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Section I

INTRODUCTION

BACKGROUND

Current initiatives for the future application of high resolution Synthetic Aperture
Radar (SAR) systems include distributed image processing, worldwide relays of

unprocessed data and i nagery, and multi-sensor tactical and strategic relays.

Numerous advanced target acquisition concepts are based on the use of remote

platforms to perform target search over large areas. Sensor imagery is processed,

compressed, and transmitted to a strike vehicle where the imagery is interpreted either

by a human operator, automatic target recognition (ATR) processing or a combination

of the both (sometimes called ATC automatic target cueing). This trend toward wider
distribution and multi-sensor systems causes the consideration of significant bandwidth
reduction, on the order of 10:1 or more.

A literature review revealed that while image quality metrics for electro-optical

sensor systems are well established (less so for SAR), the image compression

community applies "image fidelity" metrics in algorithm development and testing. No

research was found which related image compression to degradation in image quality.

Additionally, no research was found which related compression algorithm effects

(compression induced image artifacts) to ATC performance. Sensor systems are

typically tasked to search large areas for a variety of critical mobile targets and ATC

systems are required to screen the volume of data for probable targets. High
confidence operator confirmation is required to reduce the high false alarm rates

associated with current and near-term ATC systems. Very limited operator

performance literature was found which related image compression processing and

target recognition performance. The purpose of this effort was to begin filling the void
in research into the effects of compression on SAR imagery and its exploitation by

either a human operator or an ATC.



Section II

IMAGE COMPRESSION TECHNIQUES

DATA COMPRESSION

In 1948, Claude Shannon [1] published his work defining the basis for calculating

the information content of a data set and its theoretical minimum transmission rate.

Since that time, various forms of quantization and data compression have been used in

an attempt to meet and fall below Shannon's theoretical threshold. Data compression is

possible primarily because of two basic observations. First, there is a large amount of

redundancy in most images. That is, two picture elements (pixels) that are spatially

close together tend to have similar magnitudes. Secondly, not all pixels carry the same

information content. Just as in language, where some words may be irrelevant and can

be omitted without causing a loss of understanding of the message. In imagery, a

certain amount of pixel information may also be lost without loss in overall i nage

quality. However, practical image compression processes are virtually always sub-

optimal and result in some loss of image fidelity and image quality. Thus, the goal of

image compression is to retain the best possible image quality for a given data rate.

BACKGROUND AND RELATED STUDIES

Compression techniques do not work equally well with all types of imagery. The

spectral response of some recently developed sensor systems pr-sents a challenge to

data compression. SAR is perhaps the best example and presents the greatest

challenges. SAR imagery is less literal than photographic and other forms of optical

images. This is in part due to the operating frequency of the radar and in part due to

coherent imaging and processing techniques. Typically, SAR systems use operating

wavelengths around 1-5 cm as opposed to optical systems which use wavelengths

around .4 -.7 1m. Thus, many objects which provide a diffuse scatter in visible light,

appear smooth to the radar by providing a specular return. The cross section of these

specular returns may change by several orders of magnitude as the viewing angle
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changes by a few milliradians [2].

When closely spaced, randomly oriented reflectors are illuminated by a coherent

source, the returned signal can constructively or destructively interfere, depending on
the spacing of scatterers relative to the radar wavelength. These diffuse scatterers form

a continuous background which is highly granular. This granularity is called speckle.

The coherent imaging and processing used in SAR predisposes the imagery to speckle

much like the speckle seen in coherent optical systems.

The combined effects of specularity and speckle in SAR images is that standard

bandwidth compression techniques such as Differential Pulse Code Modulation

(DPCM), which exploit data redundancy, do not work well with SAR images.

Prediction of a sample value based on its neighbors cannot be easily met for SAR [2,3].

These same references argue that transform coding is not a viable alternative because

the rapid decay of the autocorrelation function of the image requires large areas to be

transforme'. While a rather sophisticated transform method [4] has been suggested,

the computational complexity encourages other methods to be considered.

Recently, several new image compression techniques have been developed which

hold promise for compression of SAR images. It has been reported [2] that Block

Truncation Coding (BTC) [5] has been used with moderate success in coding SAR (at a

compression level of 2 bits/pixel). Vector Quantization (VQ) [6,7], which is

sometimes referred to as a universal compression method [8], has been reported at a

compression level of about 0.5 bits/pixel with optical images. It is anticipated that

SAR imagery can be compressed to a more moderate rate.

Investigations to date on the use of compression with SAR imagery have been

very limited. Only a few references to this topic were found and they all suffered from

a common failing. That is, in comparing the decoded images with the original, only

visual comparisons are made. In making these visual comparisons, none of the articles

refer to the use of subjects which have been exposed to a large amount of SAR imagery

or understand SAR image quality parameters in considering the visual effects of the

compression/decoding process. Additionally, SAR systems being developed both

within the DoD community and outside have very stringent image quality requirements
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placed on them. These requirements are specific to SAR and SAR designers are

typically required to develop detailed error budgets for contributors to image quality

degradation. Compression is rarely, if ever, considered.

Three compression techniques (algorithms) have been developed for use in the

present investigation. The first is Discrete Cosine Transform (DCT) compression.

Despite its questionable performance [2,3] with SAR images it is the technique of

choice in several image exploitation systems currently under development by the DoD.

Additionally, a DCT hybrid compression is used in the Joint Photographic Exploitation

Group (JPEG) image compression standard. The second method, BTC has been
suggested as a good technique for use with SAR images [2]. Finally, VQ is

considered. It is a newer method which has been used to compress electro-optical

sensor images at greater than 10:1 compression ratios [9].

DISCRETE COSINE TRANSFORM COMPRESSION

DCT compression is a lossy transform technique. The DCT algorithm converts

the spatial domain pixels of an image into cosine domain coefficients. The DCT is

often used over other transforms because it provides good energy compaction, does not
result in any blocking artifact at sub-image block edges [10] and results in a reduction

of the correlation between coefficients in the new domain [11]. To accomplish the

conversion, the image is first divided into sub-images. Each N x M sub-image is

separately transformed into the cosine domain. The set of coefficients for each sub-
image is then truncated, which equates to removing all frequencies higher than the

coefficients which are kept. The remaining coefficients are then appropriately
quantized and stored to represent the reduced bandwidth image. The stored coefficients

can then be inverse transformed back to the image domain N x M sub-image.

In one dimension, the forward DCT is given by:

2C(U) N-I (2n + l)u

F .nf(n)cosr 2N (1)
N n=O 2

where u 0, 1,...,N-1
and c(u) = 1/(sqrt 2) for u = 0

4



= 1 foru = 1, 2,..., N-1
and in two dimensions is given by:

4c(u, v) M-1 N-I (2m +1'u (n ~
C(u,v)= 4 , f(m,n)cos r2m Cosu or(2n+1)v (2)

MN m-0 n=O 2M 2N

where u 0, 1,..., M-l
v 0,,..., N-1

c(u,v)= 1/2 foruf=fv=0;

= 1 for u (v) = 1, 2,..., M-1 (N-i).

The original two dimensional data may be recovered by the inverse of the above:

M-1 N-I

f(m,n)= 2 Z-c(u,v) C(u,v) cos0 5 (2 m + l)u cosp.(2 n + l)v (3)
U=O v=O 2M 2N

for m =0, 1,...,M-1
n 0, 1,..., N-1.

Direct implementation of (2) and (3) is computationally intensive due to the iterative

nature of the algorithms. As is shown in Makoul [12], the transforms can also be

realized using an M x N point two-dimensional Fast Fourier Transform (FFT).

Following Makoul's development of the fast cosine transform, he notes that (in

one dimension) for a discrete time signal x(n) the discrete Fourier transform X(k) may

be written as:

N-I (4)
X(k) = •x(n)e-I/N

n=0

which is in general complex. Equation (4) can then be written in a general form as a

sum of its real and imaginary parts [13]:

X(k) = Xr(k) +JXi(k), (5)

where Xr(k) is the real part of X(k) and Xj(k) is the imaginary part of X(k).

Using the definition of the discrete Fourier transform and adding and subtracting
e Jnks/N

2 one can expand equation (4) into its real and imaginary parts:

5



N-I kn N-I

X(k)= x(n)cos2r- -j Ix(n)sin2kr- (6)
0-o R=o N

where

N-I kn

X,(k) = x(n)cos2,r- (7)
D-0 N

and

N-I kn
Xi(k)= - 'x(n)sin2"r-. (8)

n=O N

Using the above information as a basis for further development, Makoul [12]
defines a new sequence y(n) (Figure 1), to be the 2N even extension of x(n):

t" x(n) 0•n<N-I
y(n)= x(2N - n - 1) N5 n!_< 2N-1 (9)

x(n) y(n)

T g.n TTTn
N-1 N-i N 2N-l

(a) (b)

Figure 1. (a) Original signal x(n) 0 < n < N-i, (b) 2N point extension of x(n),
y(n) 0 < n < 2N-I

Once again starting with the definition of the FFT in (4) and applying it to the

sequence y(n), one obtains (using Cooley-Tukey notation):

N-I

Y(k) 1" y(n)Wn (10)
n=O

6



where W2N = e-j2xI2N

Substituting (9) into (10), Y(k) can now be written as:

N-I 2N-IY(k) = 2- x(n)W•n~ + Z 'x(2N -n -)W2N.(1
n-f0 n-N

Changing the variable of summation in the second addend so that it matches the

summation of the first addend, one obtains:

N-I N-i

Y(k)= "x(n)W2N + x(n)W W2Wk. (12)
n=O n=0

Realizing that W2Nk = 1 for all integers k, factoring W-k12 from each summation, and

rearranging

N-I

.Y(k) = W N2  "x(n) [wn2Nk 2 + WW 2 2 .N N (13)
n=O

Remembering the exponential form of cosine is

ex +e-x
cos x - e (14)

2

the eouivalent expression of (13) can be written as:

FýW N-I(2+ 
kY(k)- 2 I x(n) cos (n" (15)

In=O 2

Comparing equation (1) with the bracketed expression in (15), one notes that with the

exception of the amplitude weighting factor, 2c(u)/N, they are the same. Therefore, it

7



is possible to write Y(k) in terms of the Discrete Cosine Transform:

Y(k) = Wk/2 C(k) (I6a)

and conversely:

C(k)= W2kNY(k). (16b)

At this point, the DCT has been expressed in terms of a 2N point FFT. Other authors,

[10,11,14] have provided similar treatment of the DCT. The method of Makoul [12]

(to be developed next) provides a 2:1 (4:1 in the two dimensional case) reduction in

computations by using decimation-in-time and an N point FFT.

Makoul (1980) defines two new sequences by dividing y(n) such that:

v(n)= y(2n) 0_<nN-1. (17)
w(n) = y(En +l)Jl

Note that, in Figure 2, v(n) contains all even numbered points (n = 0,2,4,...) of y(n)
and the other sequence, w(n) contains all odd numbered points (n - 1,3,5,...) of y(n).
Further, v(n) and w(n) contain all of the points of the original sequence x(n) and that

the order of v(n) data is reversed from the order of w(n). That is,

w(n) = v(N-n-1). (18)

Now substituting (17) into (10), the definition of the FFT of Y(k), one obtains Y(k) in
terms of two N point FFTs:

N-I N-I

Y(k) - v(n)W22 + w(n)W N+I)k. (19)
n=O n=O



y(n) v(n) w(n)

v(O) w(N-i) w(N-1)

N(0) v(N1) (O)

(i) W 1 V(1) w2

1 L ) w 2L 
v (2 ) { 

w (2)t T n T Tn
v(2)

(a) (b) (c)

Figure 2. (a) Even and odd members of y(n) labeled for decomposition into v(n) and
w(n), (b) v(n), and (c) w(n)

It is now possible to express (19) in terms of v(n) by substituting (18) into the second

addend:

N-I N-I

Y(k) -v(n)W22N"k + 1 v(n)W 2sN•2 n (20)
n=O n=O

Following the development of equations (12) and (13), it is now possible to write

N-I N-IY W)...k/2 )W...2k-,/ 2nkW-k/2
Y(k)= Y .2 v(n)W2N WN 2 + •"v(n)W2WN2 • (21)

n=O n=O

-kk/2 k _ k/4

Realizing that W2nk = Wnk and that W2N = W4N - WN , equation (21) can

now be written as:

N-I N-I

Y(k)W= wk/4 1v(n)WnWk/ 4 + 1 v(n)Wj"kW.k/ 4 . (22)
n=O n=O

From the definition of the exponential form of the cosine function, equation (14), this

becomes:

9



Y(k) = 2WNk/4 [v(n) cosr (2n+)k (23)
Ln=ON

Since the cosine function has previously been shown in (6) and (7) to be the real part of
an exponential function (4), equation (23) can be expressed as:

Y(k) = 2WkR{•v(n)WJk+k/4 (24a)
Ln=O

or equivalently:

Y(k) = 2wkR{WkNvR (24b)
n--0

The bracketed portion of (24b) is simply the N point FFT of v(n) multiplied by

W4N .The final step is to write the DCT of x(n) as a function of Y(k) as was previously

shown in (16b):

C(k) = 2Re[ -N" v(n)Wft]. (25)
n=0

Therefore, one sees that in one dimension it is pussible to obtain the DCT of x(k) using

an appropriately decimated data set, v(n), and an N point FFT. Using the separability

of the cosine and Fourier transforms in the image domain, it is then possible to obtain

the two dimensional DCT of image data using two one dimensional DCTs.

To implement the basic 2 bit per pixel DCT compression, each image was divided

into multiple 8 x 8 non-overlapping sub-image blocks (i. e., N = M = 8). The mean

of each sub-image was measured, removed from the block, and stored. The forward
DCT was implemented using the fast DCT described above. The output of the

transformed sub-image was an 8 x 8 set of cosine coefficients. Once all sub-images of
the original image were transformed, the variance across each coefficient of all sub-

images was determined ( i. e., the variance of the (a,b) coefficient was determined by

comparing the (a,b) coefficient of all sub-images). The variances were then ordered

10



from greatest to smallest. Only thirty coefficients with the greatest variances across the

image were saved from each image. The thirty coefficients were then quantized to four
bits using a Lloyd-Max quantizer [15,161. Therefore, each 8 x 8 sub-image block was
compressed 4:1; 64 picture elements (pixels) at 8 bits were compressed to 30

coefficients at 4 bits plus 8 bits for the sub-image mean.

Additionally, a small amount of overhead was required for each image. Thirty
variances were stored with 7 bits (0-127) and the pointer to the position of the variance
in the original data array was kept as a 4 x 4 (8 bit) pointer. These 450 bits were
added to each image. For a 1K x 1K image, the overhead results in an insignificant
4.3 x 10-4 increase in bits per pixel.

BLOCK TRUNCATION CODE COMPRESSION

BTC is a lossy scalar compression technique which has been compared favorably
with DCT and DPCM. The algorithm is designed to adapt to local statistical properties

of small regions (blocks) of an image. As with DCT, the image is divided into N x M
non-overlapping blocks. Local statistics (mean and variance) are then calculated for
each of the blocks. Each pixel of the block is then coded with respect to the local mean
using a two level (one bit) quantizer. To decompress, the number of pixels quantized

greater than the mean is determined. An image block is then reconstructed using 2
levels (0-255) which are determined from the mean, the standard deviation, and

number of pixels greater than (and less than) the mean.

The basic block truncation algorithm begins with the image block and calculates
the first moment (mean), second moment, and sample variance of each block. The

second moment is defined as:

(26)

The variance can then be determined as:

.2 = X2 (27)

where X is the mean pixel intensity of the block.
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Using the mean as the threshold for quantizing, code each pixel which is less than
the threshold as "0" and each pixel which is greater than or equal to the threshold as

"1." Thus the image block is represented by the mean, variance, and a bit plane of
zeros and ones. In practice, the standard deviation is used more often than the variance
because it is smaller and can be coded with fewer bits. The decoder must now take the

information and reconstruct an image block. To accomplish this, the decoder

determines q, the number of pixels which were coded as "l"s.

Remembering that the intent of the BTC is to preserve the first and second

moments, one can write moment preserving equations [28] as:

nX = (n - q)a + qb (28a)

and
nX2 = (n -q)a2 +qb 2, (28b)

where n is the number of pixels in the block and a and b are the decoded output pixel
values. Solving for a and b, it is now possible to write:

a cx -sqrt (29a)

b = X -asqrt[ ] (29b)

The 2 bits per pixel compression using BTC was achieved using the algorithm

discussed. As with DCT compression, the image was divided into blocks, 4 x 4 in this
case. The mean and the standard deviation were calculated for each block and each

was stored using 8 bits. The pixel intensity of the reconstructed image blocks was

calculated based on equations (29a) and (29b). The intensities were then assigned

according to the bit plane. Since all data for image reconstruction were stored in the
mean, standard deviation and bit plane, no additional overhead was necessary.

Therefore, the 4 x 4 x 8 bit block (total 128 bits) was compressed to 8 + 8 + 16 x 1

bits (total 32 bits), exactly a 4:1 compression ratio.
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VECTOR QUANTIZATION COMPRESSION

VQ is also a lossy image compression method. This technique is based upon the

quantization of vectors (sub-image blocks) rather than scalars (individual pixels). It

operates in the image domain and codes similar input vectors (similar means vectors

which have approximately the same pixel intensities and order within the block) as one

of a smaller set of vectors which is used to approximate the input vectors. Using this

smaller set, called a code book or alphabet, VQ transforms the image vectors to

minimum bandwidth channel symbols which are then stored. To decode, the channel

symbols are matched to a look-up-table (LUT) to transform the symbols back to the

appropriate alphabet letter (image domain blocks). The individual letters are than used

as the image blocks to reconstruct the image.

As a graphical example of the process, consider the data set (image) with the data

(pixel) values shown in Figure 3.

1213222526

2731334537

6768737678

8283879293

Figure 3. Example data set for Vector Quantization.

The data is then divided into a set of two dimensional vectors, D = ((1,2)(1,3)

(2,2)(2,5)(2,6)(2,7)(3,1)(3,3)(4,5)(3,7)(6,7)(6,8)(7,3)(7,6)(7,8)(8,2)(8,3)(8,7)

(9,2)(9,3)}. If one looks at the two dimensional scatter gram of the vectors as

illustrated in Figure 4, it is possible to notice a natural clustering of the data points. It

is then possible to estimate a suitable four letter code book to be, C = {(2,2)(3,6)

(8,3)(7,7)} by selecting points which are approximately in the center of each of the

clusters. Each of the code book vectors can then be represented by channel codes

0,1,2,3, respectively. Thus the encoder would select channel code "0" to represent

each vector in Do = {(1,2) (1,3)(2,2)(3,l)(3,3)}; each vector of the vector set D, =

{(2,5)(2,6)(2,7)(3,7)(4,5)} would be represented by channel code "I," and so on. At

the decoder, a symbol "0" would be decoded as (2,2), a symbol "I" would be decoded
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as (3,6). One could then draw a block diagram such as that in Figure 5.

9

8 . .

7 . • . x

6
5 • Input Vectors, D

4 x Codebook Vectors

3 * x

2 •

1

0 12345 6789

Figure 4. Scattergram of vector D with code book vectors.

While this visual method is suitable for small, two dimensional data sets, the

difficulties in selecting appropriate vector neighborhoods grow rapidly as the vector

dimensions and data set size increase and as the probability of any particular vector's

occurrence takes on a unique probability function.

Therefore, before implementing vector quantization, it is necessary to derive an

appropriate alphabet. As illustrated, a vector quantizing system operates by comparing

each input vector with letters of the code book and storing (or transmitting) the channel

symbol that corresponds to the "best" match between the two. The development of the

best alphabet and the best match is determined in terms of the distortion measurement

technique used. The distortion measure, d(X,3X) is an assessment of the cost for

reproducing the input vector X by the alphabet vector X. The minimum value of the

distortion measure will identify the code word that is closest to the input vector.

Several distortion measurement techniques are typically discussed in the

development of a code book. Among these are the Holder norm, Minkowski norm,

quadratic distortion, and Itakura-Saito distortion measurement [6]. However, the most

commonly used for image compression is the squared error [6,7], defined as:
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d(X,X)=X Ix•X: = j-Rj2• (35)
i=O

2,2
3,6
3,6
7,7
2,2

36

-• ENCODER 2,0,3, 1,1, 0HANL • DECODER '

r2,1, CODEBOOK

3.,7
6,8
1,3
9,3

Figure 5. Block diagram of vector quantizer.

Mathematically, it is the simplest to implement and is w-ll understood in that it

represents the Euclidean distance between the two vectors X and X. By taking the
mean distortion over the image (adding the distortion of all vectors and dividing by the

number of vectors), one then has the mean squared error.

The size of the code book is determined by the image fidelity and the data rate

desired. As size of the code book increases, so does image fidelity. The data rate of a

vector quantizer is given by:

R = log2 L (36)
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where R is in bits per pixel and L is the number of letters contained in the alphabet.

CR M (37)CR-MN"

After choosing a method for measuring distortion, the alphabet can be calculated.
Again several approaches to code book development are possible. One method is to

assume an alphabet of the desired size. This can be done by taking the first 21 vectors

of the training sequence or by taking the same number of highly dispersed vectors from

the data set. The initial code book is then used to cluster similar vectors (similar as

determined by the chosen distortion measure) about each of the vector code words.

The centroid of each cluster or neighborhood is then determined. The centroids then

become the alphabet. This process is repeated until there is no (or little) change in the

code book which result from consecutive iterations. Since the initial code book was

randomly selected, the process is often called random code generation.

A second method for code book generation is known as splitting. This provides a

means to grow a progressively larger code book from a one level quantizer. The

centroid of the training sequence is typically used as the initial code vector. A second

code vector is then chosen by either perturbing the first or by choosing the vector

which is closest to the original vector. These two vectors are then used to separate the

training vector into two groups, one coded by the original vector, and one coded by the

perturbed vector. The centroid of each neighborhood is then calculated and the two

code vectors (the centroids) are again perturbed to form four vector code words. The

entire process is repeated until a code book of the desired size has been developed.

The foregoing clustering techniques, which require an initial code book and then

iteratively improve it, are widely known as the LBG algorithms after Yosef Linde,

Andre Buzo, and Robert Gray who first proposed the methods for vector quantization

[7]. While computationally intensive, they provide a systemat'- means for finding

neighborhood patterns and therefore, allows optimization of the code book. The

methods are, however, an extension of Lloyd's algorithm [15] developed for scalar

quantization.

To implement the two bit per pixel VQ compression for this study, i small
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training image was used for code vector development. The training image was divided
into 2 x 2 vectors and a 256 letter alphabet was created. The distortion measure used

for the alphabet development was the squared error. The alphabet was grown from the
mean of the training image by splitting. Once the alphabet was developed, the input
images were divided into 2 x 2 vectors and matched to the code vectors using the
minimum squared error criteria. The output channel code was quantized using 8 bits
(256 levels). Therefore, the 2 x 2 x 8 bit input vectors (total 32 bits) were compressed

to a single 8 bit channel code, providing an exact 4:1 compression.
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Section III

IMAGE QUALITY MEASURES

In order to adequately discuss image compression, it is necessary to develop

measures of effectiveness for evaluation of the compression techniques. While

compression ratio (ratio of input bits/pixel to output bits/pixel) is an important

measure, it is not totally adequate in that it does not provide a measure of change in

image fidelity when compared to the original image or a loss of original image quality.

Therefore, one must develop the means to measure the change in information after

compression. For this study, a number of classical SAR image quality measures which

are typically used in the specification of SAR systems were integrated into a utility to

study image quality.

IMPULSE RESPONSE

The classical performance measure used to rate most imaging systems is

resolution, or their ability to provide separate images of closely spaced objects. In

general, for optical systems, measured resolution depends on physical size of the

measured object and contrast of the scene. Since SAR depends upon coherent phase

detection of the reflected microwave energy, another dimension is added to

characterization of its performance. When using coherent imaging and processing, the

reflected signals from scatterers in a complex object may constructively or destructively

combine depending on the phase relationship (geometry of the scatterer). This will

enhance or eliminate amplitude nulls between scatterers in the objects. This means that

the measured resolution of a SAR can change significantly as the precise wavelength

spacing of the imaged objects change in half wavelength multiples.

As a means to eliminate the apparent change in resolution caused by geometry

dependent phase of the SAR, a linear systems approach is used to provide measure of

system resolution. Linear Systems Theory often characterizes linear systems by their

impulse response. The SAR image formation process is a linear system which uses
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pulse compression to obtain range resolution and Doppler processing to obtain cross-

range (azimuth) resolution. It will, therefore, have a two dimensional intensity valued

impulse response.

The definition of the SAR IPR measurement then, is the two dimensional

measured or calculated image domain (spatial domain) response of the SAR system to a

point target input. It is most typically measured along the output sampling axis (range

and azimuth). IPR width is usually calculated at the -3 dB (half power) point but, on
occasion, the -6 dB or -15 dB widths may also be interest as indicative of the

separability of two weak signals in proximity to each other.

The desired impulse response function would be a very narrow spike with no

sidelobes (Figure la). In practice, this cannot be achieved and a typical imaging radar
impulse response (unweighted) will look like Figure lb. The IPR performance is then

modified by the effective system transfer function (which includes radar and
processor). For many SAR systems, a -35 dB Taylor weighting is applied to achieve

an impulse response as shown in Figure 6c.

0

-10

-20

-30

-40

-50-....... . .i.i.. .................
-5 -3 -1 1 3 5 -5 -3 -1 1 3 5 -5 -3 -1 1 3 5

(a) (b) (c)

Figure 6. (a) Near ideal IPR, (b) Unweighted IPR, and (c) -35 dB Taylor weighted

For this study, the -3 dB width in range and azimuth (cross range ) will be used.

The operator selects the point return to be measured. The peak and the two pixels

immediately to each side in the x direction are selected. A similar selection is made in
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the y direction. The peak pixel, along with the selected adjacent pixels define a
quadrant. The pixels within the quadrant are interpolated using a gaussian interpolator
at one-half the distance to form a 9 x 9 pixel array. The array is searched for a
maximum. The maximum level and its location are stored as a refined peak location.
The -3 dB level is calculated from the peak of the interpolated data. The interpolated

values obtained above are searched on both sides of the peak for the pixel which
straddles the -3 dB level. Linear interpolation is then used to find the -3 dB width.

Since the images are from various sources, no scaling of pixels to ground distance is
done.

CONTRAST RATIO

Contrast ratio (CR) is perhaps the most general and all encompassing description

of SAR image quality. It provides a measure of the effects on the final image of

system power, antenna gains and losses, and noise from various sources throughout the

radar system and image formation process. A high CR produces a crisp, distinct image
while a low CR produces a "washed out" image with little clarity. From a visual

perspective, the basic idea of SAR CR is roughly analogous to the CR in optical

images, but they are not directly comparable. SAR image CR is a somewhat loosely

defined term which is used to measure the ratio of the signal plus total noise to the total

noise present in an image. In general, noise in the image is attributed to two noise

source components, one signal dependent and the other signal independent.

Signal dependent noise will contribute an amount of noise proportional to the

average image intensity. This type of noise generally results in additional side lobe

energy from strong target returns and is represented by the term ISL (Integrated Side

Lobe level). ISL represents all energy returned from a scatterer not contained in the

main lobe of the processed data. Figure 6b in the previous section illustrates a typical

system response to a point target. It is composed of the center or main lobe and a side

lobe structure. The energy in the side lobes taken as a whole is characterized by the

term ISL. ISL can be the manifestation of sinusoidal non random phase and amplitude

errors (nonlinearities) in the signal processing chain which can cause several image

quality degradation anomalies. Strong "spikes" near a strong return can result in false

target detection. In some cases, weak returns may be swamped by nearby large
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average backgrounds or large, strongly reflecting targets resulting in some targets going

undetected. Random nonlinearities in the signal processing chain appear as uniform
noise which causes a "fill in" or raising of the overall sidelobe level which may

decrease visible senaration (resolution) of closely spaced objects.

Signal independent noise sources contribute a fixed amount of noise regardless of
image amplitude. The primary contributor here is receiver thermal noise, Nt. Other
sources such as bit errors and digital round off errors can also add significantly to

signal independent noise and are generally considered as additive noise, NA. This
signal independent noise acts to reduce contrast by adding random elements to the
scene, producing imagery that resembles a "snowy" television picture. This noise can

be overcome by increased antenna gain, transmitter power, and lower system losses,
however, aircraft physical and environmental constraints limit what is practically

achievable.

Thus, poor image CR results in a "washout" of the image. This washout can
include de emphasis of boundaries, fill in of no- and low-return areas, spikes, and
"snowy" images, all of which reduce the utility and exploitability of the image.

In the image domain, the measurement of total noise (no return area) must be
done in a portion of the image where "no signal" exists. Such no-return areas may be
paved roads, smooth surfaces or very smooth water where almost no signal is returned

to the radar. The measured residual noise in the no-return area is an approximation of
the total system noise, SN. SN is then defined as:

SN = Nt + ISL + NA (38)

where ISL is the Integrated Sidelobe Level, a measure of the contribution of sidelobe
energy from surrounding ba.cAiround. The number and size of the no-return area will
have an influence on the stability and accuracy of the measurement. Measuring a large
number of no return areas provides a stability to the measurement. The size of the no-
return area will affect accuracy as well; too large an area and near-in sidelobe effects

are diminished (ISL not accurately measured, and not fully accounted for), too small
and the chances of mainlobe clutter interference (inclusion of some non-noise signal, C,
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as described in equation 39) are more likely resulting in an inaccurate CR
measurement.

Signal measurement is performed in an average background. The measurement of
the average background signal presumes a rather distributed background clutter level
which is not commonly found in nature. The measured signal return from this area is:

Sc =C + Nt + ISL + NA (39)

where C is the average signal level due to clutter.

CR is defined as the ratio of the average intensity of a distributed clutter
background to the average intensity of a no-return area and has the units of decibels.
That is:

CR = 10 logl0 Signal + Total Noise = 10 log+ISL+NA (40)Total Noise Nt+ISL+NA

The "looseness" in the CR definition comes from the difficulty in obtaining controlled
measurement conditions. That is, the size of the no-return areas and the definition of
average background are not always clear. From a user's perspective, the measurements
are not terrain to low return area but rather "grass to shadow" measurements or "trees
to shadow" measurements. Typical values for CR are 1 dB to greater than 15 dB;

however, 8 dB is usually considered minimally acceptable.

One final note: the formulas previously described assume that at the output of the
processor, the In-phase and Quadrature-phase (I and Q) channels are detected using the

sum of the squares. That is, the pixel value is calculated using:

Pixel Value = 12 + Q2  (41)

or some reasonable approximation of the formula which provides a power
representation of the processed signal. If on the other hand, the output of the processor
is detected using an energy representation such as the square root of the sum of the
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squares:

Pixel Value = + (42)

then CR is correctly calculated:

CR = 20 1og01 Signal + Total Noise (43)Total Noise

PEAK SIDE LOBE RESPONSE

The purpose of the Peak Sidelobe Response is to measure the dispersion of energy

outside of the mainlobe and in the primary sidelobe of the system impulse response.
Sidelobes are a result of the finite processing aperture and finite filter lengths. They

can be controlled using weightings but weightings increase mainlobe width and won't
remove the affects of errors in the data, another potential causes of sidelobe problems.

Sidelobes due to the processing aperture may stay at a constant level for the near-in
sidelobe region (e. g., Taylor weighting), but will fall off at some predetermined rate
away from the interpolated peak. Low frequency deterministic phase errors will raise
near-in sidelobes and high-frequency deterministic phase errors will raise sidelobes
farther out. Narrow-band random phase errors will raise an ensemble of sidelobes (e.

g., a pedestal effect). Wideband random phase errors tend to raise all sidelobes. The
2-D definition is again aimed at the multiple sidelobe axes that result from separate
processing in range and azimuth.

Peak sidelobe response was not used in the study of effects of compression on
image quality. It is briefly discussed here because it is a commonly SAR image quality

metric. The IPR metric, which was applied to the study imagery, is somewhat related.
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Section IV

IMAGE FIDELITY MEASURES

The objective of image compression is to be able to store or transmit a coded

image in as few bits as possible, while maintaining the information content of the

original image. Image fidelity measures are used to characterize the departure of the

compressed and recoded image from the standard or original image. Thus image

fidelity becomes an important measure of the "goodness" of a compression method.

The downfall of most image fidelity measures is that they measure absolute

change in the image as opposed to information content or intelligibility. Quantitative

measures aimed at both are often computationally cumbersome and inaccurate outside

of a small well defined image set.

Since no measures for image fidelity have been developed that are well

understood, work well across all image sets, and relate to information content, two of

the more classical image fidelity measures were chosen for this study. The first is

Mean Square Error (MSE) and the second is Signal-to-Noise Ratio (SNR).

MEAN SQUARE ERROR (MSE)

The MSE provides a pixel by pixel measure of the image change from the pr,

compression to the post compression image. It is the most widely used image fidelity

measure in compression studies in open literature. The popularity of the measure

undoubtedly stems from its simplicity (mathematically) and ease of implementation.

The MSE is defined as:

1 M-1 N-1
MSE = - F [g(m,n)-f(m,n)] (44)

where M and N are the number of rows and columns of the images and f(m,n) and

g(m,n) are the (m,n) pixels of the original and compressed image, respectively. Note
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that this measurement does not differentiate between a few large errors and many small

ones. Further, in certain instances there appears to be little correlation between this

pixel by pixel measure and the visually perceived information content.

SIGNAL-TO-NOISE RATIO (SNR)

SNR is a more global (less pixel oriented) measure of the image change than

MSE. It is less widely used than MSE. While it is computationally simple and

mathematically well understood, it has not shown significant correlation with operator

performance or information loss. If the difference between the output (compressed and

recoded) image and the input image is considered to be "noise," so that each output

pixel consists of an input signal plus noise (the error); then the output image pixel is

defined as:

g(m,n) = f(m,n) + e(m, n). (45)

SNR is defined as:

M-I N-I

SNR= M,--0 n•0 (46)
19-mn)--f(m, n)]

m=On=O

Note that SNR as it is calculated here is dimensionless. For this reason, it is sometimes

expressed in dBs. However, for this study, it is left as a dimensionless figure of

merit.
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Section V

MEASUREMENT RESULTS

EXPERIMENTAL METHODOLOGY

Four area coverage SAR scenes from a 1982 Operational Utility Evaluation

(OUE) of a developmental SAR sensor system were provided by the Arm strong

Laboratory for evaluation. Scenes were of Barstow CA., Castle AFB CA, Vandenburg
AFB CA, and the Long Beach Naval Shipyard. Scene content included:

- Railhead, convoy, howitzers, tanks, USMC Supply Center, roads, self-

propelled artillery

- Airfield, B-52s, KC-135s

- Shipyard, storage area, ships

- Missile launch and military facilities

Each of the scenes was divided into sixteen (16), 512 x 512 pixel subimages to provide

an image of usable size and a reasonable size sample set. From the resulting set of 64

images, 23 were chosen to be studied based on image content, number of appropriate
point like returns, and areas for CR measurements. The selected images represented 8

of the 17 STANAG target categories. Each image was subjected to three different

compression algorithms: DCT, BTC, and VQ, as previously described. Once

compressed, the image files were expanded back (i. e., decompressed or
reconstructed) to their original size of 8 bits per pixel. The final experimental set of
images, therefore, consisted of 92 images (4 x 23).

Image quality was determined for each of the 92 images. CR was measured four

to six times for each image, in at least two different areas of the image. Exact pixel

coordinates of the vertices of the polygon were recorded so that CR for all four images

would be made over the same area. The CR measurements for each image were
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averaged and compared to the average CR of the original image. Impulse response

measurements were made on between 2 and 4 point-like returns within each image.

Again coordinates were recorded so that the same points could be measured in each of

the image.

Image fidelity measures were made for each of the compressed images using MSE

and SNR as previously described. These measurements quantify the overall change in

the resultant (i. e., post-compression) image as compared to the original and are

computed across the entire image; therefore, only one measurement was made for each

of the compressed images.

IMPULSE RESPONSE MEASUREMENTS

Ideally, IPR measurements should be taken from calibrated point targets. Due to

the origin of the images, limited numbers of known point targets were available. IPR

measurements were taken on points that were visually estimated to approximate a point

target in the original image. The results of the -3 dB IPR measurements are

summarized in Figures 7'and 8 which provide the normalized range and azimuth IPR

measurement results separately. In general, compression causes an increase in the IPR

response. Note that it appears that DCT most often preserves the original IPR response

the best, and over all images, degrades the IPR the least. In a few isolated cases, DCT

even appears to enhance IPR response.

A paired-comparison t-Test was performed to investigate the efiect of the three

image compression techniques on the IPR measure of image quality. In applying the t-
Test, all pairs of original and compressed images were compared for each compression

technique. Statistically significant changes (both p < 0.01) were found for both the

BTC and VQ techniques. The greatest degradation in image quality was found for the

BTC compress and the IPR measurement made in the range direction. The mean loss

in IPR was 62 percent for this combination.
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CONTRAST RATIO MEASUREMENTS

As previously discussed, SAR image CR is a measure of the signal plus noise to

the total noise present in the image. Ideally, these measurements are taken from areas

with controlled no-return pads and known high return areas. This is done so that CR

between images can be easily compared and to help control the amount of near-in

sidelobe and mainlobe clutter that affects the measurements. Since controlled no-return

areas were not always present in the images, low return areas such as shadows, roads

or runways were used. These were sometimes smaller than ideal, and caused some less

then optimal results. This is potentially the cause of some of the variance in the

observed trends in the contrast measurements. Figure 9 provides the results of the CR

measurements.

In general, it appears that BTC causes the smallest changes in CR (BTC results in

the smallest CR change in over half of the images). This can be explained by looking

at the way BTC compresses. BTC uses a very small local area (a 4 x 4 block) of the

image and preserves the mean pixel amplitude of the area. CR is a measure of the

ratio of the pixel amplitude in a high and a low return area. Since the high and the low

return areas in the compressed image should contain several blocks which have the

same average value as in the original image, minimal change on CR should be

expected.

The paired-comparison t-Test procedure was also applied to the CR

measurements. No statistically significant difference was found between the original

and compressed imagery sets.
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MEAN SQUARE ERROR MEASUREMENTS

MSE was calculated across each of the images. Results are provided in Figure

10. Notice, that at least for the specific implementation of VQ used in this study, it
consistently outperforms the implementation of both DCT and BTC. This is somewhat

to be expected because as VQ has been implemented here, the coded vector selection is

based on minimum MSE. It is important to remember, though, that MSE by itself does
not indicate if the overall error is due to a large number of small errors or a few very

large errors. Also, MSE has not been shown to correlate with information content or

interpretability.
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SIGNAL-TO-NOISE RATIO MEASUREMENTS

Figure 11 shows the results of the SNR measurements. As with MSE, VQ again

outperforms the other compression techniques. If one examines the formulas for these

calculations, one notices that the denominator of the SNR (or the error component) is

the squared error as determined in the MSE (before dividing by the size of the image).

It follows then that a minimum MSE will be associated a maximum SNR.
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CORRELATION--IMAGE FIDELITY

Since both MSE and SNR image fidelity metrics were computed, it was of
interest to compare the two measures. Pearson's correlation coefficient, PCC, was

computed for each of the image compression techniques. Statistically valid agreement
between MSE and SNR was found only for the VQ compression technique (Pcc =

-0.65, p < 0.01).

It was also of interest to investigate the relationship between the image fidelity
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measures (MSE and SNR) and the image quality measures (IPR and CR). The PCC
was computed for all paired imagery and for each image fidelity and image quality

metric. No significant correlation was found between either image fidelity metric and

CR. A significant PCC (Pcc = -0.44, p < 0.05) was, however, found between

MSE and IPR (measured in the azimuth direction) for the VQ compression technique.

With regard to range IPR, both the BTC and VQ techniques yielded significant PCC

(Pcc = 0.50, p < 0.05, for BTC; PCC = 0.43, p < 0.05, for VQ).
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Section VI

OPERATOR PERFORMANCE

SUBJECT MATTER EXPERTS

Twelve imagery analysts (IAs) assigned to the the Foreign Aerospace Science and

Technology Center (FASTC), Wright-Patterson Air Force Base, Ohio, served as

subject matter experts during this portion of the study. Ten of the IAs were male

(nine civilian and one military) and two were female (both civilian). All of them were

experienced in image analysis and exploitation. Their mean experience level was 5.6

years. Two of the IAs had received both basic and advanced imagery interpretation

training at military service schools in addition to on-the-job training. All IAs reported

working with SAR imagery in their current assignment. Four reported exploiting SAR

on a daily basis, three reported frequent exploitation of SAR, while the remaining five

reported working with this medium on an infrequent basis. All IAs reported having

received specific training on the use of image interpretability rating scales (descibed

below) and all IAs reported using such scales as part of their current duty assignment.

TASK

An image interpretability rating scale was employed. There were ten rating

categories, graduated as zero through nine, available for use in reporting. Each

category was accompanied by semantic anchors to support response consistency. The

semantic anchors described specific examples of information extraction associated with

ground, air, and naval order of battle reporting categories. In the rating scale, a rating

of 0 meant that the image was useless for exploitation purposes. Levels 1 through 3

were associated with detection and object counting tasks, level 4 and 5 referenced

target classfication tasks, and level 6 through 9 provided examples of target

identification tasks. In imagery interpretation, detection refers to discovering the

existence of one or more objects (i. e., an object of possible military interest is present

in the image). Recognition or classification, a higher level of information extraction, is
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associated with performing discrimination between target classes (i. e., the object is a
tank [rather than a truck]). Identificationv is associated with performing discriminations
within a single target class (i. e., the object is an M- 1 main battle tank).

The analyst was seated comfortably in a reduced illumination booth. A 13 inch
(33 cm) diagonal, monochrome (P47, green phosphor) ELECTROHOME Model 38-

V 19NDA-BP monitor. The booth and reduced illumination protected the subject from
extraneous glare, distracting noises, etc. A special purpose pushbutton response panel

was located on a pull-out work surface located in front of the monitor. Figure 12

depicts the arrangement of the response buttons.

0 1 2 3 ENTER
4 5 6
7 8 9 READY

Figure 12. Response Control Panel Arrangement

The brightness and contrast controls of the monitor were adjusted by the
experimenter with reference to a ten step linear intensity gray scale image display.
The adjustment was such that each step in the gray scale was clearly discernible,
without overdriving the monitor. The controls were then "locked."

When the subject was ready for the experiment, a medium gray field (intensity
value 129) containing a centered fixation "+" was displayed on the monitor. The

subject controlled the timing of imagery presentation. When the subject was ready to
rate an image, the READY button was pushed. The subject indicated the appropriate
rating for that image by pushing one of the buttons marked "0" through "9." The
subject could change the rating simply by depressing a different button. While the
subject was participating in the experiment, a paper listing the rating category
definitions (semantic anchors) was available for reference. No time limit was imposed

on the task. When the subject was satisfied with the rating assigned to an individual
image (version), the ENTER button was pushed and the (last) rating (entered) was
recorded. The subject repeated the READY-rating-ENTER sequence until all images

had been rated.
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IMAGERY

Each image was presented in four different versions: original (i. e.,
uncompressed) and after DCT, BTC, and VQ compression and reconstruction. It was
felt that the subjects were experienced in making independent image intrepretablity
rating scale judgements and would not be unduly biased by the repetition of image
content. Each subject, however, did receive the images in a unique random order.
That is, the original, DCT, BTC, and VQ versions of each scene, as well as the scenes
themselves, were presented in a distinct randomization to each subject.

ANALYSIS AND RESULTS

A statistically significant difference (ANOVA, p < 0.01) was found between the
three compression methods and the original (uncompressed) imagery set. A post hoc
statistical test (Tukey's Honestly Significant Difference) revealed that the difference
was entirely due to the comparison between the original and BTC-transformed image
versions (p < 0.05). That is, the original images and the DCT and VQ versions
formed one group which was significantly different from the DCT, VQ, and BTC
versions, also considered as a group.

The mean interpretability ratings, pooled across IAs and images, are depicted in
Figure 13. As can be seen in the Figure, each of the image compression algorithms
introduced a slight loss in image utility for exploitation (as quantified by the
interpretability ratings) when compared against the original version of the images. The
mean rating for all original images and all IAs was 2.83. The BTC algorithm

introduced the greatest degradation in image interpretability, reducing the mean rating
to 2.52. (DCT supported a mean interpretability rating of 2.69 and VQ a mean rating

of 2.71.)
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Figure 13. Mean Interpretability Ratings as a Function of Image Compression Method.

Along with the difference found between the compression techniques, a
significant difference (p < 0.01) was also found. between the images used in the
study. The individual IA ratings spanned the range of 0 through 8. Most of the IA
responses, however, were grouped toward the low end of the rating scale (mode over
all images, compression techniques, and L.As was 3.00). The means of the original (i.
e., uncompressed) images spanned the range from 1.40 to 5.4.

An attempt was made to explore the relationship between the image quality
measurements and the image interpretability ratings. It was expected that image
quality (IPR and CR) would be positively correlated with interpretability. That is

small IPRs (high resolution) and large CR would be associated with higher ratings.
This did not prove to be the case. Regression analyses were performed to determine
the exact relationship between the IPR and CR measurements and the IA
interpretability rating. The image quality measurements for each image were used to
predict the mean IA rating for each compression technique. The r2 values were below

0.20 in each of the four cases. This does not support the expectation of image quality
as a predictor of image interpretability.
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Section VII

AUTOMATIC TARGET CUEING

CLUTTER ESTIMATION

Automation is being developed for application to target detection, location,

recognition, identification, and aim point selection problems. The goal of these

developments is to provide a rapid, accurate, and repeatable capability, overcoming the

limitations of the human operator. One of the major difficulties in developing this
capability is the generation of false alarms (i. e., the declaration that a target of a
specified type is present when the declaration is false). The primary source of false

alarms is the presence of target-like signatures within the imaged scene: clutter.
Waldman, et al. [22], define image clutter as "the amount of time-independent

background texture which is similar to the target in size, shape, and orientation." They
further stress that "a scene does not contain some inherent clutter, but only has a clutter

value when some target is considered in it." Bhanu [23] describes a "double widow

filter" employed in the target detection stage of an ATC. He notes that the "inner

window surrounds the target, and the outer window contains background." A variation

of the double window filter includes a third window, the "guard band," located

between the target and background rectangles as shown in Figure 14:

Guard Band

Background I

Figure 14. Triple Window Filter.

The size of the target window is selected so as to contain the target of interest, at any

orientation, and at the appropriate image scale. The background window region is

sized so as to provide a valid estimate of the statistical parameters (e. g., mean and

variance) which characterize the scene background in the immediate vicinity of the
target. The dimensions of the guard band are selected to minimize confounds between
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pixels values arising from the target signature and those that are due solely to

background. In the present study, a mobile missile was selected as the target of
interest. Image measurements were made from an array of these vehicles positioned at

a variety of orientations against a grassy background. The inner (target) rectangle was
sized so that it would just overlay any of these signatures. The guard band was sized in

both length and height to be equal to one half of the major dimension of the target (in
pixels). The background window was dimensioned so as to contain the same number

of pixels as the target window.

The triple window filter represents a sampling strategy. If it is positioned at a
given pixel location (e. g., the black dot in the upper left comer of the target region in

Figure 13), all the other pixels in that vicinity may be categorized as belonging either
to the target region or to the background region. Statistical parameters may be

estimated from the target and background regions. These parameters may be combined

into a metric or test to determine if the current sample is part of the specified target or
part of the background. One such metric is the target-to-background interference ratio

(TBIR). (The TBIR metric was widely employed as a measure of local target contrast

under the Passive Autonomous Infrared Sensor Technology [PAIRSTECH] program

[24].) TBIR is defined as:

where i, is the mean of the target window, 1, is the mean of the background region,

and a, and a, are the standard deviations of these regions. TBIR values were

computed for every pixel location in the target signature array image. The resultant
array was iteratively thresholded so as to determine the single TBIR value such that all

other TBIR values which were greater to or equal to that value arose only from pixel

locations within the targets themselves. That is, no false alarms were produced. The

sampling strategy and TBIR metric were then applied all the imagery (orignal and

compressed versions).

The triple window sampling scheme, together with the TBIR metric, serves as a

measure of scene clutter. The target window accounts for the size and orientation
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attributes. The TBIR comparision is a measure of the separability of a target signature

from background. This process intuititively captures the "target-like" definition desired

for quantifying scene clutter in terms of the generation of false alarms. When the

process is applied to a scene which does not contain the specified target of interest, and

the ratio of clutter to total image area is formed, we have a measure of the likelihood

that any local area will generate a false alarm.

RESULTS

This process was applied to both the original and compressed versions of the OUE

imagery set. Figure 15 graphically depicts the result. As can be seen from the Figure,

the DCT and VQ produced elevated clutter values (false alarm candidates) compared to

the orignal images. This elevation was statistically significant (p < 0.01) when tested

by the paired-comparison t-Test procedure.
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Figure 15. Effects of Image Compression on TBIR-based Clutter Metric.
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Section VIII

CONCLUSIONS

This study demonstrated the pronounced effect that different type of image

compression algorithm can have on objective measurements of SAR image quality,

specifically the IPR. Since IPR has been demonstrated elsewhere to be a determining

factor in the ability of the image analyst to extract fine detail information from an
image, then any degrading of the SAR IPR can be expected to result in a concomitant

loss in image information.

The study (again) demonstrated the weaknesses of image fidelity metrics (MSE

and SNR). In general, neither of these measurements correlated significantly with (i.

e., served as predictors of) the changes in SAR image quality revealed by the pre- and

post-compression image quality measurements. Further, there was relatively poor

agreement demonstrated between the two image fidelity measurement techniques used

in this study.

A significant difference in operator performance, as predicted by an image

interpretability rating scale, was found in comparing the BTC imagery to their original
versions. The mean difference was approximately 0.30 interpretability rating scale

units. This difference, therefore, may not be operationally significant. The image

interpretability rating scale employed in this portion of the study also proved sensitive

in identifying differences between individual images.

An attempt was made to demonstrate the predictive validity of the image quality

measurements with regard to the image interpretability ratings. This attempt was not

successful.

The study revealed a high likelihood that the application of certain image

compression techniques may result in an increase in false alarms if an ATR or other

automated image exploitation process is applied to compressed imagery. This effect

was particularly evident with respect to the DCT technique.
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APPENDIX

Cross Reference of
Study Images with

STANAG Target Categories

46



IMAGE IDENTIFIER

TARGET CATEGORY

11 12 13 14 15 16 2122 23 24 25 26 31 32 33 34 35 36 37 41 42 43 44

1. Airfield

2. Missile System x x x x x

3. Electronic Installation

4. Barracks/Camps/Headquarters x x x x

5. Storage and Repair x xx x x x x x x x x x x x

6. Military Activities x x x x x x

7. River Crossings/Ferries

8. Slipping x x x x x x

9. Route Reconnaissance

10. Terrain Reconnaissance

11. Coastal Strip

12. Bridges

13. Water Control Facilities

14. Ports/Harbours x x x x x x x

15. Rail Facilities x x x x x x x x

16. Industrial Installations x x x

17. Electric Power Installations
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GLOSSARY

AFB Air force base

AL Armstrong Laboratory

ANOVA Analysis of variance

ATC Automatic target cueing

ATR Automatic target recognition

BTC Block truncation code

C Signal

CR Compression ratio

CR Contrast ratio

D Dimension

dB Decibel

DCT Discrete cosine transform

DoD Department of Defense

DPCM Differential pulse code modulation

FASTC Foreign Aerospace Science and Technology
Center

FFT Fast Fourier transform

I In-phase

IA Image analyst

IPR Impulse response
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ISL Integrated side lobe

JPEG Joint photographic exploitation group

LUT Look-up-table

MSE Mean square error

N. Additive noise

N, Receiver thermal noise

OUE Operational utility evaluation

PCC Pearson correlation coefficient

Pixel Picture element

Q Quadrature-phase

SAR Synthetic aperture radar

SP Self-propelled

S. System noise

SNR Signal-to-noise ratio

STANAG Standardization agreement

TBIR Target-to-background interference ratio

USMC United States Marine Corps

VQ Vector quantization
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