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ABSTRACT

This thesis provides a crosstalk analysis of optical chip interconnects via single-
mode waveguides with synchronous transmission and asynchronous transmission. This
crosstalk model is general and can be used for any type of waveguide network. Three
cases of laser sources will be considered: (1) each channel operates with an independent
laser sources, (2) all laser sources have the same mean wavelength but with different
phase noise processes, and (3) all laser sources are identical with the exception of the
initial phases. The analysis takes into account the coupling-induced crosstalks between
adjacent waveguides, the laser linewidth, the shot noise, the dark current generated by
the photodiode, and the post-detection thermal noise. Bit error probabilities versus

received peak powers are presented together with power penalties.
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I. INTRODUCTION

This thesis considers the problem of crosstalk impact in an optical interconnect
system using a single-mode waveguide network [Ref. 1-Ref. 8]. An optical interconnect
consists of two or more terminal nodes which are interconnected hv a single optical path
or a high-density parallel network which preserves the parallel nature of the data
generated at the nodes [Ref. 9]. Such interconnect systems would consist of chip-to-chip
or board-to-board interconnections [Ref. 8]. The use of waveguides provides a potential
of integrating the entire system of wansmitter and receiver on the same substrate [Ref.

10).

XMTR RCWR

B

Figure 1: Schematic diagram of an optical interconnection transmission system
architecture [ Ref. 9).

A. BACKGROUND

The success of optical communication has accelerated research on high capacity data
handling systems. It is expected that the monolithic integration of optical and electronic
components on the same chip will ultimately lead to ultrahigh-speed, high sensitivity,
compactness, reliability, low cost, as well as passive and active integrated optic
components [Ref. 11].

Integrated optics refers to the implementation of various functions with light such as
modulation, switching, generation, and detection in an optical guided wave structure

formed on a substrate. Use of the term "integrated” implies implementation of many of




these functions on the same substrate. Integrated optical devices are characterized by
many advantages associated with lightwave technology in general, namely, larger
information capacities than with electronic technology are possible, elecromagnetic
interference is not present, and parallel processing is possible. Many of the advantages of
elecronic integrated circuits, including the potential for fabrication economy and
reliability of devices combined onto one substrate apply to integrated optics. Vibration
problems associated with bulk optical experiments are eliminated when devices can be
integrated onto one substrate space. [Ref. 12]

Closely associated with integrated optics is the field of integrated optoelectronics
which encompasses device structures referred to as optoelectronic integrated circuits
(OEICs) [Ref. 12]. OEICs represent a device technology with potential to meet a broad
range of future telecommunication and computing system needs. Optoelectronic
integrated circuits are circuits that monolithically integrate optical and electrical
components on a single semiconductor chip [Ref. 10]. Compound semiconductor
materials are used to form optoelectronic integrated circuits because photonic devices
such as semiconductor lasers, detectors, high-speed electro-optic modulators and
switches, as well as quantum well waveguide devices, and high-speed electronic devices
can be formed with the same material alloys [Ref. 12].

High performance is now being achieved in devices using both GaAs and InP
material systems [Ref. 9]. Itis in the combination of photonic components and electronic
circuitry that the OEIC gains a usefulness over and above that which can be obtained by
placing non-monolithic circuits together in a package. For example, it has been asserted
that only through monolithic integration can one fabricate extremely high-bandwidth
transmitters or high sensitivity receivers [Ref. 9].

OEICs currently fall into three categories: interconnects, communications, and
computing and signal processing. As mentioned before, an optical interconnect (Fig. 1)

consists of two or more terminal nodes which are interconnected by a single, high-band




optical path, or alternately, a high-density parallel optical network which might preserve
the parallel nature of the data generated at the terminals. Such an architecture is useful
for interconnecting two computer mainframes or, on a smaller scale, would consist of
board-to-board or even chip-to-chip interconnections. The desirability of such a system
is its potential for the rapid transfer of parallel data from one system to another without
the concomitant problems of electromagnetic interference ardi signal dispersion
commonly observed in a high-bit-rate electrical interconnects. [Ref. 9]

Fc: example, as computing environments evolve toward the type of distributed
network in Fig. 2 with data processing and database sharing among remote locations,
overall operation efficiency increasingly relies on the efficiency of interconnection links.
Optical interconnects are a new approach that could be used to achieve high-bandwidth
low-loss interconnects for these applications. [Ref. 9]

Figure 3 illustrates the functional charac .cristics of a GaAs computer interface chip .
For insertion into a practical computer system, this circuit, for any OEIC component, has
been designed to meet the following requirements [Ref. 10]:

1) The circuits must be high speed, capable of multi-gigabits per second, with
relatively high complexity (10K transistors/chip).

2) They must be capable of operation in noisy envircaments; Py < 10-13 in the
presence of noise levels up to 100 mV.

3) They must have high reliability, i.e., a failure rate <0.01% per kilohours for the
entire link, for over 105 h at 50° C.

4) They must have redundancy in critical paths with transmission error correction
capacity.

5) They must be compatible with existing computer interface technologies,

packaging, power supply requirements, and silicon interface.
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Figure 2: Distributed computer network [Ref. 10].

The advantages of OEICs are currently being exploited by the Department of the
Defense. OEICs are being developed for such applications as neural networks, high
speed signal processing, high speed communications, and advanced antenna systems. For
example, the development of efficient microwave signal distribution by optical fiber
creates the possibility of achieving unconventional antennas such as "smart skins”. In

this example, individual radiated elements would conform to the contour of an aircraft




and the "antenna’s" directional properties would be determined by control of phase
emission from different parts of the aircraft. Consequently, the DOD funds on-going
programs developing high frequency components, such as high speed GaAs circuitry.
This program is funded for seven years at a level of $500 million. [Ref. 10]

Yraramatter OEIC

| Codev ! Master Clack

Figure 3: OEIC Functions [Ref. 10]

B. APPROACH

This thssis considers a mathematical approach that includes nicie than two
interfering channels. The modulation format used in this analysis is on-off keying (OOK)
with direct detection. Two, three, and four channels were modeled using synchronous bit
transmission. For comparison, two adjacent channels were modeled using asynchronous
bit transmission. The emphasis of this thesis will be on the impact of coupling induced
crosstalk between adjacent waveguides in a waveguide network. Furthermore, additional

parameters that will affect the performance of the interconnect system are the laser




linewidth, the shot noise and the dark current generated by the photodiode, and the post-
detection thermal noise. To be general, the receiver will be considered to be an integrate-
and-dump filter with integration time T where T is the bit time. Also, the current spectral
density of the post-detection thermal noise is denoted as Ng. The spectral density Ng can
be easily computed for a given low noisc amplifier type given the effective noise
temperature and the matched resistance load.

The optical interconnect system is given in Fig. 4(a) for OOK direct detection. The
waveguide network consists of many single-mode waveguides. It can be a planar array
with uniform waveguide separation or any other structure (Fig. 4(b)). The envelope of
the output lightwave of a given waveguide is detected by the photodiode, which also
generates shot noise and dark current. The output of the photodiode is further corrupted
by the amplifier thermal noise. The total signal plus crosstalk, shot noise, dark current,
and thermal noise is integrated over one bit time T and the resulting bit energy at the end
of each integration time is determined by the slicer to be either bit one or bit zero. Itis
assumed that the waveguide bandwidth is much larger than the bit rate and the signal
spectrum.

The resulting model for synchronous and asynchronous transmission was validated
using MATLAB. The resulting data from the MATLAB programs was graphed as a
series of performance and optimal threshold curves versus peak powers. These resulting
curves were then compared with Ref. 8 and Ref. 13 to determine the credibility of the
results. Appendices C through F contain sample programs for synchronous and

asynchronous transmission.
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Figure 4(a): Optical Interconnect System for OOK Direct Detection

Planar Waveguides /

Figure 4(b): Planar Waveguides

C. THESIS ORGANIZATION

This thesis is organized into four chapters. Chapter I provides a background to
optical chip interconnects. Chapter II provides the theoretical framework for the
performance analysis and discusses the numerical results when the bit transmission is
assumed to be synchronous where bit streams in all channels are time-aligned. Chapter
III provides the theoretical framework for the performance analysis and discusses the
numerical results when the bit transmission is assumed to be asynchronous where bit
streams in all channels are not time aligned. As in Ref. 8,'threc cases of laser sources

were considered and modeled. In case one, the system was modeled utilizing non-




coinciding and uncorrelated light sources (each channel operates with an independent
laser source). In case two, the system was modeled utilizing coinciding and uncorrelated
channel light sources (all laser sources have the same mean wavelength but with different
phase noise processes). Finally, in case three, the system was modeled utilizing
coinciding and correlated channel light sources (all laser sources are identical with the
exception of the initial phases). Chapter IV is a summary of the study. Appendices A
and B are derivations of the conditional mean square value of X; for synchronous and
asynchronous transmission. Appendices C through F contain sample MATLAB
programs. Appendices C and D are sample programs for two adjacent channels with
synchronous and asynchronous transmission. Appendices E and F are sample MATLAB

programs for three and four adjacent channels with synchronous transmission.




II. SYNCHRONOUS OPTICAL CHIP INTERCONNECTS

A. ANALYSIS

For mathematical convenience, the complex envelope notation of a real signal is
adopted. Thus, for a given transmitted bit b,; of a given channel 0 whose laser phase
noise process is 0y(t), the signal at the input of the photodiode is designated as

, M
5;(1) = .%bme"’o“) + Z%Qbmei%(t)wml, 0<t<T a)
k=1

where A is the OOK signal amplitude, 6, () is the laser phase noise process, @, and ¢,
are the frequency spacing and the initial phase difference between channels k and 0,
respectively. Also, b, represents the transmitted bit of channel k, and C; represents the
coupling from channel k to channel 0. The summation term in equation (1) thus
represents the crosstalk from M adjacent channels into channel 0. In equation (1), all
waveguides are assumed to have the same attenuation. For the case of M = 2, that is,
when only the two nearest adjacent channels are considered, equation (1) reduces to the
result in equation (2.4) in Ref. 8. In this case C; = B/v1-2B2, k=1,2 where B is the

total power coupled from a waveguide into its adjacent waveguide. In practice by, k =

0,1, M are not necessarily equal to zero or one. Let 1, k = 0,1, M be the extinction

ratio of the laser of channel k defined as the ratio of the transmitted power of the logical
zero to that of a logical onc. Then by = ,’rk J(1+15) for logical zero and

by = ,,l/ (1+1x,) for logical onc. Hereafter, the r,'s are assumed to be identical for all
channels.

Let R = ng/hf be the photodiode responsitivity [Ref. 14 - Ref. 15] wheren, S 1 is
the quantum efficiency, q is the electron charge (1.6x10-19 C), h is Planck's constant
(6.626 x 10-34 J-s), and f is the frequency. The output current of the photodiode is

Rlsi(t)|2 + w,(t)+ wg (t) where w,(t) is the shot noise generated by the photodiode and

e ——



wg, (1) is the dark current noise. The output of the photodiode plus the post-detection
thermal noise n(t) is integrated by the integrate-and dump filter with the normalization

constant R resulting in the following decision variable Y;

1T 2 1T 1T 1T
Yi = EIO R|si(t] dt+ EIOW‘(I)(’! +EI° de(t)dt +‘ﬁ“[o ﬂ(tﬁ‘ (2a)
= Xi + W, + de +N
where
2
X, = [l lsof e (2b)
1T
W, = Ejow,(t)dt (2¢)
1T
Wac = o [ wat)t (2d)
1,T
N= [ n(ox. 2¢)

Since n(t) is a zero mean Gaussian process with spectral density N, the Gaussian random

variable N also has zero mean and its variance ch is given by

TN
ok = —Ei‘l. (3)

On the other hand, the shot noise w,\4) is a non-stationary process since the envelope of
the signal at the input of the photodiode, namely |s;/t), is ime-dependent. Therefore, the
shot noise wg(t) can be modeled as a zero mean wide-sense stationary Gaussian process
whose spectral density Wo(bi), given a bit patten b; = (bj, bjs,,bix), is proportional to

the conditional mean of the squared envelope of the input signal. In other words,
E{lsi(t)lzl'ﬁi} approximates [s; (t)|2 over a bit time T. Based on this approximation, the

10




shot noise spectral density can be obtained as follows [Ref. 17]
= 2
wO(bi) = qRE{‘Sl(tx IB;}
PTIPR - C2p2 @)
=-2- RA bi0+z kbik .
k=1
From equation (2¢) and equation (4), the conditional variance of Wy, given a bit pattern
bi, is

-y TWplbi
o}, (bi)= —i‘lg—). )

The dark current noise spectral density function is qlg where Ly is the dark current. The
variance of the dark current noise is o%v& =Tqlg / R2?. The random variable X; in
equation (2b) consists of the signal term, the signal-crosstalk term, and the crosstalk-

crosstalk term. Substituting equation (1) into equation (2b), the random variable becomes
X. = 1 A2Tp2 +-1-§C A2b..b: { =0y IT 180 (-85 (1)-w,1] 4,
1"2 i0 2k_1k i0Vik 1€ Oc
+eit J'Tc-ieo(n)-e.(t)-m.t]} ©)
0

+lggc“c ,AZb, b, ei#:-0) J’:ci[ek(t)—el(t)+(m.~w¢)t]dt,
The last two terms of the expression of X; represent the crosstalk in channel 0. The
statistics of these terms are extremely difficult to obtain (if possible). Consequently, for
tractable analysis, Y; is modeled as a Gaussian random variable. Such a Gaussian
approximation has also been used in Ref. 8 with a different mathematical approach.
Gaussian approximations are commonly used to obtain the bit error probability for
lightwave systems when the exact statistics of the decision variable cannot be analytically
obtained [Refs. 13, 17 -18]. From equation (6), the mean of X; conditional on a given bit

pattern b; is given by

11




fi(bi)=E{Xi|bi}=%A2Tb +— ZCkAszik )]
k=l

From equation (7) and equation (AS) of Appendix A, the conditional variance o§i (B.) of

X; can be calculated as follows:

0%, (bi) = iciA‘sz?Obi{zm/n’(v’ +8¢)
k=1

l6x‘(v; +82 )flz’we‘zm(z"skmz"sk - 2xvcos2ndy) ®)
k

+21Be~ 2™ (215, cos2nB, + 2nvsin2%8, )+ 4n?V: - 4328§]}

where v =BT and 8, = 0, T/2xn. The parameter B is the laser linewidth. In summary,

the Gaussian approximation allows the decision variable Y; in equation (2) to be

considered as a Gaussian random variable with conditional mean Y.(- ) X,(_ ,) in

equation (7) and conditional variance Oyi (bi) given by

% (5) = 0%, (1) + o (5 b +oh- ®

For a threshold o, the conditional bit error probability given bit patterns S? = (bgo»
bi;»» bim) and bi= (b1o b;15» bim) is [Ref. 19]

Py (Digrerbip) = -;-po(S?)+-;-p,(E}) (10a)

where

a-Yi So)

(10b)
'\/_OY ‘Eo

12




1
P|bi ) = —erfi — (10c)
( ) 2 ﬁcyi (b{)
and erfc( - ) is defined as
erfc(a) = —};fe"zdx. (10d)

The bit error probability Py is obtained by taking the expectation of Py(b;;,-'byy) with
respect to the bit patterns (b;, -, byy). Since there are 2M such patterns, the bit error

probability becomes

1
P, = ;M-z (bi,.---.bm)Pb(bil""'biM) (11)

where the summation is over all 2M patterns (b;;,b;,,,b;y). The optimal threshold that

minimizes the bit error probability is the value that satisfies equation (12).

(12)

Equation (12) is obtained by setting dP,/da to zero.
In the case when all laser sources have the same mean wavelength but are
uncorrelated, the above results apply by setting 8§, =0 with k = 1, 2,---, M in equation

(8). Furthermore, when all laser sources are identical such that all sources have the same
wavelength and phases noise process except for the random initial phases, then o&i (t-n)

13




in equation (8) reduces to

1 M
ok (bi) = 3 Y CiA“T b . (13)
k=1

B. NUMERICAL ANALYSIS

In this section numerical results are presented for a system with a bit rate of 500
Mb/s. The responsitivity of the photodiode is taken to be 0.5 and the laser extinction
ratio is 1/20. The dark current I, =10 nA. The effective noise temperature for a low
noise amplifier-integrate and dump-slicer receiver is 180 K. Furthermore assuming a
matched load of R = 50 £, the post detection thermal noise current spectral density is
No = 2kTo/RL = 1022 A2/Hz [Ref. 15 and Ref. 20] where k = 1.38 x 1023 J/K is the
Boltzmann's constant.

This section is broken down into the three cases of laser sources and the power
penalty plot summaries. The data collected are the results of the MATLAB model
(Appendix C) of the optical chip interconnect for synchronous transmission. The first
case of laser source occurs when all channels operate with independent laser sources.
Case two occurs when all laser sources have the same mean wavelength but have
different noise processes. Finally, in case three, all laser sources are identical with the
exception of the initial phase. These three cases are summarized in the three power

penalty plot summaries for a bit error probability Py, of 10-15,

1. Casel
Figures 5-6 show the bit error probability Py, versus the received peak power

AZ2/2 for various levels crosstalk from two adjacent channels relative to that of a single

channel operation (zero crosstalk). The laser linewidth-bit rate ratio and frequency

14




spacing-bit rate ratios (v,5,,8,) were taken to be (0.1,0.3,0.3) and (0.1,0.7,0.7),

respectively. As seen in Fig. 5, the bit error rate floor exists around 10-12 for -20 dB

crosstalk irrespective of the received peak power. Crosstalk levels must be less than —26
dB for a power penalty of 1 dB or less at P, = 1015,
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Figure 5: Py vs. A%2 as a function of crosstalk levels with (v,5;,5,) = (0.1,0.3,0.3).

From Fig. 6, it is seen that by increasing the frequency spacing, the crosstalk

level can be reduced to less than —23 dB for 1 dB or less in power penalty at Py, = 10-18,
Figures 7-8 show the normalized optimum threshold versus the received peak power as a

function of crosstalk levels. The optimum threshold decreases with increasing crosstalk.
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Figure 6: Py, vs. A2/2 as a function of crosstalk levels with (v,5;,8,) = (0.1,0.7,0.7).

055 — T T T - B

0.5

0al . Cosulk=

Optimal Threshold

0.2 — H — i i i b

Peak Power (dBW)

Figure 7: Normalized optimal threshold « vs. A2/2 as a function of crosstalk levels
With (V,81,82) = (0.1,0.3,0.3).
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Figure 8: Normalized optimal threshold o vs. A2/2 as a function of crosstalk levels
with (V,81,82) = (0.1,0.7,0.7).
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Figure 9: Py vs. A%/2 as a function of crosstalk levels with (V,S,,Sz) = (1,0.3,0.3).
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Figure 10: Py, vs. A%/2 as a function of crosstalk levels with (v,5,,3,) = (5,0.3,0.3).

Figure 9 shows the results for (v,8;,5,) = (1,0.3,0.3). It is seen that a laser
with a larger laser linewidth-bit rate ratio improves the performance. For 1 dB or less in
power penalty at P, = 10-15, the permitted crosstalk level is less than—23 dB instead of
—26 dB as in Fig. 5. When the normalized linewidth is increased tc 5 as in Fig. 10, there
is less than 1 dB power penalty at crosstalk levels less than —17 dB. This happens
because only a portion of the crosstalk energy fall within the detection bandwidth of 500
MHz. This result encourages the use of lasers with a large linewidth as long as the
waveguide bandwidth is larger than the signal spectrum. When the signal spectrum
broadened by the laser phase noise approaches the waveguide bandwidth, loss in signal
power begins to occur and performance deteriorates rapidly.

For comparison, this model was expanded to include the cases for three and

four adjacent channels for synchronous transmission. Figures 11 and 12 show the
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performance for the cases of three and four adjacent channels in a nonplanar waveguide
network with (v,8,,8,,8;)=(0.1,0.3,0.3,0.3) and (v,5,,5,,83,8,)=(0.1,0.3,0.3,0.3,0.3),
respectively. For three adjacent channels, a crosstalk level of less than —29 dB is
required for a power penalty of 1 dB or less at P, = 1015, as compared to a crosstalk level
of —26 dB for the case of two adjacent channels as shown in Fig. 5. The bit error floor
for three adjacent channels exists at 102 for a —~20 dB crosstalk level irrespective of the
received peak power. In Fig. 12 for four adjacent channels, a crosstalk level of less than
approximately —30 dB is required for a power penalty of 1 dB or less at Py = 1015,
Here, the bit error floor exist around 107 for —20 dB crosstalk level. The differences
between Figs. 11 and 12 are not as dramatic as those seen between Figs. 11 and 5 .
Figures 13 and 14 show subtle changes in the normalized optimal threshold in
comparison to Fig. 5. There appears to be a very slight change in the normalized optimal

threshold as the number of adjacent channels increases.
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Figure 11: P, vs. A%/2 as a function of crosstalk levels with (v,3,,5,,83) =
(0.1,0.3,0.3,0.3)
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Figure 12: Py, vs. A2/2 as a function of crosstalk levels with (v,8;,87,83,84) =
(0.1,0.3,0.3,0.3,0.3).
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Figure 13: Normalized optimal threshold a vs. A2/2 as a function of crosstalk levels
with (v,8,,8,,83) = (0.1,0.3,0.3,0.3)
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Figure 14: Normalized optimal threshold a vs. A2/2 as a function of crosstalk levels
with (v,8;,8,,03,84) = (0.1,0.3,0.3,0.3,0.3).

2. Casell
Figure 15 shows the performance of case two where all laser sources have the
same mean wavelength but have different noise processes for (v,8,,8;) = (0.1,0,0). A bit
error rate floor exists at Py, = 10-10 for—20 dB crosstalk level. The permitted crosstalk
level is less than —29 dB for a power penalty of 1 dB or less at P, = 10-15. In general the
performance of case two is always worse than that of case one given the same v and
crosstalk level. It is obvious that the crosstalk effect is reduced by using laser sources

with different wavelengths.

3. Caselll
Figure 16 shows the performance of case three when all laser sources are
identical with the exception of the initial phases. The performance is slightly worse than

that in Figure 15.
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Figure 15: Py, vs. A%2 as a function of crosstalk levels with (v,5,,5,) = (0.1,0,0).
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Figure 16: Py, vs. A2/2 as a function of crosstalk levels with all laser sources having
identical phase noise except for initial phases.
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4. Power Penalty Plot Summary

. results for two adjacent channels with synchronous transmission are
summarized in Figs. 17, 18 and 19 as power penalty relative to a single-channel operation
versus crosstalk levels, versus the frequency spacing-bit rate ratios 8, =8, and versus
the normalized linewidths, respectively. All results were taken at P, = 10-15. Figure 17
shows that as the crosstalk level increases, so does the power penalty. It also shows that
the smaller the normalized linewidth, the more sensitive the system is to smaller crosstalk
levels. Figure 18 shows that as the power penalty increases, the normalized frequency
spacing decreases. Finally, Fig. 19 supports the results in Fig. 17. For normalized

linewidths less than 5, the power penalty dramatically increases.

Power Penalty (dB)

Figure 17: Power penalty vs. crosstalk level for a normalized frequency spacing of
81 = 82 = 0.3.
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C. DISCUSSION

This chapter presented a mathematical framework to analyze the performance of
synchronous optical chip interconnects in terms of the bit error probability versus the
received power as a function of the crosstalk level, frequency spacing, and laser
linewidth. This analysis can handle any number of adjacent channels. The conclusion
drawn from this investigation is that adjacent channels must use laser sources of different
wavelengths to reduce the effect of crosstalk. Laser sources with a large linewidth also
help, as long as the waveguide bandwidth is much larger than the resulting signal
spectrum. In fact, this is the only way to reduce the effect of a given crosstalk level when
all laser sources have the same mean wavelength. When all laser sources are locked to
the master source, the performance depends explicitly on a crosstalk level given a
received peak power.

Similar conclusions appear in Ref. 8 via a different mathematical approach that
applies to two adjacent channels only. The mathematical framework presented in this

chapter will be applied to the asynchronous case in the next chapter.
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III. ASYNCHRONOUS OPTICAL CHIP INTERCONNECTS

A. ANALYSIS
As in the synchronous transmission analysis, for mathematical convenience, the
complex envelope notation of a real signal is adopted. Thus, for a given transmitted bit

b;o of a given channel 0 whose laser phase noise process is 8;(t), the signal at the input

of the photodiode is designated as

5.(1) = %bioej%(‘)[u(t)-u(t—’l‘)]

M
3 CiA, e ,{ek(ow.(om,-,][u(t) ~u(t-1,)] (14)
el

CCA, o
+2 ji bik.Ocj{ k(')""”k(‘)*ok-o][u(t—‘tk)—U(I-T)]
k=1

where A is the OOK signal amplitude; by .1 and by o are the previous and the present bit

in channel k relative to bit bjg; 8, (1) is the laser phase noise process; and ®,, ¢ _; and
¢y o are the frequency spacing and the initial phase differences between channels k and
0, respectively. The parameter T, represents the uniformly distributed random delay
between bjg and bjk 0. The function u(t) denotes the unit step function. The parameter Cy
represents the coupling from channel k to channel 0. The summation term in equation (1)
thus represents the crosstalk from M adjacent channels into channel 0. In equation (1), all
waveguides have the same attenuation. For the case of M = 2 and synchronous bit
transmission, that is, only the two nearest adjacent channels are considered, equation (1)
reduces to the result in equation (2.4) in Ref. 8. In this case C; = B/ 1-2B?, k=1,2
where B is the total power coupled from a waveguide into its adjacent waveguide. In
practice, b, ; and by ¢ )k = 0,1,--,M are not necessarily equal to zero or one. Letr, k =
0,1,--,M be the extinction ratio of the laser of channel k (defined as the ratio of the

transmitted power of the logical zero to that of a logical one). Then
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Box.0-Dox.1 = T/ (1+1) for logical zero and by g,by .y = Y5 /(1+5) for logical
one. Hereafter, r,'s are assumed identical for all channels.

Let R=nq/hf be the photodiode responsitivity [Ref. 14 - Ref. 15) where n, < 1 is the
quantum efficiency, q is the electron charge (1.6x10-19 C), h is Planck’s constant (6.626 x
1034 J.5), and f is the frequency. The output of the photodiode is
Rlsi(t]2 +w,(t)+wg (t) where w,(1) is the shot noise generated by the photodiode and
wy(t) is the dark current noise. The output of the photodiode plus the post-detection

thermal noise n(t) is integrated by the integrate-and dump filter with the normalization

constant R resulting in the decision variable Y; as follows:

2
= 'l_lf I:Rlsi(t)l dt+ -é— I:w,(t)dt + ;ll- j: wg (1)dt + %: J: n(t)dt

(15a)
= Xi + Ws + de +N
where
T 2

X; = [ lsi(o) dt (15b)
1T

W, = Ejo w,(1)dt (15¢)
1T

Wa = jowdk (t)de (15d)
1T

N= Ejo n(t)dt. (15¢)

Since n(t) is a zero mean Gaussian process with spectral density Ny, the Gaussian random

variable N also has zero mean and its variance o’N is given by

o = %ﬂ. 16)
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On the other hand, the shot noise w,(t) is a non-stationary process since the envelope of
the signal at the input of the photodiode, namely Is;(t)l, is time-dependent. Therefore, the
shot noise w;(t) can be modeled as a zero mean wide-sense stationary Gaussian process
whose spectral density Wo(b;), given a bit pattern b; = (bjo,biy.-1,-,bim..1,bi1.0,+bim0), is
proportional to the conditional mean of the squared envelope of the input signal. In other
words, Ii{lsi(t)|2 |Es} approximates Is;(t)i2 over a bit time T. Based on this approximation,
the shot noise spectral density can be obtained as follows [Ref. 17]
—— 2 -
Wo(Bi) = qRE{js;(x)f’[B:}

M M
1
= qRAZ(bizo +=Y civd +3 zclz:bizk.o)- a”n

1 1

2 2 k=1 k=1

From equation (15¢) and equation (17), the conditional variance of W; given a bit pattern
b; is

TWo(b)

=2 (18)

o (5)-

The dark current noise spectral density function is qlax where I is the dark current. The
variance of the dark current noise is o%v a = Talg / R2. The random variable X; in
equation (15b) consists of the signal term, the signal-crosstalk terms, and the crosstalk-
crosstalk terms.

The statistics of the crosstalk terms are extremely difficult to obtain (if possible).
Consequently, for tractable analysis, Y; is modeled as a Gaussian random variable. Such
a Gaussian approximation has also been used in Ref. 8 for synchronous transmission with
a different mathematical approach. Gaussian approximations are commonly used to
obtain the bit error probability for lightwave systems when the exact statistics of the
decision variable cannot be analytically obtained [Refs. 13,17 -18]. From equation (15b),

the mean of X; conditional on a given bit pattern b; is given by
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'ii(Ei) = E{X- bi}
-.-A’*n»,o-» ch.«’"nﬁ 4 +—2CkAz'Ib

ktl k=l

(19)

From equation (18) and equation (B5) of Appendix B, the conditional variance o (bi)
of X; can be calculated as follows:

o, (bi) = E"Cil\"l"b (b3 + b5, ){uv/ an?(v? +82)
k=l 1
e4x §(v? + 82)
—72™(2nvsin 2%, + 2%, cos2x3, )] (20)
+4n? (53 -'y212uv - 4x?(v? +8})
+€72™ (278, sin2%3, — 2xvcos2RB, )]}

81! v8k [21!8&

where v=fT and &, =, T/2x . Here B is the laser linewidth. In summary, the

Gaussian approximation allows the decision variable Y; in equation (2) to be considered
as a Gaussian random variable with conditional mean Ti(_bi) =X; bi) in equation (19)

and conditional variance oi—i (5,) given by

% (51) = o, (1) + o () + o + k. @

For a threshold a, the conditional bit error probability given bit patterns 3? = (boo,
—l N
bi1,-15» biM,-1, bi1,0:°bim,0) and bi = (byo, biz -1, bim,-1, bi1,0,bim,0) is [Ref. 20]

Py (Dig, 1o+ Ding 1051 01001 Bing o)--Po(bn) l1’1( n) (22a)

where
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where
_ (-¥; (E?) )
po(b?) = -;-erfckmo—” (22b)
,?i(i;}) —a)

N Logd 2V
A zerfc\‘ﬁo“ al (22¢)

and erfc( - ) is again defined (as in equation (10d)) as

erfc(a) = -f.;j:c"zdx. (22d)

The bit error probability Py, is obtained by taking the expectation of Py(bi;..1,+, bim.-1,
bi1,0,"*,bim,0) With respect to the bit patterns (b;; .1,*, biM.-1, bi1,0,+,biM,0). Since there are

22M such patterns, the bit error probability becomes

1
Po = 530 Xty b1 b g POk DM -1 i ore o) @3)

where the summation is over all 22M patterns (b;;..1,"*, biM.-1, bi1,0*,bim,0). The optimal

threshold that minimizes the bit error probability is the value that satisfies equation (24).

1 -la-¥i(8} i / (7
z(bi‘-“‘""'biM.-l'bu,o..-..b,-M'o) ;—Y-(ﬁﬁc [a Y (b )] 20%; (b )

24)

S ) Gy A

Equation (24) is obtained by setting dP, /do. to zero.
In the case when all laser sources have the same mean wavelength but are

uncorrelated, the above results apply by setting 8, =0,k =1, 2,--M in equation (21).
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Furthermore, when all laser sources are identical such that all sources have the same

wavelength and phases noise process except for the random initial phases, then 03(; (t.);)

in equation (20) reduces to

M
o%.(6:)= I%Eciz\"r’b?o(b?k,_, +bd)- 25)

B. NUMERICAL ANALYSIS

In this section, numerical results are presented for a syster. with a bit rate of 500
Mb/s. The responsitivity of the photodiode is taken to be 0.5 and the laser extinction
ratio is 1/20. The dark current I = 10 nA. The effective noise temperature of a low
noise amplfier-integrate and dump-slicer receiver is 180 K. Furthermore, assuming a
matched load of Ry = 50 Q, the post-detection thermal noise current spectral density is
No = 2kT¢/Ry = 1022 A2/Hz [Ref. 15 and Ref. 20], where k = 1.38 x 10-23 J/K is the
Boltzmann's constant.

This section is broken down into the three cases for the probability of bit error plots
and the power penalty plot summaries. The power penalty plots compare the case of two
adjacent channels having synchronous transmission with the case of two adjacent
channels having asynchronous transmissicn. The cases summarized in the three power
penalty plots are for a bit error probability Py, of 10-13. The data collected is the result of
the MATLAB model of the optical chip interconnect for asynchronous transmission
(Appendix D) and synchronous transmission (Appendix C). The first case of laser source
occurs when all channels operate with independent laser sources. Case two occurs when
all laser sources have the same mean wavelength but have different noise processes, and
case three occurs when all laser sources are identical with the exception of t.e initial

phases.

31




1. Casel
Figures 20-21 show the bit - “robability P, versus the received peak power

A2/2 for various levels of crosstalk from two adjacent channels relative to that of a single

channel operation (zero crosstalk) and with laser linewidth-bit rate ratio and frequency

spacing-bit rate ratios (v,8,,8,) taken to be (0.1,0.3,0.3) and (0.1,0.7,0.7), respectively.
From Fig. 20, the bit error rate floor exists around Py, = 1015 for -20 dB crosstalk
irrespective of the received peak power. Crosstalk levels must be less than —26 dB for a
power penalty of 1 dB or less for P, = 10-15, From Fig. 21, it is seen that by increasing
the frequency the frequency spacing the crosstalk can be reduced to less than —23 dB for
1 dB or less in power penalty at P, = 10-13,
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Figure 20: Py, vs. A2/2 as a function of crosstalk levels with (v,5;,5,) = (0.1,0.3,0.3).
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Figure 21: P}, vs. A2/2 as a function of crosstalk levels with (v,3,,5;) = (0.1,0.7,0.7).
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Figure 22: Normalized optimal threshold a vs. A2/2 as a function of crosstalk levels
with (v,84,8,) = (0.1, 0.3, 0.3).
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Figure 23: Normalized optimal threshold o vs. A%/2 as a function of crosstalk levels
With (v,al ,81) = (0.1, 007, 0c7)o

Figures 22-23 show the normalized optimum threshold versus the received
peak power as function of crosstalk levels. The optimum threshold decreases with
increasing crosstalk. Figure 24 shows the results for (v,8;,8,) = (1,0.3,0.3). Itis seen
that a laser with a larger laser linewidth-bit rate ratio improves the performance. For 0.7
dB or less in power penalty when Py, = 10-15, the permitted crosstalk level is less than
—23 dB instead of —26 dB as in Fig. 20. When the normalized linewidth v is increased
to 5 as in Fig. 25, there is less than 0.7 dB power penalty for crosstalk levels less then
=17 dB. This happens because only a portion of the crosstalk energy falls within the
detection bandwidth of 500 MHz. This result encourages the use of lasers with a large v
as long as the waveguide bandwidth is larger than the signal spectrum. When the signal
spectrum broadened by the laser phase noise approaches the waveguide bandwidth, loss

in signal begins to occur and performance deteriorates rapidly.
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Figure 24: P,, vs. A2/2 as a function of crosstalk levels with (v,5,,8,) = (1,0.3,0.3).
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Figure 25: Py vs. A%/2 as a function of crosstalk levels with (v,3;,3,) = (5,0.3,0.3).
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2. Casell
Figure 26 shows the performance of case two when all laser sources have the
same mean wavelength but with different noise process for (v,8,,8;) = (0.1, 0, 0). A bit
error rate floor exists at P, = 10-14 irrespective of the received peak power. The permitted
crosstalk level is less than —26 dB for a power penalty of 1 dB or less at P, = 10-15. In
general, the performance of case two is always worse than that of case one given the

same and crosstalk level. It is obvious that the crosstalk effect is reduced by using laser

sources with different wavelengths.
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Figure 26: P, vs. A%/2 as a function of crosstalk levels with (v,8,,5,) = (0.1,0,0).
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3. Caselll
Figure 27 shows the performance of case threz when all lasers are identical
with the exception of the initial phases. The performance is slightly better than that in
Fig. 26. These results relate directly back to the derivation of equation (25) and are

opposite to those in Case 111 for synchronous transmission.

100

109 oo

g 2
w L 3

...
=3
19

Probability of Bit Error

1015}
108}
102 s ; . | ; ;
60 58 56 54 52 50 48 46 44
Peak Power(dBW)

Figure 27: Py, vs. A%/2 as a function of crosstalk levels with all laser sources having
identical phase noise processes except for the initial phases.

4. Power Penalty Plot Summary
Figure 28 shows the power penalty versus crosstalk level for two interfering
channels with a normalized frequency spacing of 0.3 as a function of the normalized laser
linewidth. The power penalty for the synchronous transmission where &, = 0.3 in

equation (1) is also plotted for comparison. In general, the power penalty is smaller for
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asynchronous transmission when the linewidth is less than 3 for crosstalk levels up to
—20 dB. For larger laser linewidths, the power penalty for synchronous transmission is
slightly less. Figure 29 shows the power penalty versus normalized frequency spacing
for two interfering channels with a normalized linewidth of 0.1 as a function of the
crosstalk level. In general, the power penalty for asynchronous transmission is less than
that of synchronous transmission. Figure 30 shows the power penalty for two interfering
channels versus the normalized laser linewidth with a normalized frequency spacing of
0.3, as a function of the crosstalk level. In general, the power penalty for asynchronous
transmission for normalized laser linewidths less than 3 is less than that for synchronous

transmission.
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Figure 28: Power Penalty vs. crosstalk level for a normalized frequency spacing of
8, = 8, = 0.3 for asynchronous and synchronous transmission.

38




Power Penalty (dB)

o i i — M ok
0 0.1 0.2 03 04 0s 0.6 0.7
Normalized Frequency Spacing

Figure 29: Power penalty vs. normalized frequency spacing (3; = 5, ) for a
normalized linewidth of v = 0.1 for asynchronous and synchronous transmission.
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Figure 30: Power penalty vs. normalized linewidth for §; = 8, = 0.3
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C. DISCUSSION

To conclude, this chapter presented a mathematical framework to analyze the
performance of asynchronous optical chip interconnects in terms of the bit error
probability versus the received peak power as a function of the crosstalk level, frequency
spacing, and laser linewidth. Furthermore, the analysis can handle any number of
adjacent channels. The conclusion drawn from this investigation is that adjacent channels
must use laser sources of different wavelengths to reduce the effect of crosstalk. Laser
sources with a large linewidth also help, as long as the waveguide bandwidth is much
larger than the resulting signal spectrum. In fact, this is the only way to reduce the effect
of a given crosstalk level when all laser sources are locked to a master source. The
performance depends explicitly on the crosstalk level given a received peak power.
Finally, as seen by Figs. 28, 29, and 30, asynchronous optical chip interconnects perform

better than their synchronous counterparts.




VL. CONCLUSION

This thesis derived a crosstalk model for an optical chip interconnect that determines
the crosstalk-induced system penalty caused by the coupling between two or more
adjacent channels in a single-mode waveguide array. MATLAB version 3.5k was useful
in the development and the verification of the model. The resulting performance curves
and power penalty plot summaries demonstrate the effectiveness of the model for both
synchronous and asynchronous transmission. In general, the asynchronous case proved
to be more sensitive than the synchronous case for crosstalk levels less than —20 dB and
normalized laser linewidths less than 2. These results follow those in Ref. 9 where it was
determined that the sensitivity of an asynchronous receiver is only about 0.5 dB less than
its synchronous counterpart.

Study is currently underway to determine the effect on this crosstalk model of
shutting down one or more of the adjacent channels during transmission. The results

from this study should further verify the effectiveness of this model.
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APPENDIX A - DERIVATION OF THE CONDITIONAL
MEAN SQUARE VALUE OF X, GIVEN b; FOR
SYNCHRONOUS TRANSMISSION

The conditional mean square value of X; given b; is important in the derivation of the
conditional variance of(i (' ;) of X; (equation (8)). The derivation of the conditional mean

square begins by finding the expectation of Xiz (see equation (6)) given b;.

dt

[ TH00(1)-6x (t)-0 1~ ]

E{x7[bi}
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In the derivation of equation (A.1), all the initial phase differences, ¢y, k

M are uniform variables over (0, 2x).
Lety = eo(t)-ek(t)-[eo(z)-ek(z)]. The laser phase noise 8,(t), k=0, 1,--, M

The process V is a zero mean Gaussian process and can be expressed as

y= 27‘_[;[”0(11 )= ke (1) - 21‘];[#0(‘1) - (1)l

= 23]:[110(‘1) - () .
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(A.1)

. 20000

is characterized by a Wiener process [Ref. 17 - Ref. 18] such that d6,(t)/dt = 2mu(t)
where ji(t) is a zero mean white Gaussian process of PSD B/2n Hz where P is the laser

linewidth (assumed to be the same for all laser sources). The variance of 6, (t) is 2npt.

(A2)




Therefore, the variance 0’3, is given by

oy 41:2]:]:5{[;1001) = k(1) mo(t2) - i (t2)]Jarsdry
4x? Kﬁ%(t‘ —1,)dt,dt,

= anp[" " (- d-lul)s(uldu
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(A3)

Using the fact that y and ~y are both Gaussian random variable with zero mean and

variance 4npt~ 1, the expectation value is [Ref. 13)
E{e)] = E{e7i¥] = e0%/2 < 281, (A4)

Substituting equation (A.4) into equation (A.1), the conditional mean variance is simplified
to
20 1 42,4 1R 2,402,202
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where v=fT and §; = ©, T/2x.
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APPENDIX B - DERIVATION OF THE CONDITIONAL MEAN
SQUARE VALUE OF X, GIVEN b; FOR ASYNCHRONOUS
TRANSMISSION

The conditional mean square value of X; given b; is important in the derivation of
the conditional variance o%, (bi) of X; (cquation (20)). The random variable X; is
derived from equations (14) and (15b}. By taking the expectation of Xiz given biand T

where 1 = (1,,%,,...Ty ) , the conditional mean square is
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Expanding the terms, the conditional mean becomes
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Evaluating the expectation of each term, equation (B.2) becomes
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The conditional variance of X; given by b; and 7 is given by
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It should be noted that the derivation of equation (B.4) depends on the fact that all initial
phase differences ¢, withk = 1, 2,..., M are uniform random variables over (0,27).

Let w = 0(t)— 0, (t)—[0o(%) ~ 6 (t)]. The laser phase noise 6, (t) withk =0, 1,
M is characterized by a Wiener process [Ref. 17 - Ref. 18] such that do,(t)/dt = 2xu(t)
where p(t) is a zero mean white Gaussian process of PSD B/2x Hz where B is the laser
linewidth (assumed to be the same for all laser sources). The variance of 0, (t) is 2xft.

The process Y is a zero mean Gaussian process and can be expressed as
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Therefore, the variance cﬁ, is given by
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Using the fact that y and —y are both Gaussian random variables with zero mean and

variance 4t ~ 1], the expected value is [Ref. 13]

E{eV}=Efe ¥} = eo¥/2 = 201, ®.7)

Substituting equation (B.7) into (B.4), the conditional variance obtained is
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Finally, the conditional variance of X; given b; is obtained by averaging o%i (Bi,‘t')
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over T giving the end result as
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where v=PT and 8, = 0, T/2n.
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APPENDIX C - MATLAB MODEL OF OPTICAL CHIP
INTERCONNECT FOR SYNCHRONOUS TRANSMISSION

This model is for the case of 2 adjacent channels with (v,8,,8,) = (0.1,0.3,0.3) for
synchronous transmission. The MATLAB version used was version 3.5k. The program
itself is a translation of equations (1) through (13) into MATLAB code.

% Synchronous Case: No=1E-22

% Case 1.3: nu=.1 and delta function subscript k (delk)=.3
% th2chl3x.m

% 19 July 93

% Known constants

R=.5;

T=1/(500E6);

NO=1E-22;

q=1.6E-19;

Idk=10E-9; % dark current

% Coupling constants for Ck*2
ck1=0;

ck2=3.16E-4; %-35dB
ck3=6.32E-4; %-32dB
ckd4=1.26E-3; %-29dB
ck5=2.52E-3; %-26dB
ck5a=5.011E-3; %-23 dB
ck6=.01; %-20dB
ck7=1.995E-2; %-17 dB
ck8=3.981E-2; %-14 dB
ck9=7.943E-2; %-11 dB
ck10=.1585; %-8dB

ck=8[g 3.16E-4 6.32E-4 1.26E-3 2.52E-3 5.012E-3 .01 1.995E-2 3.981E-2 7.943E-2
.1585];

% Pattern bit values

%bl1=[.2182 .9759 .9759 .2182}; %for b11,b01 for patterns A,B,C,D
%b2=[.9759 .2182 .9759 .2182]; %for b12,b02 for patterns A,B,C,D
blA=.2182;

b1B=.9759;

b1C=.9759;

bi1D=.2182;

b2A=.9759;

b2B=.2182;

b2C=.9759;

b2D=.2182;

b3A=bl1/ "2+b2AA2;

b3B=blb 2+b2B"2;

b3C=b1Cr2+b2CA2;

b3D=b1D"2+b2D*2;
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b00=.2182; % approximate zero
b10=.9759; % approximate 1

% Delztertmne k constant for the variance of X

nu=.1;

delk=.3;

ka=(2*pi*nu)/(4*pi*2*(nur2+delkr2));

kb==1/(16*pir4*(nur2+delk 2)12);
ke=(2*pi*nu*exp(-2*pi*nu))*(2*pi*delk*sin(2*pi*delk)-2*pi*nu*cos(2*pi*delk));
kd=(2*pi*delk*exp(-2*pi*nu))*(2*pi*(delk*cos(2*pi*delk)+nu*sin(2*pi*delk)));
ke=4*piA2¥(nur2-delkA2);

k=ka-kb*(kc+kd+ke);

n=];

=1

m=];

% -60dB<=Peak Power<=-44dB
% Peak power is A%2/2 =Ps
for ss=-60:.2:-44;
ps(m)=10%(ss/10);
m=m+1l;
end

% The goal here is to solve the equation for the optimal threshold
% vs peak power

alpha=zeros(length(ps),length(ck));
PBE=zeros(length(ps),length(ck));

for j=1:length(ck); % coupling values loop
n=1,;

for n=1:length(ps); % peak ppower values
Ps=ps(n);

% Constants

qenst=q/(Ps*T*R);
vnoise=NO/(RA2*Ps"2*T);
vdark=(q*1dk)/(RA2*Ps*2*T),

% Determine the sigma for each of the 0 bit patterns

sOA =sqrt(4*ck(j)*b002*k*b3 A +gcnst*(b00A2+ck(j) *b3A }+vnoise+vdark);
sOB=sqrt(4*ck(j)*b002*k*b3B+qcnst*(b00 2+ck(j)*b3B)+vnoise+vdark);
sOC=sqrt(4*ck(j)*b00"2*k*b3C+qcnst* (b00 2+ck(j)*b3C)+vnoise+vdark);
s0D=sqrt(4*ck(j)*b00*2*k*b3D+gcnst*(b00 2 +ck(j)*b3D)+vnoise+vdark);

% Determine the variance for each of the 0 bit patterns
s0A2=50AN2;
sOB2=s0BA2;
s0C2=s0CA2;
s0D2=s0D"2;

% Determine the sigma for each of the 1 bit patterns
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s1A=sqri(4*ck(j)*b1072*k*b3A+qenst* (b10°2+ck(j)*b3A y+vnoise +vdark);
s1B=sqri(4*ck(})*b10~2*k*b3B+qcnst*(b10/2+ck(j)*b3B)+vnoise+vdark);
s1Cm=sqri(4*ck(j)*b10~2*k*b3C+qcnst*(b10~2+ck(j)*b3C)+vnoise+vdark);
s1D=sqri(4*ck(j)*b10~2*k*b3D-+qenst*(b10A2+ck(j)*b3D)+vnoise+vdark);

% Determine the variance for each of the 1 bit patterns

s1A2=s1AN2;
s1B2=s1BA2;
s1C2=s1CA2;
s1D2=s1D*2;

% Determine the mean for each of the O bit patterns

mOA=b00"2+ck(j)*b3A;
mO0B=b00"2+ck(j)*b3B;
mOC=b00 2+ck(j)*b3C;
mOD=b00"2+ck(j)*b3D;

% Determine the mean for each of the 1 bit patterns

m1A=b10/2+ck(j)*b3A;
m1B=b10A2+ck(j)*b3B;
m1C=b10A2+ck(j)*b3C;
m1D=b10*2+ck(j)*b3D;

%Solve the equation F(a)=0 to optimize a, the threshold. F(a)=0 comes
% from (dP/da)=0

a=0:.001:1;
FA=(1/s0A)*exp(-((a-m0A).»2)./(2*s0A2))-(1/s1A)*exp(-((m1A-a). 2)/(2*s1A2));
FB=(1/s0B)*exp(-((a-m0B).A2)./(2*s0B2))-(1/s1B)*exp(-((m1B-a).*2)/(2*s1B2));
FC=(1/s0C)*exp(-((a-m0C).»2)./(2*s0C2))-(1/s1 C)*exp(-((m1C-a).»2)/(2*s1C2)),
FD=(1/s0D)*exp(-((a-m0D).A2)./(2*s0D2))-(1/s1D)*exp(-((m1D-a).A2)/(2*s1D2)),
F=FA+FB+FC+FD;

[Y,I}=min(abs(F));

alpha(n,j)=a(l);

aa=alpha(n,j);

% Determine the probability of bit error for each optimal threshold
% over all bit patterns AR CD
pOA(n)=erf((alpha(n,j)-m0A)/sOA inf);
pOB(n)=erf((alpha(n,j)-m0B)/s0B, inf);
pOC(n)=erf((alpha(n,j)-m0C)/s0C.inf);
pOD(n)=erf((alpha(n,j)-m0D)/sOD,inf);

plA(n)=erf((m1A-alpha(n,j))/s1A,inf);
p1B(n)=erf((m1B-alpha(n,j))/s1B,inf);

p1C(n)=erf((m1C-alpha(n,j))/s1C,inf);
p1D(n)=erf((m1D-alpha(n,j))/s1D,inf);

PBE(n,j)=(p0A(n)+p1A(n)+p0B(n)+p1B(n)+p0C(n)+p1C(n)+p0D(n)+p1D(n))/16;
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% n=n+1;

end % Ps loop
% j=j+1;
end %Ck loop

al=alpha(:,1);
a2=alpha(:,2);
a3=alpha(:,3);
ad=alpha(:,4);
aS=alpha(:,5);
a6=alpha(.,6);
a7=alpha(:,7);
a8=alpha(:,8);
a9=alpha(:,9);
alO=alpha(:,10);
all=alpha(:,11);

p1=(PBEC(;,1));
p2=(PBE(:,2));
p3=(PBE(:,3));
p4=(PBE(:,4));
p5=(PBEC(:,5));
p6=(PBEC(:,6));
p7=(PBEC(:,7));
p8=(PBEC(:,8));
p9=(PBE(:,9));
p10=PBEC(;,10);
pl1=PBEC(,11);

PB=10*log10(ps);
pIOt(PBval9""PB’a2""’PB9a3""QPB$a4a""PB|a5s".’PB;a61"'rPB’a7"")9"
id

grid,..
%title('case 1.3 (nu=.1,delk=.3)",..
xlabel('Peak Power (dBW)"),ylabel('Optimal Threshold')

s=["Crosstalk="];
text(.15,.6,s,'sc")

cl=0;

s=[' ‘.;num2str(c1)];
text(.2,.55,s,'sc")
[xs,ys}=dc2sc(PB(48),a1(48));
polyline([.3,xs},[.56,ys],-r",'sc")

c2=-35;

s=[num2str(c2),' dB'];
text(.2,.52,s,'sc)
[xs,ys]=dc2sc(PB(48),a2(48));

polyline([.3,xs),[.53,ys],"-r','sc")
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c3=-32;

s=[num2str(c3),' dB");
text(.2,.49,s,'sc")
[xs,ys]=dc2sc(PB(48),a3(48));
polyline([.3,xs],[.5,ys]},'-r','sc")

c4=-29;

s=[num2str(c4),' dB'};
text(.2,.46,s,'sc’)
[xs,ys)=dc2sc(PB(48),a4(48));
polyline({.3,xs},[.47,ys],"-r','sc")

c5=-26;

s=[num2str(cS),' dB'};
text(.2,.43,s,'sc’)
[xs,ys]=dc2sc(PB(48),a5(48));
polyline([.3,xs),[.44,ys],"-r','sc")

c6=-23;

s=[num2str(c6),' dB'};
text(.2,.4,s,'sc")
[xs,ys}=dc2sc(PB(48),26(48));

polyline({.3,xs),[.41,ys],"-1','sc )

c7=-20;

s=[num2str(c7),' dB'];
text(.2,.37,s,'sc")
[xs,ys}=dc2sc(PB(48),a7(48)),
polyline([.3,xs],[.38,ys],"r",'sc’)

meta t2ch13xa

pause

axis([-60 -44 -21 -5))

plot(PB,p1,-',PB,p2,- PB,p3,-' PB,p4,-' PB,pS,-',PB,p6,-' ,PB,p7,"-),..
semilogy,grid,..

%title('Performance Curves: case 1.3 (nu=.1,delk=.3)"),..

xlabel('Peak Power (dBW)'),ylabel('Probability of Bit Error’)

s=['Crosstalk="];
text(.15,.6,s,'sc’)

c1=-20;

s=[num2str(cl),' dB'];
text(.2,.55,s,'sc")
[xs,ys]=dc2sc(PB(38),p7(38));
polyline([.3,xs],[.56,ys),"-r','sc")

c2=-23;

s=[num2str(c2),' dB'};
text(.2,.52,s,'sc’)
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[xs,ys}=dc2sc(PB(38),p6(38));
polyline([.3,xs].[.53.ys),"-r,'sc)

c3=-26;

s=[num2str(c3),' dB'];
text(.2,.49,s,'sc’)
[xs,ys]=dc2sc(PB(38),p3(38));
polyline({.3,xs),[.5,ys).-r','sc)

c4=-29;

s={num2str(c4),' dB'];
text(.2,.46,s,'sc’)
[xs,ys}=dc2sc(PB(38),p4(38));
polyline([.3,xs},[.47,ys),"-r','sc")

c5=-32;

s={num2str(c5),' dB'];
text(.2,.43,s,'sc)
[xs,ys)=dc2sc(PB(38),p3(38));
polyline([.3,xs).[.44,ys],"r’,'sc’)

c6=-35;

s=[num2str(c6),' dB'];
text(.2,.4,s,'sc’)
[xs,ys]=dc2sc(PB(38),p2(38));
P°1ylin°([-3 ,XS] ’[-41 .YS] ,"l",'SC')

¢7=0;

s=[' 'num2str(c7)};
text(.2,.37,s,'sc’)
[xs,ys)=dc2sc(PB(38),p1(38));
polyline([.3,xs],[.38,ys]),"r,'sc’)
axis,

meta t2ch13xb
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APPENDIX D - MATLAB MODEL OF AN OPTICAL CHIP
INTERCONNECT FOR ASYNCHRONOUS TRANSMISSION

This model is for the case of 2 adjacent channels with (v,8,,8,) = (0.1,0.3,0.3) for

asynchronous transmission. The MATLAB version used was version 3.5k. The program
itself is a translation of equations (14) through (25) into MATLAB code.

% Asynchronous Case: No=1E-22

% k=2 implying two channels

% Case 1.3: nu=.1 and delta function subscript k (delk)=.3
% th2as13x.m

% 20 July 93

% Known constants

R=5;
T=1/(500E6);
NO=1E-22;
q=1.6E-19;
1dk=10E-9;

% Coupling constants for CkA2
ck1=0;

ck2=3.16E-4; %-35dB
ck3=6.32E-4; %-32dB
ck4=1.26E-3; %-29 dB
ck5=2.52E-3; %-26dB
ck5a=5.011E-3; %-23dB
ck6=.01; %-20dB
ck7=1.995E-2; %-17 dB
ck8=3.981E-2; %-14 dB
ck9=7.943E-2; %-11 dB
ck10=.1585; %-8 dB
ck;8[§)13.l6E-4 6.32E-4 1.26E-3 2.52E-3 5.011E-3 .01 1.995E-2 3.981E-2 7.943E-2
A s

% Pattern bit values

%b1=[.2182 .9759 .9759 .2182 .2182 .2182 .9759 .9759 .2182 .2182 .2182 .9759
9759 9759 .2182 .9759];

%b2=[.9759 .2182 .9759 .2182 .2182 .9759 .2182 .9759 .2182 .2182 .9759 .2182
9759 .2182 9759 .9759);

%for b32,b22,b12,b02 for patterns A,B,C,D,E,F,G,H1J K,.LM,N,O.P

%b3=[.9759 .9759 .9759 .9759 .2182 .2182 .2182 .2182 .2182 .9759 .2182 .2182
2182 9759 .9759 .9759];

%for b33,b23,b13,b03

%b4=[.9759 .9759 .9759 .9759 .9759 .9759 .9759 .9759 .2182 .2182.2182 .2182.
2182 .2182 .2182 .2182);
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%for b34,b24,b14,b04

blA=.2182;
b1B=.9759;,
b1C=.9759;
blD=.2182;
blE=.2182;
bl1F=.2182;
b1G=.9759;
bl1H=.9759;
bl1=.2182;
b1J=.2182;
b1K=.2182;
biL=.9759;
bi1M=.9759;
bl1N=.9759;
510=.2182;
b1P=.9759;
b2A=.9759;
b2B=.2182;
b2C=.9759;
b2D=.2182;
b2E=.2182;
b2F=.9759;
b2G=.2182;
b2H=.9759;
b21=.2182;
b2J=.2182;
b2K=.9759;
b2M=.9759;
b2N=.2182;
b20=.9759;
b2P=.9759;
b3A=.9759;
b3B=.9759;
b3C=.9759;
b3D=.9759;
b3E=.2182;
b3F=.2182;
b3G=.2182;
b3H=.2182;
b31=.2182;
b3)=.9759,
b3K=.2182;
b3L=.2182;
b3M=.2182;
b3N=.9759;
b30=.9759;
b3P=.9759;
b4A=.9759;
b4B=.9759;
b4C=.9759;
b4D=.9759;
b4E=.9759,
b4F=.9759;
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b4G=.9759,
b4H=.9759,
bdl=.2182;

b4J=.2182;

b4K=2182;
r4L=.2182;
>4M=2182;
WN=.2182;
b40=.2182;
b4P=.2182;

b5A=bl1AA2+b2AN2+b3AN2+D4AN2;
b5B=b1BA2+b2BA2+b3B*2+b4BA2;
b5SC=b1CA2+b2C"2+b3CA2+b4C"2;
b5D=b1D*2+b2D*2+b3D*2+b4D 2;
bSE=b1EA2+b2EA2+b3EA2+b4EN2;
bSF=b1FA2+b2F 2+b3F 2+b4F"2;
b5G=b1G*2+b2G*2+b3G"2+b4GA2;
bSH=b1HA2+b2H"2+b3HA2+b4HA2;
b5I=bl1HA2+b2HA2+b3H"2+b4]72,
b5J=b1JA2+b2J/2+b3]J22+b4]A2;
b5K=b1KA2+b2KA2+b3K"2+b4KA2;
b5SM=b1MA2+b2MA2+b3MA2+b4MA2;
b5SN=bINA2+b2NA2+b3INA2+b4N"2;
b50=b10/2+b20/2+b30/2+b40/2;
b5P=b1PA2+b2PA2+b3P 2+b4PA2;
b00=.. .32; % approximate zero
b10=.9759; % approximate 1

nu=.1;

delk=.3;

ka=(pi*nu)/(4*pi*2*(nu”2+delk 2));
kb=1/(64*pi*6*(nu”r2+delk 2)*3);
kc=2*pi*nu*sin(2*pi*delk)+2*pi*delk*cos(2*pi*delk);
kd=(8*pi*2*nu*delk)*(2*pi*delk-(exp(-2*pi*nu))*kc);
ke=(2*pi*delk)*sin(2*pi*delk)-(2*pi*nu)*cos(2*pi*delk);
kf=4*pir2*(delk 2-nur2)*(2*pi*nu-4*pir2*(nur2+delk 2)+exp(-2*pi*nu)*ke);
k=ka-kb*(kd+kf);

n=1;

=1

m=];

% -60dB<=Peak Power<=-44dB
% Peak power is AA2/2 = Ps
for ss=-60:.5:-44;
ps(m)=10"(ss/10);
m=m+];
end

% The goal here is to solve the equation for the optimal threshold
% vs peak power

alpha=zeros(length(ps),length(ck));




PBE=zeros(length(ps),length(ck));
for j=1:length(ck); % coupling values loop

n=1;

for n=1:length(ps); % peak power values
Ps=ps(n);
% Constants

qcnst=q/(Ps*T*R);
vnoise=NO/(RA2*PsA2*T);
vdark=(q*Idk)/(RA2*Ps*2*T);

% Determine the sigma for each of the 0 bit patterns

sOA=sqrt(4*ck(j)*b002*k*b5A +qcnst* (b00A2+ck(j)/2*b5A)+vnoise+vdark);
sOB=sqrt(4*ck(j)*b00*2*k*bSB+qcnst*(b00*2+ck(j)/2*b5B)+vnoise+vdark);
s0C=sqrt(4*ck(j)*b00 2*k *b5SC+qcnst*(b00 2 +ck(j)/2*b5C)+vnoise+vdark);
sOD=sqrt(4*ck(j)*b00"2*k*b5D+qcn.t*(b00 2+ck(j)/2*b5D)+vnoise+vdark);
SOE=sqrt(4*ck(j)*b00 2*k*bSE+qcnst*(b00*2+ck(j)/2*b5SE)+vnoise+vdark);
sOF=sqrt(4*ck(j)*b00*2*k*b5SF+qcnst*(b00*2+ck(j)/2*b5F)+vnoise+vdark);
s0G=sqrt(4*ck(j)*b00*2*k*b5G+qcnst*(b00 2+ck(j)/2*b5G)+vnoise+vdark);
sOH=sqrt(4*ck()*b00/2*k*b5SH+qcnst*(b00 2+ck(j)/2*b5SH)+vnoise+vdark);
sOI=sqrt(4*ck(j)*b00 2*k*b5I+qcnst*(b00 2 +ck(j)/2*b5I)+vnoise+vdark),
s0J=sqrt(4*ck(j)*b00 2*k*bSJ +qcnst*(b00”2+ck(j)/2*b5) )+vnoise+vdark);
sOK=sqrt(4*ck(j)*b00 2*k*b5K+qcnst*(b00 2+ck(j)/2*b5K)+vnoise+vdark);
sOL=sqrt(4*ck(j)*b00*2*k*bSL+qcnst*(b00 2+ck(j)/2*b5L )+vnoise+vdark);
sOM=sqrt(4*ck(j)*b00 2*k*b5SM+qcnst*(b00A2+ck(j)/2¥b5SM)+vnoise+vdark);
sON=sqrt(4*ck(j)*b00 2*k*b5SN+qcnst*(b00 2+ck(j)/2*bSN)+vnoise+vdark);
s00=sqrt(4*ck(j)*b00*2*k*bSO+qcnst*(b00 2+ck(j)/2*b50)+vnoise+vdark);
sOP=sqrt(4*ck(j)*b00*2*k*bSP+qcnst*(b00 2 +ck(j)/2*b5P)+vnoise+vdark);

% Determine the variance for each of the 0 bit patterns

sOA2=s0AN2;
sOB2=s0B/2;
s0C2=s0CA2;
sOD2=s0D/2;
sOE2=s0E~"2;
sOF2=s0FA2;
s0G2=s0G"2;
sOH2=s0HA2;
s012=s0I72;
s0J2=s0JA2;
sOK2=s0K"2;
sOL2=s0LA2;
sOM2=s0M~2;
SON2=sON"2;
s002=s00"2;
sOP2=s0P~2;

% Determine the sigma for each of the 1 bit patterns

s1A=sqrt(4*ck(j)*b10*2*k*b5A+gcnst*(b10/2+ck(j)/2*b5A)+vnoise+vdark);
s1B=sqrt(4*ck(j)*b10/2*k*bSB-+qcnst*(b10/2+ck(j)/2*b5B)+vnoise+vdark);
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s1C=sqrt(4*ck(j)*b10/2*k*b5C+qcnst*(b102+ck(j)/2*b5C)+vnoise+vdark);
s1D=sqrt(4*ck(j)*b10/2*k*bSD+qcnst*(b10/2+ck(j¥2*b5D)+vnoise+vdark);
le=sqn(4‘ck(j)‘bl0*2*k*b55+qcnst‘(bl0"2+ck§i)/2*b5£)+vnoisc+vdark);
s1F=sqrt(4*ck(j)*b10/2*k*bSF+qcnst*(b10/2+ck(})/2*bSF)+vnoise+vdark);
s1G=sqrt(4*ck(j)*b10/2*k*bSG+qcnst*(b10/2+ck(j)/2*b5G)+vnoise+vdark);
s1H=sqr1(4*ck(j)*b10*2*k*b5H+qcnst*(b1072+ck(j/2*b5H)+vnoise+vdark);
sll=sqrt(4*ck(j)*b10*2*k*bSI+qcnst*(b10A2+ck(j)/2*bSI)+vnoise+vdark);
s1J=sqrt(4*ck(j)*b10*2*k*b5J+qcnst* (b1022+ck(j)/2*bS])+vnoise+vdark);
s1K=sqri(4*ck(j)*b10/2*k*bSK+qcnst*(b1022+ck(j)/2*b5K)+vnoise+vdark);
s1L=sqrt(4*ck(j)*b10*2*k*b5SL+qcnst*(b10/2+ck(j)/2*b5L)+vnoise+vdark);
s1M=sqrt(4*ck(j)*b10/2*k*b5M+qcnst*(b10/2+ck(j)/2*bSM)+vnoise+vdark);
s1N=sqrt(4*ck(j)*b10"2*k*bSN+qcnst*(b102+ck(j/2*bSN)+vnoise +vdark);
$10=sqrt(4*ck(j)*b102*k*b50+qcnst*(b10/2+ck(j)/2*b5SO)+vnoise+vdark);
s1P=sqrt(4*ck())*b10/2*k*b5P+qcnst*(b10/2+ck(j)/2*b5P)+vnoise+vdark);

% Determine the variance for each of the 1 bit patterns

s1A2=s1AN2;
s1B2=s1B*2;
s1C2=s1CA2;
s1D2=s1D"2;
s1E2=s1EA2;
s1F2=s1F"2;
s1G2=s1G"2;
slH2=s1HA2;
sll2=s11A2;
s1)2=s1JA2;
s1K2=51KA2;
s1L2=s11L.A2;
sIM2=s1MA2;
SIN2=s1NA2;
s102=510/2;
s1P2=s1PA2;

% Determine the mean for each of the 0 bit patterns

m0A=b00"2+ck(j)/2*b5A;
m0B=b00"2+ck(j)/2*bSB;
m0C=b00"2+ck(j)/2*b5C;
m0D=b00*2+ck(j)/2*b5D;
mOE=b00*2+ck(j)/2*b5E;
mOF=b00"2+ck(j)/2*b5F;
m0G=b00*2+ck(j)/2*b5G;
mOH=b00"2+ck(j)/2*b5H;
mOI=b00"2+ck(j)/2*bS];
mO0J=b00"2+ck(j)/2*b5J;
m0K=b00"2+ck(j)/2*b5SK;
mOL=b00"2+ck(j)/2*b5L;
m0OM=b00"2+ck(j)/2*bSM;
mON=b00*2+ck(j)/2*b5SN;
m0O0=b00*2+ck(j)/2*b50;
mOP=b00*2+ck(j)/2*b5SP;
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% Determine the mean for each of the 1 bit patterns

mlA=b10/2+ck(j)/2*b5A;
m1B=b10r2+ck(j)/2*b5B;
m1C=b10/2+ck(j)/2*b5C;
m1D=b10/2+ck(j)/2*b5SD;
ml1E=b10/2+ck(j))/2*bSE;
m1F=b10/2+ck(j)/2*bSF;
m1G=b10/2+ck(j)/2*b5G;
m1H=b10~2+ck(j)/2*b5H;
mll=b10/2+ck(j)/2*bS5I;
m1J=b10r2+ck(j)/2*bSJ;
m1K=b10A2+ck(j)/2*bSK;
mlL=b10/2+ck(j)/2*b5L;
m1M=b10r2+ck(j)/2*b5M;
m1N=b10/2+ck(j)/2*bSN;
m1O0=b102+ck(j)/2*b50;
m1P=b102+ck(j)/2*b5P;

%Solve the equation F(a)=0 to optimize a, the threshold. F(a)=0 comes
% from (dP/da)=0

a=0:.0009:1;
FA=(1/s0A)*exp(-((a-m0A).*2)./(2*s0A2))-(1/s1A)*exp(-((m1Aa).A2)/(2*s1A2));
FB=(1/s0B)*exp(-((a-m0B).*2)./(2*s0B2))-(1/s1B)*exp(-((m1B-a).A2)/(2*s1B2));
FC=(1/s0C)*exp(-((a-m0C).*2)./(2*s0C2))-(1/s1C)*exp(-((m1C-a).A2)/(2*s1C2));
=(1/s0D)*exp(-((a-m0D).*2)./(2*s0D2))-(1/s1D)*exp(-((m1D-a).A2)/(2*s1D2));
FE=(1/s0E)*exp(-((a-m0E).*2)./(2*s0E2))-(1/s1E)*exp(-((m1E-a).~2)/(2*s1E2));
FF=(1/s0F)*exp(-((a-m0F).*2)./(2*s0F2))-(1/s1F)*exp(-((m1F-a).A2)/(2*s1F2));
=(1/s0G)*exp(-((a-m0G).A2)./(2*s0G2))-(1/s1G)*exp(-((m1G-a)./2)/(2*s1G2));
FH=(1/s0H)*exp(-((a-m0H).*2)./(2*s0H2))-(1/s1H)*exp(-((m1H-a).A2)/(2*s1H2));
FI=(1/s0I)*exp(-((a-m0I).72)./(2*5012))-(1/s1I)*exp(-((m1I-a).A2)/(2*s112));
FJ=(1/s0J)*exp(-((a-m0J).A2)./(2*s0J2))-(1/s1J)*exp(-((m1J-a).A2)/(2*s1]2));
FK=(1/s0K)*exp(-((a-m0K).2)./(2*s0K2))-(1/s1K)*exp(-((m1K-a).A2)/(2*s1K2));
FL=(1/sOL)*exp(-((a-m0L).A2)./(2*s0L2))-(1/s1L)*exp(-((m1L-a).*2)/(2*s11L.2));
=(1/sOM)*exp(-((a-m0OM).A2)./(2*s0M2))-(1/sIM)*exp(-((m1M-
a).A2)/(2%s1M2));
FN=(1/s0N)*exp(-((a-mON).*2)./(2*s0N2))-(1/s1N)*exp(-((m1N-a).A2)/(2*s1N2));
FO=(1/s00)*exp(-((a-m00).A2)./(2*s002))-(1/s10)*exp(-((m10-a).A2)/(2*s102));
FP=(1/s0P)*exp(-((a-mOP).*2)./(2*s0P2))-(1/s1P)*exp(-((m1P-a).A2)/(2*s1P2));
F=FA+FB+FC+FD+FE+FF+FG+FH+FI+FJ+FK+FL+FM+FN+FO+FP;

[Y.I}=min(abs(F));

alpha(n,j)=a(l);
aa=alpha(n,j);
% Determine the probability of bit error for each optimal threshold
% over all bit patterns A,B,C.D
pOA(n)=erf((alpha(n,j)-m0A)/sOA. inf);
pOB(n)=erf((alpha(n,j)-m0B)/sOB,inf);
pOC(n)=erf((alpha(n,j)-m0C)/s0C,inf);
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pOD(n)=erf((alpha(n,j)-mOD)/s0D, inf);
POE(n)=erf((alpha(n,j)-mOE)/sOE, inf);
pOF(nFeﬁ((zl‘pha(nJ)-mOF)/soF.inO;
POG(n)=erf((alpha(n,j)-m0G)/s0G,inf);
pOH(n)=erf((alpha(n,j)-mOH)/s0H, inf);
pOI(n)=erf((alpha(n,j)-m0I)/s0Linf);
Pm(n)mf((asha(nd);mm)/sol.mf);
POK(n)=erf((alpha(n,j)-mOK)/sOK,inf);
POL(n)=crf((alpha(ny)-mOL)/sOL.inf);
POM(n)=erf((alpha(n,j)-m0OM)/s0M, inf);
PON(n)=crf((alpha(n,j)-mON)/sON, inf);
pOO(n)=erf((alpha(n,j)-m00)/s00,inf);
POP(n)=erf((alpha(n,j)-mOP)/sOP,inf);

p1A(n)=erf((m1A-alpha(nj))/slA,inf);
p1B(n)=erf((m1B-alpha(n,j))/s1B,inf);
p1C(n)=erf((m1C-alpha(ny))/s1C,inf);
p1D(n)=erf((m1D-alpha(n,j))/s1D,inf);
p1E(n)=erf((m1E-alpha(n,j))/s1E,inf);
p1F(n)=erf((m1F-alpha(n,j))/s1F,inf);
p1G(n)=erf((m1G-alpha(n,j))/s1G,inf);
pl1H(n)=erf((m1H-alpha(n,}))/s1H,inf);
p1I(n)=erf((m1I-alpha(n,j))/s1L,inf);
plJ(n)=erf((m1J-alpha(n,)))/s1],inf);
p1K(n)=erf((m1K-alpha(n,j))/s1K,inf);
p1L(n)=erf((m1L-alpha(n,))/s1L,inf),
pIM(n)=erf((m1M-alpha(n,j))/s1M,inf);
pIN(n)=erf((m1N-alpha(n,j))/s1N,inf);
p10(n)=erf((m10-alpha(n,j))/s10,inf);
p1P(n)=erf((m1P-alpha(n,j))/s1P,inf);

PA(n)=p0A(n)+pl1A(n);
pB(n)=p0B(n)+p1B(n);
PC(n)=p0C(n)+p1C(n);
pD(n)=p0D(n)+p1D(n);
PE(n)=p0E(n)+p1E(n);
PF(n)=p0F(n)+p1F(n);
PG(n)=p0G(n)+p1G(n);
pH(n)=p0H(n)+p1H(n);
pI(n)=p0l(n)+p1l(n);
pI(n)=p0J(n)+p1J(n);
PK(n)=p0K(n)+p1K(n);
PL(n)=pOL(n)+p1L(n);
PM(n)=pOM(n)+p1M(n);
PN(n)=pON(n)+p1N(n);
PO(n)=p00(n)+p13(n);
PP(n)=pOP(n)+p1P(n);

PBE(n,j)=(pA(n)+pB(n)+pC(n)+pD(n)+pE(n)+pF(n)+pG(n)+pH(n)+pI(n)+pJ(n)+pK

(n)+pL(n)+pM(n)+pN(n)+pO(n)+pP(n))/64;

end % Ps loop




end %Ck loop

al=alpha(:,1);
a2=alpha(:,2);
a3=alpha(:,3);
ad4=alpha(:,4);
aS=alpha(:,5);
a6=alpha(:,6);
a7=alpha(:,7);
a8=alpha(:,8);
a9=alpha(:,9);
alO=alpha(:,10);
all=alpha(;,11);

pl=(PBE(:,1));
p2=(PBE(:,2));
p3=(PBE(:,3));
p4=(PBE(:,4));
p5=(PBE(:,5));
p6=(PBEC(:,6));
p7=(PBE(:,7));
p8=(PBEC(:,8));
p9=(PBE(:,9));
p10=PBEC(;,10);
p11=PBEC(,11);

PB=10*l0og10(ps);

plot(PB,al,-',PB,a2,-' PB,a3,-,PB,a4, - ,PB,a5,-',PB,a6,-'PB,a7,"),..
grid,..

%title(‘case 1.3,nu=.1,delk=.3: Four channels-Asynchronous’),..
xlabel('Peak Power(dBW)"),ylabel('Optimal Threshold’)

s=['Crosstalk='];
text(.15,.6,s,'sc")

c1=0;

s=[' 'jnum2str(cl));
text(.2,.55,s,'sc”)
[xs,ys}=dc2sc(PB(19),a1(19));
polyline([.3,xs),[.56,ys),"-1’,'sc")

c2=-35;

s=[num2str(c2), dB'};
text(.2,.52,s,'sc")
[xs,ys]=dc2sc(PB(19),a2(19));
polyline([.3,xs),[.53,ys},-r’,'sc’)

c3=-32;

s=[num2str(c3), dB'};
text(.2,.49,s,'sc’)
{xs,ys]=dc2sc(PB(19),a3(19));
polyline[.3,xs),[.50,ys],"r','sc")
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C4=-29;

s=[num2str(c4),' dB'];
text(.2,.46,s,'sc’)
[xs,ys]=dc2sc(PB(19),a4(19));
polyline([.3,xs),[.47,ys),"-r','sc")

c5=-26;

s=[num2str(c5),' dB'};
text(.2,.43,s,'sc")
[xs,ys]=dc2sc(PB(19),a5(19)),
polyline([.3,xs),[.44,ys],"-r','sc")

c6=-23;

s=[num2str(c6),' dB'];
text(.2,.40,s,'sc")
[xs,ys]=dc2sc(PB(19),a6(19));
polyline([.3,xs),[.41,ys],"-r','sc")

c7=-20;

s=[num2str(c7),' dB'};
text(.2,.37,s,'sc’)
[xs,ys]=dc2sc(PB(19),a7(19));

polyline([.3,xs),[.38,ys],"-r','sc’)

meta t2as13xa
pause

axis([-60 44 -21 -5))
p1°t(PBsP1"",PB:pzo"',PB,P3:"'»PBsp4,""PB,PS,"',PBsp@"'sPB’p-’s"’)w
semilogy,grid,..

%title(‘case 1.3,nu=.1,delk=.3: Four channels-Asynchronous'),..
xlabel('Peak Power(dBW)'),ylabel("Probability of Bit Error')

s=['Crosstalk="];
text(.15,.6,s,'sc’)

c1=-20;

s=[num2str(c1),' dB'};
text(.2,.55,s,'sc")
[xs,ys}=dc2sc(PB(15),p7(15));
polyline({.3,xs),[.56,ys),"-r','sc")

c2=-23;

s=[num2str(c2),' dB'];
text(.2,.52,s,'sc")
[xs,ys]=dc2sc(PB(15),p6(15));
polyline([.3,xs],[.53,ys),-','sc")

c3=-26;

s=[num2str(c3), dB'];
text(.2,.49,s,'sc")
[xs,ys}=dc2sc(PB(15),p5(15));
polyline([.3,xs),[.50,ys],"-r','sc")




c4=-29;

s=[num2str(c4),' dB'};
text(.2,.46,s,'sc")
[xs,ys]=dc2sc(PB(15),p4(15));
polyline([.3,xs},[.47,ys],"-r’,'sc")

c5=-32;

s=[num2str(cS),' dB'});
text(.2,.43,s,'sc’)
[xs.ys]=dc2sc(PB(15),p3(15));
polyline([.3,xs],[.44,ys),-r’,'sc")

c6=-35;

s=[num2str(c6),' dB'];
text(.2,.40,s,'sc”)
[xs,ys)=dc2sc(PB(15),p2(15));
polyline([.3,xs},[.41,ys],'-r','sc")

c7=0;

s=[' ',num2str(c7)];
text(.2,.37,s,'sc")
[xs,ys]=dc2sc(PB(15),p1(15));

po_lyline([.3.xs],[.38,ys],'-r’,'sc')

axis;
meta 2as13xb
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APPENDIX E - MATLAB MODEL FOR THREE ADJACENT
CHANNELS WITH SYNCIRONOUS TRANSMISSION

This model is for the case of three adjacent channels with (v,8,,8,.8;) =

(0.1,0.3,0.3,0.3) for synchronous transmission. The MATLAB version used was version
?.Skk. 'ghe program itself is a translation of equations (1) through (13) into MATLAB code
or k=3.

% Synchronous Case

% k=3 implying three channels

% Case 1.3: nu=.1 and delta function subscript k (delk)=.3
% th3ch13.m

% 1Aug93

% Thermal Noise=1E-22 A*2/Hz

% Known constants

R=.5;
T=1/(500E6);
NO=1E-22,
q=1.6E-19;
1dk=10E-9;

% Coupling constants for Ck"2
ckl1=0;

ck2=3.16E-4; %-35dB
ck3=6.32E-4; %-32dB
ckd4=1.26E-3; %-29dB
ck5=2.52E-3; %-26dB
ck5a=5.011E-3; %-23 dB
ck6=.01; %-20dB
ck7=1.995E-2; %-17 dB
ck8=3.981E-2; %-14 dB
ck9=7.943E-2; %-11 dB
ck10=.1585; %-8dB

ck=[0 3.16E-4 6.32E-4 1.26E-3 2.52E-3 5.012E-3 .01 1.995E-2 3.981E-2
7.943E-2 .1585);

% Pattern bit values

%bl1=[.2182 .9759 .9759 .2182 .2182 .2182 .9759 .9759];
%for b21,b11,b01 for patterns A,B,C,.D.EF,GH
%b2=[.9759 .2182 .9759 .2182 .2182 .9759 .2182 .9759];
%for b22,b12,b02 for patterns A,B,C,D.EF,G,H
%b3=[.9759 .9759 .9759 .9759 2182 .2182 .2182 .2182];
%for b23,b13,b03

blA=.2182;

b1B=.9759;

b1C=.9759;
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bl1D=.2182;

blE=.2182;

bl1F=.2182;

b1G=.9759;

b1H=.9759;

b2A=.9759,

b2B=.2182;

b2C=.9759;

b2D=.2182;

b2E=.2182;

b2F=.9759;

b2G=.2182;

b2H=.9759;

b3A=.9759;

b3B=.9759;

b3C=.9759,

b3D=.9759;

b3E=.2182;

b3F=.2182;

b3G=.2182;

b3H=.2182;
bdA=bl1AN2+b2AN2+b3AN2;
b4B=b1BA2+b2BA2+b3BA2;
b4C=b1C 2+b2CA2+b3CA2;
b4D=b1D"2+b2D*2+b3DA2;
b4E=b1E*2+b2EA2+b3EA2;
b4F=b1FA2+b2F 2+b3FA2;
b4G=b1G*2+b2G*2+b3G 2;
b4H=b1HA2+b2HA2+b3HA2;

b00=.2182; % approximate zero
b10=.9759; % approximate 1

% Determine k constant for the variance of X

nu=.1;

delk=.3;

ka=(2*pi*nu)/(4*pi*2*(nu 2+delk”2));
kb=1/(16*pir*(nur2+delk " 2)12);
ke=(2*pi*nu*exp(-2*pi*nu))*(2*pi*delk*sin(2*pi*delk)-
2*pi*nu*cos(2*pi*delk));
kd=(2*pi*delk*exp(-2*pi*nu))*(2*pi*(delk *cos(2*pi*delk)+nu*sin(2*pi*delk)));
ke=4*pir2*(nu”2-delk/2);

k=ka-kb*(kc+kd+ke);

n=l;

=L

m=1;

% -60dB<=Peak Power<=-44dB
% Peak power is A*2/2 = Ps
for ss=-60:.2:-44,
ps(m)=107(ss/10);
m=m+1l;
end
% The goal here is to solve the equation for the optimal threshold
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% vs peak power

ha=zeros(length(ps),length(ck));
PBE=zeros(length(ps),Jength(ck));

for jlsl Jength(ck); % coupling values loop
n=1;
for n=1:length(ps); % peak ppower values
Ps=ps(n);
Constants

qenst=q/(Ps*T*L);
vnoise=N0/(RA2*Ps 2*T);
vdark=(q*Idk)/(RA2*Ps*2*T);

% Determine the sigma for each of the 0 bit patierns

sOA=sqrt(4*ck(j)*b00"2*k*b4A+qcnst*(b00 2+ck(j)*b4A)+vnoise+vdark);
sOB=sqr1(4*ck())*b00*2*k*b4B+qcnst*(b00 2+ck(j)*b4B)+vnoise+vdark);
sOC=sqrt(4*ck(j)*b00 2*k*b4C+qcnst*(b00 2 +ck(j)*b4C)+vnoise+vdark);
sOD=sqrt(4*ck(j)*b00"2*k*b4D-+qcnst*(b00*2+ck(j)*b4D)+vnoise+vdark);
SOE=sqrt(4*ck(j)*b00"2*k*b4E+qcnst*(b00*2+ck(j)*b4E)+vnoise+vdark);

sOF=sqrt(4*ck(j)*b00*2*k*b4F+gcnst*(b00*2+ck()) *bdF)+vnoise+vdark);

sOG=sqrt(4*ck(j)*b00*2*k*b4aG+qcnst* (b0 2+ck(j)*b4G)+vnoise+vdark);
sOH=sqrt(4*ck(j)*b00"2*k*b4H+qcnst* (b0 2+ck(j)*b4H)+vnoise+vdark);

% Determine the variance for each of the O bit patterns

s0A2=s0AA2;
s0B2=s0B"2;
s0C2=s0CA2;
s0D2=s0D*2;
SOE2=s0EA2;

sOF2=s0F"2;

s0G2=s0G*2;
sOH2=s0H~2;

% Determine the sigma for each of the 1 bit patterns

s1A=sqrt(4*ck(j)*b10*2*k*b4A+qcnst*(b10*2+ck(j)*b4A)+vnoise+vdark);
s1B=sqrt(4*ck(3)*b10"2*k*b4B+qcnst*(b10/2+ck(j)*b4B)+vnoise+vdark);
s1C=sqrt(4*ck(3)*b102*k*b4C+qenst*(b10/2+ck(j)*b4C)+vnoise+vdark);
s1D=sqrt(4*ck(j)*b10*2*k*b4D+qcnst*(b10*2+ck(j)*b4D)+vnoise+vdark);
s1E=sqrt(4*ck(j)*b10*2*k*b4E+qcnst*(b10/2+ck())*b4E)+vnoise+vdark);

s1F=sqrt(4*ck(§)*b10"2*k*b4F+qcnst*(b10*2+ck(j)*b4F)+vnoise+vdark);

s1G=sqrt(4*ck(j)*b10 2*k*b4G+qcnst*(b10*2+ck(j)*b4G)+vnoise+vdark);
s1H=sqrt(4*ck(§)*b102*k*b4H+qcnst* (b102+ck(j)*b4H)+vnoise+vdark);

% Determine the variance for each of the 1 bit patterns
s1A2=s1AN2;

s1B2=s1BA2;
s1C2=s1CA2;
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s1D2=s1D*2;
s1E2=s1EA2;
s1F2=s1FA2;
s1G2=51G*2;
s1H2=s1HA2;

% Determine the mean for each of the 0 bit patterns
m0A=b00"2+ck(j)*b4A;
m0B=b00"2+ck(j)*b4B;
mOC=b00"2+ck(j)*b4C;
m0D=b00"2+ck(j)*b4D;
mOE=b00"2+ck(j)*b4E;
mOF=b00"2+ck(j)*b4F;
m0G=b00 2+ck(j)*b4G;
mOH=b00/2+ck(j)*b4H;

% Determine the mean for each of the 1 bit patterns

mlA=b10/2+ck(j)*bdA;
m1B=b10"2+ck(j)*b4B;
m1C=b10/2+ck(j)*b4C,;
m1D=b10/2+ck(j)*b4D;
mlE=bl10"2+ck(j)*b4E;

m1F=b10*2+ck(j)*b4F,

m1G=b10"2+ck(j)*b4G;
m1H=b10*2+ck(j)*b4H;

%Solve the equation F(a)=0 to optimize a, the threshold. F(a)=0 comes
% from (dP/da)=0

a=0:.001:1;
FA=(1/s0A)*exp(-((a-m0A).A2)./(2*s0A2))-(1/s1A)*exp(-((m1A-a).*2)/(2*s1A2)),
FB=(1/s0B)*exp(-((a-m0B).*2)./(2*s0B2))-(1/s1B)*exp(-((m1B-a).*2)/(2*s1B2));
FC=(1/s0C)*exp(-((a-m0C).*2)./(2*s0C2))-(1/s1C)*exp(-((m1C-a).~2)/(2*s1C2));
FD=(1/s0D)*exp(-((a-m0D).A2)./(2*s0D2))-(1/s1D)*exp(-((m1D-a).*2)/(2*s1D2));
FE=(1/s0E)*exp(-((a-mOE).*2)./(2*s0E2))-(1/s1E)*exp(-((m1E-a).*2)/(2*s1E2));

=(1/s0F)*exp(-((a-m0F).*2)./(2*s0F2))-(1/s1F)*exp(-((m1F-a).»2)/(2*s1F2)),
FG=(1/s0G)*exp(-((a-m0G).*2)./(2*s0G2))-(1/s1G)*exp(-((m1G-a).A2)/(2*s1G2));
FH=(1/s0H)*exp(-((a-m0H).*2)./(2*s0H2))-(1/s1H)*exp(-((m1H-a).*2)/(2*s1H2));
F=FA+FB+FC+FD+FE+FF+FG+FH;

[Y,I}=min(abs(F));
alpha(n,j)=adl);
aa=alpha(n,j);
% Determine the probability of bit error for each optimal threshold
% over all bit patterns A,B,C,D
pOA(n)=erf((alpha(n,j)-m0A)/s0A,inf);
pOB(n)=erf((alpha(n,j)-m0B)/sOB,inf);
pOC(n)=erf((alpha(n,j)-m0C)/s0C.,inf);
pOD(n)=erf((alpha(n,j)-m0D)/s0D,inf);
pOE(n)=erf((alpha(n,j)-mOE)/sOE,inf);
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POF (n)=erf((alpha(nj)-mOF)/sOF.inf);
pOG(n)=erf((alpha(n,j)-m0G)/s0G,inf);
pOH (n)=erf((alpha(n,j)-mOH)/sOH, inf);

plA(n)=erf((m1A-alpha(n j)Vs1A.inf);
p1B(n)=erf((m1B-alpha(n j)Vs1B.inf);
p1C(n)=erf((m1C-alpha(n,j)¥/s1C.inf);
P1D(n)=erf((m1D-alpha(n,)))/s1D,inf);
pIE(n)=erf((m1E-alpha(n}))/s1E,inf);

p1F(n)=erf((m1F-alpha(nj)V/s1F,inf);

p1G(n)=erf((m1G-alpha(n,j))/s1G,inf);
p1H(n)=erf((m1H-alpha(n,j))/s1H,inf);

PBE(n,j)=(p0A(n)+p1A (n)+p0B(n)+p1B(n)+p0C(n)+p1C(n)+p0D(n)+p1D(n)
+pOE(n)+p1E(n)+ F(n)+pfg(nkp01)0(n),lpfggn)+ H(n)+pll)lql(n))/3§; ’

end % Ps loop
end %Ck loop

al=alpha(:,1);
a2=alpha(:,2);
a3=alpha(:,3);
ad=alpha(:,4);
a5=alpha(:.5);
a6=alpha(:,6);
a7=alpha(:,7);
a8=alpha(:,8);
a9=alpha(:,9);
alO=alpha(;,10);
all=alpha(:,11);

pl=(PBE(:,1));
p2=(PBE(:,2));
p3=(PBEC(:,3));
p4=(PBE(:,4));
pS=(PBE(.,5));
p6=(PBEC(:,6));
p7=(PBE(:,7));
p8=(PBEC(:,8));
p9=(PBE(:,9));
p10=PBE(;,10);
pl1=PBEC(;,11);

PB=10*log10(ps);
plot(PB,al,’-',PB,a2,'-',PB,a3,'-',PB,a4,'-',PB,a5,'-',PB,a6,-' ,PB,a7,'-'),..
grid,..

%title(case 1.3,nu=.1,delk=.3: Three channels’),..

xlabel('Peak Power(dBW)'),ylabel('Optimal Threshold')

=['Crosstalk="};
text(.15,.6,s,'sc’)
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cl=0,

s=[' ‘,num2swr(cl));
text(.2,.55,s,'sc')
[xs,ys]=dc2sc(PB(48),a1(48));
polyline([.3,xs],[.56,ys),"-r','sc")

c2=-35;

s=[num2str(c2),’ dB');
text(.2,.52,s,'sc')
[xs,ys)=dc2sc(PB(48),a2(48));
polyline([.3,xs],[.53,ys),"-r','sc")

c3=-32;

s=[num2str(c3),' dB'];
text(.2,.49,s,'sc’)
[xs,ys]=dc2sc(PB(48),a3(48));
polyline([.3,xs],[.5,ys],"-1','sc")

c4=-"9,

s=[num2str(c4),” dB'};
text(.2,.46,s,'sc’)
[xs,ys)=dc2sc(PB(48),a4(48));
polyline([.3,xs],[.47,ys),'-r','sc")

c5=-26;

s=[num2str(c5),’ dB');
text(.2,.43,s,'sc’)
[xs,ys]}=dc2sc(PB(48),a5(48));

polyline([.3,xs],[.44,ys],'-r','sc")

c6=-23;

s=[num2str(c6),’ dB'];
text(.2,.4,s,'sc')
[xs,ys)=dc2sc(PB(48),a6(48));
polyline([.3,xs],[.41,ys]),'-r','sc")

c7=-20,

s=[num2str(c7),’ dB'];
text(.2,.37,s,'sc")
[xs,ys)=dc2sc(PB(48),a7(48));
polyline([.3,xs],[.38,ys],'-r','sc")
meta t3chl3xa

pause

axis([-60 -44 -21 -5])
plot(PB,p1,'-',PB,p2,'-',PB,p3,'-',PB,p4,-',PB,p5,-',PB,p6,-',PB,p7,'-"),..
semilogy,grid,..

%title(case 1.0,nu=.1,delk=0: Three channels’),..
xlabel('Peak Power(dBW)'),ylabel('Probability of Bit Error’)

s=['Crosstalk="];
text(.15,.6,s,'sc’)
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cl1=-20;

s=[num2str(c1),' dB'];
text(.2,.55,s,'sc")
[xs,ys}=dc2sc(PB(38),p7(38));
polyline({.3,xs},[.56,ys],'-r','sc")

c2=-23;

s=[num2sur(c2),' dB'];
text(.2,.52,s,'sc’)
[xs,ys}=dc2sc(PB(38).p6(38));
polyline([.3,xs],[.53,ys],'-r','sc’)

c3=-26;

s=[num2str(c3),' dB');
text(.2,.49,s,'sc’)
[xs,ys]=dc2sc(PB(38),p5(38));
polyline([.3,xs],[.5,ys],"-r','sc")

c4=-29;

s=[num2str(c4), dB'];
text(.2,.46,s,'sc’)
[xs,ys]=dc2sc(PB(38),p4(38));
polyline([.3,xs),[.47,ys],"-r','sc")

c5=-32;

=[num2str(c5), dB'];
text(.2,.43,s,'sc’)
[xs,ys]=dc2sc(PB(38),p3(38));

L) UM}

polyline({.3,xs],{.44,ys},-1', sc")
c6=-35;

=[num2str(c6), dB'];
text(.2,.40,s,'sc’)
[xs,ys)=dc2sc(PB(38),p2(38));

polyline([.3,xs],[.41,ys],"-r','sc’)

c7=0;

s=[' ‘,num2str(c7)];
text(.2,.37,s,'sc’)
[xs,ys]=dc2sc(PB(38),p1(38));
polyline({.3,xs],[.38,ys],'-r','sc’)
axis;

meta t3ch13xb
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APPENDIX F - MATLAB MODEL FOR FOUR ADJACENT
CHANNELS FOR SYNCHRONOUS TRANSMISSION

This model is for the case of four adjacent channels with (v,5,,8,,83.8;) =

(0.1,0.3,0.3,0.3,0.3) for synchronous transmission. The MATLAB version used was
version 3.5k. The program itself is a translation of equations (1) through (13) into
MATLAB code for k=4.

% Synchronous Case

% k=4 implying four channels

% Case 1.3: nu=.1 and delta function subscript k (delk)=.3
% thdchl3x.m

% 22 Aug93

% Thermal Noise: 1E-22 AA2/Hz

% Known constants

R=.5;
T=1/(500E6);
NO=1E-22,
q=1.6E-19;
1dk=10E-9;

% Coupling constants for CkA2
ck1=0;
ck2=3.16E-4; %-35dB
ck3=6.32E-4; %-32dB
ckd4=1.26E-3; %-29 dB
ck5=2.52E-3; %-26dB
ckS5a=5.011E-3; %-23 dB
ck6=.01;, %-20dB
ck7=1.995E-2; %-17 dB
ck8=3.981E-2; %-14 dB
ck9=7.943E-2; %-11 dB
ck10=.1585; %-8 dB
ck=[0 3.16E-4 6.32E-4 1.26E-3 2.52E-3 5.011E-3 .01 1.995E-2 3.981E-2
7.943E-2 .1585];

% Pattern bit values

%bl=[.2182 .9759 .9759 .2182 .2182 .2182 .9759 .9759 .2182 .2182 .2182
9759 9759 .9759 .2182 .9759];

%for b31,b21,b11,b01 for patterns A,B,C,D.E F,G,H,1J,K,L,M,N,O,P

%b2=[.9759 .2182 .9759 .2182 .2182 .9759 .2182 .9759 .2182 .2182 .9759
2182 .9759 .2182 .9759 .9759);

%for b32,b22,b12,b02 for patterns A,B,C,D.E,F,G,H,IJ,K,L M,N,O,P

%b3=[.9759 9759 .9759 .9759 .2182 .2182 .2182 .2182 .2182 .9759 .2182
.2182 .2182 .9759 .9759 .9759];

%for b33,523,b13,b03
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%ba=[.9759 9759 .9759 .9759 .9759 9759 .9759 9759 .2182 .2182 .2182
2182 2182 .2182 .2182 .2182};
%for b34,b24,b14,b04
blA=.2182;
b1B=.9759;
b1C=.9759,
b1D=.2182;
blE=.2182;
b1F=.2182;
b1G=.9759;
b1H=.9759;
b11=.2182;
b1J=.2182;
bl1K=.2182;
b1L=.9759;
b1M=.9759;
b1N=.9759;
b10=.2182;
b1P=.9759;
b2A=.9759;
b2B=.2182;
b2C=.9759;
b2D=.2182;
b2E=.2182;
b2F=.9759;
b2G=.2182;
b2H=.9759;
b21=.2182;
b2J=.2182;
b2K=.9759;
b2L=.2182;
b2M=.9759;
b2N=.2182;
b20=.9759;
b2P=.9759;
b3A=.9759;
b3B=.9759;
b3C=.9759;
b3D=.9759;
b3E=.2182;
b3F=.2182;
b3G=.2182;
b3H=.2182;
b31=.2182;
b3J=.9759;
b3K=.2182;
b3L=.2182;
b3M=.2182;
b3N=.9759;
b30=.9759;
b3P=.9759;
b4A=.9759;
b4B=.9759;
b4C=.9759;
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b4D=.9759;
b4E=.9759;
b4F=.9759;
b4G=.9759;
b4H=.9759;
b41=.2182;

bdJ=.2182;

b4K=.2182;
b4L=.2182;
b4M=.2182;
b4N=.2182;
b40=.2182;
b4P=.2182;

bSA=b1AA2+b2A2+b3AN2+b4AN2;
b5B=b1B*2+b2B*2+b3BA2+b4B*2;
b5C=b1C 2+b2CA2+b3CA2+b4CA2;
b5SD=b1D*2+b2D*2+b3D*2+b4D"2;
bSE=bl1EA2+4b2EA2+b3EA2+b4EA2;
bSF=t1FA2+b2F*2+b3FA2+b4F"2;
b5G=b1G*2+b2G*2+b3G2+b4GA2;
b5H=b1HA2+b2H*2+b3H*2+b4HA2;
b5I=b1H"2+b2HA2+b3HA2+b41/2;
bSJ=b1JA2+b2JA2+b3)A2+b4]A2;
bSK=b1KA2+b2KA2+b3K"2+b4KA2;
bSL=b1LA2+b2L.A2+b3LA2+b41.2;
b5SM=bl1MA2+b2MA2+b3MA2+b4M"2;
bSN=b1NA2+b2NA2+b3NA2+b4NA2;
bSO=b10A2+b20/2+b30"2+b40/2;
bSP=b1PA2+b2P"2+b3P*2+b4PA2;

b00=.2182; % approximate zero
b10=.9759; % approximate 1

% Deltetmm ¢ k constant for the variance of X

nu=.1;

delk=.3;

ka=(2*pi*nu)/(4*pi*2*(nu”2+delk2));

kb=1/(16*pir4*(nur2+delk 2)12);
kc=(2*pi*nu*exp(-2*pi*nu))*(2*pi*delk*sin(2*pi*delk)-2*pi*nu*cos(2*pi*delk));
kd=(2*pi*delk*exp(-2*pi*nu))*(2*pi*(delk*cos(2*pi*delk)+nu*sin(2*pi*delk)));
ke=4*pi*2*(nur2-delk/2);

k=ka-kb*(kc+kd+ke);

n=1;

j) H

m=1;

% -60dB<=Peak Power<=-44dB
% Peak power is A72/2 =Ps
for ss=-60:.5:-44;
ps(m,~ 10/(ss/10);
m=m+l;
end
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% The goal here is to solve the equation for the optimal threshold
% vs peak power

alpha=zeros(length(ps),length(ck));
PBE=zeros(length(ps),Jength(ck));

for j=1:length(ck); % coupling values loop

n=1;

for n=1:length(ps); % peak ppower values
Ps=ps(n);

qcnst=q/(Ps*T*R),
vnoise=N0/(RA2*Ps*2*T);
vdark=(q*Idk)/(RA2*PsA2*T),

% Determine the sigma for each of the 0 bit patterns

sOA=sqrt(4*ck(j)*b00 2 *k*b5SA+qcnst*(b00 A 2+ck(j)*b5SA)+vnoise+vdark);
sOB=sqrt(4*ck(j)*b00*2*k*bs B+qcnst*(b002+ck(j)*b5B)+vnoise+vdark);
sOC=sqrt(4*ck())*b00*2*k*b5C+qcnst*(b00/2+ck(j)*b5C)+vnoise+vdark);
sOD=sqrt(4*ck(j)*b00 2 *k*b5D+qenst* (b0 2+ck(j)*b5D)+vnoise+vdark);
SOE=sqrt(4*ck(j)*b002*k*b5SE+qcnst*(b00*2+ck(j)*bSE)+vnoise+vdark);
sOF=sqrt(4*ck(3)*b00 2 *k*b5F+qcnst*(b00 2 +ck(j) *b5F)+vnoise+vdark);
s0G=sqrt(4*ck(j)*b00 2*k*b5G+qcnst*(b00"2+ck(j)*b5G)+vnoise+vdark);
sOH=sqrt(4*ck(j)*b00 2*k*bSH+qcnst*(b00*2+ck(j)*bSH)+vnoise+vdark);
sOI=sqrt(4*ck(j)*b00 2*k*bSI+qcnst*(b00 2+ck(j)*b5I)+vnoise+vdark);
sOJ=sqrt(4*ck(j)*b00*2*k *b5J+qcnst*(b00A2+ck(j)*b5T)+vnoise+vdark);
sOK=sqrt(4*ck(j)*b00"2*k*b5K+qcnst* (b00*2+ck(j) *bSK)+vnoise+vdark);
sOL=sqrt(4*ck(j)*b00 2*k*bSL+qcnst*(b00 2+ck(j)*bSL)+vnoise+vdark);
sOM=sqrt(4*ck(§)*b002*k*b5M+qcns. *(b00 2-+ck(j)*b5SM)+vnoise+vdark);
sON=sqrt(4*ck(j)*b00*2*k*bSN+qcnst* (b00 2+ck(j)*bSN)+vnoise+vdark);
s00=sqrt(4*ck())*b00 2 *k*b50+qcnst*(b00A2+ck(j)*b50)+vnoise+vdark);
sOP=sqrt(4*ck(j)*b00*2*k*b5P+qcnst*(b00 2+ck(j) *bSP)+vnoise+vdark);

% Determine the variance for each of the 0 bit patterns

s0A2=s0AA2;
s0B2=s0B"2;
s0D2=s0D*2;
sOE2=s0E~2;
sOF2=s0FA2;
s0G2=s0G*2;
sOH2=s0HA2;
s0I2=s01*2;
s0J2=s0J72;
sOK2=s0K~2;
sOL2=s0LA2;
sOM2=s0M~"2;
sON2=sO0NA2;
s002=s00"2;
sOP2=s0P"2;
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% Determine the sigma for each of the 1 bit patterns

s1A=sqrti(4*ck(j)*b10/2*k*bSA+qcnst*(b10/A2+ck(j)*b5A)+vnoise+vdark);
s1B=sqrti(4*ck(j)*b10*2*k*bSB +qcnst*(b10/2+ck(j)*b5B)+vnoise+vdark);
s1C=sqri(4*ck(3)*b10/2*k*b5C+qcnst*(b1022+ck(j)*b5C)+vnoise+vdark);
s1D=sqrt(4*ck(j)*b10"2*k*b5D+qcnst*(b1042+ck(j)*b5D)+vnoise+vdark);
s1E=sqrt(4*ck(j)*b10*2*k*bSE+qcnst*(b10/2+ck(})*b5SE)+vnoise+vdark);
s1F=sqrt(4*ck(j)*b10"2*k*bSF+qcnst*(b1022+ck(j)*b5F)+vnoise+vdark);
s1G=sqrt(4*ck(j)*b10*2*k*b5G+qcnst* (b10/2+ck(j)*bSG)+vnoise+vdark);
s1H=sqrt(4*ck(j)*b10/2*k*bSH+qcnst* (b1 0*2+ck(j)*b5H)+vnoise+vdark);
slI=sqrt(4*ck(j)*b10 2*k*b5I+qcnst*(b1072+ck(j)*bSI)+vnoise+vdark);
s1J=sqrt(4*ck(j)*b10*2*k*b5J+qcnst*(b1022+ck(j)*b5J)+vnoise+vdark);
s1K=sqrt(4*ck(j)*b10 2*k*b5SK+qcnst*(b10/2+ck(j)*bSK)+vnoise+vdark);
s1L=sqrt(4*ck(j)*b102*k*bSL+qcnst*(b1072+ck(j)*bSL)+vnoise+vdark);
s1M=sqrt(4*ck(j)*b10"2*k*bSM+qcnst* (b10/2+ck(j)*b5SM)+vnoise+vdark),
sIN=sqrt(4*ck(j)*b10/2*k*bSN+qcnst*(b102+ck())*bSN)+vnoise+vdark);
s10=sqrt(4*ck(j)*b10*2*k*b50+qcnst*(b10A2+ck(j) *b5SO)+vnoise+vdark);
s1P=sqrt(4*ck(j)*b10/2*k*bSP+qcnst*(b10~2+ck(j)*b5P)+vnoise+vdark);

% Determine the variance for each of the 1 bit patterns

s1A2=s1AN2;
s1B2=s1BA2;
s1C2=s1CA2;
s1D2=s1DA2;
s1E2=s1EA2,
s1lF2=s1F72;
s1G2=51G~2;
s1H2=s1H"2,
s1I2=s1172;
s1J2=51JA2;
s1K2=s1K~2;
s1L2=s11L.A2;
sIM2=s1M"2;
sIN2=sI1NA2;
s102=s1072;
s1P2=s1PA2;

% Determine the mean for each of the 0 bit patterns

mOA=b00"2+ck(j)*bSA;
mOB=b002+ck(j)*bSB;
mOC=b002+ck(j)*b5C;
mOD=b00"2+ck(j)*bSD;
mOE=b00"2+ck(j)*bSE;
mOF=b002+ck(j)*bSF;
mO0G=b00"2+ck(j)*bSG;
mOI=b00"2+ck(j)*bSI;
m0J=b00"2+ck(j)*b5J;
mOK=b00*2+ck(j)*bSK;
mOL=b00A2+ck(j)*bSL;
mOM=b00A2+ck(j)*bSM;
mON=b00A2+ck(j)*bSN;
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m00=b00A2+ck(j)*b5O0;
mOP=b00A2+ck(j)*bSP;

% Determine the mean for each of the 1 bit patterns

mlA=bl10"2+ck(j)*b5A;
m1B=b10"2+ck(j)*b5B;
m1C=b10/A2+ck(j)*b5C;
m1D=b10"2+ck(j)*b5D;
mlE=bl10"2+ck(j)*bSE;
m1F=b10"2+ck(j)*bSF;
mlG=b10"2+ck(j)*b5G;
mlH=b10"2+ck())*b5H;
m1I=b10*2+ck(j)*bS5I;
m1J=b10*2+ck(j)*b5J;
m1K=b10*2+ck(j)*b5K;
m1L=b10"2+ck(j)*b5L;
m1lM=bl10*2+ck(j)*b5M;
m1N=b102+ck(j)*b5SN;
m10=b10*2+ck(j))*b50;
m1P=b10"2+ck(j)*b5P;

%Solve the equation F(a)=0 to optimize a, the threshold. F(a)=0 comes
% from (dP/da)=0

a=0:.0009:1;
FA=(1/s0A)*exp(-((a-m0A).*2)./(2*s0A2))-(1/s1A)*exp(-((m1A-2a)./2)/(2*s1A2));
FB=(1/s0B)*exp(-((a-m0B).~2)./(2*s0B2))-(1/s1B)*exp(-((m1B-a).A2)/(2*s1B2));
FC=(1/s0C)*exp(-((a-m0C).*2)./(2*s0C2))-(1/s1C)*exp(-((m1C-a).A2)/(2*s1C2)),
FD=(1/s0D)*exp(-((a-m0D).»2)./(2*s0D2))-(1/s1D)*exp(-((m1D-a).72)/(2*s1D2));
FE=(1/s0E)*exp(-((a-mQE).*2)./(2*s0E2))-(1/s1E)*exp(-((m1E-a).*2)/(2*s1E2));

=(1/s0F)*exp(-((a-mOF).A2)./(2*s0F2))-(1/s1F)*exp(-((m1F-a).A2)/(2*s1F2));
FG=(1/s0G)*exp(-((a-m0G)."2)./(2*s0G2))-(1/s1G)*exp(-((m1G- a).A2)/(2*51G2));
FH=(1/s0H)*exp(-((a-mO0H).A2)./(2*s0H2))-(1/s1H)*exp(-((m1H-a).A2)/(2*s1H2)),
FI=(1/s0I)*exp(-((a-m0I).»2)./(2*s012))-(1/s11)*exp(-((m1I-a).A2)/(2*s112));
FJ=(1/50])*exp(-((a-m0J).~2)./(2*s0J2))-(1/s1J)*exp(-((m1J-a).A2)/(2¥s1]J2));
FK=(1/s0K)*exp(-((a-m0K).»2)./(2*s0K2))-(1/s1K)*exp(-((m1K-a).A2)/(2*s1K2));
FL=(1/s0L)*exp(-((a-mOL).*2)./(2*s0L2))-(1/s1L)*exp(-((m1L-a).A2)/(2*s1L2));
FM=(1/sOM)*exp(-((a-m0OM).A2)./(2*s0M2))-(1/s1M)*exp(-((m1M-
a).A2)/(2*s1M2)),
FN=(1/sON)*exp(-((a-mON).A2)./(2*sON2))-(1/s1N)*exp(-((m1N-a).A2)/(2*s1N2));
FO=(1/s00)*exp(-((a-m00).A2)./(2*s002))-(1/s10)*exp(-((m10-a).A2)/(2*5102));
FP=(1/s0P)*exp(-((a-mOP).A2)./(2*s0P2))-(1/s1P)*exp(-((m1P-a).A2)/(2*s1P2));
F=FA+FB+FC+FD+FE+FF+FG+FH+FI+FJ+FK+FL+FM+FN+FO+FP;

[Y,I}=min(abs(F));
alpha(n,j)=a(l);
aa=alpha(n,j);

% Determine the probability of bit error for each optimal threshold
% over all bit patterns A,B,C,.D
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POA(n)=erf((alpha(n,j)-m0A)/sOA.inf);
POB(n)=erf((alpha(n,j)-m0B)/s0B,inf);
POC(n)=erf((alpha(n,j)-m0C)/s0C.inf);
POD(n)=erf((alpha(n,j)-mOD)/s0Dinf);
POE(n)w=erf((alpha(n,j)-mOE)/sOEinf);
POF(n)=erf((alpha(n,j)-mOF)/sOF,inf);
pOG(n)=erf((alpha(n,j)-m0G)/s0G,inf);
pOH(n)=erf((alpha(n,j)-mOH)/sOH.inf);
pOI(n)aa-f((alp (n,j)-m0I)/s0Linf);
(nhaf((a:fha(na)-mOJ)/sOJ,mf)
POK(n)=erf((alpha(n,j)-mOK)/sOK.inf);
pOL(n)aclf(( a})ha(n,))-m()L)/sOL,mf)
M(n)=erf((alpha(n,j)-mOM)/sOM,inf);
PON(n)=crf((alpha(n..l)-m0N)/s0N,mt),
POO(n)=erf((alpha(n,)-m00)/s00,inf);
pOP(n)=erf((alpha(n,j)-mOP)/sOP,inf);

plA(n)=erf((m1A-alpha(n,j))/s1A,inf);
p1B(n)=erf((m1B-alpha(n j))/s1B.inf);
p1C(n)=erf((m1C-alpha(n j)/s1C.inf);
p1D(n)=erf((m1D-alpha(n,j))/s1D,inf);
p1E(n)=erf((m1E-alpha(n,j))/s1E,inf);
p1F(n)=erf((m1F-alpha\n,j))/s1F,irf);
p1G(n)=erf((m1G-alpha(n,j))/s1G,inf);
p1H(n)=erf((m1H-alpha(n,j))/s1H.inf):
pll(n)=erf((m1I-alpha(n,j))/s1Linf);
pll(n)=erf((m1J-alpha(n.j))/s1J,inf);
p1K(n)=erf((m1K-alpha(n,j))/s1K,inf);
plL(n)=erf((m1L-alpha(n,j))/s1L,inf);
p1M(n)=erf((m1M-alpha(n,j))/s1M,inf);
pIN(n)=erf((m1N-alpha(n,j))/s1N.,inf);
p10(n)=erf((m10-alpha(n,j))/s10,inf);
p1P(n)=erf((m1P-alpha(n,j))/s1P,inf);

PA(n)=p0A(n)+plA(n);
pB(n)=p0B(n)+p1B(n);
pC(n)=p0C(n)+p1C(n);
pPD(n)=p0D(n)+p1D(n);
PE(n)=pOE(n)+plE(n);
pF(n)=pO0F(n)+p1F(n);
PG(n)=p0G(n)+p1G(n);
pH(n)=pOH(n)+p1H(n);
PI(n)=p0l(n)+p11(n);
pJ(n)=p0J(n)+p1I(n);
pK(n)=p0K(n)+p1K(n);
pL(n)=pOL(n)+p1L(n);
PM(n)=pOM(n)+pIM(n);
pO@)=p0O()+p10(n);
PP(n)=P0P(n)+P1P(n);

PBE(n,j)=(pA(n)+pB(n)+pC(n)+pD(n)+pE(n)+pF(n)+pG(n)+pH(n)+pI(n)+pJ(n)
+pK(n)+pL{(n)+pM(n)+pN(n)+pO(n)+pP(n))/64,
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end % Ps loop
end %Ck loop

al=alpha(:,1);
a2=alpha(:.2);
a3=alpha(:,3);
ad=alpha(:,4);
aS=alpha(:,5);
a6=alpha(:,6);
a7=alpha(:,7);
a8=alpha(:,8);
a9=alpha(:,9);
alO=alpha(:,10);
all=alpha(:,11);

p1=(PBE(.,1));
p2=(PBE(:,2));
p3=(PBEC(:,3));
p4=(PBE(:,4))
p5=(PBEC(:,5));
p6=(PBEC(:,6));
p7=(PBE(.,7));
p8=(PBEC(:,8));
p9=(PBEC(:,9));
p10=PBEC(,10);
pl11=PBEC(,11);

PB=10*log10(ps);

plot(PB,al,'-',PB,a2,'-',PB,a3,'-',PB,a4,-",PB,a5,'-',PB,a6,"-",PB,a7,'-"),..
grid,..

%title(‘'case 1.3,nu=.1,delk=.3: Four channels’),..

xlabel('Peak Power(dBW)'),ylabel('Optimal Threshold')

s=['Crosstalk="];
text(.15,.6,s,'sc’)

cl=0;

s=[' ',num2str(cl)];
text(.2,.55,s,'sc")
[xs,ys}=dc2sc(PB(19),a1(19));
~olyline([.3,xs),[.56,ys],"-r','sc")

c2=-35;

s=[num2str(c2),” dB'];
text(.2,.52,s,'sc’)
[xs,ys]=dc2sc(PB(19),a2(19));
polyline([.3,xs},[.53,ys],’-r','sc")

c3=-32;

s=[num2str(c3),’ dB'];
text(.2,.49,s,'sc')

82




[xs,ys]=dc2sc(PB(19),a3(19));
polyline([.3,xs],[.50,ys},-r','sc")

c4=-29;

s=[num?str(c4),’ dB'};
text(.2,.4€,s,'sc’)
[xs,ys]=cc2sc(PB(19),24(19));
polyline({.3,xs].[.47,ys],"-1','sC")

c5=-26;

s=[num2str(cS),’ dB'];
text(.2,.43,s,'sc")
[xs,ys]=dc2sc(PB(19),a5(19));
polyline([.3,xs),[.44,ys],'-r','sc")

c6=-23;

s=[num2str(c6),’ dB'];
text(.2,.40,s,'sc’)
[xs,ys]=dc2sc(PB(19),26(19));

polyline([.3,xs],[.41,ys),-1','sc")

¢7=-20;

s=[num2str(c7),’ dB'];
text(.2,.37,s,'sc’)
[xs,ys]=dc2sc(PB(19),a7(19));
polyline([.3,xs),[.38,ys],-r','sc")

meta t4chl3xa
pause

axis([-60 -44 -21 -5])

plot(PB,p1,-',PB,p2,'-',PB,p3,-',PB,p4,'-',PB ,pS,-',PB,p6,’-',PB,p7,'-"),..

%PB,p8,-',PB,p9,'- ,PB,p10,'-',PB,pll1,-")
semilogy,grid,..

%title(case 1.3,nu=.1,delk=.3: Four channels’),..
xlabel(Peak Power(dBW)"),ylabel('Probability of Bit Error’)

s=['Crosstalk="];
text(.15,.6,s,'sc’)

c1=-20;

s=[num2str(cl),’ dB'};
text(.2,.55,s,'sc’)
[xs,ys]=dc2sc(PB(15),p7(15));
polyline({.3,xs],[.56,ys],’-1’,'sc’)

c2=-23;

s={num2str(c2),’ dB');
text(.2,.52,s,'sc’)
[xs,ys)=dc2sc(PB(15),p6(15));

polyline([.3,xs],[.53,ys],"-r','sc’)
c3=-26,
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s={num2str(c3),' dB'];
text(.2,.49,s,'sc’)
[xs,ys}=dc2sc(PB(135),p5(15));

polyline([.3,xs],[.50,ys],'-r','sc")

c4=-29;

s=[num2str(c4),’ dB');
text(.2,.46,s,'sc’)
[xs,ys]=dc2sc(PB(15),p4(15));
polyline([.3,xs],[.47,ys],'-r','sc’)

c5=-32;

s=[num2str(c5)," dB');
text(.2,.43,s,'sc')
[xs,ys]=dc2sc(PB(15),p3(15));

polyline([.3,xs],[.44,ys]},'-r','sc’)

c6=-35;

s=[num2str(c6),” dB'};
text(.2,.40,s,'sc’)
[xs,ys)=dc2sc(PB(15),p2(15));
polyline({.3,xs],[.41,ys],'-r'",'sc")

c7=0;

s=[' ",num2str(c7));
text(.2,.37,s,'sc’)
[xs,ys]=dc2sc(PB(15),p1(15));
polyline([.3,xs],{.38,ys],'-r','sc")
axis;

meta tdch13xb
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