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Evolving recurrent perceptrons

John R. McDonnell & Don Waagen

Naval Command, Control and Ocean Surveillance Center, RDT&E Div.
San Diego, CA 92152-5000

ABSTRACT

This work investigates the application of evolutionary programming, a multi-agent stochastic search technique, to
the generation of recurrent perceptrons (nonlinear IIR filters) for time-series prediction tasks. The evolutionary
programming paradigm is discussed and analogies are made to classical stochastic optimization methods. A hybrid
optimization scheme is proposed based on multi-agent and single-agent random optimization techniques. This method is
then used to determine both the model order and weight coefficients of linear, nonlinear, and parallel linear-nonlinear next-
step predictors. The AIC is used as the cost function to score each candidate solution.

1. INTRODUCTION

Networks with recurrent connections represent an alternative to feedforward networks for predicting and
classifying nonlinear time-series data. Recurrent networks can be transformed to purely feedforward networks by unfolding
in time, where additional layers correspond to each time step. This technique may be prohibitive if the time structure is not
well known or may become very complicated if the topology is dynamic. As a result, training can be greatly complicated by
the addition of recurrent units in a dynamic artificial neural netw% ,tk. This work investigates the application of multi-agent
stochastic search in determining the number of recurrencies as well as the weight coefficients of a single perceptron. A
recurrent perceptron can be used as a fundamental node in recurrent network. The "perceptron" in this case simply refers to
an infinite impulse response (1111 filter with potentially nonlinear outputs. The application domain in this study is
constrained to next-step prediction problems.

Simultaneously determining both perceptron weight coefficients and structure requires a search procedure that is
amenable to combinatorial optimization problems. The more successful algorithms for these types of problems have
generally been stochastic search techniques such as simulated annealing1, genetic algorithms 2, and simulated evolution 3.
The simulated evolution, or evolutionary programming (EP), paradigm has been shown to have the desired attributes:
combinatorial optimization capabilities4, the ability to determine model structure5 , and the ability to train neural networks 6.

Crick and Asanuma 7 indicate that recurrency is the "general rule" as reciprocal connections are generated for
projections from one cortical area to another cortical area. In partially recurrent artificial neural networks, the units which
receive feedback are generally referred to as "context" unitss since they provide information about past activation levels of
the output or the hidden units. Williams 9 characterizes recurrency based on its utilization in a connectionist architecture.
Conservative recurrence corresponds to a tapped-delay input signal. This approach yields a network which is sensitive to
temporal patterns without directly incorporating recurrent units. This technique has been widely applied in the field of
speech recognition (c.f., Waibel et al.10 ). Liberal recurrence is the feedback from the output to the input units such as
implemented by Jordan" . Radical recurrence encompasses both conservative and liberal recurren~y as well as arbitrary
recurrency among the hidden units. Elman's 12 architecture is representative of radical recurrency.

This work applies recurrency to a single processing unit similar to the adaptive linear combiners discussed by
Widrow and Stearns 1 3. A significant difference is that nonlinearities are imposed on the output of the linear combiners. If
a hyperbolic tangent is used as the nonlinearity, then the linear combiner becomes a recurrent perceptron or an IIR filter
with nonlinear output transformations. This investigation takes advantage of the EP framework to evolve the number of
tapped-delay inputs as well as the number of tapped-delay feedbacks. Determining the model order of AIRMA processeN
using EP was done by Fogelt. Recurrent structures have been successfully trained using EP by Angeline et al14
Saravanan15, and McDonnell and Waagen1 6. Gradient methods for training recurrent nets are given by Rumelhart tal.17
and Williams and Zipser' 8 .



The application domain investigated in this work is ume-series prediction. Feedtorward networks have been used
with success for both system modeling and prediction . Narendra and Parthasarathy' 9 used feedforward networks for
system identification and control. Jones et al.20 have formulated the Connectionist Normalized Linear Spline Network
(CNLS) for time-series prediction. The CNLS is a feedforward network that incorporates Gaussian activations on the
hidden units and normalizes the basis functions during training. Weigend et al.21 use weight-elimination on feedforward
networks to prevent overfitting the training data for a prediction task. Hinton et al. 22 have demonstrated the use of weight-
sharing for training feedforward networks with prediction capabilities.

The next section describes Solis&Wets' random optimization technique and the general evolutionary programing
algorithm. Variants of both methods are applied to finding extrema of an unknown function. A hybrid strategy is
subsequently developed which embeds Solis&Wets' technique within the EP framework. Results of the hybrid approach for
function optimization are also provided. The structure of the recurrent perceptron is then discussed. Finally, results are
given for next-step prediction performance on some standard time-series benchmarks.

2. MULTI-AGENT STOCHASTIC SEARCH

2.1. Single-Agent Stochastic Search

Random optimization has uaditionally been based on single-agent stochastic search (SASS) strategies. Karnopzi
discusses the benefits of using SASS strategies including the discovery of features of the cost surface. Both Karnop 2 3 and
Rao 24 generate a random walk sequence to an extremum by perturbing the search point with a uniform random variable.
Rao exploits the directionality of the randomly generated vectors which continue to yield lower valued objective functions.
In a similar algorithmic formulation as Rao, Matyas25 utilizes Gaussian perturbations about the search point. Solis &
Wetts 26 have upgraded Matyas' random optimization approach by incorporating a bias in the mutation operator and
evaluating the objective function at x-&x if evaluation at x+8x does not improve the current value of the objective function.
Baba27 has successfully applied this SASS technique to training static networks. Simulated annealing 28 is also another
example of SASS. The probabilistic nature of setting x=x+8x if ffx+Sx) > f(x) provides a hill-climbing capability not
contained in the methods previously discussed.

The basic algorithm formulated by Solis & Wets26 is described as follows

1. Initialize the search vector xo, set k = 0 and b = 0.
2. Generate a Gaussian random vector 4k -N(b,o).
3(a). lff(xk + dk) < f(xk), then set xk+l = xk + 4k and bk+1 = 0.4ýk + 0.2 bk.
3(b). Iff(xk - ýk) < ffxk) < f(xk + 4k), then set xk+ I = Xk - 4k and bk+) = bk - 0.44k

3(c). Otherwise, xk+I = xk and bk., = 0.5bk.
4. If k = maximum number of iterations then stop, else k=k+l and go to Step 2.

In the basic algorithm, the variance on ý is controlled by the repeated number of successes or fai!ures in decreasing the
objective functionf. The contraction and expansion constants, as well as the upper limits on the allowable number of trials,
are set by the user.

This technique was modified so that the variance of the Gaussian perturbations are proportional to the magnitude
of the objective function • - N(b, flx)). This optimization process was applied to the Bohachevsky function

f(x) =X +2 2-0.3cos(37tx,)-0.4cos(42.x_)+0.7. The transcendental terms cause many local minima inside the

interval X E [-1,11 while the quadratic terms dominate the surface structure outside of this interval. A global minimum
exists at x=(OO). The modified Solis & Wets optimization technique was used for finding the global minimum on the
Bohachevsky surface as shown in Fig. I for the average of ten sessions. It is interesting to note that an average of 150
function evaluations were conducted for each session. As a comparison, the unmodified version of the haisic algorithm was
used to find the global minimum of the Bohachevsky function with the average results of ten sessions shown in Fig. 2. On
average, each optimization session contained 189 function evaluations. It should be noted that in one instance, the
algorithm became trapped at a local minima. The variance parameters are the same as those given by Solis & Wets-6.
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The power of the unmodified Solis & Wets technique appears self-evident as illustrated by Figures 1 and 2 where
log(J) is the log(ft(x)). The observation might be made that reducing the variance independent of the objective function is
beneficial to the search. It should be noted that the lower bound on the standard deviation of the random perturbation for
the unmodified method was set at alb = 10-4. Higner precision might have been attained (on average) at the expense of
more frequent entrapment in local minima. To avoid entrapment conditions it is suggested that a global search agent be
employed in parallel with the local method.

2.2. The Evolutionary Programming Paradigm

In 1958, Brooks 29 described a creeping random method where k points were generated via Gaussian perturbations
about a search point. The best point was kept and the process repeated. Brooks observed that "there are some rather
intriguing analogies that can be made between the creeping random method and evolution". This analogy was also
apparent to Fogel et al.3 who proposed a multi-agent search strategy incorporating a population of organisms that are
mutated to yield offspring. The resulting search strategy was termed evolutionary programming (EP).

EP is a multi-agent stochastic search (MASS) paradigm used for finding global extrema. Although the EP
methodology simulates the evolutionary process found in nature, the mechanisms incorporated in this framework and
resulting characteristics may also be found in some of the stochastic optimization techniques previously discussed. The
perturbation applied in the search is typically a multivariate normal random variable 5x -N(O, Sf - J) where S! is the scale
factor and J is the magnitude of the objective function. Hill-climbing and tunneling are achieved though the application of
the mutation operator in concert with the multi-agent capabilities of EP. Analogous to the hill-climbing ability of simulated
annealing relaxation methods, EP employs a competition process which allows less fit organisms (search points) to be
retained in the population in a probabilistic fashion. The EP optimization algorithm can be described by the following
steps 5

1. Form an initial population P2,NJ.(x) of size 2N. The parameters x associated with parent element Pi are randomly
initialized from a user specified search domain.
2. Assign a cost to each element Plx) in the population based on the associated objective function Ji
3. Reorder the population based on the number of wins generated from a stochastic competition process.
4. Generate offspring (PN .... P2'N-1) from the highest ranked N elements (Po .... PN- I) in the population bY perturbing x
with a multivariate normal random variable &x -N(O, Sf" J).
5. Loop to step 2.
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half by recombination.

The EP algorithm was applied to the Bohachevsky function with the results shown in Fig. 2 For these
experiments, the scale factor was set as S =I for 50 parents with one offspring each and ten runs were made. There were 20
competitions held for each member of the population. A bisection search was implemented by allowing randomly chosen
parents to recombine according to xo = 0.5(xi + x) where x- and x. are the randomly chosen parent vectors and x, is the
offspring vector. This was done for half the offspring while the other half were generated using the perturbation approach
Sx -N(O, J). Nearly an order of magnitude improvement was observed as shown in Fig. 4. The next experiment decoupled
the cost function from the perturbation qize so that &x -N(O, 1). An order of magnitude improvement was observed as shown
in Fig. 4. Fogel 5 reports that it took an average of 65.5 generations to achieve logojftx)) < 106 using the same number of
parents and offspring in the general EP method. By decoupling the ,xost function and implementing a simple bisection
search, it took less than 30 generations, on average, to achieve similar results.

2.3. A Hybrid Approach

A variant of the EP search strategy is proposed to take advantage of the efficiency of convex optimization (such as
the bisection search) as well as the global search capability provided by MASS strategies. From the previous experiments
the following capabilities appear to be beneficial to a hybrid approach: multi-agent search tends to avoid local minima; if
the offspring does not yield a lower cost, then check in the other direction; convex optimizaton and perturbation variance
reduction improves precision. Making the pemrAbation varipce proportional to the value of the cost function does not
appear to provide significantly better results and may even inhibit the rate of convergence with respect to other approaches.
Decoupling the perturbation variance from the cost function value may prove beneficial since oftentimes the shape of the
search surface is not well known and may even take on negative values. A similar strategy was employed by Waagen et
al.30 in the formulation of the stochastic direction set method.

Fig. 5 illustrates a hybrid approach which generates a variety of different offspring within the EP framework. The
first set of offspring are generated to explore the search space in a global fashion. These offspring mutate the parent search
points with the perturbation &x -N(Oa) where a is fixed. The second set of offspring implement convex optimization
through recombination. This may be as simple as the bisection method used above. The final set of offspring are generated
using the method of Solis & Wets. This set of offspring replace the parent organisms since they are equivalent to or better
than their precursors. The bias term which provides a momentum to the search must also be included. Offspring generated
by the first method have the bias term set to zero. The recombination rules which apply to the second set of offspring can
also be applied to other parameters including the bias term 13.
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Fig. 5. One generation of the hybrid multi-agent stochastic search.

A variety of other techniques may be employed as alternatives to the stochastic competition process. Saravanan' 5

replaces the least fit organism in the population with each additional offspring. Another strategy might be to retain less fit
organisms by disallowing competition across different levels of maturity. The maturity of an organism could be determined
by how many generations it has existed within the population. A deterministic means to minimize redundancy might also
be employed. To delay the potential dominance of a single organism in the population, the number of competitions can be
set to an arbitrarily low value. This allows the retention of less fit organisms, thus providing a more exhaustive search. As
the number of competitions increases, the retention of the best fit individuals becomes more deterministic.

The hybrid approach was employed on the Bohachevsky function with the average cost from ten trials shown in
Fig. 6. For this particular example, it appears that the hybrid technique improves the efficiency of the search from both
precision and convergence aspects. As shown in Fig. 6, the hybrid technique attained 10 orders of magnitude precision
within 50 generations (which corresponds to a maximum of 7550 function evaluations). A comparison between
Solis&Wets' technique and the hybrid approach which utilizes their method was also made for the Rosenbrock function.

This function is referred to as a banana valley since it contains a steep valley along x2 = x,. The Rosenbrock function is

given by f(x)= 100(x? -x 2 )2 +(l-x2) 2 . Fig. 7 shows the average and best results from ten trials for both the Soils &
Wets technique and the hybrid approach outlined above. To compare the search processes based on the number of function
evaluations, each generation is equivalent to a maximum of 150 function evaluations for the Soils & Wets method and a
maximum of 150 function evaluations for the hybrid approach. Both average curves show optimization is still occurring
after the maximum number of generations or iterations were reached and the experiment stopped.
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Fig. 6. Optimization of the Bohachevsky function Fig. 7. Comparing the Solis & Wets and hybrid
using the hybrid strategy and 50 search agents. approach on the Rosenbrock function.



3. EVOLVING PERCEPTRONS

This section investigates the application of EP to evolving a recursive adaptive linear combiner13 with a nonlinear
output or activation function. The neuron model will serve as a next-step predictor and is given by

5(k+l)-= fI ay(k-i)+ j bj(k-j+l)
- mj=1

where the search strategy must determine the order of the feedforward terms, m, the order of the feedback terms, n, as well
as the feedforward coefficients, ai, and the feedback coefficients, bj. This structure is shown in Fig. 8.

The sigmoid function is a candidate for the nonlinear mapping since it approximates the perceptron's output as an
inverted polynomial series

f(x) =(+e-+)- 1+ (--x)+

Other nonlinear functions may be equally applicable as discussed by Cybenko31 . For example, a polynomial series is
generated by

X2  x3  X4  x5

fPX) = co, Wx + sin(x) - I + X ... + X + X..

2T 3! 4! 5!

or, the search may even be conducted over a set of candidate mapping functions F such that f e F.

The cost function for each perceptron is given by the Akaike information criterion (AIC) 32

AJC(mn) = N In (&) + 2(m+ n + 1)

where N is the effective number of observations. An additional factor of 2 is added to the number of fitted parameters (m+n-
1) since m and n must also be determined by the search strategy. If a bias term bo is added to the perceptron. then the
number of fitted parameters must be increased to (m+n+2). The MLE of the innovation variance is determined according to

IN-i
&2 = ~(k)

k=0

If it is desired that direct linear feedthrough (DLF)33 capabilities be present in parallel with the nonlinear
contributions, then the perceptron structure can be reformulated as a combination of linear and nonlinear recurrencies. This
idea is express by

5(k+l)= 1 L(k+l)+ 9N(k +1)
where

rn-i n-i

YL(k +1) = aiy(k - i) + b (- j + l)
=-0 j=1
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Fig. 8. The recurrent perceptron structure used for Fig. 9. The parallel linear-nonlinear recurrent
next-step prediction. structure used for next-step prediction.

P-1 q-1

YN (k+1) f ciy(k -i)+ ajj(k- j+1)
0 j=

If this structure is used, then the AIC score is described by

AIC(m,n,p,q) = N In (a)+ 2(m+ n + p + q+ 2)

The number of fitted parameters is (m+n+p+q+4) if both bo and do biases are included. The parallel linear-nonlinear

structure is shown above in Fig. 9.

4. PREDICTION RESULTS

4.1. Predicting Sunspots

The first set of experiments were conducted on Wolf s sunspot series over the years 1700-1983. These numbers are
indicative of the average relative number sunspots observed cacta day of the yeai. Consistent with Weigend et al. 21, sunspot
data from 1700-1920 was used for training and data from 1921-1983 was used for testing. All of the data was normalized
by a factor of 200. A small number of experiments were run for 1000 generations with 20 parents, 20 offspring (10 for
convex optimization and 10 for global mutation), 10 competitions, and p% = 0.01. The maximum possible model order was
equivalent for both the feedforward and feedback lines mmax=n,,=pa=qa,=21. The results are given in Table I. Even
though the AIC criterion is used, some degree of overfitting may still occur as indicated by the second entry in Table I.
This experiment yielded the lowest MSE on the training set but did not generalize as well as oue, .Iebulln, Oil the test set.

The solutions which yielded the best combined test+training AIC scores are shown in Figs.10-13. Figs. 10 and II
show the training and test results, respectively, for a parallel linear-hyperbolic tangent 8-3-10-3 implementation. A linear
bias was also incorporated for this trial. Figs. 12 and 13 show the training and test results, respectively, for a simple linear
implementation of Fig. 8. Again, a bias term was incorporated in this experiment. It is interesting to note that the evolved
structure for the linear system did not include recurrency and relies only on the three previous observations and a bias term.
Another interesting observation is that there is only a slight difference between the resulting prediction curves shown in
Figs. 11 and 13. The better training+test AIC scores are comparable to the AIC scores given by Priestley3 4 lbr AR and
ARMA process models. As another comparison, a pure follower strategy where the next-step prediction is just the current
value yields an AIC= -1192.5 on the first 278 data points.



functions m-n-p-q MSE: MSE: AIC: AIC:
Training Tiaining+Test ITraining "1'raining+-Fest

linear+bias+sin 6-5-11-4 0.00508 0.00588 -982 -1278
linear+bias+sin 4-4-2-2 0.00470 0,00678 -1025 -1268

linear+bias+tanh 8-3-10-3 0.00498 0.00566 -990 -1291
linear+bias+ 7-3-7-5 0.00489 000597 -996 -1280
tanh(w/Ibias)
linear+bias 3-0-x x 0.00574 0.00686 -1006 -1285

Table L. Results from sample experiments evolving next-step sunspot predictors.
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4.2. The Iterated Quadratic Map

Weigend et al.21 use the iterated quadratic map tk+i "
4 Xk(l--Xk) on the unit interval as an example of

deterministic chaos. T1. case in point precludes any long-term predictability although short term predictions are possible
Weigend et al.21 iri,, ate that, on average, predictive performance is lost after n iterations where n is the number of hits
representing x, .his problem is essentially an interpolation in state space as demonstrated by Fig. 14. The same
parameters were used as in the previous experiment. Fig. 15 shows the performance of the evolved predictor

k.'+ - sin( 3.14 7 6xk )+ 0.0 2 7 4 on the training set after 5000 training generations. This model yields an AIC score of -1033

and an MS[=0.00533 on the training+test data. This solution was evolved from a parallel arrangement where one n(xle
implements the cos mapping and the parallel node implements the sin mapping. The state-space plot in Fig. 14 designates
the evolved solution as marked by the '*'s. The test results are shown in Fig. 16. Fig. 17 shows the test results if the

predictor takes the form 'k+1 = sin(XOX ). The state-space plot of this solution is designated by the os in Fig. 14. As in the

previous example, a solution was found which did not rely on recurrency to approximate the time-series.
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4.3. The Mackey-Glass Equation

The Mackey-Glass equation represents a model for white blood cell production in leukemia patients35 This model

is complicated by the addition of a time delay x in the nonlinear differential equation

,(1)-. ax(t- r)1+t) ( bxt)~1+ ffCt - T)

where the free parameters are set as a=O.2, b=O. 1, c=10, and E=30 according to Jones et al. 36 . In all experiments 500 data

points were in the training set with the test set comprising the subsequent 500 data points. All of the data was normalized
by a factor of 1-4. The experiments also used the parallel sin-cos nodal arrangement with a bias as used in the previous
example. Fig. 18 shows the training data and the results from a 5-7-3-3 configuration. The training set trained to a
MSE=0.0005 and AIC=-3609 after 5000 generations. The test+training set have a MSE=0.00028 and AIC=-7968. Fig. 19
shows the prediction capabilities of this model on the test set. A more challenging section of the Mackey-Glass equation
was evaluated as shown in Fig. 20. A new model was generated and, for 1000 generations of training, a MSE=0.00109 and
AIC=-3181 were attained on the first 500 points with a 10-7-8-8 configuration structure. For this model, a MSE=0.00066
and AIC=-7089 were achieved for the full sequence of test+training data. The error for the test and training sequences is

shown in Fig. 21.
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Fig. 18. The training results for a 5-7-3-3 configuration. Fig. 19. The test results for the 5-7-3-3 configuration.
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Fig. 20. The training and test results for a 10-7-8-8 Fig. 21. The error for the sequence shown in Fig. 20.

configuration.



5. CONCLUSION

This work has incorporated an efficient single-agent search strategy, the method of Sohis&Wets, into the EP
framework and augmented this with convex optimization capabilities to yield a hybrid multi-agent stochastic search
technique. The method was applied to parallel linear-nonlinear IIR filters for next-step prediction tasks. The evolved
solutions did not always have a recurrent structure and, as a result, simple implementations were found using this approach.
Oftentimes, simplicity is not an option when a large non-dynamic architecture is specified for a given task. The lack-of-
complexity of the evolved solutions for the standard problem set investigated in this work shows great promise for future
implementations. It remains to be investigated as to how well this approach scales up to more complex data sets. The

incorporation of the output transfer function into the search would be the next evolution of this work.

The simple recurrent structures investigated in this work demonstrated a high degree of capability for the time-
series problems studied. Similar levels of proficiency were attained for a varied. assortment of models. This might lead one

to conclude that the joint parameter-function space is dense in the number of possible solutions, some of which are found by
the relaxation scheme employed in this investigation. By cascading and/or parallelizing as in traditional feedforward neural
network architectures, the recurrent nodes may present additional capabilities for more complex time-series processing

tasks.
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