AD-A273 309

REPOR	Form Approved OMB No. 0704-0188		
Public reporting burden for this collection of inform meintaining the data needed, and completing and i suggestions for reducing this burden, to Weshin 22202-4302, and to the Office of Management and	nation is estimated to average 1 hour per rea eviewing the collection of information. Send co- tigton Headquarters Services, Directorate to I Budget, Paperwork Reduction Project (0704	panse, including the time for reviewing instructio miniments regarding this burden estimate or any oti r Information Operations and Reports, 1215 Je -0188), Washington, DC 20503	ns, searching existing data sources, gathering and her aspect of this collection of information, including therson Davis Highway, Suite 1204, Arlington, VA
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3 REPORT	TYPE AND DATES COVERED
	November 19	93 Pro	ofessional Paper
4. TITLE AND SUBTITLE		5. FUNDING	G NUMBERS
ANISOTROPIC EFFECTS ON OF TWO-DIMENSIONAL OB	SCATTERING AND RADIA	TION PROPERTIES PR	: CM41 : 0602121N I. DN088500
6. AUTHOR(S)			7: DIN000309
B. Beker, T. Q. Ho, and J. C. Lo	gan		
7. PERFORMING ORGANIZATION NAME(S) AND	ADDRESS(ES)	8. PERFOR	MING ORGANIZATION
Naval Command, Control and RDT&E Division San Diego, CA 92152–5001	Ocean Surveillance Center (N	CCOSC)	NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)	10. SPONS AGENC	ORING/MONITORING Y REPORT NUMBER
David Taylor Research Center Bethesda, MD 20084	D ⁻	ГІС	
11. SUPPLEMENTARY NOTES	FL. NOV	ECTE 291993	
122. DISTRIBUTION/AVAILABILITY STATEMENT		12b. DISTR	BUTION CODE
Approved for public release: dis	tribution is unlimited)) and (
rippioved for public release, us			
~			
13. ABSTRACT (Maximum 200 words)	<u></u>	L	
Many composite materials integral equation formulations is to present some numerical re- characteristics of a line source great deal of information on the geometries.	that are used in practice exhi for scattering and radiation by soults on how the anisotropy a placed inside a cylindrical she e EM nature of composite stru-	bit anisotropic properties. To ac anisotropic objects have been pr affects the scattering behavior of all. Although in practice most sit actures can still be obtained from 993, pp. 1760-1763.	count for these effects, several roposed. The purpose of this paper f a thin plate and radiation uations are three-dimensional, a m studying two-dimensional
14. SUBJECT TERMS		·	15. NUMBER OF PAGES
Electromagnetic Environment			
Electromagnetic Interference			16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	SAME AS REPORT

2

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

U	IN	CLA	SSI	FIED
---	----	-----	-----	------

ч.

21 & NAME OF RESPONSIBLE INDIVIDUAL	21b. TELEPHONE (Include Area Code)	21c. OFFICE SYMBOL
T. Q. Ho	(619) 553-3783	Code 824

DTIC QUALITY INSPECTED 5

Accesion For					
NTIS	CRA&I	X			
DTIC	TAB	ן ם			
Unanno					
Justification					
By Distribution /					
Availability Codes					
Dist	Avail and / or Special				
A-1	20				

ANISOTROPIC EFFECTS ON SCATTERING AND RADIATION PROPERTIES OF TWO-DIMENSIONAL OBJECTS

*Benjamin Beker Department of Electrical & Computer Engineering University of South Carolina Columbia, SC 29208 Thinh Q. Ho and James C.Logan NCCOSC, RDT&E Division San Diego, CA 92152-5000

Introduction

Many composite materials that are used in practice exhibit anisotropic properties. To account for these effects, several integral equation formulations for scattering and radiation by anisotropic objects have been proposed [1-3]. The purpose of this paper is to present some numerical results on how the anisotropy affects the scattering behavior of a thin plate and radiation characteristics of a line source placed inside a cylindrical shell. Although in practice most situations are three dimensional, a great deal of information on the EM nature of composite structures can still be obtained from studying two-dimensional geometries.

Formulation

Fig. 1 shows the geometry of the thin flat plate and the cylindrical shell. The medium is anisotropic and is characterized by the following form of permittivity and permeability tensors,

		Ex	Exy	0				ſμ∞	μ.γ	0]	
= [3]	63	Eyx	Eyy	0	[µ]	=	μ	μ _{γx}	μ _{γγ}	0	(1)
		lo	0	Ezz]				lo	0	μæ	

where e_0 and μ_0 are the free space permittivity and permeability.

Fig. 1. Geometry of the thin plate and cylindrical shell

The formulation of scattering and radiation problems has alreadly been outlined in referenc [3]. Since the duality concept can be applied to obtain the TE solution, once the TM solution i known, the formulation for both of these problems is restricted to the TM case. The radar cross

B. Beker performed this work under the 1992 ASEE Navy Summer Faculty Research Program & NCCOSC. T.Q. Ho and J. C. Logan were supported by the Office of Naval Technology under the Surface Ship Technology Block.

0-7803-1246-5/93/\$3.00 C 1993 IEEE. 1760

section (RCS) of the plate can be computed after the equivalent surface currents have been determined using surface integral equations. The z-component of the scattered electric field is obtained from

$$E_{z}^{*}(\vec{\rho}) = \frac{-k\eta}{4} \int J_{z}(\vec{\rho}') H_{o}^{(2)}(kR) ds' + \frac{k}{j4} \int M_{*}(\vec{\rho}')(\hat{n}' \cdot \hat{R}) H_{1}^{(2)}(kR) ds'$$
(2)

by taking large argument expansions of the Hankel functions. In the above equation, ϕ' is the angle that unit normal makes with the x-axis, and $\hat{\rho}$ corresponds to the direction of the far field. The RCS is defined through the following relation:

$$\sigma = \lim_{\rho \to \infty} \left(2\pi \rho \frac{|\mathbf{E}_{g}^{*}|^{2}}{|\mathbf{E}_{g}^{*}|^{2}} \right)$$
(3)

where E_{z}^{i} is the incident plane wave field.

The anisotropic shell is illuminated by a source placed inside. For this particular case, the TM polarized line source has the E and H fields that are given by [4]

$$\vec{E}^{i} = -\hat{z} \frac{k\eta}{4} I_{o} f(\rho, \phi) H_{o}^{(2)}(k [\vec{\rho} - \vec{\rho}])$$
(4)

and

Ĥ

$$=\frac{-\nabla \times \vec{E}^{i}}{j\omega\mu}$$
(5)

with I, and $f(\rho, \phi)$ being the line source current and taper pattern function, respectively. The integral equations are then solved for the surface equivalent currents on the shell, and the radiation pattern is computed from them.

Results

20.

The scattering properties of a thin plate due to TE excitation are shown in Figs. 2 and 3. The anisotropic plate is lossless and is characterized by three sets of material parameters, namely ($\epsilon_{XX} = 2, \epsilon_{YY} = 4$), ($\epsilon_{XX} = 4, \epsilon_{YY} = 2$), ($\epsilon_{XX} = 2, \epsilon_{YY} = 4, \epsilon_{XY} = -\epsilon_{YX} = 2$) with zz-element of permeability equal to 2. The excitation to the scatterer is a polarized plane wave with frequency of 300 MHz. Both incidence angles of 0° and 45° are considered. For broadside incidence, the RCS patterns of plates with different diagonal permittivity tensors differ significantly. This is particularly evident in the backscattering direction ($\phi_8 = 180^\circ$). At this angle, the RCS corresponding to case (b) is nearly 30 dB lower than the calculated RCS for case (a). The introduction of $\epsilon_{XY} = -\epsilon_{YX} = 2$ seems to raise the RCS level in both forward and backscattering directions. As the direction of incidence is skewed, the scattered field from the plate also changes. Fig. 3 shows the RCS of the plate when $\phi_1 = 45^\circ$. Under such conditions the incident field, which now has both x- and y- components, senses every element of [e] tensor.

In the above cases, the anisotropic medium is assumed to be characterized by tensor elements whose numerical values are quite different from one another. For the following case dealing with radiation from a line source inside a circular shell, medium parameters corresponding to those of actual composites that were determined from the measurements are used. Particularly, for the E-glass composite, where tensor elements ϵ_{XX} and ϵ_{yy} range from 5 - j 0.1 to 5 - j 0.125 and from 4.5 - j0.09 to 4.5 - j0.1125, respectively, the shell is lossy with inner and outer radiii chosen to be 0.1 and 0.125 m. The polarized source at 400 MHz is located at the center and is assumed to be radiating uniformly in all directions. Fig. 4 shows the power loss as a function of the anisotropy and material conductivity. The two curves are calculated by varying one clement of $[\sigma_1]$ while keeping the others constant. The real parts of ϵ_{XX} and ϵ_{yy} are 5 and 4.5, respectively. Notice that the power loss is not the same for increasing loss tangent values in x- and y-directions. The corresponding radiation pattern of the shell is shown in Fig. 5. Despite the highly symmetric geometry and uniformity of the

excitation, the radiation pattern is not uniform. This is a direct consequence of material anisotrop even though the actual difference between ε_{XX} and ε_{YY} is small.

References

- R.D. Graglia and P.L.E. Uslenghi, "Electromagnetic Scattering from Anisotropic Materials, Part II: Computer Code and Numerical Results in Two-Dimensions," IEEE Trans. AP, Vol. 35, Feb. 1987, pp. 225-232.
- [2] J.C. Monzon, "On a Surface Integral Representation for Homogeneous Anisotropic REgions: vi Two-Dimensional Case," IEEE Trans. AP, Vol. 36, Oct. 1988, pp. 1401-1406.
- [3] B. Beker, K. R. Umashankar, and A. Taflove, "Numerical Analysis and Validation on the Combined Surface Integral Equations from Electromagnetic Scattering by Two-Dimensional Anisotropic Objects," IEEE Trans. AP, Vol. 37, Dec. 1989, pp. 1573-1581.
- [4] C. A. Balanis, Advanced Engineering Electromagnetics, Wiley, New York, 1989, p. 573.

Fig. 3. Scattering cross section of a thin plate with 45^o incidence (a) $\varepsilon_{XX} = 2$, $\varepsilon_{YY} = 4$ (b) $\varepsilon_{XX} = 4$, $\varepsilon_{YY} = 2$ (c) $\varepsilon_{XX} = 2$, $\varepsilon_{YY} = 4$, $\varepsilon_{XY} = -\varepsilon_{YX} = 2$

Fig. 5. Radiation pattern of a uniform line source located inside anisotropic shell