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Abstract
In this paper, it is shown that a continuum of distributions best characterizes the hidden

layer outputs of a multilayer perceptron when trained as a 0-1 classifier and tested with a range
of signa-to-noise ratio (SNR) input distributions. A four parameter system of transformed
normal distributions, known as the Johnson system of distributions, is utilized to illustrate the
shape of output distributions as a function of input SNR levels.

1 Introduction
In this paper, a feedforward multilayer perceptron trained as 0-1 classifier with backpropagation of error
is considered. It will be shown that the Johnson system of continuous distributions [1] can be used to
characterize the continuum of signal to noise ratio (SNR) in terms of the third and fourth order moments of
the distribution of pre-squashed neuron outputs (i.e., weighted sums of neuron inputs).

The Johnson system of distributions is generated by transformations of the form

Z = + nk(z;

where Z is a standard normal variate. The parameters c and A are location and scale parameters, respectively.
while q and 7 are shape parameters. Johnson [2] suggested the following three functions k to cover a wide
range of possible shapes:
k, defines the Su distribution, where

k, (x;A,c•) -$inh-1 • •
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k2 defines the S8 distribution, where

k2 (z;A,f)=ln , In )

ant k 3 defines the SL distribution, where

k3(; A, f) =In X

The SB family is botinded on (c, e + A) and the Su family is unbounded on (c, c + A), where > x
and A > 0. The SL distributions divide the skewness-by-kurtosis plane into two regions such that the SB

distributions lie in one of the regions and the SU distributions lie in the other.

2 Fitting Johnson Distributions by the Method of Quantile Match-
ing

Figure 1 presents the skewness-by-kurtosis plane for a set of distributions of weighted sums of squashed
hidden layer outputs. As noted on the plot, for each distribution, the relative signal level (RSL) of the signals
varies from 0 dB to -6 JB in decrements of 2 dB; the skewness and kurtosis of the noise only distribution
is also noted on the plot. This plot clearly indicates the relationship of the skewness and kurtosis of these
distributions to the SNRI As the RSL (i.e., SNR) decreases, the skewness ranges from negative to positive
values while at the same time, the kurtosis first decreases when RSL is about -4 dB and then increases as
the RSL continues to decrease.

The paramiters q, 7 ,A, e are estimated by a refinement of the method of quantile matching as described
by Slifker and Shapiro [3]. Let X1, ... , Xn be the given sample.

(1) For a given unit normal quantile z, calculate p, = P(Z < z),p 3, = P(Z < 3z), where Z is a standard
normal variate. Set p-, = I -P.,P-3= 1 P3z.-

(2) From the data, calculate the sample quantiles Q(pc),( = ±z,±3z, as follows: Calculate i = Np( + 1;
then Q(pc) = z(i), where a(j) is the Vh ordered observation in the sample. Since i in general will not be an
integer, it will be necessary to interpolate.
(3) Calculate p = Q(p,) - Q(p_ , ), rn = Q(pu,) - Q(p,), n = Q(p_,) - Q(p-a..). We then check c =-

If c > 1, then use the Su parameters.

If c < 1, then use the SB parameters.

If c = 1, then use the SG parameters.

(4) The formulas for the estimates of the parameters ry,7 A, and c are given in Reference [3] and will not be
repeated here.

For an example distribution, Figure 2(a) shows the values of c as a function of the range of z. Here
z ranges from 0.01 to 0.80, in increments of Az=0.01. Figure 2(b) shows the corresponding Kolmogorov-
Smirnov (KS) distance measuring the goodness of fit of the calculated Johnson distribution to the sample
data. The authors have observed that these results depend on the resolution of the step size in z. Under the
assumption that the quantile matching method places us within the neighborbood of a better fit, a stochastic
optimization procedure was applied. Tlis procedure is described in the next section.
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Figure 3: Johnson CDF's Overplotted with the Empirical Distribution Functions.

3 Stochastic Optimization of the Parameter Estimates

A further refinement for obtaining better density fits is the stochastic optimization of the parameter estimates
afforded by randomly perturbing the estimates by a small uniformly random quantity. The results of this
parameter optimization are shown in Figure 3. Also noted are the corresponding probability values for these
fits. The randomly perturbed parameters were first evaluated with respect to the first and last quantiles of the
data. If the fit was within an acceptable range, the entropy of the new distribution was then calculated using
the empirical data samples and the new probability density function. If the entropy of the new distribution
was greater than that of the best fitting distributiov, the KS probability and KS distance were calculated for
the new distribution. If the KS probability was within an acceptable range, the new distribution was assigned
to be the parameter values. Finally, for each update of the parameters, the best KS fit was separately saved
due to the fact that the KS is allowed to degrade as the entropy is maximized. Typically, 1000 different
distributions were evaluated with a quadratic or third order cooling schedule. This ad hoc technique was
developed for the timely production of improved fits. Such fits were needed to illustrate the change of
shape of output distributions, An alternative method which calculates maximum likelihood estimates of the
Johnson parameters is a focus of our most recent work [5].

4 Conclusions

As can be seen in Figure 4, the shape of the weighted sums is a function of the SNR of the neural network
inputs. For performance measures such as ROC curves and Recognition Differentials, this feature of neural
network classifiers illustrates that the overlapped noise and signal distributions are at least four parameter

IV-718

L



I.. 4

3.5Nos

3

2.5

2

1.5

1 1.•.6•-6 dB 02d]

0.5-.- 4 1B
0.5 ..-..dB -

o 5 .... ..~~ ~ ~ ~~. : '"..,.. ""........... •... .. -.'- "- •

-10 -5 0 5 10 15

Weighted Sumirs of Sigrnoided Neuron Outputs

"Figure 4: Johnson Densities Corresponding to the Fitted CDF's.

distributions. In previous work (References [1] and [4]), we have shown that for some cases, the two parameter
Gauasian or three parameter lognormal distributions can provide reasonable fits. The results of this effort
have shown that at least four parameters are generally needed.

In Figure 5, the skewness and kurtosis of the empirical data distributions (dotted line) is plotted with
the corresponding fitted Johnsons. Although empirical estimates of skewness and kurtosis can be highly
variable, the plot of the empirical estimates illustrates that shape is a function of SNR. The Johnson fits
further illustrate this relationship. Note that the -2 dB, -4 dB, -6 dB, and Noise distributions are almost
collinear with kurtosis on a log scale. Also note that the -2 dB distribution has the minimum kurtosis and is
the most symmetric, i.e. skewness is approximately zero. This observed relationship suggests that in some
cases, a change in shape can be easily parametrized as a line in the skewness versus log(kurtosis) plane.

In conclusion, the shape of the distributions of neuron outputs has been shown to be a function of the
SNR of the input distributions. For performance measures such as ROC curves and Recognition Differentials
(RD) this means that the change of only mean and variance cannot be assumed for a fixed distribution, e.g.
Gaussian. Furthermore, a minimal parametrization, i.e. Johnson Distributions, can provide RD estimates
which account for such changes in shape due to changes in input signal levels.
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