
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A273 2071 11hll 11111111111111111111 I 1 111 11111i 1 oli il E

DTIC 0'7CRI'

ELECTE
DECO 11993

S A
THESIS

An Implementation of the REpresentation and MAintenance of
Process Knowledge(REMAP) model in the Knowledge-Based

Software Assistant Concept Demonstration System

by

Frank J. Hughes
and

Steven C. Kendall
September, 1993

Principal Advisor: Balasubramaniam Ramesh

Approved for public release; distribution is unlimited.

93-29339

93 11)O O43

Unclassified
Security Classification of this page

REPORT DOCUMENTATION PAGE

I& Report Security Classification: Unclassified lb Restrictive Markings

2a Security Classification Authority 3 Distribution/Availability of Report

2b Declasification/Downgrading Schedule Approved for public release; distribution is unlimited.

4 Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s)

6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization

Naval Postgraduate School rIf applicable) 37 Naval Postgraduate School

6c Address (city, state, and ZIP code) 7b Address (city, state, and ZIP code)

Monterey CA 93943-5000 Monterey CA 93943-5000

8a Name of Funding/Sponsoring Organization 6b Office Symbol 9 Procurement Instrument Identification Number
](if applicable)

Address (city, state, and ZIP code) 10 Source of Funding Numbers

Program Element No JProjectNo JTa&kNo Work Unit Accession No

II Title (include security classification) UNCLASSIFIED-AN IMPLEMENTATION OF THE REPRESENTATION AND
MAINTENANCE OF PROCESS KNOWLEDGE(REMAP) MODEL IN THE KNOWLEDGE-BASED SOFTWARE ASSISTANT
CONCEPT DEMONSTRATION SYSTEM-UNCLASSIFIED

12 Personal Author(s) Lieutenant Commander Frank J. Hughes, United States Navy, and Captain Steven C. Kendall, United States
Marine Corps

13a Type of Report 13b Time Covered 14 Date of Report (year, month, day) 115 Page Count

Master's Thesis I From To 11993, September, 23 82

16 Supplementary Notation The views expressed in this thesis are those of the authors and do not reflect the official policy or position
of the Department of Defense or the U.S. Government.

17 Cosati Codes 18 Subject Terms (continue on reverse if necessary and identify by block nunber)

Field Group Subgroup REMAP, KBSA Concept Demonstration, REFINE, Andersen Consulting, IBIS,

I GRequirements Engineering, Deliberations, Knowledge-based Software Engineering.

19 Abstract (continue on reverse if necessary and identify by block number)

The Representation and Maintenance of Process Knowledge(REMAP) model supports the various stakeholders involved in software
design during development and maintenance by capturing the rationale behind design decisions. This process kh.,wledge is
invaluable with changing requirements and assumptions. In the context of formal software development, process knowledge about
the development of formal specifications from informal requirements will facilitate the understanding and maintenance of such
specifications. We have implemented the REMAP model in the United States Air Force Rome Laboratory's KBSA Concept

Demonstration system (a formal software development environment) to capture this process knowledge. We provide a graphical
browser to facilitate the instantiation, browsing and modification of REMAP model primitives and a mechanism to reason with the
knowledge in the Concept Demonstration system.

20 Distribution/Availability of Abstract 21 Abstract Security Classification
S unclassified/unlimited __ same as report - DTIC users Unclassified

22a Name of Responsible Individual 22b Telephone (include Area Code) 22c Office Symbol

Professor Balasubramaniam Ramesh. (408)656-2439 AS/RA

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted security classification of this paue

All other editions are obsolete Unclassified

i

Approved for public release; distribution is unlimited.

An Implementation of REpresentation and MAintenance

of Process Knowledge(REMAP) Model

in the Knowledge-Based Software Assistant

Concept Demonstration System

by

Frank J. Hughes

Lieutenant Commander, United States Navy

B.S., United States Naval Academy

Steven C. Kendall

Captain, United States Marine Corps

B.S., Iowa State University

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL

September 1993

Authors:K1 A__
Fran3. Hughes Steven C. Kendall

Approved by: _L___ __

Professor B. Ramesh, Thesis Advisor

Professor Roger Stemp, CO-Advisor

ii

ABSTRACT

The REpresentation and MAintenance of Process knowledge(REMAP) model supports the

various stakeholders involved in software design during development and maintenance by capturing

the rationale behind design decisions. This process knowledge is invaluable with changing

requirements and assumptions. In the context of formal software development, process knowledge

about the development of formal specifications from informal requirements will facilitate the

understanding and maintenance of such specifications. We have implemented the REMAP model in

the Uni.-ed States Air Force Rome Laboratory's KBSA Concept Demonstration system (a formr!l

software development environment) to capture this process knowledge. We provide a graphical

browser to facilitate the instantiation, browsing and modification of REMAP model primitives and

a mechanism to reason with the knowledge in the Concept Demonstration system.

Accesio, For .

LV1C<YPT =,PTTF~ D 5 NTIS C'~COTK: TAB •

By

LA!-

TABLE OF CONTENTS

I. INTRODUCTION 1

A. GENERAL 1

B. BACKGROUND 1

C. THESIS OBJECTIVE 3

D. RESEARCH QUESTIONS 4

E. SCOPE 4

F. DEFINITIONS AND ABBREVIATIONS 5

G. ORGANIZATION OF STUDY 5

II. KBSA CONCEPT DEMONSTRATION 6

A. GENERAL 6

B. HISTORY OF KBSA DEVELOPMENT 7

1. KESTREL INSTITUTE 7

2. SANDERS ASSOCIATES 9

3. HONEYWELL SYSTEMS 9

4. UNIVERSITY OF SOUTHERN CALIFORNIA INFORMATION

SCIENCES INSTITUTE(ISI) 9

5. SOFTWARE OPTIONS 10

6. ANDERSEN CONSULTING 10

C. KNOWLEDGE-BASED SOFTWARE ENGINEERING USING

REFINE 11

D. CONCEPT DEMONSTRATION 12

iv

III. REMAP . 13

A. GENERAL 13

B. IBIS MODEL 13

C. REMAP MODEL 15

IV. IMPLEMENTATION 16

A. GENERAL 16

B. REMAP/CD SYSTEM DESCRIPTION 17

1. HARDWARE 17

2. SOFTWARE 17

C. IMPLEMENTATION TUTORIAL 17

1. BEGINNING A NEW SESSION 17

2. LINK CERTAINTY 19

3. NODE CERTAINTY 19

4. ADDITIONAL MENU OPTIONS 20

5. CAPTURING DELIBERATIONS DATA 20

D. IMPLEMENTATION 20

1. APPROACH 20

2. DEFINING VARIABLES 22

3. REMAP DISPLAY 24

4. ADDING ATTRIBUTES TO ATTRIBUTES (FACETS) 28

5. INTEGRATION 31

VI. COMMENTS AND FUTURE INITIATIVES 34

A. COMMENTS 34

B. FUTURE INITIATIVES 34

v

1. EASE OF USE 34

a. INPUT 35

b. EASE OF UNDERSTANDING 35

c. EASE OF INFORMATION RETRIEVAL 36

2. SECURITY 37

APPENDIX A 38

A. NPS-KB-MODULE-LIBRARY.RE 38

APPENDIX B 40

A. SAMPLE-LOAD.LISP 40

APPENDIX C 42

A. HYPERTEXT-PATCH.RE 42

APPENDIX D 46

A. GRAPH-SN-MODEL-PATCH.RE 46

APPENDIX E 53

A. HLEC-PATCH.RE 53

APPENDIX F 55

A. VIEWABLE-SLOTS-PATCH.RE 55

APPENDIX G 63

A. FACETS.RE 63

vi

APPENDIX H 66

A. GRAPH-IBIS-MODEL-PATCH.RE 66

LIST OF REFERENCES 71

DISTRIBUTION LIST 73

vii

ACKNOWLEDGEMENT

We wish to acknowledge the tremendous efforts put forth by

Mr. Mike Debellis of Andersen Consulting's Center for

Strategic Technology Research. His assistance and technical

expertise proved invaluable in the success of our

implementation.

viii

I. INTRODUCTION

A. GENERAL

Software expenditures have expanded exponentially over the

previous decade. Software maintenance has accounted for the

majority of these costs. There is growing recognition that,

an important way of curtailing the high cost of system

maintenance is to capture the rationale used to create

requirements and designs, and maintain this information

throughout the software life-cycle[Ref. 1]. This

thesis implements a model for representing design rationale in

the context of software development based on formal

specifications.

B. BACKGROUND

The Department of Defense (DoD) spends nearly $10 billion

per year on software. Numerous Studies have estimated that

maintenance costs can be 70 to 80 percent of the total life-

cycle costs. With declining defense dollars, it is important

to develop systems that are easier to maintain and implemented

economically.[Ref. 2]

Recent research has recognized that capturing and using

rationale for the requirements and designs throughout the

1

development life-cycle will help alleviate the high cost of

maintenance. [Ref. 3] Requirements and design

rationale can be used in the later stages of the system life-

cycle to effect changer jaid to facilitate reuse of components.

"-.is data can also be used in the DoD environment as a

component of iequirements traceability. Design rationale is

often the outcome of deliberations by members of the design

team. The focus of capturing design deliberations is to

associate the decision making process to a particular

specification or design component. This information will

create a historical database where the user can identify how

the requirements have evolved and provide the knowledge

necessary to identify repercussions of changing requirements

on the design.

Previous research has produced several models for

capturing design rationale knowledge. A model, called

Representation and Maintenance of Process knowledge (REMAP),

"recognizes the importance of capturing process knowledge to

reason about the consequences of changing conditions and

requirements in system design and maintenance."

[Ref. 4] This model includes IBIS, a model that has

been widely used for representing deliberations. Our research

aims at developing an implementation of REMAP in an effort to

capture valuable design rationale knowledge.

2

Within DoD, the Air Force's Rome Laboratory (RL) is

investigating the creation of a Knowledge-Based Software

Assistant (KBSA) through research conducted in both academia

and the corporate world. On behalf of RL, Andersen Consulting

has synthesized the results of over a decade of research in

this area, into a product called KBSA Concept Demonstration

system. This tool uses formal specifications to create

software products. A major concern with the use of formal

specification based software development is the difficulty

users face in arriving at specifications. Further, with this

paradigm, the process of maintenance is done at the level of

specifications. Therefore, it is essential to capture the

essence of the process of arriving at formal specifications,

so that they can be easily understood and maintained. This

process of defining formal specifications from the initial set

of informal requirements can be thought of as a deliberation.

In this thesis, the REMAP model will be used to represent the

deliberations.

C. THESIS OBJECTIVE

This thesis examines and implements an extension of the

DoD-sponsored, KBSA Concept Demonstration system using the

REMAP deliberations capture model.

3

D. RESEARCH QUESTIONS

What is the importance of capturing requirements design

deliberations, in the context of software development based on

formal specifications?

How is the REMAP model implemented into the Concept

Demonstration system for Knowledge-Based Software Engineering?

E. SCOPE

The scope of this thesis is limited to a brief overview of

design rationale capture during requirements engineering, and

software development based on formal specifications. A more

detailed description of two specific examples, REMAP and

Concept Demo, will be provided. This thesis will concentrate

on the process of designing and implementing the REMAP model

by extending Concept Demo. A graphical browser instantiates

REMAP nodes and links consistent with the Concept

Demonstration format to capture the design rationale into the

knowledge-base.

4

F. DEFINITIONS AND ABBREVIATIONS

KBSA Knowledge-Based Software Assistant

REMAP Representation and Maintenance of Process

knowledge

IBIS Issue Based Information Systems method

Concept Demo KBSA Concept Demonstration System

REMAP/CD Thesis implementation of a Concept Demo

extension including REMAP

G. ORGANIZATION OF STUDY

Beyond this introduction the thesis consists of four major

chapters. Chapter II contains an introduction to the KBSA

Concept Demonstration system. A brief history and current

status will explain what KBSA is intended to accomplish and

where this software development paradigm based on formal

specifications fits in the Department of Defense (DoD)

information technology structure. Chapter III discusses

design rationale deliberation capture and examines in detail

the various elements of the REMAP model used to facilitate

capture in this project. Chapter IV focuses on the specific

steps necessary to develop, integrate, and use the REMAP

extension implemented in Concept Demo. Finally, Chapter V

details conclusions and recommendations.

5

II. KBSA CONCEPT DEMONSTRATION

A. GENERAL

In 1982, U.S. Air Force's Rome Air Development Center

(RADC), currently designated Rome Laboratory, began

envisioning a new approach to solving "the software problem".

In 1983, RADC published "Report on a Knowledge-Based Software

Assistant" [Ref. 5) delineating possible artificial

intelligence (AI) uses in integrating a systems approach to

the complete software life-cycle. The Knowledge-Based Software

Assistant (KBSA) offered a potential solution to issues

relating to software productivity, quality and life cycle

costs. [Ref. 6)

The Knowledge-Based Software Assistant is a formally-

structured knowledge-based, software design, development, and

maintenance tool that encompasses the entire software life-

cycle. This new paradigm combines formalization with

automation to achieve four distinguishing features. These

are:
- incremental, formal, and executable specifications;

- formal implementation where verification and validation

arise from the implementation development process;
- enforced project management policy maintaining consistent

relationships between various software objects; and,
- high level system development and maintenance accomplished

at the requirements and specification levels.

Implementation of these novel concepts and features would

occur in an evolutionary, three-phase contractual approach.

6

Phase I involved dividing the concept into modules or

"facets". Individual organizations concentrated on specific

facets (e.g., Project Management Assistant, Requirements

Assistant) while maintaining a consistent formalism for later

integration.

Phase II began combination of some appropriate facets

(e.g., Requirements/Specification Assistant) and the creation

of a demonstration system (Concept Demo) to assist in

implementation and acceptance of this new paradigm.

[Ref. 7]

Phase III will involve the Advanced Development Model

(ADM) which further integrates the preceding facets to provide

a more usable product. (Ref. 8]

This chapter will provide a history of Phase I and II.

Knowledge-Based System Engineering (KBSE) using the REFINE

programming language will be discussed in the context of KBSA,

and finally, an expanded discussion of Concept Demo will

provide a system overview and the rationale for choosing it to

implement REMAP.

B. HISTORY OF KBSA DEVELOPMENT

The following is a brief history of KBSA development,

presented by research organization in roughly the order in

which each began work on a facet.

1. KESTREL INSTITUTE

The Kestrel Institute began designing and constructing

a Project Management Assistant (PMA) prototype in 1984.

(Ref. 9][Ref. 10) Kestrel incorporated three

types of capabilities into the design. (1) Project

definition, (2) project monitoring and (3) an effective user

7

interface allow PMA to provide knowledge-based support through

project communication, coordination, and task management.

[Ref. 11] PMA is a step beyond traditional project

management tools. In addition to typical utilities found in

these tools, (e.g., Pert and Gantt Charts, test cases and

results, milestones) PMA understands implicit relationships

between products, and, using powerful temporal relationships,

provides a mechanism for formally expressing and enforcing

project policies. The initial PMA was completed in 1986, an

expanded version was completed in 1990. [Ref. 12]

Development of Performance Assistant (PA) began in

1985. PA was designed to assist with performance optimization

at many levels in the software development cycle. Kestrel

Institute concentrated on two primary areas to permit high-

level programming in a wide variety of languages to produce

efficient code within the bounds of the KBSA paradigm. (1)

Control optimization established efficient and formal

transformations effecting specification to code conversion,

and (2) data optimization, including data structure selection,

created efficient object types for copying, storage,

retrieval, etc. [Ref. 13][Ref. 14]

The Development Assistant (DA) effort began in 1988.

Sharing and expanding many capabilities from Performance

Assistant, thE DA uses PA's efficient optimization techniques

and integrated these more closely into the KBSA paradigm.

This key facet supports the construction of the application

domain to include system specifications. Formal specification

transformations provide detailed code. High-level decisions

can be quickly and systematically implemented and considered.

[Ref. 15]

8

2. SANDERS ASSOCIATES

In 1985, Sanders Associates began work on the

Knowledge-Based Requirements Assistant (KBRA). KBRA provided

the important functionality of accepting informal requirement

definitions with incompleteness and inconsistency, and

building and maintaining these in a consistent internal

representation. This representation could be manipulated to

provide multiple views, formats and tools for an iterative

requirement definition phase. [Ref. 16]

3. HONEYWELL SYSTEMS

In 1986, Honeywell Systems and Research Center began

work on KBSA Framework. Framework took a full scale approach

with two goals in mind, (1) integrating a KBSA demonstration

and (2) building upon the demonstration to logically and

consistently interconnect the various KBSA facets. Efforts in

this area include (1) determining minimum functionality to

combine all facets, (2) developing a common interface for

faw..ets to mesh, and for users to interact with the system, (3)

support for programming-in-the-large concepts, and (4)

providing functionality for a distributed environment. The

Honeywell effort provided a common language, the Common LISP

Object System (CLOS), The KBSA User Interface

Environment(KUIE),and a preliminary Configuration and Change

Management(CCM) model for KBSA.

[Ref. 17)[Ref. 18]

4. UNIVERSITY OF SOUTHERN CALIFORNIA INFORMATION SCIENCES

INSTITUTE(ISI)

ISI began its effort to develop a KBSA Specification

Assistant in 1985. ISI's goal was to facilitate the

development of formal executable specifications. They use two

methods, (1) a top down method in which the system

specification is incrementally elaborated, and (2) an

9

evolutionary method that iteratively changes or transforms the

specification as development of the system continues. In

1988, ISI and Lockheed Sanders began merging the Sanders

Knowledge-Based Requirements Assistant and the ISI
Specification Assistant into a system called ARIES.

(Ref. 19]

5. SOFTWARE OPTIONS

Transaction Graphs were developed, in 1988 by Software

Options, to formally define a graphical syntax that could be

used to specify and enforce the coordination of the many KBSA

activities that would be used consistently throughout the

system. [Ref. 20]

6. ANDERSEN CONSULTING

The creation of a complete demonstration system

involving concepts of KBSA commenced in 1988 and was termed

KBSA Concept Demonstration (Concept Demo). The Concept Demo

is a system that combines the technologies previously

described. This Refine-based demonstration system will be

described in detail in the following section.

The figure on the following page provides the KBSA

Research Program Overview.

10

Original Plan for KBSA Architecture*

Life-Cycle Facets

Requirements Specification Development Performance e..
Validaiton

Framework

Project Activity
Management Coordinator,

Policies -S KO Manager....
9I'ocedws., From Report on a
Task tnrrking.... Knowled e-Baeed Softwof

Assdetant, Green et. aL. 1963

Suppor Systems

Insorence Engtie,
User Interfaces,
Version & Access controls

Figure 1

C. KNOWLEDGE-BASED SOFTWARE ENGINEERING USING REFINE'

Knowledge-based software engineering is a software

development approach that analyzes program characteristics and

application domain so that information gained can be

formalized and added to a knowledge-based compiler, thus

permitting knowledge to be automated. This approach is

valuable because it fosters automatic reuse of knowledge.

[Ref. 21)

One of the first knowledge-based commercial software

development environments, and the first to provide powerful

transformational programming features, is Reasoning Systems'

REFINETM. REFINETMs principal features are (1) the REFINETM

Specification Language, (2) the REFINETM Specification

I REFINE is a registered trademark and codemark of

Reasoning Systems, Inc., Palo Alto, CA.

11

Compiler, and (3) the REFINETM knowledge base management

system. [Ref. 22) These features combined with

REFINETMiS extendibility and flexibility provided an ideally

compatible environment for incorporation of the KBSA paradigm

into a concept demonstration system.

D. CONCEPT DEMONSTRATION

Andersen Consulting created Concept Demo with an important

goal of communicating the KBSA approach to software

development. Concept Demo displayed the full range of KBSA

functionality, from capturing informal requirements to

generation of efficient code, with emphasis on those functions

that differentiate KBSA from conventional CASE tools. Using

a REFINETM software development environment, Andersen

Consulting integrated facets from previous KBSA projects where

feasible, and re-implemented equivalent functionality when

necessary to provide consistency throughout the demonstration

system. [Ref. 23] KBSA Concept Demo provided an

extendible, formalized development system capable of

generating and maintaining efficient, low-level code createL.

through a transformation process initiated at the requirements

definition phase.

12

-TI. REMAP

A. GENERAL

Chapter II described the KBSA Concept Demonstration

System's functionality during the system life-cycle from

informal design requirements capture to generation and

maintenance of efficient code. Research has shown the value

of capturing not only design requirements, but also, the

design history, intermediate artifacts, and the deliberation

process relating to the development of design

solution.[Ref. 24] Design information reuse for

similar systems, and system maintenance are facilitated by

capture and use of this process knowledge.

The Representation and Maintenance of Process

knowledge (REMAP) model was used, in the context of Concept

Demo, for providing this functionality. REMAP was developed

using an empirical study on problem-solving behavior of

individuals and groups engaged in systems development. The

model represents deliberations that could occur in any systems

development entity. The REMAP specifically investigates the

process knowledge attributed to the objects created during the

requirements engineering process.[Ref. 25] The

REMAP model is based on and expands the Issue Based

Information System (IBIS) method as shown in Figure 2.

B. IBIS MODEL

The IBIS is a method to represent argumentation

processes.[Ref. 26]

The IBIS model is comprised of three primitives or nodes.

These are ISSUE, POSITION and ARGUMENT. These primitives are

connected by relationship links as shown in Figure 2.

13

G~tIERAUrz.Es I

IIM AIES

CIS SONST RAIT
m...................

Si,,

CETSRELOECS RMO ESOVE DEPENDS ON QA

] POSIION [•B•_x•To PAASSUMPT'"IONl

SPECVL= • ' i DECISION
IMPLIES
LEFADS TO
GENERATES

CREATES (REMOVES /MOD1InES1 IDOYES ON

IDESIGN [

SI OBJECT

Fig. 1. Conceptual model.
Figure 2 REMAP Model

The IBIS model is contained within the REMAP model and
isolated for convenience by the dotted-line box.

Useful information concerning deliberations can
effectively be represented using the IBIS method. An ISSUE
can generalize or specialize another ISSUE, and the
relationships between nodes (e.g., POSITIONs and ARGUMENTs)
can be preserved in both a positive (supports) and
negative(objects to) sense. The REMAP model extends the IBIS
model to include additional representations, tailoring it to

14

the representation of design rationale knowledge in systems

development.

C. REMAP MODEL

The REMAP model incorporates primitives to model the

iterative nature of real-world requirements engineering. As
shown in Figure 2. the additional primitives of REMAP are:

REQUIREMENT, DECISION, ASSUMPTION, CONSTRAINT, and DESIGN

OBJECT. The IBIS model lacks primitives to represent the
context in which deliberations occur. For example, the

sources of issues and the decisions that are the outcomes of
deliberations are not represented. REMAP nodes and their

associated links create an extensive model for recording

requirements engineering deliberations. The model is designed

to represent the iterative nature of requirements definition
refinement, and their underlying rationale, by capturing the

deliberations between stakeholders (i.e., anyone providing
input into the specific decision being deliberated).

Additionally, REMAP provides traceability by relating

requirements to design objects.

In REMAP, a REQUIREMENT is iteratively deliberated and

refined using the other primitives of the model. REQUIREMENTs

lead to DECISIONs and DECISIONs modify REQUIREMENTs. Other

REQUIREMENTs can generalize or specialize the original

REQUIREMENT. REQUIREMENTs generate ISSUEs which may also be
suggested by ARGUMENTs and POSITIONs. ASSUMPTIONs qualify

ARGUMENTs. DECISIONs imply limits or CONSTRAINTs on the

output DEbIGN OBJECT.

15

IV. IMPLEMENTATION

A. GENERAL

The implementation of REMAP within Concept Demo was

accomplished in a truly iterative fashion. We experienced a

steep learning curve at the onset, while learning the various

software packages and environments. We began with a tutorial

offered in the Concept Demo manual. This was followed by a

short course at Andersen Consulting. We learned the REFINETM

wide spectrum language using a computer-aided training course.

Familiarization with EMACS, UNIX, and the Sun workstation

environment itself was gained using a "catch-as-catch-can"

methodology. The Concept Demonstration User's

Manual(Ref. 27] proved invaluable in our efforts to

understand the system and its code. The Ref ineTM User's

Manual(Ref. 28] documents the capabilities of the

REFINETM LISP-based environment.

In this document, the following conventions are used:

NODES BOLD AND ALL CAPITAL

FILE NAMES ITALICIZED AND ALL CAPITAL

LINKS italicized and lower case

CODE italicized, bold and off-set

FUNCTIONS BOLD, ITALICIZED AND ALL CAPITALS

MENU ITEMS "bold and quotes"

MANUALS Underlined

EMACS COMMANDS CAPITAL, ITALICIZED AND UNDERLINED

16

This chapter will provide a brief system description, followed

by a more detailed look at the actual system development

process. A REMAP/CD tutorial will follow and provide a brief

look at an example of all functionalities.

b. REMAP/CD SYSTEM DESCRIPTION

1. HARDWARE

Due to licensing restrictions, we implemented the

REMAP model on a SPARC 2 workstation equipped with 48

megabytes of RAM. This was an important constraint in our

work as previous work in the Concept Demo with 32 megabytes of

RAM led to the machine locking up.

2. SOFTWARE

We used the UNIX/SUN OS 4.1.1 as our operating system,

with its support for OPEN WINDOWS version 2 windowing

software. In addition, we used the GNU EMACS 18.55.0 text

editor extended with macros to run Common Lisp and REFINETM

environments.

C. IMPLEMENTATION TUTORIAL

1. BEGINNING A NEW SESSION

At this point, we assume that you are able to call up

the Concept Demo. Within the EMACs buffer, type M-X RUN-A-

REFINE. The system will load the REFINE environrent. The

version of Concept Demo that we used is kbsa-cd-fv-pm-1-3 as

received from Andersen Consulting. From within the *SCRATCH*

buffer in REFINE TM, ^X^F to load SAMPLE-LOAD.LISP into the

buffer and compile using the M-X REFINE-COMPILE-BUFFER

command. In the *REFINE* buffer, at the prompt, type

(user::load-sample)<RET>. The extensions are now loaded in

the order previously described.

17

From within the Concept Demo program, mouse left on

the Knowledge-base button in the command menu. A pull-down

menu will appear with several options. Mouse left on the
"Graph-Used-By-Relations" menu item. This creates a window of

the systems current knowledge-based modules. Mouse left on

Aircraft-Domain-Spec. Another pull-down menu will appear,

from this menu mouse left on "Graph REMAP Model". A blank

screen with REMAP Model For KB-module at the top should

appear. Left mouse anywhere on the screen to reveal the

"Semantic Net Window Options" menu. Left mouse on "Add

Informal Object". The menu that appears will display any of

the eight REMAP nodes that you can create. Mouse left on the

REMAP-ISSUE node. An input box will appear to allow you to

name the node if you wish. Delete allows you to clear the box

and enter the appropriate name for your REMAP-ISSUE. Hit <RET>

when complete. Now a box appears to add any appropriate text

for this REMAP-ISSUE. When complete type ^Q. If the node

does not appear, mouse right on an open space of the screen

and mouse left on "Zoom Out". Mouse left at a point upper

left to the node and move the lower right hand corner of the

grid to include the completed node within the grid. The blue,
rectangular node will now appear on the screen. You may now

create more nodes. Each addition of an informal node will

require you to name the node and to provide more detailed

information about the node in a text box provided. Each

pulldown screen query provides a default answer to instantiate

the node. For this tutorial, mouse left on any open space and

create an REMAP-ARGUMENT node. A rectangular, turquoise node

appears. Menu choices defined for hypertext nodes is

available for the node. For example, right click on the

REMAP-ARGUMENT and select move. This will allow the user to

place the node in a convenient position.

18

At this point you may add links to the nodes. Mouse

left on the REMAP-ISSUE node. A pulldown menu will appear,

select "Add Link". Another menu will appear that will provide

all the possible outgoing links for the node you selected.

Choose issue-is-suggested-by-argument, and select the node

that this REMAP-ISSUE should point to by clicking left on

REMAP-ARGUMENT. A link label, ISSUE-SUGGESTED-BY-ARGUMENT:1,

is created with a default certainty of 1 established.

2. LINK CERTAINTY

We have implemented an attribute to links called

CERTAINTY. This attribute gives us a weighting scale from

zero to ten for each link. To modify the CERTAINTY of a

link, mouse left on that link and a menu will appear. Select

"Modify CERTAINTY" from the list and a new menu will appear to

add a value of ZERO through TEN. Mouse left on the value you

desire to assign to the link. The screen will automatically

refresh and display your CERTAINTY value with the link.

3. NODE CERTAINTY

Each node also contains a certainty value that could

represent the strength of a REMAP-ARGUMENT or the belief of an

REMAP-ASSUMPTION. The certainty value is color-coded in the

REMAP-ASSUMPTION node. For demonstration, mouse left on any

open space. Select "Add Informal Object" and select REMAP-

ASSUMPTION from the menu that follows. Continue as previously

described to complete the node. A yellow REMAP-ASSUMPTION

diamond is created, the default value being 1.5 for node

certainty. To view the certainty value color functionality,

mouse left on the yellow REMAP-ASSUMPTION node, select "Modify

Node Certainty" from the menu that appears. Select node

certainty of 0.5 and note the yellow REMAP-ASSUMPTION node

changes to red, representing a node certainty of less than

19

1.0. This procedure can be repeated, and the selection of a

value greater than 2.0 will create a green node.

4. ADDITIONAL MENU OPTIONS

Four additional menu items within the "Options For

REMAP-NODES" menu were added to demonstrate the ability to

call remote functions and/or programs. "Show REMAP Model"

displays a representation of the generic REMAP model within an

XWINDOW window. "CUCKOO" calls an audio program for

demonstration purposes. "Show Multimedia" makes an external

call to a multimedia program that could represent a REMAP-

ARGUMENT, for example. "Call EMACS" allows us to call an

external program and with EMACS specifically, to create

extended text concerning a REMAP node.

5. CAPTURING DELIBERATIONS DATA

Recalling from Chapter III, we have certain REMAP-

REQUIREMENTs to achieve when creating software. From these

REMAP-REQUIREMENTs certain REMAP-ISSUEs may arise that could

lead to different courses of action. This could further lead

to supporting and opposing REMAP-ARGUMENTs to the REMAP-ISSUE.

REMAP-ASSUMPTIONs could lead to our REMAP-ARGUMENTs for or

against. As each new node arises within the deliberation, we

create and name the node to reflect the key concept and also

provide textual elaboration of that node. Additional nodes

and links are created and related in a similar fashion.

D. IMPLEMENTATION

1. APPROACH

Previously, we described how to use the system. We

will now discuss the details of our implementation. The

initial approach to accomplishing the implementation of REMAP

within the Concept Demo involved extensive re-use of existing

functions. We modified functions that had been used to

20

partially implement the IBIS model into the Concept Demo.

These functions were fairly easy to locate using the EMACS

text editor. The M-. command proved invaluable allowing the

trace of existing functions throughout the system. We were

then able to evaluate the use of different functions and

determine how they could be reused for our implementation.

This method was successful for the initial implementation of

a basic graphical browser to instantiate REMAP nodes and links

within the Concept Demo. As worked progressed and the

implementation of new functionality became essential, new code

had to be written.

In order to facilitate compilation of files with REMAP

code, we created a file called SAMPLE-LOAD.LISP.(Appendix A)

The EMACS command M-X REFINE-COMPILE-BUFFER is used to compile

the buffer containing the file and then the function

'(USER::SAMPLE-LOAD)' is used on the command line in the
REFINE buffer. All the files that have been listed into

SAMPLE-LOAD.LISP are now compiled in the appropriate order.

This procedure compiles and loads the last saved version of

the listed files. If a file is loaded in an EMACS buffer, and

if changes have been saved, when you compile the SAMPLE-

LOAD.LISP buffer with the M-X REFINE-COMPILE-BUFFER command,

you will see a message in the *REFINE* buffer stating that the

current version of the file that you have modified has not

been compiled, but that the system will recompile the changed

file for you and create a fast-loading(.fasl) version. The

advantage of using the SAMPLE-LOAD.LISP file is that instead

of loading each listed file into a buffer and compiling that

buffer, only a couple of simple steps are required.

Individual functions within the EMACS editor can be

compiled by placing the cursor within any portion of the

function you would like to compile and executing the ^C-AC

21

command. is method is useful to check the correctness of

modifications of work in progress. To compile a file, you must

first load that file into a buffer. This is accomplished by

using the EMACs command ^X-^F and then entering the name of

the file you would like to enter into the buffer. The buffer

created is automatically named the same as the file you just

entered. Now you are able to compile the entire buffer using

the EMACs command M-X REFINE-COMPILE-BUFFER. This method is

useful when several functions need compiling within the same

buffer.

2. DEFINING VARIABLES

The first step in extending the Concept Demo involved

the creation of appropriate variables corresponding to the

REMAP model. To avoid confusion with previously set

variables, the name of each variable to define a REMAP node is

started with "REMAP"(i.e., REMAP-ISSUE). A patch to the

original HYPERTEXT.RE file written for the Concept Demo called

HYPERTEXT-PATCH.RE contains these definitions. Each node of

the REMAP model is represented a variable within the system.

The variables for the REMAP model are defined in the following

format:

var remap-issue: object-class subtype-of remap-node

The super-class remap-node is also defined within the same

file:

var remap-node: object-clasr subtype-of hypertext-node

The variable hypertext-node was previously defined within the

HYPERTEXT.RE file.

22

For each REMAP-NODE an attribute called node-certainty

is then defined. This definition allows a real value to be

assigned which could be used to signify, for instance, the

belief in an ASSUMPTION node, or the certainty of an ARGUMENT

node.

The current implementation limits values for node

certainty to zero through 3.0. This can easily be modified to

fit the user's needs through MODIFY-NODE-CERTAINTY in GRAPH-

SN-MODEL-PATCH.RE. The following code defines the variable

node-certainty and includes a rule that computes the node-

certainty for a REMAP-POSITION based on the average of the

node-certaintys of REMAP-ARGUMENTs that support it.

var node-certainty: map(remap-node, real)

computed using

remap-position (p) & -empty (argument-supports-

position (p)) => node-certainty (p) =

reduce (+,image (node-certainty, argument-supports-

position (p))) / size (argument-supports-

position (p)),

true => node-certainty(@@) = 1.5

Our next step within this same file is to define the

links between the REMAP-NODES. As an aid in understanding the

REMAP model, we included the name of the link and the nodes

that the link connects in the variable name. An example of a

link definition looks like this:

var issue-suggested-by-position: map(remap-issue, set

(remap-position))

computed-using issue-suggested-by-position(@@) = {

23

The variable issue-suggested-by-position is a map of a REMAP-
ISSUE onto a set of REMAP-POSITION. The (@@) is the default
function used as a wildcard in patterns to fill out mandatory

parts of the syntax of an object class.[Ref. 29]

When the variables are created, we needed a method to
export these variables into the system 'CD package. This was
done utilizing a REFINETM form. The following form exports

REMAP-NODE, REMAP-ISSUE, and issue-suggested-by-position and

other links and nodes mentioned in it.

form export-hypertext-patch

export (f'remap-node, 'remap-issue, 'issue-suggested-

by-position,... },

'cd);

3. REMAP DISPLAY

The next logical step was to incorporate the REMAP
model components in menus so that we could create nodes and
their links on a graphical browser. The file GRAPH-SN-MODEL-

PATCH.RE contains a majority of the code for menu creation.
The first item we concern ourselves with is the creation of

informal objects(REMAP-NODES), within the system. Informal

objects are objects that have a informal component such as
text. This is done in a function called ADD-INFORMAL-OBJECT.

24

As can be seen below, this function checks whether the objects

we intend to modify is a REMAP-NODE:

function add-informal-object (dv: diagram-window) =

let (informal-obj-class-names: set (symbol) =

image (name, class-subclasses

(find-object-class ('remap-node), true)))

let (ht-class-name: symbol =

single-menu(gChoose the type of Informal ObjectO,

informal-obj-class-names,

: :display-function, 'string-capitalize,

'::moving?, false, l : :abort-value, *abort-value*))

user-create-instance (find-object-cl ass

(ht-class-name),

diagram-window-spec-module (dw))

Next we provided a method to initialize an instance of

the type of node selected. The following initializes a REMAP-

ISSUE:

Method user-initialize-new-instance (obj: remap-issue,

kbm: kb-module) =

edit-hyperstring (obj);

add-informal-functional-requirement-hlec (obj,kbm)

It is relatively straight forward to add an informal

object. Any REMAP node can be selected from the menu to be

instantiated as an informal object. The next subsection will

describe how the nodes appear on screen.

Now that a node called REMAP-ISSUE has been created,

a menu that displays those options that are available for use

with that new node is available. There are three components

25

that allow display of those options. First, a method called

MOUSE-LEFT-METHOD has been specialized for each REMAP-NODE.

This enables the user to click on the node and invoke a menu.

An example for the REMAP-ISSUE looks like this:

method HOUSE-LEFT-METHOD

(obj7: cd: :remap-issue, p,v) =

activate-cd-menu (*menu-for-issues*,
'mouse-left, obj, p, w)

This method calls a variable called *menu-for-issue*, so we

precede this method with the variable statement shown below:

var *menu-f or-issue* :menu-object =

make-menu-object(NOptions for Issue Node-,

Combine-items([*sn-objects-menu-items*,
informal-objects-menu-items,

issue-menu-items]),

'cd::semantic-net-window-options)

This variable combines several menu items as seen

above. The first two items in this list are generic Concept

Demo variables. The third item (*issue-menu-items*) adds

those options that we considered pertinent to the REMAP-ISSUE.

Below is a sample of the menu items we created for the REMAP-

ISSUE node of the model. These will be more fully explained

in the tutorial section.

26

var *remap-issue-menu-items*: any-type =

<<"Call EMACS", (lambda (b,o,p,w)

excl: :run-shell-command ("/usr/local/bin/emacsw)) >,

<"Show multi-media", (lambda (b,o,p,v)

excl: :run-shell-command

(string (format (false,

"/usr/openwin/bin/pageview/files/isl/remap/figures/ -a))) >

<-Cuckoo", (lambda, (b,o,p,w)

excl: :run-shell-command

("/usr/demo/SOUND/cuckoo. clock"))>>

In the file VIEWABLE-SLOTS-PATCH.RE, a variable called

viewable-slots-for-hypertext is defined. This provides the

legal slot definitions for all hypertext nodes (such as REMAP-

NODES) or complains to the system when an undefined attribute

is found. We have extended the definition of this variable to

include REMAP specific attributes, such as issue-replaces-

issue, as follows:

var cd-ui: : *viewable-slots-for-hypertext*

: set (re: :binding) =

{find-attribute-or-complain (' issue-replaces-issue),

find-attribute-or-complain (issue-questions-issue) J

The general construct re::binding used here, refers to

REFINE'sTM uniform treatment of constructs that introduce

named entities, such as variables, constants and

types.[Ref. 30]

The VIEWABLE-SLOTS-PATCH.RE file also identifies the

specific viewable slots for node menu items(i.e., REMAP-

ISSUE). The format for this definition is the same as above.

For instance, all the possible links from an REMAP-ISSUE node

27

are grouped into the *viewable-slots-for-remap-issue*

variable.

In order to uti!!ie the functions already established

in VIEWABLE-SLOTS.RE, we need to add our definition of
viewable-slots for each specific node-primitive. This is

accomplished in a variable definition called viewable-slots.

The definition looks like this:

var vievable-slots: map(re: :universe, set (re: :binding))

computed-using

remap-issue(x) => vievable-slots(x) =

viewabl e-slots-for-remap-issue,

4. ADDING ATTRIBUTES TO ATTRIBUTES (FACETS)

In a manner similar to certainty for nodes, a
certainty value for links was incorporated. This could

represent, for example, a relative strength of a link such as
argument-depends-on-assumption. This task proved very

challenging in comparison to adding a certainty value to

nodes.

The links in the REMAP/CD are REFINETM maps from one

REMAP-NODE to another set of appropriate REMAP-NODES, as
described earlier under DEFINING VARIABLES. (Chapter IV. C.

2.) Since the domain type of a map can only be simple

REFINETM data types (i.e., string or integer)

[Ref. 31], directly mapping a certainty value to a

link, which is not a simple data type, is not possible. One

of the creators of CD suggested a brilliant work around. This

"map to a map" extension is represented in appendix G and

henceforth referred to as a facet.

28

The first step in incorporating facets was creating a

new class called attribute-instance. Two related variables

were also created:

var attribute-instance: object-class subtype-of user-

object

varattribute-instance-target: map(attribute-instance,

re::universe) = [I,'

var attributc- instance-attribute: map(attribute-

instance, re::binding) = ({1)

The new class attribute-instance represents a

particular value of an attribute for a class. The attribute-

instance-target maps the attribute-instance to the REMAP-NODE

from which the link originates, and attribute-instance-

attribute maps the attribute-instance to the REMAP link.

Facets are further explained through the function

calls that use them to modify an attribute's certainty.

Mousing left on a link makes available the menu option "ADD

CERTAINTY". This activates the function INVOKE-ADD-ATTRIBUTE-

CERTAINTY (see also GRAPH-SN-MODEL-PATCH.RE(appendix D)) as

below:

function invoke-add-attribute-certainty (button: symbol,

obj: object, pos: point, w:window) =

let(new-certainty: integer: = ri::single-menu(NSelect

Certainty*, [0,1,2,3,4,5,6,7,8,9,10]))

let(ai-target: re::universe = attribute-instance-

target(obj),

29

ai-attribute: re::binding = attribute-instance-

attribute(obj),

let (source-icon: icon =

find-existing-icoi--for-spec-object (ai-target, ai-

attribute, 'cd: :certainty, new-certainty);

erase-object (obj);

update-sn-object (source-icon, w)

The obj: object is the attribute-instance of the link

that was moused on. First, a certainty value is entered at

the screen, by selecting an integer. The range of values that

can be assigned can be change easily by including an

appropriate set for "new-certainty" defined above. Ai-target

and ai-attribute are set to the value of the REMAP-NODE and

the link of the attribute instance, respectively. In

FACETS.RE, Store-attribute-facet is called with the

appropriate input. A facet named "certainty" is created by

the above procedure. A similar procedure can be used for

creating other facets. The relevant code that follows are

shown in FACETS.RE and can be traced by the interested reader.

Here, the REMAP link and the facet name, certainty currently,

are combined to create a matching link that has the certainty

value attached. For the user, the certainty value appears

mapped to the link, but, in fact, a map is attached to the

REMAP-NODE, that is, the attribute-instance-target.

After completion of this process and returning back to

the original function, the old object is erased, and a new

icon representing the link and new certainty value is then

drawn. This is done through the MAKE-LABEL-FOR-SN-CERTAINTY

function.

30

5. INTEGRATION

All the variable definitions and functions described

previously are used by functions defined in a file called

GRAPH-IBIS-MODEL-PATCH.RE. Our implementation includes

several functions to create a graphical browser for REMAP.

The first function is called GRAPH-REMAP-MODEL. This function

allows us to graph the basic REMAP primitives. The function

also identifies the allowable variables to be manipulated.

This function is called when you mouse left on a knowledge-
base module within the "Graph-Used-by-Relations" diagram:

function graph-remap-model (objs: set(re::universe),

title-string: string) =

graph-basic-sn-model (objs, find-attributes or complain

(['issue-replaces-issue,'issue-questions-issue,
'...etc...}), title-string);

let (dw: diagram-window =make-object('diagram-window),

surf: diagram-surface = make-object ('diagram-surface))

The function GRAPH-REMAP-MODEL-FOR-MODULE identifies

the REMAP primitive nodes as KB module objects:

function graph-remap-model-for-module (kbm: kb-module) =

let (remap-nodes: set(remap-node) = {xl (x) x in

owned-object(kbm) & remap-node(x)J)

Also within GRAPH-IBIS-MODEL-PATCH.RE are two

functions that manipulate the shape and color of the various

REMAP-NODEs. This functionality allows the user an easier

means to differentiate the various types of nodes defined in

REMAP or to display a node in different colors depending on

the value of an attribute. The function FIND-SHAPE-FOR-SN-

ICON uses a series of simple if-elseif statements to represent

31

all IBIS nodes as boxes, a REMAP-ASSUMPTION as a diamond, and

all other REMAP nodes as ellipses. The code follows:

function find-shape-for-sn-icon(obj: object) :symbol=

if remap-position(obj) then 'ri::box

elseif remap-issue(obj) then 'ri::box
elseif remap-argument(obJ) then 'ri::box
elseif remap-assumption(obj) then 'ri::di&aond

else 'ri::ellipse

The second function, FIND-COLOR-FOR-SN-ICON, adds

color to each of the nodes. With the REMAP-ASSUMPTION node

however, increased functionality is demonstrated with an

additional if-elseif statement embedded within the first.

REMAP-ASSUMPTION is created as a diamond and the additional

ability to change icon colors based on certainty value is

provided. The following code demonstrates how a node is

colored:

function find-color-for-sn-icon(obj: object) :symbol =

let (cert: real = node-certainty(obj))
if remap-position(obj) then cw::magenta

elseif remap-argument (obj) then cw::turquoise
,,.etc...

elseif remap-assumption(obj) then
if cert <= 1.0 then cv::red

elseif cert > 1.0 and cert <- 2.0 then yellow

else cw::green

else cv::vhite

These functions demonstrate a means to implement rules

within the REMAP model using shapes and colors to visually
identify values.

32

Of key importance to integration within the KBSA

framework, are high-level editing commands (HLECs). The file

HLEC-PATCH.RE contains one such example. The format is more

fully explained in the Concept Demo User's Manual. When a

node's certainty is changed, for example, more than stored

value of real number must change. If that node is REMAP-

ASSUMPTION, the icon that represents the node may have to

change colors. HLECs enable the system as a whole to be made

aware of the change, so that all other affected areas are also

changed accordingly.

33

VI. RECOMMENDATIONS

A. COMMENTS

There was a steep learning curve to overcome in this

implementation. Numerous software packages were encountered

for the first time by us. Obviously, the more experience the

user has in the underlying environments, the easier an

implementation such as ours will be. The REFINETM environment

is based on common lisp. The documentation is reasonably well

written. A CAI system provided with the package was a great

starting point for our work. As noted in the discussion on

facets, the REFINETM language has some shortcomings as an

object oriented language. However, REFINEiM has the

functionality to satisfy our requirements. The graphical

support in the REFINETM environment provides excellent layout

features, but it has limited capability for displaying objects

in different colors and shapes as required in our work.

With the extensive functionality that results from an

environment like REFINETM and Concept Demo comes complexity.

The CD tutorial and user's manual were pieced together with

the generous help of one of the authors of Concept Demo.

Without this help, the learning process would have been much

slower and very difficult.

B. FUTURE INITIATIVES

1. EASE OF USE

The primary design objective in our effort has been

ease-of-use for the end-users. The end-user must easily be

able to enter deliberation information, and conduct

conversations with other participants. The user should be

34

able to enter, organize and retrieve design deliberation

information with minimal training on the system. The current

implementation is only partially successful in this respect.

Future work emphasizing "user-friendliness" would be a

definite benefit. The following subsections include areas for

consideration.

a. INPUT

An alternate interface which accepts textual

representation of the REMAP nodes and links, could be very

useful for "off line" capture of conversations without much

intrusion into a deliberation session. For example, during a

planning meeting, a scribe can quickly record, in textual

format, pertinent deliberation data in terms of REMAP

primitives. The system should be able to parse the text and

develop the appropriate information in the knowledge base.

b. EASE OF UNDERSTANDING

The deliberations information should be displayed

in a manner that allows for easy understanding.

Realistically, we believe that the user will have to

understand the concept behind the REMAP model and the logical

progression of information development through the REMAP

paradigm. With some basic knowledge of the REMAP method, the

user would benefit from visual cues provided by the

implementation itself which would include judicious use of

color and shape to differentiate nodes of the model and the

perceived weight given to each node and/or link.

An additional node menu option could be

incorporated that would present a color coded version of the

REMAP model with help facilities that describe the model

components and provides a comprehensive example. This would

help in the early stages of use as additional knowledge is

35

gained with the use of the model and its deliberation
capturing ability. A color coded legend could easily be added

that would change color to match the node that the pointer is

in, and display appropriate options for that node.

c. EASE OF INFORMATION RETRIEVAL

In large complex problems, the number of REMAP

nodes and links may be extremely large and the user may be

overwhelmed. The user should have an option for limiting the
amount of information that is presented. For instance, a
manager might want to limit his view to REMAP-ISSUEs that are

unresolved to identify problem areas for project planning and

monitoring. Mechanisms to provide aggregate views of a

network of nodes could be used to provide a high level view of

the deliberation information. The aggregate nodes could be

exploded to provide lower level details. Additionally,

filtering and query mechanisms can be setup to selectively
retrieve information pertaining to topics of interest.

2. EASE OF CAPTURE
Multimedia advances have made it possible to

incorporate detailed accounts of deliberation activities in

terms of the REMAP model. Video and voice clips could be

attached to a REMAP node instead of, or to enhance the textual

support already provided by the system. These facilities
would greatly enhance the ease of capture of deliberation

information with minimal intervention.

3. DECISION SUPPORT

As the information in the knowledge base has a formal

representation, reasoning with this knowledge can be performed

to support various stakeholders. For instance, domain and

task specific deductive rules can be set up to provide

automated inference. An example of such a rule would be one

that uses the strengths of ASSUMPTION and the degree of

36

support they provide to ARGUMENTs in computing the strength of

belief in ARGUMENTs. This information, in turn, can be used

in evaluating POSITIONs that respond to ISSUEs.

4. SECURITY

Security is not currently addressed in this prototype

system. Any actual use of the system would, of course, have

to take this into serious consideration. Appropriate access

(read/write) permission schemes should be developed. Also,

the means to allow for "invisible" deliberations (e.g.,

between two upper-level managers that is not visible to lower

level employees) would be very useful.

37

APPENDIX A

A. NPS-KD-NODULE-LIBRARY. RE

38

in-package ("CD")

in-graimmar(' kb-module-grammar)

'ssLocal library directory is set here.

the-kb-module agl-ibis-nodes
uses-kb-modules (upper-model)
kb-module-path "/files/isl/rexnap/extend/"

APPENDIX B

A. SAMPLE-LOAD. LISP

40

(in-package 'USER)

;; This file compiles those files necessary to implement
;; REMAP within the Concept Demo.

,; change the following function to match your specific site.

(defun sample-path (file-name)
(concatenate 'string "/files/isl/remap/extend/" file-name))

(defun load-sample ()
(cload (sample-path "hypertext-patch"))
(cload (sample-path "facets"))
(cload (sampie-path "hlec-patch"))
(cload (sample-path "graph-ibis-model-patch"))
(cload (sample-path "graph-sn-model-patch"))
(cload (sample-path "viewable-slots-patch"))
(cload (sample-path "nps-kb-module-library"")
)

APPENDIX C

A. RYPZRTEXT-PATCN. RE

42

*in-package("CD")
Hin-grarnmar('user)

%%This file contains the variables for the REMAP model and the Slots
%%associated with those node variables. It exports them and puts the slots
%%into the viewable slots.

var remap-node: object-class subtype-of hypertext-node

var remap-assumption: object-class subtype-of remap-node
var remap-constraint: object-class subtype-of remap-node,
var remap-design-object: object-class subtype-of remap-node
var remap-decision: cbject-class subtypeý-of reiiiap-node
var remap-requirement: object-class subtype-of remap-node
var remap-position: object-class subtype-of remap-node
var remap-issue: object-class subtype-of remap-node
var remap-argument: object-class subtype-of remap-node

var decision-modifies-requirement: map(remap-decision, set (remap-requirement))
computed-using decision-modifies-requirement (@t@) = 11

var requirement-generalizes-requirement: map (remap-requirement, set (remap-requirement))
computed-using reqluirement-generalizes-requirement (@@) = I I

var requirement-specializes-requirement: map (remap-requirement, set (remap-requirement))
computed-using requirement-specializes-requirement (@@) = 11

var requirement-generates-issue: map(remap-requirement, set (remap-issue))
computed-using requirement-generates-issue (@@) = 1

var requirement-leads-to-decision: map (remap-requirement, set (remap-decision))
computed-using requirement-leads-to-decision (@@) = I

var issue-generalizes-issue: map (remap-issue, set (remap-issue))
computed-using issue-generalizes-issue(@@) = fl

var issue-specializes-issue: map(remap-issue, set (remap-issue))
computed-using issue-specializes-issue(@@) = 1)

var issue-replaces-issue: map (remap-issue, set (remap-issue))
computed-using issue-replaces-issue (@@) 0

var issue-questions-issue: map(remap-issue, set (remap-issue))
computed-using issue-questions-issue (f@))

var issue-suggested-by-issue: map (remap-issue, set (remap-issue))
computed-using issue-suggested-by-issue (@@)={

var issue-suggested-by-position: map (remap-issue, set (remap-position))
computed-using issue-suggested-by-position(@@) = i)

var issue-suggested-by-argument: map (remap-issue, set (remap-argument))
computed-using issue-suggested-by-argument(@@) - 0I

var position-responds-to-issue: map (remap-position, set (remap-issue))
computed-using position-responds-to-issue (@) = { I

var argument-supports-position: map (remap-argument, set (remap-position))
computed-using argument-supports-position(@@) = f)

var argument-objects-to-position: map (remap-argument, set (remap-position))
computed-using argument-objects-to-position(@@) = II

var argument-depends-on-assumption: map(remap-argument, set(remap--assumption))
computed-using argument-depends-on-assumption(@@) = f)

var assumption-qualifies-argument: map(remap-assumption, set(remap-argument))
computed-using assumption-qualifies-argument(@@) - 1}

var decision-resolves-issue: map(remap-decision, set(remap-issue))
computed-using decision-resolves-issue(@@) = J)

var decision-selects-position: map(remap-decision, set(remap-position))
computed-using decision-selects-position(@@) = {}

var decision-generalizes-decision: map(remap-decision, set(remap-decision))
computed-using decision-generalizes-decision(@@) = f}

var decision-specializes-decision: map(remap-decision, set (remap-decision))
computed-using decision-specializes-decision(@@) =

var decision-depends-on-decision: map(remap-decision, set(remap-decision))
computed-using decision-depends-on-decision(@@) = {}

var decision-implies-constraint: map(remap-decision, set (remap-constraint))
computed-using decision-implies-constraint(@@) - }

var decision-leads-to-constraint: map(remap-decision, set (remap-constraint))
computed-using decision-leads-to-constraint(@@) = {}

var decision-generates-constraint: map(remap-decision, set (remap-constraint))
computed-using decision-generates-constraint(@@) = J1

var constraint-creates-design-object: map (remap-constraint, set (remap-design-object))
computed-using constraint-creates-design-object(@@) = {1

var constraint-removes-design-object: map(remap-constraint, set(remap-design-object))
computed-using constraint-removes-design-object(@@) = {}

var constraint-modifies-design-object: map (remap-constraint, set (remap-design-object))
computed-using constraint-modifies-design-object(@@) = {)

var design-object-depends-on-constraint: map (remap-design-object, set (remap-constraint))
computed-using design-object-depends-on-constraint(@@) = 41

var node-certainty: map(remap-node, real)
computed-using
remap-position(p) & -empty(argument-supports-position(p)) =>
node-certainty(p) =

reduce(+,image(node-certainty, argument-supports-position(p))) /
size(argument-supports-position(p)),

true => node-certainty(@@) = 1.5

%% If any of the below links, nodes, etc. are changed, you must go to
%% graph-ibis-model-patch and change the function graph-remap-model
%% and graph-remap-model-for-module.

form export-hypertext-patch
export (4' remap-node, ' remap-decision, ' remap-constraint, 'remap-design-object,

'remap-assumption,' remap-position, 'remap-issue, 'remap-argument,
remap-requirement,

"assumption-certainty,'node-certainty,
'decision-modifies-requirement,'requirement-generalizes-requirement,
"requirement-specializes-requirement,'requirement-generates-issue,
"requirement-leads-to-decision,
"issue-generalizes-issue,'issue-specializes-issue,
'issue-replaces-issue,'issue-questions-issue,

'issue-suggested-by-issue,' issue-suggested-by-positiaon,
'issue-suggested-by-argument, 'position-responds-to-issue,
'argument-supports-position, 'argument-objects-to-position,
'argument-depends-on-as sumpt ion,
lassumption-qualifies-argument, 'decision-resolves-issue,
'deca-sion-selects-pos it ion,
'decision-generalizes-decision, 'decision-specializes-decision,
'decision-depends-on-decision,
'decision-implies-constraint, 'decision-leads-to-constraint,
'decision-generates-constraint,
'constraint-creates-design-object, 'constraint-removes-design-object,
Iconstraint-modifies-design-object,
'deiign-object-depends-on-constraint },
' cd)

APPENDIX D

A.* GRAPH-SN-MODEL-PATCH.*RE

46

in-packageC' cd-ui)
in-graxnmar('gr)

function add-informal-object (dw: diagram--window)=
let (informal-obj-class-names: set (symbol)=

image (name, class-subclasses (find-object-class ('remap-node) ,true)))
let (ht-class-name: symbol =

single-menu("Choose the type of Informal Object",
inforrnal-obj-class-names,

,:display-function, 'string-capitalize,
,:moving?, false,'::abort-value, *abort-value*))

user-create-instance (find-object-class (ht-class-name),
diagram-window-spec-moduleo(

method user-initialize-new-instance (obj: remap-issue,
kbm: kb-module) =

edit-hyperstring (obj);
add-informal-functional-requirement-hlec (obj, kbm)

method user-initialize-new-instance (obj: ri: :icon,
kbm: kb-module) =

edit-hyperst ring (obj);
add-informal-functional-requirement-hlec (obj, kbm)

method user-initialize-new-instance (obj: attribute-instance,
kbm: kb-module)

edit-hyperst ring Cob j);
add-informal-functional-requirement-hlec (obj, kbm)

method user-initialize-new-instance (obj: remap-position,
kbm: kb-module)

edit-hyperst ring Cob j);
add-informal-functional-requirement-hlec (obj, kbm)

method user-initialize-new-instance (obj: remap-argument,
kbm: kb-module)=

edit-hyperstring (obj);
add-informal-functional-requirement-hlec (obj, kbm)

method user-initialize-new-instance (obj: remap-assumption,
kbm: kb-module)=

edit-hyperst ring (obj);
add-informal-functional-requirement-hlec (obj, kbm)

method user-initialize-new-instance (obj: remap-constraint,
kbm: kb-module) =

edit-hyperstring (obj);
add-informal-functional-requirement-hlec (obj, kbm)

method user-initialize-new-instance (obj: remap-design-object,
kbm: kb-module)

edit-hyperstring (obj);
add-informal-functional-requirement-hlec (obj, kbm)

method user-initialize-new-instance (obj: remap-decision,
kbm: kb-module)

edit-hyperst ring (obj);
add-informal-functi~onal-requirement-hlec (obj, kbm)

method user-initialize-new-instance (obj: remap-requirement,
kbm: kb-module) -

edit-hyperstring (obj);
add-infornial-functional-requirement-hlec (obj, kbm)

%%%%%%%%For Remap-Position

var *remap-position-meflu-iteIR5*: any-type

<"Call Emacs", (lambda (b,,o,p,w)
exci: :run-shell-conmmnd("/usr/local/bin/emacs"))>,

<"Show multi-media", (lambda (b~o,p,w)
excl: :run-shell-conmrnd(string(format (false, "/usr/openwin/bin/pageview
/files/isl/remap/figures/-a 0", (syrnbol-to-string(name(o))))))>,

<"Show REMAP model". (lambda (b,o,p,w) excl: :run-shell-command
("/usr/openwin/bin/pageview /files/isl/remap/figures/model.ps &)>

<"Cuckoo", (lambda (b, o,p,w) excl: :run-shell-commaend("/usr/demo/SOUND/cuckoo.clock"))

var *menu-for-remap..positions*: menu-object
make-menu-object("Options for Position Node",

combine-items ([*sn-objects-menu-items*, *informl-objects-menu-itexs*,
remap-position-menu-items]))

'cd: :semantic-net-window-options)

method MOUSE-LEFT-METHOD (obj: cd: :remap-position,p,w)=
activate-cd-menu (*menu-for-remap-positions*, 'mouse-left, obj, p,w)

%%%%%%%%%%For Remap-requirement.

var *requirement-menu..items*: any-type=

<"Call Emacs", (lambda (b,o,p,,w)
excl: :run-shell-conmand("/usr/local/bin/emacs"))>,

<"Show multi-media", (lambda (b,.op,w)
excl: :run-shell-command (string (format (false, "/usr/openwinfbin/pageview
/files/isl/remap/figures/-a"l, (symbol-to-string(name(o))))))>,

<"Show REMAP model", (lambda (b,o,p,w)
exci: :run-shell-command ("/usr/openwin/bin/pageview
/files/isl/remap/figures/model.ps"))>,

<"Cuckoo", (lambda (b,o,p,w) excl: :run-shell-comnuand("/usr/demo/SOUND/cuckoo.clock"))

var *menu..for-requirements*: menu-object=
rn'~ke-menu-object ("Options for Requirement Node",

combine-items (*sn-objects-menu-items*, *informal-objects..-menu-items*,
*requirement...menu-items*J),

'cd: :semantic-net-window-options)

method MOUSE-LEFT-METHOD (obj: cd::remap-requirement, p'w)=
activate-ccd-menu (*menu-for-requirements*, ' mouse-lef t, obj, p, w)

%%For Remap-Issue

var *remap-issue-menu-items*: any-type=

<"Call Ernacs", (lambda (b,o,p,w)
exci: :run-shell-command("/usr/local/bin/emacs"))>

<"Show multi-media", (lambda (b,o,pfw)
excl: :run-shell-command(string(formlat (false, "/usr/openwin/bin/pageview
/files/isl/remap/figjures/-a", (symbol-to-string(name(o))))))>,

<"Show REMAP model", (lambda (b,o,p,w)
excl::run-shell-cormmand ("/usr/openwin/bin/pageview
/files/isl/rem~ap/figures/model.ps"))>,

<"Cuckoo", (lambda (b, o,p,w) excl: :run-shell-command("/usr/demo/SOUND/cuckoo.clock"))

var *menu-for-remap-issue*: menu-object=
make-menu-object("Options for Issue Node",

combine-items (*sn-objects-menu-items*, *informl-objects-menu...tems*,
remap-issue-menu..items]),
'cd: :semantic-net-window-options)

method MOUSE-LEFT-METHOD (obj: cd::remap-issue,p,w) =

activate-cd-menu (*menu-for-remap-issue*, 'mouse-left, obj, p.w)

%%%%%%%%For Remap-Constraint

var *remap-constraint-menu-items*: any-type

<"Call Emacs", (lambda (b,o,p,w)
excl: :run-shell-command("/usr/local/bin/emacs"))>,

<"Show multi-media", (lambda (b,o,p,w)
excl::run-shell-command (string (format (false, "/usr/openwin/bin/pageview
/files/isl/remap/figures/-a", (symbol-to-string(name(o)))))>

<"Show REMAP model", (lambda (b,o,p,w)
excl::run-shell-command ("/usr/openwin/bin/pageview
/files/isl/remap/figures/model.ps"))>,

<"Cuckoo", (lambda (b, o,p,w) excl: :run-shell-command("/usr/demo/SOUND/cuckoo.clock"))

var *menu..for-remap-constraint*: menu-object=
make-menu-object ("Options for Constraint Node",

combine-items (*sn-objects-menu-items*, *informl-objects-menu-items*,
remap-constraint..menu..items]),

'od: :semantic-net-window-options)

method MOUSE-LEFT-METHOD (obj: cd::remap-constraint,p,w)=
activate-cd-menu (*menu-for-remap-constraint*, 'mouse-left, obj, p, w)

For Remap-Arguent

var *remap-argnunent-menu-i.tems*: any-type=

<"Call Emacs", (lambda (b,o,p,w)
excl: :ruin-shell-cornmand("/usr/local/bin/emacs"))>,

<"Show multi-media", (lambda (b,o,p,w)
excl::run-shell-command (string (format (false, "/usr/openwin/bin/pageview
/files/isl/remap/figures/-a", (symbol-to-string(name(o))))))>,

<"Show REMAP model", (lambda (b,o,p,w)
excl::run-shell-command (" /usr/openwin/bin/pageview

/files/isl/remap/figures/model.ps"))>,
<"Cuckoo", (lambda (b, o,p, w) exci: : run-shell-command (" /usr /demlo/ SOUND/ cuckoo. clock"))

var *menu-for-remap-argument*: menu-object
make-menu-object ("Options for Argument Node",

combine-items (*sn-objects-menu-items*, *informl-objects-menu-items*,
remap-..argmfent...menu-items 1),
fcd: :semantic-net-window-options)

method MOUSE-LEFT-METHOD (obj: cd::remap-argument,,p,w)=
activate-cd-menu (*menu-for-remap-argument*, 'mouse-left, obj, p,w)

%%%%For Assumption

function invoke-modify-node-certainty(button: symbol, obj: object,
pos: point, w: window) -

let(new-certaint'y: real = ri::single-menu("Select Node Certainty",
[0.5, 1.0, 1.5,2.0,2.5, 3.0]))

let (node-cert: re: :binding = cd::find-or-create-attribute
(,'node-certainty, 'obj, 'real, diagram-window-spec-module (w)))

let (dg-surface: diagram-surface = surface-viewed (w))
let(source-icon: icon =

find-existing-icon-for-spec-object (obj, dg-surface))
store-attribute (obj, node-cert, new-certainty);
cd-ui::icon-color (find-existing-icon-for-spec-object (obj, dg-surface))

<- cd-ui::find-color-for-sn-icon (obj);
cd: :m~ake-inconsistent-spec-object (obj);
modify-node-certainty-hlec (obj, node-cert, new-certai~nty)

var *asslumption-menu-items*: any-type=

<"Add Assumption Certainty",' invoke-add-assumption-certainty>,
<"Modify Node Certainty"l,'invoke-modify-node-certainty>,
<"Call Emacs", (lambda (b,o,p,w)

excl: :run-shell-coxmmand("/usr/locai/bin/emacs"))>
<"Show multi-media", (lambda (b,o,p,w)

excl: :run-shell-command (string (format (false, "/usr/openwin/bin/pageview
/files/isl/remap/figures/-a", (symbol-to-string(name(o)))))>

<"Show REMAP model", (lambda (b,o,p,w)
excl: :run-shell-conmand ("/usr/openwin/bin/pageview
/files/isl/remap/figures/model.ps"))>,

<"Cuckoo", (lambda (b,o,p,w) excl: :run-shell-command("/usr/demo/SOUND/cuckoo.clock"))

var *menu-.for-assumption*: menu-object=
make-menu-object ("Options for Assumption Node",

combine-items (*sn-objects-menu-items*, *informl-objects-menu-.items*,
assumption-menu-items]),
'cd: :semantic-net-window-options)

method MOUSE-LEFT-METHOD (oY-j: cd::remap-assumption,p,w)=
activate-cd-menu (*menu-for-assumption*, 'mouse-left, obj, p,w)

For Remap-Decision

var *decision-menu-items*: any-type=

<"Call Ernacs", (lambda (b,ovpow)
exci: :run-shell-command("/usr/local/bin/emacs"))>

<"Show multi-media", (lambda (b,o,p,w)
exci: :run-shell-command (string (format (false, "/usr/openwin/bin/pageview

<"Show REMAP model", (lambda (b,o,p,w)
exci::run-shell-command ("/usr/openwin/bin/pageview
/fijles/isl/rernap/figures/model.ps"))>,

<"Cuckoo", (lambda (b,o,p,w) excl: :run-shell-command("/usr/demo/SOUND/cuckoo.clock"))

var *menu-for-decision*: menu-object -
mcake-menu-object ("Options for Decision Node",

combine-items ([*sn-objects-menu...items*,*informl-objects-.menu-items*,
decision-menu..4tems]),

'cd: :semantic-net-window-options)

method MOUSE-LEFT-METHOD (obj: cd::remnap-decision,p,w)=
activate-cd-menu (*menu-for-decision*, 'mouse-left,obj,p,w)

%%%%%%%%For Remap-Design-Object

var *remap-design-object..menu-iteMs*: any-type=

<"Call Emacs", (lambda (b,o,p,w)
excl: :run-shell-command("/usr/local/bin/emacs"))>,

<"Show multi-media", (lambda (b,o,p,w)
excl::run-shell-command (string (formnat (false, "/usr/openwin/bin/pageview
/files/isl/remap/figures/-a", (symbol-to-string(name(o)))))) >,

<"Show REMAP model", (lambda (b,o,p,w)
excl::run-shell-command (" /usr/openwin/bin/pageview
/files/isl/remap/figures/model.ps"l))>,

<"Cuckoo", (lambda (b, o,p,w) exci: :run-shell-conunand("l/usr/demo/SOUND/cuckoo.clock"))

var *menu-for-remap..design..object*: menu-object=
make-menu-object("Options for Design Object Node",

combine-items ([*sn-objects-menu-items*, *informl-objects-menu-i.tems*,
remap-design-object-menu-items J),
'cd: :semantic-net-window-options)

method MOUSE-LEFT-METHOD (obj: cd::remap-design-object,p,w)=
activate-cd-menu (*menu-for-remap-design-object*, 'mouse-left, obj,p, w)

function invoke-add-attribute-certainty(button: symbol, obj: object,
pos: point, w: window) =

let (new-certainty: integer = ri::single-menu ("Select Certainty",
[0, 1,2,3,4, 5, 6,7, 8, 9, 10])))

let (ai-target: re: :universe = attribute-instance-target (obj),
ai-attribute: re: :binding = attribute-instance-attribute (obj),
dg-surface: diagram-surface = surface-viewed(w))

let(source-icon: icon =
find-existing-icon-for-spec-object (ai-target, dg-surface))

cd: :store-attribute-facet (ai-target, ai-attribute,
"cd: :certainty, new-certainty);

erase-object (obj);
update-sn-icon (source-icon, w)

function invoke-retrieve-certainty(button: symbol, obj: object,
pos: point, w: window) -

cd: :retrieve-attribute-facet (attribute-instance-target (obj),
attribute-instance-attribute (obj), 'cd:: certainty)

var *sn...objects...menu....tems*: any-type -

<"Modify Certainty", 'invoke-add-attribute-certainty, 'sn-graph?>,
<"Retrieve Certainty", 'invoke-retrieve-certainty, 'sn-graph?>,
<"Add Link", 'add-sn-link, 'sn-graph?>,
<"Create Possible Resolutions", 'invoke-make-possible-resolutions,

'issue?>,
<"Show Links in Current View", 'show-sn-links-and-refresh, 'sn-graph?>,
<"Show Selected Links", 'show-selected-links-and-refresh, 'sn-graph?>

var *menu-for-slots*: menu-object -
make-menu-object ("Options for Slots", *sn-objects-menu..1tems*,

'cd: :options-for-classes)

method mouse-left-method (obj: ri::icon,pos: point, w: window)=
if agl-link-label? (obj)
then mouse-left-method (spec-object-for-link (agl-link-for-label (obj)),

pos, w)
else mouse-left-method (spec-object-for-icon (obj)),pos, w)

method mouse-left-method (obj: attribute-instance,pos: point, w: window)
activate-cd-menu (*menu-for-slots*, 'mouse-left, obj, pos,w)

APPENDIX E

A. ELEC-PATCH. RE

53

Hin-package("CD-)
Hin-qrammar('gr)

function modify-node-certainty(obj:object, node-cert: re::binding, new-certainty: real)

cd: :iake-inconsistent-spec--object (obj);
cd: :rnale-incorisistent-spec--object (node-cert)

Hin-grammar('hlec-granmmar)

hiec modify-node-certainty-template
context-name-pattern ("Changed the value of", "0"
context-description-pattern ("Set the value of","2", "on", "0", "to", "3"]

Hin-grammar('user)

form gen-hlecs
generate-hiecs (

APPENDIX F

A. VIEWABLE-OLOTS-PATCH.*RE

55

I!in-package("CD-UI")

I!in-qrannar('gr)

%%This file is primarily a duplicate of the original
'ss Concept Demop work with minor changes to incorporate
'ss the REMAP implementation.

var *viewable-slots-for-diagram-windows* :set(re::binding)
ifind-attribute-or-complain (' cd-ui: :max-tree-depth),
find-attribute-or--complain(' cd-ui: :tree-depth-spacing),
find-attribute-or-complain (' cd-ui: :tree-breadth-spacing),
find-attribute-or-complain (' cd-ui: :tree-graph-direction)
I

var *default-viewable-slots*: set (re: :binding) -
{find-attribute-or-complain(' cd: :class),
find-attribute-or-complain ('attached-notes)
's'sfind-attribute-or-complain ('agenda-items)
I

union
{ find-attribute-or-complain (' created-by),
find-attribute-or-complain (' last-modified-by),
find-attribute-or-complain (' cd::created-on-date),
find-attribute-or-complain (' cd: :last-modified-on-date)I

var *veal-lt-o-bmdl-bet* set (re: :binding)=
ifind-attribute-or-complain ('owned-by),
find-attribute-or-complain (' created-by),
find-attribute-or-complain (' last-modified-by),
find-attribute-or-complain ('formalizes),
find-attribute-or-complain (' implements),
find-attribute-or-complain ('unresolved-issues))

union find-attributes-or-complain ({'created-by-task, 'deleted-by-task,
'modified-by-tasks))

union
{find-attribute-or-complain (' cd: :created-on-date),
find-attribute-or-complain (' cd::last-modified-on-date) I

var *viewable-slots-for-modules*: set (re: :binding)
default..viewable...slots union
{ find-attribute-or-complain (' owned-objects),
find-attribute-or-complain ('uses-kb-modules),
find-attribute-or-complain ('exported-object-names),
find-attribute-or-complain ('exported-objects),
find-attribute-or-complain ('kb-module-version),
find-attribute-or-complain ('development-history)

var *viewble-slots-for...sm*: set(re::binding)
default-viewable-slots union *viewab1e-slots...for-modules* union
{ find-attribute-or-complain ('requirement-modules),
find-attribute-or-complain ('test-modules),
find-attribute-or-comiplain ('used-by-kb-modules))

var *viewble-slots-for..tms*: set (re: :binding) =
default-viewable-slots union *viewable-slots-for-modules* union
ifind-attribute-or-complain ('test-module-of))

var *viewable-slots-for-rms*: set (re: :binding) =
default...viewable...slots union *viewable.-~slots..4or..modules* union
{find-attribute-or-complain(' implementation-modules))

var *viewable-slots-for-relations*: set (re: :binding)=
*default-viewable-slots *

union *veal-lt-o-k-oueojcs union
ffind-attribute-or-complain ('relation-range),
find-attribute-or-complain (' relation-domain),
find-attribute-or-complain (' range-cardinality),
find-attribute-or-complain (' domain-cardinality),
find-attribute-or-complain ('used-by),
find-attribute-or-complain (' certainty),
find-attribute-or-complain ('modified-by)I

var *v.1ewable-slots-for-er-atts*: set (re: :binding)-
default..viewable-slots
union *viewable-slotsffor.kb..module..objects* union
ifind-attribute-or-complain ('used-by),
find-attribute-or-complain ('modified-by))

var cd-ui::*viewable-slots-for-hypertext* :set (re: :binding)
{find-attribute-or-complain ('fonrr.alized-by),
find-attribute-or-complain U implemented-by),
find-attribute-or-complain ('responds-to),
find-attribute-or-complain ('supports),
find-attribute-or-complain ('objects-to).
find-attribute-or-complain ('questions),
find-attribute-or-complain (' replaces),
find-attribute-or-complain ('generalizes),
find-attribute-or-complain (' specializes),
find-attribute-or-complain (' is-suggested-by).
find-attribute-or-complain ('substitutes-for),
find-attribute-or-complain (' substituted-for-by),
find-attribute-or-complain (' suggests),
find-attribute-or-complain ('defines),
find-attribute-or-complain ('qualifies),
find-attribute-or-complain ('triggers),
find-attribute-or-complain ('exemplifies),
find-attribute-or-complain ('p:'ecedes),
find-attribute-or-complain (' follows),
find-attribute-or-complain ('requires-input),
find-attribute-or-complain ('produces-output),
find-attribute-or-complain ('done-using),
find-attribute-or-complain (' check-for-interaction),
find-attribute-or-complain ('check-for-redundancy),
find-attribute-or-complain ('check-for-conflict),
find-attribute-or-complain (' resolve-contradiction),
find-attribute-or-complain ('describes-incompleteness-of),
find-attribute-or-complain ('describes-incorrectness-of),
find-attribute-or-complain ('describes-general-inadequacy-of),
find-attribute-or-complain U see-also),
find-attribute-or-complain ('unresolved-issues),
find-attribute-or-complain ('describes-issue-for),
find-attribute-or-complain ('described-issue-for),
find-attribute-or-complain ('resolved-by),
find-attribute-or-complain ('possible-resolutions),

%%%REMAP specific attributes are adde(here.

find-attribute-or-complain ('node-certainty),
find-attribute-or-complain ('assumption-certainty),
find-attribute-or-complain ('decision-modifies-requirement),
find-attribute-or-complain (' requirement-generalizes-requirement),
find-attribute-or-complain ('requirement-specializes-requirement),
find-attribute-or-complain ('requirement-generates-issue),
find-attribute-or-complain (' requirement-leads-to-decision),
find-attribute-or-complain (' issue-generalizes-issue),
find-attribute-or-complain (' issue-specializes-issue),
find-attribute-or-complain (' issue-replaces-issue),
find-attribute-or-complain (' issue-questions-issue),

find-attribute-or-complain (' issue-suggested-by-issue),
find-attzibute-or-complain(Cissue-suggested-by-position),
find-attribute-or-complain (' issue-suggested-by-argument),
find-attribute-or-complain ('position-responds-to-issue),
find-attribute-or-complain ('argument-supports-position),
find-attribute-or-complain ('argument-objects-to-position),
find-attribute-or-complain ('argument-depends-on-assumption),
find-attribute-or-complain (' assumption-qualifies-argument),
find-attribute-or-complain ('decision-resolves-issue),
find-attribute-or-complaLn ('decision-selects-position),
find-attribute-or-complain ('decision-generalizes-decision),
find-attribute-or-complain ('decision-specializes-decision),
find-attribute-or-complain ('decision-depends-on-decision),
find-attribute-or-complain ('decision-implies-constraint),
find-attribute-or-complain ('decision-leads-to-constraint),
find-attribute-or-complain ('decision-generates-constraint),
find-attribute-or-complain (' constraint-creates-design-object),
find-attribute-or-complain (' constraint-removes-design-object),
find-attribute-or-complain ('constraint-modifies-design-object),
find-attribute-or-complain ('design-object-depends-on-constraint)

var *viewable..slots-.for..hypernodes*: set (re: :binding) -
*default...viewable..slots *
union *veal-lt-o-k-oueojcs
union find-attributes-or-complain (' sub-nodes, 'super-node })
union *viewable-slots-for-hypertext*

var *viewable..slots..for-explanations* s3et (re: :binding)
find-attributes-or-complain({'object-explained)) union
*viewable..slots...for...hypernodes *

var *viewable-slots..for-.hypertext...reqldirements*: set (re: :binding)
*default-viewable-slots *
union *viewable-slots-for-hypernodes*
union *viewable..slots..for...hypertext*

var *viewable-slots-for...notes*: set(re::binding)
*default...viewable..slots *
union *viewable..slots..for..kb.mod,:.e-objects*
union {find-attribute-or-complain('attached-to) I

var *viewable-slots-for-agenda-items*: set (re: :binding)
*default..viewable..slots *
union *viewable..slots..for-.kb-.module..objects*
%% {find-attribute-or-complain (' spec-objects-for-agenda-item))

%%Viewable slots for each REMAP node that only includes
%%the appropriate links for that node.

var *viewable-slots-for-reimp..requirement -: set (re: :binding) -
{ find-attribute-or-complain (' requirement-leads-to-decision).
find-attribute-or-complain ('requirement-generates-issue),
find-attribute-or-complain ('requirement-generalizes-requirement),
find-attribute-or-complain ('requirement-specializes-requirement) I

var *viewable-slots-for-reiuap-issue*: set (re: :binding) -
{ find-attribute-or-complain ('issue-generalizes-issue),
find-attribute-or-complain (' issue-specializes-issue),
find-attribute-or-complain (' issue-replaces-issue),
find-attribute-or-complain (' issue-questions-issue),
find-attribute-or-complain (' issue-suggested-by-issue),
find-attribute-or-complain ('issue-suggested-by-argument),
find-attribute-or-complain (' issue-suggested-by-position))

var *veal-lt-orrmppsto* set (re: :binding) -
4find-attribute-or-complaifl('positio. -responds-to-issue) I

var *viewable-slots-for-remap-argument*: set(re: :binding) =
i find-attribute-or-complain (' arq-ument-supports-posit ion),
find-attribute-or-complain ('argument-objects-to-posit ion),
find-attribute-or-complain ('argument-depends-on-assumption)I

var *viewable-slots-.for-remap-assuxpption*: set (re: :binding)=
tfind-attribute-or-complain ('assumption-qualifies-argument) I

var *viewable-slots-.for-.remap.-.decision*: set (re: :binding) =

(find-attribute-or-complain ('decision-modifies-requirement),
find-attribute-or-complain ('decision-generalizes-decision),
find-attribute-or-complain ('decision-specializes-decision),
find-attribute-or-complain ('decip ion-depends-on-decision),
find-attribute-or-complain ('decision-implies-constraint),
find-attribute-or-complain ('decision-leads-to-constraint),
find-attribute-or-complain (' decision-generates-constraint),
find-attribute-or-complain ('decision-resolves-issue) I

var *viewable-slots-forremap..constraint*: set (re: :binding) =

{ find-attribute-or-complain (' constraint-creates-design-object),
find-ai-trihi hte-or-complain ('constraint-removes-design-object),
find-attribute-or-complain (' constraint-modifies-design-object)I

var *viewable-slots-for-remap-design-object*: set (re: :binding) =
ffind-attribute-or-complain ('design-object-depends-on-constraint))

var *viewabls-slots-forinvariant-.violations*: set (re: :binding)=
lfinid-attribute-or-com~plain ('violation-objects),
find-attribute-or-complain('violated-invariant)I union

default-viewable...slots union *viewable-slots-for..kb...module-objects*

var *viewable-slots-for-invariants*: set(re: :binding)=
{find-attribute-or-complain('maintained-by)) union
default..viewable-slots union *viewable-slots-for-kbmodule-objects*

var *viewable-slots..4or-demons*: set (re: :binding)
ffind-attribute-or-complain ('maintains)) union
default-viewable-slots union *viewable-slots-for-kbmodule-objects*

var *viewble-slots-for-.people*: set(re::binding)=
*default-viewable-slots *
union *viewable-slots-for-.kb-module..objects*
union { find-attribute-or-complain ('home-directory),

find-attribute-or-complain ('cd-user-directory),
find-attribute-or-complain ('cd: :assigned-to-tasks),
find-attribute-or-complain ('on-critical-path?),
find-attribute-or-complain ('percent-committed)

var *viewable-slots-for-staff*: set (re: :binding)=
viewable..s lots-for-people
union
find-pma-attributes (I'pma: :PERCENTAGE-AVAILABILITY, 'pma::cost-per-day,

'pma: :skills})

function viewable-slots-for-run-time-instance (o: object) =

ia I (a) a in class-attributes(instance-of(o), true) &
defined? (owned-by (a))) union Ifind-attribute-or-complain (' cd: :class))

var *viewable-slots-for-pma-task-plans*: set (re: :binding)=

'default-viewable-slots' union
(if cd::*pma-loaded?*
then

find-pma-attributes ({'prra: :task-type, 'pma: :scheduled-start,
'pma::earliest-start,
'pma: :latest-start,
'pma::scheduled-finish,

'pma: :earliest-finish,
'pma: :latest-finish,
'pma: :personnel-commitments 1)

else4)

var *viewable-slots-for-cd-tasks*: set(re::binding)
find-attributes-or-complain (4'objects-created, 'objects-modified,

'resolves, 'cd:: completed?,
'sub-tasks,' cd: :issue-to-resolve,
'cd: :assigned-to, 'critical-path-task?,
'estimated-person-hours, 'milestone?,
'in-violation-of-policies,
'scheduled-completion-date))

union 'viewable-slots-for-pma-task-plans*
union 'viewable-slots-for-hypernodes'

var 'non-functional-req-slots-for-classes': set (re: :binding)
find-attributes-or-complain ({'maximum-number-of-instances,

'minimum-number-of-instances, 'average-number-of-instances,
'maximum-creation-frequency, 'average-creation-frequency))

var *non-functional-req-slots-for--functions': set (re: :binding)
find-attributes-or-complain (4'occurance-frequency, 'minimum-processing-time.

'required-reliability, 'required-fault-tolerance, 'required-sur-vivabilit~ I)

var 'viewable-slots-for-functions': set (re: :binding) -
'default-viewable-slots *
union *viawable-slots-for-kb-module-objects* union
find-attributes-or-complain({'uses, 'modifies, 'used-by)) union

'non-functional-req-slots-for-functions'

var 'viewable-slots-for-classes': set(re: :binding)-
'non-functional-req-slots-for-classes'
union 'default-viewable-slots' union
'viewable-s lots-for-kb-module-objects *

%%REMAP viewable slots.

var viewable-slots: map(re: :universe, set (re: :binding))
computed-using

remap-requirement(x) -> viewable-slots(x)
'viewable-slots-for-remap-requiremenit',
remap-issue(x) -> viewablL-slots(x)
'viewable-slots-for-remap-issue',
remap-position(x) -> viewable-slots(x) -
'viewable-slots-for-remap-position*

,remap--argument(x) -> viewable-slots(x) -
'viewable-slots-for-remap-arqument'o
remap-assumption(x) -> viewable-3lotsX)-
'viewable-s lots-for-remap-as sumpt.o~
remap-docision(x) -> viewable-31ot3(X)
*viewable-s lots-for-remap-decision',
remap-constraint(x) -> viewable-3lota(x)
'viewable-slote-for-remap-constraint',
remap-design-object(x) -> viowable-alot3(x)
Iviewablo-slots-for-remap-design-object *,

object-class?(x) -> viewable-slots(x)=
*viewable-..slots-.for-classes *

person(x) -> viewable-slots(x)
viewable-slots-for-people,
pmna::staff(x) -> viewable-slots(x)=
viewable..slots-for-staff,
cd-task(x) -> viewable-slots(x) = *VEAL-LT-FRC-AK*
re::invariant-op(x) => viewable-slots(x)=
viewable-slots-for-invariants,
re::demon-op(x) -> viewable-slots(x)
viewable...slots..for-.demons,
invariant-violation-record (x) => viewable-slots (x)=
*viewabls-slots-for-invariant-violations *
run-time-instance?(x) -> viewable-slots(x)
vievable-slots-for-run-time-instance (x),
kb-module(x) => viewable-slots(x) - *viewable-5lots-for-modules*,
re: :vfunction-op(x) => viewable-slots (x) = *viewable-slots-for-functions*,
er-attribute? (x) => viewable-slots (x) =*viewable-slots-for-er-atts*,
er-relation? (x) => viewable-slots (x) =*viewable-slots-for-relations*,
%%agenda-item(x) =>
%%viewable-slots (x) = *viewable-slots-for-..agenda-items*,
hypertext-requirement (x) =>
viewable-slots (x) = *viewable-slots-for-hypertext-requirernents*,
explanation (x) => viewable-slots (x) = *viewable-slots-for-explanations*,
note(x) =>
viewable-slots (x) = *viewable-slots-for-notes*,
pma-thing? (x) => viewable-slots (x) = viewable-slots-for-pina-object (x),
hypertext-node (x) => viewable-slots (x) = *viewable-slots-for-hypernodes*,
ri::diagraxn-window(x) => viewable-slots(x)=
veal-losfrdaga-idw,

true => viewable-slots(@@) =
default-viewable-slots union *viewable-slots-for-kbmodule-objects*

var *display-undefined-attributes?*: boolean = false

function interesting-value? (val:any-type) :boolean=
if cd: :*specification-debugging-enabled-p*
then defined? (val)
else defined?(val) and not(null(val))

var slots-to-hide: map(re: :universe,set (re: :binding))
computed-using slots-to-hideo(

function find-viewable-slots (o:object) :seq(re: :binding)-
let (possible-attributes = setdiff (viewable-s lots (o),

slots-to-hide (instance-of (0))))
if *display-undefined-attributes?*
then sort-objects (possible-attributes)
else
sort-objects (filter(laxnbda (a) interesting-attribute? (o,a),

possible-attributes))

var *default-hypertext-slots*: set(re::binding)=
ifind-attribute-or-complain ('hypertext-string)I

var *all-hypertext-slots*: set(re::binding)
*de fault-hypertext-s lots *

var *defaultypmax-depth*: integer = 50
var max-tree-depth: map(diagram-window, integer)

computed-using max-tree-depth (@@) = *default-max-depth*
var tree-depth-spacing: map(diagram-window, real)

computed-using tree-depth-spacing(c!@) = 1.8

var tree-breadth-spacing: map(diagram-window, real)
computed-using tree-breadth-spacing(@@) - 1.0

var tree-graph-direction: map (diagram-window, symbol)
computed-using tree-graph-direction (@@) - 'right

form go-form
cache ('max-tree-depth, true);
cache ('tree-depth-spacing, true);
cache ('tree-breadth-spacing, true);
cache (' tree-graph-direction, true)

in-package('cd)

function find-atts-to-copy (obj-class: object) :set(re::binding) -
let (att s-to-copy -
class-attributes (obj-class, true) less find-attribute ('name))
att s-to-copy <-
filter (lambda (att) symbol-package (name (att)) -= find-package ("CD-UI"),

att s-to-copy);
%tatts-to-copy <- filter (lamnbda (att) empty (re: :us ing-assert ions (att))

%% atts-to-copy);
atts-to-copy <- setdiff (atts-to-copy,

find-attributes-or-complain ({'created-by-task, 'deleted-by-task,
'modified-by-tasks,' created-on-date, 'last-modified-on-date,
'created-by,' last-modified-by, 'pma: :version-narne}));

atts-to-copy

APPENDIX G

A. FACETS * RE

63

in-package ("CD")
Sin-gramrnar('user)

%%%%%%%%Latest version of facets.re that allows attributes of
%%%%%%%%attributes, and adds attribute-instance object

function attribute-facet-name (attr: re::binding,facet-name: symbol)
:symnbol =
let (facet-package: any-type - symbol-package (facet-name),

facet-name-string: string - string-upcase(format(false,"-a--a",
name (attr), facet-name))

intern (facet-name-string, facet-package)

function find-attribute-facet (attr: re::binding,facet-name: symbol)=
find-attribute (attribute-facet-name (attr, facet-name))

function find-or-create-attribute-facet (attr: re: :binding,
facet-name: symbol)=

let (exist ing- facet: re: :binding = find-attribute-facet (attr, facet-name))
if defined? (existing-facet)
then existing-facet
else create-attribute-facet (attr, facet-name)

function create-attribute-facet (attr: re: :binding, facet-name: symbol)=
let (facet-domain-class: re: :binding = find-relation-domain-class (attr),

attribute-facet-name: symz~ol = attribute-facet-name (attr, facet-name))
display-debug-message (format (false,
"-%Generating new attribute to serve as facet: -a-%",attribute-facet-name));
make-attribute (attribute-facet-name, name (facet-domain-class),

"any-type' ,true)

function retrieve-attribute-facet (target: re: :universe, attr: re: :binding,
facet-name: symbol) =

let (attribute-facet: re: :binding = f ind-att ribute- facet (att r, f acet-name))
if defined? (attribute-facet)
then retrieve-attribute (target, attribute-facet)
else display-debug-message (format (false,

"-%Warning! Tried to retrieve undefined facet: -a from -a",
facet-name,, name (attr)));

undefined

function store-attribute-facet (target: re: :universe, attr: re: :binding,
facet-name: symbol, new-value: any-type)=

let(attribute-facet: re: :binding =
find-or-create-attribute-facet (attr, facet-name))
store-attribute (target, attribute-facet, new-value)

%%%%Defining a new class "attribute-instance" to stand for
%%%%the particular value of an attribute on a class

var attribute-instance: object-class subtype-of user-object
var attribute-instance-target: map (attribute-instance, re: :universe)={ I
var attribute-instance-attribute: map (attribute-instance, re: :binding) f {ill

function find-or-create-attribute-instance (instance-target: re: :universe,
instance-attribute: re: :binding)

attribute-instance =
let (existing-attribute-instance: attribute-instance=

find-attribute-instance (instance-target, instance-attribute))
if defined? (existing-attribute-instance)
then existing-attribute-instance

else create-attribute-instance (instance-target, instance-attribute)

function find-attribute-instance (instance-target: re: :universe,
instance-attribute: re: :binding)

attribute-instance -
let (all-attribute-instances: set (attribute-instance)=

instances (find-object-class ('attribute-instance),tu))
let (existing-attribute-instance: attribute-instance=

some (x) (x in all-attribute-instances &
attribute-instance-target (x) - instance-target
attribute-instance-attribute (x) - instance-attribute))

existing-attribute-instance

function create-attribute-instance (instance-target: re: :universe,
instance-attribute: re: :binding)

attribute-instance =

let (new-attribute-instance: attribute-instance=
make-object ('attribute-instance))

attribute-instance-target (new-attribute-instance) <- instance-target;
attribute-instance-attribute (new-attribute-instance) <- instance-attribute;
new-attribute-instance

form export-attribute-instance-info
export ({'cd: :find-or-create-attribute-instance, 'cd: :attribute-instance,

'cd: :attribute-instance-target, 'cd: :attribute-instance-attribute,
lcd: :store-attribute-facet, 'cd: :retrieve-attribute-facet,
'cd: :find-attribute-instance),

"cd)

APPENDIX R

A. GRAPH-IDIS-NODEL-PATC . RZ

66

*in-package("CD-UI")
*Iin-graxnmar('user)

function graph-ibis-model (objs: set(re::universe), title-string: string)
graph-basic-sn-model (objs,

find-attributes-or-complain (4'responds-to, 'supports, 'objects-to,
'questions, 'replaces, 'generalizes,
'specializes, 'is-suggested-by }),

title-string)

function graph-ibis-model-for-module (kbm: kb-module)=
let(ibis-nodes: set(ibis-node) = ixi (x) x in owned-objects (kbm)

& ibis-node W)1)
graph-ibis-model (ibis-nodes,

format (false, "IBIS Model for KB-module: -a",
name (kbm)))

function contains-ibis-nodes? (button: symbol, kbm: object,
p05: point, w: window) :boolean =
ex(x) (x in owned-objects(kbm) & ibis-node(x))

function invoke-graph-ibis-model-for-module (button: symbol, thing: object,

p05: point, w: window) = graph-ibis-model-for-module (thing)

t% Incorporated to work with attribute facets.

function show-sn-linkage (att: object, obj: object, att-value: any-type,

(if ist~at-vaue) dw:diagram-window, only-if-visible?: boolean)=

then
(if -Iength(att-value) > 3 & ~only-if-visible? then
(display-message(

format (false, "-a has -a values.-%Do you really want to graph them?",
name (att) ,length (att-value)));

(if yes-or-no-menu("Graph Them?") then
(enumerate v over att-value do show-sn-linkage(att, obj,v, dw,

only-if-visible?))))
else (enumerate v over att-value do show-sn-linkage(att, obj,v, dw,

only-if-visible?)))
else

let (existing-ai: attribute-instance
find-attribute-instance (obj, att))

let(existing-link: link =
if defined? (exist ing-ai)
then find-2-way-link (existing-ai, obj, att-value, dw)
else undefined)

(if defined? (existing-link)
then existing-link
else create-sn-link(att, obj, att-value,dw)))

function make-link-for-sn-object (att: re::binding,
obj: object, s:diagram-surface)

ri::drawable-object =
let (attribute-instance- ob-z.ýt. attri!,ute-AL,,tance=

find-or-create-attribute-instance (obj, att))
let (dw: diagram-window = arb (viewports (s)))
let (new-link =

if agi-window? (dw)
then make-default-agl-linko(

else default-make-link (dw))
set-link-label (new-link,

make-sn-label-for-certainty (attribute-instance-object));
links-for-spec-object (attribute-instance-object) <-
links-for-spec-object (attribute-instance-object) with new-link;
set-link-surface (new-link, s);
new-link

function make-sn-label-for-certainty (ai: attribute-instance): seq(string)

let (ai-target: re: :universe - attribute-instance-target (ai),
ai-attribute: re: :binding - attribute-instance-attribute (ai))

let (ai-certainty: any-type -
cd: :retrieve-attribute-facet (ai-target,ai-attribute, 'cd: :certainty))

(if undefined?(ai-certainty) then ai-certainty <- 1);
make-label (format (false, "-a: -a", name(ai-attribute), ai-certainty))

function create-sn-link (att: object, obj: object, att-value:object,
dw diagram-window)

with-screen-updates-disabled (dw,
let (surf: diagram-surface = surface-viewed (dw))
let (source-icon: icon - find-or-create-sn-icon(obj, surf,true),

target-icon: icon = find-or-create-sn-icon (att-value, surf, true),
sn-link: link - make-link-for-sn-object (att,obj,surf))

(if -agl-window?(dw) then
dynamic?(sn-link) <- true);
set-cd-target-arrow (sn-link, true);
set-cd-source (sn-link, source-icon);
set-cd-target (sn-link, target-icon);
(if agl-window?(dw) then
create-arced-link (sn-link, dw)));

refresh-window (dw)

function Make-Label-for-sn-icon (tn: object): seq(string)

let(obj-class: re::binding = instance-of (tn))
make-label(forrnat(false, "-a: -a", name(obj-class),

obj-nane (tn)))

%% IBIS nodes are boxes, assumptions are diamonds, others are rectangles.

function find-shape-for-sn-icon (obj: object) :symbol=
if remap-position(obj) then 'ri::box
elseif remap-issue(obj) then 'ri::box
elseif remap-argurnent(obj) then 'ri::box
elseif remap-assumption(obj) then 'ri::diamond
else 'ri::ellipse

function find-color-for-sn-icon (obj: object) :symbol=
let(cert: real = node-certainty(obj))
if remap-position(obj) then cw::rnagenta
elseif remap-argument(obj) then cw::turquoise
elseif remap-issue(obj) then cw::blue
elseif remap-requirement(obj) then cw::black
elseif rernap-decision(obj) then cw::magenta
elseif remap-constraint(obj) then cw::turquoise
elseif remap-design-object(obj) then cw::blue
elseif remap-assuxnption(obl) then

if cert <= 1.0 then cw::red
elseif cert > 1.0 and cert <- 2.0 then yellow
else cw::green

else cw::white

function make-icon-for-sn-object (f: object,surf: diagram-surface) :icon
let (new-icon - make-object('icon))
size-factor(new-icon) <- 1.0;
height-width-ratio (new-icon) <- .7;
icon-type (new-icon) <- find-shape-for-sn-icon (f);
label (new-icon) <- Make-Label-for-sn-icon (f);
icon-color (new-icon) <- find-color-for-sn-icon (f);
icons-for-spec-object (f) <-
icons-for-spec-object (f) with new-icon;
home-surface(new-icon) <- surf;

new-icon

function graph-basic-sn-model (e1-objs: set (object), rel-atts: set (object),
title: string) -

let (dw: diagram-window - make-object ('diagram-window),
surf: diagram-surface - make-object ('diagram-surface)

(if *use-color* then
do-color (native-window (dw) ,cda: :turquoise, cda: :black));

presentation-type (dw) <- 'sn-graph;
add-colored-icons-to-window (dw);
sn-window-related-attributes (surf) <- rel-atts;
diagram-window-spec-module (dw) <- owned-by (arb (sel-objs));
with-screen-updates-disabled (dw,

(window-title(dw) <- title;
window-region (dw) <- default-output-region 0;
surface-viewed(dw) <- surf;
mouse-handler (dv) <- 'sn-diagram-mouse-handler;
window-mouse-handler (dv) <- 'bring-forward;
setup-agl-window (dv);
agl-window?(dw) <- ueal*

make-sn-icons (sel-objs, rel-atts, surf));
show-all-links-in-view (dv, surf));

view-surface (dw, surf);
expose-window (dw)

function graph-remap-model (objs: set(re::universe), title-string: string)
graph-basic-sn-model (objs,

find-attributes-or-complain U' decision-modifies-requirement,
,assumption-certainty,
'node-certainty,

'requirement-generalizes-requirement,
'requirement-specializes-requirement,
'requirement-generates-issue,
'requirement-leads-to-decision,
'issue-generalizes-issue, 'issue-specializes-issue,
'issue-replaces-issue,
'issue-questions-issue, 'issue-suggested-by-issue,
'issue-suggested-by-position,
'issue-suggested-by-argument, 'position-responds-to-issue,
largument-supports-position, 'argument-objects-to-position,
'argument-depends-on-as sufpt ion,
'assumption-qualifies-argument, 'decision-resolves-issue,
'decision-selects-position,
'decision-generalizes-decision, 'decision-specializes-decision,
'decision-depends-on-decision,
'decision-implies-constraint, 'decision-leads-to-constraint,
'decision-generates-constraint,
"constraint-creates-design-object, 'constraint-removes-design-object,
'constraint-modifies-design-object,
'design-object-depends-on-constraint 1),

title-string);

let (dw: diagram-window = make-object (' diagram-window),
surf: diagram-surface = make-object ('diagram-surface)

add-colored-icons-to-window (dw)

function graph-remap-model-for-module (kbm: kb-module) =

let(remap-nodes: set(remap-node) f xI1x x in owned-objects(kbm)
&remap-node (x) 1)

let (kbm-remap-issues: set (remap-issue) - filter(remap-issue, remap-nodes))
let (kbm-remap-decisions: set (remap-decision) - filter(remap-decision,

remap-nodes))
let (kbm-remap-constraints: set (remap-constraint) - filter (remap-constraint,

remap-nodes))

let (kbm-remap-design-objects: set (remap-design-object) -
filter (remap-design-object, remap-nodes))

let (kbm-remap-assumptions: set (remap-assumption) - filter (remap-assumption,
remap-nodes))

let (kbm-remap-positions: set (remap-position)
filter (remap-position, remap-nodes))

let (kbrm-remap-arguments: set (remap-argument) =

filter (remap-argument, remap-nodes))
let (kbm-remap-requirements: set (remap-requirement)=

filter (remap-requirement, remap-nodes))

graph-remap-model (remap-nodes,
format (false, "REMAP model for KB-module: -a",

name (kbm)))

function contains-remap-nodes? (button: symbol, kbm: object,
pos: point, w: window' :boolean =
ex(x) (x in owned-objects(kbm) & remap-node(x))

function invoke-graph-remap-model-for-module (button: symbol, thing: object,
pos: point, w: window) =graph-remap-model-for-module (thing)

LIST OF REFERENCES

1. Baya, V., et al., "An Experimental Study Of Design
Information Reuse," PROCEEDINGS OF THE DESIGN THEORY AND
METHODOLOGY CONFERENCE, p. 141,1992.

2. Endoso, J., "House Takes Tough Stance on DoD Budget."
Government Computer News, 20 July 1992.

3. Martin, J., and McClure, C., Software Maintenance: The
Problem and its Solution., Prentice Hall, Englewood Cliffs,
New Jersey, 1983.

4. Ramesh, B., Dhar, V., "Supporting System Development By
Capturing Deliberations During Requirements Engineering,"
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, Vol. 18, No. 6, p.
498, June 1992.

5. Green, C., et al,"Report on a Knowledged-Based Software
Assistant," Rome Air Development Center report RADC-TR-83-195,
August 1983.

6. White, D.A., "The Knowledge-Based Software Assistant: A
Program Overview," PROCEEDINGS OF THE SIXTH ANNUAL KNOWLEDGE-
BASED SOFTWARE ENGINEERING CONFERENCE, p. 2, August 1991.

7. Rome Air Development Center, An Overview of RADC's
Knowledge Based Software Assistant Program, by D.M. Elefante,
p. 8, 1988.

8. Debellis, M., "The Concept Demonstration Rapid Prototype
System", PROCEEDINGS OF THE FIFTH CONFERENCE ON KBSA, p. 222,
1990.

9. White, op. cit., p. 3.

10. Jullig, R., et al., " KBSA Project Management Assistant,"
Rome Air Development Center report RADC-TR-87-78, July 1987.

11. Elefante, loc. cit., p. 8.

12. White, op. cit., p. 3.

13. White, op. cit., p. 4.

14. Goldberg, A., et al., "KBSA Performance Estimation
Assistant Program Specification," Documentation, RADC Contract
F30602-86-C-0026.

71

15. White, op.cit., p. 5.

16. White, op. cit., pp. 3-4.

17. Elefante, op. cit., p. 14.

18. Rome Air Development Center Report RADC-TR-90-349, KBSA
Framework, by Larson, A., et al., December 1990.

19. Johnson, et al., "The Knowledge-Based Specification
Assistant, Final Report", Rome Air Development Center,
Contract No. F30602-85-C-0221, 1988.

20. White, op. cit., p. 5.

21. Markosian, L., Abrai'do-Fandino, L., and Katzman, S.,
Modern Software Engineering Foundations and Current
Prospectives, p. 478, VonNostrand Reinhold, 1990.

22. Markosian, op. cit., pp. 450-452.

23. DeBellis, M., "The Concept Demonstration Rapid Prototype
System," PROCEEDINGS OF THE FIFTH CONFERENCE ON KNOWLEDGE-
BASED SOFTWARE ASSISTANT, pp. 211-212, September 1990.

24. Baya, V., et al. op. cit., p. 142.

25. Ramesh, B., Dhar, V., "Supporting System Development by
Capturing Deliberations During Requirements Engineering". IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING. Vol. 18, No.6, June
1992.

26. Rittel, H., "Dilemmas in a General Theory of Planning",
Policy Science, vol. 4, pp. 155-169, 1973.

27. Andersen Consulting. Software User's Manual: KNOWLEDGE-
BASED SOFTWARE ASSISTANT CONCEPT DEMONSTRATION SYSTEM,
Chicago, January 1993.

28. Reasoning Systems. REFINE USER'S GUIDE. Palo Alto, Ca.
1990.

29. Reasoning Systems. op. cit., p. 3-203.

30. Reasoning Systems. op. cit., p. 3-15.

31. Reasoning Systems. op. cit., p. 3-113.

72

DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. B. Ramesh, Code AS/RA 5
Naval Postgraduate School
Monterey, California 93943-5002

4. Roger Stemp, Code CS/SP 1
Naval Postgraduate School
Monterey, California 93943-5002

5. Lieutenant Commander Frank Hughe- 2
809 First Street
Watervliet, New York 12189

6. Captain Steven C. Kendall 2
2538 Eisenhower Avenue
Ames, Iowa 50010

7. Director, Training and Education 1
M=CDC, Code C46
1019 Elliot Road
Quantico, VA 22134-5027

73

