M., "A Data Locality Optimizing AlgoritW% Proceedings of the
ACM SIGPLAN '91 Conference on Programming Language Design and
Implementation, June 1991.

17. Den-drhan, A., "On Increasing The Effective Blocking Factor Of A Matrix For A
Given Cache Organization", Master's Thesis, Naval Postgraduate School, Monterey,
CA, 1992.

167

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexanderia, VA 22304-6145

2. Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

3. Dr. Ted Lewis
Code 37, Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

4. Dr. Amr M. Zaky 3
Code CS/Za
Associate Professor, Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

5. Dr. Man-Tak Shing
Code CS/Sh
Associate Professor, Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

6. Vicki H. Allen
Department of Computer Science
Utah State University
Logan, Utah 84322-4205

7. B. Ranakrishna Rau
Cydrome, Inc.
Milpitas, CA 95035

8. Monica S. Lam
Computer Systems Laboratory
Stanford University
Palo Alto, CA 94305

9. LT Thor D. Aakre 2
136 Seal Ct.
Marina, CA 93933

168

