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AUTHORS' SUMMARY

A solution has been found for the problem of flow about a profile by an ideal

incompressible liquid in a tunnel, the upper and lower walls of which may have varying

porosity, depending on whether gas flows in or out of the tunnel. Calculations have been

made of the distributions of pressure on the walls of the tunnel and on the profile located at

an angle of attack on the axis of symmxetry of the tunnel. Acco,-u' or
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INTRODUCTION

1 It is assumed that in the working section of the tunnel the flow is incompressible and

irrotational or potential, and that the upper and lower perforated walls represent a tunnel of

infinite length. The porosity coefficients of the upper and lower wall are f+ and f-

respectively, outside the tunnel is surrounded by a cavity, in which the pressure is constant

(Fig 1). The profile is situated on the mean line of the tunnel, the angle of inclination of the

contour of the profile to the axis of the abscissa h±(x) are considered to be small: (h+(x) -

for the upper part of the profile, and h-(x) - for the lower part).

The region D in which a solution of the problem is sought, represents the interior

of a two-dimensional tunnel having a width H, with a slit along the interval [0, 1], where a

slender lifting profile is located.

In a linear formulation, by -ransferring the bourdary conditions to the axis x , wc

obtain

V(x, + 0) = h+(x), V(x, -0) = h-(x) , (1)

where V is the perturbed vertical component of velocity, referred to the velocity of the

incident flow. The conditions on the walls

H + +
y = T :xE(---,x), V = R1 U; xe(x 1 , o), V = -R2U; (2)

H V = RU; x ( ), V JRU
y -= T : x 2 )= 22 (x2; =

where U is the perturbed horizontal component of the component of velocity, referred to

the velocity of the incident flow, xi and x2 are the coordinates of the points at which the+ +-

porosity is equal to 0. R1 , PR, R1, R2 are the parameters of porosity dependent upon

the coefficient of porosity f+ and f- , and also on whether the gas flows into or out of the

tunnel. Fig 2 gives the results of the investigation of the porosity of porous panels in Ref 4.

The solution of the problem posed is reduced to finding the analytical function

0(z) = U - iV of the complex variable z = x + iy in the region D which satisfies the

boundary conditions (1) and (2).

2 Let us break down the procedure for obtaining a solution into several stages:

(a) Finding in the region D an analytical function I(2) = LR - iL1 which satisfies the

boundary condition (2) solely on the lines y± = ± H while being continuous across the

section xe[O, 1], y=O.
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Let us transfer the strip in the plane 2, bounded by the lines y! - ± H, by the
w 2

conformal transformation w = i exp (fr z) , into the upper half-plane w = + iTI (Fig 3a).

For L(w(z)) the conditions (2) on the true axis in the plane w assume the form

t(e- I,(xI)), LI = -R LR; (3.1)

4e (4 1l(x 1),0), L1 =-R1LR; (3.2)

t(0, A 2(x2)), LI = R LR; (3.3)

tre (42(x2), a.), LI = R LR. (3.4)

Let us write the analytical function L(w) in a general form:
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L~w) =P~w)L(w) -- (w - kl• (wý2 (w - j, Pw= a,

where a is a consplex constant, P(w) and Q(w) are arbitrary polynomials with real

coefficierrs which are independent of conditions (3.1 to 3.4), and y1, Y2, Y3 are real

constants,

Let us determine

L(w) = LR- iLl = 1 k - '3 1 ý 'Y2 1 k _ k2lyl Q(t) a

Q(4)

from the condition (3.4)

a = exp(-i arctg R2) ; for (0, ), ' 1 = 0

L(w) = LR-iLI = __-- t[73i ['2[1-4 2 _.'J P(t) e xp(ir7 Y ++iarctgRj)

Q(ý)

from the condition (3.3)

= I(arctg R2- arctg R7) + n1, where n1 = 1, 0; for •, (ý1 , 0)
Tj =• , ,
11=0

L(,) = LR - il = 14--i41'3 1 Y 214 -2lyl P(t) exp(iyI + iwy2 +

Q(E)

From the condition (3.2)

S(arctg R + arctg R) + n2  where n2 = -1, 0; for k(-, 41)

L(w) =-LR - iL = I k - 4 I3l 14I2 14- 421y P2• exp(iny r2+iy
Q(4)

+iarctg R2)

From the condition (3.1)

S= i(arctg1ýarctgR)+n 3  where n3  -1,0;
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n, = n2 = n3 = 0 from the condition of smoothness of the solution in the case of non-

perforated walls (R = 0).

On the section 4'e [ 1, d] , i= 0 , d =exp( H) in the plane = '+ ill' (see
H

Fig 3b) the function L(ý(w (z))) in the general case has a complex value

L(ý(w(z))) = I L I exp(i•PL) (4)

where qL = + (P,

(PL= ARG[(i4 '- 1 ý3] + ARG[(i4sZ)2] + ARG[(iN'- ý2)]']

,._ARG •P4ý
0T ý) '

(b) Let us find an analytical function F(ý) such, that in the plane

= exp(A. z) = -w2 = + in' , having two cuts along the real axis ý'e (-o, 0) and

C= 1[1, d = exp'ý -)] ,it satisfies the fellowing

'E(--oo, 0)' = ±0, ImF = 0

'= e[1,d] 1i' = ±0, ImhF = -'PL

In general form the function F(C) which satisfies condition (5), assumes the form:

VakV2k kI-d 1k 2-V2 tk 3 -V/2

F(C) = A- (C _ 1 ) 2 - (d- PL(t) - 1)(d - t) dt +

+ PO + P, C

where k1 =0, I ; k2 =0, I ; k3 =0, l ; p0 =const, pl=const.

From this it will be seen that for no values of kj can the condition of boundedness

at all the points indicated be satisfied, as a minimum at one point of the four indicated

is not limited, unless an additional condition is imposed on 4PL for

ki +k 2 +k 3 = {1, p0 =p 1 :=.
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d d

qJ.(t) dt = (L0(t) di (6)

1 1

Taking this into account we demonstrate that with the condition (6) for the integer

positive values k 1 , k2 , k3 ,such that kl+k 2 +k 3 = { PO po Ipl =0' the following

equation is satisfied

d
¢•~ 4 _¢- C1 f (,0÷ + . dt

0 .J d --t Tti-•' (t -

d

= 1 1 )1/2 -(d C )/2k(4 + (P.)tk -1 2 (t 1)k (d 0 k3 dt (7)0 t -

It is sufficient to prove the correctness of equation (7) for the case k, = k2 0,
k3= I, since the remaining ones are similar.

Let us examine the difference of the left-hand and right-hand parts in expression (7):

d

dt
1 ýr f OLO +TO vt_4F -- I -d+t (t -

+ dp)-dMdS (4PLO +~ (P.)d -
X

4 1 1- t7 t-f'L

d

×- • ' d•. 0 =0,

which in fact had to be demonstrated. Thus, on the condition (6), the required analyticr'

function assumes the form
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d

F(ý) =_ -- I 4d___7___

(c) Let us examine the analytical function T(ý) = L(ý) exp (F(ý)) The function

T(ý) has discontinuities along the line ý'e (-ao, 0), '1' = 0 and on the section

4'e [1, d] , il' = 0. It is easy to see: T(ý) = TR - iT1 satisfies conditions on the line
4'E (--c, 0), 11' = 0 which are analogous to the boundary condition (3) for L(ý) , while

on the section k'E [1, d], Tj' = 0 the function T(ý) is real.

Let us introduce a further subsidiary function 0' = O/T ; then taking into account

stages (a) and (b) for (D' the boundary conditions in the plane C assume the form:

11' = ±0•, 4'r (-, ,), Im 4) = 0 ; (8)

±' = 0, 4E [I, d], Im 4)' = -h±(w)t(4) I

where the sign +>- corresponds to the upper edge of the slit, and the sign <->

corresponds to the lower one.

Let us represent the analytical function W' as the sum of the symmetrical and anti-

symmetrical analytical functions: )' =A 1' +0•' such, that
S A

DA(k, T') = U A - iVA, UA(4', 11') = -UA(, -To) ,

VA(', A :) - VA(', -,

s = Us iVs% Vus('' ') = -Vs (', - T) ,

us (4', TO') = us(4', - In')

Thus for QA and QS condition (8) will give

O - , ý'e(-@,0), Im =0 0 ;

±:O, 4'e[1, d] , Im A 0' = + L 222;
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±O 4'e (--"0), Im '= o{ l±O, =' ,d m0 - '12

Taking into account the Zhukovskii condition on the trailing edge of the profile and

the boundedness of the function to infinity, in accordance with [71, we obtain

d

+ -- .3_
d

~2 I T• -11
The general form of the solution for CID assumes the form

d

where Mn(0) is a polynomial with real coefficients. It is easy to see that the limit solution(4) --40, x -4 ±b) may be obtained solely on condition that I w)/Q(w) = (Ai dt+ 1

and Mn() ff cO ff const. The magnitude of the constant cO is determined from the
condition of absence of a pole at the point • -•

The associated complex velocity may be written in the following form:
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= U-V = (~ 4 ~)Y 3 (,~) 2 ~ exp(i arctg

d

~~ dt j
x x h((P(F + h/x (F ) di

d

x d.4JpF' - h/exp(p('1TT di +

where ~ ~ ~~ I Lxp( t)~ I = e.-epp

dd

+~/xp-~ - I~x(F, dt+sign(A ) +hxx(t+c

wher dx +L ZIiiF (hexp(FLF 0 )bexp L )4 7

xA 4t t~ - 0 4d (9.2

R fýFsN, S-_l F - (s- 0L TO02
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dfh+/exp(-F 0) - hdex(F0

lL(t)li• t-+ - dt

II

d
h d/exp(-F0 ) - dt +-

f I L(t) (6 + =02)

+fh/x(F -:-O h-/exp(Fo
-- h dt-(0 t~

d
d + / 0 h+/exp(-Fo) + h-/exp(F0 )

approximation eq-A (9,1) eq-A (9,2)
(0) (0) A cn)

X1 ,

equations (9,3 - 9,4)

x(n) l (n+1)

x(n pr = (n ll)2 x2

xJn~l) _xln)ll<

No •x(n+l) _x(2n) c< r

i Yes

S X1, x2, A, Co

Calculation of pressure
on profile and walls

of tunnel

Fig 4
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Conditions (9.3) and (9.4) for the determination of x, and x2 automatically follow

from the circumstance that during passage along the wall through the points x1 and x2 the

pressure coefficient and the vertical component of velocity change their sign.

In essence, solution of the problem is reduced to determining the four constants A,

co, x1 , x2 - A diagram of the solution of the system of equations (9.1) to (9.4) is given

by Fig 4.

The pressure coefficient on the porous boundary is equal to

c 2U GIL2

ex h-4'exp4d -7 h ep 0)d

dd

x f h+/exp(--F°)- h-/exp(F°)i•t )It- t+

L(t) I (t -

d

+4~T Z f h + exp-F~O)-hhk/'xp(Fo) dtcJ

where cos (-arctg R)

cos (-=tg R; + rY1)

Cos (-`artg 'q + 7C(71 + 72))

cos (-rtg R+ + 10y + Y2 + 73))

C= C(x i H x>x2 Lower wall

+ i HD x < xI Upper wall

The pressure coefficient on the profile is equal to
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C= -2U± Lf((x+iO) x

d

"xexp- f _••Z••q'-1 "•d-t "4•I(t 7-1 x

d

"C h +/exp(-F0 ) - h_/exp(F0 ) _f I IL(t) I 4t"d'- 7(t-•)d+

d

±r•- .• s f h+/exp(F 0 )- h-/exp(F0 ) 4 ''"dt+c

f I L(t) I ýF" dd- t (t - 0
1

where the sign <<+* denotes the upper surface of the profile, and 4<-> the low>r.

3 Calculations of the pressure on the profile, which were performed for comparison in

the simplest case (symmetrical problem of boundary conditions on the upper and lower

walls, or H -+ -c), gave a good agreement with the results of the calculation made in

Refs 1, 2 and 5.

Figs 5 and 6 show calculations of flow about a plate at an angle of attack of 30 in a

tunnel (H = 6) dependent upon boundary conditions in porous walls.

As follows from Refs 3 and 4, symmetrical assigning on the upper and lower walls

of the tunnel of the parameter of porosity R corresponds to a differing coefficient of

porosity of these walls.

As a rule, in wind tunnels, the coefficient of porosity is identical for the upper and

lower wall. As will be seen from the calculations performed, t6e non-symmetrical assigning

of the boundary conditions on the porous surface perceptibly changes the flow picture. A

change over the length of the tunnel of the parameter of porosity on the upper wall has a
slight effect on the distribution of pressure on the boundary, while it is practically absent in

the region of location of the plate.

Therefore, ;n the case of an identical coefficient of porosity of the walls it is
necessary to take into account the difference in the parameter of porosity dependent upon the

direction of flow of the gas, that is, into the tunnel or out of it.

The author wishes to thank V.M. Neiland and O.K. Semenov for useful

discussions.
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