
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A273 169

DTIC 0. 2S ELECTE

r-WV 3 01993

THESIS
AN XI I GRAPHICAL INTERFACE FOR THE

REPRESENTATION AND MAINTENANCE OF PROCESS
KNOWLEDGE (REMAP) MODEL

by

Joseph A. Martinelli

September, 1993

Thesis Advisor: Balasubramaniam Ramesh

Approved for public release; distribution is unlimited.

9C13-292 6 4
93 £1111111 2'J11 1i1381111

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704

Public reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1993 Master's Thesis September 1991 to
September 1993

4. TITLE AND SUBTITLE AN XI I GRAPHICAL INTERFACE FOR 5. FUNDING NUMBERS
THE REPRESENTATION AND MAINTENANCE OF PROCESS
KNOWLEDGE (REMAP) MODEL

6. AUTHOR(S) Joseph Anthony Martinelli

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING

Naval Postgraduate School ORGANIZATION

Monterey CA 93943-5000 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.
SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited. A

13.
ABSTRACT (maximum 200 words)
The REpresentation and MAintenance of Process knowledge (REMAP) model provides support to

various stakeholders involved in software projects by capturing the history of design decisions. This
knowledge can assist the Department of Defense (DoD) in driving down the development and
maintenance costs of large scale software systems. It is extremely important to have user friendly
mechanisms to aid in the use of the REMAP model. This thesis implements a graphical user interface
(GUI) under X1I Windows using the Andrew Toolkit. This implementation facilitates the
instantiation, incremental modification, and ad-hoc querying of REMAP model primitives.

14. SUBJECT TERMS X Windows, Andrew Toolkit, REMAP, ConceptBase, 15.

GraphBrowser. NUMBER OF
PAGES 62

16.

PRICE CODE

17. 18. 19. 20.
SECURITY CLASSIFI- SECURITY CLASSIFI- SECURITY CLASSIFI- LIMITATION OF
CATION OF REPORT CATION OF THIS PAGE CATION OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified UL

•ISN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std- 239-18

Approved for public release; distribution is unlimited.

An XI I Graphical Interface for the REpresentation and

MAintenance of Process Knowledge (REMAP) Model

by

Joseph A. Martinelli

Lieutenant, United States Navy

B.S., Marquette University

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL

September 1993

Author: _ _ _ _ _ _ _ _ __"

-Joseph A. Martinelli

Approved by: &_•JJCW

B. Ramesh, Thesis Advisor

Roger Stemp, Associate Advisor

David R.iDepartment of Administrative ience

ABSrRACT

The REpresentation and MAintenance of Process knowledge (REMAP) model provides support

to various stakeholders involved in software projects by capturing the history of design decisions.

This knowledge can assist the Department of Defense (DoD) in driving down the development and

maintenance costs of large scale software systems. It is extremely important to have user friendly

mechanisms to aid in the use of the REMAP model. This thesis implements a graphical user interface

(GUI) under XlI Windows using the Andrew Toolkit. This implementation facilitates the

instantiation, incremental modification, and ad-hoc querying of REMAP model primitives.

DTIC QUYALM INSPECTED 5

AcceSion For
NTIS CPA&I
DiTic fE3
Uc3; I a -JJS o -.........
By
DiL . tbtion

Avai:abiity Codes

Dis &---

IIIecoa

TABLE OF CONTENTS

I. INTRODUCTION 1

A. GENERAL . 1

B. THESIS OBJECTIVES 3

C. APPLICABILITY TO THE DEPARTMENT OF DEFENSE . 3

D. SCOPE AND PREPARATION 4

E. ORGANIZATION OF THE STUDY 5

II. OVERVIEW OF X WINDOWS AND THE ANDREW TOOLKIT . . 6

A. X WINDOWS IN GENERAL 6

1. Environment 6

2. The Client-Server Architecture 7

B. THE ANDREW TOOLKIT 9

1. Object Orientation 10

a. Compilation of an Andrew Application . 10

2. Dynamic Loading 11

a. The runapp Program 12

3. Insets 13

III. REMAP ENVIRONMENT 15

A. REMAP BACKGROUND 15

1. The REMAP Component 15

2. What Makes Up REMAP? 17

iv

B. REMAP IMPLEMENTATION WITHIN CONCEPTBASE 18

1. GraphBrowser Utility Function 18

C. PRIOR WORK 19

1. Noted Deficiencies and Possible Solutions 20

IV. IMPLEMENTATION DETAILS 21

A. STANDARD GRAPHBROWSER INTERFACE 21

B. CREATING THE NEW ANDREW TOOLKIT EXTENSION . . 22

1. Writing the Andrew Class File 23

a. Class Header File 23

b. The Class C File 23

2. Compiling the New Andrew Class 25

a. Setting Environment Variables and Creating

the Imakefile 25

b. Makefile Generation and Code Compilation 26

C. EXTENDING THE GRAPHBROWSER UTILITY FUNCTION . 26

1. Modifying the .graphbrowserinit file . . 27

a. Menu Item Description 27

b. Graphical Item Description 29

2. Creating The New REMAP Model 33

3. Loading the RemapEDGE and colors Models . 36

D. HYPERMEDIA AND AD-HOC QUERY EXTENSIONS 36

1. Hypertext Editor 37

a. Sample Session with the Hypertext Editor 37

2. Ad-Hoc Querying 40

a. Sample Session Using Ad Hoc Queries . 41

v

V. CONCLUSIONS AND RECOMMENDATIONS 43

A. PROGRAMMER REQUIREMENTS 43

B. HELPFUL REFERENCES 43

C. RECOMMENDATIONS 44

D. CONCLUDING COMMENTS 45

APPENDIX A : GRAPHBROWSER TUTORIAL 46

APPENDIX B : REMAP.C CODE 50

LIST OF REFERENCES 53

BIBLIOGRAPHY 54

INITIAL DISTRIBUTION LIST 55

vi

I. INTRODUCTION

A. GENERAL

The term graphical user interface (GUI) describes a user

friendly interface that makes use of windows, menus, and other

graphical objects and that, to a large extent, allows users to

interact with the application by pointing and clicking mouse

buttons (Barkakati, 1991, p. 92). In recent years, the demand

for user friendly GUI software applications and bit-mapped

graphics workstations necessary for their use have increased

dramatically. These graphic intensive systems place a burden

on developers due to the complexities of programming for bit-

mapped screens (Brown, 1989, p. 1). The extensive use of the

GUI interface has increased the complexity of programming

tasks. Previously, each vendor had to develop a graphical

interface for their particular hardware. The need to develop

a different graphical interface for each hardware vendor was

overcome by the X Window System (Jones, 1989, p. 1).

Another recent development is the rapid increase in

multimedia systems. The essence of multimedia programs is

that they permit the free intermingling of various ways of

representing information (Borenstein, 1990, p. 2). This

information can be full-motion, full-frame video with audio,

fax, line drawings, text, etc. The Andrew Toolkit (ATK) is a

1

C-based toolkit which is used to aid the programmer in the

development of multimedia programs. The Andrew Toolkit runs

under the X Windows environment, allowing a wide variety of

multimedia applications to be developed. The X Window System,

or "X"I as it is commonly called, provides a generic windowed

graphics capability as a network service, accessible to any

machine on the wire (Wolfe, 1992, p. 3). This allows for the

elimination of hardware specific GUIs due to its portability

across different platforms.

Support for various stakeholders involved in software

projects can be provided by capturing the history about design

decisions in the early stages of the systems development life

cycle in a structured manner (Ramesb, 1992, p. 498). A

conceptual model known as REMAP (REpresentation and

MAintenance of Process knowledge) has been developed to allow

the capture of knowledge gained from the design decisions made

during the development process. This "captured" knowledge is

known as process knowledge and its various benefits to the

developers and maintainers of a system will be discussed in

Chapter III.

This thesis is based on programming experience gained

while developing a GUI for the REMAP model in the X Windows

environment using the Andrew Toolkit.

2

B. THESIS OBJECTIVES

The primary objective in this research is to develop a

graphical interface to the REMAP model. A user friendly GUI

is essential for the successful use of a design rational

management system. The REMAP model is implemented within

ConceptBase V3.2, an experimental knowledge base management

system developed at the University of Aachen. The

implementation will extend the X-based application known as

GraphBrowser that is provided within ConceptBase to

incorporate REMAP specific functionalism. This implementation

permits instantiation, modification, and querying of REMAP

primitives using a graphical user interface.

There were two tasks necessary to achieve the primary

objective of this thesis project. The first part was to

modify an earlier C language implementation to allow

customizable menu options for REMAP objects within the ATK-

based GraphBrowser utility program. This would enable easy

retrieval and manipulation of instances of REMAP objects. The

second part was to incorporate functionalities for interactive

queries, develop hypermedia links to REMAP objects, and to

customize the GraphBrowser to display different REMAP objects

with distinct characteristics.

C. APPLICABILITY TO THE DEPARTMENT OF DEFENSE

There is a need within DoD to drive down development and

maintenance costs on all software development projects. The

3

REMAP model provides a vehicle that documents and maintains

process knowedge which can be used to develop software more

efficiernAt-1.y and economically as well as helping the

maintainers of large systems undeistand their systems better,

facilitating reduced maintenance costs over the life of a

system. The incorporation of the REMAP model within the

GraphBrowser utility function results in a program which is

easily ported across different workstations, thus allowing its

wide use in DoD software development projects.

D. SCOPE AND PREPARATION

The scope of this thesis is limited to a detailed review

of the X Windows environment, the Andrew Toolkit, the REMAP

model, and the ConceptBase program. A review of the previous

work involving this project is also included. The remainder

is a description of the design and implementation involved in

extending the GraphBrowser's functionalities to incorporate

the REMAP capabilities. Also addressed are the implementation

of an ad hoc querying capability to access the selected

knowledge base and the use of hypermedia to capture and

maintain process knowledge.

Advanced knowledge of the C programming language and a

basic understanding of Xll Windows and the Andrew Toolkit are

required for this work. Preparatory work included an

intensive course on C at the University of California at Santa

Cruz, detailed review of literature on Andrew and extensive

4

e-mail exchange with the ConceptBase Development team at the

University of Aachen, in Aachen, Germany.

Z. ORGANXZATION OF THE STUDY

Beyond the introduction and a chapter on conclusions, this

thesis consists of three major chapters. Chapter II provides

an overview of the X Windows environment and the Andrew

Toolkit. Chapter III will elaborate on the REMAP model and

discuss some of its applications. A discussion of the

GraphBrowser utility application and the ConceptBase knowledge

base management system are also included as is a review of the

background work accomplished on the REMAP implementation.

Chapter IV will focus on the specific steps necessary to

complete the REMAP model's integration into the GraphBrowser

using the Andrew Toolkit.

5

II. OVERVIEW OF X WINDOWS AND THE ANDREW TOOLKIT

A. X WINDOWS IN GENERAL

In today's environment in which multiple vendors supply a

wide variety of workstations, it is the consensus of the

programming industry that there is a need to develop and field

a windowing system which is compatible with a variety of

machines. This thinking has become wide spread in the

graphics workstation industry and has led to what is now known

as the X Window System, a standard set of library routines

which are implementable on all graphics workstations. The

following is a description of how this system is designed and

implemented as well as how several of the available toolkits

are used to access the standard library routines.

1. Environment

The entire X environment is Gimply a series of layers

built upon a base window system (see Fiqure 1). To interface

with the remainder of the X Windowing system, the base window

system must use the X network protocol. As shown, the network

protocol is the only interface to the base window system

(Jones, 1989, p. 2). Thus, software such as window managers

and session managers are treated as application software which

receive no special or privileged interfaces.

6

High-l~e•e X TooiD~t APcto

Low-level pcopmmming hIttface (MI)

X Netwutk Protocol

Base Window System

Figure 1 The X Environment (Jones, 1989, p. 2)

To access the network protocol, application programs

use a C-language subroutine package known as Xlib. Xlib

removes some of the complexities which could be involved when

communicating with the network protocol ana thus the base

windowing system. To further mask some of the complexities of

interfacing with the network protocol, high level X toolkits

have been developed. These high level toolkits provide the

routines to implement objects such as buttons, lists, and

menus which can be used to build a graphical user interface

(Barkakati, 1991, p. 12).

2. The Client-Server Architecture

The purpose of the X Window System is to provide a

network-transparent and vendor-independent operating

environment for workstation software (Jones, 1989, p. 4). The

network transparency mentioned above refers to the ability of

7

an application to run on whatever central processing unit

(cpu) is convenient and display that output on the desired

machine. This transparency is achieved through the use of a

well defined protocol, called the X network protocol,

(Barkakati, 1991, p. 5).

The X network protocol uses a programming model known

as the client-server model (Barkakati, 1991, p. 5). The

process executing on your local workstation is called the

server and manages the graphics output and the input from the

keyboard and mouse, while the client is the process which

utilizes the capabilities of the server workstation

(Barkakati, 1991, p. 7). It is important to note that the

definitions of "client" and "server" are just the opposite of

those used in LAN environments and mini-computer environments

(see Figure 2).

8

(Remo X emnts)

Lamcl c€a Rembt qyu 1i'e cpu

n. T e Aal X servey)

Figure 2 X Client-Server Architecture (Jones, 1989, p. 4)

B. THE ANDREW TOOLKIT

The Andrew System is a multi-function system developed at

Carnegie Mellon University. It is composed of three main

components:

1. The Andrew Message System.

2. The Andrew Help System.

3. The Andrew Toolkit and Application Programs.

This section will focus on the Andrew Toolkit and some of the

attributes which make it useful to our work.

9

The Andrew Toolkit is a system written to assist

programmers in designing and building multimedia programs and

was implemented using the C programming language. Although

the C language itself does not support the object oriented

structure which is desirable for multimedia programming, the

Andrew Toolkit includes an inheritance mechanism to allow true

object oriented programming. Also included within the Toolkit

are a preprocessor to allow high-level abstractions to be

compiled and a dynamic linking mechanism.

1. Object Orientation

To achieve object oriented programming, the Andrew

Toolkit has established object classes. Essentially, an

object class is an abstractly defined generic object. Thus,

objects used in the programming of the Andrew Toolkit are

actually specific instances of an object derived from a larger

class. An Andrew Class is composed of two files: the standard

C file (".c") containing the class data and methods, and a

class header file (".ch") containing the class specification.

a. Compilation of an Andrew Application

The class header file is loaded into the ATK

preprocessor, a program known as "class." The class program

takes ".ch" files as input and produces two files as output:

"* The ".eh" (exported header) file is included by the class
implementation.

"* The ".ih" (imported header) file is included by any other
code that wants to use a class. (Borenstein, 1990, p. 20)

10

Since ".c" files are not loaded into the preprocessor, there

are no intermediate versions of the source code to be dealt

with prior to compilation. This allows changes to be easily

made to the source code besides simplifying the debugging.

The ".c", ".eh", and required ".ih" files are

loaded in to a standard C language compiler (cc) which

generates an object file (".o"). The object files are loaded

into a program called "makedo" which outputs a dynamically

loadable ".do" (dynamic object) file. The resultant ".do" can

then be loaded by an application at run time.

2. Dynamic Loading

Dynamic loading is the ability to load a part of your

program into memory after the main program has been initiated.

This allows each class which the program is using to be

independently loaded as needed. This results in several

important benefits:

1. It allows programs to be linked in substantially
shorter periods.

2. It permits easier code sharing.

3. It makes the ATK as a whole more easily extended or
modified because it does not require recompiling of the
basic ATK code.

4. It results in a great gain in run-time efficiency on
most versions of the UNIX operating system. (Borenstein,
1990, p. 21)

However, care must be exercised by the user when shared header

files change. All objects which depend on those header files

must be recompiled.

11

a. The runapp Program

The primary program to manage dynamic loading in

the Andrew Toolkit is the runapp program. It is a single

binary program which holds all of the toolkit objects

together. For an application to be run within the ATK, the

runapp binary program must first be started and then the

desired specific applications dynamically loaded. If runapp

is to be run under an application known as "remap", a symbolic

link is formed between remap and runapp. A subclass of remap

called "remapapp" is located within the dynamic object file

remap.do and is then dynamically loaded. Figure 3 illustrates

the complete compilation and dynamic loading process.

Source Files wiMMh dynic

(einap.& 1990,mw. 500 25

U&M4 by a".r iiedu

Exeutble File iMMM.4o, rUnspp

LSymbolic finkah

Figure 3 ATK compilation process with dynamic loading
(Borenstein, 1990, p. 25)

12

3. Insets

In order to facilitate the sharing of an object among

a wide range of applications, the Andrew Toolkit implements a

something called the inset. An inset is actually a pair of

ATK objects conforming to a specified set of conventions

designed to make them easily used by almost any Andrew Toolkit

application (Borenstein, 1990, p. 56). The two objects which

make up an inset are the data object, which is a subclass of

the basic class called dataobject, and the viewing object,

which is a subclass of the basic class called view.

Basically, the data object contains the data which makes up

the object to be displayed. The viewing object contains the

information necessary to actually display the object as well

as the specific ways a user can interact with and manipulate

the object.

Insets provide a number of advantages. The use of

insets allows multiple views to be attached to a single

object. For instance, one view could look at a series of

numbers as a table while the other view could look at the

series of numbers as a pie chart. By associating multiple

views with a common object, a programmer can modify one

visible object and any other visible object associated with

the common object will also be modified. This flexibility

enables the programmer to use an object in a number of

different programs just by altering the dataobject/view

relationship. The use of insets provides a very modularized

13

programming environment which promotes code reusability. This

also encourages application development because elaborate and

complex application objects are replaced by smaller, simpler

objects which can be more easily built and reused (Borenstein,

1990, p.57).

For a more complete description of the characteristics

of X Windows and of the Andrew Toolkit, refer to Nabajyoti

Barkakati (Barkakati, 1991), Oliver Jones (Jones, 1989), and

Nathaniel Borenstein (Borenstein, 1990).

14

III. RzaP ENVIROMMNT

A. RUKAP BACKGROUND

The focus of the REMAP project is the capturing of history

of system development in the upstream part of the life cycle

(Ramesh, 1992, p.498). The history which REMAP captures

concerns the design decisions/rationales which shape the

design of the software development project. This design

rationale is typically lost in the course of designing and

changing a system (Ramesh, 1992, p. 498). Some uses of the

process knowledge captured by the REMAP model and used by

system designers, system maintainers, and system users are:

"* facilitate communication of information sharing among
various stakeholders in a project.

"* reduce system maintenance efforts by maintaining knowledge
at the requirements and design rationale level.

"* allow end users to understand how exactly the design-
deliberation process addresses their requirements.
(Ramesh, 1992, 508)

1. The REMAP Component

The REMAP conceptual model incorporates the Issue

Based Information System (IBIS). The IBIS method was

developed by Horst Rittel and is based on the principle that

the design process for complex problems is fundamentally a

conversation among the stakeholders in which they bring their

respective expertise and viewpoints to the resolution of

15

design issues (Conklin, 1988, p. 304). IBIS was used at the

Microelectronic Computer technology Corporation (MCC) in the

Design Journal research project as a way of representing

design deliberations in large design projects (Ramesh, 1992,

p. 499). The IBIS method utilizes a set of three primitives

and relationships among them in a rhetorical model for

representing the conversation process.

The three primitives comprising the IBIS model are

labelled Issue, Position, and Argument (see the region within

the dashed line in Figure 4). An Issue is a question or

concern which requires discussion before the problem solving

can proceed. A Position is a statement or assertion which

responds to an Issue. An Argument is a statement that

supports or objects to a Position. An Argument can have more

than one Position associated with it. (Ramesh, 1992, p. 500)

16

2. What M0GaketUIEMAN

400MALw -MM

The -iia Ismeantu hISAWWV

LS37AW ¶

aM m repel

Figure 4 REMAP Conceptual Model (Ramnesh, 1992, p.501).

2. What Makes Up REMAP?

The initial IBIS model was meant to capture the

conversations/discussions between stakeholders in a project,

but it did not recognize the context in which "argumentations"

occurred and it did not take into account the results of these

"argumentations" (Ramesh, 1992, p. 500). The REMAP model

incorporated five additional primitives: Requirement,

Decision, Assumption, Constraint, and Design Object, whose

relationships can also be seen in Figure 4. When a system is

being designed, the end goal is to satisfy the user's

requirements. Thus, Requirement is the embodiment of what the

17

users desire. The REMAP model shows that Requirements are

subject to change after deliberation. REMAP incorporates

Assumptions to allow for mechanisms to evaluate the

applicability of an Argument in a given situation. A Decision

represents the resolution of one or more Issues through which

designers establish constraints or commitments that must be

accounted for in the final design. The final design is

labelled Design Object.

B. REM"P IMPLEMENTATION WITHIN CONCEPTBASE

The REMAP model is implemented within ConceptBase, a

deductive object base management system (Jarke, 1993, p. 1).

ConceptBase uses the knowledge representation language Telos

which is an object-oriented conceptual modelling language.

ConceptBase V3.2 is implemented ir _& client-server

architecture where the clients and servers run as independent

processes which interact via inter-process communication

(IPC). The GraphBrowser program provided within ConceptBase

is written entirely in the C programming language using the

Andrew Toolkit. This utility is intended to provide a

customizable GUI. ConceptBase also incorporates several

utilities such as a Telos Editor and a Hypertext Editor.

1. GraphBrowser Utility Function

The GraphBrowser is a windows oriented utility

function which allows a selected knowledge base to be viewed

graphically. Any displayed object can be selected by clicking

18

on the object with the left mouse button. Each object

possesses an object identifier which the GraphBrowser uses to

draw the initial node of a directed acyclic graph (DAG).

"* erase node - deletes the selected object (node or link)
from the display.

"* any - displays all objects connected to the selected
object by a link corresponding to a user-defined
specification of orientation and label.

"* show attributes displays all the direct attributes.

"* show instances - displays all the direct instances.

"* show classes - displays all classes the selected object is
an instance of.

"* show subclasses - displays one level of subclass.

"* show superclasses - displays one level of superclass.

"* Help - displays a window containing a description of the
GraphBrowser's facilities.

"* quit - terminates the GraphBrowser. (Jarke, 1993, pp. 20-
21)

Various menu choices trigger GraphBrowser queries

which retrieve objects from the knowledge base according to

four pre-defined Telos graphical types: MetaMetaclass,

MetaClass, SimpleClass, and Token.

C. PRIOR WORK

Earlier efforts to implement REMAP used the Andrew Toolkit

version 5.0 and ConceptBase V3.0. Although the implementation

of the REMAP model was incomplete, the Andrew Toolkit

interface to the ConceptBase system was coded and debugged.

19

The final product allowed the ConceptBase program to be

called, the GraphBrowser utility function to be initiated, and

some fundamental calls made to the desired knowledge base

using REMAP structured calls.

1. Noted Deficiencies and Possible Solutions

In the effort, the GraphBrowser application was not

customized to provide a distinctive graphical scheme for REMAP

objects. Also, the complete REMAP model was not incorporated

into the knowledge base.

The availability of a more advanced version of

ConceptBase (version 3.2) provided functionalities to overcome

these deficiencies. Capabilities essential for an

implementation of the REMAP model such as a customizable

graphical display for the GraphBrowser and hypermedia

capabilities are included. Additionally, a new query

mechanism (CBASKGBFORMAT) that allows the user to specify

how links and nodes will be displayed in the GraphBrowser's

window within a given ConceptBase session is also provided.

20

IV. IMPLUONTATION DETAILS

A. STANDARD GRAPBROWSER INTERFACE

The GraphBrowser application is written as a layer around

a set of shared objects. The Andrew Toolkit assists in using

shared objects through the creation of insets. As explained

in Chapter II, an inset is a pair of objects, a data object

and a viewing object, that displays the data object on the

screen (Borenstein, 1990, p. 57). The GraphBrowser inset

consists of the data object cbGraph and the viewing object

cbGraphView.

The class cbGraph stores the part of the semantic network

to be displayed and provides methods for manipulating it

These methods include inserting and deleting objects,

accessing the fields stored in the instances of a class,

setting some of these fields, and computing the neighbors of

an object. The methods cbGraph_Insert, cbGraphDelete,

cbGraphSetCBID, cbGraphSetName, and cbGraphNeighbours ,

respectively, perform these functions. (Eherer, 1992, p. 13)

Once an object has been defined, it must be determined how

to view it. This is done by cbGraphView. The class

cbGraphView maintains the data used for displaying the objects

as well as methods which draw the object or scroll the window.

The methods cbGraphView WantUpdate, and

21

cbGraphViewWantlnputFocus perform these functions. (Eherer,

1992, p. 14)

The basic GraphBrowser allows a knowledge base to be

graphically accessed. However, the basic GraphBrowser does

not incorporate the object definitions of the REMAP model or

customized menus to provide REMAP specific functionalities.

Achieving these goals requires separate programming tasks.

The first task consists of the coding of a C based interface

using the Andrew Toolkit to allow the direct manipulation of

a REMAP knowledge base. The second task centers around

extending the GraphBrowser utility function to incorporate the

REMAP model and call the created interface.

B. CREATING THE NEW ANDREW TOOLKIT EXTENSION

The creation of an extension using the Andrew Toolkit is

a two step task. First, a new Andrew class file must be

written. Then, this file must be compiled so that it can be

made available to the GraphBrowser utility function. Only

minor changes to the existing code were necessary to make it

compatible with the newer version of the ConceptBase system.

This section provides only a brief overview of this task. For

additional description of the major steps, the reader is

referenced to the thesis by J.J. Stenzoski (Stenzoski, 1992).

22

1. Writing the Andrew Class File

The Andrew class file is composed of two portions, the

class header file (".ch") and the standard ".c" file. A brief

overview of these follows.

a. Class Header File

The class header file is similar, but not

identical, to normal C include files (".h") (Borenstein, 1990,

p. 16). A new class is defined by giving it a name and

establishing how it will differ from its superclass. Our

class will be called remap. The remap class does not need to

inherit any procedures, so our new class is a top-level class

(Stenzoski, 1992, p. 24). Here is the remap class header

file, remap.ch:

#define remapVERSION 1

class remap (
classprocedures:

InitializeClass () returns boolean;
InitializeObject (struct remap *self) returns boolean;
FinalizeObject (;I;

This class header file contains the procedure

specification for the initialization of the remap class and

object instance as well as for cleaning up and freeing memory

when the object is deleted (Stenzoski, 1992, p. 24).

b. The Class C File

The corresponding ".c" file contains the actual

procedures which were specified in the ".ch" file (refer to

Appendix B for the ".c" code).

23

The first section of the ".c" file is the #include

files. This section includes the various files needed by the

routine to perform the desired functions as well as the

functions needed to provide input/output and interaction

capabilities. The remap.eh file is the export file created

from the remap.ch file by the Class preprocessor. It enables

the other Andrew classes to utilize the procedures of the

remap class.

The next section contains the C code written to

extend the GraphBrowser. The two procedures remapquery and

remapinstanceof are created and defined here. These are the

procedures that will be called by the extended GraphBrowser.

remap query shows the particular dependencies for an object

entered in a interaction window, remap_instanceof displays

the representation of an object entered in an interaction

window.

The InitializeObject and FinalizeObject are class

methods required for proper object instantiation and

termination (Stenzoski, 1992; p. 26).

The InitializeClass method makes the call to the

proctableDefineProc procedure. This enters the internal

procedu!lre names remap-query and remap-instanceof into the

cbGraAIjView's procedure table. The procedure table is used to

establish and translate bindings between menu items and their

corresponding procedures.

24

2. Compiling the New Andrew Class

An Imakefile which uses macros developed especially

for the Andrew system was used. The reader is referred to

book by Nathaniel Borenstein (Borenstein, 1990) for an

explanation. The Imakefile is a Makefile generator. The

Makefile is used to compile the program resulting in

executable code. The overall compilation process required the

setting of environment variables, the creation of the

Imakefile, and the code compilation.

a. Setting Environment Variables and Creating the

Imakefil e

The environment variables establish the paths which

will be necessary to complete the compilation and to establish

the required dependencies. This includes the location of the

dynamic objects required to complete compilation. These

variables are set in the .cshrc file of the project directory

with the values shown below:

setenv ANDREWDIR /usr/local/andrewSi
setenv PATH . :$ANDREWDIR/bin:$PATH
setenv CLASSPATH . :$ANDREWDIR

The following Imakefile was used for the

compilation process:

Normal Obj ectRul e ()
DependTarget ()
NormalATKRule ()
DynamicObject (remap,,)
InstallClassFiles (remap. do, remap. ih)
CC = gcc
PICFLAG = -fpic

25

b. Makefile Generation and Code Compilation

The first step is generation of the Makefile. This

is done by issuing the following command from the project

directory:

% genmake

Once the Makefile is generated, the file dependencies must be

established. This is accomplished with the following command:

t makedepend

To complete the compilation and create the ".do" file type:

% make

The Andrew Toolkit extension is now ready to be run by the

extended GraphBrowser. Once the Makefile is generated and the

dependencies established, only the final command of the above

process has to be used if a change is made to the ".c" file.

C. EXTENDING THE GRAPHBROWSER UTILITY FUNCTION

There are two steps involved in the extension to the

GraphBrowser utility function. The first step involves the

modification of the .graphbrowserinit file to allow the

extension (detailed above) to be called. The second step

involves the coding and loading of the models necessary to

implement the REMAP model. These models will allow for the

correct identification and graphical representation of the

selected objects.

26

1. Modifying the .graphbrowserinit file

The .graphbrowserinit file is composed of two

sections: the menu item description section and the graphical

type description section. The first section describes the

buttons available within the GraphBrowser's panel. The second

defines the mapping from graphical types defined within the

knowledge base to concrete patterns and shapes displayed on

the screen (Eherer, 1992, p. 21). The basic .graphbrowserinit

file contained within the ConceptBase V3.2 release is shown

below:

#include <gbinit.h>
Erase-60, GBMULTISELECT, gb-gbErase
Add Node-61, GB_UNSELECT, gb-gbAddNode
Any-62,GBSOMETHING, gb-gb_any
Show Attributes-63, GB_SOMETHING, gb-gb show_attributes
Show Instances-64,GBNODE,gb-gbshow instance
Show Classes-65, GB NODE, gb-gb show classes
Show Subclasses-66,GB_NODE,gb-gb_showsubclasses
Show Superclasses-67, GB_NODE, gb-gb show supclasses
Telos Edi tor-70, GBMULTISELECT, gb-gbCallEditor
Graph Browser- 71,dGB_MULTISELECT, gb -gbCall GraphBrowser
Save Layout-81, GB_NOTHING, gb-SaveLayout
Load Layout-82, GB_NOTHING,gb-LoadLayout

dummy, none, oval, yellow, GBNODEI GBSOMETHINGI GBTOOLS

Descriptions of the menu item and graphical item descriptions

are below. The modifications necessary for each section are

provided.

a. Menu Item Description

Menu items are included at the beginning of the

.graphbrowserinit file and consist of: menu item, menu mask, and

menu procedure (Eherer, 1991, p. 8). The first entry is the

27

string which will appear as a menu selection item to the right

hand side of the GraphBrowser window when the GraphBrowser is

called. The number following the tilde (-) gives the relative

position of the menu item on the screen. The higher the number

is, the lower that menu item will appear on the screen. To

place a space between groupings of menu items, the number must

jump up to the next decade (e.g., 60's up to 70's).

The second entry in the line is the menu mask. Menu

masks may be given as defined in the file gb_init.h or as

numbers directly in the init file (Eherer, 1991, p. 8). The

gbinit.h file distributed with ConceptBase V3.2 is shown below:

#define GB NOTHING OL
#define GB NODE 1L
#define GB--LIVK 2L
#define GB_-SOMETHING 4L
#define GBUNSELECT 8L
#define GBTOOLS 16L
#define GBMULTISELECT 32L

A boolean evaluation is performed between the menu item's mask

and the selected object's mask to determine if a menu item will

be displayed (Jarke, 1993, p. 22). The object mask is

determined in the graphical item portion of the

.graphbrowserinit as described below. If the result of the

boolean evaluation is true, the menu item is displayed.

The final entry is the name of the procedure which

the menu item calls. The routine remapquery , mentioned

earlier, is an example of a procedure which may called to

execute. However, to execute the call correctly, the Andrew

system requires the routine to be called as remap-query.

28

To include the two REMAP procedures mentioned in the

GraphBrowser with the names "Input Remap Object" and "Show Remap

Instances," the .graphbrowserinit file must look like this:

#include <gb init.h>
Erase-60, GB_MULTISELECT, gb-gbErase
Add Node-61, GB_ UNSELECT, gb-gbAddNode
Any-62, GB_SOMETHING , gb -gbany
Show Attributes-63, GB_SOMETHING, gb-gb show attributes
Show Instances-64,GB_NODE,gb-gb show instance
Show Classes-65,GB_NODE,_gb-gbshowclasses
Show Subclasses-66, GB_NODE,gb-gb_show subclasses
Show Superclasses-67, GBNODE, gb-gb show supclasses
Tel os Edi tor-70, GBMUL TISELECT, gb-gbCallEditor
Graph Browser-71, GBMULTISELECT, gb -gbCallGraphBrowser

/* APPEMWED MENU IT4 */
Input Remap Object-72,GB NODE, remap-query
Show Remap Instances-73, GB_NODE, remap-instanceof

Save Layout-82, GBNOTHING, gb-SaveLayout
Load Layout-82, GBNOTHING, gb-LoadLayout

dummy, none, oval,yellow, GBNODEI GBSOMETHING IGB-TOOLS

For either of these two menu items to appear, the item selected

must have an object mask equal to GBNODE.

b. Graphical Item Description

The second section of the .graphbrowserinit file

determines how a retrieved object is displayed and what menu

items will be available when that object is displayed. A line

in this section of the .graphbrowserinit file consists of five

parts: GraphicalType, Pattern, Shape, Color, MenuMask. The

GraphicalType is the name of the Telos class which the

GraphBrowser uses to identify the retrieved object. Pattern is

the fill/connection style (none, black, gray, dashedlink,

doublelink) used when the retrieved object is displayed. Shape

29

identifies how the retrieved object will be formed (rectangle,

oval, circle, diamond, icon, link) when it is displayed. Color

determines the outline color for the object. Lastly, MenuMask

determines which menu items will be available when the object is

displayed and selected. These masks are separated by a "I"

which represents a bit-wise OR. This bit-wise OR allows

flexibility in determining which menu items are available for

each graphical type. (Jarke, 1993, p. 22)

To accommodate the REMAP model, graphical type

descriptions for REQUIREMENT, ISSUE, POSITION, ARGUMENT,

ASSUMPTION, DECISION, CONSTRAINT, AND DESIGNOBJECT are

required. The resulting .graphbrowserinit file is shown below:

#include <gbinit.h>
Erase-60, GBMULTISELECT, gb-gb_Erase
Add Node-61,GBUNSELECT,gb-gbAddNode
Any-62, GBSOMETHING, gb - gbany
Show Attributes-63, GBSOMETHING, gb-gbshowattributes
Show Instances-64,GB_NODE,gb-gbshowinstance
Show Classes-65, GB_NODE, gb-gb show classes
Show Subclasses-66, GBNODE, gb-gbshow subclasses
Show Superclasses-67, GB NODE, gb-gbshow supclasses
Telos Edi tor-70, GBMULTISELECT, gb-gbCallEditor
Graph Browser-71, GB MULTISELECT, gb-gb_CallGraphBrowser
Input Remap Object-•72, GBMULTISELECT, remap-query
Show Remap Instances-73, GB_MULTISELECT. remap-instanceof
Save Layout-81, GB NOTH.LWG , gb-SaveLayout
Load Layout-82, GB_NOTHING, gb-LoadLayout

APPENED REKAP GRAPHICAL TYPES */
REQUIPRWENT, none, circle, black, GB LINKI GB SO(IETHINGI GBTOOLS
ISSUE, none, oval, black, GB LINKI GBSCSWEI-- GIGB TOOLS
POSITION, none, rectangle, black, GBLINKI GB SdKEfETHGI GB TOOLS
ARGUMENT, black, rectangle, black, GB_ LINKI GB SOWETHINGI GB TOOLS
ASSUMPTION, none, rectangle, black, GB LINKI GEB SOETHNG I GB TOOLS
DECISION, gray, rectangle, black, GB_LINKI GB SCMETHID I GB TOOLS
CONS TRAINT, black, oval ,black, GB LINKI GBSCWE THI? I GB TOOLS
DESIGNOBJECT, black, rectangle, black, GB _LINKI GB_S0 WT_ %I GB_TOOLS

30

Once an object is displayed within the GraphBrowser

window, it can be designated by clicking on it using the left

mouse button. This will allow any of the various commands

available at the right side of the GraphBrowser window to be

applied to the desired object.

ConceptBase V3.2 allows further custom: zation of

how the graphical types can be displayed. Various attributes

of a graphical type (such as background color, shape and text

color) can be specified by creating a Telos model of these

specifications. The file colors.sml (Figure 5) specifies the

color an object is shaded, the color of the text within the

object, and the shape of the object for various REMAP objects.

31

RZQUIRDIEJN wi th
attribute

Cal orWi tbShape : fbubblenode a;
Cal orBackgroundCol or :"blue";
Cal orTextCol or: wie

end

ISSUE Wi th
attribute

Col orWithShape :"ovulnod";
Cal orBackgroundCol or :"pink"a;
Cal orTextCol or : black"

and

POSITION wi th
attribute

Cal orWithShape : rectnodema;
Cal arBackgroundColar :"green";
Cal orText Calor : black"

end

ARGUMENT with
attribute

Cal arli thshape :"diamondmode";
ColorBack groundColor :"yell owN;
Cal orTextCol or :"black"

end

ASSUM4PTION with
attribute

ColorWithShape : rectnode";
Cal or~ackgraundColor : orange";
Col orTextCol or :"black"

end

DECISION with
attribute

Cal orWithShape :"rectnode";
Cal arBackgroundCol or :"red";
Cal arText Calor :"black"

and

CONSTRAINT wi th
attribute

Cal arWi thShape :"ova lnade";
Cal arBackgroundColor :"purple";
ColarTextColar "white"

end

DESIGNOBJECT with
attribute

Cal or~ithShape "rectnade";
Cal orBackgroundCol or :"brawn";
Col orTextCol or :"white"

end

Figure 5 colors.srnl Model

32

Any of the colors available to the X Windows system

can be used to customize the output. Other attributes which

can be interpreted by the GraphBrowser include LineWidth

(width of the lines of nodes and links), LineColor (color in

which the outline of the selected objects is drawn), and

LineDash (dash factor between 0(solid line) and 16(dashed)).

The prefix Color is placed in front of each attribute for use

with color monitors and the prefix mono is used for use with

monochrome displays.

2. Creating The New REKAP Model

The definition of new graphical types that have been

defined within the colors.sml file must be made available to

the ConceptBase server. This is done by creating two new

classes, RemapEDGE and RemapNODE, which can be found in the

file RemapEGDE. smi.

To create the new REMAP specific classes, the original

GraphBrowser classes XllGraphBrowserEDGE and

XllGraphBrowserNODE were used as building blocks. The

original X11GraphBrowserEDGE. sml file used the MetaMetaClass,

MetaClass, SimpleClass, and Token graphical types. The REMAP

extension requires the addition of the eight graphical types

used in the .graphbrowserinit REMAP definitions into the

RemapEDGE and RemapNODE classes.

33

The GraphBrowser RemapEDGE class specification after the
addition of the eight REMAP graphical types is below:

Class RemapEDGE in AnswerRepresentation isA EDGE with
graphi cal Type

gTl : REQUIREMENT;
gT2 : ISSUE;
gT3 : POSITION;
gT4 : ARGUMENT;
gT5 : ASSUMPTION;
gT6 : DECISION;
gT7 : CONSTRAINT;
gT8 : DESIGNOBJECT

end

The next step in creating the new REMAP specific

classes involved ordering the graphical types. Ordering the

graphical types establishes a level of precedence. Because

the Telos modelling language allows objects to be assigned to

more than one class, an object called by the GrapohBrowser can

be of more than one type. The GraphBrowser selects the

graphical type with the lowest number (hence the highest

precedence) and uses that graphical type to display the

object. The orderValue definitions of the RemapEDGE class are

shown below in Figure 6:

34

RemapEDGE I gTl with
orderValue

V:1I
end

RemapEDGE IgT2 wi th
orderValue

v:2
end

RemapEDGE grT3 wi th
orderValue

v:3
end

RenlapEDGEI gT4 wi th
order Val2ue

v: 4
end

R emapEDGE! gT5 wi th
orderValue

V: 5
end

RemapEDGE I gT6 wi th
order Value

v:6
end

ReMapE-DGE!gT7 with
order Value

v: 7
end

RemapEDGE~gT8 with
order Val1ue

V: 8
end

Figure 6 RemapEDGE.sml Model

The same ordering performed for the RemapEDGE class

must also be performed for the RemapNODE class.

35

The new classes must now be made available to the

GraphBrowser. This requires the setenv command to set

CBASKGBFORMAT to ON. By setting the CBASKGBFORMAT

variable to ON, an interaction window is called which prompts

the user for the node and edge formats which the GraphBrowser

will use. In this implementation, the node and edge formats

required to bring in the REMAP model are RemapNODE and

RemapEDGE, respectively.

3. Loading the RemapEDGE and colors Models

Now that the two new files RemapEDGE.sml and

colors.sml have been created, they must be added to the

ConceptBase knowledge base. When the new models are loaded

and the Andrew Toolkit extension is compiled, the extended

GraphBrowser is ready for use. Appendix A provides a short

tutorial on how to get started on a session with the extended

GraphBrowser.

D. HYPERMEDIA AND AD-HOC QUERY EXTENSIONS

The Graphrowser utility function is only one of the many

capabilities of ConceptBase V3.2. A hypertext capability

which allows the incorporation of text and audio clips is also

included. Furthermore, an ad-hoc querying capability is built

in which allows selective viewing of the knowledge base. The

following will give a more in depth description of how these

functions can be used to extend the REMAP model's

functionality.

36

1. Hypertext Editor

The Hypertext editor allows the editing of hypermedia

documents. Hypermedia documents can include text (such as

Andrew Toolkit ".ez" documents), audio clips, raster graphics,

vector graphics (poor), tables, and video clips. The current

version of the Andrew Toolkit can work with all of the above

mentioned hypermedia documents with the exception of video

clips.

Hypermedia capabilities provide many possibilities for

the REMAP project. The gathering of data to document and

preserve the process knowledge can become obtrusive in a

project and this may discourage the use of the model. The

need to use a graphical tool during a deliberation session can

cause disruptions in the work flow, thus hampering group work.

One way to overcome this is through video taping and audible

recording of the "argumentations" which occur during group

meetings. A "scribe" may be assigned the task of indexing

these multimedia sources in terms of the REMAP model.

a. Saumple Session with the Hypertext Editor

The model presented below (Figure 7) represents the

portion of the REMAP model in which Issue is defined to have

a definition which is a hypermedia object. Two instances of

Issue are presented: priorityscheme and frequency. To each

of the instances, a hypermedia definition is attached. These

definitions are provided in files created with the Andrew

37

Toolkit hypermedia editor, EZ. In this example, the files are

text files which provide a definition of what the particular

instance is. This could be easily extended to include audio

clips.

ISSUE with
attribute
definition: HyperMediaObject

end

priorityscheme with
attribute
definition: priorityscheme definition

end

Individual priority schemedefinition in
HyperMediaObject with

filename
": ./projectl/priorityscheme.ez"

end

frequency with
attribute
definition: frequencydefinition

end

Individual frequencydefinition in
HyperlediaObject with

filename
: "/projectl/frequency.ez"

end

Figure 7 Hypertext model

A new user of the REMAP model is examining a

project for the first time. The user notices something

referred to as a priorityscheme but does not understand what

it is. The hypertext editor can be used to extract this

information. By selecting "Editing" from the Tool Bar, then

choosing "Hypertext Editor" from the available items, an

interaction window appears. The string

38

"priority_schemedefinition" is entered. A new window (Figure

8) appears with the definition of a priorityscheme.

Tha puiwty omcm has to do with estmMbbntga bw dm w be srmued ý a uw
$oge6w 9w pmce~ssf Pdii scheme is = emu* of = ISSUE.

Them at scvr•l POSITI ONs wlch rrmqnd o u n cutmer tq ma
s eryc tpe smd toculon

sui

Figure 8 Hypertext Answer

39

2. Ad-Hoc Querying

The ad-hoc querying capability of ConceptBase can be

a very useful tool within the REMAP environment. As a

software development project grows, the size of the knowledge

base required to maintain the process knowledge for all the

various stakeholders can become quite large. The information

needs of various participants may vary widely. For instance,

the needs of a manager will differ greatly from those of a

designer or maintainer. Rather than having to browse the

entire knowledge base to retrieve relevant information, an

ad-hoc query can be structured using the GUI to retrieve the

necessary information. The information will be presented in

a structured manner.

The model below (Figure 9) represents Telos queries to

retrie-,e a portion of the knowledge base which a manager would

be interested in. QueryClasses are formed to support the

different stakeholders needs. In this example, the

QueryClasses OpenIssues and ResolvedIssues are established.

These queries will assist a manager tracking the progress of

various Issues concerning the different aspects of a project.

The first query will retrieve all Issues whose status

attribute is set to PENDING and the second query retrieves all

RESOLVED Issues. It should be noted that ConceptBase provides

deductive database capabilities through which the status of an

40

Issue may be dynamically inferred based on the status of other

model components.

QueryClass OpenIssues isA ISSUE with
constraint

pending: $ this Status PENDING $
end

QueryClass ResolvedIssues isA ISSUE with
constraint

pending: $ this status RESOLVED $
end

Figure 9 Display Queries Model

a. Sample Session Using Ad-Hoc Queries

A program manager is interested in what issues have

been resolved. To obtain this information, the ad-hoc query

generator is called. This is accomplished by selecting

"Displaying" from the Tool Bar, then selecting "Display

Queries" from the available choices. An interaction window

(Figure 10) appears displaying the various QueryClasses

available. The manager selects ResolvedIssues by highlighting

the item, then chooses "Ask" to send the query. A new window

(Figure 11) appears showing that the only issue to have been

resolved up until this point is priorityscheme.

41

Telos EditorGetlihm A*

Qluit

e~xist

fimido~re~imt~m

get_in•ks

Figure 10 QueryClass Specializations

Delete
t sage from Display Queries:-elt
o answer on Help

eesolvedIssues

at rollback time "Nov' is: Quit

priorityscheme in ResolvedIssues
end priority_scheme

Figure 11 Display Queries Answer

42

V. CONCLUSIONS AND RBCOMDENDATIONS

A. PROGRAMMERERQUIREMENTS

The learning curve for a programmer using the Andrew

Toolkit for the first time is quite steep. There are a number

of skills necessary for performing any type of development

with the Andrew Toolkit. First, a good understanding of the

Unix operating environment is required. Both ConceptBase and

the Andrew Toolkit make extensive use of Makefilles to manage

system development. A good understanding of the C programming

language is also necessary prior to attempting to program with

the Andrew Toolkit. Pointers and arrays are used extensively.

The basics of the X Window system are helpful as far as

understanding the client-server architecture and how it can be

used. The most valuable skill was experience gained by

actually working with the system. Invaluable knowledge was

gained over hours of experimenting with the ConceptBase

program and its various components (including the

GraphBrowser).

B. HELPFUL REFERENCES

The author found that the only comprehensive book about

the Andrew Toolkit was Nathaniel Borenstein's Multimedia

Applications Development with the Andrew Toolkit. This book

was written with a more experienced programmer in mind and a

43

good background in the C programming language is a

prerequisite for understanding. Additional help on the Andrew

Toolkit can be found as on-line documentation within the

Toolkit. Further questions can be directed to the Andrew

Toolkit Consortium at Carnegie Mellon University that can be

contacted at:

Andrew Toolkit Consortium
Carnegie Mellon University
4910 Forbes Avenue
Pittsburgh, PA. 15213-3890
(412) 268-6700 / FAX (412) 621-8081

Mailing list: info-andrew@andrew.cmu.edu
Newsgroup: comp.soft-sys.andrew

It was the author's experience that the best source of

information and guidance could be obtained from the

ConceptBase developers at the University of Aachen, in

Germany. A substantial portion of this implementation was

made possible by the e-mail clarification and suggestions

provided by the ConceptBase design team at the University of

Aachen. They can be contacted at:

ConceptBase-Team
c/o Rene Soiron
RWTH Aachen - Informatik V
D-52056 Aachen - Germany

+49-241-80-21-501 / FAX +49-241-80-21-529
e-mail : CB@picasso.informatik.rwth-aachen.de

C. RECOMMENDATIONS

A programmer fluid in the C programming language, familiar

with the working of the Andrew Toolkit, and possessing a good

44

understanding of Telos is required to continue this project.

Without the need to overcome the steep learning curve for this

environment, such a person could complete additional

capabilities into the REMAP model implementation within

ConceptBase in a matter of months.

The ConceptBase program is still in development. No

capability exists to easily delete models which have been

added to the Knowledge base. Also, there is insufficient

documentation to assist a programmer engaged in an effort such

as ours. Such work requires an extensive working e-mail

relationship with the University of Aachen.

D. CONCLUDING COMKENTS

ConceptBase V3.2 is a very powerful program. Although the

full functionality of the REMAP environment was not developed,

the necessary building blocks have been provided.

The REMAP model, when fully implemented and functional in

the ConceptBase environment, will prove a great benefit to the

Department of Defense. Capture of process knowledge with the

REMAP model will benefit development and maintenance of

systems. Its uses range from assisting in the development of

new systems to the re-engineering of systems already in place.

45

APPENDIX A : RAPHBROWSER TUTORIAL

The following was extracted from the Appendix of J.J.

Stenzoski's thesis (Stenzoski, 1992). It has been modified to

incorporate the additional functionality provided by

ConceptBase V3.2. Screen snaps taken during an actual session

are shown to help the first time user.

Running the GraphBrowser from a Remote Workstation

1. Login and run X Windows by entering <start> or <xinit>.

2. In the console window, enter <xhost ÷>. The advisory "all

hosts being allowed (access control disabled)" will appear.

3. In an X terminal, rlogin to the workstation where the

GraphBrowser and extension is installed. This terminal will

hereafter be referred to as the GB terminal.

4. In the GB terminal, enter <setenv DISPLAY <local machine

address>:O.O> to send GraphBrowser graphics to the local

workstation.

5. In another X terminal, riogin to the machine running

ConceptBase (this terminal will be referred to as the CB

terminal).

6. Continue with "Procedures Common for Local GraphBrowser

Operation."

46

Procedures Common for Local GraphBrowser Operation

1. Start the ConceptBase Toolbar in the GB terminal by

entering <toolbar>. The Toolbar (Figure 12) window should

appear within a few seconds. <toolbar> is an alias for the

command "CBinterface" from the directory

$CBHOME/CBExe/XIExe/sun4.

ConceptBase Tool Bar initializinM...

Comnect CB Server
system Stop Usage Enviromeant

Models

Editing

nisplaying

Drowuing

Figure 12 The Basic Tool Bar

2. If a second xterm window has not already been started,

start one now to use as the CB terminal. In the CB terminal,

start the ConceptBase server by entering <observer>.

<cbserver> is an alias which calls up the command "CBserver -d

-/proj ect/New App" from the directory $CB_HOME/CB_Exe/KSVExe.

This starts the ConceptBase server with the database NewApp.

When the server is started, note the portnumber that the

server is "ready under" (typically 4001).

47

3. In th*: Toolbar window, display the SYSTEM menu by first

clicking on the SYSTEM box with the left mouse button to

designate the SYSTEM tool. Then, select "connect CB server"

by highlighting the "connect CB server" menu item and once

again clicking the left mouse button. An interaction window

will appear asking for the host machine and the portnumber

(Figure 13). Ensure that the portnumber assigned matches that

assigned in step 2. If it does not match, correct this

discrepancy prior to continuing.

•nanoof Ow host u w iQuit

hIteractizmwindow act7iJv

Figure 13 Portnumber Interaction Window

4. From the BROWSING menu card, select Browse graphically

using the technique described in step 3 above. An Interaction

Window will appear and request the name of the object to

browse. Enter <processorder>. You will then be queried for

the edge and node definitions to be used. Enter <RemapEDGE>

for edge type and <RemapNODE> for node type. See Figure 14

below. The comment "The GraphBrowser starts up. Wait a

little bit for its window." will appear in the Toolbar comment

area.

48

CoweptBwe Tool Bar More...

Oinmfi~xm
Object to be bwd pro =dcr, @=firm

Nods format: RemapNODE
Edg formt: RemapEDOE

Figure 14 Node and Edge Format Interaction Window

5. The GraphBrowser window will appear with the processdata

object graphically displayed. Operations on displayed objects

can be performed by selecting the object with the left mouse

button, then selecting the desired operation from the menu

item list to the right of GraphBrowser window.

6. To stop the GraphBrowser, from the SYSTEMS menu card

select "stop CB server." From the same SYSTEMS menu card,

select "stop usage environment."

49

APPENDIX B : REMAP.C CODE

/* Extended GraphBrowser application for the REMAP project.

Author: LCDR J. J. Stenzoski, US Navy

Follow-on Authors : LT Joseph A. Martinelli, Stefan Eherer

Initial revision: 16 September 1992
Follow-on revision : 20 August 1993

/ ******t**4****************** Include files ******************************/

#include "remap.eh" /* External header file */
#include "cbgraphv.ih" /* CB GraphBrowser view file */
;Include "cbGraph.ih" /* CB GraphBrowser data object file */
#include "proctbl.ih" /* Procedure Table file */
#include "iw main.-h" /* interactionwindow file */
#include "iw-interact.h" /* interactionwindow file */
#include "iw conchecks.h" /* interactionwindow error checker file */
#include <stdio.h>
#include "CB interfL .h"

/****************************Function definition**************************/
/* Declares gb-parser function as "extern" */
extern int gbparser(struct cbGraphView *self, char *returndata, int type);
Server *server;
char* portnumber;
int port;

/* declaration of "query" function */
void
remap_query(struct cbGraphView *self, long rock)
f
*************************** Variable declaration ** *********

char *source; /* name of source */
char *label; /* name of link or node */
char *dist; /* distance from source node (currently limited to 1)*/
char longstring[300]; /* string variable to capture get links query */
char *rd; /* server's response to "ask" query */
char **input; /* user's interactionwindow entry */
int typ = 0; /* argument for gbparser call (specifies how objects

are to be drawn on the screen) */

/********** Generate interaction window and obtain user input *

/* defines "entry" data structure with interactionwindow prompt in quotes */
struct interaction entry -{"Enter object to retrieve:", NULL,

NULL, NULL};

/* declares an array of "entry" structures with pointer "entries" */
struct interaction *entriest] - {&entry, NULL};

/* changed the data structure of the current object to graphitem SE */
struct graphitem *gi;

printf ("entering ... ");

gi - cbGraphViewGetCurrentObject(self);
printf ("done!\n");

/* assigns user input to variable "input" and checks for NULL input */
if (!(input-interactionwindow(entries)) II input[O]--NULL)

return;

************************ Query server for user-input object******************/

/* sprintf copies the entire get_links query into the variable "loug_string.
In the get_links query, self->currentObject->CBID designated the

currently selected object and is substituted for the first %s argument,
while *input is
substituted for the second %s argument in the query. *input will contain the
user's input from the interactionwindow. */

/* test code prior to the call to the knowledge base*/
/* used the ID of the graphitem instead of the ID of the current object SE */
printf("Variable values prior to the call : rock- %ld, name - %skn",
rock, graphitemRetID(gi));

/* used the ID of the graphitem instead of the ID of the current object SE */
sprintf(long_string,
"getlinks([coming_outof/dir,'%s'/source,%s/label, i/dist]),FORMAT:RemapE
DGE",

graphitemRetID(gi), *input);

/* queries server with get_links above and assigns response to "rd" */
rd = ask(server, long_string);

/* test code after the call to knowledge base*/
/* used the ID of the graphitem instead of the ID of the curr.zat object SE */
printf("Variable values after the call: rock= %ld, name = %s\n", rock,
graphitemRetID(gi));

/* checks for errors in server response */
if(strcmp(rd, "nil") == 0 II *rd==ERRORCHAR)

I
return;

}
/******** Parse server response and display object instance in GB window *****/

/* sends server response to the parser routine for graphocal display */
gb_parser(self, rd, typ);

} /* end query procedure */

/************* remap_instanceof Procedure *****************/

void
remap_instanceof(struct cbGraphView *self)

{
char *rd;
int typ = 0;
char longer_string[300];

/* changed the data structure of the current object to graphitem SE */
struct graphitem *gi = cbGraphViewGetCurrentObject(self);

/* instead of plugging using user input in for %s as the "label" as in the
remapquery procedure, here "instanceof" will be used as label whenever the
procedure's menu item is selected. No interactionwindow is used. */
/* used the ID of the graphitem instead of the ID of the current object SE */
sprintf(longer_string,
"getlinks([comingoutof/dir,'%s'/source,'*instanceof'/label, 1/dist]),FO

RHAT:RemapEDGE",

graphitem-RetID (gi));

rd - ask(server, longer_string);

gby.arser(self, rd, typ);

/* end instanceof procedure *
/ *** *** *** *** **Required housekeeping procedures ***********************/

/* initializes remap class */
boolean remap__InitializeObject(ClassID, self)
struct classheader *ClassID;
struct remap, *self;

port - atoi(portnumber); 1* ascii-to-integer conversion of global
variable "portnumber" and assignment to
variable "Port" */

/* connects server. Note that machine name is the only non-portable argument *
if (connectCE-server (port, "isri", "X llGraphBrowser",

strdup(getenv("USER")), &server) '-0)

return TRUE;

void remap__FinalizeObject (ClassID, self)
struct classheader *ClassID;
struct remap *self;

f
disconnectCE-server(server);*/

I

boolean remap__InitializeClass (ClassID)
struct classheader *ClassID;

struct classinfo *cbGvtype;

printf ("Entered initialize...");

cbGvtype = cl,,s_Load("cbGraphView");

proctableDefineProc ("remap-qluery", remap_query, cbGvtype,
NULL, "Allows retrieval of REMAP objects");

proctableDefineProc ("remap-instanceof", remap-instanceof, cbGvtype,
NULL, NULL);

printf ("done.\n");
return TRUE;

void remap_foobarTest (struct cbGraphView *self, long rock)

printf ("You found me!\n");

/~**************End "remap.c" source code file ************/

LIST OF REFERENCES

Barkakati, Nabajyoti, X Window System Programming, Sams, 1991.

Brown, Laure, "Graphical User Interfaces, A developer's
Quandry," Patricia Seybold's Unix in the Office, pp. 1-11,
August 1989.

Borenstein, Nathaniel S., Multimedia Applications Development
with the Andrew Toolkit, Prentice Hall, Inc., 1990.

Conklin, Jeff, and Begeman, Michael, "gIBIS: A Hypertext Tool
for Exploratory Policy Discussion," ACM Transactions Office
Information Systems, pp. 303-331, October 1988.

Eherer, Stefan, and Baumeister, Markus, Documentation of the
Andrew Classes cbGraph and cbGraphView and How to Extend the
Functionality of the Standard Graphbrowser, University of
Aachen, 1991.

Eherer, Stefan, and Gallersdorfer, Rainer, ConceptBase V3.1
Programmer's Manual, University of Aachen, 1992.

Jarke, Matthias, ConceptBase V3.2 User Manual, University of
Aachen, 1993.

Jones, Oliver, Introduction to the X Window System, Prentice
Hall, Inc., 1989.

Ramesh, Balasubramanian, and Dhar, Vasant, "Supporting Systems
Development by Capturing Deliberations During Requirements
Engineering," IEEE Transactions on Software Engineering, pp.
498-510, June 1992.

Stenzoski, Jeffrey, X Window Application Extension with the
Andrew Toolkit, Naval Postgraduate School, September 1992.

Wolf, Andrew D., "The X Windows System, Where is Its Future?,"
Patricia Seybold's Unix in the Office, pp. 3-16, April 1992.

53

BIBLIOGIAPHY

Carnegie Mellon University, Andrew Toolkit version 5.1 online
documentation, 1992.

Jas, Frank, and Russell, Will, C Language Programming: An
Intensive Study, University of California at Santa Cruz.

Kernigan, Brian W., and Ritchie, Dennis M., The C Programming
Language, Prentice-Hall, 1978.

University of Aachen, ConceptBase V3.2 online documentation,
1993.

54

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002

3. B. Ramesh, Code AS/RA 3
Naval Postgraduate School
Monterey, California 93943-5002

4. Roger Stemp, Code CS/SP 1
Naval Postgraduate School
Monterey, California 93943-5002

5. LT Joseph A. Martinelli 2
5431 Tejon Street
Denver, Colorado 80221

55

