
AD-A273 328j• I!IIi 1111111 IEl IIt I
Tech

Accesion For

NTIS CRA&I

DTIC -lAB

U)-mc; Cod

Project Report y -............................-....

Dibt ib':tion /
Avaiiabiiity Codes

r Avail aidj or
Dist Special2 11 C- N.•. 'OV 2 41. 49'

The Marriage of Ada and Joe College:
The Future is Now

MDA972-92-J-1004

Principal Investigator:

Charles B. Engle, Jr., Ph.D.
Florida Institute of Technology

APPROVEM FORp 771~' FFE 93-28764
D JF R, bT C, .U L,:,,ki

91 1/ 93 / 27 o •

Executive Summary

The Florida Institute of Technology has embarked on a unique experiment to
develop an undergradcate curriculum in software engineering. The first year of
this new program is devoted to programming-in-the-small issues, including
traditional programming practices using the Ada programming language, small
program design techniques, and program verification and debugging. In
addition, the concepts of formal syntax and semantics, formal grammars and
BNF, performance issues, abstractions, and object-oriented issues have been
introduced. The course draws from the many knowledge units described in the
ACM/IEEE-CS Computing Curricula 1991 Report [ACM 911.

The second year of the program, for which this grant provided funding support,
concentrates on programming-in-the-large, software engineering concepts. The
focus of this year is software systems development using teams of interacting
persons, the use of tools, configuration management, verification and validation,
testing, quality assurance, and more complex design techniques.

Two courses were created to provide maintenance and development experiences
for teams of students. The first course concentrates on maintenance activities
using an artifact and its associated development documentation. The second
course concentrates on software systems development using Cleanroom
technology.

The innovative portion of this approach is that:

"* it uses Ada throughout all course activities.
"* it approaches software development from a software engineering

perspective using a team approach.
"* it emphasizes Cleanroom technology.
"* it requires the students to function in an industrial-style setting.
"* it requires the students to use the controlling disciplines of

configuration management, quality assurance, and verification and
validation as part of the course.

"* it uses an artifact as a basis for instruction, presenting the student with
a motivation for the controlling disciplines not normally found in
typical or traditional small student projects.

"* it requires most of the knowledge units specified by the new ACM
curriculum.

Unfortunately, the results of this experiment have not been as valuable as was
hoped. It is unlikely that any other institution will find this material useful since
it is so very much tailored to the unique program we have here at Florida Tech.
Even within that program, we will need to make some reasonably major
modifications to continue to use the material because of the lack of success
obtained.

I. Introduction

The purpose of this research was to develop a sophomore level curriculum for
software engineering using Ada. The sophomore level consists of three quarter
courses at the Florida Institute of Technology (Florida Tech) and the curriculum
was designed as three courses of classroom instruction augmented by
laboratories. Since Florida Tech is converting to a semester system, these course
were designed with a view toward easing the transition from the original three
quarter courses to two semester courses reflecting the same course content. Our
purpose was to specify, design, and develop a one year sequence of courses in
software engineering using Ada throughout as the language of illustration. The
development of these courses was scheduled to take place during the period 1
September 1991 through 13 June 1992, but the period was extended until August
1993 because of the need to refine our approach.

Specifically, Florida Tech:

* examined the issues in undergraduate software engineering and
attempted to specify the learning objectives for second year students.

* designed a sequence of courses to meet these learning objectives.
* developed the course materials needed to implement this sequence of

courses, including, but not limited to, learning objectives by lesson,
lesson outlines, course outlines, lecture notes for each lecture, team
exercises for the students, laboratory exercises, laboratory manuals,
instructor's guides, sample examinations, overhead slides, and a
rationale for the courses as implemented.

* served as a consultant for other instructors interested in using this
course sequence.

II. Background

Sophomore courses have been taught at numerous institutions for many years.
Courses targeted for computer science have similarly been taught for many
years. However, software engineering is a new field and undergraduate course
in this discipline have not been widely available. Because of the uniqueness of
the program at Florida Tech, we were able to take advantage of the flexibility of
our curriculum to tailor it specifically for software engineering.

The motivation to title a software systems course sequence as engineering is to
focus on the fact that the courses have the structure, rigor, and formal foundation
embodied in such a name. As with other engineering disciplines, the formal
beginning must evolve from experiences of the initial practitioners [Shaw 90].
Over time fundamental constructs evolve and educational pioneers begin to put
in place prototypical curricula. The implementation of these curricula provides
the basis, ultimately, for an undergraduate degree in the field. During the past
several years, we have seen the emergence of software engineering as a

discipline apart from computer science. This can be observed in the creation and
publication of software engineering sample curricula in the ACM/IEEE-CS 1991
Computing Curricula [ACM 911, the British Computer Society and Institution of
Electrical Engineers report on Undergraduate Curricula for Software
Engineering [BCS 891, and the SEI Undergraduate Curriculum in Software
Engineering [Ford 901. Additionally, the Accreditation Board for Engineering
and Technology (ABET) has recommended that all Computer Engineering
majors take a course in software engineering; a recognition of the importance of
this field to the computer engineering discipline, as well as an endorsement of
the viability and uniqueness of software engineering apart from computer
science.

This course sequence is founded on a firm theoretical foundation in which
programs are viewed as rules for functions [Mills 91]. It embodies many of the
ideas found in traditional engineering courses in terms of hands-on laboratories
and student acquisition of practical applications of this theory in the lab. It is
also predicated upon the notion that quality software can be developed
assuming that the appropriate controls are in place during development and that
usage testing under statistical quality control is performed. While much of this is
language independent, the mechanism for demonstrating to the students the
application of these ideas is the programming language Ada. Ada was chosen
after careful consideration, and in spite of many difficult obstacles, because it is,
quite simply, the best tool available for imparting the techniques of software
engineering in the coding phase of the life cycle. The power of Ada used in a
disciplined environment can be used to demonstrate in a tangible manner the
concepts that we wish for our students to learn.

The impact of this approach is that students are better prepared to enter the field
of software engineering. Many human resource managers from industry,
especially the aerospace industry that deals mainly in government contracts,
have told us that they would rather hire engineers from virtually any
engineering discipline and train them in software development, than to hire
today's computer science graduate. The reason is that the engineering students
understand efficiency and tradeoffs, and are generally more disciplined, than
their computer science peers. Further, it is our analysis that computer .science is
better suited for programming-in-the-small issues than for the programming-in-
the-large issues that are typical for the large aerospace organizations. Thus, the
time is right to transition the technology gained by experience to incoming
students to better prepare them for the challenges of large-scale software systems
development. We believe that students should leave behind the notion of writing
programs to embrace the concept of developing software systems. While we do not
want to be viewed as a training organization, we must nevertheless be pragmatic
in our approach to education.

MI. Procedure

We felt that the major emphasis in the new program implied moving from
programming-in-the-small to programming-in-the-large. This meant that after
having spent the freshman year learning about programming concepts at the
single programmer level, with programs requiring the students to work
independently, we felt that students needed to be brought together and be
taught to work productively as part of a team. The sophomore year of the
computer science curriculum at Florida Tech current consisted of three quarters,
although the planning for these course sequences considered the fact that in 1993
Florida Tech changed to a semester program. Thus, one and one half quarters
was the target of each of the courses described, so that the transition to
semesters will be seamless. Therefore, the first course (actually one and one half
quarters) was initially devoted to maintenance of large (to the students) software
systems, while the second course (again, actually one and one half quarters) was
devoted to software systems development.

The first course was designed to concentrate on maintenance. Specifically, the
class was organized into two chief programmer teams as described by Brooks
[Brooks 82]. Team concepts and organizational issues were presented. Students
were then able to choose a role to play in the team effort using the team member
positions described by Tomayko [Tomayko 87A, Tomayko 87B]. The teams were
provided an artifact, selected from among those provided by the Software
Engineering Institute (SE), and all of the associated development documents
consisting of many of the deliverables required under DOD-STD 2167A. This
artifact was used to perform selected enhancements and corrections. This was
accomplished by having the students form a change control board and providing
the board a series of change requests and discrepancy reports. A budget was
also provided to the team project administrator with cost codes for the various
activities that the students performed and dollar amounts allocated for each cost
code. The students then selected which change requests and discrepancy reports
to accept based upon technical and budgetary considerations. They then had to
perform the maintenance effort and deliver the product.

To implement this course design, we started the classroom instruction as a
traditional software engineering overview, introducing life cycle models and
discussing issues that pertain to life cycle phases. This was initially augmented
in the laboratory by providing team building exercises. The Psychology
Department at Florida Tech supplied us with some exercises that are
traditionally used to foster team building. We had our students complete the
exercises as part of their laboratory.

Classroom instruction meanwhile, continued with a detailed discussion of each
phase of the life cycle. Issues in requirements gathering and analysis were
examined and discussed, followed by specifications, design, implementation,

testing, and maintenance. Each topic was expanded to provide the student with
a background to fulfill their portion of the laboratory exercises.

The laboratory exercises were designed, after the initial team building phase, to
provide the students with as close to a "real world" experience as is possible in
an academic setting. Toward that end, the maintenance exercises described in
the Software Engineering Institute Educational Materials [Engle 89A] were
provided as a laboratory artifact. The actual artifact is approximately 10,000
source lines of code in Ada. Exercises are described in that report on how to
change the artifact to provide new functionality (perfective maintenance) and
how to correct known deficiencies (corrective maintenance). In addition, the
artifact as written to run on a VAX computer under the VMS operating system.
Our students ran it on a SPARC using Unix. This meant that some environment
changes had to be provided (adaptive maintenance). However, this was not the
interesting part. What constituted a new approach was that the students were
divided into two teams, each of which had positions that are normally found in
software development (and thus maintenance) teams in software development
organizations. Specifically, one student was chosen to be in the role of the task
leader, another was the project administrator, another was the configuration
manager, another was quality assurance, etc. The choice was open to the student
who interviewed for the position desired. The interviews were videotaped (with
the student's permission) and the student was provided with a critique of their
interview as a guide for when they will be interviewing for "real" jobs. An
approach modeled on one described by Dr. James Tomayko at the graduate
level, was adopted (see "Teaching a Project-Intensive Introduction to Software
Engineering" [Tomayko 87A, Tomayko 87B]).

After one and one half quarters, the students delivered an improved version of
the original artifact. Delivery included reviews and inspections of both the
design and the implementation.

The second course was designed to concentrate on software systems
development. The students were again working in teams, but this time they did
not have an artifact upon which to base their work. Instead, they were provided
a requirements document containing the usual set of ambiguities associated with
using the English language as a descriptor, from which they were to create a
specification for the system to be developed. A Cleanroom Software Engineering
approach was taught, with the student teams divided into three units each,
consisting of a specification unit, a design and implementation unit, and a
certification unit. The specifications created by the students were turned over to
the design and implementation unit, that used box structured design techniques
to create a design that was subjected to preliminary design reviews and critical
design reviews with the whole class participating. Actual implementation of the
system was not likely due to time constraints, but all software system
development activities up to implementation were to be carried out by the
students.

The implementation of this second half design of the year long curriculum
included a new development project conducted under the Cleanroom approach
to software development. In this portion of the course, the students developed a
program to manipulate a robotic arm provided to them. Originally, the arm was
to be connected to a port on the SPARC machine provided for their use. When
the students were unable to manipulate the robot through the SPARC port, they
decided to switch platforms and manipulate the arm through the port on a PC.
This decision was made only after a careful analysis of their alternatives and the
cost-tradeoffs involved. Although the robotic arm never did complete its
asigned purpose, the learning experience of the students was very positive.

After the experiences of this first time teaching the course in this format, we
evaluated our students to compare them against students taught using prior
curricula. It was a subjective assessment, but the instructors unanimously felt
that the students were strong in team cooperation skills and in their
understanding of the controlling disciplines (configuration management, quality
assurance, verification and validation, etc.), but they were too weak in
programming and in data structures. Accordingly, we modified the entire
programx for the next year. This caused us to delay the submission of this report
until the results of that modification were assessed.

In the second version of the curriculum for sophomores, we spent the first
quarter and a half teaching the students fundamental data structures to correct
the perceived deficiency from the first iteration. This built upon their earlier
foundations in programming-in-the-small. The students then performed a
software development exercise using a surgical team approach (as discussed in
[Brooks 821, but with a smaller artifact The results were very encouraging.

The first iteration used the SunAda compiler on the SPARC and the Meridian
Ada compiler on the PC. The second iteration used solely the Meridian Ada
compiler on the PC. Cadre Teamwork was obtained for use by the students, but
was deemed too difficult to use by this level of student Thus, only instructor
demonstrations of its potential were provided for the students.

IV. Conclusions

Our first attempt to radically change the curriculum might be described as too
much too soon. It had several deficiencies and was not appropriate for further
dissemination. We then decided to modify this approach and restructure the
curriculum to correct obvious short-comings. Our second iteration of this
curriculum provides for a more traditional approach for the first semester
(although out of the normal sequence for a data structures course), and the
innovative portion is more or less restricted to the second semester. Of course,
this presupposes a radically different first year, which our program continues to
use. The results, in terms of lesson plans and course material, are probably not

usable at many other institutions. Since our program is so unique and the
situations we encountered are so very different than traditional programs, this
curriculum will not likely be of use to other institutions. Therefore, we will
provide information on request to interested organizations, but will not
disseminate this material widely. Our experiences have been disappointing, but
the effort has not been wasted. Many lessons-learned were obtained that have
already proved valuable and no doubt will continue to prove valuable in the
future.

V. Bibliography

[ACM 91] ACM/IEEE-CS Joint Curriculum Task Force, "Computing
Curricula 1991", Report of the ACM/IEEE-CS Joint Curriculum Task Force, 1991.

[BCS 89] British Computer Society and Institution of Electrical Engineers,
"A Report on Undergraduate Curricula for Software Engineering", June 1989.

[Brooks 82] Brooks, Frederick., The Mythical Man-Month : Essays on Software
Engineering., Addison-Wesley, Reading, Massachusetts, (1975), Reprinted with
corrections, (1982).

[Engle 89A] Engle, Charles, Ford, Gary, and Korson, Tim., Software
Maintenance Exercises for a Software Engineering Project Course. Educational
Materials CMU/SEI-89-EM-1, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pa., Feb. 1989.

[Engle 89B] Engle, Charles, Ford, Gary, and Tomayko, James., APSE
Interactive Monitor: A Software Artifact for Software Engineering Education.
Educational Materials CMU/SEI-89-EM-2, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pa., Oct. 1989.

[Fagan 76] Fagan, M.E., "Design and Code Inspections to Reduce Errors in
Program Development," IBM Systems Journal, Number 3,1976.

[Ford 901 Ford, Gary., "1990 SEI Report on Undergraduate Software
Engineering Education", Technical Report CMU/SEI-90-TR-3, ESD-TR-90-204,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pa.,
March 1990.

[Mills 91] Mills, H.D., "Cleanroom Engineering: Engineering Software
Under Statistical Quality Control," American Programmer, May 1991.

[Shaw 90] Shaw, Mary., Prospects for an Engineering Discipline of Software
Technical Report CMU/SEI-90-TR-20, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pa., Sep. 1990.

[Tomayko 87A]Tomayko, James., Teaching a Project-Intensive Introduction to
Software Engineering. Technical Report CMU/SEI-87-TR-20, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, Pa., Aug. 1987.

[Tomayko 87B]Tomayko, James., Teaching a Project-Intensive Introduction to
Software Engineering. Special Report SEI-87-SR-1, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pa., Mar. 1987.

