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action of impact loading, inelastic material deformation and crack geometry with the goal of improving
procedures for the engineering assessment of flaws located in critical structures. The work focuses on the
bending-type test specimen employed to measure the inherent fracture toughness of a material. A thor-
ough understanding of the test specimen behavior is a prerequisite to the application of measured material
properties in structural applications.

Three- dimensional dynamic analyses are performed for three different specimen configurations
(a/W=0.5, 0.15,0.0725) of single edge bend, SE(B), fracture specimens subjected to impact loading. Load-
ing rates obtained in routine drop tower tests (terminal load-line velocity of 100 in/sec) are applied in the
analyses. The quarter-symmetric finite element models have 2000, 8-node elements. Such models are
refined sufficiently to provide detailed information about overall load-displacement response, Crack Tip
Opening Displacement values and J-integral values. The mesh refinement provides only a coarse predic-
tion of crack tip stress fields over distances of a few CTODs. Explicit time integration coupled with an effi-
cient element integration scheme is used to compute the dynamic response of the specimen. Strain-rate
sensitivity is introduced via a new, efficient implementation of the Bodner-Partom viscoplastic constitu-
tive model. Material properties for A533B steel (a medium strength pressure vessel steel) are used in the
analyses. Static analyses of the same SE(B) specimens provide baseline results from which inertial effects
are assessed. Similarly, dynamic analyses using a strain-rate insensitive material provide a reference for
the assessment of strain rate effects. Strains at key locations and the support reactions are extracted from
the analyses to assess the accuracy of static formulas commonly used to estimate applied ) values. Inertial
effects on the applied J are quantified by examining the acceleration component of)J.
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ABSTRACT

Many significant problems in fracture mechanics of ductile metals involve surface breaking
defects (cracks) located in structures that are subjected to short-duration loading caused by
impact or blast. When the severity of impact loads is sufficient to produce large inelastic defor-
mations, the assessment of crack-tip conditions must include the effects of plasticity, strain
rate and inertia. This research examines the interaction of impact loading, inelastic material
deformation and crack geometry with the goal of improving procedures for the engineering
assessment of flaws located in critical structures. The work focuses on the bending-type test
specimen employed to measure the inherent fracture toughness of a material. A thorough un-
derstanding of the test specimen behavior is a prerequisite to the application of measured ma-
terial properties in structural applications.

Three- dimensional dynamic analyses are performed for three different specimen config-
urations (a/W=0.5, 0.15,0.0725) of single edge bend, SE(B), fracture specimens subjected to
impact loading. Loading rates obtained in routine drop tower tests (terminal load- line veloc-
ity of 100 in/sec) are applied in the analyses. The quarter-symmetric finite element models
have 2000, 8-node elements. Such models are refined sufficiently to provide detailed in-
formation about overall load- displacement response, Crack Tip Opening Displacement val-
ues and J-integral values. The mesh refinement provides only a coarse prediction of crack tip
stress fields over distances of a few CTODs. Explicit time integration coupled with an efficient
element integration scheme is used to compute the dynamic response of the specimen. Strain -
rate sensitivity is introduced via a new, efficient implementation of the Bodner- Partom visco-
plastic constitutive model. Material properties for A533B steel (a medium strength pressure
vessel steel) are used in the analyses. Static analyses of the same SE(B) specimens provide
baseline results from which inertial effects are assessed. Similarly, dynamic analyses using a
strain-rate insensitive material provide a reference for the assessment of strain rate effects.
Strains at key locations and the support reactions are extracted from the analyses to assess the
accuracy of static formulas commonly used to estimate appliedJ values. Inertial effects on the
applied J are quantified by examining the acceleration component of J.
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I 1 Introduction

1.1 Overview

3( Many significant problems in fracture mechanics of ductile metals involve surface breaking

defects (cracks) located in structures that are subjected to short-duration loading caused by

I impact or blast. The duration of such loadings is often less than 0.005 seconds. Examples of

structures under such short duration loads include pipelines, off-shore structures, railroad

rolling stock and maritime vehicles. These structures experience severe impact loading during

accidents. Failures initiated by fracture originating from pre-existing defects are generally

catastrophic and may lead to environmental damage, economic loss and possibly loss of life.

When the severity of impact loads is sufficient to produce large inelastic deformations, the as-

sessment of crack-tip conditions must include the effects of plasticity, strain rate and inertia.

This research examines the interaction of impact loading, inelastic material deformation and

crack geometry with the goal of improving procedures for the engineering assessment of flaws5 located in critical structures. The work focuses on the bending-type test specimen employed

to measure the inherent fracture toughness of a material. A thorough understanding of the test

specimen behavior is a prerequisite to the application of measured material properties in

structural applications.

SFracture mechanics provides a quantitative methodology to assess the significance of struc-

tural flaws. The relative safety of a structure containing a defect is determined by comparing

the material's fracture resistance to the driving force for fracture caused by the loading. The

prediction of fracture performance in general requires: 1) experiments to measure criticalJ-

I values and Crack-Tip Opening Displacement (CTOD) in simple geometries (e.g., bend

bars), and 2) analytical/numerical procedures to predict the applied J and CTOD values in

both laboratory specimens and structural components. The crack-tip parameters cannot be

measured directly from experiments ii tL,• laboratory; they must be inferred from the mea-
sured loads, displacements and possibly strains measured at key locations on the specimen.5 The evaluation of fracture performance requires that the test method and the accompanying

analytical procedures reflect the dynamic aspects of the impact loading. Numerical analysesI play a key role in developing and validating the experimental procedures by providing the rela-

tionship between the fracture parameters and the quantities that are measurable in a fracture

m test.

Dynamic fracture testing is frequently perfornm. Mith a drop tower arrangement as illus-3 trated in Fig. 1.1-1. Specimens are fabricated with a through-thickness saw cut that is sharp-3 1



I
!

Drop Weight
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S~~Aluminum Wedge
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II
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Figure 1.1 -1. Typical Drop Tower Arrangement for Impact Fracture Testing

ened with fatigue loading. Three-point bending is accomplished with the support arrange-
ment indicated in the figure. Deeply notched specimens (a!W=0.5, where a is the crack depth
and Wis the total specimen width) with 2 inch (50.8 mm) square cross-sections and 9 inches
(228.6 mm) long have been successfully tested with a drop weight of 1200 pounds (544.3 Kg)
having an impact velocity of approximately 20 f/s (6.1 m/sec). This impact velocity corresponds
to a drop height of approximately 4 ft. (1.2m). The elapsed time from initial impact to specimen
fracture is in the range of 0.001-0.006 seconds for ferritic materials with yield strengths of 60 3

23



to 100 ksi (413.7 to 689.5 MPa). Numerical studies [70,72,74] have demonstrated that the

applied load vs. time for deeply notched specimens is predicted accurately using the ordinary

static bending formula keyed to strains inferred at the quarter-span locations as indicated on

the figure. Two factors enable this accurate correlation of strain gage readings with applied

load: 1) the soft aluminum wedges minimize elastic rebounding of the drop weight upon initial

impact, and 2) the large a/Wratio confines inelastic deformations to the net ligament on the

crack plane.

Numerical analyses of the deeply notched specimens also demonstrate the adequacy of

static bending formulas to predict the applied J-value from the measured load once the tran-

sition time tT, is exceeded (see Fig. 1.1-2) [70,71,72]. The transition time defines the point

S 2.0

W ty transition time
I-

CO 1.0 ... .....
0

2 0.5

0

0 0.5 1.0 1.5 2.0 2.5 3.0

Time t/tT

Figure 1.1 -2. Energy Ratio vs Time for a Three Point Bend Specimen

after impact at which the internal energy of deformation, U, equals the kinetic energy, T Fol-
lowing the transition time, the deformation energy increases at a faster rate than the kinetic

energy. For deeply notched specimens of medium strength steels (60 to 100 ksi, 413.7 to 689.5

MPa), the transition time occurs after stress-wave effects have dissipated but while strain

rates at the crack tip remain quite large. These materials generally have sufficient toughness

that first crack extension occurs when t > 2 - 5 tT, a time sufficiently long for extensive plastic

deformation to occur. The tests reveal a significant elevation ofJ-values required to initiate

crack extension under impact loading compared to those for static loading [49]. The increase
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of criticalJ-values for impact loading is attributed currently to the elevated yield stress caused I
by the viscoplastic response of the material.

Drop tower tests and parallel numerical analyses for deeply notched specimens have pro-
vided the first insights into dynamic fracture toughness under large-scale yielding conditions.
However, practical applications must await a similar understanding of the behavior for shal-
low, rather than deeply, notched specimens. Real flaws in structures are most often shallow,
surface breaking defects rather than deep, through-thickness cracks; moreover, the loading
is predominantly tension rather than the severe bending present in the three-point bend spec-
imen. Static tests and numerical analyses reveal substantial increases (factors of 3 to 5) in frac-
ture toughness for bend specimens with shallow notches (a/W <0.15) caused by the lower con-
straint against plastic flow [6,30]. Similar increases in fracture toughness are anticipated for
impact loading. Researchers currently believe it is desirable to employ bend bars containing
shallow, through- thickness cracks to approximate the constraint conditions present at surface
cracks subjected to tension loading [6,30].

This research presents the first detailed effort to address the effects ofviscoplastic response
and crack-tip constraint on the fracture driving force in deep and shallow notched three-
point-bend specimens under impact loading. Specifically, the behavior of the specimens prior 5
to crack initiation is investigated. By quantifying the different dynamic effects: viscoplasticity,
inertia and the acceleration component of the J-integral, a much improved understanding of
impact fracture is developed. A parallel evaluation of the techniques utilized in the testing pro-
cedures for the calculation of fracture driving force clarifies the extent of possible errors and

inaccuracies in the measured fracture toughness.

The remainder of this chapter provides additional background material and concludes with 3
the discussion of specific objectives for this research.

1.2 Crack-Tip Characterization

1.2.1 Crack-Tip Fields In TWo-Dimensions I
Characterization of the crack-tip stress-strain field by theJ-integral is well understood

for quasi-static loadings in two dimensions. J is a scalar parameter defined by a contour inte- I
gral in two dimensions as shown in Fig. 1.2-1. Introduced by Rice [85], theJ- integral is a mea-
sure of energyreleased per unit crack extension and is thus termed energy release rate. For linear U
elastic structures it is identical to G, the Griffith elastic energy release rate, and is related to
the stress intensity factor Kr [85]. Hutchinson [47], Rice and Rosengren [87] (HRR) showed 3
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j =rli J Wn - ai, jUi dr

where:
W = strain energy density
"nj = components of R

, ; i = outward normal

2 r a= stress components

Xl r ui = displacements

=x, = coordinate directions

Figure 1.2-1. Definition of the Two Dimensional J-integral

that the J-integral is a direct measure of the intensity of the stresses and strains ahead of a
sharp crack tip fcr a nonlinear elastic, power-law hardening material under conditions of
plane-strain, small-scale yielding and static loading. The power-law relation is expressed
as:

2/2o = a( o)n(1.2-1)

where n is the hardening exponent, ao is a reference yield stress, co = a 0/E is the associated
reference strain with E denoting Young's modulus. The parameters a and n are chosen to fit
the material's uniaxial a - z curve. The first term of the asymptotic singular fields can then
be written as:

ciii =. co(OlrOoir) .41 O~n (1.2-2)

S(1.2-2)

Eii - aSO( + i,) n (1.2-3)

where r and 0 are polar coordinates originating at the crack tip, a and z are dimensionless
6-variations and In is an integration constant that depends on n.
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As the initially sharp crack tip blunts under increased loading, the opening displacement U
as shown in Fig. 1.2-2 is often used as a measure of crack-tip deformation. Shih [93] showed

CTD it,

Figure 1.2-2. Definition of the Crack-'lip Opening Displacement (CTOD) I
that the Crack-Tip Opening Displacement, (CTOD),varies linearly with the applied J-inte-

gral for a power-law hardening material: I
6, = d,(avo,n)J0 (1.2-4) 3

where 6, denotes the CTOD and d. is a dimensionless coefficient dependent on material

constants a, E0 and n.

The asymptotic fields exist rigorously under conditions referred to as "small-scale yield-
ing" (SSY). SSY represents the conditions at a single-eriled crack tip located in an infinite 3
body subjected to remote loading. Regardless of the extent of plastic deformation, there always
exists a surrounding linear-elastic, A- field. In finite-sized test specimens and structures, 3
SSY conditions exist only in the early stages of loading; once the plastic zones sense the pres-
ence of traction free boundaries the SSY field degenerates. Current research in this area cou-

ples the loss of constraint at the crack tip with a second parameter that quantifies near-tip
stress triaxiality for cases in which the material and configuration restrictions for small-scale
yielding are violated [63,30,6,80,81]. Two recently proposed r, odels that have succeeded in
quantifying the crack-tip stress fields under varying constraint conditions are the Dodds-An-
derson model [30,6,7] and the Shih-O'DowdJ-Q annulus [80,81] approach.3

63



1.2.2 Crack-Tip Fields in Three-Dimensions

A rigorous definition of HRR crack-tip fields does not exist for the three-dimensional
crack problem. However, remote from the free surfaces, it is argued and demonstrated from
computational studies that near plane-strain conditions are approached leading to HRR-
type fields. The variation of a local pointwise J-integral under static loading along a crack
front in three dimensions has been studied in finite element analyses [17,29,28,41,99]. Most
of these studies lack sufficient refinement of the finite element mesh near the crack tip to fully
resolve the structure of the crack-tip fields. Correlation of the J-integral with stress-strain
fields ahead of the crack tip is difficult due to the level of refinement necessary to examine the
crack-tip fields. However, a few such studies are now being reported.

Parks [83] has performed very detailed, three dimensional finite element analyses of sur-
face cracks in a tensile panel. A deformation-plasticity model (nonlinear elastic) in the form
of a power-law relation (Equation 1.2- 1), with small displacements was used. Two crack con-
figurations (one semicircular and the other elliptical), each with two material hardening pa-
rameters (a = 1.0, n = 5, 10) were analyzed. Crack-tip fields werC monitored in detail up to
loading levels approaching gross section yield, a ' /a7 - 1. Parks et al. found excellent correla-
tion of the crack-tip fields with J provided the conditions of SSY were satisfied. Correlation
of the crack- tip fields withJ degraded rapidly as the applied load produced gross section yield-
ing and violated the SSY conditions.

This same study also demonstrated that the relationship between the local CTOD and the
localJ along the crack front retains the linear form described in Shih's study [93]. This observa-
tion enables the experimental evaluation of J from CTOD values obtained by infiltration and
replica techniques.

1.3 J-integral Methods

Rice's ,riginalJ-integral [85] has been generalized into a total energy release rate by Car-
penter [19]. The general formulation includes the effects of inelastic strains (plastic and ther-
mal) through area integrals defined over the domain enclosed by the planar contour (A in Fig.
1.2-1). The area integrals are a consequence of the explicit partial derivative of the work den-
sity which does not vanish for inelastic material response. Inertia forces within the domain,

through-thickness stress gradients and crack face tractions require additional integrals [89].

A volume integral approach, initially derived by Parks [82] and Hellen [44] using the physi-
cal interpretation of a virnual crack eansion, has been extended into a more general form using
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continuum mechanics concepts by Nikishkov [76], Shih [91] and de-Lorenzi [22]. This ap- I
proach is especially well suited for finite element models constructed of isoparametric ele-

ments. The required integrations over element volumes parallel closely the element stiffness 1
calculations. Inelastic strains and body forces are accommodated through volume integrals
similar in form to those required to generalize the contour integral method for these effects.
This domain integral technique enables the computation of both pointwise values of J along
the crack front and, for through-thickness cracks, a weighted mean value of J as well. 3

Extensions of these integrals to include dynamic effects have been presented by Nakamura
[71]. Three additional integrals are necessary:, a kinetic energy term, a velocity gradient term 3
and an acceleration term. The kinetic energy term and the velocity gradient term are zero for
a dynamically loaded specimenwith a non-growing crack; only the acceleration (inertia) term

is needed.

Computational aspects of the volume integral techniques are provided by de-Lorenzi I
[22,23], Nikishkov [76,77], Shih [90,91], Dodds [32,34] and others [64,98,65,45].

1.4 Dynamic Fracture Tests

Drop tower tests performed on three-point-bend specimens are often employed to eval -
uate elastic-plastic fracture toughness of a material under impact loading. Extensive studies

on high strength, low alloy materials have been performed for deep cracks (a/W>0.5) 1
[49,50,51,52,53,54]. More recently, the same approach for testing shallow crack specimens (a/
W-0. 1) under impact loading has been studied [59,60]. The following sections summarize re-
suits of dynamic fracture tests for deep and shallow cmck specimens.

1.4.1 Deep Crack Tests

Joyce et. al. [49,50,51,52,53,54] performed dynamic fracture tests to obtain J-resistance 5
curves for high strength, tough steel alloys used in naval and nuclear power applications.
Three -point-bend specimens with deep notches (a/W - 0.5) were tested in a drop tower ap- 3
paratus illustrated in Fig. 1.1-1. The specimens had a 1 in. by 2 in cross-section (IT) with 20%

side grooves. Aluminum wedges were used as impact absorbers to minimize high frequency

load oscillations due to hammer rebounding. This setup produced a nearly linear rise of load
with time [52,53,54]. An optical probe attached to the specimen monitored the load-line dis-
placement. Strain gages located at the quarter span position (see Fig. 1.I-1) were calibrated 1
in a corresponding static test to infer the applied load. The conventional static formula was

applied to relate the measured external work to applied J. Supportive numerical analyses by 3
83



INakamura et al. [70,72] confirmed the quasi-static nature of the drop tower test provided the
fracture event occurred well after the transition time.

By using the drop tower testing apparatus together with the small aluminum wedges, Joyce
e t. al. were able to achieve essentially constant velocity loading of specimens over a wide range
of specimen sizes. This result is obtained when the internal energy absorbed by the specimen
remains vanishingly small compared to the kinetic energy of the hammer - tup assembly. Fol-
lowing an initial transient period, the displacement record exhibits a constant terminal velocity
that is equal to the velocity of the hammer- tup assembly. These aspects of the drop tower test

greatly simplify the generation of dynamic fracture toughness data for different materials and
temperatures.

1.4.2 Shallow Crack Tests

Kirk et. al. [59,60] extended the drop tower procedure to include three-point bend speci-
mens with shallownotches (a/W < 0.15). The fracture specimens had a 2 in. by 2 in. cross - sec-
tion without side grooves. These much stiffer specimens, combined with an increased drop
height, required modification of the double wedge impact absorber used in the deep crack test-
ing. Kirk found that the two wedge system sliced through each other, which reduced the effec-
tiveness in damping high frequency oscillations. A single pyramid shaped impact absorber
solved this problem.

5 Unlike the deep notch specimens, the deflected shape for shallow notched specimens is not
adequately modeled as two rigid arms rotating relative to each other about the crack plane.

The overall bending deformation of the shallow notched specimen required that four non -
contacting transducers be positioned along the underside of the bend specimen to evaluate the

I load-line displacement (see Fig. 1.4-1). Data from the four transducers, together with an
empirical correlation derived from corresponding static tests, ailowed the evaluation of the
load-line displacement. Kirk et. al. anticipated extensive amounts of plasticity in the speci-

men due to shallow cracks and much larger loads. To capture potential nonlinear strain distri-
butions remote from the crack plane, six equally spaced strain gages were placed at the quarter3 span location to estimate the applied load. Measured strains were converted to their corre-
sponding stress from a uniaxial stress-strain curve of the material. The resulting stress distri-3 bution was integrated over the cross section to obtain a moment at the quarter span location
from which the applied load was inferred for calculation of fracture parameters. The two strain3 gages placed near the crack tip signaled the onset of crack extension.

Kirk found that the empirical correlation used to evaluate the load-line displacement ap-
I plies equally well to both higL hardening and low hardening materials. Although the exper-

1 9



I
I

Aluminum Pyramid

Strain Gage Locations

NII

Crack Tip -aaes

Strain Gage Locations;

Eddy Current GagesI
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the Shallow Flaw Three- Point- Bend Specimen

imental technique as modified for shallow-crack specimens appears successful, questionsI

about the interpretation of results remain due to viscoplastic and inertial effects.

1.5 Calculation of J-integral from Measurable QuantitiesI

Rice [86] showed that the,/-integral for a deeply notched three-point bend specimen isI

given, to a good approximation, by integrating the product of the ligament moment and rota-
tion of the specimen ends. By relating the moment to the applied load and the rotation to theI

load -line displacement, Sumpter [96] derived an expression that evaluates the J- integral
from the load -displacement curve of the specimen. Although initially limited to deep cracks,!

extension of this approach to shallow cracks in an elastic-perfectly plastic material was

achieved through a plastic proportionality factor, denoted j7,, that relates the internal plastic
work to the plastic component of the applied J [96]. Kirk [61] studied Sumpter's formulas toI

10



determine their applicability for different hardening materials. He found that for shallow flaws

(a/W<0.25) the relationship between theJ-integral and the load -displacement curve is high-

ly dependent on strain hardening properties of the material. By using the crack mouth opening

displacement (CMOD) of the specimen for computation of internal plastic work, instead of

the load -line displacement, the plastic component ofJbecame essentiallyindependent of ma-

terial hardening.

1.6 Finite Element Studies of Impact Loading

Nakamura et. al. [70,72,74] performed both 2-D and 3-D finite element analyses of a

three-point bend specimen with a deep crack (aIW = 0.5) under impact loading. Relatively

coarse meshes were used in their studies, with crack-tip element sizes on the order of 0.1 in-

ches (2.54 mm). An idealized ramp loading was applied to the finite element model.J-values
were calculated over the complete loading history using domain integral techniques. The
equations of motion were explicitly integrated (FEAP [100]). The material response was mod-

eled with a strain-rate independent J2-flow theory of plasticity with a hardening exponent,

n, of 10 [70,72]. Subsequent work [74] employed a strain hardening, elastic-viscoplastic mate-
rial model. Loading durations of approximately 0.001 seconds were considered. No attempts
were made to compare numerically predicted responses with results of actual tests.

These computational studies by Shih and co-workers [70,71.72,73] assume a -priori char-
acterization of the crack-tip fields by the J-integral even though no theoretically rigorous

link exists betweenJ and the stress-strain fields. (An HRR -type description of the crack- tip

fields has yet to be developed for non-propagating cracks under dynamic loading.) Rather,
they applied the energetic interpretation ofWas the energy release rate to characterize the rela-

tive intensity of crack- tip deformation between the test specimen and structure. These studies

focused on determining when the effects of impact loading become negligible in the computa-
tion ofJ. They introduced a transition time tT at which the total energy of internal deformation
exceeds the kinetic energy of the specimen (see Fig. 1.1-2). A simple strength of material
model was developed to predict the transition time as:

_ , where S = .L__BE (1.2-5)

UC 0 z1,D(t) -

where T and U are the kinetic and internal energies respectively, W, B, and L are the specimen

width, thickness and half the span length between the supports. Cq is the specimen compliance,

co is the unconfined dilatation wave speed of the material (,/E7l), ALLD and ALL are the

• , • . • I II II



load-line velocity and displacement respectively. The predicted transition time from this I
model agrees well with the 3-D finite element results for deep notch specimens.

In these studies, J-integral values from the finite element analyses were compared with
J-values computed using the conventional quasi-static formula to determine when the dy- 3
namic effects became negligible. In the quasi-static formula, the computed moment across
the remaining ligament together with a rotation angle between the specimen ends were used
to compute the internal work of the specimen, which was then related to the J-integral. Dy-
namic effects were found to be significant prior to twice the transition time (2tT) in the deep
crack specimens. The quasi-static formula predicted accurate values of the J-integral once
the dynamic effects diminished sufficiently, i.e., t > 2 tT. Nakamura et al. normalized the J- in-
tegral with respect to the strain energy density at yield. The mid- section moment was normal- 5
ized by the limit moment. Once normalized in this manner, both the static and the dynamic
J-values collapse onto a single curve.

The transition time was found to be 27 x the time required for a longitudinal wave to travel
the specimen width (W). For example, the transition time of the three-point bend specimen I
of two inch width, with the material properties of steel, is approximately 230 ps.

Nakamura also conducted a study incorporating a strain-rate sensitive material model in
a deeply notched three-point bend specimen under impact loading [74]. Rate-sensitive and

insensitive finite element analyses were compared for the idealized ramp loading. The loading I
duration was the same as in the previous studies, - 10 -3 seconds. Nakamura found that the
rate-sensitive material consistently exhibited lower J-integral values than the rate-inde- -
pendent material model, even though the ligament moments were higher in the rate- sensitive
specimen. The rate -sensitive model elevated the yield stress for material in the ligament. This 3
forced deformation away from the crack-tip, thereby also lowering. compared to the rate-
independent model at the same applied loading. The rate-sensitive model had a more nearly 3
uniform distribution of applied J across the crack front. Nakamura also found that rate sensi-
tivity of the material model did not affect the accuracy ofJ obtained from the quasi- static for-

mula.

1.7 Objectives and Scope I
Assessment of the fracture properties of a material under impact loading is possible only

by quantifying the dynamic effects on the specimen response. Recent extension of testing pro- I
cedures to examine shallow notched specimens introduces significant complexities for the in-
terpretation of measurable quantities. The, objective of this study is to develop a broader un- 5
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derstanding of fracture parameters in the impact testing of notched bend-bars. The research
focuses on numerical analyses with comparisons (where possible) to fracture tests recently

completed at the David Taylor Research Center (Annapolis laboratory).

Impact testing produces three dynamic effects of interest: 1) stress waves and specimen os-

cillations; 2) high strain rates at the crack tip, and; 3) acceleration of material in the crack- tip

region that may shield the crack tip. Direct experimental evaluation of these effects and their

influence on the fracture parameters of the SE(B) specimen is not possible. In this study, nu-

merical analyses are conducted to examine each of these effects. Corresponding quasi-static

analyses provide a reference from which dynamic aspects are assessed. Dynamic analyses with
two different materials, a rate-independent material and a rate- sensitive material, are used

to quantify the strain rate effects. The validity of the transition time concept as it applies to

shallow flaws is also examined through these analyses. Strains at key locations and the support
reactions, quantities which are measurable in the laboratory, are extracted from the analyses
and used in quasi-, static methods forJ computation. The time at which dynamic effects dimin-
ish sufficiently for these formulas to apply is determined and compared to the transition time.

Of particular interest in this work is the dynamic behavior of specimens as a function of
crack depth, i.e. from deep cracks to shallow cracks. Three dimensional static and dynamic

analyses are conducted for bend specimens with three different crack depths: aIW = 0.5, 0.15,
0.0725. Specimen dimensions are 2 inch by 2 inch cross section, 9 inches long, with an 8 inch
loading span [59]. Stress-strain properties for A533B steel are used in all analyses. The effects

of strain rate on the uniaxial stress- strain behavior of this material have been extensively stu-
died. The present work focuses on the applicability of the quasi-static methodology employed
in fracture testing to infer the applied fracture driving force.J. Details of the near -tip stress-

strain fields are not pursued in this work due to the prohibitive computational costs.

1.8 Outline

This report contains five chapters. Chapter 2 provides additional theoretical background.
The dynamicJ- integral is developed and its computation via domain integrals is outlined. The

Bodner- Partom viscoplastic material model and its application to A533B steel are described.

The procedure to calculate the fracture parameterJ using quantities measured in the experi-
ments is developed.

Chapter 3 describes the computational procedures employed in this research. The relevant

details of the Spectrom finite element computer code are provided. Details of the implementa-
tion of J-integral calculations and the Bodner-Partom viscoplastic material model are pro-
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vided. The methodology used to reproduce the load-line displacement history of the test I
specimen in the finite element simulations is developed.

Chapter 4 provides the results obtained from the finite element analyses. Comparisons be-
tween the different crack depths are developed for the various parameters studied. Transition
time concepts and techniques to compute fracture parameters are also evaluated.

Chapter 5 provides the conclusions and recommendations derived from this research. I

I
U
I
I
U
I
U
I
I
i

I
I

I, i



2 Theoretical and Experimental Background

This chapter presents the theoretical and experimental background material that forms the
basis of this research. The first section develops extensions of the J- integral to include inertial

effects and expands the formulation into a domain integral suited for finite element applica-

tions. This is followed by development of the quasi-static formula utilized for evaluation of

J from measured load-displacement curves. In the third section, the Bodner-Partom visco-

plastic material model is described. The effects of each material dependent parameter

employed in the model are examined. The description of a material well characterized by the
Bodner-Partom material model, A533B steel, is also included in this section. The last section
provides some additional details of the drop tower test and their influence on the development5 of analysis procedures utilized in this work.

I 2.1 J-Integral with Inertia Loading Effects

Extensions of the J-integral to incorporate the effects of dynamic loading for non-grow-
ing cracks are established by including the kinetic energy density of material at the crack tip
in the same manner as the strain energy density [70,71,72,73]. Thus,

j HM W TýnI .0jn•-ý-'d

W f= i- i ei (2.1-2)

T [Uid2 (2.1-3)

I ~where W and T are the strain and kinetic energy densities, respectively; ni are components of

an outward unit vector to the contour, r; aoj and eli are the stress and strain components, re-

- spectively; () is the material mass density, u4 are the displacements; t denotes time and.i, are

Sthe coordinate directions (see Figs. 1.2- 1 and 2.1 -1). The positive direction of the contour

_ is shown in Fig. 2.1 -1. The integral becomes applicable for arbitrary material response in the

Z limit as the contour shrinks to a point on the crack front. In two dimensions the contour r is

defined in the plane. In three dimensions the contour integral is defined in a plane perpendicu-
Slar to the crack front at point s as sonin Fig. 21-1Swshown 2..1-

Ill1
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Figure 2.1-1. Local J-integral in 3-Dimensions

Work conjugacy is required for the stresses and strains (displacement gradients) in Eqns. 3
2.1-1 through 2.1-3. This requires use of the 1st Piola-Kirchoff stresses and the spatial rate
of the displacements with respect to the undeformed coordinates. Alternatively, the integral 3
can be expressed in terms of the Cauchy stress and the spatial rate of the displacements with
respect to the current coordinates. 3

The direct evaluation of Eqn. 2.1-1 is cumbersome in a finite element model due to the

geometric difficulties encountered in defining a contour that passes through the integration
points. Such a contour is desired since the most accurate stress and strain quantities are avail-
able at the integration points. Moreover, the limiting definition of the contour requires exten-
sive mesh refinement near the crack tip to obtain meaningful numerical results. The next sec-
tion develops an approach much better suited for finite element models. 3
2.1.1 Domain Form of the J-Integral 3

By using a weight function which may be interpreted as a virtual displacement field, the
contour integral is converted into an area integral for two dimensions and into a volume inte- 3
gral for three dimensions [32,23,76,77]. The resulting expressions are:

la-c = f J(s) qt(s) ] dS = h1 + 72 + 73 (2.1-4)
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where qk is the weight function in the k coordinate direction (qr(s) represents the resultant val-

ue of the weight function at point s on the crack front), Vrepresents the volume of the domain

surrounding the crack tip, and s denotes positions along the crack front segment. Body forces

X3

Figure 2.1-2. Finite Volume for Use in Domain Integral Formulation.

(other than inertial loading) and crack face tractions are assumed to be zero for simplicity,
S~(The treatment of body forces, crack face tractions and thermal strains involve additional inte-

grals discussed in [32].) J'(s) is the local energy release rate that corresponds to the perturba-

tion at:s, qt(:). Figure 2.1-2 shows a typical domain volume defined for an internal segment

I along a three-dimensional surface crack.

The q-function must vanish an the surfaces A1, A 2 and A3 in Fig. 2.1-2 for the develop-
iment of En.(.-5) through (2.1- 6) from (2.1-4). This requirement makes area integrals

A7

s X,
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(line integrals hi two dimensions) defined on these surfaces vanish in the derivation. Fig. 2.1 -3

shows the variation of the amplitude of a valid q-function for the domain shown in Fig. 2.1-2.

All material over which the q- function and its first derivative are non- zero must be included

in the volume integrals. The value of q at each point in the volume, V, is readily interpreted as

the virtual displacement of a material point due to the virtual extension of the crack front, j. 3

q-function X, 3

a b X33

Figure 2.1-3. Variation of Weight Function q Over Volume at Crack Front I
An approximate value of J(4) is obtained by applying the mean-value theorem over the

interval sa < s < so The pointwise value of the J-integral at s, is given by (see Fig. 2.1-3): I

IS: J(s) q, ) 3s
J(s =b) -= " __ (2.1-8)

) eAq

where 7 is the energy released due to the crack-tip perturbation, qt(s); andAq, the increase

in crack-area corresponding to this perturbation, is simply the integral of q, along the crack 3
front from s. to sc.

For SE(B) specimens, the crack front is generally straight or only slightly curved. For such I
crack geometries, the average J for the entire crack front value is obtained by the application

of a uniform q, across the full crack front.3
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U The above volume integrals are evaluated by Gauss quadrature. Derivatives of the q-

function over each finite element in V are computed by standard isoparametric techniques

from specified values of q at element nodes. References [98,34] describe procedures for the

evaluation of higher order derivatives of the integrands in 72. The higher order derivatives are

5 computed by either: 1) extrapolating Gauss point values to the element nodes and applying

standard isoparametric techniques or, 2) interpolating the Gauss point values to a lower order

I 1integration within the element. Chapter 3 provides additional details on these procedures.

I2.1.2 Domain form of the J-Integral: Discussion

The72 integral vanishes for an elastic material (linear or nonlinear) in the absence of ther-

5 mal strains as shown in the following manner. By exchanging the order of differentiation and

utilizing the (small displacement gradient) strain tensor definition, the second term in Eqn.

3 2.1-6 is rewritten as:

=i aij ) = ar..ij (2.1-9)

3 The chain rule is now evoked to expand the first term in Eqn. 2.1-6. The resulting derivative

of strain energy density with respect to strain is the stress tensor for elastic materials. The result

OW _ OWaE 1 - IE (2.1-10)

ax at, ax, c

3The two terms defining the integrand of72 thus sum to zero for elastic materials.

Dynamic loading effects appear in the) 3 term of the domain integral representation of the

J-integral. The first term in 73 provides the flux of the kinetic energy in the direction of the
crack propagation. The second and third terms arise from the explicit partial derivative,

3 (0/Ox1 ), of the kinetic energy density. The second term contains material accelerations and the

third term is identified with the spatial gradient of the velocities. The second term, containing

Sthe material accelerations, has been found to make significant contributions to the total7-in-

tegral for non-propagating cracks. This term is similar in form to domain integrals that ac-

3 commodate ordinary body forces.

For an elastic structure under static loading (without any thermal strains), 72 and 73 are

I identically zero. For incremental (load path dependent) plasticity, the deviation of 72 from
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zero indicates the degree of non-proportional loading experienced over the domain of inte- I
gration.

For many practical cases, the ioading produces nearly proportional material histories with-

in the domain of integration; in such cases the very small contribution ofJ 2 is neglected [48,98]. 3
Nakamura, et. al. neglectedJ2 for J-integral calculations in [70,71,72,73]. Vargas and Dodds

[98] show that up to 15 % of the J-integral in a 2- dimensional static case can be due to 72 for 3
incremental plasticity models when the plastic strains and the elastic strains within the domain

are similar in magnitude. For larger plastic strains, however, this difference diminishes to less

than 0.1%, which justifies the use of 71+ J3 as an approximation to Eqn. 2.1-4 for large

amounts of plastic deformation. The effects of thermal strains in the calculation of 7 are re-

ported in [98,76]. The contribution of 72 in the presence of thermal strain gradients within the

integration domain is significant.

The derivation of Eqns. 2.1-4 through 2.1-7 is mathematically rigorous. Provided suffi-

cient resolution of the crack-tip stress-strain fields exists for accurate numerical integration,

the calculated 1-integral equals the weighted J(s), where J(s) is the contour definition in the

limit as the contour shrinks onto the crack tip. For a given qt(s), i.e., the crack front variation 3
of the weighting function, many combinations of domain volume and distribution of the q-

function are possible. Thus, similar topath independence arguments for the contouri- integral,

domain independence arguments apply for the domaini- integral. In practice, several domains

defined concentrically about the crack tip are evaluated to insure domain independence of the

computed J-integral. In the general case of thermal loading and inelastic material response

all three components of theJ- integral are required for the calculated value to be domain inde-

pendent [76].

2.2 J Evaluation in Test Specimens U
As shown by Rice [86], the i-integral is closely related to the work done by the ligament 1

moment acting through the rotation angle for SE(B) specimens under static loading (see Fig.

2.2-1). For deeply notched specimens (a/W> 0.5), theJ-integral for a SE(B) is given approx- 3
imately by: I
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I where M is the moment on the remaining ligament at the crack plane, B is the specimen thick-

ness, b is the ligament length and Q2 is the relative angle between the specimen ends (see Fig.

1I 2.2-1). This definition provides the average value of J(s) across the entire crack front.

IP

LLL

I(

Figure 2.2-1. Ide.,;ized 3 Point Bend Specimen

By assuming the two ends of the specimen undergo a simple rigid-body rotation about the

crack plane, the angle £ is related directly to the load-line displacement /kLLD, 0 =

ALLD/(L/ 2 ), where L is the total span between supports.. From equilibrium, the moment at
the specimen center, M, is simply (PL)/4. Then Eqn. 2.2-1 can be rewritten:

j = '7 P d, L. (2.2-2)

where 71 is the dimensionless constant that includes both the equilibrium condition that relates

P to M and the kinematic relationship between ZLW and 2. For deep cracks the constant j7
is - 2. This result iF. derived in the following manner. We assume that all the external work,

W, done by the forceP equals the increase in internal energy, U, of the specimen computed only

from the ligament moment acting through the ligament rotation. Then:

U =J d. W = Ip , dLLD (2.2-3)
J0

3 and:
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J0J=b2- f MdQ=-2 U-7 .. =2(-4

This simple model neglects small amounts of elastic energy stored remote from the crack

plane. Finite element computations in plane strain verify that 7 - 2 for deeply notched speci-

mens.

Eqn. 2.2-2 provides the basis for experimental evaluation of J in SE(B) specimens. The

load, P, and the load-line displacement, A4 L, are readily measured for static loading. The 3
J-integral is then proportional to the area under the measured load-displacement curve.

To estimate3J for shallow cracks in SE(B) specimens, Sumpter [96] separates the external I
work done by the applied load into elastic and plastic components, We and W.:

J3 =Je +Jp lwe +r !PW (2.2-5) I
where j7 and j/p are the dimensionless constants that relate the elastic and plastic external
work to the fracture driving force. Wp denotes the of external work of the applied load acting 3
through the plastic component of the load line displacement. rip indicates the relative amount
of plastic deformation that contributes to crack-tip driving force rather than plasticity remote

from the crack plane. By using the relationship between theJ- integral and stress intensity fac-
tor Kq for plane strain, Eqn. 2.2-5 is rewritten as:

j=J+ =KI2(j- V2) bBAf dp~ (2.2-6)

This form for J insures compatibility between measured values of J and K, when the de-
formation is predominantly linear. The plastic component of the load -line displacement, Al,,
is computed by subtracting the elastic displacement from the total displacement. Sumpter used

limit load solutions for plane-strain conditions to estimate i/p for different crack depths.
Sumpter generated polynomial curve fits for ?,p as follows [96]:

for J&<0.282; i/p = 0.32+ 12AL- 4 9 .5(A2 +99.8ta\3 (2.2-7)
W W (W.2-8)J

for -E >0.282; ri 2. 0 (2.2-8)
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Kirk et. al. [61] performed 2-D finite element analyses to examine the applicability of

Eqns. 2.2- 7 and 2.2- 8 for SE(B) specimens. A Ramberg- Osgood hardening material model

with an exponent, n = 13, was used. For a/W = 0.5, Kirk et. al. obtained an ?1p value of 1.924.

Kirk et. al. noted that a modified form of Eqn. 2.2-6 in which the plastic work is calculated

by integrating the applied load through the crack mouth opening displacement (CMOD) gave

much better accuracy for shallow crack specimens (a/W < 0.25). Moreover, the use of CMOD,

rather than A LLW, removes much of the r/p dependence on strain hardening [611.

Eqns. 2.2-6, 2.2-7 and 2.2-8 are commonly used to calculate the value of J at fracture

in test specimens.

2.3 Bodner-Partom Viscoplastic Material Model

The Bodner-Partom material model belongs to the family of viscoplastic theories of the
S"unified" approach, which combine both time-independent plasticity and time-dependent

phenomena such as creep and stress relaxation into a single state variable [13,16,20,24,26]. Ini-

tially developed from a simple model attributed to Norton [791, the Bodner-Partom material

model has since been modified to include isotropic and directional hardening effects [13,161.

The essential features of the Bodner-Partom model are: 1) the Prandl-Reuss flow rule, 2)

a kinetic equation that relates the strain rate to the stress and the hardening variable, and, 3)

an evolution law for the internal hardening variable.

The general formulation is based upon additive decomposition of the total strain rate, iii,

into elastic, is, and plastic components e:

(2.3-1)

where the superimposed dot indicates differentiation with respect to time. The elastic strain

rates are related to the stress rates through standard linear-elastic, Hookean relations for

small strain (hypoelasticity approach). The strain rates are in tensorial form, i.e. the shear

strains are one - half the engineering strains. Extension of this approach to finite strains is valid

only if plastic strains are much larger than the elastic strains (the additive decomposition of

strains and precise treatment of material elasticity then have negligible effect) [43]. The inelas-

tic strain rates, for both small and finite strain formulations, are related to the stress deviators,

s#, through the flow rule:

i) = Asij (2.3-2)
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where A is defined as a plastic proportionality constant. This approach parallels the flow rule I
employed in incremental plasticity. The inner product of both sides of Eqn 2.3-2 is taken to
yield the scalar result: I

, 2  = 2 (2.3-3)
T2

where.J2 and D2 are the second invariant of the stress tensor and plastic strain tensor, respec-

tively. Again, this parallels the incremental plasticity formulation in which the plastic propor-

tionality constant is related to the second invariant of the stress and increment of plastic strain

tensors. A kinetic relationship is introduced to relate the overall plastic straining behavior, DP2,
to the stresses, J2, and the hardening variable, Z, as:

D g2e ( (2.3-4) ID = D2oep(6 ; P= - (.

I
where Do is the limiting plastic strain rate in shear, n determines the sensitivity to stress levels

(strongly affecting the yield stress), and Z is a scalar hardening parameter. This relationship

is motivated partially by work in the field of dislocation dynamics which has shown that the

dislocation velocity is a function of the stress state [13]. Evolution of the hardening parameter

is defined as:

Z = m(Z 1 - Z)Wp; Z = Zo at t = to (2.3-5)

where Wp is the plastic work density, the superimposed dot implies differentiation with respect 3
to time, m is the rate of hardening coefficient and the two parameters Zo and Z 1 determine the

range of the hardening parameter Z. The material constants needed in the Bodner-Partom

model are thus: Do, m, n, ZO, Z 1.

Figure 2.3-1 illustrates the qualitative effect of each parameter on uniaxial stress -strain I
curves. These effects are summarized below:

D#: For a given strain rate, an increase in Do reduces the stresses at strains beyond the lin- U
ear-elastic portion of the stress-strain curve. This reduction in stress is more pro-
nounced at the higher strain rates, i.e., a higher strain rate generates a larger decrease 3
in stresses than a lower strain rate for a given increase in Do. Thus the difference be-
tween two uniaxial stress-strain curves at different strain rates decreases with an in-
crease in Do. Large values for Do reduce the overall rate sensitivity of the model.
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SFigure 2.3-1. Influence of the of the Bodner- Partomn Material Model

S~Coefficients on Uniaxial Stress Strain Curves

S~Zo, zI: 'Me parameters Zo and Z, define the range of the strain hardening parameter Z. The

hardening parameter starts with Z--Z0 at t=O; Z approaches Z1 as the plastic strain
energy density increases. Increases in the parameters Z0 and Z, are accompanied by
increases in the yield stress, ay, and saturation stress, au,, respectively.

Sn: Thbe overall stress level increases with an increase in the parameter n.

m: The shape of the hardening curve is determined by m. As shown in the figure, an in-Increase in m i ncreases the hardening behavior of the stress-strain curve.

Unlike conventional rate-independent plasticity, the Bodner-Partom material modeldoes not have an explicit yield ffinction. Eqns. 2.3-1 through 2.3-5 predict the formation of

plastic strain increments for all stress increments. It is this aspect of the model which enables
Sthe prediction of creep and stress relaxation effects. However, for a wide range of practical

strain rates, e.g. 10-6/sec to 106/se e for steels, ayieod strs behavior does exist. To resolve this
Unlik conenional rate ideednplsitythBo erPtm maei lmoe
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issue, the following approach is adopted. The second invariant of the plastic strain rate and I
stress tensors are:

Sg)2 2 12 (2.3-6) I
where E. and a. are denoted the equivalent uniaxial strain and stress, respectively. By substi-
tuting Eqns. 2.3-6 into Eqn. 2.3-4, an expression for the equivalent stress is obtained: 3

( 2 (23-7) I

By assuming a plastic strain rate and a hardening parameter Z, a corresponding uniaxial stress3
is computed. Beyond yield, the plastic strain rate is approximately equal to be the total strain
rate (4 -* 0). For most metals, the hardening parameterZ at yield remains very near the initial
value of Z0. Thus, an approximation for the yield stress at a given strain rate is determined by
using Z0 and the total uniaxial strain rate in Eqn. 2.3-7. Similarly, use of the maximum value
for the hardening parameter, Z1, in Eqn. 2.3- 7 provides an estimate for the saturation stress. 3
These two approximations are:

1D2M z D 1 (2.3-8)

2.3.1 Viscoplastic Parameters for A533B Steel I
Viscoplastic characterization of a material with the Bodner-Partom material model re-

quires multiple uniaxial tests of the material under widely varying strain rates. The extensive
testing and associated expense have limited the number of materials for which constants are 3
available.

Dexter, et. al., [24,26] have tested A533B steel to determine properties for the Bodner- I
Partom material model. Most vessels in U.S. pressurized water reactors (PWRs) are
constructed of A533B steel. The A533B materiol tested by Dexter et. al. originated from the I
same quenched and tempered plate that was tested in the first series of wide plate crack- ar-
rest experiments performed at the National Institute of Science and Technology (NIST) [75].
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Chemical Composition Percent by Weight:

0.19 C 1.28 Mn 0.012 P 0.013 S 0.21 Si 0.64 Ni 0.55 Mo

Quenched and Tempered: 1640"F (8930C) for 7.5 hours, water quenched
1150"F (621 "C) for 50 hours
furnace cooled to 600"F (316°C)

Hardness: 89-91 HV (average) uniform through 7.36 in (18.7cm) thickness

Average Room Temperature Quasi-Static Properties:

Young's Modulus E = 30,000 ksi (206.9 GPa)
Poisson's Ratio v = 0.3
Yield Stress ay = 64.54 ksi (445 MPa)
Ultimate Stress a= 86.59 ksi (597 MPa)
Elongation 24%
Area Reduction 69%
Thermal Expansion aT = 6.1 x 10 6 /FO (11 x 10-6 /C
Density L = 7.35 x 10- lb-sec2/in 4 (7850 kg/ml)

Table 2.3-1. Chemical Composition and Mechanical Properties for A533B Steel

The chemical composition and other physical properties are provided in Table 2.3- 1. Tensile

tests at four different strain rates, ranging from 10- 3/sec to 103/sec, were performed at five dif-

ferent temperatures in the range of -76" to 347"F (-60" to 175"C). All tensile tests were per-

formed with the loading axis parallel to the rolling direction of the plate material. Following
conventional uniaxial testing procedures in accordance with ASTM A370, stress-strain
curves for the strain rates of 0.001, 0.01 and 1.0/sec were obtained. The Hopkinson tensile bar
test [241 was used to obtain stress-strain curves for strain rates above 500 sec- 1. This test gen-

erates high rate tensile loading through a two-bar system with the specimen placed so that

it acts as a tensile link between the two bars. The compressive wave generated by impacting

the first bar is transmitted directly through to the second bar. At the end of the second bar the

compressive stress wave is reflected into a tensile wave which then separates the two bars and

loads the specimen [24].

Dexter, et. al., [24,26] outline methods utilized to define Bodner-Partom coefficients
from the stress-strain data. To simplify the process, the limiting plastic strain rate in shear,

Do, is typically assigned an arbitrarily large value (e.g. > 104/sec). The model behavior is insen-

sitive to the choice of D0 for strain rates that are at least two orders of magnitude lower than
Do. The best estimate forD0 is on the order of 108/sec [24,15]. Rearrangement of Eqns. 2.3-4,

2.3-5, and 2.3-6 yields expressions for the parameters m and n:
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I dy (2.3-9) I

m = dy where y =1

and 

I

-= 2 d-c where S = 2ln[2 (2.3

a, is the saturation stress. The hardening parameters, Zo and Z 1, are obtained readily from the
relationships derived in Eqns. 2.3-8. Following these procedures, Dexter et. al. obtained the

material constants for five different temperatures summarized in Table 2.3-2.

Temperature m n Z0 ZI Do

(C) (F) (MPa 1) (ksi t ) (MPa) (ksi) (M0a) (ksi) (sec,-)

-60" -76" 0.050 0.345 1.62 1772 257.0 2224 322.6 108

- 10" 14" 0.053 0.365 1.68 1491 216.2 1992 288.9 108

50" 122" 0.064 0.441 1.75 1379 200.0 1804 261.6 108
100" 212" 0.066 0.455 2.57 907 131.5 1236 179.3 108 3
175" 3470 0.074 0.510 2.77 827 119.9 1112 161.3 108

Table 2.3-2 Bodner-Partom Constants for A533B Steel I
The resulting stress-strain curves for different strain rates at three different temperatures,

-76"F, 133°F, and 347F (-60"C, 50"C, and 1757F), are shown in Fig. 2.3-2. (The stress- I
strain curves for intermediate temperatures in Table 2.3 -2 are bounded by those shown in Fig.
2.3-2). The stress-strain curves show a definitive yield stress as discussed in the previous sec-
tion. These yield stresses are predicted accurately by Eqn. 2.3-7. As expected, the yield stress
increases significantly with strain rate. Contrary to typical behavior for most steels [24], the
strain rate sensitivity increases with a decrease in temperature. Dexter et. al. speculate that this
behavior may be due to dynamic strain-aging of the material [24,26].

Other materials similarily characterized for the Bodner-Partom model include: A537
steel, X46 and X70 pipeline steels [25], and B1900+Hf, a nickel based super-alloy [20]. I
2.4 Procedures for Impact Testing

As described in Section 2., the determination of a criticalJ-value from a test on an SE(B)
specimen requires, at a minimum, the histories of the applied load and the load-line displace-

28



150 -1000

1003

50

347F F(175.C)

150 -1000

~100

Co,

10050 
)(

50

001276F (-6&C)
ON 10

50 Labels idctr tain (%)s(ec1

Figure 2.3-2. Bodner-Partom Stress Strain Curves for A533B Steel
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ment. Procedures to obtain these measurements for impact loading are examined in this sec-.

tion. Discussion of the drop tower tests, highlighting the similarities and differences between

deep crack tests [49,50,51,52,53,54] and shallow crack tests [59,60], follow.

2.4.1 Displacement History

The testing apparatus (see Fig. 1.1 - 1) is designed to generate a constant velocity response

for all specimens (for a given drop height of the tup). To realize this, the potential energy of

the tup must overwhelm the internal energy absorbed by the specimen prior to fracture. The
I I

2deep crack (A/W = 0.5)

S- 89.5 ksi (617.1 MNa). n - 14

- - -/shallow crackI/W=0.1)
, - 113.3 ksi (781.2 MP). n 20

E 1O WSW 0.n

(254)/C

Plastic Hinges Form
0. 01 - 60

0 E

Small Scale Yielding ofI ~10.94 WiSec
- - - -- - - -(0.278 M/sc)1

00- 1- - -0

0 12 3 4 5 6

Time (secs x 1000)
Figure 2.4- 1. Load Une Displacement for Deep and Shallow Crack SE(B)I

resulting constant velocity produces a final linear displacement- time loading of the specimen.
Figure 2.4-1 compares the measured displacement-time curves for the different types of
specimens.

An optical probe attached directly to the specimen measures the load-line displacement

for the deep crack SE(B) specimens. Even at large deformations, the plastic zone in these spec-
imens is confined to the remaining ligament, leaving a large portion of material remote from

the crack plane elastic, with little deformation. This facilitates attachment of the optical light
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probe (see Fig. 2.4- 2). The plastic zone in shallow crack SE(B) specimens, however, spreads

beyond the remaining ligament, occupying most of the mid-section of the entire specimen.

Figure 2.4-2 shows the von Mises stresses on the two specimen types at the same load-line

displacement, illustrating this phenomena. The attachment of a measuring device directly to

the shallow crack SE(B) specimen near the crack plane is difficult due to the large strains in

the plastic zone. An array of four eddy current gages placed underneath the specimen, is used

to estimate the load-line displacement (see Fig. 1.4-1). An empirical correlation developed

in Ref. [59] relates the measurements from the four eddy current gages to the load-line dis-

placement. Typical displacement vs. time curves for a deep crack and a shallow crack specimen

are given in [51,60] respectively.

P as/ay

Deep Crack:

Elastic region: 1.00
attachment of light robe

P Lareoatcri

Shallow Crack: 0.0

Figure 2.4-2. von Mises Stress Contours for the Deep and Shallow Crack SE(B)

The different specimens, materials and testing procedures produce the deviation between

the the two load-line displacement curves in Fig. 2.4-1. The deep crack specimens

(a/W>0.5) have a 1 in. by 2 in. (25.4 mm by 50.8 mm) cross section with 20% side grooves. The

load is applied by a 700 lb (320 Kg) hammer dropped from a height of 12.9 inches (0.33m). The

free-falling velocity of the tup at impact was 100 in/sec (2.54 m/sec) [51]. The shallow crack

specimens (a/W=0.1) have a 2 in by 2 in cross section, with no side grooves. The load is applied

by a 1475 lb (669 Kg) hammer dropped from a height of 48 inches (1.22 m.). The free-falling
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Deep Crack a/W = 0.5 Shallow Crack a/W = 0.1

Specimen Dimensions: 1 in. by 2 in. by 9 in. 2 in. by 2 in. by 9 in. I
(25.4 mm by 50.8 mm by (50.8 mm by 50.8 mm by
228.6 mm) 228.6 mm)

Side Grooves: 20% none

Material: HY80 HY100 n
ay = 89 ksi (614 Mpa) ay = 113 ksi (779 Mpa)

au = 106 ksi (731 Mpa) oa.= 126 ksi (871 Mpa)

Tup Weight: 700 lbs (320 Kg) 1475 lbs (669 Kg)

Tup Drop Height: 12.9 in. (0.33 m) 48.0 in. (1.22 m) I
Tup Impact Velocity: 100 in/sec (2.54 m/sec) 194 in/sec (4.88 m/sec)

Total Displacement:. 0.20 in. (5.08 mm) 0.17 in. (4.32 mm)

Aluminum Absorbers: 2 wedges I pyramid

Table 2.4-1. Summaries of Impact Tests for Deep and Shallow Crack SE(B) Specimens f
velocity of the hammer at impact was 194 in/sec (4.88 m/sec) for the shallow crack tests [601.

A stopping block fiixture limited the total load-line displacement for the experiments. The I
maximum total load-line displacement was set at 0.2 inch (5.08 mm) for the deep crack ex-

periments and at 0.17 inch (4-3 umm) for the shallow crack experiments. Table 2.4-1 summa- I
rizes the impact parameters for the two SE(B) specimen types.

Both shallow and deep notch tests employed aluminum wedges to minimize the high fre-
quency content of the initial response immediately after impact. The load-line velocity of the
specimen remained considerably below the impactvelocity of the hammer until approximately

0.0045 sec for the deep crack and 0.003 sec for the shallow crack. The aluminum dampers ab- j
sorb the early velocity difference between the loading tup and the specimen. As shown in Fig.
2.4-1, the deep crack specimen experiences nearly constant velocity while the shallow crack

specimen experiences an increasing velocity during this period. The terminal velocity of the
deep cracked bend specimens approaches the tup velocity of 100 in/sec (2.54 m/sec). The shal-
low flaw specimens, however, remain well below the intended terminal velocity (100 in/sec vs. I
194 in/sec). Additional deformation taken by the absorbers reduces the maximum velocity ex-
perienced by the shallow crack specimens. 3
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To generate meaningful comparisons for different crack depths in finite element analyses,
the same displacement- time history is applied to the configurations included in the analysis

matrix. The displacement history of the deep crack specimen is adopted for the finite element
analyses. The very similar terminal velocity of 100 in/sec (2.54 m/sec) for the two specimen

types suggests this approach (see Fig. 2.4-1).

2.4.2 Load History

Measurement of the applied load directly from an instrumented tup attached to the drop

hammer is extremely difficult Stress wave effect. in the tup, combined with the complex inter-
action between the tup, the aluminum absorbers and the specLmen, lead to significant uncer-

tainties in the measured loads. Instead, the applied loads are inferred from strains measured
at gages attached directly on the specimen [49,59]. Strain gages located midway between the
crack plane and the specimen supports (1/4 point strains) provide a deformation history for
both the deep crack and shallow crack SE(B) specimens. Figures 1.1-1 and 1.4-1 show the

locations of these strain gages for the two types of specimens.

For the deep crack specimens, a static calibration relates the strain gage readings to an
applied load. By assuming plane sections remain plane, two strain gages, (one on the top sur-

face and one on the bottom surface,) quantify the deformation. Since material at the strain
gage locations is remote from the crack plane and remains elastic for the entire loading history,

the static calibration is valid in the absence of inertia effects.

For the shallow crack specimens, these strain gage locations are not expected to remain

unyielded for the loading duration. Plasticity and spatially nonlinear strain distributions re-
quire a more detailed strain resolution over the specimen depth for the calculation of mo-
ments. Kirk et. al. [59] placed 6 strain gages at equally spaced locations (see Fig. 1.4-1). Corre-
sponding stresses are computed using the static, uniaxial stress-strain curve. The moment was
obtained by integration of the stress distribution. An inferred (static) load is calculated from

the moment at the 1/4 point location using the model for a simply supported beam with a con-
centrated load at midspan.

In this study, the suitability of this technique to obtain the applied load is investigated using
results of the finite element analyses. The strains at key locations in the finite element model

are extracted and correlated to a (known) specimen load. In addition, researchers in fracture
testing have expressed a desire to infer the applied load from measured support reactions.
Such a proposal is also investigated in this study.
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3 Computational Methods

Short duration impact loading of fracture specimens introduces a number of complications
in the numerical modelling. This chapter addresses the following aspects of the 3- D nonlinear
finite element analyses as outlined below: 3

The dynamic response of the specimens is computed using an explicit time history integra-
tion technique. Explicit methods allow the local monitoring of discrete stress waves that oc-
cur immediately after impact and also provide the global response of the structure. The small
time step required for stability of the solution, however, makes the explicit technique com-
putationally expensive with respect to processor time required. Spectrom, the finite element I
program utilized in this study, minimizes processor time through a reduced integration order
(one point) in the finite elements coupled with hourglassing suppression techniques.

* Strain-rate effects are introduced through a Bodner-Partom viscoplastic material model.
This model was implemented in Spectrom as part of this study. The strong dependence of
the plastic strain rate on the stresses required development of a new iterative stress-update 1
algorithm. The development and implementation of an efficient updating scheme is essen-
tial to preserve the economy gained by the one-point integration of the elements.

"* -integral values are computed numerically by integrating quantities from the finite ele-
ment analyses at specific time steps. Additional terms in the domain integrals that arise due
to the dynamic response are included in the J computations.

" Impact testing, as conducted in a drop tower, imposes an essentially displacement controlled
loading on SE(B) specimens. Direct application of the displacement history as a loading in I
the finite-element analyses produces unrealistic oscillations in the response. A technique
is developed to define an equivalent loading that when applied to the finite-element model
produces the desired displacement history.

The chapter is divided into four major sections corresponding to the topics listed above. 3
3.1 Spectrom: Dynamic Finite Element Program I

Spectrom [57] is a Fortran-77 program that computes the dynamic response of arbitrary
three-dimensional bodies under general loadings. The program utilizes an explicit scheme I
to integrate through time, which makes it ideal for the monitoring of stress-wave effects. Ele-
ment formulations accommodate large displacements using an Updated Lagrangian ap-
proach. Several elements are available in the program including 4-node shell elements and
three-dimensional 8-node bricks. The elements are integrated with one-point Gauss sam-
pling coupled with zero-energy mod- suppression. The low order of Gauss integration and i
the explicit time history integration reduce significantly the number of computations per time
step. Elastic, inelastic and viscosity capabilities are available in the material models implem- 3
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ented in the program. The program uses single precision storage for all variables and runs effi-

ciently on 32-bit workstation environments as well as supercomputers.

The remainder of this section describes key aspects of the Spectrom software. Modifica-

tions performed on the original code for this study are first summarized. This is followed by

a discussion of the variable step size approach utilized for the time history integration. The

stress updating procedure and the element formulation of the single integration point, eight-

node isoparametric element follow. This section concludes with a description of the technique

adopted to suppress zero-energy deformation modes.

3.1.1 Spectrom Modifications

The source code for Spectrom as implemented on a DEC-VMS mini- computer was ob-

tained from RE/SPEC [571. Various modifications to the original source code were necessary

to support this research. These modifications are:

1. Machine dependencies. The original source code was modified to upgrade machine depen-
dant routines and file specifications for Unix workstations and a Convex C-240.

2. Optimization. The source code was optimized to run approximately 30% faster on the Unix
workstations. This was done by unrolling all do-loops in the element computations.

3. Hourglassing Energies. Additional data structures and coding were implemented to monitor
the hourglassing energy in the elements. The total amount of energy utilized for the hour
glass control in the entire structure is output at specified time steps.

4. Restart Capability. The original restart features lacked the ability to change the applied load-
ing. The modifications implemented allow load modification.

5. Bodner-Partom Material Model. The Bodner-Partom material model was implemented.

6. Control Parameten. Modifications to allow control over the time step size and hourglass pa-
rameters were implemented.

7. Interface Programs. Computer software to interface Spectrom with PATRAN [84] was de-
signed and implemented.

3.1.2 Determination of Time Step Size

Spectrom utilizes a central difference method for time history integration. This technique,

coupled with the use of lumped masses at the nodes, avoids triangulation of the global matrices

(stiffness and mass matrix). In the absence of viscous damping effects, the equation of motion

in matrix form is:
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I
[Mjlza}1 = {F= I, - {F,, 1 (3.1-1) I

where IM] is the structural lumped mass matrix, {f i ,are the nodal accelerations, IF..), are the

externally applied nodal loads, and[FW} are the element internal resisting forces. The sub-

script t identifies the current time.

n -I n-1/2 n n+1/2 n1+1

Time Step: - S 3
14 Un+l

S~I

6n +1/2 1

-12,

Time: -0I1-
t - At1/2 t + At2/2

t - Att t + Ath

Figure 3.1-1.2nd Central Difference Kinematic Relationships 3

Spectrom uses a variable time step as illustrated in Fig. 3.1-1. The central differencing
scheme then becomes:

{F~j= nln[ n V(3.1-2)

Vol3

,•, = IM-] I fFa, - IFi4) (3.1-3)

{Ufln+ 1 / 2 = {I}n-1/2 + {}fn Atae (3.1-4) 1
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{(}n+i = {u}n + {u}'+ 1/ 2(0t 2) (3.1-5)

where (B] is the element divergence operator, {u } and {u'} are the nodal displacements and ve-
locities, At 1 and At 2 are the time step sizes immediately before and after the current time t.
Subscripts identify the time step, with mid-interval times, t - At 1 and t + At2 symbolically
defined as time steps n - 1/2 andn + 1/2 The displacement and velocity updating algorithm fol-

lows the order given above. Equation 3.1-2 defines the summation of internal forces at time

t. I ne imbalance of the forces determines the nodal accelerations at time t (Equation 3.1 -3).

Inversion of the mass rnatrix as shown in Eqn. 3.1-3 is trivial for a diagonal mass matrix. By
using the computed accelerations at time t, the velocities are calculated for the midpoint of the

next time interval At 2 (Equation 3.1-4). These velocities are then used to update the displace-
ments to the end of the next time step (Equation 3.1-5). The process is repeated for the dura-
tion of the analysis.

The central difference method is conditionally stable (energy balance is maintained) with
respect to time step size [57,58,10]. To obtain a stable solution, the selected time step size must
remain below the critical time step, Atc, given by:

Atr T,, 2 (3.1-6)

where An is the largest eigenvalue of the finite element model and T7 is the corresponding peri-
od. The period of the largest eigenvalue of a finite element model is closely related to the mini-
mum time required for a dilatational stress wave to traverse an element [10,57]. Flanagan [38]
developed an approximate technique to calculate the maximum eigenvalue for a 3-dimen-
sional finite element model composed of 8-node finite elements with one- point integration:

(1 -ý )E (3.1-7)
Cn (1+ v)(1- 2v)+

where 6ra. is the smallest generalized element dimension of all elements in the model, and

cl is the dilatation wave speed in an unbounded medium. (For special cases in 1- dimensional
wave propagation, 6 is the element length and the above relationship is exact.) For a given ele-

ment, 6 is defined by:

6.dy Y 2 (3.1-8)
T2 ax
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I

where Ni is the shape function corresponding to the ith local node. The shape function deriva- I
tives in Eqn. 3.1- 8 are evaluated at the integration point of the element. The resulting approx-

imation for A tcr is:

Atcr- 6c_.•• (3.1-9) 1
C,

Thus the estimated critical time step is simply the time required for an unconfined dilata-
tional stress wave to travel the generalized element dimension. (For a simple unit cube, 6 is
equal to 0.577, or 1 / T3.) This approximation of the critical time step is much more economical 3
than solving for the highest eigenvalue of the finite element mesh. The critical time step is cal-
culated for each individual element in the finite element mesh at each time step. By choosing

the smallest Ate, at each time step, a non-divergent solution is generated. I

To account for distortional (shear) waves, an additional constraint is placed on selection I
of the time step size:

At - = 6minC2 (3.1-10) £i
where C2 is the dilatational wave speed. The time step chosen must be smaller than A tshr for

the distortional waves to be modelled adequately (otherwise an element with the minimum

generalized dimension will not sense the deformation). The time step is then chosen as:

At = min( It, r, At,.) (3.1-11) 1

For nonlinear material behavior, a consistent tangent modulus approach is used to com-3
pute the elastic constants for use in Eqns. 3.1 -7 and 3.1-10. Equivalent elastic constants that

relate the total increments of stresses and strains for a given time step are used to calculate

the dilatational and the distortional wave speeds. The solution process thus takes advantage
of the increase in the critical time step size due to the softening of elements undergoing plastic
deformation. I

3.1.3 Stress Update Procedures I
The Updated Lagrangian approach in Spectrom utilizes the configuration at time step n I

as the reference state (See Fig. 3.1-2.). Stresses, strains and internal forces are computed in
this configuration. This section describes the strain-stress rates employed in the constitutive
models and their numerical evaluation (see Healy and Dodds [10] for additional details). I

38 1



Y to Reference

totn+

"Deformed"
z

Figure 3.1-2. Updated Lagrangian Reference Configuration

The spatial gradient of the material velocities with respect to the current configuration is
given by:

L= (3.1-12)

where in matrix form:

a ary a,

L Vx =vy =Vz (3.1-13)
L vy 0y 0vy
aV avy av
az &az d

The symmetric part of L is the spatial rate of the deformation tensor, D, and the skew-syru-
metric part, W, is the spin rate or the vorticity tensor. Thus,

L=D+W (3.1-14)

where

D = -I(L + LT); W = 1(L - Lý (3.1-15)

W represents the rate of rotation of the principal axes of the spatial rate of deformation, D. For
the special case of zero rotation, i.e. W = 0, the principal values of D, integrated over time,
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I

yield the logarithmic (true) strains of infinitesimal material fibers oriented in the principal I
directions of D. L, D, and W have no sense of the deformation history; they are instantaneous

rates. I

The rate of deformation tensor, D, is the energy conjugate strain-rate measure for the

Cauchy stresses referred to the current configuration [10,431. The Jaumann rate for Cauchy

stress is used as a materially objective stress rate. A constitutive relation couples the Jaumann

stress rate to the rate of deformation tensor. For simplicity, the constitutive behavior is as-

sumed to be expressible as a tensor product. The Jaumann stress rate, T., is given by:

tj = 1`- WT + TW= C:D (3.1-16)

where the symmetric, Cauchy stress T is:

T = rzy ayy rim (3.1-17)
rz ryz z, 3

au andrj are components of the Cauchy stress tensor referred to a Cartesian coordinate sys- I
tem defined on the current configuration. 1` is the needed spatial rate of Cauchy stress due to

the instantaneous motion defined by L. C is the modulus tensor and may depend on the

stresses, strain rates and history dependent state variables. The process for updating the

stresses in the current configuration then becomes:

1` = C: D + WT - TW (3.1-18) I
AT = 1`At (3.1-19)

Tnew = Told + AT (3.1-20)

where AT is the increment of Cauchy stress that corresponds to the motion defined by L

through a time increment of At. Various integration schemes can be applied to Eqns. 3.1-18

through 3.1-20. If all the terms in Eqn. 3.1-18 are evaluated at time t, i" is the Cauchy stress

rate at time t and the integration procedure corresponds to a simple forward Euler scheme.

Evaluation of Eqn. 3.1-18 at time t + At corresponds to a backward Euler scheme. In general, I
the stresses and history dependent state variables are not known at time t + At. Consequently,

the backward Eulerian approach requires an iterative technique to calculate the values at
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t + At. Other tensorial state variables, such as the back-stresses for kinematic hardening

plasticity, must also be updated according to Eqn. 3.1-16.

The relatively small time steps required for the globally explicit solution make the differ-

ences between the tensor at time t, t - At (time step n, n- 1) or any intermediate time, insignif-

icant (i.e. At is so small that the reference and the deformed configurations in Fig. 3.1-2 are

almost identical). Computational economy determines the particular choice of the time corre-

sponding to the individual tensors in Eqns. 3.1-21 and 3.1-22. For the computation of stresses

at time step n, Spectrom utilizes the velocity gradient at the mid-interval of the previous time

step, n- 1/2 (with respect to the configuration at time step n), together with the stresses at time

step n-1 to integrate Eqn. 3.1-18. In summary:

t = C: D._ 1/2 + W _1/2T_1 - T (3.1-21)

LB-1/2 = Bn vn-1 /2 (3.1-22)

For the internal force calculation at time step n, the gradient operator B is needed at time

tn, and the nodal velocities are available at time tn - 1/2 (Eqns. 3.1-2 and 3.1-4). Use of these

same tensor quantities for the stress updates reduces the computations required per time step.

The Jaumann rate of Cauchy stress has been widely applied in finite element codes due to

its simplicity. For some deformations, in which shear strains exceed 100%, the Jaumann stress

rate predicts an unacceptable response [43,27]. For a large range of finite shear strains, up to

near 100%, however, the Jaumann stress rate predicts physically acceptable results [43]. Shear

strains in this study are considerably below 100%, thus making use of the Jaumann stress rate

acceptable.

3.1.4 Element Formulation

Spectrom utilizes the trilinear, eight-node isoparametric element for three-dimensional

continuum models. A mean strain-rate quadrature scheme combined with hourglass control

makes the computation of element internal forces very efficient [37,57,11]. For a globally ex-

plicit formulation, element internal force evaluation and stress updating are the major com-

putational tasks.

The element displacement field and spatial configuration are related to the element nodal

displacements and current coordinates through the trilinear isoparametric shape functions

[21]:
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1-8 1
uX,17,C) = ZN'(ý,17,) ui or u -Niu1 (3.1-23)

1-1 1

xi(¢,•,) = Z'N'(e,),•,) xl or x, = N'x (3.1-24)5

1-1 I
where the superscript I refers to the element node and the subscript i refers to the coordinate

direction (See Fig. 3.1-3). ý, j7, ý are the isoparametric coordinates, NI is the shape function

X3 Z8 I
C 1

6

Figure 3.1-3. 8- node Hexagonal 3- Dimensional Element I

corresponding to node I, and u? and xl' are the element displacements and current coordinates 1
respectively in the ith oordinate direction =• node I. The right hand side of Eqns. 3.1-23 is

expressed in incidicial notation where repeated subscripts imply summation over the range of
that subscript. (4, j, k indicate coordinate directions with a range of 1 to 3; 1, J, K indicate ele-
ment nodes with a range of 1 to 8.) The isoparametric formulation eliminates the material -

rate derivative when taking the time derivatives of Eqns. 3.1-23 and 3.1-24. Thus, the same
interpolating functions provide the velocity field in the element:

-i = N'Jv (3.1-25) I
The velocity gradient is then defined as follows:

1-8

ý", =' VN 04 1 = N I -v (3.1-26)

axj 14- U
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where V. is the element velocity in the ith coordinate direction at node I. Using the principle
of virtual work in the current configuration, the element nodal forces are computed from the

divergence of Cauchy stress field as:

6I V = fVO# 6vij dV (3.1-27)

where, v3,, and or, are components of the velocity gradient tensor, L, and the Cauchy stress ten-

sor, T, respectively. Since the Cauchy stress tensor is symmetric, the rate of virtual deformation

tensor can be replaced with the virtual velocity gradient tensor. This integral is evaluated as-
suming a constant stress state and an average strain rate over the element for a time step. Eqn.

3.1-27 then becomes:

Sf = V U4(3.1- 28)

where j# are the element nodal forces, Vis the element volume, and Ujj and 61ii are the mean
stresses and mean virtual velocity gradient in the element. Mean kinematic quantities are de-
fined over the element as follows:

6 -ff 1f6vij dV (3.1-29)

The gradient operator, Bf, is defined by integrating the shape function derivatives over the ele-
ment volume:

BI = fN d =aV(3.1-30)

The mean velocity gradient and the element internal nodal forces are then:

1 Vr -z (3.1-31)

Evaluation of the gradient operator is performed with a one-point Gaussian integration,
which for the trilinear hexagonal element, produces a closed form expression. Algebraic de-
tails are found in [37]. For example, the gradient operator component Bx is given explicitly by:
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I
B, .J [y2(Z63 - Z45) + Y 3Z24 + Y 4(Z38 - Z52) + Y 5 (Z86 - Z 24) +±ý5 + y z4s] (3.1-32)3

where xI, yl, z1, are the current Cartesian components of the element node I, and zu' = zI - zJ.

Nodal index and coordinate permutations simplify evaluation of the other gradient operator 3
terms.

3.1.5 Zero-Energy Mode Suppression I
Evaluation of the gradient operator by one-point Gaussian quadrature produces an ele-

ment that admits, (in the addition to the rigid body modes), deformation patterns with no strain i
energy. These zero- energy modes, often called hourglass modes, if left unaltered, dominate

I

I I I
I IA , A2

\ I

\ I
A3 T1/2

.j . ..... ,

Z TX T

Figure 3.1-4. Orthogonal Displacement Modes for the
8-node Hexagonal Element

the element deformation thereby making the solution incorrect. Spectrom utilizes an efficient
method for the suppression of the zero-energy modes [37,11]. 3

The displacement patterns of the trilinear hexagonal element are expressed as a combina-

tion of orthogonal base vectors [37,11,57]. Figure 3.1-4 shows these orthogonal base vectors I



for the x-coordinate direction. The first deformation mode, denoted X, is the rigid body

translation. The next three modes, A 1 through A43, represent uniform straining in thex- direc-

tion, uniform shear straining in the x-y plane and uniform shear straining in the x-z plane.

The remaining four displacement modes, Fr through r4 are the zero - energy modes. Applica-

tion of the gradient operator (Eqn. 3.1-30) to the zero-energy displacement shapes yields

zero:

-_BF = 0 (3.1-33)

where Fja is the element nodal displacement I corresponding to the zero- energy mode a. (a,

P, y indicate hourglassing modes with a range of 1 to 4.) Table 3.1-1 summarizes the vectorial

representation of the orthogonal mode shapes.

Local Node I A 1  A 2  A 3  F1  r 2  r 3  r 4

1 1 -1 -1 -1 1 1 1 -1
2 1 1 -1 -1 1 -1 -1 1
3 1 1 1 -1 -1 -1 1 -1
4 1 -1 1 -1 -1 1 -1 1
5 1 -1 -1 1 -1 -1 1 1

6 1 1 -1 1 -1 1 -1 -1
7 1 1 1 1 1 1 1 1
8 1 -1 1 1 1 -1 -1 -1

Table 3.1 - 1. Orthogonal Mode Shapes for the Trilinear Hexagonal Element

The zero-energy, displacement shapes produce no element resistance in the form of inter-

nal stresses. These modes are isolated and treated independently of the rigid body and the uni-

form straining modes. By subtracting the rigid body modes and the uniform straining modes

from the velocity field, the field that corresponds to the zero-energy modes is isolated. The
velocity at an element node I corresponding to the rigid body and the uniform straining modes,I

(vR +s) , is [37,11,57]:

io "v + v+ Azt vi (3.1-34)

where vi is the average velocity of all the element nodes in the coordinate direction i, zlx', zlyt,
and Az2 are the deviation of the nodal coordinates from the coordinates of the integration
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point The first term is readily identified as the rigid-body component, while the remaining I
three terms are the uniform straining modes. (The rigid - body rotations result from combina-
tions of the uniform shear straining modes in the different coordinate directions, i.e. rotation
in thex-y plane from vV and vy,). The remaining velocity field (výG ) defines the zero- ener-
gy modes: 5

( 1 ,H)v, _ a vijav1 (3.1-35)-vI 0- vi -r ay - az"

or: I

(,6;HG) - 1-~,.~x-xo~ (3.1-36)3

where xj0 is the average coordinate of all the element nodes in the ith direction. BYis the gradi- j
ent operator defined in Eqn. 3.1-30.

An hourglass gradient operator is constructed from the zero-energy basis vectors, rFI, as
follows [37,11,57]:

G'a = V ,I (3.1-37)

6 is the generalized element dimension as defined in Eqn. 3.1-8, and Vis the element volume.
The factor V/6 provides the hourglass operator, Gar, with the same dimensional characteristics
as the gradient operator Bil. GCa operates on the hourglass velocities to obtain the generalized I
hourglassing strain rates, q.a: g

1ia =G(vfG) (3.1-38)

The orthogonal property of the Gal operators separate the hourglass velocity field into gen-
eralized hourglassing strain rates according to mode a. A constitutive relation is necessary to
obtain a generalized stress from the generalized hourglassing strains. Spectrom utilizes a sim-
ple relation that has proven effective for most cases [57]: 3

Qia = t44 a (3.1-39)

where Qj. is the generalized stress of the hourglassing mode a in the ith coordinate direction,
2;Amis the tangent shear stiffness obtained from the constitutive model for the element, and

46



e is a scaling parameter. In general, e is taken arbitrarily small; 0.001 is used for this study. This

assures that the level of the hourglass restoration forces remains below that of the internal

forces due to element straining. For the invariant time derivative of the generalized stresses,

finite rotations produce:

Qia = Qia - wiQja (3.1-40)

where w# are elements of the spin rate tensor, W, as defined in Eqn. 3.1-15.

The hourglass resisting forces are calculated by assuming energy conjugacy between the

generalized stresses and strains. Thus:

G HG (3.1-41)
S= VQt6. o

Using the definition of Eqn. 3.1-38 for the generalized hourglass strain rate and solving for

the nodal hourglass resisting forces yields:

"(I)HG = (;J (3.1-42)

These hourglass resistance forces are added to the forces obtained from the element stress

state (Eqn. 3.1-31). The total element resisting force is then:

fil = (.j/. + QiaGa) (3.1-43)

Calculation of the nodal accelerations (Eqn. 3.1-2) requires the accumulation of the re-

sisting forces over all elements. Accumulation of the hourglass resisting internal forces was im-

plemented into the program in a similar manner. Symbolically:

demenu ekmm(.4

n = : > , IFHGI- I• fHG)n (3.1-)

where [Fin},, and IFHGIn are the internal resisting forces and the hourglass resisting forces at

the structural level for time step n. Total internal and kinetic energies of the structure are calcu-

lated as follows:

If nodesU 2"TWd TMV) (3.1-45)U= J~ t {v}n dt T= !Xm(vn)2 (34)

0
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where U and T are the internal and kinetic energies respectively, and m, v, are the lumped I
structural nodal mass and their velocities respectively. The amount of energy that can be at-

tributed to the hourglass restoration forces indicates the extent of hourglassing in the solution

process. The hourglassing energy, UHG, is defined as:

UHG r f it (3.1-46)

This energy is monitored throughout the solution process. The extent of hourglassing is identi-

fled by comparing the hourglassing energy to the total internal energy and kinetic energy.

Numerical studies reveal that the zero-energy suppression method degenerates for ele-

ments with large aspect ratios under relatively large deformations. Crack-tip elements, com-
monly employed in the finite element analysis of fracture mechanics problems, introduce 3
stress and strain singularities through the use of collapsed nodes at the tip. These elements ex-
perience large deformation levels, and for 3- dimensional models, generally have large aspect i
ratios. The need to maintain an acceptable aspect ratio limits the in -plane refinement of con-

ventional three dimensional finite element meshes (a maximum aspect ratio of approximately

20 for the crack tip elements was found to work for this study). The loading areas of SE(B)
finite element models may also have elements with large aspect ratios. Localized loading,
often applied to approximate a concentrated load, generates large deformations in these ele-
ments. The use of a finite width loading area reduces local deformations sufficiently for the
zero-energy suppression technique to remain effective. I

3.2 J-Integral Computations I

This section describes the numerical procedures developed to evaluate the domain form

of the J-integral as described in Eqns. 2.1-4 through 2.1-8. Volumetric integrals in finite ele-
ments are generally evaluated by Gaussian quadrature [21,100]. Element quantities in the in-

tegrand are evaluated at the integration points; a summation of the weighted values of the inte-

grand, multiplied by the determinant of the Jacobian, approximates the desired integral:

O(x,y, 4W-V I I OX1(i,y), Zk)Wi).wWkVijkI (3.2-1)I
f i j k

where i, j, k and wi, wj, wk, correspond to the integration points and their respective weights

in the ý, r7, ý directions (see Fig. 3.1-3). ý0• is the determinant of the mapping Jacobian at the 3
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integration point. The one-point integration scheme utilized for the trilinear hexagonal ele-

ments provides the most accurate element quantities at the integration point. As a natural ex-

tension of the element formulation, the one-point Gaussian quadrature is utilized for evalua-

tion of the volumetric integrals in Eqns. 2.1-4 through 2.1-8. For a single integration point,

Eqn. 3.2-1 simplifies to:

f O(x,y,z)dV - O(xoyozo)V = O (3.2-2)

Vol

where x0, Yo, z0, are the average coordinates of the element, and V is the element volume. ýF

is simply 0 evaluated at the single integration point.

The q-function of Eqns. 2.1-4 through 2.1-8 is defined consistent with the isoparametric

formulation. The q- function within an element is defined by the nodal q -values and the tri-
linear isoparametric interpolation functions:

1-8

q-(ý, 71N,(7,?,) qi or qi = - ej (3.2-3)
1-1

where qIis the q-function value at node I, and Ntis the same function that is used for inter-

polation of displacements, coordinates and velocities (Eqns. 3.1-23, through 3.1-25). Spatial

gradients of the displacements and the q-function are needed in addition to the spatial gradi-

ent of the velocities (Eqn 3.1-31). These quantities are available at the element nodes which
again allows use of the gradient operator Bi. defined in Eqn. 3.1-30:

q _i(3.2-4)

The numerical evaluation of Eqns. 2.1-5 through 2.1-7 becomes:

a..OZ a Ik ax qk' (3.2-5)

Y) (P. Fe ')]V
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-T f aW - ai 2ui) kd
12=-qX d (32-6)

I - oR W) - !(-~ufj)fkV

13 -_e2 arkqk + O at atakqk dV

- wm ,Býq~k) - ý W 1k+ F4VBýWklk]V i
The superscript I indicates element nodal quantities. Quantities at the integration point are
indicated by the superimposed bar. The summation extends over all finite-elements in the

domain volume. The gradient operator, BX, is defined with respect to the current coordinates

thereby making the displacement derivatives and velocity gradients energy conjugate to the

Cauchy stresses. I
Element level values for the accelerations, a, velocities, Vi and the displacements, uý, are

extracted from global kinematic quantities. At time step n, the available quantities are: accel-

erations and displacements at time t, and the velocities at time t - A t/2 (time step n - 1/2). The
small time step size that results from the globally explicit solution makes the difference in velo-

cities between time steps n- 1/2 and n negligible. These quantities, al, u at time t, and v', at
time t - 4t/2, are used directly in the above integrations.

The material models provide the element quantities Uq, cand W(stress state, density and

the strain energy density) at the element integration point. The strain energy density, W, is ob-

tained by integrating the stress-strain history of the integration point; the material density de-

pends upon the volumetric strain of the element. A simple average of the element nodal values

provides the element integration point values for the q-function and the element velocities
(qk and 7j,). The kinetic energy density, Tin Eqn. 3.2-7, is computed from the element densi-
ty, p, and the integration point velocities, vi, as follows:

3

T _ (i (3.2-8) 3
i-1I

All of the terms needed for the evaluation of Eqns. 3.2-5 and 3.2-7 are computed, as de- i
scribed above, solely from nodal and integration point quantities available at the element lev-

el. I
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Loop over t• a local nodes of the element I = 1, 8
uN - 0
Wgo4=0

S~N==0

For each element incident to element local node I:

Extract element quantities: i,4, W
Compute Bji = B2i(x), V

_ J Iki 1

W•o•= WIO t + W
N=N+I

End element loop
Uý. = U•wlN

End local node loop

Figure 3.2-1. Generation of Nodal Values for W and Ui,j

Additional consideration must be given for the evaluation ofJ'2 in Eqn. 3.2- 6. This integral
arises from the explicit derivative of the strain energy density in the application of the diver-
gence theorem. The needed quantities are the spatial gradients of the strain energy density and
the second derivatives of the displacements. The difficulties in the evaluation of these deriva-
tives are summarized below:

a2ui•: At the element level, the displacements are available at the nodes. Although formula-axjaXk tion of a second-order gradient operator directly from the interpolation functions is

possible, the low order of the trilinear fields precludes accurate computation of se-
cond-order derivatives in the element (element shape functions only permit linear
variations along edges).

OW: The strain energy density for the trilinear hexagonal element is available only at the
axk " single integration point. The numerical evaluation of a spatial gradient in an element

from a single data value is not possible.

Thus, these derivatives cannot be evaluated directly from quantities available at the ele-
ment level.
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These gradients are computed by first generating nodal values of the displacement deriva- I
tives, uf,,, and the strain energy densities, Wk. Standard isoparametric techniques are then ap-

plied (gradient operator, BI) to compute the spatial gradients (Eqn. 3.2-6). The strain ener-
gy density corresponding to a given node, Wk, is computed at the global level as the average

of the strain energy densities of all the elements incident to that node. Similarly, the average 3
spatial gradient of the displacements of all the elements incident to the node is used as ui,.

Figure 3.2-1 summarizes the algorithm. 3
Loop over the elements in the domain I

Compute element nodal quantities: V-, WJ (See Fig. 3.2-1)

Extract element nodal quantities: z4, v,,, !a1 li
Extract element integration point: ", W,W

Compute at element integration point: rij, vi, T I
Compute gradient operator and volume: Bý - B(x), V

Compute spatial gradients: 3
V J 1 414 -`

W t= 1 BýWJ Tu--__=_IVi k I/ h V wi'l
WA~~ 1 .k-,•J,

Compute element J-integrals:

'jI= (iijk- Wqkk)V

72= - (W k - J d k; V V k Vj,= - (T= - + Ui

End %ement loop

Figure 3.2-2. Computation of J-Integrals 3
Once the nodal quantities of l~kand u, are generated, all spatial variations in Eqns. 3.2-5

through 3.2-7 are computed by application of the gradient operator as shown in Eqn. 3.2-4.

Figure 3.2-2 summarizes the procedure to compute the J-integral.

Spectrom creates a binary database that contains the structural response (displacements, i

stresses etc.) at user-specified times. A post-processing program computes the J-integrals

over the time history by extracting solution data from thbs database. j
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3.3 Bodner-Partom Viscoplasticity Model

This section outlines the implementation of the Bodner-Partom viscoplastic material
model developed specifically to support this study. The material model advances the stress his-
tory from time step n- 1 to n given the kinematic state and the history of key parameters. The
global kinematic solution provides the spatial rates of deformation at each material point. The

rate of the deformation gradient tensor (See Eqns. 3.1-22,3.1 -14 and 3.1 - 15) relative to the
configuration at time step n is utilized as the total strain rate for the time step:

q d is + - yF+ (3.3-1)

where additive decomposition of the total strain rate into elastic and plastic components is as-

sumed to remain valid (Eqn. 2.3-1). The stress rates are coupled to the elastic strain rates
through a hypoelastic form of the elastic constitutive relation:

ij+ 2G (3.3-2)

where AL. is Lame's constant, G is the shear modulus:

A = vE G- E (3.3-3)
(1 + v)(1 - 2v) 2(1 + v)

This Hookean relationship provides the component of the Jaumann stress rate caused by ma-
terial deformation in Eqns. 3.1-16 and 3.1-18. The plastic strain rates are defined by Eqns
2.3-2 through 2.3-5:

eip = ASij A=A(J2,Z) (3.3-4)

The lack of a closed form solution for the nonlinear system of equations given in Eqns. 2.3-2
through 2.3-5 requires the application of numerical integration techniques. The dependency
of the plastic strain rates on the stresses (which are in turn dependent on the plastic strain rates,
Eqns. 3.3-4) necessitates an iterative solution for the stresses. Alternatively, a non-iterative
forward Eulerian approach can be employed; the stresses, strains and hardening variables at
the beginning of the time step are used to calculate the plastic strain rates for the step.

A mean value approach is best suited for accurate evaluation of the plastic strain rates and
element stress state. Using a central difference scheme, the rate form of the Bodner-Partom
equations is recast as:
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I

S- n-1 + :ZnL'2•'t (3.3-5)

2 (D I/) (3.3-6) 1

Zn-l/2 IDD2) -a1 1/21, 0 
- 3(;2) n-1/2J

At -(3.3-8)
Zn12= Zn-I< +4 2~n-1/2 2

2n-12= m"(ZI - Zn - 1)(WP)n- 1 /2  (3.3-9)

where subscripts identify the time step. (n-1/2 symbolically refers to the mid-interval be-
tween time step n- 1 and n, or at t - At/2.) The strain rates are assumed to remain constant uI

for the time step in accordance with the global solution atn- 1/2. Stresses at the mid-interval
are computed using the stress rate predicted by the hypoelastic relation, Eqn. 3.3-2, times 3
At/2:

(A ,j4j + 2G4)At (3.3-10)

The plastic strain energy density in Eqn. 3.3-9 is evaluated using the mid-interval stresses
and plastic strain rates: 3

(Wp)n-(/2-- ij(%iJ)n-1/2 (3.3-11) 1
Updating of the stresses thus involves use of a starting estimate for the mid -interval plastic

strain rate followed by a computation of the corresponding mid-interval stresses. These

stresses are then used to determine a corresponding plastic strain rate from the Bodner-Par-
tom material model. The correct material state is found once the plastic strain rates from the
predicted stress state match the plastic strain rate assumed to generate the stress rate. Finally
the hardening parameter Z, and the stresses are updated to the end of the time step: 5
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=(a4)n_ + + 2G4)zt (3.3-12)

Zn Z,._ 1 + Zn-, 112 1t (3.3-13)

The iteration process implemented to resolve the plastic strain rate is summarized in Fig.

3.3-1. The computations are initialized with the converged plastic strain rates of the previous

time step. The corresponding elastic strain rates are given by the additive decomposition of

the total strain rates. The hypoelastic relationship provides stress rates for the interval from

the elastic strain rates. The plastic work rate and the hardening parameter at the mid -interval

are computed with the mid- interval stress state. The computed plastic strain rates and the as-

sumed plastic strain rates are compared for convergence of the iterations. To continue in the

next iteration, an updated estimate of the plastic strain rates is necessary. Two approaches to

improve the estimate of plastic strain rates are developed in subsequent sections.

Convergence of the iterative solution occurs when the assumed plastic strain rates at the

beginning of an iteration are within a specified tolerance of the computed plastic strain rates.

The norm of the difference in plastic strain rates is compared to the norm of the average of

the assumed and calculated plastic strain rates:

A -. . )i (3.3-18)

ip.I ='dp4M (3.3-19)

= + (iz (3.3-20)

Kpjal= (4jLe(#)ae (3.3-21)

The convergence criteria becomes:

where tol is a tolerance value sufficiently small to insure that the difference between the as-

sumed and computed plastic strain rates is negligible. Section 3.3.3 studies the numerical con-
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Initialize: = 0- Note: n = n - 1/2

Begin Iteration: 1=75

Stress State: (1' = - (40 (3.3-14)
Se + 2G

SI in i 2
=Sn j(s,,'. (3j)

Hardening Variables: (Vp). - (i1)(i 4 )'. (3.3-15) 1
2' = M(7 1 z.-_)(*,).z:. z "_ * 2. I

Plastic Strain Rates: (D)Z = DexP)i. ) 2 - ] (33-16)

2 (DP,,).

No Estimate new
Convergence Check: No/ Plastic Strain Rates:

""ipjos II
Update Stresses: o

("),= (•),- + (Z.,• + 2G4)Jt (3.3-17)1

Z'=Zn- 1 +Z8 .zitI

Next Element !

Figure 3.3-1. Material Model Iterations
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vergence of the iterative scheme summarized in Fig. 3.3-1. A tolerance value of 0.01%, was

found to be adequate.

As previously noted, the iterative solution requires an updated set of plastic strain rates to
continue the next iteration. Two such methods are developed in the following sections.

3.3.1 Iterative Substitution

The first technique implemented to update the plastic strain rates for the next iteration
uses a linear combination of the assumed plastic strain rates at the beginning of the iteration
and the computed strain rates at the end of the iteration:

(i~)i1 = +(1 -(3.3-23)

where a is aweight factorbetween 0 and 1. a = 1provides a non- convergent material model;

the assumed plastic strain rates at the beginning of each iteration remain unchanged and equal
to the converged plastic strain rates of the previous step. For a = 0 the computed plastic strain
rates at the end of the iteration are adopted as the assumed plastic strain rates in the next itera-
tion.

For a given time step in which the initial plastic strain rates are overestimated, the elastic
strain rates, (and therefore the stresses) are underestimated (see Eqn. 3.3-14); in extreme
cases a sign reversal may occur. The plastic strain rates computed with these stresses, Eqn.
3.3-16, also underestimate the correct strain rates. Conversely, initially underestimated plas-
tic strain rates cause computed plastic strain rates to be overestimated. This behavior occurs
when the time step size is reasonably small. The assumed plastic strain rates and the computed
ones bracket the correct strain rates. This response of the material model makes the scheme
expressed in Eqn. 3.3-23 a good predictor for the plastic strain rates.

Limited numerical studies reveal that the number of iterations required for convergence
is relatively insensitive to the choice of a for 0.3 < a < 0.7. Generally, for a - 0 or a -- 1
a larger number of iterations was required for convergence. An a value of a = 0.5 was utilized

for all finite-element analyses.

3.3.2 Decoupled Differential Equations

Dexter et. al. [26,55] describe an iterative process for integration of viscoplastic rate equa-
tions. The hypoelastic equations relating the stresses and strain rates are cast in deviatoric
space, which decouples the stress and strain components:
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=2G(ii, - ip)(3.3-24) £i
where G is the shear modulus, i# are the stress deviators and eij and • are the total deviatoric

and plastic deviatoric strains respectively: 5
dr# j i -. 1ikk iPij= iipi(3.3-25)

The flow rule, Eqn. 3.3-5, relates linearly the plastic strain rates and the stress deviators. (The
plastic strain rates are deviatoric by definition.) Substituting the flow rule, Eqn. 3.3-5, into

Eqn. 3.3-24 and rearranging yields:

4i + 2GAsi = 2Geij (3.3-26)

Assuming that A is constant, and independent of the stress deviators over the time increment,
a closed form solution for the resulting nonhomogeneous, first-order ordinary differential
equation can be obtained:

(sij),+'dI = (sij),exp(- 2G.Ut ) + jeij(1 - exp(- 2Gtlt )) (3.3-27) 5
where the stresses at time t +/At are expressed in terms of the stresses at the beginning of the

time step and the total strain rate deviators over the time step. Rewriting Eqn. 3.3-24 in terms

of the plastic strain rates:

S.(3.3-28)•# ej- 2G

The stress rate is calculated using: 3
(SO,,-(j'J)n-1 (3.3-29) I$ ij - A /t

By substituting the differential equation solution for the stresses at the end of time step n and

rearranging, the solution for the plastic strain rates is:

1 (1 - exp(- 2G~U )s + +( 2 (3.3-30)
'1 2G '\Jn-I 2G1Ur t
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Eqn. 3.3-30 expresses the plastic strain rates for the interval in terms of the stress deviators

at the beginning of the time step and the total strain rates. The evaluation of A is as shown in

Eqn. 3.3-6, with the stresses and hardening variables evaluated at the mid-interval as ex-

pressed in Eqns. 3.3-14 through 3.3-16. The expression for the plastic strain rates shown in

Eqn. 3.3-30 is used as the assumed plastic strain rate for the next iteration.

3.3.3 Verification of Convergence

The convergence behavior of the two methods for integrating the Bodner-Partom visco-
plastic material model is examined in this section. A material point is subjected to uniaxial

loading as shown in Fig. 3.3-2. An initial tensile strain rate of 1000 sec-I iq applied for 50

1000

120 800

0

B

A) 7
*0 0

5

D

A D

-120 . . . -800
0 1 2 3 4 5 6

120 Strain ()

A Tensile Elastic Loading

0 "B Tensile Plastic Loading
S0 0 :

P -- " C Tensile Elastic Unloading
6) Compressive Elastic Loading

1 0D Compressive Plastic Loading
-120 ,'-800

0 50 100

Time (10-6 sec)

Figure 3.3-2. Uniaxial Loading for Convergence Comparison

,u-sec, followed by a strain ra•,rs,-l at z conprtssive strain rate of 1000 sec- 1 for 50 u-sec,

for a total response history of 100 y-sec. The applied strain rate represents the upper range
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of rates expected in near- tip elements of the impact loaded SE(B) specimens. The material I
properties typical of A533B steel at 50"C (133 F) are used in these convergence studies (See

Table 2.3-2 for the Bodner-Partom material constants).

The material response is expressed in Fig. 3.3- 2. Initially, the material is elastic, exhibiting 5
the initial steep slope in the stress-strain diagram labelled A in the figure. Once plastic de-

formation dominates the response, the material exhibits a shallow slope labelled B in the fig- 3
ure. The strain-rate reversal creates the elastic unloading curve labelled C, and after suffi-

cient deformation, plastic deformation in compression again dominates the response, S
producing the curve labelled D. The severe slope changes that occur between the different ma-

terial loading states make this a demanding test case for evaluation of the convergence behav-

ior of the two iterative methods. The differences between the assumed plastic strain rates and
the converged plastic strain rates are the largest at these slope changes. g

Three different iteration schemes are examined: I

1) Differential equation solution (DES), Eqn. 3.3-30

2) Iterative substitution with a = 0.0 (IS.0.0), Eqn. 3.3-23 1
3) Iterative substitution with a = 0.5 (I$_0.5), Eqn. 3.3-23 3

A constant time step of zAt = 1.0 x 10-7 sec with a tolerance of tol = 0.01% (Eqn. 3.3-22)
is used for the convergence study. 5

Portions of the stress-strain curve with relatively constant slopes require very few itera-3

tions (usually one or two iterations) for convergence. This is expected since the initial estimate

of the plastic strain rates, the converged values of the previous time step, is nearly identical to 3
the current values. All three schemes required at most 2 iterations at times within the smooth

sections of the stress-strain curve labelledA through D in Fig. 3.3-2. However, the transition

between these labelled portions of the curve, require more iterations for convergence in all

three methods.

Examples of the convergence behavior of the different iterative schemes for the transitions

between the different smooth curves are found in Fig. 3.3- 3. A scalar measure of convergence i
is introduced using the second invariant of the plastic strain rates, (See Eqn. 3.3-16), as fol-

lows: 3
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Figure 3.3-3. Convergence Comparison, At = 1.0 x 10-7

2)where: (D) = ith iteration result (.-1

(D - -
(3 .3 - 3 1 )

and: (D) = converged value

The above ratio equals unity once convergence is achieved.

As shown in Fig. 3.3-3. both the DES method and the IS_0.0 method behave nearly identi-
cal at all three transitions. These methods experience large oscillations about the converged
value, with the oscillations dropping in magnitude as the number of iterations increases. The
IS_0.5 method converges monotonically towards the correct value for all three transitions. The
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number of iterations required for convergence is summarized in the figure for the given time I
step. The total number of iterations required for the entire time history is 1208,1260 and 1220
for the DES, IS 0.0, and IS 0.5, respectively. Although the total number of iterations required I
for the convergence favors the DES method, the monotonic convergence behavior of the
ISJ0.5 is considered preferable. 5

The time step size employed of the material model strongly affects the convergence rate.
For a relatively large time step, the material state at the beginning and the end of the integra-

tion time step can be very different (the change in material states as shown in Fig. 3.3-2. for

example). In these cases an intermediate stress state (Eqn. 2.3-1), that can define the plastic [
strain rates for the time step may not exist or may be numerically difficult to converge upon.
For these cases, all three iterative methods diverge. Sub-incremental schemes, in which thei

time step is subdivided into smaller time steps, may be needed to enable the integration of the
material model. 3

Section 3.1.2 outlines the variable time step selection of the global time history integration.
Using Eqns. 3.1-7 through 3.1-9 as a guide, and recalling that the generalized dimension, 6,
for a unit cube is equal to to 0.577, or 1/ T3, an upper bound estimate for the time step size
is developed. In the finite element model with the largest 6min, the smallest element is of the 3
order of h = 0.1 inches (2.54 mm)whereh is the edge of a hexahedron element cube. The criti-
cal generalized dimension is then: 3

6 A h = 5774 x 10- 2in. (1.467mm) (3.3-32)

By substituting the elastic properties for steel, E = 30000 ksi (206844 MPa), v = 0.3, and

e = 7.345 x 10-4 lb-se 2/in4 ( 7.85 x 10-3 Kg/mm 3) into Eqn. 3.1-7, the unbounded di-
latational wave speed, cl, is 2.345 x 105 in/sec (5.133 x 106 mm/sec). The maximum time
step expected for analyses of the SE(B) is then:

=tmax = 6min = 2.462 x 10-7sec (3.3-33) 1C1

The convergence behavior of the three different schemes is studied with a time step of
Atm. to determine the best scheme to integrate the constitutive rate equations. The uniaxial

loading example shown in Fig. 3.3-3 was re-analyzed with a time step of At = 2.5 x 10 -7

sec, and a tolerance of tol = 0.01% (Eqn. 3.3-22). For the initially elastic segment of the
stress-strain curve, (A in Fig. 3.3-3), all three methods converge in one or two iterations. At i
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Figure 3.3-4. Convergence Comparison At = 2.5 x 10 -

the yield point, however, the DES and the IS_0.0 methods both diverge. The IS_0.5 method

accurately integrates the entire stress-strain history. Figure 3.3-4 shows the convergence be-
havior of the three methods at the tensile yield point. The lower graph in the figure shows the
large oscillations of the nonconvergent methods. The DES and the ISJ0.0 show nearly identi-

cal behavior. Although the IS 0.5 method generates a few, small oscillations, the method con-

verges quickly.

Additional verification of these updating schemes is accomplished by comparison with nu-

merical results presented by Dexter et. al. [24,25]. Dexter modeled a uniaxial loading of A533B
steel at 100 °C for two strain rates, 10-2 sec-1 and 500 sec- 1. A series of constant strain rates
were applied each followed by a period over which the total strain was held constant. During

the holding periods, the viscoplastic effects cause stress relaxation. Figures. 3.3-5 and 3.3-6

summarize the two different applied strain histories and the computed stresses.

The computation was repeated using the IS0.5 method with a At = 0.05 sec. for the 10-2

sec-1 strain rate and At = 2.0 x 10-7 sec for the 500 sec-1 strain rate loading. Creep behav-

ior causes stress relaxation during the constant strain regions. This is responsible for the small

dimples observed in the stress-strain diagrams. As expected, the higher strain rate loading

exhibits both higher stresses and larger amounts of stress relaxation than the lower strain rate
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Figure 3.3-5. Bodner-Partom Material Model Benchmark #1 1
3

loading. The stresses computed with the current model match very closely those reported by

Dexter et. al. [24,25].

The IS.0.5 method (a = 0.5) is used for the integration of the Bodner-Partom material

model. Except for the extreme cases of a = 1 and a = 0, little variation in the convergence

occurswith the parametric variation of a in Eqn. 3.3-23. The explicit time history integration

severely limits the time step size and simplifies the integration of the viscoplastic rate equa-

tions by eliminating the need for sub-incrementation. For larger time step sizes, used in im- !
plicit finite element codes, sub-incrementation may be needed for the accurate integration

of the material model. 3
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3.4 Loading of Finite Element Models

The physical apparatus and instrumentation for impact testing in a drop tower are de-
scribed in Section 2.4. Realistic assessment of the dynamic effects requires matching of the
specimen's load history (See Fig. 2.4-1) in the finite element analyses. However, the applied
load on the specimen is not measured directly; the reliability of the inferred load using strains

measured at the quarter-point location is unknown. This suggests loading of the finite ele-

ment model by an imposed displacement history.

Direct application of non-zero displacements, however smooth, as constraints in an ex-

plicit dynamic analysis creates large oscillations of the element stresses. The spatial distribu-

tion of displacements to be applied across the loaded surface is unknown. An arbitrary dis-
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a
tribution of displacements imposed across the loaded edge artificially stiffens the SE(B) I
specimen. This generates high frequency stress waves and their reflections from the bound- I
aries. Moreover, application of the displacements to a single line of nodes across the specimen

thickness creates a "butter knife" effect in which severe local deformations develop.

1) Apply Measured Displacement History

11LL A L

2) Extract Nodal ForcesP 1

- Nodal Forces

3) Apply Smoothed Load History !
-Original/

TimeFigure 3.4-1. Methodology to Determine Applied External Loads

The application of time dependent external forces is the preferred method of loading a fi-
nite element model. However, the lack of information on the applied loadirng requires a proce-Idure to generate a loading that when applied to the finite element model, reproduces the dis-

placement history measured in tests. This loading is generated by first executing a I
displacement controlled analyses in which the loaded area is uniformly displaced according
to the displacement history (Fig. 2.4-1). Application of the uniform displacement across the
loading area effectively creates a rigid boundary that causes high frequency stress oscillations. 3
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Reactions at the displaced nodes are extracted and smoothed to generate an equivalent exter-

nal loading history. These external loads are applied to the model over the loading area as an

equivalent uniform pressure. The computed displacement history of the specimen under the
smoothed loading history is compared for agreement with the measured displacement history.

Figure 3.4-1 illustrates the steps of this procedure.

3.4.1 Application to an A533B SE(B) Specimen

Reference [54] describes impact fracture toughness testing of a specific A533B steel over

a range of loading rates, temperatures and specimen sizes. The A533B material used for these
tests is the same plate utilized by Dexter et. al. for the viscoplastic characterization of A533B

steel [24,26]. Results are presented for drop tower tests conducted on 20% sidegrooved, 1T
SE(B) specimens with the crack oriented in the L- T direction [2,4]. Generation of the applied

loading as described in the previous section is demonstrated using data for specimen H15 in
reference [54].

Figure 3.4-2 shows the geometry and the finite element model utilized for this analysis.
The dimensions comply with standard ASTM specifications for the 1T SE(B) specimen used
in J-R testing [4]. Due to symmetry, only one quarter of the specimen is modeled. The crack

tip consists of collapsed hexagonal elements in which nodes along the front are free to displace
to model blunting. Five element layers of 0.1 in (2.54 mm.) each form the specimen half- thick-
ness. In order to model the sidegrooves, the thickness of the outer most layer of elements is
set equal to the sidegroove depth (see Fig.3.4-2). The finite element model consists of 1030

elements with 1428 nodes. The mesh gradation minimizes stress reflections at element bound-
aries. A six millisecond analysis requires a total of 33,227 time steps, with an average time step
of 1.8 x 10 - 7 seconds. The analysis required 4.1 hours of CPU on the HP/Apollo DN- 10000
workstation.

The H15 specimen was tested at a temperature of 150 F (66"C). The available parameters
for the Bodner-Partom viscoplastic material model are at the discrete temperatures shown
in Table 2.3-2. For this analysis, estimates of the Bodner-Partom parameters at 150"F
(660 C) were obtained by linearly interpolating from those available at 12'F (50C) and
212°F (100°C). The interpolated Bodner-Partom parameters for 150°F (66"C) are:
m=0.44568 ksi-1 (0.06464 MPa-1), n=2.0124, Zo=178.0994 ksi (1227.96 MPa),

Z1 =235.2846 ksi (1622.24 MNI), and Do= 1.0 x 10' sec-.

The measured history for the drop tower tests is not presented for the A533B specimens

in reference [54]. However, both the specimen and the drop tower setup utilized for the A533B
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H1 5 Specimen:

W = 2.0 in. (50.8 mm.) 1
a /WV= 0.6
L = 9.0 in. (228.6 mm.)
B =1.0 in (25.4 mm.)
Span = 8.0 in. (2032 mm.)

20% Sidegrooved=I
L 1500 F (660C)

Loading Area:
0.436 in. (11.1 mm.) 3

I

Finite Element Model: I
1030 elements

1428 nodes

Side Grooves:
0.1 in. (2.54 mm) 3

Figure 3.4-2. Specimen Dimensions and Finite Element Mesh I
SE(B) specimens in [54] are similar to the setup reported in [52] for the fracture testing of 3
HY80 steel. This similarity, and the tendency of the drop tower to impart a displacement histo-

ry that is independent of the specimen, suggests the use of the displacement history reported 3
in [52] for the A533B specimen. (This displacement history is shown as a solid line in Fig. 2.4-1
and is repeated in Fig. 3.4-3). 1

The displacements are applied on a small loading area in the finite element model. Using
ti -" dimensions of the aluminum wedges, 1 inch by I inch at the base, as a guide (see Section
2.4.1), the loading area is chosen as the first three rows of elements in the finite element mesh.
This corresponds to a total loading width of 0.874 inches (22.2 mm.). As shown in Fig. 3.4-2, 3
the loading width on the finite element model is one-half of the total loading width, 0.436 in-

ches (11.1 mm). The displacement history shown in Fig. 2.4-1 is applied to the specimen over 3
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Figure 3.4-3. Load Determination for H1 5 A533B Steel SE(B) Specimen

the area indicated in Fig. 3.4-2. The summed reactions at these nodes provide the total exter-
nal load shown in Fig. 3.4-3.

The rigid boundary created by the applied displacement field produces the large ampli-
tude, high frequency oscillations shown in Fig. 3.4- 3. The applied displacements constrain the
specimen to a deformation mode of higher strain energy than the actual specimen. The actual
deformation pattern of the deep crack SE(B) specimen reveals that both arms rotate about the
plane of the remaining ligament as rigid bodies (See Fig. 2.2-1). The rigid deformation across
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a
the loading area forces the ends of the specimen to deforir about a finite region defined by the I
rigid loading area. This causes both a high frequency content of the nodal reactions and a stiffer
response of the specimen. The real specimen, however, does not experience either the rigid I
boundary condition or the large amplitude oscillations. The only purpose of the applied dis-

placement simulation is to obtain a guide for the actual applied forces. 3
For shallow flaw SE(B) specimens (a/W - 0.1), the natural deformation pattern is more

of a beam-bending pattern rather than the rigid-arm pattern of the deep crack SE(B) speci-
mens. For these specimens, the applied displacement pattern is a better approximation to the

true deformation pattern of the specimen. As shown in the next chapter, the applied displace-
ment analysis for these specimens shows less oscillatory behavior in the extracted nodal reac-
tions than is observed for the deep crack SE(B) specimens. S

Figure 3.4-3 shows the smoothed version of the extracted nodal forces that is applied to 3
the specimen. A trail-and-error approach is used for smoothing the nodal force oscillations

(mm)
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15 3
Calculated 60
Specimen H15 [541 3
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"0 40 5

150°F (660 C) 20

~II

0 0
0 0.1 0.23

Load-Line Displacement: ALLD (in)
Figure 3.4-4. Load Displacement for H15 A533B Steel SE(B) Specimen I

to obtain an applied load that produces the displacement history. To begin, a cubic fit of the 3
extracted nodal loads is used as a guide to establish the smoothed loading. This loading is ap-

plied to the finite element model, and the displacements are monitored. If the computed dis- 3
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placements deviate significantly from the measured values, the loads are modified to obtain
a better match in the next analysis with the measured displacements. Several trail -and -error

cycles are needed to accurately match the measured displacement history.

The measured displacement history and the resulting displacements from the smoothed
extracted nodal loads are shown together in Fig. 3.4-3. The crack plane experiences a range
of displacements from a minimum at the crack-tip center-plane to a maximum at the
loaded-surface free-edge. These two displacements are shown in Fig. 3.4-3. The computed
response from the smoothed loadings matches the measured displacement history very well.
Elastic vibration of the specimen in the first fundamental mode causes the small -amplitude

oscillations in the computed response for the first half of the analyses. This phenomena is ex-
amined in detail in the following chapter.

Figure 3.4-4 shows the resulting load-displacement curve for the analysis. The exper-
imental curve is obtained from strain gages placed at the 1/4 point as explained in Section 2.4.2.
General trends of the analysis, such as the limit load and initial slope, match well with reported
values [54]. Up to 0.3 inches (7.6 mm) of crackgrowth in the laboratory specimen is responsible

for the decreasing load after 0.05 inches of displacement.
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4 Computational Results and Discussion I
This chapter presents the computational details and results of the research. Three-point 3

bend specimens with three different crack depths, a/W = 0.0725, 0.15, and 0.50 (subsequently

referred to as shallow, medium, and deep respectively), are investigated to quantify constraint I
effects. The three specimens have the same overall dimensions, 2.0 inch by 2.0 inch cross - sec-

tion, 9.0 inches long, with an 8.0 inch loading span (50.8mm by 50.8mm by 228.6 mm, 203.3 mm 3
span). The Bodner-Partom constitutive model is employed to examine the effects of high

strain rates. A loading history characteristic of drop tower testing is imposed on the three spoci-

mens. Analyses are conducted using both rate-sensitive and rate-insensitive material mod-

els. Additional static analyses are performed to provide baseline responses for assessment of
dynamic effects. 1

Three dynamic effects are of interest: 1) kinematic effects in the form of stress waves and

specimen oscillations; 2) strain rate effects on material constitutive behavior, and; 3) accelera-
tion of material in the crack tip region that possibly shields the crack tip from deformation.

These effects are quantified and presented in this chapter for the three specimens.

This chapter is organized into the following twelve sections: 5
4.1 Finite Element Meshes: The finite element modelling details and computational parameters

for the SE(B) specimens are presented.

4.2 A533B Steel Rate-Insensitive Material Model. Bodner-Partom coefficients are developed
to model a rate-insensitive stress-strain curve of A533B steel. This material model pro-
vides a basis to isolate strain-rate effects.

4.3 Detennination ofApplied Loading: The procedure described in Section 3.4 is applied to sim- 1
ulate drop tower loading of the specimens using time-dependent nodal forces.

4.4 Transition Tmes: 'Transition times for the six analyses are determined. Single degree of free-
dom models of the SE(B) specimens are developed to estimate transition times. An analysis
with a much higher loading rate is conducted to examine the significance of the transition
time for characterizing dynamic effects.

4.5 Srain Rates and Stezss: Distributions are presented for strain rates and the plastic de-
formation in the SE(B) specimens.

4.6 Applied Load Inferredfrom Measurable Quantities: Laboratory measurements are simulated 3
through the extraction of key numerical values from the dynamic analyses. Three methods
of inferring the applied load from laboratory measurements are examined. Dynamic results
are compared with static analyses to quantify dynamic effects in the specimens. The dis-
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tribution of longitudinal strains at the quarter-span gage location is studied for the shallow
crack specimen.

4.7 J-imqral Values: Thickness average values of thel-integral computed from finite element
results are compared with J-values computed from static formulas using the inferred loads.
Values of the plastic proportionality constant, ?)p, in the static formulas are computed. The
time at which dynamic effects become negligible and the time after which static formula
yields accurate J-values is compared to the transition time.

4.8 Crack Front Variation of the Pointwise J-Integral: The variation cf the I-integral along the
crackfront is examined to determine the effects of strain rate and crack-tip inertia loading.

4.9 Crack T7p Opening Displacements: Both dynamic and static CTOD values are determined.
Distributions of the pointwise values of the constraint parameter m along the crack front
are obtained.

4.10 Near Crack 7-p Stremes: Opening mode stresses along the crack front are compared for the
three SE(B) specimens. Near-tip fields are examined to estimate values of the deviation
of mean stress from small-scale yielding (Q).

4.11 Jacc Team The relative contribution of the Jacc term to the total J-integral is studied. The
magnitude of this term indicates the relative importance of material accelerations at the
crack tip.

4.12 Summary: Major conclusions and observations are summarized.

4.1 Finite Element Meshes

Figures 4.1-1 through 4.1-3 show the finite element meshes developed in this study. Two

mesh refinements, dcnoted coarse and refined, are shown for each specimen. Due to symme-

try, only one quarter of the specimen is modelled. The shaded region indicates the portion of

the specimen actually modelled. Figure 4.1-4 shows the symmetric boundary conditions for

the specimen on a typical finite element mesh. All elements are trilinear hexagonal bricks

(8- noded), with a one point Gaussian integration and hourglass control. The number of ele-

ments and nodes for each of the finite element models are also shown in the figures. The end

support is modelled by constraining the vertical displacement of the nodes 1.0 inch (25.4 mm)

from the specimen ends. The specimen "overhang" from the supports is included in the finite

element model.

Section 3.4 describes the need to apply load over a finite width. Utilizing dimensions for

the base of the aluminum absorbers as a guide (see section 2.4.1), a strip of approximenely 1.0

inch width (25.4 mm), over the thickness of the specimen is specified for the loading area. Due

to the differences in mesh refinement, the loading area varies slightly among the models. Fig-

ures 4.1-1 through 4.1-3 indicate the loading areas for each of the finite element models.
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Previous work by Nakamura et. al. [71,70,74] was used as a guide for developing the coarse

model. For specimens of size similar to those examined here, Nakamura's smallest element

dimension was 0.1 inches (2.54 mm). The coarse meshes in this study employ elements of size
0.1 inch in the X-Y plane near the crack front, while the refined models use elements of size

0.025 inch (0.635 mm) at the crack front. The gradual refinement in theX-Yplane toward the !
crack front helps to minimize spurious reflections of stress waves. All models have five layers

of elements in the Z- direction. Each layer has the same mesh layout in theX-Yplane. From 3
the specimen centerplane to the free surface, the layer thicknesses are: 0.4, 0.3, 0.1, 0.1, 0.1
inches (10.16, 7.62, 2.54,2.54,2.54 mm). The increased refinement near the free surface cap-

tures the severe gradients.

Hexagonal elements collapsed into wedges are defined along the crack front for both the 3
coarse and the refined models. The coarse models contain four collapsed elements at each lay-

er, forming a ring one element deep around the crack tip. The refined models contain eight 3
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Figure 4.1-2. Finite Element Mesh for Medium Crack Specimen

collapsed elements in each layer, surrounded by three rings of conventional elements, forming

a four deep ring of elements around the crack tip. The coincident nodes of the collapsed ele-

ments at the crack tip are free to displace independently. Figure 4.1-5 shows the displacement
pattern of the crack- tip elements in the fine mesh as the crack opens under loading. Displace-
ment gradients in these elements contain singular terms of the order of 11r in the X-Yplane
[86,66].

Section 3.1.2 describes the explicit integration scheme and the requirements for a stable
time step size. Time step sizes foT a typical coarse model range from 1.5 x 10-7 to 2.2 x 10-7

seconds, with an average time step of 1.8 x 10-7 seconds. A total of 33,000 time steps is re-
quired to compute the 0.006 second response. Nakamura et. al. report similar time step sizes

for their analyses [70,72].
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Time steps for a typical refined model analysis range from 1.6 x 10-8 to 2.4 x 1L -8 se-

conds, with an average time step size of 2.2 x 10-8 seconds. Approximately 300,000 time 3
steps are required to compute the 0.006 second response. As described in Section 3.1, the Spec-

trom code utilizes single precision storage for all floating point variables. Single precision (32

bits) representation of floating point numbers provides six to seven decimal digits of precision.

Each time step requires the addition of computed changes in kinematic variables (e.g. nodal

displacements) and accumulated time. A loss of precision occurs when increments in the vari-

ables are on the order of the least significant digit of the accumulated value. Thus, numerical

precision of the hardware provides an upper limit on the total number of time steps. Assuming 3
constant size increments, the single precision limit is on the order of 106 - 107 time steps. The

number of time steps required for the analyses are well below these limits. 3
A 0.006 second coarse model analysis requires 10 CPU hours on a HP/Apollo DN- 10000

workstation; 4 CPU "days" are required for a refined model. The same analyses on a HP/Apol- a
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lo 9000/720 workstation run in 1/3 the CPU time. Nakamura [74] reports CPU use for a model
similar in size and mesh density to the coarse deep crack model in this study. Hexagonal ele-
ments with theI method (46,691 were employed in their model which was analyzed for a dura-

tion of 0.00 12 seconds. Utilizing an explicit dynamic code, their analysis required over 8 hours
of CPU on a Cray XMP supercomputer. Drastic savings in CPU utilization are achieved in this

study with the one-point Gaussian quadrature and hourglass suppression.

Undeformed \

CTOD: 6,

Figure 4.1-5. Crack Tip Detail for Refined Meshes
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4.2 Rate-Insensitive Material Model I
The investigation of strain rate effects requires a comparison of results for analyses con- 3

ducted with materials exhibiting different degrees of rate sensitivity. Bodner-Partom param-
eters representative of A533B steel at 50"C (122F) are used to evaluate strain rate effects.
The 25% increase in the yield stress of this material for a strain rate of 1000 sec- 1 is typical U
of a wide range of medium to high strength steels. The Bodner-Partom constants for A533B

steel are provided in Table 2.3-2. Figure 2.3-2 shows the uniaxial response of this material 3
at different strain rates and temperatures.

The lowest strain rate in Fig. 2.3-2, 1.0 x 10-3 sec-1 at 50"C (122"F), establishes the
quasi-static behavior for the A533B steel. This rate is less than the maximum rate of
8.33 X 10-3 sec-1 specified in ASTM E8 for the determination of static yield strength in ten- I
sion. (At a strain rate of 1.0 x 10- 3 sec- 1, a typical uniaxial test specimen requires two and

a half minutes to reach 15% elongation). The yield and ultimate stress for the 1.0 X 10 - 3

sec-1 strain rate curve at 50"C (122"F) are 65.1 ksi (449 MPa) and 84.4 ksi (582 MPa) respec-
tively. (The stress at 10% elongation is taken as the ultimate stress.) These values agree closely i
with published values of 64.5 ksi (445 MPa) and 86.6 ksi (597 Ma) for the yield and ultimate
stresses, respectively [24,26].

The rate-insensitive material model must match the quasi-static response at the low
strain rate of 1.0 x 10-3 sec-1, and yet must not deviate significantly from the static response m
at higher strain rates on the order of 1000 sec-I expected in the SE(B) analyses. Section 2.3.1
describes the general effect that the individual parameters have on the stress-strain curves 3
predicted by the Bodner-Partom material model. The choice of Do strongly influences the
rate sensitivity of the material. As Do increases, the rate sensitivity decreases as does both the

yield and ultimate stresses. Equation 2.3- 8 provides relationships between Z0, Z1, Do, n and
the yield and ultimate stresses. Thus an increase in Do relative to the actual value is sought,
together with appropriate values of Z0, Z 1, m and n to model the quasi-static, stress-strain
curve at the higher strain rates.

The following iterative procedure is employed to determine parameters for the quasi-
static Bodner-Partom model. First, an arbitrarily large Do is chosen to minimize the strain

rate sensitivity. Using Eqn. 2.3-8, values for Zo and n are chosen to match the quasi-static
yield stress at the lower strain rate of 1.0 X 10-3 sec-1. Eqn. 2.3-8 and the ultimate stress
determine the value for Z1. Finally, a value for m is chosen to match the overall hardening be-
havior. Once these values are determined, the response of the material model is computed at
the higher strain rate of 1000 sec- 1. The cycle is repeated for progressively larger values of Do 3
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until the difference in the stress-strain curves at the two strain rates becomes small enough

to model a rate -insensitive material. The resulting Bodner- Partom parameters for the rate-

insensitive model of A533B are: m=0.51022 ksi-1 (0.0750 Mpa- 1), n=10, Z0 =79.77 ksi

(550.0 MPa), ZI= 104.426 ksi (720.0 MPa), and Do= 1.0 x 1012 Se- 1.

Figure 4.2-1 shows the resulting stress- strain curve for the rate - insensitive model at the

two strain rates: 1.0 x 10-3 sec-1 and 1000 sec- 1. Also shown in the figure are the stress-

strain curves for A533B steel at 50"C (122"F) for the same two strain rates. For the rate-in-

sensitive material, the maximum difference of the stresses for the two strain rates is less than

2%. This compares to a 25% difference in the stresses shown for the actual rate - sensitive ma-

terial.

4.3 Determination of Applied Loading

Section 3.4 describes the method which was used to develop loadings for the finite element

models. For each specimen and material, two separate analyses of 0.006 second duration are

necessary: 1) an analysis in which the desired load-line displacement (observed in tests) is ap-

plied to the loading area to extract nodal reactions, and 2) an analysis in which a uniform pres-

sure (computed from the nodal reactions obtained in 1) is applied to the loading area. The se-

cond analysis yields the kinematic quantities and fracture parameters of interest. The coarse
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mesh models shown in Section 4.1 provide sufficient accuracy for resolution of global quanti- I
ties such as the nodal loads resulting from the applied displacements. Considerable computa-

tional economy is achieved by using the coarse mesh models for the first set of analyses (i.e. 3
the extraction of nodal loads from the load-line displacement application). The fine mesh

models are analyzed with the smoothed loadings.

Figures 4.3-1 and 4.3-2 show the normalized loads obtained from analyses with imposed

displacements for the rate-insensitive and rate-sensitive materials, respectively. The loads

are normalized with respect to the limit load given by the plane-strain, plastic solution for

pure bending [39,36]. The three -point bending produces a non- zero shear force at the crack 3
ligament and alters the limit moment, however, this small effect is neglected here [68]. The
limit moment on the ligament, ML, is given by: 3

ML = 0.364ayb2B a/W > 0.295 (4.3-1)

ML _=1.155 '1 + 1.6 8 6 ]a 2.72( ayb2B a/W _ 0.295 (4.3-2) 1

4 1 166W - 2W/j Ub2

where a3y is the yield stress, 65.5 ksi (452 MPa), b is the ligament length, B is the thickness of 5
the specimen, a is the crack depth and Wis the specimen width. This moment is related to the

applied load by PL = 4ML/L, where PL is the limit load and L is the span between the sup- 5
ports, 8 inches (203.2 mm). The limit loads are 23.5 kips (162.0 MPa) for the deep crack speci-

men, 64.2 kips (442 MPa) for the medium crack specimen and 71.1 kips (490 MPa) for the shal-

low crack specimen.

The time after impact is normalized by the time required for an unbounded dilatational 5
wave to travel the width of the specimen, tW [70,72]. Using the elastic properties for A533B

steel in Eqn. 3.1-7, the unbounded dilatational wave speed, cl, is 2.34 x 105 in/sec 3
(5.13 x 106 mm/sec). For a specimen width, W, of 2.0 inches (50.8 mm), 4w is then:

W i 8.5x10-6sec (4.3-3) 1
The normalized time scale is displayed at the top of Figs. 4.3-1 and 4.3-2. As shown in the I
figures, the duration of the analyses equals approximately 700 wave traversals over the speci-

men width. Spatial diffusion after several traversals reduces the discrete wave effects in the 3
specimen. The large normalized times indicate that discrete wave effects are negligible for

most of the specimen response. 3
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Figures 4.3-1 and 4.3-2 show relatively large oscillations of the nodal forces for the deep
crack SE(B) specimen. These oscillations decrease considerably for the medium crack speci-
mens and nearly vanish for the shallow crack specimens. As described in Section 3.4.1, applica-

tion of the displacements uniformly on the loaded area creates a rigid boundary on that portion

of the specimen. Enforcement of this deformation constraint generates oscillations on the or-
der of the time required for a stress wave to traverse one of the elements on the rigid boundary.

The amplitude of these oscillations indicates the extent to which the enforced deformation

deviates from the deformation pattern consistent with an applied normal pressure.

Applied Displacement Analyses:

Loading Area LDLD

Analyses with Smoothed Loading:

Figure 4.3-3. Deformation Patterns for the Deep and Shallow SE(B) Specimens

Figure 4.3- 3 shows the deformed shapes of the deep and shallow crack specimens for the
two groups of analyses: 1) the analyses using applied displacements, and 2) the analyses using
the smoothed nodal loads. The conventional bending deformation of the deep crack specimen,

(represented by the analyses with the smoothed nodal loadings), concentrates deformation in
the ligarn"•nt region. The displacement boundary conditions create a rigid surface defined by

the loading area. The specimen ends rotate about a finite width defined by this surface. This
difference in the deformation pattern creates the large oscillations of the nodal forces shown

in Figs. 4.3-1 and 4.3-2. For the medium and shallow crack specimens, the deformation is
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more of a beam-bending pattern rather than the concentrated ligament deformation of the I
deep crack specimen. For these specimens the applied displacement deformation deviates less

from the natural deformation pattern, resulting in a lower amplitude of the nodal force oscilla-

tions.

Figures 4.3-4 and 4.3-5 show the vertical displacements at mid-span for the analyses

conducted with the smoothed pressure loadings. Nodes on the ligament experience a range of

vertical displacements. The minimum vertical displacement occurs at the crack tip on the cen-

terplane of the specimen; the maximum vertical displacement occurs at nodes on the loaded

area at the free surface. Figures 4.3-4 and 4.3-5 show these displacements together with the
original load-line displacement measured in the drop tower tests. As shown in the figures,
good agreement exists between the finite element analyses and the drop tower tests for all six !

cases.

The vertical displacement histories shown in Figs. 4.3-4 and 4.3-5 reveal well defined pe-
riodic oscillations during the initial 0.003 seconds. Elastic vibration in the first dynamic mode

is responsible for these periodic oscillations. The first two modes and their frequencies were I
computed for the finite element models using the POLO-FINITE system [351. The eigenva-
lue analyses were performed using the refined models with trilinear hexagonal elements,
lumped nodal masses, and a 2 by 2 by 2 Gaussian quadrature with the B-bar technique for

generating the element stiffness matrices [46,69]. Due to symmetry, the first two modes corre- 3
spond to the first and third modes of the full specimen.

Deep Crack Medium Crack Shallow Crack

Mode 1 T1  0.621 x 10-3seC 0.416 x 10-3seC 0.404 x 10-3sec
0) 0.101 x 105 rad/sec 0.151 x 105 rad/sec 0.156 x 105 rad/sec

Mode 3 T3  0.120 X 10- 3sec 0.913 X 10- 4sec 0.898 X 10-4eC
(o3 0.523 x 105 rad/sec 0.689 x 105 rad/sec 0.700 x 105 rad/sec

Table 4.3-1 Elastic Periods and Frequencies for the SE(B) Specimens 3
Table 4.3-1 summarizes the periods and the frequencies obtained for the three different

SE(B) specimens. Figures 4.3-4 and 4.3-5 indicate the first fundamental period on the load- I
line displacement for each specimen. The period of oscillations in the displacement response

matches closely the first fundamental period up to 0.002 seconds into the response. Beyond 5
this time, plastic deformation in the specimens causes the period of the oscillations to elongate,
and finally, after approximately 0.004 seconds these oscillations disappesr altogetb'r. 3
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Figure 4.3-6 summarizes the derived load-time histories for the six cases: three SE(B)

specimen a/W ratios with both a rate-insensitive and a rate-sensitive material. Once the

derived loads are normalized with respect to the limit load, the three specimens behave in a

quantitatively similar manner. During the initial elastic response of the specimen, strain rate

sensitivity does not affect the predicted loading. Once sufficient plastic deformation occurs,

high strain rates elevate the loading of the rate sensitive specimens. This causes the derived

loading for the two material models to diverge. The rate sensitivity provides load elevations

of approximately 20% relative to the strain rate-insensitive material model for each of the

three specimens.

In previous computational work, Nakamura et. al. [70,74,72] assum '-d a loading history

based upon experimental results obtained prior to the adoption of aluminum wedges [50]. Na-

kamura used simple load ramps with a total duration of 0.0012 seconds. They report a maxi-

mum load of 1.2 x the static limit load (1.45 x in [70]), and faster loading rates (0.00006 to

0.0005 second ramps to maximum load). As shown in Fig. 4.3- 6, the current study predicts the

applied load to reach the limit load between 0.002 and 0.003 seconds, indicating less severe

dynamic effects than those reported in Nakamura's work. The faster loading rates adopted by

Nakamura approximate loading durations observed in Charpy V-Notch (CVN) test speci-

mens [78,9].

4.4 Transition Times

Nakamura and Shih [70] introduced the concept of a transition time, t T, which denotes the

time after which dynamic effects are decreasing in the specimen. The initial impact of the tup

rapidly increases the specimen velocity, thereby increasing the kinetic energy. As the specimen
deforms, the internal energy also increases rapidly. For the range of practical loading rates of

interest, the internal energy eventually overtakes the kinetic energy of the specimen due to ex-

tensive plasticity. The transition time is defined as the time after which the total kinetic energy

of the specimen becomes less than the internal energy of the specimen, and indicates the dura-

tion of initial dynamic effects from the impact. After the transition time, the kinetic energy con-

tinues to increase, but at a much diminished rate relative to the increasing internal energy. Na-

kamura proposed and validated a limit of 2 x tT as a time beyond which the evaluation of the

fracture parameters (J-integral) with static formulas yields acceptable accuracy [72].

4.4.1 Single Degree of Freedom Model

Direct measurements of the kinetic and internal energies of the specimen are not possible

during an experiment. Eqn. 1.2-5 summarizes the model, proposed by Nakamura in [70],
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which estimates these energies from the load-line displacement curve. Figure 4.4-1 shows

P P

Ks

SE(B) Specimen SDOF model

Figure 4.4-1. Single Degree of Freedom SE(B) Model

the single degree of freedom (SDOF) idealization of the SE(B) specimen model used to esti-
mate the transition time. The globally elastic behavior of the specimen prior to the transition

time allows elastic parameters to be used in the derivation of the model. Equating static rela-
tions for the internal and external work yields:

=PdW = .=K LLD (4.4-1)

Vol

where Uis the internal energy and aij and e# are the stresses and strains. Figure 4.4-1 shows

Pand i, the load and the load-line deflection. The elastic stiffness, 1&, of the SE(B) specimen
relates the applied load to the load-line displacement. Formulas for the computation of K&

for a range of SE(B) specimens are given in [97].

Computation of the kinetic energy for the SDOF model requires an equivalent lumped
mass for the specimen. A contributory volume approaclb allocates the middle-half of the load-
ing span as mass for the SDOF model. This volume is defined by the specimen width and depth,
W and B, together with an effective length, Mr, as shown in Fig. 4.4-1. The kinetic energy,
T is then:

.1.2  1 .2 (4.4-2)
T= .,w~~z = eWBL~fyZw,

where Mis the effective mass,A iLW is the load-line velocity, and e is the material density.
The ratio of the kinetic energy to the internal energy becomes:
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U = QWBL•iLLD (4.4-3)

Substitution of the relationship for the unconfined dilatational wave speed of the material,
Lo - E/cd into Eqn. 4.4-3 and the structural compliance, C,, for the reciprocal of the speci-
men stiffness, K., yields Eqn. 1.2-5:

LW where S [LBEC] (4.4-4)

Nakamura [70,72] reports excellent agreement of the energy ratio given by Eqn. 4.4-4 with I
3-D finite element results for deep crack specimens.

4.4.2 Comparison of SDOF Model with Finite Element Results

Static analyses using the POLO- FINITE system [35] were conducted to determine K the I
equivalent SDOF stiffness, for the deep, medium and shallow crack specimens. (Although val-

ues of K, for SE(B) specimens are presented in (97J, these are computed using two-ddimen-

sional models and as a result are not sufficiently accurate to evaluate the SDOF model against 1

the 3- D finite element results.) The static analyses utilized the fine meshes with the trilinear 1
hexagonal elements and the B-bar technique to generate the element stiffness matrices. Ap-

9 1

xW l, 't A! ,l :t
20. I1.0 1) 0.875 0.928

j 20 .01.8f55

Crack Face i

a/W=0.5 a/W=0.15 a/W=0.0725

Figure 4.4-2. Crack Plane Nodes for Load ine Displacement I

plication of a total load of I kip as a uniform pressure on the loading area provides the crack- 5
plane displacements utilized to calculate Ks. As shown in Figs. 4.3 -4 and 4.3 -5, points on the

crack plane experience a range of displacements. Also, the loading surface of the SE(B) speci- 3
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men exhibits local deformation, making the definition of a single-valued load-line displace-

ment non-trivial (see Fig. 4.3-3). The single displacement value for use in defining K, for

the SDOF model is obtained by averaging values at key points on the ligament as shown in Fig.

4.4-2. Load-line velocities are determined in the same manner. The mass for the SDOF
model is computed with an Leff of 4.0 inches for all three specimens. The resulting SDOF pa-

rameters are summarized in Table 4.4-1.

A comparison of the fundamental frequencies for the SE(B) specimens with those for the

SDOF models confirms the accuracy of the simplified models. Table 4.4-1 shows the com-
puted frequencies of the SDOFmodels, w = K-s, together with the percent deviation from

the finite element computations reported in Table 4.3-1. The maximum error is approximate-

ly5%.

Deep Crack Medium Crack Shallow Crack

Static Ks 0.107 x 1071b/in 0.273 x 1071b/in 0.298 x 1071b/in

Dynamic M 0.0118 lb sec2 /in 0.0118 lb sec 2 /in 0.0118 lb sec2 /in
o(0 0.956 x 104rad/sec 0.152 x 10rad/sec 0.159 x 105rad/sec

col error - 5.3% 4 0.9% + 2.1%

Table 4.4-1 SE(B) SDOF Model Properties

Figure 4.4-3 compares the energy ratios for the SDOF and finite element models for the
three specimens. (Finite element computation of the energies follows Eqns. 3.1- 45, while the
SDOF models use Eqn. 4.4-3 with load-line displacements and velocities taken from the fi-
nite element results.). The transition time occurs early in the response while the structural re-
sponse is predominantly elastic. Strain rate effects are negligible during this early stage, and
both material models produce the same results. The finite element curves shown in Fig. 4.4-3
are identical for the rate-sensitive and rate-insensitive models.

Figure 4.4- 3 shows that the energy ratio decreases rapidly for all three models, approach-
ing zero soon after the transition time. The corresponding transition times are: 0.240 x 10 -3,

0.161 x 10-3 and 0.157 x 10-3 seconds for the deep, medium, and shallow crack specimens

respectively. (Normalized with respect to tV these are: 28.1, 18.9, and 18.4 respectively.) Na-
kamura [72] reports a normalized transition time of 28 for a deep crack specimen, identical
to the results reported here for the deep crack SE(B) specimen. As shown in the figure, the

SDOF models predict accurately the specimen energy ratios for the early elastic response of
the SE(B) specimens.
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4.4.3 Transition Times: Discussion

By writing Eqn 4.4-3 in terms of the SDOF mass and by recognizing that wv = K, the
energy ratio simplifies to:

_T = ZLW (4.4-5)

U W2Ad2

At the transition time the ratio is equal to unity, giving:

ALLD -- (4.4-6)Ij IoA LL

I Thus, the transition time occurs when the product of the frequency and the load-line displace-
ment is equal to the load- line velocity. If the velocity is constant, A LLD = LLD t, the transi-
tion time is then:

tT_1 _ TI (4.4-7)I tT1 2

This indicates that for a constant load-line velocity, regardless of magnitude, the transition

time is defined uniquely by the fundamental period of the system.

I Figure 2.4-1 shows the displacement-time history utilized in this study. The initially
constant velocity of 10.9 in/sec (0.278 m/sec) suggests the use of Eqn. 4.4-7 to estimate the
transition time. Utilizing the frequencies of the SDOF models, the transition times computed
viaEqn.4.4-7are: 0.105 x 10-3, 0.066 x 10- 3 and 0.063 x 10 -3 seconds for the deep, me-
dium, and shallow crack specimens respectively. (Normalized with respect to tW, these are:

I 12.3, 7.7, and 7.4 respectively.) These transition times are only 40% of those computed from
the finite element models. The inability of the finite element analyses to match the initially

I constant velocity produces these differences. The use of finite element displacements and ve-
locities in the SDOF model, however, provides very accurate comparisons with the finite ele-
ment energypredictions as shown in Fig. 4.4-3. Thus, the accurate determination of transition
times from displacement records using the SDOF model requires precise measurements of the
specimen displacement and velocity early in the response.

For the loading rates experienced in drop tower tests, the transition time is a small fraction

of the fundamental period of the system. This is illustrated in Eqn. 4.4- 7 for a constant velocity
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response, and is confirmed for the three specimens of this study (the transition time is consis- I
tently 39% of the first period of each respective specimen). The specimens respond in a man-

ner analogous to an elastic SDOF system subjected to a ramp loading. The SDOF system vi-
brates about the static equilibrium position defined by the stiffness and the instantaneously

applied loading. The SDOF system thus experiences harmonic oscillations. At approximately

one half of the fundamental period following the application of the ramp loading, the first crest

of harmonic motion occurs (ie. zero velocity and kinetic energy) which defines the transition

time. The zero energy ratios of the finite element analyses at exactly half of their respective

periods confirm this behavior (see Fig. 4.4-3). These observations suggest that the transition

time is more indicative of the first mode vibration of the specimen rather than a global time
scale to assess the significance of dynamic effects.

4.4.4 Loading Rate Dependence of the Transition Time

Nakamura [72] performed a finite element study of an SE(B) specimen using a loading rate
considerably higher than those considered here. The in-plane dimensions of the SE(B) speci-
men are identical to the deep crack specimen in this study, but with a thickness ofB = 1.0 inches,
rather than the B= 2.0 inches used in this study. Nakamura reports a transition time identical

to that found for the deep crack SE(B) specimens of this study, thus confirming the observa-
tions described in the previous section. The finite element analyses reported by Nakamura [72]
are repeated here for comparison. (These analyses also provide verification of the computa-
tional techniques employed here.) Figure 4.4-4 shows the finite element mesh and parame-
ters of interest. Element layers of equal thickness are defined over B. A linear eigenvalue anal- 3
ysis of this model provides: I

w, = 0.101 x 105rad/sec TI = 0.621 X 10- 3 sec (4.4-8)

W3 = 0.529 x 105rad/sec T3 = 0.119 x 10- 3sec

These values agree very closely with values reported in Table 4.3-1 for the deep crack speci-
men. Although Nakamura utilized a strain -hardening, nonlinear- elastic Ramberg- Osgood
material model, the rate-sensitive Bodner-Partom material is used in this analyses. Figure

4.4-5 shows the loading and the load-line displacement for analyses with the high loading
rate. For comparison, the figure also shows the corresponding results for the deep crack SE(B)
specimens analyzed with the 0.006 second drop-tower loading (B=2.0). The higher loading
rate and thinner specimen employed in Nakamura's analysis yields a terminal velocity of 185

in/sec. Specimen oscillations corresponding to the first elastic mode do not occur with Naka- 3
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High Loading Rate [72]
• : "•::::•W = 2.0 in. (50.8 mm.)

Sa /W =0.5

L = 9.0 in. (228.6 mm.)
B = 1.0 in. (25.4 mm.)I Span = 8.0 in. (2032 mm.)

i No Sidegrooves

IB
i 0.210 in. (5.33 mm.)

Finite Element Model:

2440 elements
3216 nodes

Figure 4.4-4. Specimen Dimensions for High Loading Rate Analyses

mura's loading rate. Figure 4.4-5 shows some rebounding of the thinner specimen beyond

the maximum load line displacement of 0.122 inches (3.09 mm).

Figure 4.4-6 compares the energy ratios for the two analyses. The sum of internal and ki-
netic energies for these two specimens differ significantly at the transition time. The total ener-

gy for the specimen under the high rate loading is 96.5 lb-in (10.9 Nm), while the total energy

for the deep crack SE(B) under the drop- tower loading is only 5.7 lb -in (0.64 Nm). However,

the evolution of the energy ratio for the two analyses is very similar and yields nearly identical

transition times. This confirms the analogy of the elastic SDOF system responding to a ramp

load. For the loading rates examined, the transition time is completely determined by the first

elastic period of the specimen.
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Figure 4.4-5. Load and Displacement Response for Two Deep Crack SE(B)
Specimens Under Different Loading Rates

4.4.5 Transition Time: Experimental Results I
Kirk [59] uses Eqn. 1.2-5 together with the history of load-line displacement and load-

line velocity of a shallow crack specimen (aIW = 0.1) measured in a drop tower test to deter-
mine the extent of dynamic behavior. Kirk reports large fluctuations and considerably higher
values (as high as 10) for the ratio of internal energy to the kinetic energy of the specimen. As I
late as 0.0014 seconds into the test (approximately 9 times the transition time for the shallow
crack specimen) the energy ratio exhibits peaks that exceed unity. I
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Figure 4.4-6. Energy Ratio of Two Deep Crack Specimens Under Different

Loading Rates

Figure 2.4-1 shows the load-line displacement record of Kirk's test. The relatively
smooth nature of the displacement curve provides no indication of erratic changes in the ener-
gy ratio. Such large fluctuations in the energy ratio are due to the initial impact and possibly
to some noise in the measurements. Kirk recommends use of a transition time at which the
energy ratio declines to less than 0.1, (1.75 milliseconds) as the time after which dynamic ef-
fects are negligible. This value is approximately 10 times greater than the transition times ob-
tained in this study.

4.5 Strain-Stress Distributions In SE(B) Specimens

This section examines the distribution of strain rates and stresses throughout the three
SE(B) specimens. The effect of visco-plastic material response is of specific interest.

4.5.1 Strain Rates

Fig. 4.5-1 shows the distribution of generalized strain rates (See Eqn.2.3 -6) for the three
specimens. The visible surfaces *". -N'de the crack plane, the vertical free surface and the top
surface of the specimens. The strain rates indicated on the specimen are taken from analyses
using the rate sensitive material. Results for the rate-insensitive analyses are indistinguish-
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able from those in Fig. 4.5-1. The identical strain rates are expected since the loading is de-

fined to produce nearly constant velocity response in all specimens.

The strain rate distributions shown in Fig. 4.5-1 correspond to two loading stages of inter- I
est: 1) the strain rates from zero to 0.001 seconds represent the initial loading stage, and 2) the

strain rates from 0.005 to 0.006 seconds represent the terminal loading stage. These stages cor-

respond to portions of the displacement history of the specimen that exhibit constant velocity

(see Figs. 4.3-5 and 4.3-4): a constant load line velocity of 10.94 in/sec (0.278 m/sec) up to
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I 0.004 seconds and a constant terminal velocity of 100 in/sec (2.54 m/sec) after approximately

I 0.005 seconds.

The load-line velocity at the terminal loading stage is ten times larger than in the initial

I stage. The strain rates shown in Fig. 4.5-1 also reveal the same factor often in the strain rates.

The distribution of strain rates in the terminal stage of the response reveal the different de-

formation patterns of the three specimens. During the terminal velocity stage, relatively large

strain rates, (above 50/sec,) are concentrated in the remaining ligament for the deep crack

specimen. The shallow crack specimen, however, experiences these elevated strain rates that

extend to the top and bottom surfaces of the specimen.

I 4.5.2 Stresses

Figures 4.5-2,4.5-3 and 4.5-4 show the distribution of von Mises stress, normalized with

respect to the static yield value of 64.5 ksi (445 MPa), for the three specimens. Results for both

rate-sensitive and rate-insensitive analyses are shown in the figures. Rate sensitivity does

not affect the von Mises stress distributions prior to 0.003 seconds for the three specimens. The

specimen behavior is predominantly elastic prior to this point. At 0.004 seconds into the re-

sponse, all three specimens show full plastic zone development across the ligament for both

material models. This agrees with Fig. 4.3-6 in which the specimens are shown to be near limit

load at 0.004 seconds. Figures 4.3-5 and 4.3-4 also confirm that the elastic oscillations of the

specimens cease after this time. Once plastic deformation becomes extensive, the rate sensi-

tive material model shows significant increases in the von Mises stress levels for all three speci-

mens corresponding to the increased yield stress.

I The plastic zones developed after initial ligament yielding parallel the formation of high

strain rate zones reported in Section 4.5.1. The plastic zone for the deep crack specimen is con-

fined to the remaining ligament, while the plastic zone breaks through to the free surface be-

hind the crack for the shallow SE(B) specimen. For static loading, this phenomena strongly

affects the levels of opening mode stress near the crack tip [33]: confinement of plastic de-

formation to the remaining ligament in the deep crack specimen maintains the crack tip

constraint while the breakthrough of the plastic zone to the free surface in the shallow crack

specimen significantly reduces crack-tip constraint.

The plastic zones in the medium and shallow crack specimens approach the strain gage

locations near the quarter-span at 0.004 seconds. Consequently, the through-depth varia-

tion of longitudinal stress may not conform to the simple, linear distribution of beam theory
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Figure 4.5-2. von-Mises Stress Distributions for the Deep Crack SE(B) Specimen

after this time. The plastic zone for the deep crack specimen, however, is confined to the re-
maining ligament. Recall that the quarter-span strain gages used in tests to infer applied loads 3
are located at 2.0 inches from the crack plane. The edge of the plastic zone on the top surface
of the medium crack specimen extends to approximately 1.8 inches (45.7 mm) beyond the
crack plane for the rate-sensitive material model, and extends 1.5 inches (38.1 mm) beyond
the crack plane for the rate-insensitive material model. This distance for the shallow cracks I
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Figure 4.5-3. von Mises Stress Distributions for the Medium Crack SE(B) Specimen

is 2.1 inches (53.3 mm), and 1.8 inches (45.7 mm) for the rate sensitive and insensitive material

models, respectively. Quarter-span gage locations for the shallow crack specimens thus un-
dergo plastic deformation. Section 4.6.5 examines strain distributions at the quarter-span

location of the shallow crack specimen.
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Figure 4.5-4. von Mises Stress Distributions for the Shallow Crack SE(B) Specimen

4.6 Procedures to Infer the Applied Loads U
Direct measurement of the applied loading is often impractical in a dynamic test such as 3

the drop tower. Indirect methods to infer the applied loads from more easily measured quanti-

ties are investigated in this section. For the deep crack specimens, strains measured at the
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Iquarter-span locations are correlated in a static test to provide a direct load-strain relation-

ship. Although this technique neglects the effects of inertia on the measured response, it has

proven very successful in practice and provides accurate predicted loads as confirmed by dy-
namic finite element analyses. Shallow crack specimens introduce uncertainties to this proce-
dure as outlined in Section 2.4.1.

This section compares alternate methods to obtain the applied load from more easily mea-
sured quantities (e.g., quarter-span strains) in an impact test. The finite element analyses pro-
vide information to evaluate each method: computed strains and reactions are treated as ex-

perimental data for input to each method from which inferred loads are compared to the
corresponding known loads in the finite element model. The inferred loads and measured dis-Iplacements at the load-line and crack mouth provide the necessary information to compute
the J-integral for an actual impact test.

I The following methods to infer applied loads are evaluated:

1. Applied loads are evaluated from the support reactions. Experimentalists have proposed to
use instrumented supports to measure reactions.

2. Applied loads are evaluated from the quarter-span strains measured on the top and bottom
surfaces of the specimen that are calibrated against a static linear-elastic analysis. Because
the specimen is statically determinate, the moment at the quarter-span location is one-half
the centerplane moment and is equal to the applied load x L/8 (neglecting inertial effects).
For deep notch specimens, plastic deformation remains remote from the quarter-span loca-
tions leading to a simple, linear-elastic stress-strain response at the strain gage locations
and a linear variation of bending strain over the specimen width. This approach fails if nearby
plastic deformation affects the through width linear strain variation.

3. Applied loads are evaluated from the moment computed at the crack plane using nodal reac-
tions. This moment, which includes inertial effects, is compared to the crack plane moment
for a simply supported beam with a statically applied mid-span load. This method predictsj a quasi-static, equivalent load needed to achieve the same moment across the ligament that
occurs under dynamic loading.

I As shown in Section 2.2, integration of the ligament moment through the specimen end
rotation provides the basis for calculation of an applied J-value in a statically loaded speci-
men. For dynamic conditions, however, inertial effects in the specimen may nullify the simple

relationship between the load-load line displacement and the ligament moment-specimen
end rotation. The third method to infer applied loads defines an equivalent quasi-static load
that parallels the static procedure for calculation of appliedJ. This equivalent load is more in-
dicative of the conditions at the crack plane and therefore represents a better measure of load-I ing for computation ofJ in the specimen.
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4.6.1 Use of Support Reactions I
At each time step, reaction forces at the constrained end nodes are extracted from the finite 3

element results. The total of these nodal reactions across the half-thickness of the model are

multiplied by four to estimate the instantaneous load applied to the specimen. (Due to symme-

try, only a quarter of the specimen is modelled). Use of support reactions to estimate the ap-

plied load in this manner neglects completely the inertial response of the specimen. The accu-

racy of this technique for application in testing is investigated by comparing the reactions with

the actual applied loads.

4.6.2 Use of Strains at the Quarter-Span Location

During a test, strain gages attached to the top and bottom surfaces of the specimen at quar- I
ter span measure the longitudinal bending strains at these locations. In the finite element mod-

els, the actual locations to define the quarter span strains vary slightly due to meshing differ-
ences. Two nodes that lie on the longitudinal center plane of the specimen are used to compute
gage strains from the finite element models. These nodes are chosen so that they lie near the

quarter-span location and are separated by a suitable distance (agage length). The longitudi-

nal displacements of these nodes together with their undeformed separation (gage length) pro-

vide the engineering strain at the gage for both the linear elastic calibration and the dynamic

analyses. Figure 4.6-1 provides the specific locations to define strains at the quarter-span

locations for each finite element model.

On test specimens, a Wheatstone bridge connects the top and bottom strain gages to pro-

duce a single reading from the two strain gages. This resulting strain is effectively the differ-
ence of strains on the top and bottom surface of the SE(B) specimen. Elastic deformations for

a prismatic beam in pure bending produce equal magnitudes of bending strain on both surfaces

with opposite signs, negative on the compression side and positive on the tensile side. The dif-

ference of the two strains is thus twice the magnitude of the individually measured bending I
strains. By using the difference of the two surface strains, any uniform axial deformations are

eliminated. Thus, half of the difference of the two surface strains defines the effective bending

strain, Eb. This experimental technique is followed to compute eb from finite element values

of the quarter-span surface strains. Figure 4.6-1 summarizes the linear-elastic, load-eb

relationships computed for the three specimens.

The static relationship utilized to correlate the quarter-span strains to the applied load I
suffers from the same deficiencies as the procedure to infer applied load from the support reac-

tions. The quarter span strains measure the deformation in the specimen only at that one loca-
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Figure 4.6-1. Quarter- Span Strain Gage Locations

I tion. The simple linear moment distribution over the span for static loading may be altered by

inertial loading. Thus loads inferred from strain gage readings include inertial effects experi-

enced by the specimen, but the static quarter-span strain vs. mid- span load relationship may

be incorrect.

The linear-elastic relationship used to estimate applied loads from the quarter-span
strains also neglects the influence of plasticity near the strain gage locations. Once plasticity

reaches the quarter-span locations, the linear relationship between strains and load maý no
longer apply. The use of additional gages applied over the specimen width to capture the strain

I distribution in shallow crack specimens is discussed later.

I 4.6.3 Use of Ligament Moments

The calculation of moment on the remaining ligament proceeds with the extraction of glob-

I alX- direction nodal forces on the crack plane from the finite element analyses at each time
step. The algebraic sum of these nodal forces provides the total longitudinal force present in

the specimen. (The total longitudinal force may not be zero due to inertial effects in the speci-
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men). This longitudinal force does not contribute to the ligament moment; it's effect is re- I
moved prior to calculation of the ligament moments. An equivalent uniform pressure, equal
to the negative of the net longitudinal force, is added to the nodal forces to isolate that portion
of nodal forces contributing to the ligament moment (the corrected nodal forces). The liga-

ment moment is then calculated about any global Z-direction axis in the crack plane using

the corrected nodal forces. The instantaneous neutral axis is also estimated from the distribu-

tion of the corrected nodal forces. 3
The quasi- static load necessary to produce the same moment is computed using a simply

supported beam model with a uniform load extending over the length of the loading area
employed in the 3-D finite element models. While this quasi-static applied load reflects the
inertial response of the specimen, the linear moment-load relationship implied by the simple
beam model neglects inertial effects on the moment distribution over the span. Although not

necessarily an accurate estimate of the applied load, the load inferred from the ligament mo-
ment does represent conditions at the crack plane, and would appear to provide a good candi-
date for use in the computation of J-values from load-displacement curves. Unfortunately,

direct measurement of the ligament moment in an SE(B) specimen is not possible.

Both the support reactions and the quarter span strains quantify the specimen response in I
a manner that includes the overall inertial effect. However, inertial response of the volume of

material between the measurement locations may contribute to discrepancies in the predicted
applied loads for the three techniques. The inertia of material between the crack plane and

the quarter span location contributes to differences between estimates of the applied load
from ligament moments and quarter-span strains. Similarly, the inertial response of the en-
tire specimen from the supports to the crack plane contributes to differences in estimates of

the applied load from ligament moments and support reactions.

4.6.4 Comparison of Methods to Infer Applied Loads I
Figures 4.6-2 and 4.6-3 compare the inferred loads with the actual applied loads for the

three different methods. For the deep and medium crack specimens, all three methods predict
identical applied loads over the complete response history (0 -- t _5 0.006 seconds). For the

shallow crack specimen, however, the load inferred from quarter-span strains deviates from
the other two methods for t > 0.003 seconds. This method underpredicts the applied load by
approximately 6%. The ability of each wethod to predict the applied load is independent of i
the material's strain rate sensitivity; the assumptions needed to infer the applied loading are
not dependent on the material model.
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I The initial elastic oscillations of the specimens are clearly indicated by the inferred loads

shown in Figs. 4.6-2 and 4.6-3. All three methods correctly translate the instantaneous value

of some quantity (e.g. reactions) of the specimen into an inferred load assuming a static re-
sponse. This confirms the very small magnitude of inertial loads relative to applied loads at

the loading rates of these analyses.

The good agreement among the three methods supports the adoption of measured quar-
ter-span strains and the measured reactions in experimental work to infer applied loads, es-

pecially for deep and medium notch specimens. In shallow crack specimens, plastic zones ex-

I tend to the quarter-span strain locations, producing small errors in the inferred loads.

i 4.6.5 Strain Distributions at the Quarter-Span Location

Section 1.4.2 describes the additional strain gage measurements utilized by Kirk et al. [59]
to address the distortion of through -width strain distributions for the shallow flaw specimens.
Six strain gages, equally spaced over the width of the specimen at the quarter span location,

Scapture the strain distributions through the specimen width (see Fig. 1.4-1). The strain mea-
sured at each gage is converted to a stress using the quasi-static, uniaxial stress-strain curve
of the material. Integration of these stresses, yields a moment at the quarter span. Strains mea-

sured at mid -thickness on the top and bottom surface are assumed to remain constant over
the specimen thickness. This computed moment is employed to infer the applied load as de-
scribed in the previous section.

Three-dimensional finite element analyses provide data to check the potential improve-
ments in the inferred loads by using the additional strain gages. Figure 4.6-4 shows the longi-
tudinal strain distributions versus width position in the different specimens for the rate- sensi-

tive material model. The rate-insensitive distributions show similar overall trends, but with
slightly smaller magnitudes, and are not given here. The longitudinal strains are normalized
by the quasi-static yield strain of ry = 2.185 X 10-3. The position is expressed as a fraction
of the specimen width, W The strain distributions on the centerplane and on the specimen sur-

face are shown in the figure at increasing times after impact. Each curve represents the strain
distribution at increments of 0.001 seconds. Longitudinal strains in the deep crack specimen

remain in the linear-elastic range over the full 0.006 second response. The maximum strain
value is less than -y/2. The outer fibers for both the medium and shallow crack specimens expe-

rience strains approaching zy during the last stages of the response.

The through-width distribution of longitudinal strain at the specimen centerplane re-

mains essentially linear for all three specimens over the entire loading history. Surface strains,
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Figure 4.6-4. Longitudinal Strains atthe Specimen Quarter-Span Location I
however, show distinctive deviations from linearity late in the response. These surface strains

deviate from the linear distribution in a manner that resembles an 's'-curve. Longitudinal 1
strains on the surface are consistently larger than those at the centerplane, approaching a 20%

difference on the outer fibers.
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- The quasi-static stress-strain curve shown in Fig. 4.2-1 is used to convert the strain dis-
tributions to stress distributions. Figure 4.6-5 shows the resulting loads inferred from these
stress distributions for the shallow flaw specimen together with the loads inferred from the
crackplane moment and the quarter-span strain gages.

tcl/W
0 200 400 600

2.0 OW = 0.0725
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Applied Load

&1.0 I Load Inferred From:
... Ligament Moments

0.5 Quarter-Span Strains
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Time (sec x 1000)

Figure 4.6-5. Applied Load Inferred Using Strain Distributions

During the early linear response, both strain distributions yield loads that are identical to theU applied loads. After extensive plasticity, loads inferred from the centerplane and surface strain
distributions reveal some differences. Strains on the specimen surface predict a larger load

I that eventually exceeds the actual applied loading. The loads inferred from the strain distribu-
tions bound the load inferred from the ligament moment. This explains why the six strain gage

i system utilized by Kirk [59], which is a hybrid between the two methods shown in Fig. 4.6-5,
gave relatively accurate loads. For static tests, Kirk reports errors below 4% for a low harden-

ing steel (similar hardening characteristics to the material used in this study), and errors below
10% for a high hardening steel.

Finite element predictions of strain distributions at the quarter span location indicate that
the through-width distribution changes significantly with increased load for the shallow notch
specimen. While the specimen behavior remains predominantly elastic, the simple correlation
between the quarter span strains (centerplane or through-width gages) and the inferred load
is very accurate. Once the quarter span location experiences plasticity, the outer surfaces ex-
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a
hibit larger strains than at the centerplane, and as a result, a larger moment is inferred at the I
quarter span location with the surface strains. Figure 4.6-5 demonstrates that measured sur-

face strains, converted to stresses and integrated to yield a moment produce the most accurate I
prediction of applied load.

4.7 J- Integral Calculations

The quasi-static relationship in Eqn. 2.2-6 used with the load-displacement curve ob- 3
tained from an SE(B) specimen provides an average, through-thickness J-value. This sec-
tion examines the accuracy of this procedure to compute J for impact tests. 3
4.7.1 Finite Element J- Integral Calculations 3

Figure 4.7-1 shows the domains and q-functions utilized in the finite element computa-

tion of the average, through- thickness J-values. The finite element mesh near the crack tip

for the three specimens is shown in the figure. Four element domains are used forJ evaluation.
Each domain comprises a larger annular arrangement of elements beginning with the first ring

of elements surrounding the crack tip. The shaded elements in the figure indicate the domains

utilized for the finite element evaluation of theJ- integral. The q-function is constant through

the thickness with the trapezoidal, in-plane distribution indicated. A constant q -value is spe-

cified at each point on the crack front. Eqn. 2.1-8 establishes the averageJas the domain inte-
gral value divided by the area under the q-function along the crack front. 3

S~I

Ring 1 Ring 2 Ring 3 Ring 4

Figure 4.7-1. q-functions and Domains for Jfem I

Finite element computation of theJ-integral follows the methodology outlined in Section
3.2. Neglecting terms from the explicit derivative of the strain energy density, the finite ele-

ment J-integral is: I
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71 + -73(4.7-1)

Swhere 71 and .2 are defined in Eqns. 2.1-6 and 2.1-7, respectively. Computed values ofJ vary
less than 4% between the domains denoted Ring 2 Ring 3 and Ring 4 in Fig. 4.7-1 for all the
specimens. Severe stress-strain gradients in the crack-tip elements, coupled with the numer-
ical difficulties expected in integrating over the degenerate elements, make the accuracy of

I J-values computed with Ring 1 less reliable [98]. Nevertheless, the maximum deviation of J-
values between the crack tip domain, Ring 1, and the remaining domains is approximately 8%.

The average of J-values for domains Ring 23 and 4 is selected to define the finite element
value.

i Figure 4.7-2 shows the computed J-values in the three specimens for the rate sensitive
and insensitive material models. The average J-values are normalized by the product of the
flow stress, afl, and the remaining ligament, b= W-a. The flow stress is the average of the yield
and ultimate stresses. Using the stresses tabulated for A533B steel in [75] (See Table 2.3-1),
afl = 75.6 ksi (521 MPa). This normalization removes both the absolute size and the material
flow stress effect in the J-values [6]. All three specimens show higher Jvalues for the rate sen-
sitive material model. Eqn. 2.2-2 implies a linear relationship between the area under load-
displacement curve and J. Rate sensitivity increases the applied loading at a load-line dis-
placement, thereby increasing the area under the load-displacement curve and the applied

J.

Rate sensitivity elevates the ]-values for deep and medium crack specimens by approxi-
mately 17%, while the shallow crack specimen exhibits a smaller elevation of 5%. The kine-
matic response of the deep and medium crack specimens is a deformation pattern dominated
by rotation of the specimen ends, acting as rigid arms, which concentrates deformation near
the crack-tip. For these specimens, the elevation in crack-tip stresses due to strain rate sensi-
tivity translates directly to an increase inJ. Strain rate sensitivity in the shallow crack specimen
stiffens the ligament sufficiently to force deformation away from the crack tip. This shields the

crack tip from the elevation of J due to strain rate sensitivity.

Figure 4.7- 3 shows the I-values for the rate-sensitive models of the three specimens to-

gether. Both the medium and the deep crack specimens show nearly identical magnitudes for
J, while the shallow crack specimen experiences significantly lower values. The medium and

I shallow crack specimens both require much higher loading (approximately a factor of 2.7) than
the loading of the deep crack specimen to reach the same global deformation levels. However,

j while the load levels of the medium crack are much higher than the deep crack specimen,J-
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Figure 4.7-3. Average J-integrals for Strain Rate Sensitive SE(B)

values for the medium crack specimen equal the J-values for the deep crack specimen. Al-
though the load levels for the medium and shallow crack specimen are equal, a much smaller

J-value is observed for the shallow crack specimen. Thus, as a/W decreases (Le. from deep

to shallow cracks), the applied loading increases and at the same time, the appliedJ decreases.
This phenomena illustrates the crack tip shielding commonly observed [33] for specimens with

medium to shallow cracks.

Joyce [54] reports Jle values (J at the onset of stable ductile crack growth) for A533B steel

in the range of 1.0 to 2.0 kip/in (0.175 to 0.35 MPa-m) for quasi-static loading of deep notch

specimens. In drop tower testing, JjI values up to 3.0 kipfin (0.525 MPa-m) are reported. In

addition, Joyce reportsJc values (J at cleavage fracture after significant plasticity and possibly

some stable tearing) of up to 6.0 kipfm (1.05 MPa-m) for both quasi-static and drop tower
testing. The computedJvalues for the analyses in this study are in this range (see Fig.4.7-3).

Nonlinear static analyses of the three specimens provide verification of the fracture param-
eter computations and a basis to quantify dynamic effects. The POLO-FINITE system [35]

is used for the static analyses with the same finite element meshes and loading area utilized

for the dynamic analyses. A 2 x 2 x 2 Gaussian quadrature with the B-bar method is utilized

for computations. A von Mises model with isotropic hardening is adopted which matches the
Bodner-Partom material model at slow strain rates. Small strain and small displacement as-
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1

sumptions are utilized in the analyses. Approximately 25 variably sized load steps are defined 1

to load each specimen to the load line displacement of 0.2 inches (5.08 mm). Two to three full

Newton iterations are needed to achieve convergence at each load step.

The quasi-static stress-strain curve in Fig. 4.2-1, used to develop the rate-insensitive

model for dynamic analyses, is used as the stress- strain curve for the von Mises material mod-

el in the static analyses. Static analyses with the static stress-strain curve provide the counter-

part for the rate-insensitive dynamic analyses. In addition, static analyses are performed us-

ing a stress-strain curve indicative of the strain rates experienced by the specimen. Figure

4.7-4 shows the equivalent uniaxial stress-strain history experienced by a typical crack-tip

100 1

I 50adW = 0.15 400
5 .......... a/W =0.0725

__l50/sec Bodner Pro

Numbers indicate strain rates (sec-'1)1

0 5 100

Strain (%)
Figure 4.7-4. Elevated Stress-Strain Curves for Static Analyses

element in each of the three specimens. For each specimen, the crack-tip element utilized for 1

the stress-strain history in the figure corresponds to the element located at the centerplane,

(11

directly ahead of the crack tip. All three specimens show similar magnitudes of equivalentI
stress levels. Also shown in the figure is the equivalent uniaxial stress-strain curve for A533Bsteel at 500C, at a strain rate of50 sec-'. This stress-strain curve closely matches the crack- 3
tip stress-strain response shown and is used in the second set of static analyses.

Figure 4.7-s 5 compares the finite element s-values for the dynamic analysis with the cor- 1

responding static analyses. The staticJ-values are computed from the same domains and q -

functions as shown in Fig. 4.7-1. Again, the average J from the domains denoted Ring 2
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through Ring4 defines the computed/ff. for both the static and dynamic analysis. Domain de- I
pendencies of the J-values for the static analyses are smaller than for the dynamic analyses,

with all domains showing less than 2% deviation from 4e,,. This is attributed to the different I
Gaussian integration scheme of the static analyses (2 x 2 x 2 with B - bar vs. I point with hour-

glass control). For a given load-line displacement, the .- values for the static analyses per- 3
formed with the quasi- static stress-strain curve are nearly identical to those for the rate - in-

sensitive dynamic analyses in all three specimens. Global inertia effects on thickness average 3
J-values are thus found to be negligible.

J values for the second set of static analyses, labelled by the corresponding strain rate of I
the equivalent Bodner-Partom material model, are also shown in the figure. For the deep

crack specimen, these static results closely match the rate-sensitive dynamic analyses. For the

medium crack specimen, the static Jf.n with the simulated rate sensitivity exceeds the com-

puted Jfm of the dynamic analyses by approximately 4%. For the shallow crack specimen, the

staticJf1 with the simulated rate sensitivity exceeds the computedJf1 of the dynamic analyses

by nearly 10%. £

4.7.2 Load Displacement Curves 3
The use of Eqn. 2.2-6 to estimateJ-values requires integration of the load-displacement

response. Figures 4.7-6 and 4.7-7 show the load-displacement curves for the SE(B) analy- I
ses in this study. The load-line displacement is taken as the average vertical displacement of

six nodal points on the ligament plane as explained in Section 4.4. The figures show the actual

applied loading together with the three different inferred loadings presented in Section 4.6.

Results from static analyses are also included in the figures. Figure 4.7-6 shows the rate-in-

sensitive dynamic analysis together with static analyses using the baseline stress-strain curve.

Figure 4.7-7 shows the rate-sensitive dynamic analysis together with static analyses using the

elevated stress-strain curve that corresponds to a strain rate of 50/sec.

Beyond a load-line displacement of 0.05 inches, (1.27 mm), the applied load is approxi- 1
mately 2 to 5% larger than the various inferred loads. The quasi- static analysis nearly matches

the inferred loads from the ligament moment, verifying that the specimen experiences negligi-

ble global dynamic effects, other than the increase in kinetic energy near the end of the 0.006

second response.

The static analysis with the elevated stress-strain curve predicts larger loads than those

for the rate-sensitive dynamic analyses (after the initial linear-elastic response) for all three 3
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specimens. Use of a stress-strain curve with a higher yield stress elevates the stiffness of the
specimen and thus higher loads are required to achieve the same deformation. For the deep
crack specimen, most of the deformation is concentrated in the remaining ligament, and the
elevated stress- strain curve of the crack tip is a good indicator of the straining behavior of the
material that controls the global behavior of the specimen. Thus the load obtained from the
static analysis with the elevated stress-strain curve matches the rate-sensitive response of the
deep crack specimen very well. For the medium and shallow crack specimen, plastic deforma-
tion spreads beyond the ligament. In material remote from the crack tip, the strain- rates are
well below rates at the crack tip. For these two specimens, the elevated stress-strain curve

does not represent a large portion of the material undergoing deformation. Thus the static load
obtained with the elevated stress-strain curve predicts loads larger than those for the rate-

sensitive medium and shallow crack specimens. Nevertheless, all three static analyses with the
elevated stress-strain curves agree well with the rate-sensitive analyses.I
4.7.3 Calculation of Je

Eqn. 2.2-6 outlines the computation of J from experimental measurements. J is divided

into elastic and plastic parts. The elastic component is calculated from the elastic stress intensi-
ty factor Kj:

KJe = /I(j1V2) for Pe, Je for P(4.7-2)
E E--oP

where K1 is typically computed from 2-dimensional models. P, and P, denote plane strain
and plane stress, respectively. Reference [97] provides a comprehensive collection of 2-di-
mensional solutions for various structural configurations. The elastic component is dependent
only on the loading of the specimen. Using a I kip (4.448 kN) reference load, and correcting
the applied loading for the finite loading area, (described in detail below), reference [97] yields
the values tabulated in Table 4.7-1 for J,. For the full 3-dimensional model, a linear elastic
analysis yields an average through-thicknessJ for a I kip loading. (Details of the linear-elas-
tic analysis and theJ computations are found in Sections 4.4 and 4.7.1.) The resultingJe values

from the finite element analyses are also shown in Table 4.7-1.

The J, -values computed from the full-field finite element solutions lie between those
from the plane-stress and plane-strain idealizations, and are approximately equal to the av-
erage of these two values for all three specimens. To insure compatibility between the static
equation (Eqn. 2.2-6) and the computed Jfem from the finite element computations in the
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I

Shallow Crack Medium Crack Deep Crack
afW=O.0725 a/W=0.15 a/W=0.5 3

3.175 x 10-1 kip/in 6.374 x 10-5 kip/in 4.441 X 10-4 kip/in
(5.560 x 10-6 MPa - m) (1.116 x 10-5 MPa - m) (7.777 x 10-s MPa - m)

PC 2.889 x 10-5 kip/in 5.801 X 10-5 kip/in 4.042 X 10-4 kip/in
(5.059 x 10-6 MPa - m) (1.016 x 10-5 MP& - m) (7.079 x 10- MPa -p)1

FEM 3.034 X 10-5 kip/in 6.086 X 10-5 kip/in 4.236 x 10-4 kip/in
- (5.313 x 10-1 MPa - m) (1.066 x 10- MPa - m) (7.418 x 10-5 MPa - m)

Table 4.7-1 J. for Plane Stress, Plane Strain idealizations, and the
3-Dimensional Finite Element Model (1 kip load). 1

elastic range, a relationship is developed for Je values from the finite element J-values in

shown in Table 4.7-1. This eliminates errors due to the 2-dimensional approximations in
Eqn. 4.7-2. Denoting theJ. value from the linear-elastic analysis with a unit load as j./1 kP,
and recognizing that Je is proportional to the square of the applied load: 5

Je(P) = p 2j1 hp (4.7-3) 3
where P is the loading in kips. This equation is exact for the specimen geometries in this study 3
under linear-elastic conditions and small displacements; it is the 3-dimensional counterpart
to Eqn. 4.7-2. 5

4.7.4 Calculation of Jp

The plastic component of J is calculated from the area under the plastic load-line dis-
placement curve. ASTM E813 recommends modification of the load-line displacements to 3
account for local deformation near the supports of specimens [3]. Following Kirk's procedure

[62], the vertical displacement of a nodal point directly above the support on the free surface, 1
and midway through the width of the specimen establishes a reference for support deforma-

tion. The displacement of this reference point is subtracted from the load-line displacement

(see Section 4.4) to remove deformation at the support. Removal of the elastic displacement
corresponding to the applied load isolates the plastic component of the load-line displace-
ment. The linear- elastic analyses provide a compliance value for each specimen. The com- 1

pliance value relates the elastic load-line displacement (as modified to exclude the support
deformations) to the applied load. The plastic component, A., is then: 3

1223



I 4, LLD -- AIP -- ,de = A - A"O" - CA P (4.7-4)

whereALLD is the load-line displacement, d,•,,n is the vertical displacement of the nodal
point directly above the support, and C4 is the elastic compliance. From the elastic static anal-

yses, C4 =3.172 x 10-4, 3.495 x 10-4, 9.134 x 10i- in/kip (1.811 X 10-3, 1.996 X 10-3,

5.217 x 10-3 mm/kN) for the shallow, medium and deep crack, respelctively.

For a given total load, the finite width over which loads are applied produces a smaller liga-

ment moment th: -a concentrated load. The finite width of loading used in this study requires
adjustment of the load used to compute the plastic component of Jwith published values of

rip. An equivalent concentrated load that produces the same ligament moment as the load ap-

plied over the finite loading width is utilized in the computation of 4 in Eqn. 2.2-6. This
correction makes the computation of fracture parameters independent of the smaller ligament

Imoment caused by the finite loading width. The resulting correction is given by.

I P,4 = P(1 - lkd/L) = Pad (4.7-5)

Swhere P is the total load applied load, L is the span length between supports, la is the length
of the loading area along the span, and P,.i, is the equivalent concentrated load for use in
Eqn. 2.2-6. aw is defmed as the load correction factor. The plastic component of Jis then

computed by:

I J' Fo
I, L fB d1V (4.7-6)

where the integral is numerically evaluated with the trapezoidal rule. The sum of Je (Eqn.
i 4.7-3) andJp (Eqn. 4.7-6) is considered here as the J-value (Jza,) that would be predicted

for an experiment conducted in the laboratory for an SE(B) specimen.I
4.7.5 Calculation of J with tip from 2-D Solutions

ISumpter [96] obtained values for rip using 2-dimensional, slip-line solutions for SE(B)
specimens with pure moment loading on the crackplane. Eqns. 2.2-7 and 2.2-8 summarize

I Sumpter's results. For the crack depths utilized in this study, the corresponding rip -values are
2.0, 1.343, 0.9678 for the deep, medium and shallow crack specimens, respectively. Figures

1 4.7- 8 and 4.7- 9 show the predictedhJjb values, normalized by the finite element values,Jif,
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I

for the rate insensitive and sensitive simulations. JI,, values computed from the different in- I
ferred loads, together with those computed from the applied loads in the analyses, are included

in the figures. Deviations of the normalizedJ-values from unity, shown on the figures as a hor- I
izontal reference line, indicate the degree of error incurred in the using static formulas for the

evaluation ofJ. 3
The deep crack specimen exhibits significant dynamic effects up to prior to 0.0006 seconds, 1

while the medium and shallow cracks show similar effects prior to 0.0004 seconds. These times

are approximately 2.5 x the transition times for the respective specimens, and are approxi-

mately equal to the first period of the SE(B) specimens. After these times, the simple static

formula for J computation predicts accurate results. This agrees with the findings reported in

[70], where similar agreement is reported to occur after 2 x tT. These observations suggest use

of the first period of vibration as a practical time after which the static formulas apply. Some

oscillatory behavior continues up to approximately 0.003 seconds into the response which indi- I
cates elastic vibration in the first mode. The computed J]b with the applied load shows the

largest amplitudes of these oscillations, while the inferred loads show lower oscillation ampli-
tudes. 1

8001
100 coo

-""Static Base- Une ca 3
50 Ramberg-Osgood 400

L_~ -0 '00 tlOSor, - 60 ksi (413.68 MPa)

to , Vo/E = 0.2%

n =10 1
00
0 5 100

Strain (%)
Figure 4.7-10. Ramberg- Osgood Model for Static Base- Une I

Stress-Strain Curve for A533B Steel at 500C.
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I

I Good predictions (less than 10% error after the initial dynamic effects) of J-values are
obtained for the deep and medium crack specimens using Sumpter's relationship for j7,. For

I the shallow crack specimens, the errors approach 20% with Sumpter's 37p -values once plastic
deformation dominates the response. These errors are material model independent, i.e., both

I material models, rate sensitive and rate insensitive, exhibit the same errors in J-values for the
shallow crack specimens.

I Kirk [62] computed values of ,/p for various specimens and material hardening exponents
using plane-strain finite element models. Figure 4.7-10 shows a Ramberg-Osgood stress-
strain curve with a material hardening exponent of 10 and a reference stress, ao, of 60 ksi
(413.68 MPa) superimposed on the baseline stress-strain curve used in this study. As shown

jin the figure, a material hardening exponent of n = 10 characterizes the baseline stress- strain
curve very well. Kirk reports p-values of 1.924, 1.542, and 1.0452 for the deep, medium and
shallow crack, respectively. (sjp for the shallow crack is obtained by linear interpolation be-
tween tabulated values). Figures 4.7-11 and 4.7-12 show the predictedJ-values normalized
by the finite element results.

TheJ-values computed using Kirk's tip -values are more accurate for the deep crack spec-
imen. Errors in the medium and shallow crack specimens, however, are increased. Maximum

errors approach 20% and 30% for the medium and shallow crack, respectively. Rate sensitivity
has no influence on the magnitude of the errors.

Figures 4.7-13 through 4.7-16 show the predicted J-values normalized by the finite ele-
ment values, plotted against the load-line displacement (corrected for the support deforma-
tion). This format simplifies the comparison of J-values for dynamic and static analyses. The

first two figures, 4.7-13 and 4.7-14, show J-values using Sumpter's values for i/p, while the
last two figures show J-values using Kirk's values for tip.

Deep crack J-values obtained using tip from Kirk's stuay [62] match the finite element
values well over the entire range of deformation, with errors less than 5%. However, both sets
of rh,-values lead to 20 to 30% overestimation of J for the shallow crack specimen.

The following section addresses the use of ir,-values determined from 3 - dimensional fi-
nite element analyses rather than the plane-strain values used to this point in the discussion.

4.7.6 Calculation of J with 71p Derived from 3-D Analyses

By setting Eqn. 2.2- 6 equal to l computed from finite element analyses, 11p may be found
directly by:
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1

- - 2-P 4JP
rl, [jf p2jl B op ,ip (4.7-7)

UoU
where all terms appearing in this expression are defined in the previous section. Eqn. 4.7-7 1
defines tp, at each time step during the analysis. Figure 4.7-17 shows the computed values of

j/p versus load-line displacements (corrected for the support displacement). The load-dis- 1
placement histories as inferred from the ligament moments are used to evaluate the integral

in Eqn. 4.7-7. This inferred load- displacement history is chosen as it most closely reflects the

actual conditions at the crack tip. Also shown in the figure are the computed values of 71p from

the 3-D static analyses. 1
t, values begin to approach a constant value when the load- line deflection exceeds 0.025

inches (0.635 mm) for the deep crack specimen, and 0.050 inches (1.27 mm) for the medium

and shallow crack specimens. This behavior occurs for both static and dynamic analyses, and

for both rate-sensitive and rate-insensitive material models, making it independent of iner-3

tial loadings and rate-sensitivity. Early in the response, large fluctuations in 17p -values devel-

op due to the dynamic effects and to the small relative size of vs. Je. ,

A single value of j/p for each specimen is calculated from these results in the following man-

ner: 1
1. A weighted average tip, rpis calculated from each analysis. The area under the j7 -AL

curve is integrated from a load-line displacement of 0.04 inches (1.02 mm) to the end of the
response. This area is then divided by the total load-line displacement from 0.04 inches to

the end of the response to give the desired r.3

.o4in (4.7-8)

Sd,

1.044,I

2. The resulting four values of #" per specimen, one from each analysis shown in Fig. 4.7-17, 1
are then averaged to provide J7•.

A load-line displacement of 0.04 inches is chosen as the starting point since stabilized values I
of tp are computed at larger deformations for all three specimens. J-values computed with

the resulting jTp should be more accurate toward the end of the response where: 1) the loading 3
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I

point of the specimen has reached the terminal velocity of the tup; and 2) the specimen has I
undergone large amounts of plasticity. The values of r/• are 1.905,1.327, 0.826, for the deep,
medium and shallow crack, respectively. These values are shown as horizontal lines in Fig. I
4.7-17. As expected, the computed values of qp/d for the deep crack and the medium crack
specimen are very similar to the tip values that produced the most accurate J-values in the 3
previous section.

Figures 4.7-18 and 4.7-19 show the normalized f-values computed using i1• with the I
different inferred loads as a function of response time. All three specimens show improvement
in accuracy over the computations with 7p based on 2- dimensional models. At approximately I
2.5 x the transition time in each specimen the inertial effects become negligible.

For the shallow crack specimen, the static estimates of J are too small for a large portion
of the response. Figures 4.7-18 and 4.7-19 show errors approaching 15% of Jjfe for both

material models. The medium crack results also show the same tendency to underestimate J,
but with errors of only 5%. Once inertial effects have diminished after approximately 0.0005
seconds, and toward the end of the response after 0.004 seconds, accurate f-values are ob-
tained with rv• for both the medium and the shallow crack specimens. Computed J-values
for the deep crack specimen are accurate throughout the response once the inertial effects I
have diminished. I

Figures 4.7-20 through 4.7- 21 show the normalized f-values as a function of load- line
displacement (corrected for the support deformation). Results from the static analyses are also

included in the figures. Significant improvements in the accuracy of thef-values are obtained
for computations using J7•. Once the inertial effects diminish, J-values computed for the
deep crack specimen show less than 5% error throughout the analyses. Errors in the computed U
J approach 10% and 18% for the medium and shallow crack specimen, respectively, prior to
load-line deflections of 0.05 inches (1.27 mm). At larger load-line deflections, however, the 3
computed f-values for the medium and shallow crack specimens show less than 5% deviation
from the finite element values. Aside from the inertial effects, the static and dynamic analysis
provide similar accuracy in the J computations using ?,3.

4.7.7 Calculation of J from Total Work I

The separation off into elastic and plastic components [3,62] is somewhat arbitrary. Other I
separation techniques, such as the deformation that represents the structure without the crack
and the additional deformation that occurs due to the crack, are equally valid [7]. The original 3
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derivation by Rice [86) does not assume any separation of the total J. This section investigates
the computation of Jhb without the separation into J, and J.

Figure 4.7-17 shows large oscillations in Y1. for the initial 0.01 inches of load-line dis-
placement. The specimens are predominantly elastic at this stage, making . near zero, and
the computation of ?1, subject to large error. Since the external work of a statically applied load
for an elastic specimen is one half the product of the load and the load-line displacement, a
3-dimensional tie, the dimensionless constant that rmlates the elastic work to Je, (See EqnI 2.2-5) can be calculated as follows:

J B e - 2  _ L I P.pC2a4 CA (4.7-9)

where all terms are as defined in the previous section. For the SE(B) specimens in this study,
a relationship between the applied load and the resulting elasticlis stated in Eqn.4.7- 3. Solv-

ing for 7,e from these two equations yields:

3 l d (4.7-10)

Using the values in Table 4.7-1, values for j/e are: 0.758, 1.257, and 1.967 for the shallow,
medium and shallow crack, respectively. These values are nearly identical to values of 'TI ob-
tained by Srawley [951 for 2-dimensional models of elastic SE(B) specimens:

q/smwlY = 2.0 - (0.3 - 0.7f)(1.0 - ) - e(1-00) (4.7-11)

which yields 'h = 0.776, 1.2-7, and 1.975 for the shallow, medium and deep crack specimens
respectively. These values are numerically similar to the computed i/• in the previous section,
which suggests the combination of elastic and plastic components, i.e. using a single j7, that re-

lates the total energy to the fracture parameter J.

By relating the total applied external work to the fracture parameter J, the static formula

becomes:

JIb =b Pequiv dd4 (4.7-12)
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where hgis the proportionality factor that relates the total energy toJ, P& is the applied load- I
ing corrected for the finite loading area, and A, is the total load- line displacement corrected

for support deformation:

At = A - A (4.7-13) 3
Following the procedure used to compute tz•, Eqn. 4.7-12 is set equal toJft and solved for

ill. Figure 4.7-22 shows the resulting values of rh as a function of specimen deformation. Dy-

namic analyses with loads inferred from the ligament moments and companion static analyses

are used to compute 'h. A single value for each specimen, ?i, is obtained with the averaging I
technique shown in Eqn. 4.7-8.

As shown in Fig. 4.7-22, the variation of computed rh values with increasing load-line

displacement is much smoother than variations of tip shown in Fig. 4.7- 7. rv) reaches a near-

constant value beyond 0.05 inches (1.27 mm) of load-line deformation. The deep crack speci-

men exhibits very little change in ll over the response from fully elastic to fully plastic condi-

tions. The medium and shallow crack specimens, however, show a small "hump" followed by
a near-constant value. All analyses show the same behavior, independent of inertial and

rate - sensitivity effects. Use of the averaging procedure defined in Section 4.7.6, values of l 3
= 0.8151,1.3171, and 1.9095 are found for the shallow, medium and deep crack specimen, re-

spectively. These values are shown as horizontal lines in Fig. 4.7-22. 3
Figures 4.7-23 and 4.7-24 showJ from Eqn. 4.7-12 using computed r/d values. Large I

inertial effects are present for the initial 0.0006 seconds of the deep crack specimen, and for
the initial 0.0004 seconds of the medium and shallow crack specimens. This represents approx-
imately 2.5 x the respective transition time of the specimen. After this time, all three methods

to infer the load produce less than 5% error in J for the deup and medium crack specimens,

and 12% error inJ for the shallow crack specimen. Rate sensitivity of the material model does

not affect the accuracy of J-values given by Eqn 4.7-12.

Figures 4.7-25 and 4.7-26 show the evolution of J-values with increasing specimen de-

formation. After the initial 0.01 inches (0.25 mm) of load-line displacement, allJ-values are

within 5% of the correct values for the deep and medium crack specimens, and within 12% for 3
the shallow crack specimen.

Use of the total work for computation offJwb improves the accuracy relative to the separa- I
tion techniques, but with a small reduction of accuracy during the initial elastic response of the

specimen. 3
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I

4.7.8 J-Integral Calculations: Summary I
Rate sensitivity elevates J-values by approximately 17% for the deep and medium crack

specimens, but only 5% for the shallow crack specimen. For the shallow crack specimen, rate

sensitivity increases the ligament stresses and stiffens the ligament sufficiently to force de-

formation away from the crack tip. This shields the crack tip of the shallow crack specimen

from the rate sensitivity induced increases in J for the deep and medium crack specimens.

For all three -pecimens, the static formula to compute J is applicable at times after 2.5 x
the transition time of each specimen. Beyond this time the accuracy of J computed with the

static formula is not dependent on inertial effects, but is dependent on the plastic proportional-
ity factor used (tip). 3

The static formula forJ based on ligament work with rip obtained from solutions based on
2-dimensional models produces unacceptable errors. Sumpter's tip values [96] produce er-

rors approaching 20% for the shallow SE(B) specimen. Kirk's '7p values [62] produce errors
approaching 20% for the medium crack specimen and 30% error for the shallow crack speci-

men. For use in laboratory tests these errors are unconservative, and can lead to considerable
overestimation of the actual capacity of the fracture resistance. 'it" -values derived from 3- D
analyses increase the accuracy of the static formula. Use of t'pil produces less than 5% error
once load-line deformation is greater than 0.05 inches for both statically and impact loaded

specimens. 3
A modification of the static formula in which the fracture parameter is related to the total

area under the load- displacement curve improves the accuracy inJcomputations. While sac-

rificing accuracy during the initial elastic response (up to 8% error for the shallow urack speci-
mens), the overall accuracy in the computedJ-values is improved. Sorem [94] reached similar3

conclusions for a high hardening steel (A36 steel) SE(B) specimen with a/W = 0.15 loaded stat-
ically. Utilizing a 3-D finite element analysis, Sorem obtained an it/ value of 1.34, which is 3
nearly identical to the value obtained in this study, ;7, = 1.32, for the medium crack specimen.

Both methods to infer the applied load during an impact test (from the quarter-span I
strains and from the support reactions) produce acceptable J-values (<5% error) after the

initial elastic response once appropriate values of tip are utilized in Eqns 2.2-6 and 4.7-12. 3
4.8 J Variation Along the Crack Front 3

Finite element meshes for the SE(B) specimens contain five layers of elements through the
half thickness. A pointwise value of J at each plane of nodes over the crack front is obtained
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I using the domain integral approach. The four q-function variations indicated in Fig. 4.7-1

are applied in each plane of nodes. All nodes that lie outside of a given plane are assigned zeroIq -values. This form of the domain integral produces a weighted value of J on the crack front
at the plane of the nodes. All elements incident to nodes that have nonzero q-values are in-
cluded in the domains. For each plane of nodes intersecting the crack tip, an average J com-
puted from the domains denoted Ring2 through Ring4 in Fig. 4.7-1 defines the pointwise vaJ-

3 ue.

Figures 4.8-1 and 4.8- 2 show the pointwiseJ-values normalized by the average J-value

over the thickness. The figures showJ(z), (where z is measured from the specimen centerplane
to the outer surface), as a function of the normalized through-thickness distance for each mil-
li-second of the dynamic response. Arrows are provided to indicate the change with time of
the J(z) distributions.

Figure 4.8-3 shows the crack front J-values for the companion static analyses with the
baseline stress-strain curve. The figure shows six distributions, each one corresponding to the

load-line displacement at indicated times in the dynamic analyses of Figs. 4.8-1 and 4.8-2.

These figures indicate that the variation of J across the crack front is strongly dependent on
the specimen geometry, and relatively independent of both inertial effects and rate sensitivity
of the material. Both the deep and the medium crack specimens show relative increases of J
at the centerplane, with decreasing relative values at the free surface. The maximum J-values

for the deep and medium crack specimens are 15% and 10% larger than the average J-value
at 0.006 seconds. The maximumJ for the shallow crack specimen occurs near the free surface

atz/B = 0.4. For the shallow crack specimen an elevation of approximately 10% of the average
J occurs at this location. The centerplane value of J for the shallow crack specimen remains

very near the average J throughout the response.

Figure 4.8-4 shows theJ distribution across the crack front at the end of the dynamic analy-
ses together with the corresponding static analysis distribution at the same, final load - line dis-

placement. The relatively small differences between the three sets of results confirm the strong
similarity of the J variation across the crack front for both the dynamic and static analyses.

I The larger centerplane J-values in the deep and medium crack SE(B) specimens reflect
the high constraint due to confinement against plastic flow. Near the free surface this

I constraint decreases. As shown in the figures, the boundary effect of the free surface of these
two specimens extends to approximately 0.15 inches (3.81 mm). The figures also show that the
loss of constraint is progressive: as plastic deformation increases, the relative J-value at the
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I

free surface decreases. As a result, the distribution of J across the crack front becomes highly I
non-uniform as deformation increases.

The shallow crack specimen, however, shows a more uniform distribution of J across the

crack front. The plastic zone impinges on the bottom surface of the specimen over the full

thickness. Thus, the loss of constraint is relatively uniform through the thickness. Consequent-

ly the J distribution is more uniform than the deep and medium crack specimens.

4.9 Crack Tip Opening Displacements (CTOD)

Figure 1.2-2 shows the definition employed for the Crack-Tip Opening Displacement

(CTOD), 6, Under load, the initially coincident nodes of the collapsed elements at the crack

tip displace in the manner indicated in Fig. 4.1-5. The CTOD is computed by extending a line

45" line from the crack tip and determining the intersection on the deformed crack profile. The

opening displacement of this intersection point is one-half of the CTOD. The arrangement

of five element layers through the thickness in the finite element models defines six nodal

planes that intersect the crack front CT'OD values are computed at each of these nodal planes.

A weighted average of the six crack-front ClODs defines the average through - thickness val-

ue. (Each nodal-plane value of CrOD is assigned a weight according to it's relative length I
along the crack front.)

Figure 4.9-1 shows the average CrODs for the different specimens for the dynamic analy-

ses. As shown in the figure, the medium crack exhibits the largest CTOD values, followed by

the deep crack and the shallow crack SE(B) specimens. When plotted as a function of response

time, the CT7ODs do not decrease monotonically with decreasing crack depth. For each speci-

men, the CTOD values at a given response time (or load-line displacement) are relatively

independent of rate-sensitivity. The shallow crack specimen exhibits a small increase in the

CTOD values for the rate-insensitive material model.

From Dodds [31], Eqn. 1.2-4 is recast as follows:

j = mo6, (4.9-1)

where a. is the flow stress, taken as the average of the yield and ultimate stress of the material,

and m is the dimensionless proportionality factor that linearly relates the CTOD to the J- inte-

gral. By using afl, instead of the yield stress (Eqn. 1.2-4), m values become relatively indepen-

dent of the strain hardening. The m factor indicates the extent of crack tip deformation that
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results from the applied J and is a weak measure of stress triaxiality. A larger value of m means
that more J is needed to achieve the same 6 t, and thus indicates an increase in constraint at
the crack tip [31,94]. An average m for the SE(B) specimens is computed using average values
for J and 6t in Eqn. 4.9-1.

Figure 4.9-2 shows the relationship of average J-values with average 6, for the dynamic

and static analyses (with the baseline stress-strain curve). The linear relationship between the
6t andJ confirm the validity of Eqn. 4.9-1. Results for the static analyses match the rate-in-
sensitive dynamic analyses well. The slope of the curves in Fig. 4.9-2 correspond to moaf.
(Thus the higher the slope in the figure, the higher the near-tip constraint.)

Table 4.9-1 summarizes values of m from the analyses in Fig. 4.9-2. A flow stress of 75.6
ksi, corresponding to the average of the yield and ultimate stress for A533B steel (see Table
2.3-1), is used for evaluation of m. Nearly identical values of m are obtained for the static and
the rate-insensitive dynamic analyses, indicating similar constraint. The strain rate sensitive
material model elevates the constraint parameter m for all three specimens. The percentage
elevation of m as a percentage of the rate-insensitive results is also included in the table. Kirk
[61] reports m values for plane-strain SE(B) finite element models using material models
with different hardening characteristics. For a hardening exponent ofn = 10, the corresponding
m values are: 1.79, 1.57 and 1.51 for the deep, medium and shallow crack, respectively. The
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I

Deep Crack Medium Crack Shallow Crack

Rate Sensitive (% elevation) 1.628 (13.8) 1.340 (16.3) 1.301 (10.7)
Rate Insensitive 1.430 1.141 1.175
Quasi-Static 1.434 1.152 1.136

Table 4.9-1 m Values for the SE(B) Analyses.

I plan,'-strain values are not surprisingly larger than the 3-D values in Table 4.9-1. Dodds

[31] computed the m variation across the crack front for a quasi-static SE(B) specimen with
the same dimensions as the medium crack in this study. The low hardening material resulted

in an average m between 1.1 and 1.2, similar to results reported in Table 4.9-1.

The larger m values for the rate sensitive material can be interpreted as an increase in the

apparent flow stress of the material at the crack tip. Using the m for the rate-insensitive dy-
namic analyses, the apparent flow stresses for the rate-sensitive results are: 85.99, 87.88,
83.64 ksi for the deep, medium and shallow crack, respectively. These values are approximate-

ly equal to the apparent yield stress of the crack- tip stress- strain curve for the rate- sensitive
analyses as shown in Fig. 4.7-4.

The distributions of J and 6, determine the constraint parameter m across the crack front.
I Figure 4.9-3 shows m across the crack front for the three specimens. The rate-insensitive

material model closely matches the m values for the static analyses. Rate sensitivity elevates
the constraint parameter in a nearly uniform manner across the crack front. This elevation is

approximately 0.2 for all three specimens.

I 4.10 Stresses Near the Crack Front

This section examines stresses near the crack front in the SE(B) specimens for the static
and dynamic analyses. The levels of mesh refinement used in these analyses do not permit the

I detailed resolution of near tip fields of the type reported in [6,30,80,81]. Due to the large dis-
placement formulation of the elements, crack tip blunting affects the stress distributions in the
near tip elements (for the dynamic analyses). However, for material that is sufficiently re-

moved from the crack tip (r = several x the CTOD), the blunting effects diminish rapidly.
Cleavage fracture is controlled by stresses in the fracture process zone, defined as a finite vol-

I ume ahead of the crack tip, extending a distance of approximately 2 to 6 6, ahead of the tip.
The significance of stress distributions in the fracture process zone and their direct relationship

to the cleavage fracture resistance are described in [6,30].
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I Figure 4.10-1 shows the innermost four rings of elements surrounding the crack tip. The

stresses from the shaded row of elements in the figure are used to compare the crack front

stress distributions for the three SE(B) specimens. The location of these elements, removed
one element-ring from the crack tip element, reduces the blunting effect on the stress fields.3 The one-point integration scheme of the elements defines a stress sampling point at a dis-
tance of 0.0529 inches (1.32 mm) from the crack tip as shown in the figure. This integration
point lies within the fracture process zone for cleavage over most of the response of all three
SE(B) specimens.I

-- Gauss Intration Point

"0.. 0i.0529 in.

(1.32mrm)

Figure 4.10-1. Location of Gauss Integration Point for Crack

Front Distribution of Near Tip Stresses

Figures 4.10-2,4.10-3 and 4.10-4 show the distribution of stresses for the deep, medium
and shallow crack specimens, respectively. The figures show the opening mode, mean and von
Mises stresses (labelled am0 , am, and aVM respectively) across the specimen thickness for the
row of elements shown in Fig. 4.10-1. The stresses in the figures are normalized with respect

to the static yield stress of 64.5 ksi (445 MPa); the crack front location is normalized by the
specimen thickness, B. (Due to symmetry, only one-half of the distributions are shown,
z/B= 0.0 at centerplane, andz/B-=0.5 at the free surface). Six distributions are given for the dy-
namic analyses, which correspond to 0.001s time increments. Six distributions are given for the
static analyses conducted with the baseline stress-strain curve. The zALLD shown for each stat-
ic distribution matches the ALjD of the dynamic distribution at the 0.001s intervals.

These figures lead to the following observations:

1) Rate sensitivity elevates the opening mode stresses, aeg, for all three specimens. At the
end of the analyses, this elevation is approximately 18%, 23% and 17% for the deep,
medium and shallow crack, respectively.
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2) For all three specimens, the crack-front stress distributions of the static analyses match
the rate-insensitive dynamic analyses well. Stress distributions are thus not influenced
by inertial effects for all three specimens.

3) Initially, the von Mises stresses are slightly elevated near the free surface for all three
specimens. At increased levels of plastic deformation, the von Mises stress distribution
becomes approximately constant across the crack front. The maximum amplitude of the
normalized von Mises stresses is 1.2 for the rate -insensitive and 1.5 for the rate -sensi-
tive material models.

4) Crack front variations of the opening mode stress and the mean stress become more uni-
form with decreasing a/Wratio.

5) Both the opening mode stress and the mean stress distribution for the rate-sensitive
shallow crack specimen show a local peak near z/B=0.4 at 0.0006 seconds. This trend
is also observed in the crack front distribution of J(z) shown in Fig. 4.8-4.

Figure 4.10-5 shows the opening mode stresses along 0 = 0 on the centerplane as a func-

tion of normalized radial distance, r, from the crack tip. Results for two loading levels of the

three specimens are shown, J=- 1.5 k/in, andJa 3.0k/in (0.263 MPa-m and 0.525 MPa-m).

The factor J/lay normalizes the radial distance. The plots also show the small-scale yielding

(SSY) stresses for a Ramberg- Osgood material under plane-strain conditions with a hard-

ening exponent of 10 [6]. (Figure 4.7-10 shows dhe A533B steel quasi-static stress-strain

curve together with a corresponding Ramberg-Osgood material model with a hardening ex-

ponent of 10). Under small scale yielding conditions, J uniquely characterizes the near- tip

stress fields. The difference between the SSY stresses and the actual opening mode stresses

form the basis for the two parameterJ-Q description of near-tip fields. O'dowd and Shih

[80,81] showed that the opening mode stresses in large scale yielding can be expressed as a hy-

drostatic stress field superimposed onto the SSY solution. The operational value of Q is de-

fined as the difference between the actual opening mode stresses (normalized by the' '.Ad

stress) and the SSY solution at r/(J/cy)=2.

The opening mode stresses for the medium and shallow crack specimens show distributions

similar to the SSY distributions. For the shallow crack, the value for Q is approximately - 1.3

for J values greater than 1.5 k/in for both the rate insensitive and quasi -static distributions.

For the shallow crack specimen rate sensitivity makes Q less negative by approximately 20%.

The medium crack stress distributions give Q= -0.75 for J=115 k/in, and Q=- 1.0 for J=3.0

k/in for both the rate insensitive and quasi-static analyses. For the medium crack specimen,

rate-sensitivity makes Q less negative by approximately 25%. The stresses for the deep crack

specimens reflect the very strong bending gradients in the ligament at high load levels. Q can-

not be calculated for the deep crack specimen due to the lack of similarity of the stress distribu-

tions with the SSY solution.
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4.11 Significance of the Jac Term

Equations 2.1-5 through 2.1-7 describe the contributions to theJ-integral for dynamic

loading. 7• and 72 are independent of inertial effects and their sum is the 1-integral for static

loading. Inertial effects enter the computation of J through 13:

3 - f1,( Taqk - au 2ui )u au aU (4.11-1)=-T3 -- at2 &tkk T t atalXkk

The first and third term of Eqn. 4.11-1 arise from the kinetic energy and the explicit derivative

of the kinetic energy in the integration domain, respectively. These two terms become signifi-

cant for situations that occur with unstable crack propagation where large velocities and large

velocity gradients exist near the crack tip [71,70]. For the non-propagating cracks investigated

in this study, these two terms are less than 0.1% of.73. For the present study, the second term

in Eqn. 4.11-1, denoted 7a,,, dominates the value of 73:

= V e Zxqk dV (4.11-2)

Figure 4.11-1 shows !he average through thickness value of Iac for the domain labelled

Ring 4 in Fig. 4.7-1. As shown in the figure,7Tac remains near zero for the initial 0.003 seconds

in all analyses. After 0.003 seconds, acc shows relatively large oscillations. However, the mag-

nitudes of 7,cc are extremely small compared to the total J-integral (see Fig. 4.7-3). For all

analyses, the contribution of 7acc to Jave is less than 0.1% for most of the response. Thus for

loading rates typical of those in drop tower tests, accurate computation of J-values does not

require the 73 term. This confirms the quasi-static nature of the experiment with respect to

the computation of" and explains the good agreement between static (baseline stress-strain

curve) and dynamic rate-insensitive analyses in this study.

Very early in the response (t< 1 X 10-4 s),when discrete stress waves are still prevalentacc
contributes significantly to the totalJ- integral. In particular, for times less than 1 X 10-4 s,7=

is needed to obtain domain independence of the J-values. In addition to the four domains
shown in Fig. 4.7-1, six additional (larger) domains are defined to examine the domain depen-

dance of the J values. The vertical distance from the crack tip to the domain edge defines the
domain radius and is used to quantify the domain size. Figure 4.11-2 illustrates the largest

domain studied with the corresponding domain radius. The distribution of theq-function fol-

lows the form described in Section 4.7.1. A unit value of q is applied at every node that resides

on the domain interior. The q-value for all other nodes is set to zero.

165



I

tcl/W I
0 200 400 600 5

0.2 aW 0.5 0.03

0.11 .I,• .
4'

0.0 I ,,0.0

0.1 . I-0.2 -- 0.03 3
0.2 I

a/W =0.15 0.03

0.1
, E

0.0 0.1.O " I

- 0.1 Rate Sensitive!
" - - Rate Insensitive

-0.21 6- -0.03

02a/W =0.0725 0.03

0.1-1

0.0 0.03

-0.2 -0.03

0 1 2 3 4 5 6 6
Time (sec x 1000)

Figure 4.11-1. Jacc for the SE(B) Specimens I

166,



zx Domain Radius
y

Domain for the Computation of J

Figure 4.11-2. Large Domain for Deep Crack Finite Element Mesh

Figure 4.11-3 shows the normalized values of J1, (defined in Eqn. 2.1-5),7a=, and the
sum: 4"+ J7, as a function of normalized domain radius for the rate-sensitive deep-crack
SE(B) analysis. The values ofJ.T andJl correspond to response times of 0.02 to 0.07 milli-se-
conds. The the specimen is predominantly elastic over these response times. The average of
all the domains (excluding the domain that contains crack tip elements only, i.e. Ring) in figure
4.7- 1) ofJfem (Eqn. 4.7- 1) is used asJra, for the normalization. TheJ-value for the specimen
at these response times is less than 0.01 lb/in (a negligible value for most practical applica-
tions). The medium and the shallow crack SE(B) specimens show similar trends and are not
repeated here.

As shown in the figure, J, exhibits domain dependance at these early response times. At
0.02 milli-seconds,J 1 is negative for the larger domains, and approaches the domain indepen-
dent value with decreasing domain radius. 7wc exhibits the opposite behavior, and approaches
zero with decreasing domain radius. The sum of these two values is domain independent. At
0.05 milli-seconds, J1 alone is equal to the totalJ-integral for all domains. The use of small
domains near the crack tip provides accurate Jvalues using 1J alone. J1 from the smallest four
domains predicts the totalJ- integral accurately by as early as 0.03 milli- seconds. Similar path
dependence of J1 is found in [76,98] for the case of thermal loadings.

4.12 Summary

The detailed results for six dynamic analyses and six static analyses have been discussed in
this chapter. The static analyses provide a reference solution to assess the relative importance
of strain rate and inertial effects in the dynamic analyses. Loading rates imposed in the dynam-
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ic analyses are comparable to the rates routinely found in drop tower testing. The following

items summarize the important observations and conclusions obtained from these analyses:

1) A methodology is presented and verified to load the dynamic models which produces load-
displacement histories measured experimentally. This method involves two analyses: one in
which a displacement response is directly applied to the specimen, and a second analysis in
which the extracted nodal loads from the first analysis are smoothed and then applied as a
pressure loading to the detailed mode! 'or the specimen.

2) The transition time occurs while the specimen remains essentially elastic. The transition
time is a function of the fundamental elastic period of the specimen. For loading rates consid-
ered, (and up to an order of magnitude higher), the transition time is - 0.4 x the first period
of vibration.

3) Strain rates of up to 50/sec occur near the crack tip in the specimens at the imposed loading
rate of 100 inches/sec.

4) Plasticity remains confined to the ligament for the deep crack specimen. For the shallow
crack specimen, the plastic zone grows through the entire width of the specimen, and im-
pinges on the quarter-span gage locations. The low hardening A533B steel restricts further
growth ef the plastic zone in the shallow crack specimen after plasticity has spread through
the width of the specimen.

5) Three techniques to infer the applied load are studied: quarter-span strains, end reactions
and ligament moments. All three methods underestimate the actual applied load toward the
end of the response due to the large increase in kinetic energy of the specimen. Longitudinal
strains for the shallow crack specimen remain sufficiently linear at the quarter-span gage
locations to enable accurate load estimation from measured values.

6) The static formula to computeJfrom applied workwith tip values derived from plane-strain
models produces large (>20%) errors in the medium and shallow crack specimens. Howev-
er, the staticJ formula produces accurate results (<5% errors) when j~p values derived from
three-dimensional (static and dynamic) analyses are used. Accuracy of the static formula
is improved even further when modified to relate the total energy absorbed by the specimen
to J For response times after approximately 2.5 x the transition time, inertial effects dimin-
ish sufficiently for the static formula to apply. This time is approximately equal to the first
period of each specimen.

7) The crack-front distribution of J, normalized by the through thickness average , is indepen-
dent of strain rate for the specimens in this study. The deep and medium crack specimens
have a local maximum of J at the centerplane. For the shallow crack specimens, however,
the local maximum I occurs at a small distance (10% B) from the Žree surface.

8) Rate sensitivity elevates crack-front J-values 17% for the deep and shallow crack speci-
men, but only 5% for the shallow crack specimen. Rate sensitivity in the shallow crack speci-
men elevates the stresses in the ligament sufficiently so that the increase in stiffness forces
deformation away from the crackplane.
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9) Rate sensitivity has little effect on the CTOD for the deep and medium crack specimens, but I
it decreases the CTOD for the shallow crack specimen. This is due to the increase in stiffness
that results with the rate-sensitive material for the shallow crack specimen.

10) At the same response time, the medium crack specimen exhibits the largest CTOD, followed
by the deep crack specimen, and finally the shallow crack specimen. However, the constraint
parameter m increases monotonically with increasing a/W

11) Opening mode stresses ahead of the crack tip obtained for the dynamic analyses reveal the 3
same trends obtained from static analyses. The deep crack specimen maintains a high level
of constraint (and thus high stresses) well into the fully plastic regime. The medium and shal-
low crack specimens reveal significant reductions of crack tip stresses under increased plastic I
deformation (loss of constraint). Rate sensitivity partially restores the constraint and ele-
vates crack-tip stresses. Estimates for the constraint parameter Q are given for the shallow
and medium crack specimens. The strong bending field of the deep crack specimen makes
Q radially dependent at high loads. Rate sensitivity decreases the amplitude of Q [80120%
for the medium crack and 25% for the shallow crack specimen. I

12) At the same response time, the opening mode stresses ahead of the crack tip increase with
increasing a/W Elevation of the opening mode stresses is due to increased constraint against
plastic flow as shown by similar increases in the hydrostatic stress state.

13) The material acceleration component of theJ-integral is negligible except very early in the
response. At response times less than 5 x 10 -s s, the acceleration term of the J-integral
is necessary to achieve domain independence.

1
I
I
I
I
I
I
a
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5 Summary, Conclusions and Recommendations

3 This study extends the understanding of SE(B) fracture specimens subjected to loading

rates characteristic of drop tower testing through the use of advanced finite element tech-

niques. Three-dimensional models of three different specimen configurations, aIW = 0.5,

0.15, 0.0725, are analyzed to investigate constraint effects. Static analyses provide baseline re-

suits from which inertial effects are assessed. Dynamic analyses with a rate-insensitive mate-

rial model provide baseline results for the assessment of strain rate effects. The detailed evalu-

ation of dynamic effects including viscoplasticity, inertia, and the acceleration component of

the J-integral, significantly improves our understanding of impact fracture tests.

Key aspects and conclusions of this study include:

Computational techniques are implemented that compute efficiently the dy-
namic, viscoplastic behavior of the SE(B) specimens. Explicit time integration
is used to evaluate the dynamic response. The Bodner-Partom material mod-el is implemented for rate-sensitivity. A one point domain integration tech-

nique is used for J calculations.
* Transition time concepts are evaluated for the three SE(B) geometries. At re-

sponse times after 2.5 x the transition time, the static formula to compute J
from work on the ligament applies. Numerical results demonstrate that this
limit corresponds to the elastic period of the specimen.

* For the medium and shallow crack specimens, use of ,7p derived from 2-D
analyses leads to overpredictions of the applied J values. Accurate computa-
tion ofJ from static formulas requires the use of plastic proportionality factors
derived from results of 3-D finite element models.3 Strain-rate sensitivity elevates the loading levels and the opening mode
stresses for all three specimens. Rate sensitivity also elevates the applied J and
constraint parameter m for all three specimens, however, this effect is less pro-
nounced in the shallow crack specimen. Rate sensitivity elevates the ligament
stresses in the shallow crack specimen sufficiently to force deformation away
from the crack tip, thereby lowering the applied .I The inertial component of. Jis negligible (ess than 0.1% of the total J) for the
three specimens except very early ( < 0.05 milli-sec) in the response when this3l• component is needed to maintain domain independence of L

0 Oscillations of loads inferred from strain gage readings and load-line dis-
placements occur due to the inertial response o1 the specimen. However, the
accuracy of J values computed from the static formulas is not significantly af-
fected.
Constraint loss that occurs in the medium and shallow crack specimens de-
creases the opening mode stresses well below the SSY solution. This leads to
the well known elevation in cleavage fracture toughness for shallow notch
SE(B) specimens. Crack front distribution of J and CTOD become more uni-
form with decreasing aIW
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Each of the above items is summarized in greater detail in this chapter. The chapter concludes U
with recommendations for further research. I

5.1 Summary of Computational Techniques 1
The following computational techniques support the detailed examination of fracture

quantities reported in this study: 3
1) Explicit time integration coupled with one-point Gaussian integration of 8-node, iso-

parametric elements is used for the efficient computation and monitoring of both dis- I
crete stress waves and global dynamic behavior of the SE(B) specimens.

2) Numerical integration techniques are developed that compute accurately the applied
J values through a domain integral approach.

3) The Bodner-Partom viscoplastic model is implemented to characterize the strain-
rate sensitivity of medium strength pressure vessel steels. A newly developed iterative
technique to integrate the stiff rate equations maintains the overall efficiency of ont-
point Gaussian integrated elements.

4) A procedure is developed that reproduces accurately the desired load-line displace- 3
ment histories for all specimens.

Essential aspects of the computational techniques are provided below. 1

5.1.1 Explicit Time Integration

Computational economy is maintained with the use of an explicit time integration tech- I
nique which incorporates single point integration of the element divergence operator. Explicit
dynamic analyses reproduce accurately both the localized stress waves and the global behavior 1
of the SE(B) specimen. The critical time step size required for stability is approximately the
time required for a dilatational wave to traverse the smallest element in the finite element

mesh. Thus, the mesh refinement of the finite element model determines the critical time step
size and establishes two important limits: the total number of time steps required for the solu-

tion (amount of CPU time), and the maximum number of time steps (total time of the dynamic
analysis) before a loss of precision occurs. The single precision storage of Spectrom-331 en-

forces approximately a 10 million step limit for acceptable precision. The critical time step of 1
the refined finite element models in this study is approximately 2.2 x 10 -7 seconds. Approxi-
mately 300,000 total time steps are needed to compute the 6 milli-second response.
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I 5.1.2 J-integral Computations

The domain form of the J-integral, extended to include inertial effects, is implemented

for the computations in this study. Techniques to evaluate the volumetric integrals parallel3 those for the one-point Gaussian integration used to compute the element internal forces.

5.1.3 Bodner-Partom Constitutive Model

The Bodner- Partom viscoplastic constitutive model is used to represent strain rate effects

on the material flow properties. The strong dependence of plastic strain rates on stresses re-

quires an iterative technique to integrate the stiff rate equations. A new, efficient technique
that minimizes the number of iterations required for convergence is described. The small time

step size needed for stability of the globally explicit dynamic computations makes possible the

use of a stress-updating scheme which avoids sub-incrementing of the time step. The newly
developed iterative technique exhibits monotonic convergence for the materials, time steps,
and strain rates of this study.

Through careful modification of the Bodner- Partom material constants, a rate-indepen-
dent response for A533B steel is developed which elevates stress due to rate sensitivity by less

than 2%. When used in a dynamic analysis, this material model provides the basis to examine
the relative significance of strain rate effects.

5.1.4 Loading of Finite Element Models

3 A technique is developed to define applied loads that generate a pre-determined dis-

I placement history. An SE(B) model is first loaded by applying the desired displacement history
on a finite loading area. The reactions at the displaced nodes are extracted and smoothed to

generate the loading history. For computational efficiency, a relatively coarse finite element3 model is used to generate the applied loading for each specimen. The generated loading is then
applied as a time dependent pressure on the refined model to examine the specimen's re-

Ssponse in detail. This methodology enables comparisons of the responses for the three SE(B)

specimens having different a/Ws with each specimen subjected to the same "displacement"

3 controlled loading.

The displacement history characteristic of a drop tower test is chosen for this study. This3 displacement history consists of an initial phase in which deformation concentrates in the im-

pact absorber, and a final phase in which the load-line velocity of the specimen reaches the3 terminal velocity of the falling tup. The resulting load-line displacement curve consists of two
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well defined segments of constant velocity. The terminal load - line velocity of 100 in/sec (2.45 3
m/sec) equals the tup velocity. SE(B) specimens of high toughness material fail during the ter-

minal phase of the load- displacement trace. 1

These analyses represent the first detailed examination of the 3-dimensional response of 3
SE(B) specimens under realistic impact loadings.

5.2 Transition Time Concepts

The transition time at which the internal energy of deformation exceeds the kinetic energy 5
occurs very early in the response while the specimen behavior is predominantly linear - elastic.

Transition times obtained in this study are: 0.240 x 10-3, 0.161 X 10-3 and 0.157 x 10-3

seconds for the deep, medium, and shallow crack respectively. (Normalized with respect to tw,

the time it takes a dilatational wave to travel the depth of the specimen, these are: 28.1, 18.9, 3
and 18.4 respectively). Since the early response is elastic, the transition time is independent

of viscoplastic effects. A single degree of freedom system models accurately the energy content

of the SE(B) specimen and provides accurate estimates for the transition time.

The transition time is consistently demonstrated to be a fraction of the first elastic period 1
of the specimen (0.4 x T1), and relatively independent of loading rate. At response times

greater than 2.5 x the transition time, the initial dynamic effects due to impact subside suffi- 3
ciently so that static formulas predict accurately the applied I. The first elastic period provides
a simple practical limit after which static formulas for J apply. 3
5.3 Applied Loads from Laboratory Measurements 3

The calculation of J using the static formula requires numerical integration of the load dis-
placement history for an SE(B) specimen. Direct measurement of the applied load in an im- I
pact test is not generally practical. Instead, the applied load is inferred from more simply mea-

sured quantities. Three techniques to infer the load are examined: 1) measured support 3
reactions, 2) strains measured by quarter-span gages, and 3) computed ligament moments.
The first two methods can be used in laboratory settings. Assumptions of a static response are
used to relate measured quantities to the applied load, i.e. 1) support reactions sum to equal U
the applied load, and 2) the distribution of strains at the quarter-span location is correlated
to the applied load. The third method infers the dynamically applied load as the equivalent 3
static load that produces the same ligament moment Although the ligament moment cannot

be measured in the laboratory, it is a direct indicator of crack-tip deformation.
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All three methods infer well the actual applied load with maximum errors on the order of

6%. Early in the dynamic response, while the specimens are predominantly elastic, simple

elastic vibrations of the SE(B) specimens produce oscillations of the inferred loads about the

actual applied load. All three methods underestimate the applied load by approximately 3%

during the terminal (constant velocity) stage of the response. This error is attributed to the rap-

id increase in the kinetic energy experienced by the specimen during the terminal stage.

For the shallow crack specimen, plastic deformation impinges on the quarter-span loca-

tions. Linearity of the strain distributions at the quarter-span locations is preserved at the

specimen centerplane, while surface strains exhibit warping effects. A simple setup using strain

gages mounted on top and bottom of the specimen at the centerplane provides surprisingly ac-

curate load estimates.

5.4 Computation of J Using Static Formulas

Loads inferred with the three methods and the applied load are used to compute J values

with the static formula (Eqn. 2.2-6). After the initial impact, very similarJvalues are obtained

with a maximum deviation of 5%. In general, theJvalues computed with the applied load are

larger than those computed from the inferred loads (which are slightly smaller).

The average (through thickness) J value (computed via domain integrals from the finite

element models) provides the basis to evaluate the accuracy of the static formula which uses

plastic work on the ligament. Published values of ;7p (derived from plane - strain models) yield

accurate J values for the deep crack specimen. For the medium and the shallow crack speci-

men, however, use of the plane-strain j/p values overpredict applied J values by 20 to 30%.

Static analyses of the same specimens indicate that the errors are not due to rate sensitivity or

dynamic effects, but instead are due to 3-dimensional effects.

Accurate values of J can be obtained by using Vp, values derived from 3-dimensional static

finite element models (rp•). The computed values are: r/pd = 1.91, 1.33, 0.83, for the deep,

medium and shallow crack, respectively. Maximum errors of 3%, 7%, and 18% in J are then

predicted for the deep, medium and shallov crack, respectively.

An alternate form of theJ estimation formula which uses the total work (not just the plastic

component) done by the applied load (Eqn. 4.7-12), further improves the accuracy. 3d re-

lates the total externalwork to the appliedJ. The computed values for ?13 are: r73 = 1.91,1.32,

and 0.82 for the deep, medium and shallow crack, respectively. Maximum errors of the static

J- formula with 7,) are 3%, 4%, and 12% for the deep, medium, and shallow crack, respec-
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tively. After the initially elastic response, this scheme based on total external work predicts the I
most accurate J values of the methods surveyed.

With #p and i73(factors derived from 3-D analyses), the simple ligament-work ap-

proach to compute J applies equally well to all analyses conducted in this study. The accuracy

of this approach is independent of rate sensitivity and inertial effects.

5.5 Effects of Strain Rate Sensitivity 3
Strain rate sensitivity increases the applied loads by approximately 20% for all three speci-

men configurations. Stresses in the crack tip elements increase to levels that correspond to a 3
strain rate of approximately 50 sec- 1. Rate sensitivity elevates the opening mode stresses 18%,
23% and 17% for the deep, medium and shallow crack specimen, respectively. In terms ofJ-Q 1

theory [81], rate sensitivity decreases (less negative) the amplitude of Q 25% for the medium
and shallow crack specimens. For the deep crack specimen, rate sensitivity elevates the near- 3
tip stresses above the small scale yielding solution comupted for the static yield stress.

Applied J-integral values also increase with strain rate sensitivity. The average through 3
thickness J value is approximately 17% larger for the deep and medium crack specimens due

to rate sensitivity. J increases by only 5% for the shallow crack specimen. Rate sensitivity in 3
the shallow specimens elevates the ligament stresses sufficiently so that deformation is forced

away from the crack tip which shields the crack tip from increases in J observed in the deep

and medium crack specimens. Crack front variations of the pointwise J-values are indepen-

dent of strain-rate effects.

Thickness average CTODs for a given specimen geometry are relatively independent of

rate sensitivity. However, since the applied Jvalues increase with rate sensitivity, the relation-

ship between CTOD and J is affected. Rate sensitivity increases the constraint parameter m.
This effect can be explained as well by the apparent increase in the yield stress that occurs with
rate sensitive materials.

Rate sensitivity has no effect on the different techniques used to infer the applied load.

Also, since the transition time occurs while the specimen is predominantly elastic, transition

times are independent of rate effects. The computations of t/• and the resulting simple

schemes to estimate J are not affected by rate-sensitivity.

5.6 Inertial Component of J 1
The inertial component of the J-integral, 13, quantifies material acceleration effects on

the crack tip deformation. The term containing the material accelerations, 7acc, numerically
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I dominates 73 for the analyses of this study. For most of the response, 7w contributes less than

0.1% to the totalJ. Thus the computation of .7aJ is unnecessary for the loading rates studied.

Early in the response, while discrete stress wave effects are predominant, 7acc contributes

I a significant amount of the total J. In particular, for times less than 0.05 milliseconds, 7acc is

needed to obtain domain-independence of J. The domain dependence ofJdecreases with de-

Icreasing domain size. Domain-independence is observed for all domains beyond 0.05 milli-

second response. This time corresponds to approximately six traversals of a dilatational wave

I over the width of the specimen.

The amplitude of the total appliedJ prior to 0.05 milli- second of response is on the order

I of 0.01 lbfm. This amplitude is negligible for metals, making the computation of 7, unneces-

sary for the loading rates studied.

I 5.7 Inertial Effects

3 Three types of inertial effects are identified in this study: 1) local stress waves affect the
domain independence ofJupto approximately 0.1 mili- seconds response, 2) first mode oscil-3 latory behavior of the SE(B) specimen affects the computation of J with the static formula up
to approximately 3 milli- seconds response, and 3) increases in the kinetik, energy of the SE(B)

specimen at the end of the response affect the accuracy of the inferred loads. The local stress

waves occur prior to significant deformation in the specimen, and thus do not affect the elas-
tic-plastic fracture behavior.

Both the load-line displacements and the inferred loads are affected by the elastic oscilla-3 tions. As a result, the Jvalues computed from the static formula using these quantities also ex-
hibit oscillatory behavior. However, the amplitude of the oscillations of J are quite small, and

the static formula yields accurate results.

The inferred loads are smaller than the applied load as the specimen approaches terminal
Svelocity. A portion of the applied work is translated into the increase in kinetic energy, and is

thus not available for an increase in the specimen deformation (used to infer the load). Accu-3 rate values of J result with the static formula during this stage.

I 5.8 Specimen Configuration and Constraint Effects

Constraint effects in the SE(B) specimen as a function of crack depth are examined. The3 numerical analyses lead to the following conclusions:
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1) The local J along the crack front decreases near the outside free surface of the specimen. I
This is due to the loss of constraint against plastic flow that occurs near the traction free sur-
faces. For the deep and medium crack specimens, the maximum localJ occurs at the center-
plane. For the shallow crack specimen, however, the maximum local J occurs at a distance
of 10% of the specimen thickness from the outside free surface. Additional loss-of-
constraint occurs in the shallow crack specimen due to plastic flow to the bottom (crack face)
free surface. The variation of local J along the crack front becomes more uniform with de-
creasing a/W ratios. The crack front variations of opening-mode stresses, CTOD, and m
also become more uniform with decreasing a/W ratio. 3
2) Strain rate effects elevate the near tip stresses approximately 20% for all three specimen
configurations. The deep and medium crack specimens experience a 20% elevation in I,
while the shallow crack specimen experiences only a 5% elevation of1. The elevated stresses
in the ligament due to rate sensitivity stiffen the midsection, forcing deformation away from
the crack plane. Thus the effect of rate sensitivity on J and CTOD for the shallow crack speci- U
men is less than for the deep or medium crack specimen.

3) The deformation patterns for the deep and medium crack specimens are effectively two I
rigid arms rotating about the ligament plane. For this deformation pattern, the CTOD at a
given load-line displacement increas:s with remaining ligament length. The deformation
of the shallow crack specimen, however, is more beam-like; a pattern which produces a
smaller CTOD than the rigid-arm-rotation deformation at the same load-line displace-
ment. This explains the order of CTOD values obtained in this study. At a given load-line
displacement, the medium crack specimen shows the largest CTOD values, followed by the U
deep crack specimen and finally the shallow crack specimen. (The constraint parameter m,
however, decreases monotonically with aIW.) 3
4) Loss of constraint due to specimen geometry is also quantified through the comparison
of near-tip stresses at the same global Jlevels. The near-tip stresses in the deep crack speci-
men approach those of the SSY solution which indicates a high degree of stress triaxiality.
The near-tip stresses of the medium crack and shallow crack specimens, however, fall below
the SSY solution by amounts approaching the yield stress of the material. This loss of stress
triaxiality and, consequently, the opening mode stresses, greatly increases the applied I
needed for cleavage fracture.

5.9 Recommended Directions for Future Research

Impact testing of instrumented elastic-plastic fracture specimens is the most recent effort

to evaluate the behavior of structures under short duration loadings expected in blast or acci-

dent type loadings. As a result, research in this area is limited, and this study presents the first

detailed investigation of the 3-dimensional behavior of different SE(B) specimens under im-

pact loading. Further understanding of fracture behavior under impact loadings can be U
achieved through more detailed examination of the near-tip fields at global loading rates ex-

amined in this study.
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_1 5.9.1 Micro-Mechanical Studies for Cleavage Fracture

3 Dodds et. al. [30] provide a framework to predict the cleavage fracture in one geometry

based on the toughness data from another. Under a large range of static loadings (in 2- dimen-

- sions), different specimen configurations exhibit self-similar principal stress contours ahead

of the crack tip, even after a significant amount of plasticity has occurred. A stress-volume

criteria dictates cleavage failure once the volume inside of a pre - determined principal stress

contour (generally taken over the range 2.53y to 3.5 ay) has reached a critical value. The mi-

cro-mechanical model postulates that this critical volume for cleavage fracture is indepen-

dent of geometry and mode of loading. Dodds et. al. takes this critical volume concept further

by establishing a reference from which a specimen independent J is obtained. The equivalent

U J that produces the critical volume in the small scale yielding s"!ution defines the specimen

independent J.

I Extension of the Dodds-Anderson model for impact loading requires very detailed com-
putation of crack-tip stress fields to obtain the principal stress contours ahead of the crack
tip. Variations of the strain rates near the crack tip, and the resulting elevated viscoplastic

stresses, may nullify the self-similar distribution of the principal stresses near the crack tip
S observed for static loading. Thus three key aspects merit attention in the extension of the mi-

cro-mechanical model to include the impact test:

3 1) Examination of the near tip stress fields is needed to determine if sufficient self-similar-
ity across different specimens exists for application of the Dodds-Anderson model. Pro-
vided self-similar stress fields exist, relationships based upon the micro-mechanical
model may be generated for a specific impact test, facilitating the determination ofJ re-
quired for cleavage fracture of shallow flaws encountered in structures under short dura-
tion loading. Once obtained, such a relationship will predict the fracture performance
of different specimens from deep crack specimens that are easily tested under impact
loadings, and will reduce the need to test shallow crack specimens.

2) Examination of the near tip stress fields may reveal that sufficient similarity exists with
corresponding statically loaded specimens so that extension of the Dodds-Anderson
model for the purpose of predicting fracture performance in impact loadings may pro-
ceed directly from static tests alone.

S3) Loading rate dependence may require modification of the Dodds-Anderson model to
account for the apparent increase in the yield stress at high strain rates. Alternatively,3 relationships may be developed that apply to ranges of loading rates.

As shown in Section 4.10, the through-thickness distributions of the opening mode3 stresses near the crack tip are dependent on specimen geometry. This study shows that 3-di-
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mensional representations of stressed volumes in will not be self similar, even for static load- I
ings. This phenomena may necessitate modifications of the equivalent stressed-volume ap-

proach that forms the basis of the Dodds-Anderson micro-mechanics model in

2-dimensions. An approach that has been reported recently treats the maximum local value

of J along the crack front as the equivalent 2-dimensional plane strain value of J for the pur- 3
pose of applying the micro-mechanics model [33].

5.9.2 Higher Loading Rates

The Charpy-V notch test provides an inexpensive impact method to estimate the tough- 5
ness temperature curve. A small bend specimen with a 0.4 inch square cross section is notched

and loaded to fracture by a swinging pendulum. The loading duration of the Charpy test is on

the order of 200.u-seconds [78,9]. The difference between the energy levels of the pendulum
before and after impact with the specimen provides the total energy absorbed by the specimen.

By using a pre-cracked Charpy specimen, (i.e., a sharp crack is introduced in the specimen
through fatigue loading), a fracture test occurs that is an order of magnitude shorter in duration
than the impact loading of much larger specimens examined in this study. The fatigue pre -

crack is intended to make the dynamic stress fields resemble those of conventional statically

loaded specimens. 3
The Charpy test is predominantly a displacement controlled loading in which the pendu-

lum imparts a displacement history to the specimen. Computational aspects of the Charpy I
pre-cracked specimen involve:

1) Method of specimen loading: To quantify dynamic effects, modelling of the kinematic be-
havior of the specimen is essential. The lack of knowledge about the distribution of dis-
placements at the loaded edge (impact edge) does not allow a displacement controlled
finite element analyses. Schemes similar to those explained in Section 3.4 need to be ex-
amined so that an applied pressure load can be used to reproduce the required kinematic
history. !

2) j7,: For shallow flaws, the published values (based on 2-dimensional studies) of the plas-
tic proportionality factor for use in theJ estimation formula (Eqn. 2.2-6) produced un- I
acceptably large errors in J. Possible extension of the proportionality ratio approach so
that the absorbed energy as measured by the Charpy test can be directly utilized for the
estimation of J should also be considered.

5.9.3 Implicit Techniques for Dynamic Analyses 3
Spatial refinement of the finite element meshes utilized in this study are very near the maxi-

mum levels to obtain valid results with the single precision computations used in Spec-
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I trom-331. These finite element meshes are not refined sufficiently for the accurate evaluation

of near-tip stresses needed in micro-mechanical models. Increasing the model refinement

to obtain sufficient resolution of the near-tip stress fields with explicit integration techniques
will result in a small critical time step that will make the analyses computationally prohibitive.

Generation of micro-mechanical models for impact loading can proceed through the useI of implicit dynamic techniques. Although implicit techniques are computationally more inten-
sive than explicit techniques per time step, solution stability is not a function of mesh refine-

ment and much larger time steps can be taken. For larger time steps, however, the ability toI monitor discrete stress waves is lost. Since the discrete stress waves occur at times prior to plas-
ticity development in the specimens, this is not a concern for loading rates of this study. Suit-3 able time step sizes can then be taken that capture strain rate and global inertial effects while

ignoring the stress wave effects that occur immediately after impact.

U Use of implicit dynamic techniques for higher loading rates is possible provided that speci-
men failure occurs well beyond the time at which discrete stress waves predominate. This may

allow implicit techniques to be used for Charpy specimen loadings.

3
I
I

-I

I
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